filemap.c 65 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483
  1. /*
  2. * linux/mm/filemap.c
  3. *
  4. * Copyright (C) 1994-1999 Linus Torvalds
  5. */
  6. /*
  7. * This file handles the generic file mmap semantics used by
  8. * most "normal" filesystems (but you don't /have/ to use this:
  9. * the NFS filesystem used to do this differently, for example)
  10. */
  11. #include <linux/module.h>
  12. #include <linux/slab.h>
  13. #include <linux/compiler.h>
  14. #include <linux/fs.h>
  15. #include <linux/uaccess.h>
  16. #include <linux/aio.h>
  17. #include <linux/capability.h>
  18. #include <linux/kernel_stat.h>
  19. #include <linux/mm.h>
  20. #include <linux/swap.h>
  21. #include <linux/mman.h>
  22. #include <linux/pagemap.h>
  23. #include <linux/file.h>
  24. #include <linux/uio.h>
  25. #include <linux/hash.h>
  26. #include <linux/writeback.h>
  27. #include <linux/backing-dev.h>
  28. #include <linux/pagevec.h>
  29. #include <linux/blkdev.h>
  30. #include <linux/security.h>
  31. #include <linux/syscalls.h>
  32. #include <linux/cpuset.h>
  33. #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
  34. #include <linux/memcontrol.h>
  35. #include <linux/mm_inline.h> /* for page_is_file_cache() */
  36. #include "internal.h"
  37. /*
  38. * FIXME: remove all knowledge of the buffer layer from the core VM
  39. */
  40. #include <linux/buffer_head.h> /* for generic_osync_inode */
  41. #include <asm/mman.h>
  42. /*
  43. * Shared mappings implemented 30.11.1994. It's not fully working yet,
  44. * though.
  45. *
  46. * Shared mappings now work. 15.8.1995 Bruno.
  47. *
  48. * finished 'unifying' the page and buffer cache and SMP-threaded the
  49. * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
  50. *
  51. * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
  52. */
  53. /*
  54. * Lock ordering:
  55. *
  56. * ->i_mmap_lock (vmtruncate)
  57. * ->private_lock (__free_pte->__set_page_dirty_buffers)
  58. * ->swap_lock (exclusive_swap_page, others)
  59. * ->mapping->tree_lock
  60. *
  61. * ->i_mutex
  62. * ->i_mmap_lock (truncate->unmap_mapping_range)
  63. *
  64. * ->mmap_sem
  65. * ->i_mmap_lock
  66. * ->page_table_lock or pte_lock (various, mainly in memory.c)
  67. * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
  68. *
  69. * ->mmap_sem
  70. * ->lock_page (access_process_vm)
  71. *
  72. * ->i_mutex (generic_file_buffered_write)
  73. * ->mmap_sem (fault_in_pages_readable->do_page_fault)
  74. *
  75. * ->i_mutex
  76. * ->i_alloc_sem (various)
  77. *
  78. * ->inode_lock
  79. * ->sb_lock (fs/fs-writeback.c)
  80. * ->mapping->tree_lock (__sync_single_inode)
  81. *
  82. * ->i_mmap_lock
  83. * ->anon_vma.lock (vma_adjust)
  84. *
  85. * ->anon_vma.lock
  86. * ->page_table_lock or pte_lock (anon_vma_prepare and various)
  87. *
  88. * ->page_table_lock or pte_lock
  89. * ->swap_lock (try_to_unmap_one)
  90. * ->private_lock (try_to_unmap_one)
  91. * ->tree_lock (try_to_unmap_one)
  92. * ->zone.lru_lock (follow_page->mark_page_accessed)
  93. * ->zone.lru_lock (check_pte_range->isolate_lru_page)
  94. * ->private_lock (page_remove_rmap->set_page_dirty)
  95. * ->tree_lock (page_remove_rmap->set_page_dirty)
  96. * ->inode_lock (page_remove_rmap->set_page_dirty)
  97. * ->inode_lock (zap_pte_range->set_page_dirty)
  98. * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
  99. *
  100. * ->task->proc_lock
  101. * ->dcache_lock (proc_pid_lookup)
  102. */
  103. /*
  104. * Remove a page from the page cache and free it. Caller has to make
  105. * sure the page is locked and that nobody else uses it - or that usage
  106. * is safe. The caller must hold the mapping's tree_lock.
  107. */
  108. void __remove_from_page_cache(struct page *page)
  109. {
  110. struct address_space *mapping = page->mapping;
  111. radix_tree_delete(&mapping->page_tree, page->index);
  112. page->mapping = NULL;
  113. mapping->nrpages--;
  114. __dec_zone_page_state(page, NR_FILE_PAGES);
  115. BUG_ON(page_mapped(page));
  116. mem_cgroup_uncharge_cache_page(page);
  117. /*
  118. * Some filesystems seem to re-dirty the page even after
  119. * the VM has canceled the dirty bit (eg ext3 journaling).
  120. *
  121. * Fix it up by doing a final dirty accounting check after
  122. * having removed the page entirely.
  123. */
  124. if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
  125. dec_zone_page_state(page, NR_FILE_DIRTY);
  126. dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
  127. }
  128. }
  129. void remove_from_page_cache(struct page *page)
  130. {
  131. struct address_space *mapping = page->mapping;
  132. BUG_ON(!PageLocked(page));
  133. spin_lock_irq(&mapping->tree_lock);
  134. __remove_from_page_cache(page);
  135. spin_unlock_irq(&mapping->tree_lock);
  136. }
  137. static int sync_page(void *word)
  138. {
  139. struct address_space *mapping;
  140. struct page *page;
  141. page = container_of((unsigned long *)word, struct page, flags);
  142. /*
  143. * page_mapping() is being called without PG_locked held.
  144. * Some knowledge of the state and use of the page is used to
  145. * reduce the requirements down to a memory barrier.
  146. * The danger here is of a stale page_mapping() return value
  147. * indicating a struct address_space different from the one it's
  148. * associated with when it is associated with one.
  149. * After smp_mb(), it's either the correct page_mapping() for
  150. * the page, or an old page_mapping() and the page's own
  151. * page_mapping() has gone NULL.
  152. * The ->sync_page() address_space operation must tolerate
  153. * page_mapping() going NULL. By an amazing coincidence,
  154. * this comes about because none of the users of the page
  155. * in the ->sync_page() methods make essential use of the
  156. * page_mapping(), merely passing the page down to the backing
  157. * device's unplug functions when it's non-NULL, which in turn
  158. * ignore it for all cases but swap, where only page_private(page) is
  159. * of interest. When page_mapping() does go NULL, the entire
  160. * call stack gracefully ignores the page and returns.
  161. * -- wli
  162. */
  163. smp_mb();
  164. mapping = page_mapping(page);
  165. if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
  166. mapping->a_ops->sync_page(page);
  167. io_schedule();
  168. return 0;
  169. }
  170. static int sync_page_killable(void *word)
  171. {
  172. sync_page(word);
  173. return fatal_signal_pending(current) ? -EINTR : 0;
  174. }
  175. /**
  176. * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
  177. * @mapping: address space structure to write
  178. * @start: offset in bytes where the range starts
  179. * @end: offset in bytes where the range ends (inclusive)
  180. * @sync_mode: enable synchronous operation
  181. *
  182. * Start writeback against all of a mapping's dirty pages that lie
  183. * within the byte offsets <start, end> inclusive.
  184. *
  185. * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
  186. * opposed to a regular memory cleansing writeback. The difference between
  187. * these two operations is that if a dirty page/buffer is encountered, it must
  188. * be waited upon, and not just skipped over.
  189. */
  190. int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
  191. loff_t end, int sync_mode)
  192. {
  193. int ret;
  194. struct writeback_control wbc = {
  195. .sync_mode = sync_mode,
  196. .nr_to_write = LONG_MAX,
  197. .range_start = start,
  198. .range_end = end,
  199. };
  200. if (!mapping_cap_writeback_dirty(mapping))
  201. return 0;
  202. ret = do_writepages(mapping, &wbc);
  203. return ret;
  204. }
  205. static inline int __filemap_fdatawrite(struct address_space *mapping,
  206. int sync_mode)
  207. {
  208. return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
  209. }
  210. int filemap_fdatawrite(struct address_space *mapping)
  211. {
  212. return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
  213. }
  214. EXPORT_SYMBOL(filemap_fdatawrite);
  215. int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
  216. loff_t end)
  217. {
  218. return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
  219. }
  220. EXPORT_SYMBOL(filemap_fdatawrite_range);
  221. /**
  222. * filemap_flush - mostly a non-blocking flush
  223. * @mapping: target address_space
  224. *
  225. * This is a mostly non-blocking flush. Not suitable for data-integrity
  226. * purposes - I/O may not be started against all dirty pages.
  227. */
  228. int filemap_flush(struct address_space *mapping)
  229. {
  230. return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
  231. }
  232. EXPORT_SYMBOL(filemap_flush);
  233. /**
  234. * wait_on_page_writeback_range - wait for writeback to complete
  235. * @mapping: target address_space
  236. * @start: beginning page index
  237. * @end: ending page index
  238. *
  239. * Wait for writeback to complete against pages indexed by start->end
  240. * inclusive
  241. */
  242. int wait_on_page_writeback_range(struct address_space *mapping,
  243. pgoff_t start, pgoff_t end)
  244. {
  245. struct pagevec pvec;
  246. int nr_pages;
  247. int ret = 0;
  248. pgoff_t index;
  249. if (end < start)
  250. return 0;
  251. pagevec_init(&pvec, 0);
  252. index = start;
  253. while ((index <= end) &&
  254. (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
  255. PAGECACHE_TAG_WRITEBACK,
  256. min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
  257. unsigned i;
  258. for (i = 0; i < nr_pages; i++) {
  259. struct page *page = pvec.pages[i];
  260. /* until radix tree lookup accepts end_index */
  261. if (page->index > end)
  262. continue;
  263. wait_on_page_writeback(page);
  264. if (PageError(page))
  265. ret = -EIO;
  266. }
  267. pagevec_release(&pvec);
  268. cond_resched();
  269. }
  270. /* Check for outstanding write errors */
  271. if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
  272. ret = -ENOSPC;
  273. if (test_and_clear_bit(AS_EIO, &mapping->flags))
  274. ret = -EIO;
  275. return ret;
  276. }
  277. /**
  278. * sync_page_range - write and wait on all pages in the passed range
  279. * @inode: target inode
  280. * @mapping: target address_space
  281. * @pos: beginning offset in pages to write
  282. * @count: number of bytes to write
  283. *
  284. * Write and wait upon all the pages in the passed range. This is a "data
  285. * integrity" operation. It waits upon in-flight writeout before starting and
  286. * waiting upon new writeout. If there was an IO error, return it.
