sched.c 244 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/kthread.h>
  57. #include <linux/proc_fs.h>
  58. #include <linux/seq_file.h>
  59. #include <linux/sysctl.h>
  60. #include <linux/syscalls.h>
  61. #include <linux/times.h>
  62. #include <linux/tsacct_kern.h>
  63. #include <linux/kprobes.h>
  64. #include <linux/delayacct.h>
  65. #include <linux/reciprocal_div.h>
  66. #include <linux/unistd.h>
  67. #include <linux/pagemap.h>
  68. #include <linux/hrtimer.h>
  69. #include <linux/tick.h>
  70. #include <linux/bootmem.h>
  71. #include <linux/debugfs.h>
  72. #include <linux/ctype.h>
  73. #include <linux/ftrace.h>
  74. #include <trace/sched.h>
  75. #include <asm/tlb.h>
  76. #include <asm/irq_regs.h>
  77. #include "sched_cpupri.h"
  78. /*
  79. * Convert user-nice values [ -20 ... 0 ... 19 ]
  80. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  81. * and back.
  82. */
  83. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  84. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  85. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  86. /*
  87. * 'User priority' is the nice value converted to something we
  88. * can work with better when scaling various scheduler parameters,
  89. * it's a [ 0 ... 39 ] range.
  90. */
  91. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  92. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  93. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  94. /*
  95. * Helpers for converting nanosecond timing to jiffy resolution
  96. */
  97. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  98. #define NICE_0_LOAD SCHED_LOAD_SCALE
  99. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  100. /*
  101. * These are the 'tuning knobs' of the scheduler:
  102. *
  103. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  104. * Timeslices get refilled after they expire.
  105. */
  106. #define DEF_TIMESLICE (100 * HZ / 1000)
  107. /*
  108. * single value that denotes runtime == period, ie unlimited time.
  109. */
  110. #define RUNTIME_INF ((u64)~0ULL)
  111. DEFINE_TRACE(sched_wait_task);
  112. DEFINE_TRACE(sched_wakeup);
  113. DEFINE_TRACE(sched_wakeup_new);
  114. DEFINE_TRACE(sched_switch);
  115. DEFINE_TRACE(sched_migrate_task);
  116. #ifdef CONFIG_SMP
  117. static void double_rq_lock(struct rq *rq1, struct rq *rq2);
  118. /*
  119. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  120. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  121. */
  122. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  123. {
  124. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  125. }
  126. /*
  127. * Each time a sched group cpu_power is changed,
  128. * we must compute its reciprocal value
  129. */
  130. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  131. {
  132. sg->__cpu_power += val;
  133. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  134. }
  135. #endif
  136. static inline int rt_policy(int policy)
  137. {
  138. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  139. return 1;
  140. return 0;
  141. }
  142. static inline int task_has_rt_policy(struct task_struct *p)
  143. {
  144. return rt_policy(p->policy);
  145. }
  146. /*
  147. * This is the priority-queue data structure of the RT scheduling class:
  148. */
  149. struct rt_prio_array {
  150. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  151. struct list_head queue[MAX_RT_PRIO];
  152. };
  153. struct rt_bandwidth {
  154. /* nests inside the rq lock: */
  155. spinlock_t rt_runtime_lock;
  156. ktime_t rt_period;
  157. u64 rt_runtime;
  158. struct hrtimer rt_period_timer;
  159. };
  160. static struct rt_bandwidth def_rt_bandwidth;
  161. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  162. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  163. {
  164. struct rt_bandwidth *rt_b =
  165. container_of(timer, struct rt_bandwidth, rt_period_timer);
  166. ktime_t now;
  167. int overrun;
  168. int idle = 0;
  169. for (;;) {
  170. now = hrtimer_cb_get_time(timer);
  171. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  172. if (!overrun)
  173. break;
  174. idle = do_sched_rt_period_timer(rt_b, overrun);
  175. }
  176. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  177. }
  178. static
  179. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  180. {
  181. rt_b->rt_period = ns_to_ktime(period);
  182. rt_b->rt_runtime = runtime;
  183. spin_lock_init(&rt_b->rt_runtime_lock);
  184. hrtimer_init(&rt_b->rt_period_timer,
  185. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  186. rt_b->rt_period_timer.function = sched_rt_period_timer;
  187. }
  188. static inline int rt_bandwidth_enabled(void)
  189. {
  190. return sysctl_sched_rt_runtime >= 0;
  191. }
  192. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  193. {
  194. ktime_t now;
  195. if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  196. return;
  197. if (hrtimer_active(&rt_b->rt_period_timer))
  198. return;
  199. spin_lock(&rt_b->rt_runtime_lock);
  200. for (;;) {
  201. if (hrtimer_active(&rt_b->rt_period_timer))
  202. break;
  203. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  204. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  205. hrtimer_start_expires(&rt_b->rt_period_timer,
  206. HRTIMER_MODE_ABS);
  207. }
  208. spin_unlock(&rt_b->rt_runtime_lock);
  209. }
  210. #ifdef CONFIG_RT_GROUP_SCHED
  211. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  212. {
  213. hrtimer_cancel(&rt_b->rt_period_timer);
  214. }
  215. #endif
  216. /*
  217. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  218. * detach_destroy_domains and partition_sched_domains.
  219. */
  220. static DEFINE_MUTEX(sched_domains_mutex);
  221. #ifdef CONFIG_GROUP_SCHED
  222. #include <linux/cgroup.h>
  223. struct cfs_rq;
  224. static LIST_HEAD(task_groups);
  225. /* task group related information */
  226. struct task_group {
  227. #ifdef CONFIG_CGROUP_SCHED
  228. struct cgroup_subsys_state css;
  229. #endif
  230. #ifdef CONFIG_USER_SCHED
  231. uid_t uid;
  232. #endif
  233. #ifdef CONFIG_FAIR_GROUP_SCHED
  234. /* schedulable entities of this group on each cpu */
  235. struct sched_entity **se;
  236. /* runqueue "owned" by this group on each cpu */
  237. struct cfs_rq **cfs_rq;
  238. unsigned long shares;
  239. #endif
  240. #ifdef CONFIG_RT_GROUP_SCHED
  241. struct sched_rt_entity **rt_se;
  242. struct rt_rq **rt_rq;
  243. struct rt_bandwidth rt_bandwidth;
  244. #endif
  245. struct rcu_head rcu;
  246. struct list_head list;
  247. struct task_group *parent;
  248. struct list_head siblings;
  249. struct list_head children;
  250. };
  251. #ifdef CONFIG_USER_SCHED
  252. /* Helper function to pass uid information to create_sched_user() */
  253. void set_tg_uid(struct user_struct *user)
  254. {
  255. user->tg->uid = user->uid;
  256. }
  257. /*
  258. * Root task group.
  259. * Every UID task group (including init_task_group aka UID-0) will
  260. * be a child to this group.
  261. */
  262. struct task_group root_task_group;
  263. #ifdef CONFIG_FAIR_GROUP_SCHED
  264. /* Default task group's sched entity on each cpu */
  265. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  266. /* Default task group's cfs_rq on each cpu */
  267. static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
  268. #endif /* CONFIG_FAIR_GROUP_SCHED */
  269. #ifdef CONFIG_RT_GROUP_SCHED
  270. static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
  271. static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
  272. #endif /* CONFIG_RT_GROUP_SCHED */
  273. #else /* !CONFIG_USER_SCHED */
  274. #define root_task_group init_task_group
  275. #endif /* CONFIG_USER_SCHED */
  276. /* task_group_lock serializes add/remove of task groups and also changes to
  277. * a task group's cpu shares.
  278. */
  279. static DEFINE_SPINLOCK(task_group_lock);
  280. #ifdef CONFIG_SMP
  281. static int root_task_group_empty(void)
  282. {
  283. return list_empty(&root_task_group.children);
  284. }
  285. #endif
  286. #ifdef CONFIG_FAIR_GROUP_SCHED
  287. #ifdef CONFIG_USER_SCHED
  288. # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
  289. #else /* !CONFIG_USER_SCHED */
  290. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  291. #endif /* CONFIG_USER_SCHED */
  292. /*
  293. * A weight of 0 or 1 can cause arithmetics problems.
  294. * A weight of a cfs_rq is the sum of weights of which entities
  295. * are queued on this cfs_rq, so a weight of a entity should not be
  296. * too large, so as the shares value of a task group.
  297. * (The default weight is 1024 - so there's no practical
  298. * limitation from this.)
  299. */
  300. #define MIN_SHARES 2
  301. #define MAX_SHARES (1UL << 18)
  302. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  303. #endif
  304. /* Default task group.
  305. * Every task in system belong to this group at bootup.
  306. */
  307. struct task_group init_task_group;
  308. /* return group to which a task belongs */
  309. static inline struct task_group *task_group(struct task_struct *p)
  310. {
  311. struct task_group *tg;
  312. #ifdef CONFIG_USER_SCHED
  313. rcu_read_lock();
  314. tg = __task_cred(p)->user->tg;
  315. rcu_read_unlock();
  316. #elif defined(CONFIG_CGROUP_SCHED)
  317. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  318. struct task_group, css);
  319. #else
  320. tg = &init_task_group;
  321. #endif
  322. return tg;
  323. }
  324. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  325. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  326. {
  327. #ifdef CONFIG_FAIR_GROUP_SCHED
  328. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  329. p->se.parent = task_group(p)->se[cpu];
  330. #endif
  331. #ifdef CONFIG_RT_GROUP_SCHED
  332. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  333. p->rt.parent = task_group(p)->rt_se[cpu];
  334. #endif
  335. }
  336. #else
  337. #ifdef CONFIG_SMP
  338. static int root_task_group_empty(void)
  339. {
  340. return 1;
  341. }
  342. #endif
  343. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  344. static inline struct task_group *task_group(struct task_struct *p)
  345. {
  346. return NULL;
  347. }
  348. #endif /* CONFIG_GROUP_SCHED */
  349. /* CFS-related fields in a runqueue */
  350. struct cfs_rq {
  351. struct load_weight load;
  352. unsigned long nr_running;
  353. u64 exec_clock;
  354. u64 min_vruntime;
  355. struct rb_root tasks_timeline;
  356. struct rb_node *rb_leftmost;
  357. struct list_head tasks;
  358. struct list_head *balance_iterator;
  359. /*
  360. * 'curr' points to currently running entity on this cfs_rq.
  361. * It is set to NULL otherwise (i.e when none are currently running).
  362. */
  363. struct sched_entity *curr, *next, *last;
  364. unsigned int nr_spread_over;
  365. #ifdef CONFIG_FAIR_GROUP_SCHED
  366. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  367. /*
  368. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  369. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  370. * (like users, containers etc.)
  371. *
  372. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  373. * list is used during load balance.
  374. */
  375. struct list_head leaf_cfs_rq_list;
  376. struct task_group *tg; /* group that "owns" this runqueue */
  377. #ifdef CONFIG_SMP
  378. /*
  379. * the part of load.weight contributed by tasks
  380. */
  381. unsigned long task_weight;
  382. /*
  383. * h_load = weight * f(tg)
  384. *
  385. * Where f(tg) is the recursive weight fraction assigned to
  386. * this group.
  387. */
  388. unsigned long h_load;
  389. /*
  390. * this cpu's part of tg->shares
  391. */
  392. unsigned long shares;
  393. /*
  394. * load.weight at the time we set shares
  395. */
  396. unsigned long rq_weight;
  397. #endif
  398. #endif
  399. };
  400. /* Real-Time classes' related field in a runqueue: */
  401. struct rt_rq {
  402. struct rt_prio_array active;
  403. unsigned long rt_nr_running;
  404. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  405. struct {
  406. int curr; /* highest queued rt task prio */
  407. #ifdef CONFIG_SMP
  408. int next; /* next highest */
  409. #endif
  410. } highest_prio;
  411. #endif
  412. #ifdef CONFIG_SMP
  413. unsigned long rt_nr_migratory;
  414. int overloaded;
  415. struct plist_head pushable_tasks;
  416. #endif
  417. int rt_throttled;
  418. u64 rt_time;
  419. u64 rt_runtime;
  420. /* Nests inside the rq lock: */
  421. spinlock_t rt_runtime_lock;
  422. #ifdef CONFIG_RT_GROUP_SCHED
  423. unsigned long rt_nr_boosted;
  424. struct rq *rq;
  425. struct list_head leaf_rt_rq_list;
  426. struct task_group *tg;
  427. struct sched_rt_entity *rt_se;
  428. #endif
  429. };
  430. #ifdef CONFIG_SMP
  431. /*
  432. * We add the notion of a root-domain which will be used to define per-domain
  433. * variables. Each exclusive cpuset essentially defines an island domain by
  434. * fully partitioning the member cpus from any other cpuset. Whenever a new
  435. * exclusive cpuset is created, we also create and attach a new root-domain
  436. * object.
  437. *
  438. */
  439. struct root_domain {
  440. atomic_t refcount;
  441. cpumask_var_t span;
  442. cpumask_var_t online;
  443. /*
  444. * The "RT overload" flag: it gets set if a CPU has more than
  445. * one runnable RT task.
  446. */
  447. cpumask_var_t rto_mask;
  448. atomic_t rto_count;
  449. #ifdef CONFIG_SMP
  450. struct cpupri cpupri;
  451. #endif
  452. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  453. /*
  454. * Preferred wake up cpu nominated by sched_mc balance that will be
  455. * used when most cpus are idle in the system indicating overall very
  456. * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
  457. */
  458. unsigned int sched_mc_preferred_wakeup_cpu;
  459. #endif
  460. };
  461. /*
  462. * By default the system creates a single root-domain with all cpus as
  463. * members (mimicking the global state we have today).
  464. */
  465. static struct root_domain def_root_domain;
  466. #endif
  467. /*
  468. * This is the main, per-CPU runqueue data structure.
  469. *
  470. * Locking rule: those places that want to lock multiple runqueues
  471. * (such as the load balancing or the thread migration code), lock
  472. * acquire operations must be ordered by ascending &runqueue.
  473. */
  474. struct rq {
  475. /* runqueue lock: */
  476. spinlock_t lock;
  477. /*
  478. * nr_running and cpu_load should be in the same cacheline because
  479. * remote CPUs use both these fields when doing load calculation.
