vmalloc.c 46 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940
  1. /*
  2. * linux/mm/vmalloc.c
  3. *
  4. * Copyright (C) 1993 Linus Torvalds
  5. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  6. * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
  7. * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
  8. * Numa awareness, Christoph Lameter, SGI, June 2005
  9. */
  10. #include <linux/vmalloc.h>
  11. #include <linux/mm.h>
  12. #include <linux/module.h>
  13. #include <linux/highmem.h>
  14. #include <linux/slab.h>
  15. #include <linux/spinlock.h>
  16. #include <linux/interrupt.h>
  17. #include <linux/proc_fs.h>
  18. #include <linux/seq_file.h>
  19. #include <linux/debugobjects.h>
  20. #include <linux/kallsyms.h>
  21. #include <linux/list.h>
  22. #include <linux/rbtree.h>
  23. #include <linux/radix-tree.h>
  24. #include <linux/rcupdate.h>
  25. #include <linux/bootmem.h>
  26. #include <linux/pfn.h>
  27. #include <asm/atomic.h>
  28. #include <asm/uaccess.h>
  29. #include <asm/tlbflush.h>
  30. /*** Page table manipulation functions ***/
  31. static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
  32. {
  33. pte_t *pte;
  34. pte = pte_offset_kernel(pmd, addr);
  35. do {
  36. pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
  37. WARN_ON(!pte_none(ptent) && !pte_present(ptent));
  38. } while (pte++, addr += PAGE_SIZE, addr != end);
  39. }
  40. static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
  41. {
  42. pmd_t *pmd;
  43. unsigned long next;
  44. pmd = pmd_offset(pud, addr);
  45. do {
  46. next = pmd_addr_end(addr, end);
  47. if (pmd_none_or_clear_bad(pmd))
  48. continue;
  49. vunmap_pte_range(pmd, addr, next);
  50. } while (pmd++, addr = next, addr != end);
  51. }
  52. static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
  53. {
  54. pud_t *pud;
  55. unsigned long next;
  56. pud = pud_offset(pgd, addr);
  57. do {
  58. next = pud_addr_end(addr, end);
  59. if (pud_none_or_clear_bad(pud))
  60. continue;
  61. vunmap_pmd_range(pud, addr, next);
  62. } while (pud++, addr = next, addr != end);
  63. }
  64. static void vunmap_page_range(unsigned long addr, unsigned long end)
  65. {
  66. pgd_t *pgd;
  67. unsigned long next;
  68. BUG_ON(addr >= end);
  69. pgd = pgd_offset_k(addr);
  70. do {
  71. next = pgd_addr_end(addr, end);
  72. if (pgd_none_or_clear_bad(pgd))
  73. continue;
  74. vunmap_pud_range(pgd, addr, next);
  75. } while (pgd++, addr = next, addr != end);
  76. }
  77. static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
  78. unsigned long end, pgprot_t prot, struct page **pages, int *nr)
  79. {
  80. pte_t *pte;
  81. /*
  82. * nr is a running index into the array which helps higher level
  83. * callers keep track of where we're up to.
  84. */
  85. pte = pte_alloc_kernel(pmd, addr);
  86. if (!pte)
  87. return -ENOMEM;
  88. do {
  89. struct page *page = pages[*nr];
  90. if (WARN_ON(!pte_none(*pte)))
  91. return -EBUSY;
  92. if (WARN_ON(!page))
  93. return -ENOMEM;
  94. set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
  95. (*nr)++;
  96. } while (pte++, addr += PAGE_SIZE, addr != end);
  97. return 0;
  98. }
  99. static int vmap_pmd_range(pud_t *pud, unsigned long addr,
  100. unsigned long end, pgprot_t prot, struct page **pages, int *nr)
  101. {
  102. pmd_t *pmd;
  103. unsigned long next;
  104. pmd = pmd_alloc(&init_mm, pud, addr);
  105. if (!pmd)
  106. return -ENOMEM;
  107. do {
  108. next = pmd_addr_end(addr, end);
  109. if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
  110. return -ENOMEM;
  111. } while (pmd++, addr = next, addr != end);
  112. return 0;
  113. }
  114. static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
  115. unsigned long end, pgprot_t prot, struct page **pages, int *nr)
  116. {
  117. pud_t *pud;
  118. unsigned long next;
  119. pud = pud_alloc(&init_mm, pgd, addr);
  120. if (!pud)
  121. return -ENOMEM;
  122. do {
  123. next = pud_addr_end(addr, end);
  124. if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
  125. return -ENOMEM;
  126. } while (pud++, addr = next, addr != end);
  127. return 0;
  128. }
  129. /*
  130. * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
  131. * will have pfns corresponding to the "pages" array.
  132. *
  133. * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
  134. */
  135. static int vmap_page_range_noflush(unsigned long start, unsigned long end,
  136. pgprot_t prot, struct page **pages)
  137. {
  138. pgd_t *pgd;
  139. unsigned long next;
  140. unsigned long addr = start;
  141. int err = 0;
  142. int nr = 0;
  143. BUG_ON(addr >= end);
  144. pgd = pgd_offset_k(addr);
  145. do {
  146. next = pgd_addr_end(addr, end);
  147. err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
  148. if (err)
  149. break;
  150. } while (pgd++, addr = next, addr != end);
  151. if (unlikely(err))
  152. return err;
  153. return nr;
  154. }
  155. static int vmap_page_range(unsigned long start, unsigned long end,
  156. pgprot_t prot, struct page **pages)
  157. {
  158. int ret;
  159. ret = vmap_page_range_noflush(start, end, prot, pages);
  160. flush_cache_vmap(start, end);
  161. return ret;
  162. }
  163. static inline int is_vmalloc_or_module_addr(const void *x)
  164. {
  165. /*
  166. * ARM, x86-64 and sparc64 put modules in a special place,
  167. * and fall back on vmalloc() if that fails. Others
  168. * just put it in the vmalloc space.
  169. */
  170. #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
  171. unsigned long addr = (unsigned long)x;
  172. if (addr >= MODULES_VADDR && addr < MODULES_END)
  173. return 1;
  174. #endif
  175. return is_vmalloc_addr(x);
  176. }
  177. /*
  178. * Walk a vmap address to the struct page it maps.
  179. */
  180. struct page *vmalloc_to_page(const void *vmalloc_addr)
  181. {
  182. unsigned long addr = (unsigned long) vmalloc_addr;
  183. struct page *page = NULL;
  184. pgd_t *pgd = pgd_offset_k(addr);
  185. /*
  186. * XXX we might need to change this if we add VIRTUAL_BUG_ON for
  187. * architectures that do not vmalloc module space
  188. */
  189. VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
  190. if (!pgd_none(*pgd)) {
  191. pud_t *pud = pud_offset(pgd, addr);
  192. if (!pud_none(*pud)) {
  193. pmd_t *pmd = pmd_offset(pud, addr);
  194. if (!pmd_none(*pmd)) {
  195. pte_t *ptep, pte;
  196. ptep = pte_offset_map(pmd, addr);
  197. pte = *ptep;
  198. if (pte_present(pte))
  199. page = pte_page(pte);
  200. pte_unmap(ptep);
  201. }
  202. }
  203. }
  204. return page;
  205. }
  206. EXPORT_SYMBOL(vmalloc_to_page);
  207. /*
  208. * Map a vmalloc()-space virtual address to the physical page frame number.