  287. *
  288. * We need to re-take i_mutex during the generic_osync_inode list walk because
  289. * it is otherwise livelockable.
  290. */
  291. int sync_page_range(struct inode *inode, struct address_space *mapping,
  292. loff_t pos, loff_t count)
  293. {
  294. pgoff_t start = pos >> PAGE_CACHE_SHIFT;
  295. pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
  296. int ret;
  297. if (!mapping_cap_writeback_dirty(mapping) || !count)
  298. return 0;
  299. ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
  300. if (ret == 0) {
  301. mutex_lock(&inode->i_mutex);
  302. ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
  303. mutex_unlock(&inode->i_mutex);
  304. }
  305. if (ret == 0)
  306. ret = wait_on_page_writeback_range(mapping, start, end);
  307. return ret;
  308. }
  309. EXPORT_SYMBOL(sync_page_range);
  310. /**
  311. * sync_page_range_nolock - write & wait on all pages in the passed range without locking
  312. * @inode: target inode
  313. * @mapping: target address_space
  314. * @pos: beginning offset in pages to write
  315. * @count: number of bytes to write
  316. *
  317. * Note: Holding i_mutex across sync_page_range_nolock() is not a good idea
  318. * as it forces O_SYNC writers to different parts of the same file
  319. * to be serialised right until io completion.
  320. */
  321. int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
  322. loff_t pos, loff_t count)
  323. {
  324. pgoff_t start = pos >> PAGE_CACHE_SHIFT;
  325. pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
  326. int ret;
  327. if (!mapping_cap_writeback_dirty(mapping) || !count)
  328. return 0;
  329. ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
  330. if (ret == 0)
  331. ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
  332. if (ret == 0)
  333. ret = wait_on_page_writeback_range(mapping, start, end);
  334. return ret;
  335. }
  336. EXPORT_SYMBOL(sync_page_range_nolock);
  337. /**
  338. * filemap_fdatawait - wait for all under-writeback pages to complete
  339. * @mapping: address space structure to wait for
  340. *
  341. * Walk the list of under-writeback pages of the given address space
  342. * and wait for all of them.
  343. */
  344. int filemap_fdatawait(struct address_space *mapping)
  345. {
  346. loff_t i_size = i_size_read(mapping->host);
  347. if (i_size == 0)
  348. return 0;
  349. return wait_on_page_writeback_range(mapping, 0,
  350. (i_size - 1) >> PAGE_CACHE_SHIFT);
  351. }
  352. EXPORT_SYMBOL(filemap_fdatawait);
  353. int filemap_write_and_wait(struct address_space *mapping)
  354. {
  355. int err = 0;
  356. if (mapping->nrpages) {
  357. err = filemap_fdatawrite(mapping);
  358. /*
  359. * Even if the above returned error, the pages may be
  360. * written partially (e.g. -ENOSPC), so we wait for it.
  361. * But the -EIO is special case, it may indicate the worst
  362. * thing (e.g. bug) happened, so we avoid waiting for it.
  363. */
  364. if (err != -EIO) {
  365. int err2 = filemap_fdatawait(mapping);
  366. if (!err)
  367. err = err2;
  368. }
  369. }
  370. return err;
  371. }
  372. EXPORT_SYMBOL(filemap_write_and_wait);
  373. /**
  374. * filemap_write_and_wait_range - write out & wait on a file range
  375. * @mapping: the address_space for the pages
  376. * @lstart: offset in bytes where the range starts
  377. * @lend: offset in bytes where the range ends (inclusive)
  378. *
  379. * Write out and wait upon file offsets lstart->lend, inclusive.
  380. *
  381. * Note that `lend' is inclusive (describes the last byte to be written) so
  382. * that this function can be used to write to the very end-of-file (end = -1).
  383. */
  384. int filemap_write_and_wait_range(struct address_space *mapping,
  385. loff_t lstart, loff_t lend)
  386. {
  387. int err = 0;
  388. if (mapping->nrpages) {
  389. err = __filemap_fdatawrite_range(mapping, lstart, lend,
  390. WB_SYNC_ALL);
  391. /* See comment of filemap_write_and_wait() */
  392. if (err != -EIO) {
  393. int err2 = wait_on_page_writeback_range(mapping,
  394. lstart >> PAGE_CACHE_SHIFT,
  395. lend >> PAGE_CACHE_SHIFT);
  396. if (!err)
  397. err = err2;
  398. }
  399. }
  400. return err;
  401. }
  402. /**
  403. * add_to_page_cache_locked - add a locked page to the pagecache
  404. * @page: page to add
  405. * @mapping: the page's address_space
  406. * @offset: page index
  407. * @gfp_mask: page allocation mode
  408. *
  409. * This function is used to add a page to the pagecache. It must be locked.
  410. * This function does not add the page to the LRU. The caller must do that.
  411. */
  412. int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
  413. pgoff_t offset, gfp_t gfp_mask)
  414. {
  415. int error;
  416. VM_BUG_ON(!PageLocked(page));
  417. error = mem_cgroup_cache_charge(page, current->mm,
  418. gfp_mask & GFP_RECLAIM_MASK);
  419. if (error)
  420. goto out;
  421. error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
  422. if (error == 0) {
  423. page_cache_get(page);
  424. page->mapping = mapping;
  425. page->index = offset;
  426. spin_lock_irq(&mapping->tree_lock);
  427. error = radix_tree_insert(&mapping->page_tree, offset, page);
  428. if (likely(!error)) {
  429. mapping->nrpages++;
  430. __inc_zone_page_state(page, NR_FILE_PAGES);
  431. } else {
  432. page->mapping = NULL;
  433. mem_cgroup_uncharge_cache_page(page);
  434. page_cache_release(page);
  435. }
  436. spin_unlock_irq(&mapping->tree_lock);
  437. radix_tree_preload_end();
  438. } else
  439. mem_cgroup_uncharge_cache_page(page);
  440. out:
  441. return error;
  442. }
  443. EXPORT_SYMBOL(add_to_page_cache_locked);
  444. int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
  445. pgoff_t offset, gfp_t gfp_mask)
  446. {
  447. int ret;
  448. /*
  449. * Splice_read and readahead add shmem/tmpfs pages into the page cache
  450. * before shmem_readpage has a chance to mark them as SwapBacked: they
  451. * need to go on the active_anon lru below, and mem_cgroup_cache_charge
  452. * (called in add_to_page_cache) needs to know where they're going too.
  453. */
  454. if (mapping_cap_swap_backed(mapping))
  455. SetPageSwapBacked(page);
  456. ret = add_to_page_cache(page, mapping, offset, gfp_mask);
  457. if (ret == 0) {
  458. if (page_is_file_cache(page))
  459. lru_cache_add_file(page);
  460. else
  461. lru_cache_add_active_anon(page);
  462. }
  463. return ret;
  464. }
  465. #ifdef CONFIG_NUMA
  466. struct page *__page_cache_alloc(gfp_t gfp)
  467. {
  468. if (cpuset_do_page_mem_spread()) {
  469. int n = cpuset_mem_spread_node();
  470. return alloc_pages_node(n, gfp, 0);
  471. }
  472. return alloc_pages(gfp, 0);
  473. }
  474. EXPORT_SYMBOL(__page_cache_alloc);
  475. #endif
  476. static int __sleep_on_page_lock(void *word)
  477. {
  478. io_schedule();
  479. return 0;
  480. }
  481. /*
  482. * In order to wait for pages to become available there must be
  483. * waitqueues associated with pages. By using a hash table of
  484. * waitqueues where the bucket discipline is to maintain all
  485. * waiters on the same queue and wake all when any of the pages
  486. * become available, and for the woken contexts to check to be
  487. * sure the appropriate page became available, this saves space
  488. * at a cost of "thundering herd" phenomena during rare hash
  489. * collisions.
  490. */
  491. static wait_queue_head_t *page_waitqueue(struct page *page)
  492. {
  493. const struct zone *zone = page_zone(page);
  494. return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
  495. }
  496. static inline void wake_up_page(struct page *page, int bit)
  497. {
  498. __wake_up_bit(page_waitqueue(page), &page->flags, bit);
  499. }
  500. void wait_on_page_bit(struct page *page, int bit_nr)
  501. {
  502. DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
  503. if (test_bit(bit_nr, &page->flags))
  504. __wait_on_bit(page_waitqueue(page), &wait, sync_page,
  505. TASK_UNINTERRUPTIBLE);
  506. }
  507. EXPORT_SYMBOL(wait_on_page_bit);
  508. /**
  509. * unlock_page - unlock a locked page
  510. * @page: the page
  511. *
  512. * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
  513. * Also wakes sleepers in wait_on_page_writeback() because the wakeup
  514. * mechananism between PageLocked pages and PageWriteback pages is shared.
  515. * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
  516. *
  517. * The mb is necessary to enforce ordering between the clear_bit and the read
  518. * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
  519. */
  520. void unlock_page(struct page *page)
  521. {
  522. VM_BUG_ON(!PageLocked(page));
  523. clear_bit_unlock(PG_locked, &page->flags);
  524. smp_mb__after_clear_bit();
  525. wake_up_page(page, PG_locked);
  526. }
  527. EXPORT_SYMBOL(unlock_page);
  528. /**
  529. * end_page_writeback - end writeback against a page
  530. * @page: the page
  531. */
  532. void end_page_writeback(struct page *page)
  533. {
  534. if (TestClearPageReclaim(page))
  535. rotate_reclaimable_page(page);
  536. if (!test_clear_page_writeback(page))
  537. BUG();
  538. smp_mb__after_clear_bit();
  539. wake_up_page(page, PG_writeback);
  540. }
  541. EXPORT_SYMBOL(end_page_writeback);
  542. /**
  543. * __lock_page - get a lock on the page, assuming we need to sleep to get it
  544. * @page: the page to lock
  545. *
  546. * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some
  547. * random driver's requestfn sets TASK_RUNNING, we could busywait. However
  548. * chances are that on the second loop, the block layer's plug list is empty,
  549. * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
  550. */
  551. void __lock_page(struct page *page)
  552. {
  553. DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
  554. __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
  555. TASK_UNINTERRUPTIBLE);
  556. }
  557. EXPORT_SYMBOL(__lock_page);
  558. int __lock_page_killable(struct page *page)
  559. {
  560. DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
  561. return __wait_on_bit_lock(page_waitqueue(page), &wait,
  562. sync_page_killable, TASK_KILLABLE);
  563. }
  564. /**
  565. * __lock_page_nosync - get a lock on the page, without calling sync_page()
  566. * @page: the page to lock
  567. *
  568. * Variant of lock_page that does not require the caller to hold a reference
  569. * on the page's mapping.