  480. */
  481. unsigned long nr_running;
  482. #define CPU_LOAD_IDX_MAX 5
  483. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  484. #ifdef CONFIG_NO_HZ
  485. unsigned long last_tick_seen;
  486. unsigned char in_nohz_recently;
  487. #endif
  488. /* capture load from *all* tasks on this cpu: */
  489. struct load_weight load;
  490. unsigned long nr_load_updates;
  491. u64 nr_switches;
  492. struct cfs_rq cfs;
  493. struct rt_rq rt;
  494. #ifdef CONFIG_FAIR_GROUP_SCHED
  495. /* list of leaf cfs_rq on this cpu: */
  496. struct list_head leaf_cfs_rq_list;
  497. #endif
  498. #ifdef CONFIG_RT_GROUP_SCHED
  499. struct list_head leaf_rt_rq_list;
  500. #endif
  501. /*
  502. * This is part of a global counter where only the total sum
  503. * over all CPUs matters. A task can increase this counter on
  504. * one CPU and if it got migrated afterwards it may decrease
  505. * it on another CPU. Always updated under the runqueue lock:
  506. */
  507. unsigned long nr_uninterruptible;
  508. struct task_struct *curr, *idle;
  509. unsigned long next_balance;
  510. struct mm_struct *prev_mm;
  511. u64 clock;
  512. atomic_t nr_iowait;
  513. #ifdef CONFIG_SMP
  514. struct root_domain *rd;
  515. struct sched_domain *sd;
  516. unsigned char idle_at_tick;
  517. /* For active balancing */
  518. int active_balance;
  519. int push_cpu;
  520. /* cpu of this runqueue: */
  521. int cpu;
  522. int online;
  523. unsigned long avg_load_per_task;
  524. struct task_struct *migration_thread;
  525. struct list_head migration_queue;
  526. #endif
  527. #ifdef CONFIG_SCHED_HRTICK
  528. #ifdef CONFIG_SMP
  529. int hrtick_csd_pending;
  530. struct call_single_data hrtick_csd;
  531. #endif
  532. struct hrtimer hrtick_timer;
  533. #endif
  534. #ifdef CONFIG_SCHEDSTATS
  535. /* latency stats */
  536. struct sched_info rq_sched_info;
  537. unsigned long long rq_cpu_time;
  538. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  539. /* sys_sched_yield() stats */
  540. unsigned int yld_count;
  541. /* schedule() stats */
  542. unsigned int sched_switch;
  543. unsigned int sched_count;
  544. unsigned int sched_goidle;
  545. /* try_to_wake_up() stats */
  546. unsigned int ttwu_count;
  547. unsigned int ttwu_local;
  548. /* BKL stats */
  549. unsigned int bkl_count;
  550. #endif
  551. };
  552. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  553. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
  554. {
  555. rq->curr->sched_class->check_preempt_curr(rq, p, sync);
  556. }
  557. static inline int cpu_of(struct rq *rq)
  558. {
  559. #ifdef CONFIG_SMP
  560. return rq->cpu;
  561. #else
  562. return 0;
  563. #endif
  564. }
  565. /*
  566. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  567. * See detach_destroy_domains: synchronize_sched for details.
  568. *
  569. * The domain tree of any CPU may only be accessed from within
  570. * preempt-disabled sections.
  571. */
  572. #define for_each_domain(cpu, __sd) \
  573. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  574. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  575. #define this_rq() (&__get_cpu_var(runqueues))
  576. #define task_rq(p) cpu_rq(task_cpu(p))
  577. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  578. static inline void update_rq_clock(struct rq *rq)
  579. {
  580. rq->clock = sched_clock_cpu(cpu_of(rq));
  581. }
  582. /*
  583. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  584. */
  585. #ifdef CONFIG_SCHED_DEBUG
  586. # define const_debug __read_mostly
  587. #else
  588. # define const_debug static const
  589. #endif
  590. /**
  591. * runqueue_is_locked
  592. *
  593. * Returns true if the current cpu runqueue is locked.
  594. * This interface allows printk to be called with the runqueue lock
  595. * held and know whether or not it is OK to wake up the klogd.
  596. */
  597. int runqueue_is_locked(void)
  598. {
  599. int cpu = get_cpu();
  600. struct rq *rq = cpu_rq(cpu);
  601. int ret;
  602. ret = spin_is_locked(&rq->lock);
  603. put_cpu();
  604. return ret;
  605. }
  606. /*
  607. * Debugging: various feature bits
  608. */
  609. #define SCHED_FEAT(name, enabled) \
  610. __SCHED_FEAT_##name ,
  611. enum {
  612. #include "sched_features.h"
  613. };
  614. #undef SCHED_FEAT
  615. #define SCHED_FEAT(name, enabled) \
  616. (1UL << __SCHED_FEAT_##name) * enabled |
  617. const_debug unsigned int sysctl_sched_features =
  618. #include "sched_features.h"
  619. 0;
  620. #undef SCHED_FEAT
  621. #ifdef CONFIG_SCHED_DEBUG
  622. #define SCHED_FEAT(name, enabled) \
  623. #name ,
  624. static __read_mostly char *sched_feat_names[] = {
  625. #include "sched_features.h"
  626. NULL
  627. };
  628. #undef SCHED_FEAT
  629. static int sched_feat_show(struct seq_file *m, void *v)
  630. {
  631. int i;
  632. for (i = 0; sched_feat_names[i]; i++) {
  633. if (!(sysctl_sched_features & (1UL << i)))
  634. seq_puts(m, "NO_");
  635. seq_printf(m, "%s ", sched_feat_names[i]);
  636. }
  637. seq_puts(m, "\n");
  638. return 0;
  639. }
  640. static ssize_t
  641. sched_feat_write(struct file *filp, const char __user *ubuf,
  642. size_t cnt, loff_t *ppos)
  643. {
  644. char buf[64];
  645. char *cmp = buf;
  646. int neg = 0;
  647. int i;
  648. if (cnt > 63)
  649. cnt = 63;
  650. if (copy_from_user(&buf, ubuf, cnt))
  651. return -EFAULT;
  652. buf[cnt] = 0;
  653. if (strncmp(buf, "NO_", 3) == 0) {
  654. neg = 1;
  655. cmp += 3;
  656. }
  657. for (i = 0; sched_feat_names[i]; i++) {
  658. int len = strlen(sched_feat_names[i]);
  659. if (strncmp(cmp, sched_feat_names[i], len) == 0) {
  660. if (neg)
  661. sysctl_sched_features &= ~(1UL << i);
  662. else
  663. sysctl_sched_features |= (1UL << i);
  664. break;
  665. }
  666. }
  667. if (!sched_feat_names[i])
  668. return -EINVAL;
  669. filp->f_pos += cnt;
  670. return cnt;
  671. }
  672. static int sched_feat_open(struct inode *inode, struct file *filp)
  673. {
  674. return single_open(filp, sched_feat_show, NULL);
  675. }
  676. static struct file_operations sched_feat_fops = {
  677. .open = sched_feat_open,
  678. .write = sched_feat_write,
  679. .read = seq_read,
  680. .llseek = seq_lseek,
  681. .release = single_release,
  682. };
  683. static __init int sched_init_debug(void)
  684. {
  685. debugfs_create_file("sched_features", 0644, NULL, NULL,
  686. &sched_feat_fops);
  687. return 0;
  688. }
  689. late_initcall(sched_init_debug);
  690. #endif
  691. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  692. /*
  693. * Number of tasks to iterate in a single balance run.
  694. * Limited because this is done with IRQs disabled.
  695. */
  696. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  697. /*
  698. * ratelimit for updating the group shares.
  699. * default: 0.25ms
  700. */
  701. unsigned int sysctl_sched_shares_ratelimit = 250000;
  702. /*
  703. * Inject some fuzzyness into changing the per-cpu group shares
  704. * this avoids remote rq-locks at the expense of fairness.
  705. * default: 4
  706. */
  707. unsigned int sysctl_sched_shares_thresh = 4;
  708. /*
  709. * period over which we measure -rt task cpu usage in us.
  710. * default: 1s
  711. */
  712. unsigned int sysctl_sched_rt_period = 1000000;
  713. static __read_mostly int scheduler_running;
  714. /*
  715. * part of the period that we allow rt tasks to run in us.
  716. * default: 0.95s
  717. */
  718. int sysctl_sched_rt_runtime = 950000;
  719. static inline u64 global_rt_period(void)
  720. {
  721. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  722. }
  723. static inline u64 global_rt_runtime(void)
  724. {
  725. if (sysctl_sched_rt_runtime < 0)
  726. return RUNTIME_INF;
  727. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  728. }
  729. #ifndef prepare_arch_switch
  730. # define prepare_arch_switch(next) do { } while (0)
  731. #endif
  732. #ifndef finish_arch_switch
  733. # define finish_arch_switch(prev) do { } while (0)
  734. #endif
  735. static inline int task_current(struct rq *rq, struct task_struct *p)
  736. {
  737. return rq->curr == p;
  738. }
  739. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  740. static inline int task_running(struct rq *rq, struct task_struct *p)
  741. {
  742. return task_current(rq, p);
  743. }
  744. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  745. {
  746. }
  747. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  748. {
  749. #ifdef CONFIG_DEBUG_SPINLOCK
  750. /* this is a valid case when another task releases the spinlock */
  751. rq->lock.owner = current;
  752. #endif
  753. /*
  754. * If we are tracking spinlock dependencies then we have to
  755. * fix up the runqueue lock - which gets 'carried over' from
  756. * prev into current:
  757. */
  758. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  759. spin_unlock_irq(&rq->lock);
  760. }
  761. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  762. static inline int task_running(struct rq *rq, struct task_struct *p)
  763. {
  764. #ifdef CONFIG_SMP
  765. return p->oncpu;
  766. #else
  767. return task_current(rq, p);
  768. #endif
  769. }
  770. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  771. {
  772. #ifdef CONFIG_SMP
  773. /*
  774. * We can optimise this out completely for !SMP, because the
  775. * SMP rebalancing from interrupt is the only thing that cares
  776. * here.
  777. */
  778. next->oncpu = 1;
  779. #endif
  780. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  781. spin_unlock_irq(&rq->lock);
  782. #else
  783. spin_unlock(&rq->lock);
  784. #endif
  785. }
  786. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  787. {
  788. #ifdef CONFIG_SMP
  789. /*
  790. * After ->oncpu is cleared, the task can be moved to a different CPU.
  791. * We must ensure this doesn't happen until the switch is completely
  792. * finished.
  793. */
  794. smp_wmb();
  795. prev->oncpu = 0;
  796. #endif
  797. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  798. local_irq_enable();
  799. #endif
  800. }
  801. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  802. /*
  803. * __task_rq_lock - lock the runqueue a given task resides on.
  804. * Must be called interrupts disabled.
  805. */
  806. static inline struct rq *__task_rq_lock(struct task_struct *p)
  807. __acquires(rq->lock)
  808. {
  809. for (;;) {
  810. struct rq *rq = task_rq(p);
  811. spin_lock(&rq->lock);
  812. if (likely(rq == task_rq(p)))
  813. return rq;
  814. spin_unlock(&rq->lock);
  815. }
  816. }
  817. /*
  818. * task_rq_lock - lock the runqueue a given task resides on and disable
  819. * interrupts. Note the ordering: we can safely lookup the task_rq without
  820. * explicitly disabling preemption.
  821. */
  822. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  823. __acquires(rq->lock)
  824. {
  825. struct rq *rq;
  826. for (;;) {
  827. local_irq_save(*flags);
  828. rq = task_rq(p);
  829. spin_lock(&rq->lock);
  830. if (likely(rq == task_rq(p)))
  831. return rq;
  832. spin_unlock_irqrestore(&rq->lock, *flags);
  833. }
  834. }
  835. void task_rq_unlock_wait(struct task_struct *p)
  836. {
  837. struct rq *rq = task_rq(p);
  838. smp_mb(); /* spin-unlock-wait is not a full memory barrier */
  839. spin_unlock_wait(&rq->lock);
  840. }
  841. static void __task_rq_unlock(struct rq *rq)
  842. __releases(rq->lock)
  843. {
  844. spin_unlock(&rq->lock);
  845. }
  846. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  847. __releases(rq->lock)
  848. {
  849. spin_unlock_irqrestore(&rq->lock, *flags);
  850. }
  851. /*
  852. * this_rq_lock - lock this runqueue and disable interrupts.
  853. */
  854. static struct rq *this_rq_lock(void)
  855. __acquires(rq->lock)
  856. {
  857. struct rq *rq;
  858. local_irq_disable();
  859. rq = this_rq();
  860. spin_lock(&rq->lock);
  861. return rq;
  862. }
  863. #ifdef CONFIG_SCHED_HRTICK
  864. /*
  865. * Use HR-timers to deliver accurate preemption points.
  866. *
  867. * Its all a bit involved since we cannot program an hrt while holding the
  868. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  869. * reschedule event.
  870. *
  871. * When we get rescheduled we reprogram the hrtick_timer outside of the
  872. * rq->lock.
  873. */
  874. /*
  875. * Use hrtick when:
  876. * - enabled by features
  877. * - hrtimer is actually high res
  878. */
  879. static inline int hrtick_enabled(struct rq *rq)
  880. {
  881. if (!sched_feat(HRTICK))
  882. return 0;
  883. if (!cpu_active(cpu_of(rq)))
  884. return 0;
  885. return hrtimer_is_hres_active(&rq->hrtick_timer);
  886. }
  887. static void hrtick_clear(struct rq *rq)
  888. {
  889. if (hrtimer_active(&rq->hrtick_timer))
  890. hrtimer_cancel(&rq->hrtick_timer);
  891. }
  892. /*
  893. * High-resolution timer tick.
  894. * Runs from hardirq context with interrupts disabled.
  895. */
  896. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  897. {
  898. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  899. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  900. spin_lock(&rq->lock);
  901. update_rq_clock(rq);
  902. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  903. spin_unlock(&rq->lock);
  904. return HRTIMER_NORESTART;
  905. }
  906. #ifdef CONFIG_SMP
  907. /*
  908. * called from hardirq (IPI) context
  909. */
  910. static void __hrtick_start(void *arg)
  911. {
  912. struct rq *rq = arg;
  913. spin_lock(&rq->lock);
  914. hrtimer_restart(&rq->hrtick_timer);
  915. rq->hrtick_csd_pending = 0;
  916. spin_unlock(&rq->lock);
  917. }
  918. /*
  919. * Called to set the hrtick timer state.
  920. *
  921. * called with rq->lock held and irqs disabled
  922. */
  923. static void hrtick_start(struct rq *rq, u64 delay)
  924. {
  925. struct hrtimer *timer = &rq->hrtick_timer;
  926. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  927. hrtimer_set_expires(timer, time);
  928. if (rq == this_rq()) {
  929. hrtimer_restart(timer);
  930. } else if (!rq->hrtick_csd_pending) {
  931. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
  932. rq->hrtick_csd_pending = 1;
  933. }
  934. }
  935. static int
  936. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  937. {
  938. int cpu = (int)(long)hcpu;
  939. switch (action) {
  940. case CPU_UP_CANCELED:
  941. case CPU_UP_CANCELED_FROZEN:
  942. case CPU_DOWN_PREPARE:
  943. case CPU_DOWN_PREPARE_FROZEN:
  944. case CPU_DEAD:
  945. case CPU_DEAD_FROZEN:
  946. hrtick_clear(cpu_rq(cpu));
  947. return NOTIFY_OK;
  948. }
  949. return NOTIFY_DONE;
  950. }
  951. static __init void init_hrtick(void)
  952. {
  953. hotcpu_notifier(hotplug_hrtick, 0);
  954. }
  955. #else
  956. /*
  957. * Called to set the hrtick timer state.