  209. */
  210. unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
  211. {
  212. return page_to_pfn(vmalloc_to_page(vmalloc_addr));
  213. }
  214. EXPORT_SYMBOL(vmalloc_to_pfn);
  215. /*** Global kva allocator ***/
  216. #define VM_LAZY_FREE 0x01
  217. #define VM_LAZY_FREEING 0x02
  218. #define VM_VM_AREA 0x04
  219. struct vmap_area {
  220. unsigned long va_start;
  221. unsigned long va_end;
  222. unsigned long flags;
  223. struct rb_node rb_node; /* address sorted rbtree */
  224. struct list_head list; /* address sorted list */
  225. struct list_head purge_list; /* "lazy purge" list */
  226. void *private;
  227. struct rcu_head rcu_head;
  228. };
  229. static DEFINE_SPINLOCK(vmap_area_lock);
  230. static struct rb_root vmap_area_root = RB_ROOT;
  231. static LIST_HEAD(vmap_area_list);
  232. static struct vmap_area *__find_vmap_area(unsigned long addr)
  233. {
  234. struct rb_node *n = vmap_area_root.rb_node;
  235. while (n) {
  236. struct vmap_area *va;
  237. va = rb_entry(n, struct vmap_area, rb_node);
  238. if (addr < va->va_start)
  239. n = n->rb_left;
  240. else if (addr > va->va_start)
  241. n = n->rb_right;
  242. else
  243. return va;
  244. }
  245. return NULL;
  246. }
  247. static void __insert_vmap_area(struct vmap_area *va)
  248. {
  249. struct rb_node **p = &vmap_area_root.rb_node;
  250. struct rb_node *parent = NULL;
  251. struct rb_node *tmp;
  252. while (*p) {
  253. struct vmap_area *tmp;
  254. parent = *p;
  255. tmp = rb_entry(parent, struct vmap_area, rb_node);
  256. if (va->va_start < tmp->va_end)
  257. p = &(*p)->rb_left;
  258. else if (va->va_end > tmp->va_start)
  259. p = &(*p)->rb_right;
  260. else
  261. BUG();
  262. }
  263. rb_link_node(&va->rb_node, parent, p);
  264. rb_insert_color(&va->rb_node, &vmap_area_root);
  265. /* address-sort this list so it is usable like the vmlist */
  266. tmp = rb_prev(&va->rb_node);
  267. if (tmp) {
  268. struct vmap_area *prev;
  269. prev = rb_entry(tmp, struct vmap_area, rb_node);
  270. list_add_rcu(&va->list, &prev->list);
  271. } else
  272. list_add_rcu(&va->list, &vmap_area_list);
  273. }
  274. static void purge_vmap_area_lazy(void);
  275. /*
  276. * Allocate a region of KVA of the specified size and alignment, within the
  277. * vstart and vend.
  278. */
  279. static struct vmap_area *alloc_vmap_area(unsigned long size,
  280. unsigned long align,
  281. unsigned long vstart, unsigned long vend,
  282. int node, gfp_t gfp_mask)
  283. {
  284. struct vmap_area *va;
  285. struct rb_node *n;
  286. unsigned long addr;
  287. int purged = 0;
  288. BUG_ON(!size);
  289. BUG_ON(size & ~PAGE_MASK);
  290. va = kmalloc_node(sizeof(struct vmap_area),
  291. gfp_mask & GFP_RECLAIM_MASK, node);
  292. if (unlikely(!va))
  293. return ERR_PTR(-ENOMEM);
  294. retry:
  295. addr = ALIGN(vstart, align);
  296. spin_lock(&vmap_area_lock);
  297. if (addr + size - 1 < addr)
  298. goto overflow;
  299. /* XXX: could have a last_hole cache */
  300. n = vmap_area_root.rb_node;
  301. if (n) {
  302. struct vmap_area *first = NULL;
  303. do {
  304. struct vmap_area *tmp;
  305. tmp = rb_entry(n, struct vmap_area, rb_node);
  306. if (tmp->va_end >= addr) {
  307. if (!first && tmp->va_start < addr + size)
  308. first = tmp;
  309. n = n->rb_left;
  310. } else {
  311. first = tmp;
  312. n = n->rb_right;
  313. }
  314. } while (n);
  315. if (!first)
  316. goto found;
  317. if (first->va_end < addr) {
  318. n = rb_next(&first->rb_node);
  319. if (n)
  320. first = rb_entry(n, struct vmap_area, rb_node);
  321. else
  322. goto found;
  323. }
  324. while (addr + size > first->va_start && addr + size <= vend) {
  325. addr = ALIGN(first->va_end + PAGE_SIZE, align);
  326. if (addr + size - 1 < addr)
  327. goto overflow;
  328. n = rb_next(&first->rb_node);
  329. if (n)
  330. first = rb_entry(n, struct vmap_area, rb_node);
  331. else
  332. goto found;
  333. }
  334. }
  335. found:
  336. if (addr + size > vend) {
  337. overflow:
  338. spin_unlock(&vmap_area_lock);
  339. if (!purged) {
  340. purge_vmap_area_lazy();
  341. purged = 1;
  342. goto retry;
  343. }
  344. if (printk_ratelimit())
  345. printk(KERN_WARNING
  346. "vmap allocation for size %lu failed: "
  347. "use vmalloc=<size> to increase size.\n", size);
  348. return ERR_PTR(-EBUSY);
  349. }
  350. BUG_ON(addr & (align-1));
  351. va->va_start = addr;
  352. va->va_end = addr + size;
  353. va->flags = 0;
  354. __insert_vmap_area(va);
  355. spin_unlock(&vmap_area_lock);
  356. return va;
  357. }
  358. static void rcu_free_va(struct rcu_head *head)
  359. {
  360. struct vmap_area *va = container_of(head, struct vmap_area, rcu_head);
  361. kfree(va);
  362. }
  363. static void __free_vmap_area(struct vmap_area *va)
  364. {
  365. BUG_ON(RB_EMPTY_NODE(&va->rb_node));
  366. rb_erase(&va->rb_node, &vmap_area_root);
  367. RB_CLEAR_NODE(&va->rb_node);
  368. list_del_rcu(&va->list);
  369. call_rcu(&va->rcu_head, rcu_free_va);
  370. }
  371. /*
  372. * Free a region of KVA allocated by alloc_vmap_area
  373. */
  374. static void free_vmap_area(struct vmap_area *va)
  375. {
  376. spin_lock(&vmap_area_lock);
  377. __free_vmap_area(va);
  378. spin_unlock(&vmap_area_lock);
  379. }
  380. /*
  381. * Clear the pagetable entries of a given vmap_area
  382. */
  383. static void unmap_vmap_area(struct vmap_area *va)
  384. {
  385. vunmap_page_range(va->va_start, va->va_end);
  386. }
  387. static void vmap_debug_free_range(unsigned long start, unsigned long end)
  388. {
  389. /*
  390. * Unmap page tables and force a TLB flush immediately if
  391. * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
  392. * bugs similarly to those in linear kernel virtual address
  393. * space after a page has been freed.
  394. *
  395. * All the lazy freeing logic is still retained, in order to
  396. * minimise intrusiveness of this debugging feature.
  397. *
  398. * This is going to be *slow* (linear kernel virtual address
  399. * debugging doesn't do a broadcast TLB flush so it is a lot
  400. * faster).
  401. */
  402. #ifdef CONFIG_DEBUG_PAGEALLOC
  403. vunmap_page_range(start, end);
  404. flush_tlb_kernel_range(start, end);
  405. #endif
  406. }
  407. /*
  408. * lazy_max_pages is the maximum amount of virtual address space we gather up
  409. * before attempting to purge with a TLB flush.