  570. */
  571. void __lock_page_nosync(struct page *page)
  572. {
  573. DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
  574. __wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
  575. TASK_UNINTERRUPTIBLE);
  576. }
  577. /**
  578. * find_get_page - find and get a page reference
  579. * @mapping: the address_space to search
  580. * @offset: the page index
  581. *
  582. * Is there a pagecache struct page at the given (mapping, offset) tuple?
  583. * If yes, increment its refcount and return it; if no, return NULL.
  584. */
  585. struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
  586. {
  587. void **pagep;
  588. struct page *page;
  589. rcu_read_lock();
  590. repeat:
  591. page = NULL;
  592. pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
  593. if (pagep) {
  594. page = radix_tree_deref_slot(pagep);
  595. if (unlikely(!page || page == RADIX_TREE_RETRY))
  596. goto repeat;
  597. if (!page_cache_get_speculative(page))
  598. goto repeat;
  599. /*
  600. * Has the page moved?
  601. * This is part of the lockless pagecache protocol. See
  602. * include/linux/pagemap.h for details.
  603. */
  604. if (unlikely(page != *pagep)) {
  605. page_cache_release(page);
  606. goto repeat;
  607. }
  608. }
  609. rcu_read_unlock();
  610. return page;
  611. }
  612. EXPORT_SYMBOL(find_get_page);
  613. /**
  614. * find_lock_page - locate, pin and lock a pagecache page
  615. * @mapping: the address_space to search
  616. * @offset: the page index
  617. *
  618. * Locates the desired pagecache page, locks it, increments its reference
  619. * count and returns its address.
  620. *
  621. * Returns zero if the page was not present. find_lock_page() may sleep.
  622. */
  623. struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
  624. {
  625. struct page *page;
  626. repeat:
  627. page = find_get_page(mapping, offset);
  628. if (page) {
  629. lock_page(page);
  630. /* Has the page been truncated? */
  631. if (unlikely(page->mapping != mapping)) {
  632. unlock_page(page);
  633. page_cache_release(page);
  634. goto repeat;
  635. }
  636. VM_BUG_ON(page->index != offset);
  637. }
  638. return page;
  639. }
  640. EXPORT_SYMBOL(find_lock_page);
  641. /**
  642. * find_or_create_page - locate or add a pagecache page
  643. * @mapping: the page's address_space
  644. * @index: the page's index into the mapping
  645. * @gfp_mask: page allocation mode
  646. *
  647. * Locates a page in the pagecache. If the page is not present, a new page
  648. * is allocated using @gfp_mask and is added to the pagecache and to the VM's
  649. * LRU list. The returned page is locked and has its reference count
  650. * incremented.
  651. *
  652. * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
  653. * allocation!
  654. *
  655. * find_or_create_page() returns the desired page's address, or zero on
  656. * memory exhaustion.
  657. */
  658. struct page *find_or_create_page(struct address_space *mapping,
  659. pgoff_t index, gfp_t gfp_mask)
  660. {
  661. struct page *page;
  662. int err;
  663. repeat:
  664. page = find_lock_page(mapping, index);
  665. if (!page) {
  666. page = __page_cache_alloc(gfp_mask);
  667. if (!page)
  668. return NULL;
  669. /*
  670. * We want a regular kernel memory (not highmem or DMA etc)
  671. * allocation for the radix tree nodes, but we need to honour
  672. * the context-specific requirements the caller has asked for.
  673. * GFP_RECLAIM_MASK collects those requirements.
  674. */
  675. err = add_to_page_cache_lru(page, mapping, index,
  676. (gfp_mask & GFP_RECLAIM_MASK));
  677. if (unlikely(err)) {
  678. page_cache_release(page);
  679. page = NULL;
  680. if (err == -EEXIST)
  681. goto repeat;
  682. }
  683. }
  684. return page;
  685. }
  686. EXPORT_SYMBOL(find_or_create_page);
  687. /**
  688. * find_get_pages - gang pagecache lookup
  689. * @mapping: The address_space to search
  690. * @start: The starting page index
  691. * @nr_pages: The maximum number of pages
  692. * @pages: Where the resulting pages are placed
  693. *
  694. * find_get_pages() will search for and return a group of up to
  695. * @nr_pages pages in the mapping. The pages are placed at @pages.
  696. * find_get_pages() takes a reference against the returned pages.
  697. *
  698. * The search returns a group of mapping-contiguous pages with ascending
  699. * indexes. There may be holes in the indices due to not-present pages.
  700. *
  701. * find_get_pages() returns the number of pages which were found.
  702. */
  703. unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
  704. unsigned int nr_pages, struct page **pages)
  705. {
  706. unsigned int i;
  707. unsigned int ret;
  708. unsigned int nr_found;
  709. rcu_read_lock();
  710. restart:
  711. nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
  712. (void ***)pages, start, nr_pages);
  713. ret = 0;
  714. for (i = 0; i < nr_found; i++) {
  715. struct page *page;
  716. repeat:
  717. page = radix_tree_deref_slot((void **)pages[i]);
  718. if (unlikely(!page))
  719. continue;
  720. /*
  721. * this can only trigger if nr_found == 1, making livelock
  722. * a non issue.
  723. */
  724. if (unlikely(page == RADIX_TREE_RETRY))
  725. goto restart;
  726. if (!page_cache_get_speculative(page))
  727. goto repeat;
  728. /* Has the page moved? */
  729. if (unlikely(page != *((void **)pages[i]))) {
  730. page_cache_release(page);
  731. goto repeat;
  732. }
  733. pages[ret] = page;
  734. ret++;
  735. }
  736. rcu_read_unlock();
  737. return ret;
  738. }
  739. /**
  740. * find_get_pages_contig - gang contiguous pagecache lookup
  741. * @mapping: The address_space to search
  742. * @index: The starting page index
  743. * @nr_pages: The maximum number of pages
  744. * @pages: Where the resulting pages are placed
  745. *
  746. * find_get_pages_contig() works exactly like find_get_pages(), except
  747. * that the returned number of pages are guaranteed to be contiguous.
  748. *
  749. * find_get_pages_contig() returns the number of pages which were found.
  750. */
  751. unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
  752. unsigned int nr_pages, struct page **pages)
  753. {
  754. unsigned int i;
  755. unsigned int ret;
  756. unsigned int nr_found;
  757. rcu_read_lock();
  758. restart:
  759. nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
  760. (void ***)pages, index, nr_pages);
  761. ret = 0;
  762. for (i = 0; i < nr_found; i++) {
  763. struct page *page;
  764. repeat:
  765. page = radix_tree_deref_slot((void **)pages[i]);
  766. if (unlikely(!page))
  767. continue;
  768. /*
  769. * this can only trigger if nr_found == 1, making livelock
  770. * a non issue.
  771. */
  772. if (unlikely(page == RADIX_TREE_RETRY))
  773. goto restart;
  774. if (page->mapping == NULL || page->index != index)
  775. break;
  776. if (!page_cache_get_speculative(page))
  777. goto repeat;
  778. /* Has the page moved? */
  779. if (unlikely(page != *((void **)pages[i]))) {
  780. page_cache_release(page);
  781. goto repeat;
  782. }
  783. pages[ret] = page;
  784. ret++;
  785. index++;
  786. }
  787. rcu_read_unlock();
  788. return ret;
  789. }
  790. EXPORT_SYMBOL(find_get_pages_contig);
  791. /**
  792. * find_get_pages_tag - find and return pages that match @tag
  793. * @mapping: the address_space to search
  794. * @index: the starting page index
  795. * @tag: the tag index
  796. * @nr_pages: the maximum number of pages
  797. * @pages: where the resulting pages are placed
  798. *
  799. * Like find_get_pages, except we only return pages which are tagged with
  800. * @tag. We update @index to index the next page for the traversal.
  801. */
  802. unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
  803. int tag, unsigned int nr_pages, struct page **pages)
  804. {
  805. unsigned int i;
  806. unsigned int ret;
  807. unsigned int nr_found;
  808. rcu_read_lock();
  809. restart:
  810. nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree,
  811. (void ***)pages, *index, nr_pages, tag);
  812. ret = 0;
  813. for (i = 0; i < nr_found; i++) {
  814. struct page *page;
  815. repeat:
  816. page = radix_tree_deref_slot((void **)pages[i]);
  817. if (unlikely(!page))
  818. continue;
  819. /*
  820. * this can only trigger if nr_found == 1, making livelock
  821. * a non issue.
  822. */
  823. if (unlikely(page == RADIX_TREE_RETRY))
  824. goto restart;
  825. if (!page_cache_get_speculative(page))
  826. goto repeat;
  827. /* Has the page moved? */
  828. if (unlikely(page != *((void **)pages[i]))) {
  829. page_cache_release(page);
  830. goto repeat;
  831. }
  832. pages[ret] = page;
  833. ret++;
  834. }
  835. rcu_read_unlock();
  836. if (ret)
  837. *index = pages[ret - 1]->index + 1;
  838. return ret;
  839. }
  840. EXPORT_SYMBOL(find_get_pages_tag);
  841. /**
  842. * grab_cache_page_nowait - returns locked page at given index in given cache
  843. * @mapping: target address_space
  844. * @index: the page index
  845. *
  846. * Same as grab_cache_page(), but do not wait if the page is unavailable.
  847. * This is intended for speculative data generators, where the data can
  848. * be regenerated if the page couldn't be grabbed. This routine should
  849. * be safe to call while holding the lock for another page.