  958. *
  959. * called with rq->lock held and irqs disabled
  960. */
  961. static void hrtick_start(struct rq *rq, u64 delay)
  962. {
  963. hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
  964. }
  965. static inline void init_hrtick(void)
  966. {
  967. }
  968. #endif /* CONFIG_SMP */
  969. static void init_rq_hrtick(struct rq *rq)
  970. {
  971. #ifdef CONFIG_SMP
  972. rq->hrtick_csd_pending = 0;
  973. rq->hrtick_csd.flags = 0;
  974. rq->hrtick_csd.func = __hrtick_start;
  975. rq->hrtick_csd.info = rq;
  976. #endif
  977. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  978. rq->hrtick_timer.function = hrtick;
  979. }
  980. #else /* CONFIG_SCHED_HRTICK */
  981. static inline void hrtick_clear(struct rq *rq)
  982. {
  983. }
  984. static inline void init_rq_hrtick(struct rq *rq)
  985. {
  986. }
  987. static inline void init_hrtick(void)
  988. {
  989. }
  990. #endif /* CONFIG_SCHED_HRTICK */
  991. /*
  992. * resched_task - mark a task 'to be rescheduled now'.
  993. *
  994. * On UP this means the setting of the need_resched flag, on SMP it
  995. * might also involve a cross-CPU call to trigger the scheduler on
  996. * the target CPU.
  997. */
  998. #ifdef CONFIG_SMP
  999. #ifndef tsk_is_polling
  1000. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  1001. #endif
  1002. static void resched_task(struct task_struct *p)
  1003. {
  1004. int cpu;
  1005. assert_spin_locked(&task_rq(p)->lock);
  1006. if (test_tsk_need_resched(p))
  1007. return;
  1008. set_tsk_need_resched(p);
  1009. cpu = task_cpu(p);
  1010. if (cpu == smp_processor_id())
  1011. return;
  1012. /* NEED_RESCHED must be visible before we test polling */
  1013. smp_mb();
  1014. if (!tsk_is_polling(p))
  1015. smp_send_reschedule(cpu);
  1016. }
  1017. static void resched_cpu(int cpu)
  1018. {
  1019. struct rq *rq = cpu_rq(cpu);
  1020. unsigned long flags;
  1021. if (!spin_trylock_irqsave(&rq->lock, flags))
  1022. return;
  1023. resched_task(cpu_curr(cpu));
  1024. spin_unlock_irqrestore(&rq->lock, flags);
  1025. }
  1026. #ifdef CONFIG_NO_HZ
  1027. /*
  1028. * When add_timer_on() enqueues a timer into the timer wheel of an
  1029. * idle CPU then this timer might expire before the next timer event
  1030. * which is scheduled to wake up that CPU. In case of a completely
  1031. * idle system the next event might even be infinite time into the
  1032. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1033. * leaves the inner idle loop so the newly added timer is taken into
  1034. * account when the CPU goes back to idle and evaluates the timer
  1035. * wheel for the next timer event.
  1036. */
  1037. void wake_up_idle_cpu(int cpu)
  1038. {
  1039. struct rq *rq = cpu_rq(cpu);
  1040. if (cpu == smp_processor_id())
  1041. return;
  1042. /*
  1043. * This is safe, as this function is called with the timer
  1044. * wheel base lock of (cpu) held. When the CPU is on the way
  1045. * to idle and has not yet set rq->curr to idle then it will
  1046. * be serialized on the timer wheel base lock and take the new
  1047. * timer into account automatically.
  1048. */
  1049. if (rq->curr != rq->idle)
  1050. return;
  1051. /*
  1052. * We can set TIF_RESCHED on the idle task of the other CPU
  1053. * lockless. The worst case is that the other CPU runs the
  1054. * idle task through an additional NOOP schedule()
  1055. */
  1056. set_tsk_need_resched(rq->idle);
  1057. /* NEED_RESCHED must be visible before we test polling */
  1058. smp_mb();
  1059. if (!tsk_is_polling(rq->idle))
  1060. smp_send_reschedule(cpu);
  1061. }
  1062. #endif /* CONFIG_NO_HZ */
  1063. #else /* !CONFIG_SMP */
  1064. static void resched_task(struct task_struct *p)
  1065. {
  1066. assert_spin_locked(&task_rq(p)->lock);
  1067. set_tsk_need_resched(p);
  1068. }
  1069. #endif /* CONFIG_SMP */
  1070. #if BITS_PER_LONG == 32
  1071. # define WMULT_CONST (~0UL)
  1072. #else
  1073. # define WMULT_CONST (1UL << 32)
  1074. #endif
  1075. #define WMULT_SHIFT 32
  1076. /*
  1077. * Shift right and round:
  1078. */
  1079. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1080. /*
  1081. * delta *= weight / lw
  1082. */
  1083. static unsigned long
  1084. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1085. struct load_weight *lw)
  1086. {
  1087. u64 tmp;
  1088. if (!lw->inv_weight) {
  1089. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1090. lw->inv_weight = 1;
  1091. else
  1092. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1093. / (lw->weight+1);
  1094. }
  1095. tmp = (u64)delta_exec * weight;
  1096. /*
  1097. * Check whether we'd overflow the 64-bit multiplication:
  1098. */
  1099. if (unlikely(tmp > WMULT_CONST))
  1100. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1101. WMULT_SHIFT/2);
  1102. else
  1103. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1104. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1105. }
  1106. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1107. {
  1108. lw->weight += inc;
  1109. lw->inv_weight = 0;
  1110. }
  1111. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1112. {
  1113. lw->weight -= dec;
  1114. lw->inv_weight = 0;
  1115. }
  1116. /*
  1117. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1118. * of tasks with abnormal "nice" values across CPUs the contribution that
  1119. * each task makes to its run queue's load is weighted according to its
  1120. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1121. * scaled version of the new time slice allocation that they receive on time
  1122. * slice expiry etc.
  1123. */
  1124. #define WEIGHT_IDLEPRIO 3
  1125. #define WMULT_IDLEPRIO 1431655765
  1126. /*
  1127. * Nice levels are multiplicative, with a gentle 10% change for every
  1128. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1129. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1130. * that remained on nice 0.
  1131. *
  1132. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1133. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1134. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1135. * If a task goes up by ~10% and another task goes down by ~10% then
  1136. * the relative distance between them is ~25%.)
  1137. */
  1138. static const int prio_to_weight[40] = {
  1139. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1140. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1141. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1142. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1143. /* 0 */ 1024, 820, 655, 526, 423,
  1144. /* 5 */ 335, 272, 215, 172, 137,
  1145. /* 10 */ 110, 87, 70, 56, 45,
  1146. /* 15 */ 36, 29, 23, 18, 15,
  1147. };
  1148. /*
  1149. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1150. *
  1151. * In cases where the weight does not change often, we can use the
  1152. * precalculated inverse to speed up arithmetics by turning divisions
  1153. * into multiplications:
  1154. */
  1155. static const u32 prio_to_wmult[40] = {
  1156. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1157. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1158. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1159. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1160. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1161. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1162. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1163. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1164. };
  1165. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  1166. /*
  1167. * runqueue iterator, to support SMP load-balancing between different
  1168. * scheduling classes, without having to expose their internal data
  1169. * structures to the load-balancing proper:
  1170. */
  1171. struct rq_iterator {
  1172. void *arg;
  1173. struct task_struct *(*start)(void *);
  1174. struct task_struct *(*next)(void *);
  1175. };
  1176. #ifdef CONFIG_SMP
  1177. static unsigned long
  1178. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1179. unsigned long max_load_move, struct sched_domain *sd,
  1180. enum cpu_idle_type idle, int *all_pinned,
  1181. int *this_best_prio, struct rq_iterator *iterator);
  1182. static int
  1183. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1184. struct sched_domain *sd, enum cpu_idle_type idle,
  1185. struct rq_iterator *iterator);
  1186. #endif
  1187. #ifdef CONFIG_CGROUP_CPUACCT
  1188. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1189. #else
  1190. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1191. #endif
  1192. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1193. {
  1194. update_load_add(&rq->load, load);
  1195. }
  1196. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1197. {
  1198. update_load_sub(&rq->load, load);
  1199. }
  1200. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1201. typedef int (*tg_visitor)(struct task_group *, void *);
  1202. /*
  1203. * Iterate the full tree, calling @down when first entering a node and @up when
  1204. * leaving it for the final time.
  1205. */
  1206. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1207. {
  1208. struct task_group *parent, *child;
  1209. int ret;
  1210. rcu_read_lock();
  1211. parent = &root_task_group;
  1212. down:
  1213. ret = (*down)(parent, data);
  1214. if (ret)
  1215. goto out_unlock;
  1216. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1217. parent = child;
  1218. goto down;
  1219. up:
  1220. continue;
  1221. }
  1222. ret = (*up)(parent, data);
  1223. if (ret)
  1224. goto out_unlock;
  1225. child = parent;
  1226. parent = parent->parent;
  1227. if (parent)
  1228. goto up;
  1229. out_unlock:
  1230. rcu_read_unlock();
  1231. return ret;
  1232. }
  1233. static int tg_nop(struct task_group *tg, void *data)
  1234. {
  1235. return 0;
  1236. }
  1237. #endif
  1238. #ifdef CONFIG_SMP
  1239. static unsigned long source_load(int cpu, int type);
  1240. static unsigned long target_load(int cpu, int type);
  1241. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1242. static unsigned long cpu_avg_load_per_task(int cpu)
  1243. {
  1244. struct rq *rq = cpu_rq(cpu);
  1245. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1246. if (nr_running)
  1247. rq->avg_load_per_task = rq->load.weight / nr_running;
  1248. else
  1249. rq->avg_load_per_task = 0;
  1250. return rq->avg_load_per_task;
  1251. }
  1252. #ifdef CONFIG_FAIR_GROUP_SCHED
  1253. static void __set_se_shares(struct sched_entity *se, unsigned long shares);
  1254. /*
  1255. * Calculate and set the cpu's group shares.
  1256. */
  1257. static void
  1258. update_group_shares_cpu(struct task_group *tg, int cpu,
  1259. unsigned long sd_shares, unsigned long sd_rq_weight)
  1260. {
  1261. unsigned long shares;
  1262. unsigned long rq_weight;
  1263. if (!tg->se[cpu])
  1264. return;
  1265. rq_weight = tg->cfs_rq[cpu]->rq_weight;
  1266. /*
  1267. * \Sum shares * rq_weight
  1268. * shares = -----------------------
  1269. * \Sum rq_weight
  1270. *
  1271. */
  1272. shares = (sd_shares * rq_weight) / sd_rq_weight;
  1273. shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
  1274. if (abs(shares - tg->se[cpu]->load.weight) >
  1275. sysctl_sched_shares_thresh) {
  1276. struct rq *rq = cpu_rq(cpu);
  1277. unsigned long flags;
  1278. spin_lock_irqsave(&rq->lock, flags);
  1279. tg->cfs_rq[cpu]->shares = shares;
  1280. __set_se_shares(tg->se[cpu], shares);
  1281. spin_unlock_irqrestore(&rq->lock, flags);
  1282. }
  1283. }
  1284. /*
  1285. * Re-compute the task group their per cpu shares over the given domain.
  1286. * This needs to be done in a bottom-up fashion because the rq weight of a
  1287. * parent group depends on the shares of its child groups.
  1288. */
  1289. static int tg_shares_up(struct task_group *tg, void *data)
  1290. {
  1291. unsigned long weight, rq_weight = 0;
  1292. unsigned long shares = 0;
  1293. struct sched_domain *sd = data;
  1294. int i;
  1295. for_each_cpu(i, sched_domain_span(sd)) {
  1296. /*
  1297. * If there are currently no tasks on the cpu pretend there
  1298. * is one of average load so that when a new task gets to
  1299. * run here it will not get delayed by group starvation.
  1300. */
  1301. weight = tg->cfs_rq[i]->load.weight;
  1302. if (!weight)
  1303. weight = NICE_0_LOAD;
  1304. tg->cfs_rq[i]->rq_weight = weight;
  1305. rq_weight += weight;
  1306. shares += tg->cfs_rq[i]->shares;
  1307. }
  1308. if ((!shares && rq_weight) || shares > tg->shares)
  1309. shares = tg->shares;
  1310. if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
  1311. shares = tg->shares;
  1312. for_each_cpu(i, sched_domain_span(sd))
  1313. update_group_shares_cpu(tg, i, shares, rq_weight);
  1314. return 0;
  1315. }
  1316. /*
  1317. * Compute the cpu's hierarchical load factor for each task group.
  1318. * This needs to be done in a top-down fashion because the load of a child
  1319. * group is a fraction of its parents load.
  1320. */
  1321. static int tg_load_down(struct task_group *tg, void *data)
  1322. {
  1323. unsigned long load;
  1324. long cpu = (long)data;
  1325. if (!tg->parent) {
  1326. load = cpu_rq(cpu)->load.weight;
  1327. } else {
  1328. load = tg->parent->cfs_rq[cpu]->h_load;
  1329. load *= tg->cfs_rq[cpu]->shares;
  1330. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1331. }
  1332. tg->cfs_rq[cpu]->h_load = load;
  1333. return 0;
  1334. }
  1335. static void update_shares(struct sched_domain *sd)
  1336. {
  1337. u64 now = cpu_clock(raw_smp_processor_id());
  1338. s64 elapsed = now - sd->last_update;
  1339. if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
  1340. sd->last_update = now;
  1341. walk_tg_tree(tg_nop, tg_shares_up, sd);
  1342. }
  1343. }
  1344. static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1345. {
  1346. spin_unlock(&rq->lock);
  1347. update_shares(sd);
  1348. spin_lock(&rq->lock);
  1349. }
  1350. static void update_h_load(long cpu)
  1351. {
  1352. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1353. }
  1354. #else
  1355. static inline void update_shares(struct sched_domain *sd)
  1356. {
  1357. }
  1358. static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1359. {
  1360. }
  1361. #endif
  1362. #ifdef CONFIG_PREEMPT
  1363. /*
  1364. * fair double_lock_balance: Safely acquires both rq->locks in a fair
  1365. * way at the expense of forcing extra atomic operations in all
  1366. * invocations. This assures that the double_lock is acquired using the
  1367. * same underlying policy as the spinlock_t on this architecture, which
  1368. * reduces latency compared to the unfair variant below. However, it
  1369. * also adds more overhead and therefore may reduce throughput.