  410. *
  411. * There is a tradeoff here: a larger number will cover more kernel page tables
  412. * and take slightly longer to purge, but it will linearly reduce the number of
  413. * global TLB flushes that must be performed. It would seem natural to scale
  414. * this number up linearly with the number of CPUs (because vmapping activity
  415. * could also scale linearly with the number of CPUs), however it is likely
  416. * that in practice, workloads might be constrained in other ways that mean
  417. * vmap activity will not scale linearly with CPUs. Also, I want to be
  418. * conservative and not introduce a big latency on huge systems, so go with
  419. * a less aggressive log scale. It will still be an improvement over the old
  420. * code, and it will be simple to change the scale factor if we find that it
  421. * becomes a problem on bigger systems.
  422. */
  423. static unsigned long lazy_max_pages(void)
  424. {
  425. unsigned int log;
  426. log = fls(num_online_cpus());
  427. return log * (32UL * 1024 * 1024 / PAGE_SIZE);
  428. }
  429. static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
  430. /*
  431. * Purges all lazily-freed vmap areas.
  432. *
  433. * If sync is 0 then don't purge if there is already a purge in progress.
  434. * If force_flush is 1, then flush kernel TLBs between *start and *end even
  435. * if we found no lazy vmap areas to unmap (callers can use this to optimise
  436. * their own TLB flushing).
  437. * Returns with *start = min(*start, lowest purged address)
  438. * *end = max(*end, highest purged address)
  439. */
  440. static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
  441. int sync, int force_flush)
  442. {
  443. static DEFINE_SPINLOCK(purge_lock);
  444. LIST_HEAD(valist);
  445. struct vmap_area *va;
  446. struct vmap_area *n_va;
  447. int nr = 0;
  448. /*
  449. * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
  450. * should not expect such behaviour. This just simplifies locking for
  451. * the case that isn't actually used at the moment anyway.
  452. */
  453. if (!sync && !force_flush) {
  454. if (!spin_trylock(&purge_lock))
  455. return;
  456. } else
  457. spin_lock(&purge_lock);
  458. rcu_read_lock();
  459. list_for_each_entry_rcu(va, &vmap_area_list, list) {
  460. if (va->flags & VM_LAZY_FREE) {
  461. if (va->va_start < *start)
  462. *start = va->va_start;
  463. if (va->va_end > *end)
  464. *end = va->va_end;
  465. nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
  466. unmap_vmap_area(va);
  467. list_add_tail(&va->purge_list, &valist);
  468. va->flags |= VM_LAZY_FREEING;
  469. va->flags &= ~VM_LAZY_FREE;
  470. }
  471. }
  472. rcu_read_unlock();
  473. if (nr) {
  474. BUG_ON(nr > atomic_read(&vmap_lazy_nr));
  475. atomic_sub(nr, &vmap_lazy_nr);
  476. }
  477. if (nr || force_flush)
  478. flush_tlb_kernel_range(*start, *end);
  479. if (nr) {
  480. spin_lock(&vmap_area_lock);
  481. list_for_each_entry_safe(va, n_va, &valist, purge_list)
  482. __free_vmap_area(va);
  483. spin_unlock(&vmap_area_lock);
  484. }
  485. spin_unlock(&purge_lock);
  486. }
  487. /*
  488. * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
  489. * is already purging.
  490. */
  491. static void try_purge_vmap_area_lazy(void)
  492. {
  493. unsigned long start = ULONG_MAX, end = 0;
  494. __purge_vmap_area_lazy(&start, &end, 0, 0);
  495. }
  496. /*
  497. * Kick off a purge of the outstanding lazy areas.
  498. */
  499. static void purge_vmap_area_lazy(void)
  500. {
  501. unsigned long start = ULONG_MAX, end = 0;
  502. __purge_vmap_area_lazy(&start, &end, 1, 0);
  503. }
  504. /*
  505. * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
  506. * called for the correct range previously.
  507. */
  508. static void free_unmap_vmap_area_noflush(struct vmap_area *va)
  509. {
  510. va->flags |= VM_LAZY_FREE;
  511. atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
  512. if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
  513. try_purge_vmap_area_lazy();
  514. }
  515. /*
  516. * Free and unmap a vmap area
  517. */
  518. static void free_unmap_vmap_area(struct vmap_area *va)
  519. {
  520. flush_cache_vunmap(va->va_start, va->va_end);
  521. free_unmap_vmap_area_noflush(va);
  522. }
  523. static struct vmap_area *find_vmap_area(unsigned long addr)
  524. {
  525. struct vmap_area *va;
  526. spin_lock(&vmap_area_lock);
  527. va = __find_vmap_area(addr);
  528. spin_unlock(&vmap_area_lock);
  529. return va;
  530. }
  531. static void free_unmap_vmap_area_addr(unsigned long addr)
  532. {
  533. struct vmap_area *va;
  534. va = find_vmap_area(addr);
  535. BUG_ON(!va);
  536. free_unmap_vmap_area(va);
  537. }
  538. /*** Per cpu kva allocator ***/
  539. /*
  540. * vmap space is limited especially on 32 bit architectures. Ensure there is
  541. * room for at least 16 percpu vmap blocks per CPU.
  542. */
  543. /*
  544. * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
  545. * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
  546. * instead (we just need a rough idea)
  547. */
  548. #if BITS_PER_LONG == 32
  549. #define VMALLOC_SPACE (128UL*1024*1024)
  550. #else
  551. #define VMALLOC_SPACE (128UL*1024*1024*1024)
  552. #endif
  553. #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
  554. #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
  555. #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
  556. #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
  557. #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
  558. #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
  559. #define VMAP_BBMAP_BITS VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
  560. VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
  561. VMALLOC_PAGES / NR_CPUS / 16))
  562. #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
  563. static bool vmap_initialized __read_mostly = false;
  564. struct vmap_block_queue {
  565. spinlock_t lock;
  566. struct list_head free;
  567. struct list_head dirty;
  568. unsigned int nr_dirty;
  569. };
  570. struct vmap_block {
  571. spinlock_t lock;
  572. struct vmap_area *va;
  573. struct vmap_block_queue *vbq;
  574. unsigned long free, dirty;
  575. DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS);
  576. DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
  577. union {
  578. struct {
  579. struct list_head free_list;
  580. struct list_head dirty_list;
  581. };
  582. struct rcu_head rcu_head;
  583. };
  584. };
  585. /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
  586. static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
  587. /*
  588. * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
  589. * in the free path. Could get rid of this if we change the API to return a
  590. * "cookie" from alloc, to be passed to free. But no big deal yet.
  591. */
  592. static DEFINE_SPINLOCK(vmap_block_tree_lock);
  593. static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
  594. /*
  595. * We should probably have a fallback mechanism to allocate virtual memory
  596. * out of partially filled vmap blocks. However vmap block sizing should be
  597. * fairly reasonable according to the vmalloc size, so it shouldn't be a
  598. * big problem.