  850. *
  851. * Clear __GFP_FS when allocating the page to avoid recursion into the fs
  852. * and deadlock against the caller's locked page.
  853. */
  854. struct page *
  855. grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
  856. {
  857. struct page *page = find_get_page(mapping, index);
  858. if (page) {
  859. if (trylock_page(page))
  860. return page;
  861. page_cache_release(page);
  862. return NULL;
  863. }
  864. page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
  865. if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
  866. page_cache_release(page);
  867. page = NULL;
  868. }
  869. return page;
  870. }
  871. EXPORT_SYMBOL(grab_cache_page_nowait);
  872. /*
  873. * CD/DVDs are error prone. When a medium error occurs, the driver may fail
  874. * a _large_ part of the i/o request. Imagine the worst scenario:
  875. *
  876. * ---R__________________________________________B__________
  877. * ^ reading here ^ bad block(assume 4k)
  878. *
  879. * read(R) => miss => readahead(R...B) => media error => frustrating retries
  880. * => failing the whole request => read(R) => read(R+1) =>
  881. * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
  882. * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
  883. * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
  884. *
  885. * It is going insane. Fix it by quickly scaling down the readahead size.
  886. */
  887. static void shrink_readahead_size_eio(struct file *filp,
  888. struct file_ra_state *ra)
  889. {
  890. if (!ra->ra_pages)
  891. return;
  892. ra->ra_pages /= 4;
  893. }
  894. /**
  895. * do_generic_file_read - generic file read routine
  896. * @filp: the file to read
  897. * @ppos: current file position
  898. * @desc: read_descriptor
  899. * @actor: read method
  900. *
  901. * This is a generic file read routine, and uses the
  902. * mapping->a_ops->readpage() function for the actual low-level stuff.
  903. *
  904. * This is really ugly. But the goto's actually try to clarify some
  905. * of the logic when it comes to error handling etc.
  906. */
  907. static void do_generic_file_read(struct file *filp, loff_t *ppos,
  908. read_descriptor_t *desc, read_actor_t actor)
  909. {
  910. struct address_space *mapping = filp->f_mapping;
  911. struct inode *inode = mapping->host;
  912. struct file_ra_state *ra = &filp->f_ra;
  913. pgoff_t index;
  914. pgoff_t last_index;
  915. pgoff_t prev_index;
  916. unsigned long offset; /* offset into pagecache page */
  917. unsigned int prev_offset;
  918. int error;
  919. index = *ppos >> PAGE_CACHE_SHIFT;
  920. prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
  921. prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
  922. last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
  923. offset = *ppos & ~PAGE_CACHE_MASK;
  924. for (;;) {
  925. struct page *page;
  926. pgoff_t end_index;
  927. loff_t isize;
  928. unsigned long nr, ret;
  929. cond_resched();
  930. find_page:
  931. page = find_get_page(mapping, index);
  932. if (!page) {
  933. page_cache_sync_readahead(mapping,
  934. ra, filp,
  935. index, last_index - index);
  936. page = find_get_page(mapping, index);
  937. if (unlikely(page == NULL))
  938. goto no_cached_page;
  939. }
  940. if (PageReadahead(page)) {
  941. page_cache_async_readahead(mapping,
  942. ra, filp, page,
  943. index, last_index - index);
  944. }
  945. if (!PageUptodate(page)) {
  946. if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
  947. !mapping->a_ops->is_partially_uptodate)
  948. goto page_not_up_to_date;
  949. if (!trylock_page(page))
  950. goto page_not_up_to_date;
  951. if (!mapping->a_ops->is_partially_uptodate(page,
  952. desc, offset))
  953. goto page_not_up_to_date_locked;
  954. unlock_page(page);
  955. }
  956. page_ok:
  957. /*
  958. * i_size must be checked after we know the page is Uptodate.
  959. *
  960. * Checking i_size after the check allows us to calculate
  961. * the correct value for "nr", which means the zero-filled
  962. * part of the page is not copied back to userspace (unless
  963. * another truncate extends the file - this is desired though).
  964. */
  965. isize = i_size_read(inode);
  966. end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
  967. if (unlikely(!isize || index > end_index)) {
  968. page_cache_release(page);
  969. goto out;
  970. }
  971. /* nr is the maximum number of bytes to copy from this page */
  972. nr = PAGE_CACHE_SIZE;
  973. if (index == end_index) {
  974. nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
  975. if (nr <= offset) {
  976. page_cache_release(page);
  977. goto out;
  978. }
  979. }
  980. nr = nr - offset;
  981. /* If users can be writing to this page using arbitrary
  982. * virtual addresses, take care about potential aliasing
  983. * before reading the page on the kernel side.
  984. */
  985. if (mapping_writably_mapped(mapping))
  986. flush_dcache_page(page);
  987. /*
  988. * When a sequential read accesses a page several times,
  989. * only mark it as accessed the first time.
  990. */
  991. if (prev_index != index || offset != prev_offset)
  992. mark_page_accessed(page);
  993. prev_index = index;
  994. /*
  995. * Ok, we have the page, and it's up-to-date, so
  996. * now we can copy it to user space...
  997. *
  998. * The actor routine returns how many bytes were actually used..
  999. * NOTE! This may not be the same as how much of a user buffer
  1000. * we filled up (we may be padding etc), so we can only update
  1001. * "pos" here (the actor routine has to update the user buffer
  1002. * pointers and the remaining count).
  1003. */
  1004. ret = actor(desc, page, offset, nr);
  1005. offset += ret;
  1006. index += offset >> PAGE_CACHE_SHIFT;
  1007. offset &= ~PAGE_CACHE_MASK;
  1008. prev_offset = offset;
  1009. page_cache_release(page);
  1010. if (ret == nr && desc->count)
  1011. continue;
  1012. goto out;
  1013. page_not_up_to_date:
  1014. /* Get exclusive access to the page ... */
  1015. error = lock_page_killable(page);
  1016. if (unlikely(error))
  1017. goto readpage_error;
  1018. page_not_up_to_date_locked:
  1019. /* Did it get truncated before we got the lock? */
  1020. if (!page->mapping) {
  1021. unlock_page(page);
  1022. page_cache_release(page);
  1023. continue;
  1024. }
  1025. /* Did somebody else fill it already? */
  1026. if (PageUptodate(page)) {
  1027. unlock_page(page);
  1028. goto page_ok;
  1029. }
  1030. readpage:
  1031. /* Start the actual read. The read will unlock the page. */
  1032. error = mapping->a_ops->readpage(filp, page);
  1033. if (unlikely(error)) {
  1034. if (error == AOP_TRUNCATED_PAGE) {
  1035. page_cache_release(page);
  1036. goto find_page;
  1037. }
  1038. goto readpage_error;
  1039. }
  1040. if (!PageUptodate(page)) {
  1041. error = lock_page_killable(page);
  1042. if (unlikely(error))
  1043. goto readpage_error;
  1044. if (!PageUptodate(page)) {
  1045. if (page->mapping == NULL) {
  1046. /*
  1047. * invalidate_inode_pages got it
  1048. */
  1049. unlock_page(page);
  1050. page_cache_release(page);
  1051. goto find_page;
  1052. }
  1053. unlock_page(page);
  1054. shrink_readahead_size_eio(filp, ra);
  1055. error = -EIO;
  1056. goto readpage_error;
  1057. }
  1058. unlock_page(page);
  1059. }
  1060. goto page_ok;
  1061. readpage_error:
  1062. /* UHHUH! A synchronous read error occurred. Report it */
  1063. desc->error = error;
  1064. page_cache_release(page);
  1065. goto out;
  1066. no_cached_page:
  1067. /*
  1068. * Ok, it wasn't cached, so we need to create a new
  1069. * page..
  1070. */
  1071. page = page_cache_alloc_cold(mapping);
  1072. if (!page) {
  1073. desc->error = -ENOMEM;
  1074. goto out;
  1075. }
  1076. error = add_to_page_cache_lru(page, mapping,
  1077. index, GFP_KERNEL);
  1078. if (error) {
  1079. page_cache_release(page);
  1080. if (error == -EEXIST)
  1081. goto find_page;
  1082. desc->error = error;
  1083. goto out;
  1084. }
  1085. goto readpage;
  1086. }
  1087. out:
  1088. ra->prev_pos = prev_index;
  1089. ra->prev_pos <<= PAGE_CACHE_SHIFT;
  1090. ra->prev_pos |= prev_offset;
  1091. *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
  1092. file_accessed(filp);
  1093. }
  1094. int file_read_actor(read_descriptor_t *desc, struct page *page,
  1095. unsigned long offset, unsigned long size)
  1096. {
  1097. char *kaddr;
  1098. unsigned long left, count = desc->count;
  1099. if (size > count)
  1100. size = count;
  1101. /*
  1102. * Faults on the destination of a read are common, so do it before
  1103. * taking the kmap.
  1104. */
  1105. if (!fault_in_pages_writeable(desc->arg.buf, size)) {
  1106. kaddr = kmap_atomic(page, KM_USER0);
  1107. left = __copy_to_user_inatomic(desc->arg.buf,
  1108. kaddr + offset, size);
  1109. kunmap_atomic(kaddr, KM_USER0);
  1110. if (left == 0)
  1111. goto success;
  1112. }
  1113. /* Do it the slow way */
  1114. kaddr = kmap(page);
  1115. left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
  1116. kunmap(page);
  1117. if (left) {
  1118. size -= left;
  1119. desc->error = -EFAULT;
  1120. }
  1121. success:
  1122. desc->count = count - size;
  1123. desc->written += size;
  1124. desc->arg.buf += size;
  1125. return size;
  1126. }
  1127. /*
  1128. * Performs necessary checks before doing a write
  1129. * @iov: io vector request
  1130. * @nr_segs: number of segments in the iovec
  1131. * @count: number of bytes to write
  1132. * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
  1133. *
  1134. * Adjust number of segments and amount of bytes to write (nr_segs should be
  1135. * properly initialized first). Returns appropriate error code that caller
  1136. * should return or zero in case that write should be allowed.