  1370. */
  1371. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1372. __releases(this_rq->lock)
  1373. __acquires(busiest->lock)
  1374. __acquires(this_rq->lock)
  1375. {
  1376. spin_unlock(&this_rq->lock);
  1377. double_rq_lock(this_rq, busiest);
  1378. return 1;
  1379. }
  1380. #else
  1381. /*
  1382. * Unfair double_lock_balance: Optimizes throughput at the expense of
  1383. * latency by eliminating extra atomic operations when the locks are
  1384. * already in proper order on entry. This favors lower cpu-ids and will
  1385. * grant the double lock to lower cpus over higher ids under contention,
  1386. * regardless of entry order into the function.
  1387. */
  1388. static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1389. __releases(this_rq->lock)
  1390. __acquires(busiest->lock)
  1391. __acquires(this_rq->lock)
  1392. {
  1393. int ret = 0;
  1394. if (unlikely(!spin_trylock(&busiest->lock))) {
  1395. if (busiest < this_rq) {
  1396. spin_unlock(&this_rq->lock);
  1397. spin_lock(&busiest->lock);
  1398. spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
  1399. ret = 1;
  1400. } else
  1401. spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
  1402. }
  1403. return ret;
  1404. }
  1405. #endif /* CONFIG_PREEMPT */
  1406. /*
  1407. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1408. */
  1409. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1410. {
  1411. if (unlikely(!irqs_disabled())) {
  1412. /* printk() doesn't work good under rq->lock */
  1413. spin_unlock(&this_rq->lock);
  1414. BUG_ON(1);
  1415. }
  1416. return _double_lock_balance(this_rq, busiest);
  1417. }
  1418. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1419. __releases(busiest->lock)
  1420. {
  1421. spin_unlock(&busiest->lock);
  1422. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1423. }
  1424. #endif
  1425. #ifdef CONFIG_FAIR_GROUP_SCHED
  1426. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1427. {
  1428. #ifdef CONFIG_SMP
  1429. cfs_rq->shares = shares;
  1430. #endif
  1431. }
  1432. #endif
  1433. #include "sched_stats.h"
  1434. #include "sched_idletask.c"
  1435. #include "sched_fair.c"
  1436. #include "sched_rt.c"
  1437. #ifdef CONFIG_SCHED_DEBUG
  1438. # include "sched_debug.c"
  1439. #endif
  1440. #define sched_class_highest (&rt_sched_class)
  1441. #define for_each_class(class) \
  1442. for (class = sched_class_highest; class; class = class->next)
  1443. static void inc_nr_running(struct rq *rq)
  1444. {
  1445. rq->nr_running++;
  1446. }
  1447. static void dec_nr_running(struct rq *rq)
  1448. {
  1449. rq->nr_running--;
  1450. }
  1451. static void set_load_weight(struct task_struct *p)
  1452. {
  1453. if (task_has_rt_policy(p)) {
  1454. p->se.load.weight = prio_to_weight[0] * 2;
  1455. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1456. return;
  1457. }
  1458. /*
  1459. * SCHED_IDLE tasks get minimal weight:
  1460. */
  1461. if (p->policy == SCHED_IDLE) {
  1462. p->se.load.weight = WEIGHT_IDLEPRIO;
  1463. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1464. return;
  1465. }
  1466. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1467. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1468. }
  1469. static void update_avg(u64 *avg, u64 sample)
  1470. {
  1471. s64 diff = sample - *avg;
  1472. *avg += diff >> 3;
  1473. }
  1474. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  1475. {
  1476. if (wakeup)
  1477. p->se.start_runtime = p->se.sum_exec_runtime;
  1478. sched_info_queued(p);
  1479. p->sched_class->enqueue_task(rq, p, wakeup);
  1480. p->se.on_rq = 1;
  1481. }
  1482. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  1483. {
  1484. if (sleep) {
  1485. if (p->se.last_wakeup) {
  1486. update_avg(&p->se.avg_overlap,
  1487. p->se.sum_exec_runtime - p->se.last_wakeup);
  1488. p->se.last_wakeup = 0;
  1489. } else {
  1490. update_avg(&p->se.avg_wakeup,
  1491. sysctl_sched_wakeup_granularity);
  1492. }
  1493. }
  1494. sched_info_dequeued(p);
  1495. p->sched_class->dequeue_task(rq, p, sleep);
  1496. p->se.on_rq = 0;
  1497. }
  1498. /*
  1499. * __normal_prio - return the priority that is based on the static prio
  1500. */
  1501. static inline int __normal_prio(struct task_struct *p)
  1502. {
  1503. return p->static_prio;
  1504. }
  1505. /*
  1506. * Calculate the expected normal priority: i.e. priority
  1507. * without taking RT-inheritance into account. Might be
  1508. * boosted by interactivity modifiers. Changes upon fork,
  1509. * setprio syscalls, and whenever the interactivity
  1510. * estimator recalculates.
  1511. */
  1512. static inline int normal_prio(struct task_struct *p)
  1513. {
  1514. int prio;
  1515. if (task_has_rt_policy(p))
  1516. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1517. else
  1518. prio = __normal_prio(p);
  1519. return prio;
  1520. }
  1521. /*
  1522. * Calculate the current priority, i.e. the priority
  1523. * taken into account by the scheduler. This value might
  1524. * be boosted by RT tasks, or might be boosted by
  1525. * interactivity modifiers. Will be RT if the task got
  1526. * RT-boosted. If not then it returns p->normal_prio.
  1527. */
  1528. static int effective_prio(struct task_struct *p)
  1529. {
  1530. p->normal_prio = normal_prio(p);
  1531. /*
  1532. * If we are RT tasks or we were boosted to RT priority,
  1533. * keep the priority unchanged. Otherwise, update priority
  1534. * to the normal priority:
  1535. */
  1536. if (!rt_prio(p->prio))
  1537. return p->normal_prio;
  1538. return p->prio;
  1539. }
  1540. /*
  1541. * activate_task - move a task to the runqueue.
  1542. */
  1543. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  1544. {
  1545. if (task_contributes_to_load(p))
  1546. rq->nr_uninterruptible--;
  1547. enqueue_task(rq, p, wakeup);
  1548. inc_nr_running(rq);
  1549. }
  1550. /*
  1551. * deactivate_task - remove a task from the runqueue.
  1552. */
  1553. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  1554. {
  1555. if (task_contributes_to_load(p))
  1556. rq->nr_uninterruptible++;
  1557. dequeue_task(rq, p, sleep);
  1558. dec_nr_running(rq);
  1559. }
  1560. /**
  1561. * task_curr - is this task currently executing on a CPU?
  1562. * @p: the task in question.
  1563. */
  1564. inline int task_curr(const struct task_struct *p)
  1565. {
  1566. return cpu_curr(task_cpu(p)) == p;
  1567. }
  1568. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1569. {
  1570. set_task_rq(p, cpu);
  1571. #ifdef CONFIG_SMP
  1572. /*
  1573. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1574. * successfuly executed on another CPU. We must ensure that updates of
  1575. * per-task data have been completed by this moment.
  1576. */
  1577. smp_wmb();
  1578. task_thread_info(p)->cpu = cpu;
  1579. #endif
  1580. }
  1581. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1582. const struct sched_class *prev_class,
  1583. int oldprio, int running)
  1584. {
  1585. if (prev_class != p->sched_class) {
  1586. if (prev_class->switched_from)
  1587. prev_class->switched_from(rq, p, running);
  1588. p->sched_class->switched_to(rq, p, running);
  1589. } else
  1590. p->sched_class->prio_changed(rq, p, oldprio, running);
  1591. }
  1592. #ifdef CONFIG_SMP
  1593. /* Used instead of source_load when we know the type == 0 */
  1594. static unsigned long weighted_cpuload(const int cpu)
  1595. {
  1596. return cpu_rq(cpu)->load.weight;
  1597. }
  1598. /*
  1599. * Is this task likely cache-hot:
  1600. */
  1601. static int
  1602. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1603. {
  1604. s64 delta;
  1605. /*
  1606. * Buddy candidates are cache hot:
  1607. */
  1608. if (sched_feat(CACHE_HOT_BUDDY) &&
  1609. (&p->se == cfs_rq_of(&p->se)->next ||
  1610. &p->se == cfs_rq_of(&p->se)->last))
  1611. return 1;
  1612. if (p->sched_class != &fair_sched_class)
  1613. return 0;
  1614. if (sysctl_sched_migration_cost == -1)
  1615. return 1;
  1616. if (sysctl_sched_migration_cost == 0)
  1617. return 0;
  1618. delta = now - p->se.exec_start;
  1619. return delta < (s64)sysctl_sched_migration_cost;
  1620. }
  1621. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1622. {
  1623. int old_cpu = task_cpu(p);
  1624. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  1625. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  1626. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  1627. u64 clock_offset;
  1628. clock_offset = old_rq->clock - new_rq->clock;
  1629. trace_sched_migrate_task(p, task_cpu(p), new_cpu);
  1630. #ifdef CONFIG_SCHEDSTATS
  1631. if (p->se.wait_start)
  1632. p->se.wait_start -= clock_offset;
  1633. if (p->se.sleep_start)
  1634. p->se.sleep_start -= clock_offset;
  1635. if (p->se.block_start)
  1636. p->se.block_start -= clock_offset;
  1637. if (old_cpu != new_cpu) {
  1638. schedstat_inc(p, se.nr_migrations);
  1639. if (task_hot(p, old_rq->clock, NULL))
  1640. schedstat_inc(p, se.nr_forced2_migrations);
  1641. }
  1642. #endif
  1643. p->se.vruntime -= old_cfsrq->min_vruntime -
  1644. new_cfsrq->min_vruntime;
  1645. __set_task_cpu(p, new_cpu);
  1646. }
  1647. struct migration_req {
  1648. struct list_head list;
  1649. struct task_struct *task;
  1650. int dest_cpu;
  1651. struct completion done;
  1652. };
  1653. /*
  1654. * The task's runqueue lock must be held.
  1655. * Returns true if you have to wait for migration thread.
  1656. */
  1657. static int
  1658. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1659. {
  1660. struct rq *rq = task_rq(p);
  1661. /*
  1662. * If the task is not on a runqueue (and not running), then
  1663. * it is sufficient to simply update the task's cpu field.
  1664. */
  1665. if (!p->se.on_rq && !task_running(rq, p)) {
  1666. set_task_cpu(p, dest_cpu);
  1667. return 0;
  1668. }
  1669. init_completion(&req->done);
  1670. req->task = p;
  1671. req->dest_cpu = dest_cpu;
  1672. list_add(&req->list, &rq->migration_queue);
  1673. return 1;
  1674. }
  1675. /*
  1676. * wait_task_inactive - wait for a thread to unschedule.
  1677. *
  1678. * If @match_state is nonzero, it's the @p->state value just checked and
  1679. * not expected to change. If it changes, i.e. @p might have woken up,
  1680. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1681. * we return a positive number (its total switch count). If a second call
  1682. * a short while later returns the same number, the caller can be sure that
  1683. * @p has remained unscheduled the whole time.
  1684. *
  1685. * The caller must ensure that the task *will* unschedule sometime soon,
  1686. * else this function might spin for a *long* time. This function can't
  1687. * be called with interrupts off, or it may introduce deadlock with
  1688. * smp_call_function() if an IPI is sent by the same process we are
  1689. * waiting to become inactive.
  1690. */
  1691. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1692. {
  1693. unsigned long flags;
  1694. int running, on_rq;
  1695. unsigned long ncsw;
  1696. struct rq *rq;
  1697. for (;;) {
  1698. /*
  1699. * We do the initial early heuristics without holding
  1700. * any task-queue locks at all. We'll only try to get
  1701. * the runqueue lock when things look like they will
  1702. * work out!
  1703. */
  1704. rq = task_rq(p);
  1705. /*
  1706. * If the task is actively running on another CPU
  1707. * still, just relax and busy-wait without holding
  1708. * any locks.
  1709. *
  1710. * NOTE! Since we don't hold any locks, it's not
  1711. * even sure that "rq" stays as the right runqueue!
  1712. * But we don't care, since "task_running()" will
  1713. * return false if the runqueue has changed and p
  1714. * is actually now running somewhere else!
  1715. */
  1716. while (task_running(rq, p)) {
  1717. if (match_state && unlikely(p->state != match_state))
  1718. return 0;
  1719. cpu_relax();
  1720. }
  1721. /*
  1722. * Ok, time to look more closely! We need the rq
  1723. * lock now, to be *sure*. If we're wrong, we'll
  1724. * just go back and repeat.
  1725. */
  1726. rq = task_rq_lock(p, &flags);
  1727. trace_sched_wait_task(rq, p);
  1728. running = task_running(rq, p);
  1729. on_rq = p->se.on_rq;
  1730. ncsw = 0;
  1731. if (!match_state || p->state == match_state)
  1732. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1733. task_rq_unlock(rq, &flags);
  1734. /*
  1735. * If it changed from the expected state, bail out now.
  1736. */
  1737. if (unlikely(!ncsw))
  1738. break;
  1739. /*
  1740. * Was it really running after all now that we
  1741. * checked with the proper locks actually held?
  1742. *
  1743. * Oops. Go back and try again..
  1744. */
  1745. if (unlikely(running)) {
  1746. cpu_relax();
  1747. continue;
  1748. }
  1749. /*
  1750. * It's not enough that it's not actively running,
  1751. * it must be off the runqueue _entirely_, and not
  1752. * preempted!
  1753. *
  1754. * So if it was still runnable (but just not actively
  1755. * running right now), it's preempted, and we should
  1756. * yield - it could be a while.
  1757. */
  1758. if (unlikely(on_rq)) {
  1759. schedule_timeout_uninterruptible(1);
  1760. continue;
  1761. }
  1762. /*
  1763. * Ahh, all good. It wasn't running, and it wasn't
  1764. * runnable, which means that it will never become
  1765. * running in the future either. We're all done!
  1766. */
  1767. break;
  1768. }
  1769. return ncsw;
  1770. }
  1771. /***
  1772. * kick_process - kick a running thread to enter/exit the kernel
  1773. * @p: the to-be-kicked thread
  1774. *
  1775. * Cause a process which is running on another CPU to enter
  1776. * kernel-mode, without any delay. (to get signals handled.)
  1777. *
  1778. * NOTE: this function doesnt have to take the runqueue lock,
  1779. * because all it wants to ensure is that the remote task enters
  1780. * the kernel. If the IPI races and the task has been migrated
  1781. * to another CPU then no harm is done and the purpose has been
  1782. * achieved as well.