  599. */
  600. static unsigned long addr_to_vb_idx(unsigned long addr)
  601. {
  602. addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
  603. addr /= VMAP_BLOCK_SIZE;
  604. return addr;
  605. }
  606. static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
  607. {
  608. struct vmap_block_queue *vbq;
  609. struct vmap_block *vb;
  610. struct vmap_area *va;
  611. unsigned long vb_idx;
  612. int node, err;
  613. node = numa_node_id();
  614. vb = kmalloc_node(sizeof(struct vmap_block),
  615. gfp_mask & GFP_RECLAIM_MASK, node);
  616. if (unlikely(!vb))
  617. return ERR_PTR(-ENOMEM);
  618. va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
  619. VMALLOC_START, VMALLOC_END,
  620. node, gfp_mask);
  621. if (unlikely(IS_ERR(va))) {
  622. kfree(vb);
  623. return ERR_PTR(PTR_ERR(va));
  624. }
  625. err = radix_tree_preload(gfp_mask);
  626. if (unlikely(err)) {
  627. kfree(vb);
  628. free_vmap_area(va);
  629. return ERR_PTR(err);
  630. }
  631. spin_lock_init(&vb->lock);
  632. vb->va = va;
  633. vb->free = VMAP_BBMAP_BITS;
  634. vb->dirty = 0;
  635. bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS);
  636. bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
  637. INIT_LIST_HEAD(&vb->free_list);
  638. INIT_LIST_HEAD(&vb->dirty_list);
  639. vb_idx = addr_to_vb_idx(va->va_start);
  640. spin_lock(&vmap_block_tree_lock);
  641. err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
  642. spin_unlock(&vmap_block_tree_lock);
  643. BUG_ON(err);
  644. radix_tree_preload_end();
  645. vbq = &get_cpu_var(vmap_block_queue);
  646. vb->vbq = vbq;
  647. spin_lock(&vbq->lock);
  648. list_add(&vb->free_list, &vbq->free);
  649. spin_unlock(&vbq->lock);
  650. put_cpu_var(vmap_cpu_blocks);
  651. return vb;
  652. }
  653. static void rcu_free_vb(struct rcu_head *head)
  654. {
  655. struct vmap_block *vb = container_of(head, struct vmap_block, rcu_head);
  656. kfree(vb);
  657. }
  658. static void free_vmap_block(struct vmap_block *vb)
  659. {
  660. struct vmap_block *tmp;
  661. unsigned long vb_idx;
  662. spin_lock(&vb->vbq->lock);
  663. if (!list_empty(&vb->free_list))
  664. list_del(&vb->free_list);
  665. if (!list_empty(&vb->dirty_list))
  666. list_del(&vb->dirty_list);
  667. spin_unlock(&vb->vbq->lock);
  668. vb_idx = addr_to_vb_idx(vb->va->va_start);
  669. spin_lock(&vmap_block_tree_lock);
  670. tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
  671. spin_unlock(&vmap_block_tree_lock);
  672. BUG_ON(tmp != vb);
  673. free_unmap_vmap_area_noflush(vb->va);
  674. call_rcu(&vb->rcu_head, rcu_free_vb);
  675. }
  676. static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
  677. {
  678. struct vmap_block_queue *vbq;
  679. struct vmap_block *vb;
  680. unsigned long addr = 0;
  681. unsigned int order;
  682. BUG_ON(size & ~PAGE_MASK);
  683. BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
  684. order = get_order(size);
  685. again:
  686. rcu_read_lock();
  687. vbq = &get_cpu_var(vmap_block_queue);
  688. list_for_each_entry_rcu(vb, &vbq->free, free_list) {
  689. int i;
  690. spin_lock(&vb->lock);
  691. i = bitmap_find_free_region(vb->alloc_map,
  692. VMAP_BBMAP_BITS, order);
  693. if (i >= 0) {
  694. addr = vb->va->va_start + (i << PAGE_SHIFT);
  695. BUG_ON(addr_to_vb_idx(addr) !=
  696. addr_to_vb_idx(vb->va->va_start));
  697. vb->free -= 1UL << order;
  698. if (vb->free == 0) {
  699. spin_lock(&vbq->lock);
  700. list_del_init(&vb->free_list);
  701. spin_unlock(&vbq->lock);
  702. }
  703. spin_unlock(&vb->lock);
  704. break;
  705. }
  706. spin_unlock(&vb->lock);
  707. }
  708. put_cpu_var(vmap_cpu_blocks);
  709. rcu_read_unlock();
  710. if (!addr) {
  711. vb = new_vmap_block(gfp_mask);
  712. if (IS_ERR(vb))
  713. return vb;
  714. goto again;
  715. }
  716. return (void *)addr;
  717. }
  718. static void vb_free(const void *addr, unsigned long size)
  719. {
  720. unsigned long offset;
  721. unsigned long vb_idx;
  722. unsigned int order;
  723. struct vmap_block *vb;
  724. BUG_ON(size & ~PAGE_MASK);
  725. BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
  726. flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
  727. order = get_order(size);
  728. offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
  729. vb_idx = addr_to_vb_idx((unsigned long)addr);
  730. rcu_read_lock();
  731. vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
  732. rcu_read_unlock();
  733. BUG_ON(!vb);
  734. spin_lock(&vb->lock);
  735. bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order);
  736. if (!vb->dirty) {
  737. spin_lock(&vb->vbq->lock);
  738. list_add(&vb->dirty_list, &vb->vbq->dirty);
  739. spin_unlock(&vb->vbq->lock);
  740. }
  741. vb->dirty += 1UL << order;
  742. if (vb->dirty == VMAP_BBMAP_BITS) {
  743. BUG_ON(vb->free || !list_empty(&vb->free_list));
  744. spin_unlock(&vb->lock);
  745. free_vmap_block(vb);
  746. } else
  747. spin_unlock(&vb->lock);
  748. }
  749. /**
  750. * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
  751. *
  752. * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
  753. * to amortize TLB flushing overheads. What this means is that any page you
  754. * have now, may, in a former life, have been mapped into kernel virtual
  755. * address by the vmap layer and so there might be some CPUs with TLB entries
  756. * still referencing that page (additional to the regular 1:1 kernel mapping).
  757. *
  758. * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
  759. * be sure that none of the pages we have control over will have any aliases
  760. * from the vmap layer.
  761. */
  762. void vm_unmap_aliases(void)
  763. {
  764. unsigned long start = ULONG_MAX, end = 0;
  765. int cpu;
  766. int flush = 0;
  767. if (unlikely(!vmap_initialized))
  768. return;
  769. for_each_possible_cpu(cpu) {
  770. struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
  771. struct vmap_block *vb;
  772. rcu_read_lock();
  773. list_for_each_entry_rcu(vb, &vbq->free, free_list) {
  774. int i;
  775. spin_lock(&vb->lock);
  776. i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
  777. while (i < VMAP_BBMAP_BITS) {
  778. unsigned long s, e;
  779. int j;
  780. j = find_next_zero_bit(vb->dirty_map,
  781. VMAP_BBMAP_BITS, i);
  782. s = vb->va->va_start + (i << PAGE_SHIFT);
  783. e = vb->va->va_start + (j << PAGE_SHIFT);
  784. vunmap_page_range(s, e);
  785. flush = 1;
  786. if (s < start)
  787. start = s;
  788. if (e > end)
  789. end = e;
  790. i = j;
  791. i = find_next_bit(vb->dirty_map,
  792. VMAP_BBMAP_BITS, i);
  793. }
  794. spin_unlock(&vb->lock);
  795. }
  796. rcu_read_unlock();
  797. }
  798. __purge_vmap_area_lazy(&start, &end, 1, flush);
  799. }
  800. EXPORT_SYMBOL_GPL(vm_unmap_aliases);
  801. /**
  802. * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
  803. * @mem: the pointer returned by vm_map_ram
  804. * @count: the count passed to that vm_map_ram call (cannot unmap partial)
  805. */
  806. void vm_unmap_ram(const void *mem, unsigned int count)
  807. {
  808. unsigned long size = count << PAGE_SHIFT;
  809. unsigned long addr = (unsigned long)mem;
  810. BUG_ON(!addr);
  811. BUG_ON(addr < VMALLOC_START);
  812. BUG_ON(addr > VMALLOC_END);
  813. BUG_ON(addr & (PAGE_SIZE-1));
  814. debug_check_no_locks_freed(mem, size);
  815. vmap_debug_free_range(addr, addr+size);
  816. if (likely(count <= VMAP_MAX_ALLOC))
  817. vb_free(mem, size);
  818. else
  819. free_unmap_vmap_area_addr(addr);
  820. }
  821. EXPORT_SYMBOL(vm_unmap_ram);
  822. /**
  823. * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
  824. * @pages: an array of pointers to the pages to be mapped
  825. * @count: number of pages
  826. * @node: prefer to allocate data structures on this node
  827. * @prot: memory protection to use. PAGE_KERNEL for regular RAM
  828. *
  829. * Returns: a pointer to the address that has been mapped, or %NULL on failure
  830. */
  831. void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
  832. {
  833. unsigned long size = count << PAGE_SHIFT;
  834. unsigned long addr;
  835. void *mem;
  836. if (likely(count <= VMAP_MAX_ALLOC)) {
  837. mem = vb_alloc(size, GFP_KERNEL);
  838. if (IS_ERR(mem))
  839. return NULL;
  840. addr = (unsigned long)mem;
  841. } else {
  842. struct vmap_area *va;
  843. va = alloc_vmap_area(size, PAGE_SIZE,
  844. VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
  845. if (IS_ERR(va))
  846. return NULL;
  847. addr = va->va_start;
  848. mem = (void *)addr;
  849. }
  850. if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
  851. vm_unmap_ram(mem, count);
  852. return NULL;
  853. }
  854. return mem;
  855. }
  856. EXPORT_SYMBOL(vm_map_ram);
  857. /**
  858. * vm_area_register_early - register vmap area early during boot
  859. * @vm: vm_struct to register
  860. * @align: requested alignment
  861. *
  862. * This function is used to register kernel vm area before
  863. * vmalloc_init() is called. @vm->size and @vm->flags should contain
  864. * proper values on entry and other fields should be zero. On return,
  865. * vm->addr contains the allocated address.