  1137. */
  1138. int generic_segment_checks(const struct iovec *iov,
  1139. unsigned long *nr_segs, size_t *count, int access_flags)
  1140. {
  1141. unsigned long seg;
  1142. size_t cnt = 0;
  1143. for (seg = 0; seg < *nr_segs; seg++) {
  1144. const struct iovec *iv = &iov[seg];
  1145. /*
  1146. * If any segment has a negative length, or the cumulative
  1147. * length ever wraps negative then return -EINVAL.
  1148. */
  1149. cnt += iv->iov_len;
  1150. if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
  1151. return -EINVAL;
  1152. if (access_ok(access_flags, iv->iov_base, iv->iov_len))
  1153. continue;
  1154. if (seg == 0)
  1155. return -EFAULT;
  1156. *nr_segs = seg;
  1157. cnt -= iv->iov_len; /* This segment is no good */
  1158. break;
  1159. }
  1160. *count = cnt;
  1161. return 0;
  1162. }
  1163. EXPORT_SYMBOL(generic_segment_checks);
  1164. /**
  1165. * generic_file_aio_read - generic filesystem read routine
  1166. * @iocb: kernel I/O control block
  1167. * @iov: io vector request
  1168. * @nr_segs: number of segments in the iovec
  1169. * @pos: current file position
  1170. *
  1171. * This is the "read()" routine for all filesystems
  1172. * that can use the page cache directly.
  1173. */
  1174. ssize_t
  1175. generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
  1176. unsigned long nr_segs, loff_t pos)
  1177. {
  1178. struct file *filp = iocb->ki_filp;
  1179. ssize_t retval;
  1180. unsigned long seg;
  1181. size_t count;
  1182. loff_t *ppos = &iocb->ki_pos;
  1183. count = 0;
  1184. retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
  1185. if (retval)
  1186. return retval;
  1187. /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
  1188. if (filp->f_flags & O_DIRECT) {
  1189. loff_t size;
  1190. struct address_space *mapping;
  1191. struct inode *inode;
  1192. mapping = filp->f_mapping;
  1193. inode = mapping->host;
  1194. if (!count)
  1195. goto out; /* skip atime */
  1196. size = i_size_read(inode);
  1197. if (pos < size) {
  1198. retval = filemap_write_and_wait_range(mapping, pos,
  1199. pos + iov_length(iov, nr_segs) - 1);
  1200. if (!retval) {
  1201. retval = mapping->a_ops->direct_IO(READ, iocb,
  1202. iov, pos, nr_segs);
  1203. }
  1204. if (retval > 0)
  1205. *ppos = pos + retval;
  1206. if (retval) {
  1207. file_accessed(filp);
  1208. goto out;
  1209. }
  1210. }
  1211. }
  1212. for (seg = 0; seg < nr_segs; seg++) {
  1213. read_descriptor_t desc;
  1214. desc.written = 0;
  1215. desc.arg.buf = iov[seg].iov_base;
  1216. desc.count = iov[seg].iov_len;
  1217. if (desc.count == 0)
  1218. continue;
  1219. desc.error = 0;
  1220. do_generic_file_read(filp, ppos, &desc, file_read_actor);
  1221. retval += desc.written;
  1222. if (desc.error) {
  1223. retval = retval ?: desc.error;
  1224. break;
  1225. }
  1226. if (desc.count > 0)
  1227. break;
  1228. }
  1229. out:
  1230. return retval;
  1231. }
  1232. EXPORT_SYMBOL(generic_file_aio_read);
  1233. static ssize_t
  1234. do_readahead(struct address_space *mapping, struct file *filp,
  1235. pgoff_t index, unsigned long nr)
  1236. {
  1237. if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
  1238. return -EINVAL;
  1239. force_page_cache_readahead(mapping, filp, index,
  1240. max_sane_readahead(nr));
  1241. return 0;
  1242. }
  1243. SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count)
  1244. {
  1245. ssize_t ret;
  1246. struct file *file;
  1247. ret = -EBADF;
  1248. file = fget(fd);
  1249. if (file) {
  1250. if (file->f_mode & FMODE_READ) {
  1251. struct address_space *mapping = file->f_mapping;
  1252. pgoff_t start = offset >> PAGE_CACHE_SHIFT;
  1253. pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
  1254. unsigned long len = end - start + 1;
  1255. ret = do_readahead(mapping, file, start, len);
  1256. }
  1257. fput(file);
  1258. }
  1259. return ret;
  1260. }
  1261. #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
  1262. asmlinkage long SyS_readahead(long fd, loff_t offset, long count)
  1263. {
  1264. return SYSC_readahead((int) fd, offset, (size_t) count);
  1265. }
  1266. SYSCALL_ALIAS(sys_readahead, SyS_readahead);
  1267. #endif
  1268. #ifdef CONFIG_MMU
  1269. /**
  1270. * page_cache_read - adds requested page to the page cache if not already there
  1271. * @file: file to read
  1272. * @offset: page index
  1273. *
  1274. * This adds the requested page to the page cache if it isn't already there,
  1275. * and schedules an I/O to read in its contents from disk.
  1276. */
  1277. static int page_cache_read(struct file *file, pgoff_t offset)
  1278. {
  1279. struct address_space *mapping = file->f_mapping;
  1280. struct page *page;
  1281. int ret;
  1282. do {
  1283. page = page_cache_alloc_cold(mapping);
  1284. if (!page)
  1285. return -ENOMEM;
  1286. ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
  1287. if (ret == 0)
  1288. ret = mapping->a_ops->readpage(file, page);
  1289. else if (ret == -EEXIST)
  1290. ret = 0; /* losing race to add is OK */
  1291. page_cache_release(page);
  1292. } while (ret == AOP_TRUNCATED_PAGE);
  1293. return ret;
  1294. }
  1295. #define MMAP_LOTSAMISS (100)
  1296. /**
  1297. * filemap_fault - read in file data for page fault handling
  1298. * @vma: vma in which the fault was taken
  1299. * @vmf: struct vm_fault containing details of the fault
  1300. *
  1301. * filemap_fault() is invoked via the vma operations vector for a
  1302. * mapped memory region to read in file data during a page fault.
  1303. *
  1304. * The goto's are kind of ugly, but this streamlines the normal case of having
  1305. * it in the page cache, and handles the special cases reasonably without
  1306. * having a lot of duplicated code.
  1307. */
  1308. int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1309. {
  1310. int error;
  1311. struct file *file = vma->vm_file;
  1312. struct address_space *mapping = file->f_mapping;
  1313. struct file_ra_state *ra = &file->f_ra;
  1314. struct inode *inode = mapping->host;
  1315. struct page *page;
  1316. pgoff_t size;
  1317. int did_readaround = 0;
  1318. int ret = 0;
  1319. size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
  1320. if (vmf->pgoff >= size)
  1321. return VM_FAULT_SIGBUS;
  1322. /* If we don't want any read-ahead, don't bother */
  1323. if (VM_RandomReadHint(vma))
  1324. goto no_cached_page;
  1325. /*
  1326. * Do we have something in the page cache already?
  1327. */
  1328. retry_find:
  1329. page = find_lock_page(mapping, vmf->pgoff);
  1330. /*
  1331. * For sequential accesses, we use the generic readahead logic.
  1332. */
  1333. if (VM_SequentialReadHint(vma)) {
  1334. if (!page) {
  1335. page_cache_sync_readahead(mapping, ra, file,
  1336. vmf->pgoff, 1);
  1337. page = find_lock_page(mapping, vmf->pgoff);
  1338. if (!page)
  1339. goto no_cached_page;
  1340. }
  1341. if (PageReadahead(page)) {
  1342. page_cache_async_readahead(mapping, ra, file, page,
  1343. vmf->pgoff, 1);
  1344. }
  1345. }
  1346. if (!page) {
  1347. unsigned long ra_pages;
  1348. ra->mmap_miss++;
  1349. /*
  1350. * Do we miss much more than hit in this file? If so,
  1351. * stop bothering with read-ahead. It will only hurt.
  1352. */
  1353. if (ra->mmap_miss > MMAP_LOTSAMISS)
  1354. goto no_cached_page;
  1355. /*
  1356. * To keep the pgmajfault counter straight, we need to
  1357. * check did_readaround, as this is an inner loop.
  1358. */
  1359. if (!did_readaround) {
  1360. ret = VM_FAULT_MAJOR;
  1361. count_vm_event(PGMAJFAULT);
  1362. }
  1363. did_readaround = 1;
  1364. ra_pages = max_sane_readahead(file->f_ra.ra_pages);
  1365. if (ra_pages) {
  1366. pgoff_t start = 0;
  1367. if (vmf->pgoff > ra_pages / 2)
  1368. start = vmf->pgoff - ra_pages / 2;
  1369. do_page_cache_readahead(mapping, file, start, ra_pages);
  1370. }
  1371. page = find_lock_page(mapping, vmf->pgoff);
  1372. if (!page)
  1373. goto no_cached_page;
  1374. }
  1375. if (!did_readaround)
  1376. ra->mmap_miss--;
  1377. /*
  1378. * We have a locked page in the page cache, now we need to check
  1379. * that it's up-to-date. If not, it is going to be due to an error.
  1380. */
  1381. if (unlikely(!PageUptodate(page)))
  1382. goto page_not_uptodate;
  1383. /* Must recheck i_size under page lock */
  1384. size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
  1385. if (unlikely(vmf->pgoff >= size)) {
  1386. unlock_page(page);
  1387. page_cache_release(page);
  1388. return VM_FAULT_SIGBUS;
  1389. }
  1390. /*
  1391. * Found the page and have a reference on it.
  1392. */
  1393. ra->prev_pos = (loff_t)page->index << PAGE_CACHE_SHIFT;
  1394. vmf->page = page;
  1395. return ret | VM_FAULT_LOCKED;
  1396. no_cached_page:
  1397. /*
  1398. * We're only likely to ever get here if MADV_RANDOM is in
  1399. * effect.
  1400. */
  1401. error = page_cache_read(file, vmf->pgoff);
  1402. /*
  1403. * The page we want has now been added to the page cache.
  1404. * In the unlikely event that someone removed it in the
  1405. * meantime, we'll just come back here and read it again.
  1406. */
  1407. if (error >= 0)
  1408. goto retry_find;
  1409. /*
  1410. * An error return from page_cache_read can result if the
  1411. * system is low on memory, or a problem occurs while trying
  1412. * to schedule I/O.