  1783. */
  1784. void kick_process(struct task_struct *p)
  1785. {
  1786. int cpu;
  1787. preempt_disable();
  1788. cpu = task_cpu(p);
  1789. if ((cpu != smp_processor_id()) && task_curr(p))
  1790. smp_send_reschedule(cpu);
  1791. preempt_enable();
  1792. }
  1793. /*
  1794. * Return a low guess at the load of a migration-source cpu weighted
  1795. * according to the scheduling class and "nice" value.
  1796. *
  1797. * We want to under-estimate the load of migration sources, to
  1798. * balance conservatively.
  1799. */
  1800. static unsigned long source_load(int cpu, int type)
  1801. {
  1802. struct rq *rq = cpu_rq(cpu);
  1803. unsigned long total = weighted_cpuload(cpu);
  1804. if (type == 0 || !sched_feat(LB_BIAS))
  1805. return total;
  1806. return min(rq->cpu_load[type-1], total);
  1807. }
  1808. /*
  1809. * Return a high guess at the load of a migration-target cpu weighted
  1810. * according to the scheduling class and "nice" value.
  1811. */
  1812. static unsigned long target_load(int cpu, int type)
  1813. {
  1814. struct rq *rq = cpu_rq(cpu);
  1815. unsigned long total = weighted_cpuload(cpu);
  1816. if (type == 0 || !sched_feat(LB_BIAS))
  1817. return total;
  1818. return max(rq->cpu_load[type-1], total);
  1819. }
  1820. /*
  1821. * find_idlest_group finds and returns the least busy CPU group within the
  1822. * domain.
  1823. */
  1824. static struct sched_group *
  1825. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1826. {
  1827. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1828. unsigned long min_load = ULONG_MAX, this_load = 0;
  1829. int load_idx = sd->forkexec_idx;
  1830. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1831. do {
  1832. unsigned long load, avg_load;
  1833. int local_group;
  1834. int i;
  1835. /* Skip over this group if it has no CPUs allowed */
  1836. if (!cpumask_intersects(sched_group_cpus(group),
  1837. &p->cpus_allowed))
  1838. continue;
  1839. local_group = cpumask_test_cpu(this_cpu,
  1840. sched_group_cpus(group));
  1841. /* Tally up the load of all CPUs in the group */
  1842. avg_load = 0;
  1843. for_each_cpu(i, sched_group_cpus(group)) {
  1844. /* Bias balancing toward cpus of our domain */
  1845. if (local_group)
  1846. load = source_load(i, load_idx);
  1847. else
  1848. load = target_load(i, load_idx);
  1849. avg_load += load;
  1850. }
  1851. /* Adjust by relative CPU power of the group */
  1852. avg_load = sg_div_cpu_power(group,
  1853. avg_load * SCHED_LOAD_SCALE);
  1854. if (local_group) {
  1855. this_load = avg_load;
  1856. this = group;
  1857. } else if (avg_load < min_load) {
  1858. min_load = avg_load;
  1859. idlest = group;
  1860. }
  1861. } while (group = group->next, group != sd->groups);
  1862. if (!idlest || 100*this_load < imbalance*min_load)
  1863. return NULL;
  1864. return idlest;
  1865. }
  1866. /*
  1867. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1868. */
  1869. static int
  1870. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1871. {
  1872. unsigned long load, min_load = ULONG_MAX;
  1873. int idlest = -1;
  1874. int i;
  1875. /* Traverse only the allowed CPUs */
  1876. for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
  1877. load = weighted_cpuload(i);
  1878. if (load < min_load || (load == min_load && i == this_cpu)) {
  1879. min_load = load;
  1880. idlest = i;
  1881. }
  1882. }
  1883. return idlest;
  1884. }
  1885. /*
  1886. * sched_balance_self: balance the current task (running on cpu) in domains
  1887. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1888. * SD_BALANCE_EXEC.
  1889. *
  1890. * Balance, ie. select the least loaded group.
  1891. *
  1892. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1893. *
  1894. * preempt must be disabled.
  1895. */
  1896. static int sched_balance_self(int cpu, int flag)
  1897. {
  1898. struct task_struct *t = current;
  1899. struct sched_domain *tmp, *sd = NULL;
  1900. for_each_domain(cpu, tmp) {
  1901. /*
  1902. * If power savings logic is enabled for a domain, stop there.
  1903. */
  1904. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1905. break;
  1906. if (tmp->flags & flag)
  1907. sd = tmp;
  1908. }
  1909. if (sd)
  1910. update_shares(sd);
  1911. while (sd) {
  1912. struct sched_group *group;
  1913. int new_cpu, weight;
  1914. if (!(sd->flags & flag)) {
  1915. sd = sd->child;
  1916. continue;
  1917. }
  1918. group = find_idlest_group(sd, t, cpu);
  1919. if (!group) {
  1920. sd = sd->child;
  1921. continue;
  1922. }
  1923. new_cpu = find_idlest_cpu(group, t, cpu);
  1924. if (new_cpu == -1 || new_cpu == cpu) {
  1925. /* Now try balancing at a lower domain level of cpu */
  1926. sd = sd->child;
  1927. continue;
  1928. }
  1929. /* Now try balancing at a lower domain level of new_cpu */
  1930. cpu = new_cpu;
  1931. weight = cpumask_weight(sched_domain_span(sd));
  1932. sd = NULL;
  1933. for_each_domain(cpu, tmp) {
  1934. if (weight <= cpumask_weight(sched_domain_span(tmp)))
  1935. break;
  1936. if (tmp->flags & flag)
  1937. sd = tmp;
  1938. }
  1939. /* while loop will break here if sd == NULL */
  1940. }
  1941. return cpu;
  1942. }
  1943. #endif /* CONFIG_SMP */
  1944. /***
  1945. * try_to_wake_up - wake up a thread
  1946. * @p: the to-be-woken-up thread
  1947. * @state: the mask of task states that can be woken
  1948. * @sync: do a synchronous wakeup?
  1949. *
  1950. * Put it on the run-queue if it's not already there. The "current"
  1951. * thread is always on the run-queue (except when the actual
  1952. * re-schedule is in progress), and as such you're allowed to do
  1953. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1954. * runnable without the overhead of this.
  1955. *
  1956. * returns failure only if the task is already active.
  1957. */
  1958. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1959. {
  1960. int cpu, orig_cpu, this_cpu, success = 0;
  1961. unsigned long flags;
  1962. long old_state;
  1963. struct rq *rq;
  1964. if (!sched_feat(SYNC_WAKEUPS))
  1965. sync = 0;
  1966. #ifdef CONFIG_SMP
  1967. if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
  1968. struct sched_domain *sd;
  1969. this_cpu = raw_smp_processor_id();
  1970. cpu = task_cpu(p);
  1971. for_each_domain(this_cpu, sd) {
  1972. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  1973. update_shares(sd);
  1974. break;
  1975. }
  1976. }
  1977. }
  1978. #endif
  1979. smp_wmb();
  1980. rq = task_rq_lock(p, &flags);
  1981. update_rq_clock(rq);
  1982. old_state = p->state;
  1983. if (!(old_state & state))
  1984. goto out;
  1985. if (p->se.on_rq)
  1986. goto out_running;
  1987. cpu = task_cpu(p);
  1988. orig_cpu = cpu;
  1989. this_cpu = smp_processor_id();
  1990. #ifdef CONFIG_SMP
  1991. if (unlikely(task_running(rq, p)))
  1992. goto out_activate;
  1993. cpu = p->sched_class->select_task_rq(p, sync);
  1994. if (cpu != orig_cpu) {
  1995. set_task_cpu(p, cpu);
  1996. task_rq_unlock(rq, &flags);
  1997. /* might preempt at this point */
  1998. rq = task_rq_lock(p, &flags);
  1999. old_state = p->state;
  2000. if (!(old_state & state))
  2001. goto out;
  2002. if (p->se.on_rq)
  2003. goto out_running;
  2004. this_cpu = smp_processor_id();
  2005. cpu = task_cpu(p);
  2006. }
  2007. #ifdef CONFIG_SCHEDSTATS
  2008. schedstat_inc(rq, ttwu_count);
  2009. if (cpu == this_cpu)
  2010. schedstat_inc(rq, ttwu_local);
  2011. else {
  2012. struct sched_domain *sd;
  2013. for_each_domain(this_cpu, sd) {
  2014. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  2015. schedstat_inc(sd, ttwu_wake_remote);
  2016. break;
  2017. }
  2018. }
  2019. }
  2020. #endif /* CONFIG_SCHEDSTATS */
  2021. out_activate:
  2022. #endif /* CONFIG_SMP */
  2023. schedstat_inc(p, se.nr_wakeups);
  2024. if (sync)
  2025. schedstat_inc(p, se.nr_wakeups_sync);
  2026. if (orig_cpu != cpu)
  2027. schedstat_inc(p, se.nr_wakeups_migrate);
  2028. if (cpu == this_cpu)
  2029. schedstat_inc(p, se.nr_wakeups_local);
  2030. else
  2031. schedstat_inc(p, se.nr_wakeups_remote);
  2032. activate_task(rq, p, 1);
  2033. success = 1;
  2034. /*
  2035. * Only attribute actual wakeups done by this task.
  2036. */
  2037. if (!in_interrupt()) {
  2038. struct sched_entity *se = &current->se;
  2039. u64 sample = se->sum_exec_runtime;
  2040. if (se->last_wakeup)
  2041. sample -= se->last_wakeup;
  2042. else
  2043. sample -= se->start_runtime;
  2044. update_avg(&se->avg_wakeup, sample);
  2045. se->last_wakeup = se->sum_exec_runtime;
  2046. }
  2047. out_running:
  2048. trace_sched_wakeup(rq, p, success);
  2049. check_preempt_curr(rq, p, sync);
  2050. p->state = TASK_RUNNING;
  2051. #ifdef CONFIG_SMP
  2052. if (p->sched_class->task_wake_up)
  2053. p->sched_class->task_wake_up(rq, p);
  2054. #endif
  2055. out:
  2056. task_rq_unlock(rq, &flags);
  2057. return success;
  2058. }
  2059. int wake_up_process(struct task_struct *p)
  2060. {
  2061. return try_to_wake_up(p, TASK_ALL, 0);
  2062. }
  2063. EXPORT_SYMBOL(wake_up_process);
  2064. int wake_up_state(struct task_struct *p, unsigned int state)
  2065. {
  2066. return try_to_wake_up(p, state, 0);
  2067. }
  2068. /*
  2069. * Perform scheduler related setup for a newly forked process p.
  2070. * p is forked by current.
  2071. *
  2072. * __sched_fork() is basic setup used by init_idle() too:
  2073. */
  2074. static void __sched_fork(struct task_struct *p)
  2075. {
  2076. p->se.exec_start = 0;
  2077. p->se.sum_exec_runtime = 0;
  2078. p->se.prev_sum_exec_runtime = 0;
  2079. p->se.last_wakeup = 0;
  2080. p->se.avg_overlap = 0;
  2081. p->se.start_runtime = 0;
  2082. p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
  2083. #ifdef CONFIG_SCHEDSTATS
  2084. p->se.wait_start = 0;
  2085. p->se.sum_sleep_runtime = 0;
  2086. p->se.sleep_start = 0;
  2087. p->se.block_start = 0;
  2088. p->se.sleep_max = 0;
  2089. p->se.block_max = 0;
  2090. p->se.exec_max = 0;
  2091. p->se.slice_max = 0;
  2092. p->se.wait_max = 0;
  2093. #endif
  2094. INIT_LIST_HEAD(&p->rt.run_list);
  2095. p->se.on_rq = 0;
  2096. INIT_LIST_HEAD(&p->se.group_node);
  2097. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2098. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2099. #endif
  2100. /*
  2101. * We mark the process as running here, but have not actually
  2102. * inserted it onto the runqueue yet. This guarantees that
  2103. * nobody will actually run it, and a signal or other external
  2104. * event cannot wake it up and insert it on the runqueue either.
  2105. */
  2106. p->state = TASK_RUNNING;
  2107. }
  2108. /*
  2109. * fork()/clone()-time setup:
  2110. */
  2111. void sched_fork(struct task_struct *p, int clone_flags)
  2112. {
  2113. int cpu = get_cpu();
  2114. __sched_fork(p);
  2115. #ifdef CONFIG_SMP
  2116. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  2117. #endif
  2118. set_task_cpu(p, cpu);
  2119. /*
  2120. * Make sure we do not leak PI boosting priority to the child:
  2121. */
  2122. p->prio = current->normal_prio;
  2123. if (!rt_prio(p->prio))
  2124. p->sched_class = &fair_sched_class;
  2125. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2126. if (likely(sched_info_on()))
  2127. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2128. #endif
  2129. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2130. p->oncpu = 0;
  2131. #endif
  2132. #ifdef CONFIG_PREEMPT
  2133. /* Want to start with kernel preemption disabled. */
  2134. task_thread_info(p)->preempt_count = 1;
  2135. #endif
  2136. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  2137. put_cpu();
  2138. }
  2139. /*
  2140. * wake_up_new_task - wake up a newly created task for the first time.
  2141. *
  2142. * This function will do some initial scheduler statistics housekeeping
  2143. * that must be done for every newly created context, then puts the task
  2144. * on the runqueue and wakes it.
  2145. */
  2146. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2147. {
  2148. unsigned long flags;
  2149. struct rq *rq;
  2150. rq = task_rq_lock(p, &flags);
  2151. BUG_ON(p->state != TASK_RUNNING);
  2152. update_rq_clock(rq);
  2153. p->prio = effective_prio(p);
  2154. if (!p->sched_class->task_new || !current->se.on_rq) {
  2155. activate_task(rq, p, 0);
  2156. } else {
  2157. /*
  2158. * Let the scheduling class do new task startup
  2159. * management (if any):
  2160. */
  2161. p->sched_class->task_new(rq, p);
  2162. inc_nr_running(rq);
  2163. }
  2164. trace_sched_wakeup_new(rq, p, 1);
  2165. check_preempt_curr(rq, p, 0);
  2166. #ifdef CONFIG_SMP
  2167. if (p->sched_class->task_wake_up)
  2168. p->sched_class->task_wake_up(rq, p);
  2169. #endif
  2170. task_rq_unlock(rq, &flags);
  2171. }
  2172. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2173. /**
  2174. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  2175. * @notifier: notifier struct to register
  2176. */
  2177. void preempt_notifier_register(struct preempt_notifier *notifier)
  2178. {
  2179. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2180. }
  2181. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2182. /**
  2183. * preempt_notifier_unregister - no longer interested in preemption notifications
  2184. * @notifier: notifier struct to unregister
  2185. *
  2186. * This is safe to call from within a preemption notifier.