  866. *
  867. * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
  868. */
  869. void __init vm_area_register_early(struct vm_struct *vm, size_t align)
  870. {
  871. static size_t vm_init_off __initdata;
  872. unsigned long addr;
  873. addr = ALIGN(VMALLOC_START + vm_init_off, align);
  874. vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
  875. vm->addr = (void *)addr;
  876. vm->next = vmlist;
  877. vmlist = vm;
  878. }
  879. void __init vmalloc_init(void)
  880. {
  881. struct vmap_area *va;
  882. struct vm_struct *tmp;
  883. int i;
  884. for_each_possible_cpu(i) {
  885. struct vmap_block_queue *vbq;
  886. vbq = &per_cpu(vmap_block_queue, i);
  887. spin_lock_init(&vbq->lock);
  888. INIT_LIST_HEAD(&vbq->free);
  889. INIT_LIST_HEAD(&vbq->dirty);
  890. vbq->nr_dirty = 0;
  891. }
  892. /* Import existing vmlist entries. */
  893. for (tmp = vmlist; tmp; tmp = tmp->next) {
  894. va = alloc_bootmem(sizeof(struct vmap_area));
  895. va->flags = tmp->flags | VM_VM_AREA;
  896. va->va_start = (unsigned long)tmp->addr;
  897. va->va_end = va->va_start + tmp->size;
  898. __insert_vmap_area(va);
  899. }
  900. vmap_initialized = true;
  901. }
  902. /**
  903. * map_kernel_range_noflush - map kernel VM area with the specified pages
  904. * @addr: start of the VM area to map
  905. * @size: size of the VM area to map
  906. * @prot: page protection flags to use
  907. * @pages: pages to map
  908. *
  909. * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
  910. * specify should have been allocated using get_vm_area() and its
  911. * friends.
  912. *
  913. * NOTE:
  914. * This function does NOT do any cache flushing. The caller is
  915. * responsible for calling flush_cache_vmap() on to-be-mapped areas
  916. * before calling this function.
  917. *
  918. * RETURNS:
  919. * The number of pages mapped on success, -errno on failure.
  920. */
  921. int map_kernel_range_noflush(unsigned long addr, unsigned long size,
  922. pgprot_t prot, struct page **pages)
  923. {
  924. return vmap_page_range_noflush(addr, addr + size, prot, pages);
  925. }
  926. /**
  927. * unmap_kernel_range_noflush - unmap kernel VM area
  928. * @addr: start of the VM area to unmap
  929. * @size: size of the VM area to unmap
  930. *
  931. * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
  932. * specify should have been allocated using get_vm_area() and its
  933. * friends.
  934. *
  935. * NOTE:
  936. * This function does NOT do any cache flushing. The caller is
  937. * responsible for calling flush_cache_vunmap() on to-be-mapped areas
  938. * before calling this function and flush_tlb_kernel_range() after.
  939. */
  940. void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
  941. {
  942. vunmap_page_range(addr, addr + size);
  943. }
  944. /**
  945. * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
  946. * @addr: start of the VM area to unmap
  947. * @size: size of the VM area to unmap
  948. *
  949. * Similar to unmap_kernel_range_noflush() but flushes vcache before
  950. * the unmapping and tlb after.
  951. */
  952. void unmap_kernel_range(unsigned long addr, unsigned long size)
  953. {
  954. unsigned long end = addr + size;
  955. flush_cache_vunmap(addr, end);
  956. vunmap_page_range(addr, end);
  957. flush_tlb_kernel_range(addr, end);
  958. }
  959. int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
  960. {
  961. unsigned long addr = (unsigned long)area->addr;
  962. unsigned long end = addr + area->size - PAGE_SIZE;
  963. int err;
  964. err = vmap_page_range(addr, end, prot, *pages);
  965. if (err > 0) {
  966. *pages += err;
  967. err = 0;
  968. }
  969. return err;
  970. }
  971. EXPORT_SYMBOL_GPL(map_vm_area);
  972. /*** Old vmalloc interfaces ***/
  973. DEFINE_RWLOCK(vmlist_lock);
  974. struct vm_struct *vmlist;
  975. static struct vm_struct *__get_vm_area_node(unsigned long size,
  976. unsigned long flags, unsigned long start, unsigned long end,
  977. int node, gfp_t gfp_mask, void *caller)
  978. {
  979. static struct vmap_area *va;
  980. struct vm_struct *area;
  981. struct vm_struct *tmp, **p;
  982. unsigned long align = 1;
  983. BUG_ON(in_interrupt());
  984. if (flags & VM_IOREMAP) {
  985. int bit = fls(size);
  986. if (bit > IOREMAP_MAX_ORDER)
  987. bit = IOREMAP_MAX_ORDER;
  988. else if (bit < PAGE_SHIFT)
  989. bit = PAGE_SHIFT;
  990. align = 1ul << bit;
  991. }
  992. size = PAGE_ALIGN(size);
  993. if (unlikely(!size))
  994. return NULL;
  995. area = kmalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
  996. if (unlikely(!area))
  997. return NULL;
  998. /*
  999. * We always allocate a guard page.
  1000. */
  1001. size += PAGE_SIZE;
  1002. va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
  1003. if (IS_ERR(va)) {
  1004. kfree(area);
  1005. return NULL;
  1006. }
  1007. area->flags = flags;
  1008. area->addr = (void *)va->va_start;
  1009. area->size = size;
  1010. area->pages = NULL;
  1011. area->nr_pages = 0;
  1012. area->phys_addr = 0;
  1013. area->caller = caller;
  1014. va->private = area;
  1015. va->flags |= VM_VM_AREA;
  1016. write_lock(&vmlist_lock);
  1017. for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
  1018. if (tmp->addr >= area->addr)
  1019. break;
  1020. }
  1021. area->next = *p;
  1022. *p = area;
  1023. write_unlock(&vmlist_lock);
  1024. return area;
  1025. }
  1026. struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
  1027. unsigned long start, unsigned long end)
  1028. {
  1029. return __get_vm_area_node(size, flags, start, end, -1, GFP_KERNEL,
  1030. __builtin_return_address(0));
  1031. }
  1032. EXPORT_SYMBOL_GPL(__get_vm_area);
  1033. struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
  1034. unsigned long start, unsigned long end,
  1035. void *caller)
  1036. {
  1037. return __get_vm_area_node(size, flags, start, end, -1, GFP_KERNEL,
  1038. caller);
  1039. }
  1040. /**
  1041. * get_vm_area - reserve a contiguous kernel virtual area
  1042. * @size: size of the area
  1043. * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
  1044. *
  1045. * Search an area of @size in the kernel virtual mapping area,
  1046. * and reserved it for out purposes. Returns the area descriptor
  1047. * on success or %NULL on failure.
