flow.c 8.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368
  1. /* flow.c: Generic flow cache.
  2. *
  3. * Copyright (C) 2003 Alexey N. Kuznetsov (kuznet@ms2.inr.ac.ru)
  4. * Copyright (C) 2003 David S. Miller (davem@redhat.com)
  5. */
  6. #include <linux/kernel.h>
  7. #include <linux/module.h>
  8. #include <linux/list.h>
  9. #include <linux/jhash.h>
  10. #include <linux/interrupt.h>
  11. #include <linux/mm.h>
  12. #include <linux/random.h>
  13. #include <linux/init.h>
  14. #include <linux/slab.h>
  15. #include <linux/smp.h>
  16. #include <linux/completion.h>
  17. #include <linux/percpu.h>
  18. #include <linux/bitops.h>
  19. #include <linux/notifier.h>
  20. #include <linux/cpu.h>
  21. #include <linux/cpumask.h>
  22. #include <linux/mutex.h>
  23. #include <net/flow.h>
  24. #include <asm/atomic.h>
  25. #include <linux/security.h>
  26. struct flow_cache_entry {
  27. struct flow_cache_entry *next;
  28. u16 family;
  29. u8 dir;
  30. u32 genid;
  31. struct flowi key;
  32. void *object;
  33. atomic_t *object_ref;
  34. };
  35. atomic_t flow_cache_genid = ATOMIC_INIT(0);
  36. static u32 flow_hash_shift;
  37. #define flow_hash_size (1 << flow_hash_shift)
  38. static DEFINE_PER_CPU(struct flow_cache_entry **, flow_tables) = { NULL };
  39. #define flow_table(cpu) (per_cpu(flow_tables, cpu))
  40. static struct kmem_cache *flow_cachep __read_mostly;
  41. static int flow_lwm, flow_hwm;
  42. struct flow_percpu_info {
  43. int hash_rnd_recalc;
  44. u32 hash_rnd;
  45. int count;
  46. };
  47. static DEFINE_PER_CPU(struct flow_percpu_info, flow_hash_info) = { 0 };
  48. #define flow_hash_rnd_recalc(cpu) \
  49. (per_cpu(flow_hash_info, cpu).hash_rnd_recalc)
  50. #define flow_hash_rnd(cpu) \
  51. (per_cpu(flow_hash_info, cpu).hash_rnd)
  52. #define flow_count(cpu) \
  53. (per_cpu(flow_hash_info, cpu).count)
  54. static struct timer_list flow_hash_rnd_timer;
  55. #define FLOW_HASH_RND_PERIOD (10 * 60 * HZ)
  56. struct flow_flush_info {
  57. atomic_t cpuleft;
  58. struct completion completion;
  59. };
  60. static DEFINE_PER_CPU(struct tasklet_struct, flow_flush_tasklets) = { NULL };
  61. #define flow_flush_tasklet(cpu) (&per_cpu(flow_flush_tasklets, cpu))
  62. static void flow_cache_new_hashrnd(unsigned long arg)
  63. {
  64. int i;
  65. for_each_possible_cpu(i)
  66. flow_hash_rnd_recalc(i) = 1;
  67. flow_hash_rnd_timer.expires = jiffies + FLOW_HASH_RND_PERIOD;
  68. add_timer(&flow_hash_rnd_timer);
  69. }
  70. static void flow_entry_kill(int cpu, struct flow_cache_entry *fle)
  71. {
  72. if (fle->object)
  73. atomic_dec(fle->object_ref);
  74. kmem_cache_free(flow_cachep, fle);
  75. flow_count(cpu)--;
  76. }
  77. static void __flow_cache_shrink(int cpu, int shrink_to)
  78. {
  79. struct flow_cache_entry *fle, **flp;
  80. int i;
  81. for (i = 0; i < flow_hash_size; i++) {
  82. int k = 0;
  83. flp = &flow_table(cpu)[i];
  84. while ((fle = *flp) != NULL && k < shrink_to) {
  85. k++;
  86. flp = &fle->next;
  87. }
  88. while ((fle = *flp) != NULL) {
  89. *flp = fle->next;
  90. flow_entry_kill(cpu, fle);
  91. }
  92. }
  93. }
  94. static void flow_cache_shrink(int cpu)
  95. {
  96. int shrink_to = flow_lwm / flow_hash_size;
  97. __flow_cache_shrink(cpu, shrink_to);
  98. }
  99. static void flow_new_hash_rnd(int cpu)
  100. {
  101. get_random_bytes(&flow_hash_rnd(cpu), sizeof(u32));
  102. flow_hash_rnd_recalc(cpu) = 0;
  103. __flow_cache_shrink(cpu, 0);
  104. }
  105. static u32 flow_hash_code(struct flowi *key, int cpu)
  106. {
  107. u32 *k = (u32 *) key;
  108. return (jhash2(k, (sizeof(*key) / sizeof(u32)), flow_hash_rnd(cpu)) &
  109. (flow_hash_size - 1));
  110. }
  111. #if (BITS_PER_LONG == 64)
  112. typedef u64 flow_compare_t;
  113. #else
  114. typedef u32 flow_compare_t;
  115. #endif
  116. /* I hear what you're saying, use memcmp. But memcmp cannot make
  117. * important assumptions that we can here, such as alignment and
  118. * constant size.