  1413. */
  1414. if (error == -ENOMEM)
  1415. return VM_FAULT_OOM;
  1416. return VM_FAULT_SIGBUS;
  1417. page_not_uptodate:
  1418. /* IO error path */
  1419. if (!did_readaround) {
  1420. ret = VM_FAULT_MAJOR;
  1421. count_vm_event(PGMAJFAULT);
  1422. }
  1423. /*
  1424. * Umm, take care of errors if the page isn't up-to-date.
  1425. * Try to re-read it _once_. We do this synchronously,
  1426. * because there really aren't any performance issues here
  1427. * and we need to check for errors.
  1428. */
  1429. ClearPageError(page);
  1430. error = mapping->a_ops->readpage(file, page);
  1431. if (!error) {
  1432. wait_on_page_locked(page);
  1433. if (!PageUptodate(page))
  1434. error = -EIO;
  1435. }
  1436. page_cache_release(page);
  1437. if (!error || error == AOP_TRUNCATED_PAGE)
  1438. goto retry_find;
  1439. /* Things didn't work out. Return zero to tell the mm layer so. */
  1440. shrink_readahead_size_eio(file, ra);
  1441. return VM_FAULT_SIGBUS;
  1442. }
  1443. EXPORT_SYMBOL(filemap_fault);
  1444. struct vm_operations_struct generic_file_vm_ops = {
  1445. .fault = filemap_fault,
  1446. };
  1447. /* This is used for a general mmap of a disk file */
  1448. int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
  1449. {
  1450. struct address_space *mapping = file->f_mapping;
  1451. if (!mapping->a_ops->readpage)
  1452. return -ENOEXEC;
  1453. file_accessed(file);
  1454. vma->vm_ops = &generic_file_vm_ops;
  1455. vma->vm_flags |= VM_CAN_NONLINEAR;
  1456. return 0;
  1457. }
  1458. /*
  1459. * This is for filesystems which do not implement ->writepage.
  1460. */
  1461. int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
  1462. {
  1463. if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
  1464. return -EINVAL;
  1465. return generic_file_mmap(file, vma);
  1466. }
  1467. #else
  1468. int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
  1469. {
  1470. return -ENOSYS;
  1471. }
  1472. int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
  1473. {
  1474. return -ENOSYS;
  1475. }
  1476. #endif /* CONFIG_MMU */
  1477. EXPORT_SYMBOL(generic_file_mmap);
  1478. EXPORT_SYMBOL(generic_file_readonly_mmap);
  1479. static struct page *__read_cache_page(struct address_space *mapping,
  1480. pgoff_t index,
  1481. int (*filler)(void *,struct page*),
  1482. void *data)
  1483. {
  1484. struct page *page;
  1485. int err;
  1486. repeat:
  1487. page = find_get_page(mapping, index);
  1488. if (!page) {
  1489. page = page_cache_alloc_cold(mapping);
  1490. if (!page)
  1491. return ERR_PTR(-ENOMEM);
  1492. err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
  1493. if (unlikely(err)) {
  1494. page_cache_release(page);
  1495. if (err == -EEXIST)
  1496. goto repeat;
  1497. /* Presumably ENOMEM for radix tree node */
  1498. return ERR_PTR(err);
  1499. }
  1500. err = filler(data, page);
  1501. if (err < 0) {
  1502. page_cache_release(page);
  1503. page = ERR_PTR(err);
  1504. }
  1505. }
  1506. return page;
  1507. }
  1508. /**
  1509. * read_cache_page_async - read into page cache, fill it if needed
  1510. * @mapping: the page's address_space
  1511. * @index: the page index
  1512. * @filler: function to perform the read
  1513. * @data: destination for read data
  1514. *
  1515. * Same as read_cache_page, but don't wait for page to become unlocked
  1516. * after submitting it to the filler.
  1517. *
  1518. * Read into the page cache. If a page already exists, and PageUptodate() is
  1519. * not set, try to fill the page but don't wait for it to become unlocked.
  1520. *
  1521. * If the page does not get brought uptodate, return -EIO.
  1522. */
  1523. struct page *read_cache_page_async(struct address_space *mapping,
  1524. pgoff_t index,
  1525. int (*filler)(void *,struct page*),
  1526. void *data)
  1527. {
  1528. struct page *page;
  1529. int err;
  1530. retry:
  1531. page = __read_cache_page(mapping, index, filler, data);
  1532. if (IS_ERR(page))
  1533. return page;
  1534. if (PageUptodate(page))
  1535. goto out;
  1536. lock_page(page);
  1537. if (!page->mapping) {
  1538. unlock_page(page);
  1539. page_cache_release(page);
  1540. goto retry;
  1541. }
  1542. if (PageUptodate(page)) {
  1543. unlock_page(page);
  1544. goto out;
  1545. }
  1546. err = filler(data, page);
  1547. if (err < 0) {
  1548. page_cache_release(page);
  1549. return ERR_PTR(err);
  1550. }
  1551. out:
  1552. mark_page_accessed(page);
  1553. return page;
  1554. }
  1555. EXPORT_SYMBOL(read_cache_page_async);
  1556. /**
  1557. * read_cache_page - read into page cache, fill it if needed
  1558. * @mapping: the page's address_space
  1559. * @index: the page index
  1560. * @filler: function to perform the read
  1561. * @data: destination for read data
  1562. *
  1563. * Read into the page cache. If a page already exists, and PageUptodate() is
  1564. * not set, try to fill the page then wait for it to become unlocked.
  1565. *
  1566. * If the page does not get brought uptodate, return -EIO.
  1567. */
  1568. struct page *read_cache_page(struct address_space *mapping,
  1569. pgoff_t index,
  1570. int (*filler)(void *,struct page*),
  1571. void *data)
  1572. {
  1573. struct page *page;
  1574. page = read_cache_page_async(mapping, index, filler, data);
  1575. if (IS_ERR(page))
  1576. goto out;
  1577. wait_on_page_locked(page);
  1578. if (!PageUptodate(page)) {
  1579. page_cache_release(page);
  1580. page = ERR_PTR(-EIO);
  1581. }
  1582. out:
  1583. return page;
  1584. }
  1585. EXPORT_SYMBOL(read_cache_page);
  1586. /*
  1587. * The logic we want is
  1588. *
  1589. * if suid or (sgid and xgrp)
  1590. * remove privs
  1591. */
  1592. int should_remove_suid(struct dentry *dentry)
  1593. {
  1594. mode_t mode = dentry->d_inode->i_mode;
  1595. int kill = 0;
  1596. /* suid always must be killed */
  1597. if (unlikely(mode & S_ISUID))
  1598. kill = ATTR_KILL_SUID;
  1599. /*
  1600. * sgid without any exec bits is just a mandatory locking mark; leave
  1601. * it alone. If some exec bits are set, it's a real sgid; kill it.
  1602. */
  1603. if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
  1604. kill |= ATTR_KILL_SGID;
  1605. if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
  1606. return kill;
  1607. return 0;
  1608. }
  1609. EXPORT_SYMBOL(should_remove_suid);
  1610. static int __remove_suid(struct dentry *dentry, int kill)
  1611. {
  1612. struct iattr newattrs;
  1613. newattrs.ia_valid = ATTR_FORCE | kill;
  1614. return notify_change(dentry, &newattrs);
  1615. }
  1616. int file_remove_suid(struct file *file)
  1617. {
  1618. struct dentry *dentry = file->f_path.dentry;
  1619. int killsuid = should_remove_suid(dentry);
  1620. int killpriv = security_inode_need_killpriv(dentry);
  1621. int error = 0;
  1622. if (killpriv < 0)
  1623. return killpriv;
  1624. if (killpriv)
  1625. error = security_inode_killpriv(dentry);
  1626. if (!error && killsuid)
  1627. error = __remove_suid(dentry, killsuid);
  1628. return error;
  1629. }
  1630. EXPORT_SYMBOL(file_remove_suid);
  1631. static size_t __iovec_copy_from_user_inatomic(char *vaddr,
  1632. const struct iovec *iov, size_t base, size_t bytes)
  1633. {
  1634. size_t copied = 0, left = 0;
  1635. while (bytes) {
  1636. char __user *buf = iov->iov_base + base;
  1637. int copy = min(bytes, iov->iov_len - base);
  1638. base = 0;
  1639. left = __copy_from_user_inatomic(vaddr, buf, copy);
  1640. copied += copy;
  1641. bytes -= copy;
  1642. vaddr += copy;
  1643. iov++;
  1644. if (unlikely(left))
  1645. break;
  1646. }
  1647. return copied - left;
  1648. }
  1649. /*
  1650. * Copy as much as we can into the page and return the number of bytes which
  1651. * were sucessfully copied. If a fault is encountered then return the number of
  1652. * bytes which were copied.
  1653. */
  1654. size_t iov_iter_copy_from_user_atomic(struct page *page,
  1655. struct iov_iter *i, unsigned long offset, size_t bytes)
  1656. {
  1657. char *kaddr;
  1658. size_t copied;
  1659. BUG_ON(!in_atomic());
  1660. kaddr = kmap_atomic(page, KM_USER0);
  1661. if (likely(i->nr_segs == 1)) {
  1662. int left;
  1663. char __user *buf = i->iov->iov_base + i->iov_offset;
  1664. left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
  1665. copied = bytes - left;
  1666. } else {
  1667. copied = __iovec_copy_from_user_inatomic(kaddr + offset,
  1668. i->iov, i->iov_offset, bytes);
  1669. }
  1670. kunmap_atomic(kaddr, KM_USER0);
  1671. return copied;
  1672. }
  1673. EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
  1674. /*
  1675. * This has the same sideeffects and return value as
  1676. * iov_iter_copy_from_user_atomic().
  1677. * The difference is that it attempts to resolve faults.
  1678. * Page must not be locked.