  1048. */
  1049. struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
  1050. {
  1051. return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END,
  1052. -1, GFP_KERNEL, __builtin_return_address(0));
  1053. }
  1054. struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
  1055. void *caller)
  1056. {
  1057. return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END,
  1058. -1, GFP_KERNEL, caller);
  1059. }
  1060. struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags,
  1061. int node, gfp_t gfp_mask)
  1062. {
  1063. return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END, node,
  1064. gfp_mask, __builtin_return_address(0));
  1065. }
  1066. static struct vm_struct *find_vm_area(const void *addr)
  1067. {
  1068. struct vmap_area *va;
  1069. va = find_vmap_area((unsigned long)addr);
  1070. if (va && va->flags & VM_VM_AREA)
  1071. return va->private;
  1072. return NULL;
  1073. }
  1074. /**
  1075. * remove_vm_area - find and remove a continuous kernel virtual area
  1076. * @addr: base address
  1077. *
  1078. * Search for the kernel VM area starting at @addr, and remove it.
  1079. * This function returns the found VM area, but using it is NOT safe
  1080. * on SMP machines, except for its size or flags.
  1081. */
  1082. struct vm_struct *remove_vm_area(const void *addr)
  1083. {
  1084. struct vmap_area *va;
  1085. va = find_vmap_area((unsigned long)addr);
  1086. if (va && va->flags & VM_VM_AREA) {
  1087. struct vm_struct *vm = va->private;
  1088. struct vm_struct *tmp, **p;
  1089. vmap_debug_free_range(va->va_start, va->va_end);
  1090. free_unmap_vmap_area(va);
  1091. vm->size -= PAGE_SIZE;
  1092. write_lock(&vmlist_lock);
  1093. for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next)
  1094. ;
  1095. *p = tmp->next;
  1096. write_unlock(&vmlist_lock);
  1097. return vm;
  1098. }
  1099. return NULL;
  1100. }
  1101. static void __vunmap(const void *addr, int deallocate_pages)
  1102. {
  1103. struct vm_struct *area;
  1104. if (!addr)
  1105. return;
  1106. if ((PAGE_SIZE-1) & (unsigned long)addr) {
  1107. WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
  1108. return;
  1109. }
  1110. area = remove_vm_area(addr);
  1111. if (unlikely(!area)) {
  1112. WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
  1113. addr);
  1114. return;
  1115. }
  1116. debug_check_no_locks_freed(addr, area->size);
  1117. debug_check_no_obj_freed(addr, area->size);
  1118. if (deallocate_pages) {
  1119. int i;
  1120. for (i = 0; i < area->nr_pages; i++) {
  1121. struct page *page = area->pages[i];
  1122. BUG_ON(!page);
  1123. __free_page(page);
  1124. }
  1125. if (area->flags & VM_VPAGES)
  1126. vfree(area->pages);
  1127. else
  1128. kfree(area->pages);
  1129. }
  1130. kfree(area);
  1131. return;
  1132. }
  1133. /**
  1134. * vfree - release memory allocated by vmalloc()
  1135. * @addr: memory base address
  1136. *
  1137. * Free the virtually continuous memory area starting at @addr, as
  1138. * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
  1139. * NULL, no operation is performed.
  1140. *
  1141. * Must not be called in interrupt context.
  1142. */
  1143. void vfree(const void *addr)
  1144. {
  1145. BUG_ON(in_interrupt());
  1146. __vunmap(addr, 1);
  1147. }
  1148. EXPORT_SYMBOL(vfree);
  1149. /**
  1150. * vunmap - release virtual mapping obtained by vmap()
  1151. * @addr: memory base address
  1152. *
  1153. * Free the virtually contiguous memory area starting at @addr,
  1154. * which was created from the page array passed to vmap().
  1155. *
  1156. * Must not be called in interrupt context.
  1157. */
  1158. void vunmap(const void *addr)
  1159. {
  1160. BUG_ON(in_interrupt());
  1161. might_sleep();
  1162. __vunmap(addr, 0);
  1163. }
  1164. EXPORT_SYMBOL(vunmap);
  1165. /**
  1166. * vmap - map an array of pages into virtually contiguous space
  1167. * @pages: array of page pointers
  1168. * @count: number of pages to map
  1169. * @flags: vm_area->flags
  1170. * @prot: page protection for the mapping
  1171. *
  1172. * Maps @count pages from @pages into contiguous kernel virtual
  1173. * space.
  1174. */
  1175. void *vmap(struct page **pages, unsigned int count,
  1176. unsigned long flags, pgprot_t prot)
  1177. {
  1178. struct vm_struct *area;
  1179. might_sleep();
  1180. if (count > num_physpages)
  1181. return NULL;
  1182. area = get_vm_area_caller((count << PAGE_SHIFT), flags,
  1183. __builtin_return_address(0));
  1184. if (!area)
  1185. return NULL;
  1186. if (map_vm_area(area, prot, &pages)) {
  1187. vunmap(area->addr);
  1188. return NULL;
  1189. }
  1190. return area->addr;
  1191. }
  1192. EXPORT_SYMBOL(vmap);
  1193. static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
  1194. int node, void *caller);
  1195. static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
  1196. pgprot_t prot, int node, void *caller)
  1197. {
  1198. struct page **pages;
  1199. unsigned int nr_pages, array_size, i;
  1200. nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
  1201. array_size = (nr_pages * sizeof(struct page *));
  1202. area->nr_pages = nr_pages;
  1203. /* Please note that the recursion is strictly bounded. */
  1204. if (array_size > PAGE_SIZE) {
  1205. pages = __vmalloc_node(array_size, gfp_mask | __GFP_ZERO,
  1206. PAGE_KERNEL, node, caller);
  1207. area->flags |= VM_VPAGES;
  1208. } else {
  1209. pages = kmalloc_node(array_size,
  1210. (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO,
  1211. node);
  1212. }
  1213. area->pages = pages;
  1214. area->caller = caller;
  1215. if (!area->pages) {
  1216. remove_vm_area(area->addr);
  1217. kfree(area);
  1218. return NULL;
  1219. }
  1220. for (i = 0; i < area->nr_pages; i++) {
  1221. struct page *page;
  1222. if (node < 0)
  1223. page = alloc_page(gfp_mask);
  1224. else
  1225. page = alloc_pages_node(node, gfp_mask, 0);
  1226. if (unlikely(!page)) {
  1227. /* Successfully allocated i pages, free them in __vunmap() */
  1228. area->nr_pages = i;
  1229. goto fail;
  1230. }
  1231. area->pages[i] = page;
  1232. }
  1233. if (map_vm_area(area, prot, &pages))
  1234. goto fail;
  1235. return area->addr;
  1236. fail:
  1237. vfree(area->addr);
  1238. return NULL;
  1239. }
  1240. void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot)
  1241. {
  1242. return __vmalloc_area_node(area, gfp_mask, prot, -1,
  1243. __builtin_return_address(0));
  1244. }
  1245. /**
  1246. * __vmalloc_node - allocate virtually contiguous memory
  1247. * @size: allocation size
  1248. * @gfp_mask: flags for the page level allocator
  1249. * @prot: protection mask for the allocated pages
  1250. * @node: node to use for allocation or -1
  1251. * @caller: caller's return address
  1252. *
  1253. * Allocate enough pages to cover @size from the page level
  1254. * allocator with @gfp_mask flags. Map them into contiguous
  1255. * kernel virtual space, using a pagetable protection of @prot.