  119. */
  120. static int flow_key_compare(struct flowi *key1, struct flowi *key2)
  121. {
  122. flow_compare_t *k1, *k1_lim, *k2;
  123. const int n_elem = sizeof(struct flowi) / sizeof(flow_compare_t);
  124. BUILD_BUG_ON(sizeof(struct flowi) % sizeof(flow_compare_t));
  125. k1 = (flow_compare_t *) key1;
  126. k1_lim = k1 + n_elem;
  127. k2 = (flow_compare_t *) key2;
  128. do {
  129. if (*k1++ != *k2++)
  130. return 1;
  131. } while (k1 < k1_lim);
  132. return 0;
  133. }
  134. void *flow_cache_lookup(struct net *net, struct flowi *key, u16 family, u8 dir,
  135. flow_resolve_t resolver)
  136. {
  137. struct flow_cache_entry *fle, **head;
  138. unsigned int hash;
  139. int cpu;
  140. local_bh_disable();
  141. cpu = smp_processor_id();
  142. fle = NULL;
  143. /* Packet really early in init? Making flow_cache_init a
  144. * pre-smp initcall would solve this. --RR */
  145. if (!flow_table(cpu))
  146. goto nocache;
  147. if (flow_hash_rnd_recalc(cpu))
  148. flow_new_hash_rnd(cpu);
  149. hash = flow_hash_code(key, cpu);
  150. head = &flow_table(cpu)[hash];
  151. for (fle = *head; fle; fle = fle->next) {
  152. if (fle->family == family &&
  153. fle->dir == dir &&
  154. flow_key_compare(key, &fle->key) == 0) {
  155. if (fle->genid == atomic_read(&flow_cache_genid)) {
  156. void *ret = fle->object;
  157. if (ret)
  158. atomic_inc(fle->object_ref);
  159. local_bh_enable();
  160. return ret;
  161. }
  162. break;
  163. }
  164. }
  165. if (!fle) {
  166. if (flow_count(cpu) > flow_hwm)
  167. flow_cache_shrink(cpu);
  168. fle = kmem_cache_alloc(flow_cachep, GFP_ATOMIC);
  169. if (fle) {
  170. fle->next = *head;
  171. *head = fle;
  172. fle->family = family;
  173. fle->dir = dir;
  174. memcpy(&fle->key, key, sizeof(*key));
  175. fle->object = NULL;
  176. flow_count(cpu)++;
  177. }
  178. }
  179. nocache:
  180. {
  181. int err;
  182. void *obj;
  183. atomic_t *obj_ref;
  184. err = resolver(net, key, family, dir, &obj, &obj_ref);
  185. if (fle && !err) {
  186. fle->genid = atomic_read(&flow_cache_genid);
  187. if (fle->object)
  188. atomic_dec(fle->object_ref);
  189. fle->object = obj;
  190. fle->object_ref = obj_ref;
  191. if (obj)
  192. atomic_inc(fle->object_ref);
  193. }
  194. local_bh_enable();
  195. if (err)
  196. obj = ERR_PTR(err);
  197. return obj;
  198. }
  199. }
  200. static void flow_cache_flush_tasklet(unsigned long data)
  201. {
  202. struct flow_flush_info *info = (void *)data;
  203. int i;
  204. int cpu;
  205. cpu = smp_processor_id();
  206. for (i = 0; i < flow_hash_size; i++) {
  207. struct flow_cache_entry *fle;
  208. fle = flow_table(cpu)[i];
  209. for (; fle; fle = fle->next) {
  210. unsigned genid = atomic_read(&flow_cache_genid);
  211. if (!fle->object || fle->genid == genid)
  212. continue;
  213. fle->object = NULL;