  1679. */
  1680. size_t iov_iter_copy_from_user(struct page *page,
  1681. struct iov_iter *i, unsigned long offset, size_t bytes)
  1682. {
  1683. char *kaddr;
  1684. size_t copied;
  1685. kaddr = kmap(page);
  1686. if (likely(i->nr_segs == 1)) {
  1687. int left;
  1688. char __user *buf = i->iov->iov_base + i->iov_offset;
  1689. left = __copy_from_user(kaddr + offset, buf, bytes);
  1690. copied = bytes - left;
  1691. } else {
  1692. copied = __iovec_copy_from_user_inatomic(kaddr + offset,
  1693. i->iov, i->iov_offset, bytes);
  1694. }
  1695. kunmap(page);
  1696. return copied;
  1697. }
  1698. EXPORT_SYMBOL(iov_iter_copy_from_user);
  1699. void iov_iter_advance(struct iov_iter *i, size_t bytes)
  1700. {
  1701. BUG_ON(i->count < bytes);
  1702. if (likely(i->nr_segs == 1)) {
  1703. i->iov_offset += bytes;
  1704. i->count -= bytes;
  1705. } else {
  1706. const struct iovec *iov = i->iov;
  1707. size_t base = i->iov_offset;
  1708. /*
  1709. * The !iov->iov_len check ensures we skip over unlikely
  1710. * zero-length segments (without overruning the iovec).
  1711. */
  1712. while (bytes || unlikely(i->count && !iov->iov_len)) {
  1713. int copy;
  1714. copy = min(bytes, iov->iov_len - base);
  1715. BUG_ON(!i->count || i->count < copy);
  1716. i->count -= copy;
  1717. bytes -= copy;
  1718. base += copy;
  1719. if (iov->iov_len == base) {
  1720. iov++;
  1721. base = 0;
  1722. }
  1723. }
  1724. i->iov = iov;
  1725. i->iov_offset = base;
  1726. }
  1727. }
  1728. EXPORT_SYMBOL(iov_iter_advance);
  1729. /*
  1730. * Fault in the first iovec of the given iov_iter, to a maximum length
  1731. * of bytes. Returns 0 on success, or non-zero if the memory could not be
  1732. * accessed (ie. because it is an invalid address).
  1733. *
  1734. * writev-intensive code may want this to prefault several iovecs -- that
  1735. * would be possible (callers must not rely on the fact that _only_ the
  1736. * first iovec will be faulted with the current implementation).
  1737. */
  1738. int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
  1739. {
  1740. char __user *buf = i->iov->iov_base + i->iov_offset;
  1741. bytes = min(bytes, i->iov->iov_len - i->iov_offset);
  1742. return fault_in_pages_readable(buf, bytes);
  1743. }
  1744. EXPORT_SYMBOL(iov_iter_fault_in_readable);
  1745. /*
  1746. * Return the count of just the current iov_iter segment.
  1747. */
  1748. size_t iov_iter_single_seg_count(struct iov_iter *i)
  1749. {
  1750. const struct iovec *iov = i->iov;
  1751. if (i->nr_segs == 1)
  1752. return i->count;
  1753. else
  1754. return min(i->count, iov->iov_len - i->iov_offset);
  1755. }
  1756. EXPORT_SYMBOL(iov_iter_single_seg_count);
  1757. /*
  1758. * Performs necessary checks before doing a write
  1759. *
  1760. * Can adjust writing position or amount of bytes to write.
  1761. * Returns appropriate error code that caller should return or
  1762. * zero in case that write should be allowed.
  1763. */
  1764. inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
  1765. {
  1766. struct inode *inode = file->f_mapping->host;
  1767. unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
  1768. if (unlikely(*pos < 0))
  1769. return -EINVAL;
  1770. if (!isblk) {
  1771. /* FIXME: this is for backwards compatibility with 2.4 */
  1772. if (file->f_flags & O_APPEND)
  1773. *pos = i_size_read(inode);
  1774. if (limit != RLIM_INFINITY) {
  1775. if (*pos >= limit) {
  1776. send_sig(SIGXFSZ, current, 0);
  1777. return -EFBIG;
  1778. }
  1779. if (*count > limit - (typeof(limit))*pos) {
  1780. *count = limit - (typeof(limit))*pos;
  1781. }
  1782. }
  1783. }
  1784. /*
  1785. * LFS rule
  1786. */
  1787. if (unlikely(*pos + *count > MAX_NON_LFS &&
  1788. !(file->f_flags & O_LARGEFILE))) {
  1789. if (*pos >= MAX_NON_LFS) {
  1790. return -EFBIG;
  1791. }
  1792. if (*count > MAX_NON_LFS - (unsigned long)*pos) {
  1793. *count = MAX_NON_LFS - (unsigned long)*pos;
  1794. }
  1795. }
  1796. /*
  1797. * Are we about to exceed the fs block limit ?
  1798. *
  1799. * If we have written data it becomes a short write. If we have
  1800. * exceeded without writing data we send a signal and return EFBIG.
  1801. * Linus frestrict idea will clean these up nicely..
  1802. */
  1803. if (likely(!isblk)) {
  1804. if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
  1805. if (*count || *pos > inode->i_sb->s_maxbytes) {
  1806. return -EFBIG;
  1807. }
  1808. /* zero-length writes at ->s_maxbytes are OK */
  1809. }
  1810. if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
  1811. *count = inode->i_sb->s_maxbytes - *pos;
  1812. } else {
  1813. #ifdef CONFIG_BLOCK
  1814. loff_t isize;
  1815. if (bdev_read_only(I_BDEV(inode)))
  1816. return -EPERM;
  1817. isize = i_size_read(inode);
  1818. if (*pos >= isize) {
  1819. if (*count || *pos > isize)
  1820. return -ENOSPC;
  1821. }
  1822. if (*pos + *count > isize)
  1823. *count = isize - *pos;
  1824. #else
  1825. return -EPERM;
  1826. #endif
  1827. }
  1828. return 0;
  1829. }
  1830. EXPORT_SYMBOL(generic_write_checks);
  1831. int pagecache_write_begin(struct file *file, struct address_space *mapping,
  1832. loff_t pos, unsigned len, unsigned flags,
  1833. struct page **pagep, void **fsdata)
  1834. {
  1835. const struct address_space_operations *aops = mapping->a_ops;
  1836. return aops->write_begin(file, mapping, pos, len, flags,
  1837. pagep, fsdata);
  1838. }
  1839. EXPORT_SYMBOL(pagecache_write_begin);
  1840. int pagecache_write_end(struct file *file, struct address_space *mapping,
  1841. loff_t pos, unsigned len, unsigned copied,
  1842. struct page *page, void *fsdata)
  1843. {
  1844. const struct address_space_operations *aops = mapping->a_ops;
  1845. mark_page_accessed(page);
  1846. return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
  1847. }
  1848. EXPORT_SYMBOL(pagecache_write_end);
  1849. ssize_t
  1850. generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
  1851. unsigned long *nr_segs, loff_t pos, loff_t *ppos,
  1852. size_t count, size_t ocount)
  1853. {
  1854. struct file *file = iocb->ki_filp;
  1855. struct address_space *mapping = file->f_mapping;
  1856. struct inode *inode = mapping->host;
  1857. ssize_t written;
  1858. size_t write_len;
  1859. pgoff_t end;
  1860. if (count != ocount)
  1861. *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
  1862. write_len = iov_length(iov, *nr_segs);
  1863. end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
  1864. written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
  1865. if (written)
  1866. goto out;
  1867. /*
  1868. * After a write we want buffered reads to be sure to go to disk to get
  1869. * the new data. We invalidate clean cached page from the region we're
  1870. * about to write. We do this *before* the write so that we can return
  1871. * without clobbering -EIOCBQUEUED from ->direct_IO().
  1872. */
  1873. if (mapping->nrpages) {
  1874. written = invalidate_inode_pages2_range(mapping,
  1875. pos >> PAGE_CACHE_SHIFT, end);
  1876. /*
  1877. * If a page can not be invalidated, return 0 to fall back
  1878. * to buffered write.
  1879. */
  1880. if (written) {
  1881. if (written == -EBUSY)
  1882. return 0;
  1883. goto out;
  1884. }
  1885. }
  1886. written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
  1887. /*
  1888. * Finally, try again to invalidate clean pages which might have been
  1889. * cached by non-direct readahead, or faulted in by get_user_pages()
  1890. * if the source of the write was an mmap'ed region of the file
  1891. * we're writing. Either one is a pretty crazy thing to do,
  1892. * so we don't support it 100%. If this invalidation
  1893. * fails, tough, the write still worked...
  1894. */
  1895. if (mapping->nrpages) {
  1896. invalidate_inode_pages2_range(mapping,
  1897. pos >> PAGE_CACHE_SHIFT, end);
  1898. }
  1899. if (written > 0) {
  1900. loff_t end = pos + written;
  1901. if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
  1902. i_size_write(inode, end);
  1903. mark_inode_dirty(inode);
  1904. }
  1905. *ppos = end;
  1906. }
  1907. /*
  1908. * Sync the fs metadata but not the minor inode changes and
  1909. * of course not the data as we did direct DMA for the IO.
  1910. * i_mutex is held, which protects generic_osync_inode() from
  1911. * livelocking. AIO O_DIRECT ops attempt to sync metadata here.
  1912. */
  1913. out:
  1914. if ((written >= 0 || written == -EIOCBQUEUED) &&
  1915. ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
  1916. int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
  1917. if (err < 0)
  1918. written = err;
  1919. }
  1920. return written;
  1921. }
  1922. EXPORT_SYMBOL(generic_file_direct_write);
  1923. /*
  1924. * Find or create a page at the given pagecache position. Return the locked
  1925. * page. This function is specifically for buffered writes.
  1926. */
  1927. struct page *grab_cache_page_write_begin(struct address_space *mapping,
  1928. pgoff_t index, unsigned flags)
  1929. {
  1930. int status;
  1931. struct page *page;
  1932. gfp_t gfp_notmask = 0;
  1933. if (flags & AOP_FLAG_NOFS)
  1934. gfp_notmask = __GFP_FS;
  1935. repeat:
  1936. page = find_lock_page(mapping, index);
  1937. if (likely(page))
  1938. return page;
  1939. page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~gfp_notmask);
  1940. if (!page)
  1941. return NULL;
  1942. status = add_to_page_cache_lru(page, mapping, index,
  1943. GFP_KERNEL & ~gfp_notmask);
  1944. if (unlikely(status)) {
  1945. page_cache_release(page);
  1946. if (status == -EEXIST)
  1947. goto repeat;
  1948. return NULL;
  1949. }
  1950. return page;
  1951. }
  1952. EXPORT_SYMBOL(grab_cache_page_write_begin);
  1953. static ssize_t generic_perform_write(struct file *file,
  1954. struct iov_iter *i, loff_t pos)
  1955. {
  1956. struct address_space *mapping = file->f_mapping;
  1957. const struct address_space_operations *a_ops = mapping->a_ops;
  1958. long status = 0;
  1959. ssize_t written = 0;
  1960. unsigned int flags = 0;
  1961. /*
  1962. * Copies from kernel address space cannot fail (NFSD is a big user).