  1256. */
  1257. static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
  1258. int node, void *caller)
  1259. {
  1260. struct vm_struct *area;
  1261. size = PAGE_ALIGN(size);
  1262. if (!size || (size >> PAGE_SHIFT) > num_physpages)
  1263. return NULL;
  1264. area = __get_vm_area_node(size, VM_ALLOC, VMALLOC_START, VMALLOC_END,
  1265. node, gfp_mask, caller);
  1266. if (!area)
  1267. return NULL;
  1268. return __vmalloc_area_node(area, gfp_mask, prot, node, caller);
  1269. }
  1270. void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
  1271. {
  1272. return __vmalloc_node(size, gfp_mask, prot, -1,
  1273. __builtin_return_address(0));
  1274. }
  1275. EXPORT_SYMBOL(__vmalloc);
  1276. /**
  1277. * vmalloc - allocate virtually contiguous memory
  1278. * @size: allocation size
  1279. * Allocate enough pages to cover @size from the page level
  1280. * allocator and map them into contiguous kernel virtual space.
  1281. *
  1282. * For tight control over page level allocator and protection flags
  1283. * use __vmalloc() instead.
  1284. */
  1285. void *vmalloc(unsigned long size)
  1286. {
  1287. return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
  1288. -1, __builtin_return_address(0));
  1289. }
  1290. EXPORT_SYMBOL(vmalloc);
  1291. /**
  1292. * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
  1293. * @size: allocation size
  1294. *
  1295. * The resulting memory area is zeroed so it can be mapped to userspace
  1296. * without leaking data.
  1297. */
  1298. void *vmalloc_user(unsigned long size)
  1299. {
  1300. struct vm_struct *area;
  1301. void *ret;
  1302. ret = __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
  1303. PAGE_KERNEL, -1, __builtin_return_address(0));
  1304. if (ret) {
  1305. area = find_vm_area(ret);
  1306. area->flags |= VM_USERMAP;
  1307. }
  1308. return ret;
  1309. }
  1310. EXPORT_SYMBOL(vmalloc_user);
  1311. /**
  1312. * vmalloc_node - allocate memory on a specific node
  1313. * @size: allocation size
  1314. * @node: numa node
  1315. *
  1316. * Allocate enough pages to cover @size from the page level
  1317. * allocator and map them into contiguous kernel virtual space.
  1318. *
  1319. * For tight control over page level allocator and protection flags
  1320. * use __vmalloc() instead.
  1321. */
  1322. void *vmalloc_node(unsigned long size, int node)
  1323. {
  1324. return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
  1325. node, __builtin_return_address(0));
  1326. }
  1327. EXPORT_SYMBOL(vmalloc_node);
  1328. #ifndef PAGE_KERNEL_EXEC
  1329. # define PAGE_KERNEL_EXEC PAGE_KERNEL
  1330. #endif
  1331. /**
  1332. * vmalloc_exec - allocate virtually contiguous, executable memory
  1333. * @size: allocation size
  1334. *
  1335. * Kernel-internal function to allocate enough pages to cover @size
  1336. * the page level allocator and map them into contiguous and
  1337. * executable kernel virtual space.
  1338. *
  1339. * For tight control over page level allocator and protection flags
  1340. * use __vmalloc() instead.
  1341. */
  1342. void *vmalloc_exec(unsigned long size)
  1343. {
  1344. return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
  1345. -1, __builtin_return_address(0));
  1346. }
  1347. #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
  1348. #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
  1349. #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
  1350. #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
  1351. #else
  1352. #define GFP_VMALLOC32 GFP_KERNEL
  1353. #endif
  1354. /**
  1355. * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
  1356. * @size: allocation size
  1357. *
  1358. * Allocate enough 32bit PA addressable pages to cover @size from the
  1359. * page level allocator and map them into contiguous kernel virtual space.
  1360. */
  1361. void *vmalloc_32(unsigned long size)
  1362. {
  1363. return __vmalloc_node(size, GFP_VMALLOC32, PAGE_KERNEL,
  1364. -1, __builtin_return_address(0));
  1365. }
  1366. EXPORT_SYMBOL(vmalloc_32);
  1367. /**
  1368. * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
  1369. * @size: allocation size
  1370. *
  1371. * The resulting memory area is 32bit addressable and zeroed so it can be
  1372. * mapped to userspace without leaking data.
  1373. */
  1374. void *vmalloc_32_user(unsigned long size)
  1375. {
  1376. struct vm_struct *area;
  1377. void *ret;
  1378. ret = __vmalloc_node(size, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
  1379. -1, __builtin_return_address(0));
  1380. if (ret) {
  1381. area = find_vm_area(ret);
  1382. area->flags |= VM_USERMAP;
  1383. }
  1384. return ret;
  1385. }
  1386. EXPORT_SYMBOL(vmalloc_32_user);
  1387. long vread(char *buf, char *addr, unsigned long count)
  1388. {
  1389. struct vm_struct *tmp;
  1390. char *vaddr, *buf_start = buf;
  1391. unsigned long n;
  1392. /* Don't allow overflow */
  1393. if ((unsigned long) addr + count < count)
  1394. count = -(unsigned long) addr;
  1395. read_lock(&vmlist_lock);
  1396. for (tmp = vmlist; tmp; tmp = tmp->next) {
  1397. vaddr = (char *) tmp->addr;
  1398. if (addr >= vaddr + tmp->size - PAGE_SIZE)
  1399. continue;
  1400. while (addr < vaddr) {
  1401. if (count == 0)
  1402. goto finished;
  1403. *buf = '\0';
  1404. buf++;
  1405. addr++;
  1406. count--;
  1407. }
  1408. n = vaddr + tmp->size - PAGE_SIZE - addr;
  1409. do {
  1410. if (count == 0)
  1411. goto finished;
  1412. *buf = *addr;
  1413. buf++;
  1414. addr++;
  1415. count--;
  1416. } while (--n > 0);
  1417. }
  1418. finished:
  1419. read_unlock(&vmlist_lock);
  1420. return buf - buf_start;
  1421. }
  1422. long vwrite(char *buf, char *addr, unsigned long count)
  1423. {
  1424. struct vm_struct *tmp;
  1425. char *vaddr, *buf_start = buf;
  1426. unsigned long n;
  1427. /* Don't allow overflow */
  1428. if ((unsigned long) addr + count < count)
  1429. count = -(unsigned long) addr;
  1430. read_lock(&vmlist_lock);
  1431. for (tmp = vmlist; tmp; tmp = tmp->next) {
  1432. vaddr = (char *) tmp->addr;
  1433. if (addr >= vaddr + tmp->size - PAGE_SIZE)
  1434. continue;
  1435. while (addr < vaddr) {
  1436. if (count == 0)
  1437. goto finished;
  1438. buf++;
  1439. addr++;
  1440. count--;
  1441. }
  1442. n = vaddr + tmp->size - PAGE_SIZE - addr;
  1443. do {
  1444. if (count == 0)
  1445. goto finished;
  1446. *addr = *buf;
  1447. buf++;
  1448. addr++;
  1449. count--;
  1450. } while (--n > 0);
  1451. }
  1452. finished:
  1453. read_unlock(&vmlist_lock);
  1454. return buf - buf_start;
  1455. }
  1456. /**
  1457. * remap_vmalloc_range - map vmalloc pages to userspace
  1458. * @vma: vma to cover (map full range of vma)
  1459. * @addr: vmalloc memory
  1460. * @pgoff: number of pages into addr before first page to map
  1461. *
  1462. * Returns: 0 for success, -Exxx on failure
  1463. *
  1464. * This function checks that addr is a valid vmalloc'ed area, and
  1465. * that it is big enough to cover the vma. Will return failure if
  1466. * that criteria isn't met.