  214. atomic_dec(fle->object_ref);
  215. }
  216. }
  217. if (atomic_dec_and_test(&info->cpuleft))
  218. complete(&info->completion);
  219. }
  220. static void flow_cache_flush_per_cpu(void *) __attribute__((__unused__));
  221. static void flow_cache_flush_per_cpu(void *data)
  222. {
  223. struct flow_flush_info *info = data;
  224. int cpu;
  225. struct tasklet_struct *tasklet;
  226. cpu = smp_processor_id();
  227. tasklet = flow_flush_tasklet(cpu);
  228. tasklet->data = (unsigned long)info;
  229. tasklet_schedule(tasklet);
  230. }
  231. void flow_cache_flush(void)
  232. {
  233. struct flow_flush_info info;
  234. static DEFINE_MUTEX(flow_flush_sem);
  235. /* Don't want cpus going down or up during this. */
  236. get_online_cpus();
  237. mutex_lock(&flow_flush_sem);
  238. atomic_set(&info.cpuleft, num_online_cpus());
  239. init_completion(&info.completion);
  240. local_bh_disable();
  241. smp_call_function(flow_cache_flush_per_cpu, &info, 0);
  242. flow_cache_flush_tasklet((unsigned long)&info);
  243. local_bh_enable();
  244. wait_for_completion(&info.completion);
  245. mutex_unlock(&flow_flush_sem);
  246. put_online_cpus();
  247. }
  248. static void __init flow_cache_cpu_prepare(int cpu)
  249. {
  250. struct tasklet_struct *tasklet;
  251. unsigned long order;
  252. for (order = 0;
  253. (PAGE_SIZE << order) <
  254. (sizeof(struct flow_cache_entry *)*flow_hash_size);
  255. order++)
  256. /* NOTHING */;
  257. flow_table(cpu) = (struct flow_cache_entry **)
  258. __get_free_pages(GFP_KERNEL|__GFP_ZERO, order);
  259. if (!flow_table(cpu))
  260. panic("NET: failed to allocate flow cache order %lu\n", order);
  261. flow_hash_rnd_recalc(cpu) = 1;
  262. flow_count(cpu) = 0;
  263. tasklet = flow_flush_tasklet(cpu);
  264. tasklet_init(tasklet, flow_cache_flush_tasklet, 0);
  265. }
  266. static int flow_cache_cpu(struct notifier_block *nfb,
  267. unsigned long action,
  268. void *hcpu)
  269. {
  270. if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
  271. __flow_cache_shrink((unsigned long)hcpu, 0);
  272. return NOTIFY_OK;
  273. }
  274. static int __init flow_cache_init(void)
  275. {
  276. int i;
  277. flow_cachep = kmem_cache_create("flow_cache",
  278. sizeof(struct flow_cache_entry),
  279. 0, SLAB_PANIC,
  280. NULL);
  281. flow_hash_shift = 10;
  282. flow_lwm = 2 * flow_hash_size;
  283. flow_hwm = 4 * flow_hash_size;
  284. setup_timer(&flow_hash_rnd_timer, flow_cache_new_hashrnd, 0);
  285. flow_hash_rnd_timer.expires = jiffies + FLOW_HASH_RND_PERIOD;
  286. add_timer(&flow_hash_rnd_timer);
  287. for_each_possible_cpu(i)
  288. flow_cache_cpu_prepare(i);
  289. hotcpu_notifier(flow_cache_cpu, 0);
  290. return 0;
  291. }
  292. module_init(flow_cache_init);
  293. EXPORT_SYMBOL(flow_cache_genid);
  294. EXPORT_SYMBOL(flow_cache_lookup);