  1963. */
  1964. if (segment_eq(get_fs(), KERNEL_DS))
  1965. flags |= AOP_FLAG_UNINTERRUPTIBLE;
  1966. do {
  1967. struct page *page;
  1968. pgoff_t index; /* Pagecache index for current page */
  1969. unsigned long offset; /* Offset into pagecache page */
  1970. unsigned long bytes; /* Bytes to write to page */
  1971. size_t copied; /* Bytes copied from user */
  1972. void *fsdata;
  1973. offset = (pos & (PAGE_CACHE_SIZE - 1));
  1974. index = pos >> PAGE_CACHE_SHIFT;
  1975. bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
  1976. iov_iter_count(i));
  1977. again:
  1978. /*
  1979. * Bring in the user page that we will copy from _first_.
  1980. * Otherwise there's a nasty deadlock on copying from the
  1981. * same page as we're writing to, without it being marked
  1982. * up-to-date.
  1983. *
  1984. * Not only is this an optimisation, but it is also required
  1985. * to check that the address is actually valid, when atomic
  1986. * usercopies are used, below.
  1987. */
  1988. if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
  1989. status = -EFAULT;
  1990. break;
  1991. }
  1992. status = a_ops->write_begin(file, mapping, pos, bytes, flags,
  1993. &page, &fsdata);
  1994. if (unlikely(status))
  1995. break;
  1996. pagefault_disable();
  1997. copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
  1998. pagefault_enable();
  1999. flush_dcache_page(page);
  2000. status = a_ops->write_end(file, mapping, pos, bytes, copied,
  2001. page, fsdata);
  2002. if (unlikely(status < 0))
  2003. break;
  2004. copied = status;
  2005. cond_resched();
  2006. iov_iter_advance(i, copied);
  2007. if (unlikely(copied == 0)) {
  2008. /*
  2009. * If we were unable to copy any data at all, we must
  2010. * fall back to a single segment length write.
  2011. *
  2012. * If we didn't fallback here, we could livelock
  2013. * because not all segments in the iov can be copied at
  2014. * once without a pagefault.
  2015. */
  2016. bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
  2017. iov_iter_single_seg_count(i));
  2018. goto again;
  2019. }
  2020. pos += copied;
  2021. written += copied;
  2022. balance_dirty_pages_ratelimited(mapping);
  2023. } while (iov_iter_count(i));
  2024. return written ? written : status;
  2025. }
  2026. ssize_t
  2027. generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
  2028. unsigned long nr_segs, loff_t pos, loff_t *ppos,
  2029. size_t count, ssize_t written)
  2030. {
  2031. struct file *file = iocb->ki_filp;
  2032. struct address_space *mapping = file->f_mapping;
  2033. const struct address_space_operations *a_ops = mapping->a_ops;
  2034. struct inode *inode = mapping->host;
  2035. ssize_t status;
  2036. struct iov_iter i;
  2037. iov_iter_init(&i, iov, nr_segs, count, written);
  2038. status = generic_perform_write(file, &i, pos);
  2039. if (likely(status >= 0)) {
  2040. written += status;
  2041. *ppos = pos + status;
  2042. /*
  2043. * For now, when the user asks for O_SYNC, we'll actually give
  2044. * O_DSYNC
  2045. */
  2046. if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
  2047. if (!a_ops->writepage || !is_sync_kiocb(iocb))
  2048. status = generic_osync_inode(inode, mapping,
  2049. OSYNC_METADATA|OSYNC_DATA);
  2050. }
  2051. }
  2052. /*
  2053. * If we get here for O_DIRECT writes then we must have fallen through
  2054. * to buffered writes (block instantiation inside i_size). So we sync
  2055. * the file data here, to try to honour O_DIRECT expectations.
  2056. */
  2057. if (unlikely(file->f_flags & O_DIRECT) && written)
  2058. status = filemap_write_and_wait_range(mapping,
  2059. pos, pos + written - 1);
  2060. return written ? written : status;
  2061. }
  2062. EXPORT_SYMBOL(generic_file_buffered_write);
  2063. static ssize_t
  2064. __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
  2065. unsigned long nr_segs, loff_t *ppos)
  2066. {
  2067. struct file *file = iocb->ki_filp;
  2068. struct address_space * mapping = file->f_mapping;
  2069. size_t ocount; /* original count */
  2070. size_t count; /* after file limit checks */
  2071. struct inode *inode = mapping->host;
  2072. loff_t pos;
  2073. ssize_t written;
  2074. ssize_t err;
  2075. ocount = 0;
  2076. err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
  2077. if (err)
  2078. return err;
  2079. count = ocount;
  2080. pos = *ppos;
  2081. vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
  2082. /* We can write back this queue in page reclaim */
  2083. current->backing_dev_info = mapping->backing_dev_info;
  2084. written = 0;
  2085. err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
  2086. if (err)
  2087. goto out;
  2088. if (count == 0)
  2089. goto out;
  2090. err = file_remove_suid(file);
  2091. if (err)
  2092. goto out;
  2093. file_update_time(file);
  2094. /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
  2095. if (unlikely(file->f_flags & O_DIRECT)) {
  2096. loff_t endbyte;
  2097. ssize_t written_buffered;
  2098. written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
  2099. ppos, count, ocount);
  2100. if (written < 0 || written == count)
  2101. goto out;
  2102. /*
  2103. * direct-io write to a hole: fall through to buffered I/O
  2104. * for completing the rest of the request.
  2105. */
  2106. pos += written;
  2107. count -= written;
  2108. written_buffered = generic_file_buffered_write(iocb, iov,
  2109. nr_segs, pos, ppos, count,
  2110. written);
  2111. /*
  2112. * If generic_file_buffered_write() retuned a synchronous error
  2113. * then we want to return the number of bytes which were
  2114. * direct-written, or the error code if that was zero. Note
  2115. * that this differs from normal direct-io semantics, which
  2116. * will return -EFOO even if some bytes were written.
  2117. */
  2118. if (written_buffered < 0) {
  2119. err = written_buffered;
  2120. goto out;
  2121. }
  2122. /*
  2123. * We need to ensure that the page cache pages are written to
  2124. * disk and invalidated to preserve the expected O_DIRECT
  2125. * semantics.
  2126. */
  2127. endbyte = pos + written_buffered - written - 1;
  2128. err = do_sync_mapping_range(file->f_mapping, pos, endbyte,
  2129. SYNC_FILE_RANGE_WAIT_BEFORE|
  2130. SYNC_FILE_RANGE_WRITE|
  2131. SYNC_FILE_RANGE_WAIT_AFTER);
  2132. if (err == 0) {
  2133. written = written_buffered;
  2134. invalidate_mapping_pages(mapping,
  2135. pos >> PAGE_CACHE_SHIFT,
  2136. endbyte >> PAGE_CACHE_SHIFT);
  2137. } else {
  2138. /*
  2139. * We don't know how much we wrote, so just return
  2140. * the number of bytes which were direct-written
  2141. */
  2142. }
  2143. } else {
  2144. written = generic_file_buffered_write(iocb, iov, nr_segs,
  2145. pos, ppos, count, written);
  2146. }
  2147. out:
  2148. current->backing_dev_info = NULL;
  2149. return written ? written : err;
  2150. }
  2151. ssize_t generic_file_aio_write_nolock(struct kiocb *iocb,
  2152. const struct iovec *iov, unsigned long nr_segs, loff_t pos)
  2153. {
  2154. struct file *file = iocb->ki_filp;
  2155. struct address_space *mapping = file->f_mapping;
  2156. struct inode *inode = mapping->host;
  2157. ssize_t ret;
  2158. BUG_ON(iocb->ki_pos != pos);
  2159. ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
  2160. &iocb->ki_pos);
  2161. if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
  2162. ssize_t err;
  2163. err = sync_page_range_nolock(inode, mapping, pos, ret);
  2164. if (err < 0)
  2165. ret = err;
  2166. }
  2167. return ret;
  2168. }
  2169. EXPORT_SYMBOL(generic_file_aio_write_nolock);
  2170. ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
  2171. unsigned long nr_segs, loff_t pos)
  2172. {
  2173. struct file *file = iocb->ki_filp;
  2174. struct address_space *mapping = file->f_mapping;
  2175. struct inode *inode = mapping->host;
  2176. ssize_t ret;
  2177. BUG_ON(iocb->ki_pos != pos);
  2178. mutex_lock(&inode->i_mutex);
  2179. ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
  2180. &iocb->ki_pos);
  2181. mutex_unlock(&inode->i_mutex);
  2182. if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
  2183. ssize_t err;
  2184. err = sync_page_range(inode, mapping, pos, ret);
  2185. if (err < 0)
  2186. ret = err;
  2187. }
  2188. return ret;
  2189. }
  2190. EXPORT_SYMBOL(generic_file_aio_write);
  2191. /**
  2192. * try_to_release_page() - release old fs-specific metadata on a page
  2193. *
  2194. * @page: the page which the kernel is trying to free
  2195. * @gfp_mask: memory allocation flags (and I/O mode)
  2196. *
  2197. * The address_space is to try to release any data against the page
  2198. * (presumably at page->private). If the release was successful, return `1'.
  2199. * Otherwise return zero.
  2200. *
  2201. * The @gfp_mask argument specifies whether I/O may be performed to release
  2202. * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
  2203. *
  2204. */
  2205. int try_to_release_page(struct page *page, gfp_t gfp_mask)
  2206. {
  2207. struct address_space * const mapping = page->mapping;
  2208. BUG_ON(!PageLocked(page));
  2209. if (PageWriteback(page))
  2210. return 0;
  2211. if (mapping && mapping->a_ops->releasepage)
  2212. return mapping->a_ops->releasepage(page, gfp_mask);
  2213. return try_to_free_buffers(page);
  2214. }
  2215. EXPORT_SYMBOL(try_to_release_page);