  1467. *
  1468. * Similar to remap_pfn_range() (see mm/memory.c)
  1469. */
  1470. int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
  1471. unsigned long pgoff)
  1472. {
  1473. struct vm_struct *area;
  1474. unsigned long uaddr = vma->vm_start;
  1475. unsigned long usize = vma->vm_end - vma->vm_start;
  1476. if ((PAGE_SIZE-1) & (unsigned long)addr)
  1477. return -EINVAL;
  1478. area = find_vm_area(addr);
  1479. if (!area)
  1480. return -EINVAL;
  1481. if (!(area->flags & VM_USERMAP))
  1482. return -EINVAL;
  1483. if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
  1484. return -EINVAL;
  1485. addr += pgoff << PAGE_SHIFT;
  1486. do {
  1487. struct page *page = vmalloc_to_page(addr);
  1488. int ret;
  1489. ret = vm_insert_page(vma, uaddr, page);
  1490. if (ret)
  1491. return ret;
  1492. uaddr += PAGE_SIZE;
  1493. addr += PAGE_SIZE;
  1494. usize -= PAGE_SIZE;
  1495. } while (usize > 0);
  1496. /* Prevent "things" like memory migration? VM_flags need a cleanup... */
  1497. vma->vm_flags |= VM_RESERVED;
  1498. return 0;
  1499. }
  1500. EXPORT_SYMBOL(remap_vmalloc_range);
  1501. /*
  1502. * Implement a stub for vmalloc_sync_all() if the architecture chose not to
  1503. * have one.
  1504. */
  1505. void __attribute__((weak)) vmalloc_sync_all(void)
  1506. {
  1507. }
  1508. static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
  1509. {
  1510. /* apply_to_page_range() does all the hard work. */
  1511. return 0;
  1512. }
  1513. /**
  1514. * alloc_vm_area - allocate a range of kernel address space
  1515. * @size: size of the area
  1516. *
  1517. * Returns: NULL on failure, vm_struct on success
  1518. *
  1519. * This function reserves a range of kernel address space, and
  1520. * allocates pagetables to map that range. No actual mappings
  1521. * are created. If the kernel address space is not shared
  1522. * between processes, it syncs the pagetable across all
  1523. * processes.
  1524. */
  1525. struct vm_struct *alloc_vm_area(size_t size)
  1526. {
  1527. struct vm_struct *area;
  1528. area = get_vm_area_caller(size, VM_IOREMAP,
  1529. __builtin_return_address(0));
  1530. if (area == NULL)
  1531. return NULL;
  1532. /*
  1533. * This ensures that page tables are constructed for this region
  1534. * of kernel virtual address space and mapped into init_mm.
  1535. */
  1536. if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
  1537. area->size, f, NULL)) {
  1538. free_vm_area(area);
  1539. return NULL;
  1540. }
  1541. /* Make sure the pagetables are constructed in process kernel
  1542. mappings */
  1543. vmalloc_sync_all();
  1544. return area;
  1545. }
  1546. EXPORT_SYMBOL_GPL(alloc_vm_area);
  1547. void free_vm_area(struct vm_struct *area)
  1548. {
  1549. struct vm_struct *ret;
  1550. ret = remove_vm_area(area->addr);
  1551. BUG_ON(ret != area);
  1552. kfree(area);
  1553. }
  1554. EXPORT_SYMBOL_GPL(free_vm_area);
  1555. #ifdef CONFIG_PROC_FS
  1556. static void *s_start(struct seq_file *m, loff_t *pos)
  1557. {
  1558. loff_t n = *pos;
  1559. struct vm_struct *v;
  1560. read_lock(&vmlist_lock);
  1561. v = vmlist;
  1562. while (n > 0 && v) {
  1563. n--;
  1564. v = v->next;
  1565. }
  1566. if (!n)
  1567. return v;
  1568. return NULL;
  1569. }
  1570. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  1571. {
  1572. struct vm_struct *v = p;
  1573. ++*pos;
  1574. return v->next;
  1575. }
  1576. static void s_stop(struct seq_file *m, void *p)
  1577. {
  1578. read_unlock(&vmlist_lock);
  1579. }
  1580. static void show_numa_info(struct seq_file *m, struct vm_struct *v)
  1581. {
  1582. if (NUMA_BUILD) {
  1583. unsigned int nr, *counters = m->private;
  1584. if (!counters)
  1585. return;
  1586. memset(counters, 0, nr_node_ids * sizeof(unsigned int));
  1587. for (nr = 0; nr < v->nr_pages; nr++)
  1588. counters[page_to_nid(v->pages[nr])]++;
  1589. for_each_node_state(nr, N_HIGH_MEMORY)
  1590. if (counters[nr])
  1591. seq_printf(m, " N%u=%u", nr, counters[nr]);
  1592. }
  1593. }
  1594. static int s_show(struct seq_file *m, void *p)
  1595. {
  1596. struct vm_struct *v = p;
  1597. seq_printf(m, "0x%p-0x%p %7ld",
  1598. v->addr, v->addr + v->size, v->size);
  1599. if (v->caller) {
  1600. char buff[KSYM_SYMBOL_LEN];
  1601. seq_putc(m, ' ');
  1602. sprint_symbol(buff, (unsigned long)v->caller);
  1603. seq_puts(m, buff);
  1604. }
  1605. if (v->nr_pages)
  1606. seq_printf(m, " pages=%d", v->nr_pages);
  1607. if (v->phys_addr)
  1608. seq_printf(m, " phys=%lx", v->phys_addr);
  1609. if (v->flags & VM_IOREMAP)
  1610. seq_printf(m, " ioremap");
  1611. if (v->flags & VM_ALLOC)
  1612. seq_printf(m, " vmalloc");
  1613. if (v->flags & VM_MAP)
  1614. seq_printf(m, " vmap");
  1615. if (v->flags & VM_USERMAP)
  1616. seq_printf(m, " user");
  1617. if (v->flags & VM_VPAGES)
  1618. seq_printf(m, " vpages");
  1619. show_numa_info(m, v);
  1620. seq_putc(m, '\n');
  1621. return 0;
  1622. }
  1623. static const struct seq_operations vmalloc_op = {
  1624. .start = s_start,
  1625. .next = s_next,
  1626. .stop = s_stop,
  1627. .show = s_show,
  1628. };
  1629. static int vmalloc_open(struct inode *inode, struct file *file)
  1630. {
  1631. unsigned int *ptr = NULL;
  1632. int ret;
  1633. if (NUMA_BUILD)
  1634. ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
  1635. ret = seq_open(file, &vmalloc_op);
  1636. if (!ret) {
  1637. struct seq_file *m = file->private_data;
  1638. m->private = ptr;
  1639. } else
  1640. kfree(ptr);
  1641. return ret;
  1642. }
  1643. static const struct file_operations proc_vmalloc_operations = {
  1644. .open = vmalloc_open,
  1645. .read = seq_read,
  1646. .llseek = seq_lseek,
  1647. .release = seq_release_private,
  1648. };
  1649. static int __init proc_vmalloc_init(void)
  1650. {
  1651. proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
  1652. return 0;
  1653. }
  1654. module_init(proc_vmalloc_init);
  1655. #endif