  2187. */
  2188. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2189. {
  2190. hlist_del(&notifier->link);
  2191. }
  2192. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2193. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2194. {
  2195. struct preempt_notifier *notifier;
  2196. struct hlist_node *node;
  2197. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2198. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2199. }
  2200. static void
  2201. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2202. struct task_struct *next)
  2203. {
  2204. struct preempt_notifier *notifier;
  2205. struct hlist_node *node;
  2206. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2207. notifier->ops->sched_out(notifier, next);
  2208. }
  2209. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2210. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2211. {
  2212. }
  2213. static void
  2214. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2215. struct task_struct *next)
  2216. {
  2217. }
  2218. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2219. /**
  2220. * prepare_task_switch - prepare to switch tasks
  2221. * @rq: the runqueue preparing to switch
  2222. * @prev: the current task that is being switched out
  2223. * @next: the task we are going to switch to.
  2224. *
  2225. * This is called with the rq lock held and interrupts off. It must
  2226. * be paired with a subsequent finish_task_switch after the context
  2227. * switch.
  2228. *
  2229. * prepare_task_switch sets up locking and calls architecture specific
  2230. * hooks.
  2231. */
  2232. static inline void
  2233. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2234. struct task_struct *next)
  2235. {
  2236. fire_sched_out_preempt_notifiers(prev, next);
  2237. prepare_lock_switch(rq, next);
  2238. prepare_arch_switch(next);
  2239. }
  2240. /**
  2241. * finish_task_switch - clean up after a task-switch
  2242. * @rq: runqueue associated with task-switch
  2243. * @prev: the thread we just switched away from.
  2244. *
  2245. * finish_task_switch must be called after the context switch, paired
  2246. * with a prepare_task_switch call before the context switch.
  2247. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2248. * and do any other architecture-specific cleanup actions.
  2249. *
  2250. * Note that we may have delayed dropping an mm in context_switch(). If
  2251. * so, we finish that here outside of the runqueue lock. (Doing it
  2252. * with the lock held can cause deadlocks; see schedule() for
  2253. * details.)
  2254. */
  2255. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2256. __releases(rq->lock)
  2257. {
  2258. struct mm_struct *mm = rq->prev_mm;
  2259. long prev_state;
  2260. #ifdef CONFIG_SMP
  2261. int post_schedule = 0;
  2262. if (current->sched_class->needs_post_schedule)
  2263. post_schedule = current->sched_class->needs_post_schedule(rq);
  2264. #endif
  2265. rq->prev_mm = NULL;
  2266. /*
  2267. * A task struct has one reference for the use as "current".
  2268. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2269. * schedule one last time. The schedule call will never return, and
  2270. * the scheduled task must drop that reference.
  2271. * The test for TASK_DEAD must occur while the runqueue locks are
  2272. * still held, otherwise prev could be scheduled on another cpu, die
  2273. * there before we look at prev->state, and then the reference would
  2274. * be dropped twice.
  2275. * Manfred Spraul <manfred@colorfullife.com>
  2276. */
  2277. prev_state = prev->state;
  2278. finish_arch_switch(prev);
  2279. finish_lock_switch(rq, prev);
  2280. #ifdef CONFIG_SMP
  2281. if (post_schedule)
  2282. current->sched_class->post_schedule(rq);
  2283. #endif
  2284. fire_sched_in_preempt_notifiers(current);
  2285. if (mm)
  2286. mmdrop(mm);
  2287. if (unlikely(prev_state == TASK_DEAD)) {
  2288. /*
  2289. * Remove function-return probe instances associated with this
  2290. * task and put them back on the free list.
  2291. */
  2292. kprobe_flush_task(prev);
  2293. put_task_struct(prev);
  2294. }
  2295. }
  2296. /**
  2297. * schedule_tail - first thing a freshly forked thread must call.
  2298. * @prev: the thread we just switched away from.
  2299. */
  2300. asmlinkage void schedule_tail(struct task_struct *prev)
  2301. __releases(rq->lock)
  2302. {
  2303. struct rq *rq = this_rq();
  2304. finish_task_switch(rq, prev);
  2305. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2306. /* In this case, finish_task_switch does not reenable preemption */
  2307. preempt_enable();
  2308. #endif
  2309. if (current->set_child_tid)
  2310. put_user(task_pid_vnr(current), current->set_child_tid);
  2311. }
  2312. /*
  2313. * context_switch - switch to the new MM and the new
  2314. * thread's register state.
  2315. */
  2316. static inline void
  2317. context_switch(struct rq *rq, struct task_struct *prev,
  2318. struct task_struct *next)
  2319. {
  2320. struct mm_struct *mm, *oldmm;
  2321. prepare_task_switch(rq, prev, next);
  2322. trace_sched_switch(rq, prev, next);
  2323. mm = next->mm;
  2324. oldmm = prev->active_mm;
  2325. /*
  2326. * For paravirt, this is coupled with an exit in switch_to to
  2327. * combine the page table reload and the switch backend into
  2328. * one hypercall.
  2329. */
  2330. arch_enter_lazy_cpu_mode();
  2331. if (unlikely(!mm)) {
  2332. next->active_mm = oldmm;
  2333. atomic_inc(&oldmm->mm_count);
  2334. enter_lazy_tlb(oldmm, next);
  2335. } else
  2336. switch_mm(oldmm, mm, next);
  2337. if (unlikely(!prev->mm)) {
  2338. prev->active_mm = NULL;
  2339. rq->prev_mm = oldmm;
  2340. }
  2341. /*
  2342. * Since the runqueue lock will be released by the next
  2343. * task (which is an invalid locking op but in the case
  2344. * of the scheduler it's an obvious special-case), so we
  2345. * do an early lockdep release here:
  2346. */
  2347. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2348. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2349. #endif
  2350. /* Here we just switch the register state and the stack. */
  2351. switch_to(prev, next, prev);
  2352. barrier();
  2353. /*
  2354. * this_rq must be evaluated again because prev may have moved
  2355. * CPUs since it called schedule(), thus the 'rq' on its stack
  2356. * frame will be invalid.
  2357. */
  2358. finish_task_switch(this_rq(), prev);
  2359. }
  2360. /*
  2361. * nr_running, nr_uninterruptible and nr_context_switches:
  2362. *
  2363. * externally visible scheduler statistics: current number of runnable
  2364. * threads, current number of uninterruptible-sleeping threads, total
  2365. * number of context switches performed since bootup.
  2366. */
  2367. unsigned long nr_running(void)
  2368. {
  2369. unsigned long i, sum = 0;
  2370. for_each_online_cpu(i)
  2371. sum += cpu_rq(i)->nr_running;
  2372. return sum;
  2373. }
  2374. unsigned long nr_uninterruptible(void)
  2375. {
  2376. unsigned long i, sum = 0;
  2377. for_each_possible_cpu(i)
  2378. sum += cpu_rq(i)->nr_uninterruptible;
  2379. /*
  2380. * Since we read the counters lockless, it might be slightly
  2381. * inaccurate. Do not allow it to go below zero though:
  2382. */
  2383. if (unlikely((long)sum < 0))
  2384. sum = 0;
  2385. return sum;
  2386. }
  2387. unsigned long long nr_context_switches(void)
  2388. {
  2389. int i;
  2390. unsigned long long sum = 0;
  2391. for_each_possible_cpu(i)
  2392. sum += cpu_rq(i)->nr_switches;
  2393. return sum;
  2394. }
  2395. unsigned long nr_iowait(void)
  2396. {
  2397. unsigned long i, sum = 0;
  2398. for_each_possible_cpu(i)
  2399. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2400. return sum;
  2401. }
  2402. unsigned long nr_active(void)
  2403. {
  2404. unsigned long i, running = 0, uninterruptible = 0;
  2405. for_each_online_cpu(i) {
  2406. running += cpu_rq(i)->nr_running;
  2407. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  2408. }
  2409. if (unlikely((long)uninterruptible < 0))
  2410. uninterruptible = 0;
  2411. return running + uninterruptible;
  2412. }
  2413. /*
  2414. * Update rq->cpu_load[] statistics. This function is usually called every
  2415. * scheduler tick (TICK_NSEC).
  2416. */
  2417. static void update_cpu_load(struct rq *this_rq)
  2418. {
  2419. unsigned long this_load = this_rq->load.weight;
  2420. int i, scale;
  2421. this_rq->nr_load_updates++;
  2422. /* Update our load: */
  2423. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2424. unsigned long old_load, new_load;
  2425. /* scale is effectively 1 << i now, and >> i divides by scale */
  2426. old_load = this_rq->cpu_load[i];
  2427. new_load = this_load;
  2428. /*
  2429. * Round up the averaging division if load is increasing. This
  2430. * prevents us from getting stuck on 9 if the load is 10, for
  2431. * example.
  2432. */
  2433. if (new_load > old_load)
  2434. new_load += scale-1;
  2435. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2436. }
  2437. }
  2438. #ifdef CONFIG_SMP
  2439. /*
  2440. * double_rq_lock - safely lock two runqueues
  2441. *
  2442. * Note this does not disable interrupts like task_rq_lock,
  2443. * you need to do so manually before calling.
  2444. */
  2445. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  2446. __acquires(rq1->lock)
  2447. __acquires(rq2->lock)
  2448. {
  2449. BUG_ON(!irqs_disabled());
  2450. if (rq1 == rq2) {
  2451. spin_lock(&rq1->lock);
  2452. __acquire(rq2->lock); /* Fake it out ;) */
  2453. } else {
  2454. if (rq1 < rq2) {
  2455. spin_lock(&rq1->lock);
  2456. spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  2457. } else {
  2458. spin_lock(&rq2->lock);
  2459. spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  2460. }
  2461. }
  2462. update_rq_clock(rq1);
  2463. update_rq_clock(rq2);
  2464. }
  2465. /*
  2466. * double_rq_unlock - safely unlock two runqueues
  2467. *
  2468. * Note this does not restore interrupts like task_rq_unlock,
  2469. * you need to do so manually after calling.
  2470. */
  2471. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  2472. __releases(rq1->lock)
  2473. __releases(rq2->lock)
  2474. {
  2475. spin_unlock(&rq1->lock);
  2476. if (rq1 != rq2)
  2477. spin_unlock(&rq2->lock);
  2478. else
  2479. __release(rq2->lock);
  2480. }
  2481. /*
  2482. * If dest_cpu is allowed for this process, migrate the task to it.
  2483. * This is accomplished by forcing the cpu_allowed mask to only
  2484. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  2485. * the cpu_allowed mask is restored.
  2486. */
  2487. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  2488. {
  2489. struct migration_req req;
  2490. unsigned long flags;
  2491. struct rq *rq;
  2492. rq = task_rq_lock(p, &flags);
  2493. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
  2494. || unlikely(!cpu_active(dest_cpu)))
  2495. goto out;
  2496. /* force the process onto the specified CPU */
  2497. if (migrate_task(p, dest_cpu, &req)) {
  2498. /* Need to wait for migration thread (might exit: take ref). */
  2499. struct task_struct *mt = rq->migration_thread;
  2500. get_task_struct(mt);
  2501. task_rq_unlock(rq, &flags);
  2502. wake_up_process(mt);
  2503. put_task_struct(mt);
  2504. wait_for_completion(&req.done);
  2505. return;
  2506. }
  2507. out:
  2508. task_rq_unlock(rq, &flags);
  2509. }
  2510. /*
  2511. * sched_exec - execve() is a valuable balancing opportunity, because at
  2512. * this point the task has the smallest effective memory and cache footprint.
  2513. */
  2514. void sched_exec(void)
  2515. {
  2516. int new_cpu, this_cpu = get_cpu();
  2517. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  2518. put_cpu();
  2519. if (new_cpu != this_cpu)
  2520. sched_migrate_task(current, new_cpu);
  2521. }
  2522. /*
  2523. * pull_task - move a task from a remote runqueue to the local runqueue.
  2524. * Both runqueues must be locked.
  2525. */
  2526. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2527. struct rq *this_rq, int this_cpu)
  2528. {
  2529. deactivate_task(src_rq, p, 0);
  2530. set_task_cpu(p, this_cpu);
  2531. activate_task(this_rq, p, 0);
  2532. /*
  2533. * Note that idle threads have a prio of MAX_PRIO, for this test
  2534. * to be always true for them.
  2535. */
  2536. check_preempt_curr(this_rq, p, 0);
  2537. }
  2538. /*
  2539. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2540. */
  2541. static
  2542. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2543. struct sched_domain *sd, enum cpu_idle_type idle,
  2544. int *all_pinned)
  2545. {
  2546. int tsk_cache_hot = 0;
  2547. /*
  2548. * We do not migrate tasks that are:
  2549. * 1) running (obviously), or
  2550. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2551. * 3) are cache-hot on their current CPU.
  2552. */
  2553. if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
  2554. schedstat_inc(p, se.nr_failed_migrations_affine);
  2555. return 0;
  2556. }
  2557. *all_pinned = 0;
  2558. if (task_running(rq, p)) {
  2559. schedstat_inc(p, se.nr_failed_migrations_running);
  2560. return 0;
  2561. }
  2562. /*
  2563. * Aggressive migration if:
  2564. * 1) task is cache cold, or
  2565. * 2) too many balance attempts have failed.
  2566. */
  2567. tsk_cache_hot = task_hot(p, rq->clock, sd);
  2568. if (!tsk_cache_hot ||
  2569. sd->nr_balance_failed > sd->cache_nice_tries) {
  2570. #ifdef CONFIG_SCHEDSTATS
  2571. if (tsk_cache_hot) {
  2572. schedstat_inc(sd, lb_hot_gained[idle]);
  2573. schedstat_inc(p, se.nr_forced_migrations);
  2574. }
  2575. #endif
  2576. return 1;
  2577. }
  2578. if (tsk_cache_hot) {
  2579. schedstat_inc(p, se.nr_failed_migrations_hot);
  2580. return 0;
  2581. }
  2582. return 1;
  2583. }
  2584. static unsigned long
  2585. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2586. unsigned long max_load_move, struct sched_domain *sd,
  2587. enum cpu_idle_type idle, int *all_pinned,
  2588. int *this_best_prio, struct rq_iterator *iterator)
  2589. {
  2590. int loops = 0, pulled = 0, pinned = 0;
  2591. struct task_struct *p;
  2592. long rem_load_move = max_load_move;
  2593. if (max_load_move == 0)
  2594. goto out;
  2595. pinned = 1;
  2596. /*
  2597. * Start the load-balancing iterator:
  2598. */
  2599. p = iterator->start(iterator->arg);
  2600. next:
  2601. if (!p || loops++ > sysctl_sched_nr_migrate)
  2602. goto out;
  2603. if ((p->se.load.weight >> 1) > rem_load_move ||
  2604. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2605. p = iterator->next(iterator->arg);
  2606. goto next;
  2607. }
  2608. pull_task(busiest, p, this_rq, this_cpu);
  2609. pulled++;
  2610. rem_load_move -= p->se.load.weight;
  2611. #ifdef CONFIG_PREEMPT
  2612. /*
  2613. * NEWIDLE balancing is a source of latency, so preemptible kernels
  2614. * will stop after the first task is pulled to minimize the critical
  2615. * section.
  2616. */
  2617. if (idle == CPU_NEWLY_IDLE)
  2618. goto out;
  2619. #endif
  2620. /*
  2621. * We only want to steal up to the prescribed amount of weighted load.
  2622. */
  2623. if (rem_load_move > 0) {
  2624. if (p->prio < *this_best_prio)
  2625. *this_best_prio = p->prio;
  2626. p = iterator->next(iterator->arg);
  2627. goto next;
  2628. }
  2629. out:
  2630. /*
  2631. * Right now, this is one of only two places pull_task() is called,
  2632. * so we can safely collect pull_task() stats here rather than
  2633. * inside pull_task().
  2634. */
  2635. schedstat_add(sd, lb_gained[idle], pulled);
  2636. if (all_pinned)
  2637. *all_pinned = pinned;
  2638. return max_load_move - rem_load_move;
  2639. }
  2640. /*
  2641. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2642. * this_rq, as part of a balancing operation within domain "sd".
  2643. * Returns 1 if successful and 0 otherwise.
  2644. *
  2645. * Called with both runqueues locked.
  2646. */
  2647. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2648. unsigned long max_load_move,
  2649. struct sched_domain *sd, enum cpu_idle_type idle,
  2650. int *all_pinned)
  2651. {
  2652. const struct sched_class *class = sched_class_highest;
  2653. unsigned long total_load_moved = 0;
  2654. int this_best_prio = this_rq->curr->prio;
  2655. do {
  2656. total_load_moved +=
  2657. class->load_balance(this_rq, this_cpu, busiest,
  2658. max_load_move - total_load_moved,
  2659. sd, idle, all_pinned, &this_best_prio);
  2660. class = class->next;
  2661. #ifdef CONFIG_PREEMPT
  2662. /*
  2663. * NEWIDLE balancing is a source of latency, so preemptible
  2664. * kernels will stop after the first task is pulled to minimize
  2665. * the critical section.
  2666. */
  2667. if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
  2668. break;
  2669. #endif
  2670. } while (class && max_load_move > total_load_moved);
  2671. return total_load_moved > 0;
  2672. }
  2673. static int
  2674. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2675. struct sched_domain *sd, enum cpu_idle_type idle,
  2676. struct rq_iterator *iterator)
  2677. {
  2678. struct task_struct *p = iterator->start(iterator->arg);
  2679. int pinned = 0;
  2680. while (p) {
  2681. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2682. pull_task(busiest, p, this_rq, this_cpu);
  2683. /*
  2684. * Right now, this is only the second place pull_task()
  2685. * is called, so we can safely collect pull_task()
  2686. * stats here rather than inside pull_task().
  2687. */
  2688. schedstat_inc(sd, lb_gained[idle]);
  2689. return 1;
  2690. }
  2691. p = iterator->next(iterator->arg);
  2692. }
  2693. return 0;
  2694. }
  2695. /*
  2696. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2697. * part of active balancing operations within "domain".
  2698. * Returns 1 if successful and 0 otherwise.
  2699. *
  2700. * Called with both runqueues locked.
  2701. */
  2702. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2703. struct sched_domain *sd, enum cpu_idle_type idle)
  2704. {
  2705. const struct sched_class *class;
  2706. for (class = sched_class_highest; class; class = class->next)
  2707. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2708. return 1;
  2709. return 0;
  2710. }
  2711. /********** Helpers for find_busiest_group ************************/
  2712. /**
  2713. * sd_lb_stats - Structure to store the statistics of a sched_domain
  2714. * during load balancing.
  2715. */
  2716. struct sd_lb_stats {
  2717. struct sched_group *busiest; /* Busiest group in this sd */
  2718. struct sched_group *this; /* Local group in this sd */
  2719. unsigned long total_load; /* Total load of all groups in sd */
  2720. unsigned long total_pwr; /* Total power of all groups in sd */
  2721. unsigned long avg_load; /* Average load across all groups in sd */
  2722. /** Statistics of this group */
  2723. unsigned long this_load;
  2724. unsigned long this_load_per_task;
  2725. unsigned long this_nr_running;
  2726. /* Statistics of the busiest group */
  2727. unsigned long max_load;
  2728. unsigned long busiest_load_per_task;
  2729. unsigned long busiest_nr_running;
  2730. int group_imb; /* Is there imbalance in this sd */
  2731. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2732. int power_savings_balance; /* Is powersave balance needed for this sd */
  2733. struct sched_group *group_min; /* Least loaded group in sd */
  2734. struct sched_group *group_leader; /* Group which relieves group_min */
  2735. unsigned long min_load_per_task; /* load_per_task in group_min */
  2736. unsigned long leader_nr_running; /* Nr running of group_leader */
  2737. unsigned long min_nr_running; /* Nr running of group_min */
  2738. #endif
  2739. };
  2740. /**
  2741. * sg_lb_stats - stats of a sched_group required for load_balancing
  2742. */
  2743. struct sg_lb_stats {
  2744. unsigned long avg_load; /*Avg load across the CPUs of the group */
  2745. unsigned long group_load; /* Total load over the CPUs of the group */
  2746. unsigned long sum_nr_running; /* Nr tasks running in the group */
  2747. unsigned long sum_weighted_load; /* Weighted load of group's tasks */
  2748. unsigned long group_capacity;
  2749. int group_imb; /* Is there an imbalance in the group ? */
  2750. };
  2751. /**
  2752. * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
  2753. * @group: The group whose first cpu is to be returned.
  2754. */
  2755. static inline unsigned int group_first_cpu(struct sched_group *group)
  2756. {
  2757. return cpumask_first(sched_group_cpus(group));
  2758. }
  2759. /**
  2760. * get_sd_load_idx - Obtain the load index for a given sched domain.
  2761. * @sd: The sched_domain whose load_idx is to be obtained.
  2762. * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
  2763. */
  2764. static inline int get_sd_load_idx(struct sched_domain *sd,
  2765. enum cpu_idle_type idle)
  2766. {
  2767. int load_idx;
  2768. switch (idle) {
  2769. case CPU_NOT_IDLE:
  2770. load_idx = sd->busy_idx;
  2771. break;
  2772. case CPU_NEWLY_IDLE:
  2773. load_idx = sd->newidle_idx;
  2774. break;
  2775. default:
  2776. load_idx = sd->idle_idx;
  2777. break;
  2778. }
  2779. return load_idx;
  2780. }
  2781. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2782. /**
  2783. * init_sd_power_savings_stats - Initialize power savings statistics for
  2784. * the given sched_domain, during load balancing.
  2785. *
  2786. * @sd: Sched domain whose power-savings statistics are to be initialized.
  2787. * @sds: Variable containing the statistics for sd.
  2788. * @idle: Idle status of the CPU at which we're performing load-balancing.
  2789. */
  2790. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  2791. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  2792. {
  2793. /*
  2794. * Busy processors will not participate in power savings
  2795. * balance.
  2796. */
  2797. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2798. sds->power_savings_balance = 0;
  2799. else {
  2800. sds->power_savings_balance = 1;
  2801. sds->min_nr_running = ULONG_MAX;
  2802. sds->leader_nr_running = 0;
  2803. }
  2804. }
  2805. /**
  2806. * update_sd_power_savings_stats - Update the power saving stats for a
  2807. * sched_domain while performing load balancing.
  2808. *
  2809. * @group: sched_group belonging to the sched_domain under consideration.
  2810. * @sds: Variable containing the statistics of the sched_domain
  2811. * @local_group: Does group contain the CPU for which we're performing
  2812. * load balancing ?
  2813. * @sgs: Variable containing the statistics of the group.
  2814. */
  2815. static inline void update_sd_power_savings_stats(struct sched_group *group,
  2816. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  2817. {
  2818. if (!sds->power_savings_balance)
  2819. return;
  2820. /*
  2821. * If the local group is idle or completely loaded
  2822. * no need to do power savings balance at this domain
  2823. */
  2824. if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
  2825. !sds->this_nr_running))
  2826. sds->power_savings_balance = 0;
  2827. /*
  2828. * If a group is already running at full capacity or idle,
  2829. * don't include that group in power savings calculations
  2830. */
  2831. if (!sds->power_savings_balance ||
  2832. sgs->sum_nr_running >= sgs->group_capacity ||
  2833. !sgs->sum_nr_running)
  2834. return;
  2835. /*
  2836. * Calculate the group which has the least non-idle load.
  2837. * This is the group from where we need to pick up the load
  2838. * for saving power
  2839. */
  2840. if ((sgs->sum_nr_running < sds->min_nr_running) ||
  2841. (sgs->sum_nr_running == sds->min_nr_running &&
  2842. group_first_cpu(group) > group_first_cpu(sds->group_min))) {
  2843. sds->group_min = group;
  2844. sds->min_nr_running = sgs->sum_nr_running;
  2845. sds->min_load_per_task = sgs->sum_weighted_load /
  2846. sgs->sum_nr_running;
  2847. }
  2848. /*
  2849. * Calculate the group which is almost near its
  2850. * capacity but still has some space to pick up some load
  2851. * from other group and save more power
  2852. */
  2853. if (sgs->sum_nr_running > sgs->group_capacity - 1)
  2854. return;
  2855. if (sgs->sum_nr_running > sds->leader_nr_running ||
  2856. (sgs->sum_nr_running == sds->leader_nr_running &&
  2857. group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
  2858. sds->group_leader = group;
  2859. sds->leader_nr_running = sgs->sum_nr_running;
  2860. }
  2861. }
  2862. /**
  2863. * check_power_save_busiest_group - Check if we have potential to perform
  2864. * some power-savings balance. If yes, set the busiest group to be
  2865. * the least loaded group in the sched_domain, so that it's CPUs can
  2866. * be put to idle.
  2867. *
  2868. * @sds: Variable containing the statistics of the sched_domain
  2869. * under consideration.
  2870. * @this_cpu: Cpu at which we're currently performing load-balancing.
  2871. * @imbalance: Variable to store the imbalance.
  2872. *
  2873. * Returns 1 if there is potential to perform power-savings balance.
  2874. * Else returns 0.
  2875. */
  2876. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  2877. int this_cpu, unsigned long *imbalance)
  2878. {
  2879. if (!sds->power_savings_balance)
  2880. return 0;
  2881. if (sds->this != sds->group_leader ||
  2882. sds->group_leader == sds->group_min)
  2883. return 0;
  2884. *imbalance = sds->min_load_per_task;
  2885. sds->busiest = sds->group_min;
  2886. if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
  2887. cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
  2888. group_first_cpu(sds->group_leader);
  2889. }
  2890. return 1;
  2891. }
  2892. #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  2893. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  2894. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  2895. {
  2896. return;
  2897. }
  2898. static inline void update_sd_power_savings_stats(struct sched_group *group,
  2899. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  2900. {
  2901. return;
  2902. }
  2903. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  2904. int this_cpu, unsigned long *imbalance)
  2905. {
  2906. return 0;
  2907. }
  2908. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  2909. /**
  2910. * update_sg_lb_stats - Update sched_group's statistics for load balancing.
  2911. * @group: sched_group whose statistics are to be updated.
  2912. * @this_cpu: Cpu for which load balance is currently performed.
  2913. * @idle: Idle status of this_cpu
  2914. * @load_idx: Load index of sched_domain of this_cpu for load calc.
  2915. * @sd_idle: Idle status of the sched_domain containing group.
  2916. * @local_group: Does group contain this_cpu.
  2917. * @cpus: Set of cpus considered for load balancing.
  2918. * @balance: Should we balance.
  2919. * @sgs: variable to hold the statistics for this group.
  2920. */
  2921. static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu,
  2922. enum cpu_idle_type idle, int load_idx, int *sd_idle,
  2923. int local_group, const struct cpumask *cpus,
  2924. int *balance, struct sg_lb_stats *sgs)
  2925. {
  2926. unsigned long load, max_cpu_load, min_cpu_load;
  2927. int i;
  2928. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2929. unsigned long sum_avg_load_per_task;
  2930. unsigned long avg_load_per_task;
  2931. if (local_group)
  2932. balance_cpu = group_first_cpu(group);
  2933. /* Tally up the load of all CPUs in the group */
  2934. sum_avg_load_per_task = avg_load_per_task = 0;
  2935. max_cpu_load = 0;
  2936. min_cpu_load = ~0UL;
  2937. for_each_cpu_and(i, sched_group_cpus(group), cpus) {
  2938. struct rq *rq = cpu_rq(i);
  2939. if (*sd_idle && rq->nr_running)
  2940. *sd_idle = 0;
  2941. /* Bias balancing toward cpus of our domain */
  2942. if (local_group) {
  2943. if (idle_cpu(i) && !first_idle_cpu) {
  2944. first_idle_cpu = 1;
  2945. balance_cpu = i;
  2946. }
  2947. load = target_load(i, load_idx);
  2948. } else {
  2949. load = source_load(i, load_idx);
  2950. if (load > max_cpu_load)
  2951. max_cpu_load = load;
  2952. if (min_cpu_load > load)
  2953. min_cpu_load = load;
  2954. }
  2955. sgs->group_load += load;
  2956. sgs->sum_nr_running += rq->nr_running;
  2957. sgs->sum_weighted_load += weighted_cpuload(i);
  2958. sum_avg_load_per_task += cpu_avg_load_per_task(i);
  2959. }
  2960. /*
  2961. * First idle cpu or the first cpu(busiest) in this sched group
  2962. * is eligible for doing load balancing at this and above
  2963. * domains. In the newly idle case, we will allow all the cpu's
  2964. * to do the newly idle load balance.
  2965. */
  2966. if (idle != CPU_NEWLY_IDLE && local_group &&
  2967. balance_cpu != this_cpu && balance) {
  2968. *balance = 0;
  2969. return;
  2970. }
  2971. /* Adjust by relative CPU power of the group */
  2972. sgs->avg_load = sg_div_cpu_power(group,
  2973. sgs->group_load * SCHED_LOAD_SCALE);
  2974. /*
  2975. * Consider the group unbalanced when the imbalance is larger
  2976. * than the average weight of two tasks.
  2977. *
  2978. * APZ: with cgroup the avg task weight can vary wildly and
  2979. * might not be a suitable number - should we keep a
  2980. * normalized nr_running number somewhere that negates
  2981. * the hierarchy?
  2982. */
  2983. avg_load_per_task = sg_div_cpu_power(group,
  2984. sum_avg_load_per_task * SCHED_LOAD_SCALE);
  2985. if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
  2986. sgs->group_imb = 1;
  2987. sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  2988. }
  2989. /**
  2990. * update_sd_lb_stats - Update sched_group's statistics for load balancing.
  2991. * @sd: sched_domain whose statistics are to be updated.
  2992. * @this_cpu: Cpu for which load balance is currently performed.
  2993. * @idle: Idle status of this_cpu
  2994. * @sd_idle: Idle status of the sched_domain containing group.
  2995. * @cpus: Set of cpus considered for load balancing.
  2996. * @balance: Should we balance.
  2997. * @sds: variable to hold the statistics for this sched_domain.
  2998. */
  2999. static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
  3000. enum cpu_idle_type idle, int *sd_idle,
  3001. const struct cpumask *cpus, int *balance,
  3002. struct sd_lb_stats *sds)
  3003. {
  3004. struct sched_group *group = sd->groups;
  3005. struct sg_lb_stats sgs;
  3006. int load_idx;
  3007. init_sd_power_savings_stats(sd, sds, idle);
  3008. load_idx = get_sd_load_idx(sd, idle);
  3009. do {
  3010. int local_group;
  3011. local_group = cpumask_test_cpu(this_cpu,
  3012. sched_group_cpus(group));
  3013. memset(&sgs, 0, sizeof(sgs));
  3014. update_sg_lb_stats(group, this_cpu, idle, load_idx, sd_idle,
  3015. local_group, cpus, balance, &sgs);
  3016. if (local_group && balance && !(*balance))
  3017. return;
  3018. sds->total_load += sgs.group_load;
  3019. sds->total_pwr += group->__cpu_power;
  3020. if (local_group) {
  3021. sds->this_load = sgs.avg_load;
  3022. sds->this = group;
  3023. sds->this_nr_running = sgs.sum_nr_running;
  3024. sds->this_load_per_task = sgs.sum_weighted_load;
  3025. } else if (sgs.avg_load > sds->max_load &&
  3026. (sgs.sum_nr_running > sgs.group_capacity ||
  3027. sgs.group_imb)) {
  3028. sds->max_load = sgs.avg_load;
  3029. sds->busiest = group;
  3030. sds->busiest_nr_running = sgs.sum_nr_running;
  3031. sds->busiest_load_per_task = sgs.sum_weighted_load;
  3032. sds->group_imb = sgs.group_imb;
  3033. }
  3034. update_sd_power_savings_stats(group, sds, local_group, &sgs);
  3035. group = group->next;
  3036. } while (group != sd->groups);
  3037. }
  3038. /**
  3039. * fix_small_imbalance - Calculate the minor imbalance that exists
  3040. * amongst the groups of a sched_domain, during
  3041. * load balancing.
  3042. * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
  3043. * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
  3044. * @imbalance: Variable to store the imbalance.
  3045. */
  3046. static inline void fix_small_imbalance(struct sd_lb_stats *sds,
  3047. int this_cpu, unsigned long *imbalance)
  3048. {
  3049. unsigned long tmp, pwr_now = 0, pwr_move = 0;
  3050. unsigned int imbn = 2;
  3051. if (sds->this_nr_running) {
  3052. sds->this_load_per_task /= sds->this_nr_running;
  3053. if (sds->busiest_load_per_task >
  3054. sds->this_load_per_task)
  3055. imbn = 1;
  3056. } else
  3057. sds->this_load_per_task =
  3058. cpu_avg_load_per_task(this_cpu);
  3059. if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
  3060. sds->busiest_load_per_task * imbn) {
  3061. *imbalance = sds->busiest_load_per_task;
  3062. return;
  3063. }
  3064. /*
  3065. * OK, we don't have enough imbalance to justify moving tasks,
  3066. * however we may be able to increase total CPU power used by
  3067. * moving them.
  3068. */
  3069. pwr_now += sds->busiest->__cpu_power *
  3070. min(sds->busiest_load_per_task, sds->max_load);
  3071. pwr_now += sds->this->__cpu_power *
  3072. min(sds->this_load_per_task, sds->this_load);
  3073. pwr_now /= SCHED_LOAD_SCALE;
  3074. /* Amount of load we'd subtract */
  3075. tmp = sg_div_cpu_power(sds->busiest,
  3076. sds->busiest_load_per_task * SCHED_LOAD_SCALE);
  3077. if (sds->max_load > tmp)
  3078. pwr_move += sds->busiest->__cpu_power *
  3079. min(sds->busiest_load_per_task, sds->max_load - tmp);
  3080. /* Amount of load we'd add */
  3081. if (sds->max_load * sds->busiest->__cpu_power <
  3082. sds->busiest_load_per_task * SCHED_LOAD_SCALE)
  3083. tmp = sg_div_cpu_power(sds->this,
  3084. sds->max_load * sds->busiest->__cpu_power);
  3085. else
  3086. tmp = sg_div_cpu_power(sds->this,
  3087. sds->busiest_load_per_task * SCHED_LOAD_SCALE);
  3088. pwr_move += sds->this->__cpu_power *
  3089. min(sds->this_load_per_task, sds->this_load + tmp);
  3090. pwr_move /= SCHED_LOAD_SCALE;
  3091. /* Move if we gain throughput */
  3092. if (pwr_move > pwr_now)
  3093. *imbalance = sds->busiest_load_per_task;
  3094. }
  3095. /**
  3096. * calculate_imbalance - Calculate the amount of imbalance present within the
  3097. * groups of a given sched_domain during load balance.
  3098. * @sds: statistics of the sched_domain whose imbalance is to be calculated.
  3099. * @this_cpu: Cpu for which currently load balance is being performed.
  3100. * @imbalance: The variable to store the imbalance.
  3101. */
  3102. static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
  3103. unsigned long *imbalance)
  3104. {
  3105. unsigned long max_pull;
  3106. /*
  3107. * In the presence of smp nice balancing, certain scenarios can have
  3108. * max load less than avg load(as we skip the groups at or below
  3109. * its cpu_power, while calculating max_load..)
  3110. */
  3111. if (sds->max_load < sds->avg_load) {
  3112. *imbalance = 0;
  3113. return fix_small_imbalance(sds, this_cpu, imbalance);
  3114. }
  3115. /* Don't want to pull so many tasks that a group would go idle */
  3116. max_pull = min(sds->max_load - sds->avg_load,
  3117. sds->max_load - sds->busiest_load_per_task);
  3118. /* How much load to actually move to equalise the imbalance */
  3119. *imbalance = min(max_pull * sds->busiest->__cpu_power,
  3120. (sds->avg_load - sds->this_load) * sds->this->__cpu_power)
  3121. / SCHED_LOAD_SCALE;
  3122. /*
  3123. * if *imbalance is less than the average load per runnable task
  3124. * there is no gaurantee that any tasks will be moved so we'll have
  3125. * a think about bumping its value to force at least one task to be
  3126. * moved
  3127. */
  3128. if (*imbalance < sds->busiest_load_per_task)
  3129. return fix_small_imbalance(sds, this_cpu, imbalance);
  3130. }
  3131. /******* find_busiest_group() helpers end here *********************/
  3132. /**
  3133. * find_busiest_group - Returns the busiest group within the sched_domain
  3134. * if there is an imbalance. If there isn't an imbalance, and
  3135. * the user has opted for power-savings, it returns a group whose
  3136. * CPUs can be put to idle by rebalancing those tasks elsewhere, if
  3137. * such a group exists.
  3138. *
  3139. * Also calculates the amount of weighted load which should be moved
  3140. * to restore balance.
  3141. *
  3142. * @sd: The sched_domain whose busiest group is to be returned.
  3143. * @this_cpu: The cpu for which load balancing is currently being performed.
  3144. * @imbalance: Variable which stores amount of weighted load which should
  3145. * be moved to restore balance/put a group to idle.
  3146. * @idle: The idle status of this_cpu.
  3147. * @sd_idle: The idleness of sd
  3148. * @cpus: The set of CPUs under consideration for load-balancing.
  3149. * @balance: Pointer to a variable indicating if this_cpu
  3150. * is the appropriate cpu to perform load balancing at this_level.
  3151. *
  3152. * Returns: - the busiest group if imbalance exists.
  3153. * - If no imbalance and user has opted for power-savings balance,
  3154. * return the least loaded group whose CPUs can be
  3155. * put to idle by rebalancing its tasks onto our group.
  3156. */
  3157. static struct sched_group *
  3158. find_busiest_group(struct sched_domain *sd, int this_cpu,
  3159. unsigned long *imbalance, enum cpu_idle_type idle,
  3160. int *sd_idle, const struct cpumask *cpus, int *balance)
  3161. {
  3162. struct sd_lb_stats sds;
  3163. memset(&sds, 0, sizeof(sds));
  3164. /*
  3165. * Compute the various statistics relavent for load balancing at
  3166. * this level.
  3167. */
  3168. update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
  3169. balance, &sds);
  3170. /* Cases where imbalance does not exist from POV of this_cpu */
  3171. /* 1) this_cpu is not the appropriate cpu to perform load balancing
  3172. * at this level.
  3173. * 2) There is no busy sibling group to pull from.
  3174. * 3) This group is the busiest group.
  3175. * 4) This group is more busy than the avg busieness at this
  3176. * sched_domain.
  3177. * 5) The imbalance is within the specified limit.
  3178. * 6) Any rebalance would lead to ping-pong
  3179. */
  3180. if (balance && !(*balance))
  3181. goto ret;
  3182. if (!sds.busiest || sds.busiest_nr_running == 0)
  3183. goto out_balanced;
  3184. if (sds.this_load >= sds.max_load)
  3185. goto out_balanced;
  3186. sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
  3187. if (sds.this_load >= sds.avg_load)
  3188. goto out_balanced;
  3189. if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
  3190. goto out_balanced;
  3191. sds.busiest_load_per_task /= sds.busiest_nr_running;
  3192. if (sds.group_imb)
  3193. sds.busiest_load_per_task =
  3194. min(sds.busiest_load_per_task, sds.avg_load);
  3195. /*
  3196. * We're trying to get all the cpus to the average_load, so we don't
  3197. * want to push ourselves above the average load, nor do we wish to
  3198. * reduce the max loaded cpu below the average load, as either of these
  3199. * actions would just result in more rebalancing later, and ping-pong
  3200. * tasks around. Thus we look for the minimum possible imbalance.
  3201. * Negative imbalances (*we* are more loaded than anyone else) will
  3202. * be counted as no imbalance for these purposes -- we can't fix that
  3203. * by pulling tasks to us. Be careful of negative numbers as they'll
  3204. * appear as very large values with unsigned longs.
  3205. */
  3206. if (sds.max_load <= sds.busiest_load_per_task)
  3207. goto out_balanced;
  3208. /* Looks like there is an imbalance. Compute it */
  3209. calculate_imbalance(&sds, this_cpu, imbalance);
  3210. return sds.busiest;
  3211. out_balanced:
  3212. /*
  3213. * There is no obvious imbalance. But check if we can do some balancing
  3214. * to save power.
  3215. */
  3216. if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
  3217. return sds.busiest;
  3218. ret:
  3219. *imbalance = 0;
  3220. return NULL;
  3221. }
  3222. /*
  3223. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  3224. */
  3225. static struct rq *
  3226. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  3227. unsigned long imbalance, const struct cpumask *cpus)
  3228. {
  3229. struct rq *busiest = NULL, *rq;
  3230. unsigned long max_load = 0;
  3231. int i;
  3232. for_each_cpu(i, sched_group_cpus(group)) {
  3233. unsigned long wl;
  3234. if (!cpumask_test_cpu(i, cpus))
  3235. continue;
  3236. rq = cpu_rq(i);
  3237. wl = weighted_cpuload(i);
  3238. if (rq->nr_running == 1 && wl > imbalance)
  3239. continue;
  3240. if (wl > max_load) {
  3241. max_load = wl;
  3242. busiest = rq;
  3243. }
  3244. }
  3245. return busiest;
  3246. }
  3247. /*
  3248. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  3249. * so long as it is large enough.
  3250. */
  3251. #define MAX_PINNED_INTERVAL 512
  3252. /*
  3253. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3254. * tasks if there is an imbalance.
  3255. */
  3256. static int load_balance(int this_cpu, struct rq *this_rq,
  3257. struct sched_domain *sd, enum cpu_idle_type idle,
  3258. int *balance, struct cpumask *cpus)
  3259. {
  3260. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  3261. struct sched_group *group;
  3262. unsigned long imbalance;
  3263. struct rq *busiest;
  3264. unsigned long flags;
  3265. cpumask_setall(cpus);
  3266. /*
  3267. * When power savings policy is enabled for the parent domain, idle
  3268. * sibling can pick up load irrespective of busy siblings. In this case,
  3269. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  3270. * portraying it as CPU_NOT_IDLE.
  3271. */
  3272. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  3273. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3274. sd_idle = 1;
  3275. schedstat_inc(sd, lb_count[idle]);
  3276. redo:
  3277. update_shares(sd);
  3278. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  3279. cpus, balance);
  3280. if (*balance == 0)
  3281. goto out_balanced;
  3282. if (!group) {
  3283. schedstat_inc(sd, lb_nobusyg[idle]);
  3284. goto out_balanced;
  3285. }
  3286. busiest = find_busiest_queue(group, idle, imbalance, cpus);
  3287. if (!busiest) {
  3288. schedstat_inc(sd, lb_nobusyq[idle]);
  3289. goto out_balanced;
  3290. }
  3291. BUG_ON(busiest == this_rq);
  3292. schedstat_add(sd, lb_imbalance[idle], imbalance);
  3293. ld_moved = 0;
  3294. if (busiest->nr_running > 1) {
  3295. /*
  3296. * Attempt to move tasks. If find_busiest_group has found
  3297. * an imbalance but busiest->nr_running <= 1, the group is
  3298. * still unbalanced. ld_moved simply stays zero, so it is
  3299. * correctly treated as an imbalance.
  3300. */
  3301. local_irq_save(flags);
  3302. double_rq_lock(this_rq, busiest);
  3303. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3304. imbalance, sd, idle, &all_pinned);
  3305. double_rq_unlock(this_rq, busiest);
  3306. local_irq_restore(flags);
  3307. /*
  3308. * some other cpu did the load balance for us.
  3309. */
  3310. if (ld_moved && this_cpu != smp_processor_id())
  3311. resched_cpu(this_cpu);
  3312. /* All tasks on this runqueue were pinned by CPU affinity */
  3313. if (unlikely(all_pinned)) {
  3314. cpumask_clear_cpu(cpu_of(busiest), cpus);
  3315. if (!cpumask_empty(cpus))
  3316. goto redo;
  3317. goto out_balanced;
  3318. }
  3319. }
  3320. if (!ld_moved) {
  3321. schedstat_inc(sd, lb_failed[idle]);
  3322. sd->nr_balance_failed++;
  3323. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  3324. spin_lock_irqsave(&busiest->lock, flags);
  3325. /* don't kick the migration_thread, if the curr
  3326. * task on busiest cpu can't be moved to this_cpu
  3327. */
  3328. if (!cpumask_test_cpu(this_cpu,
  3329. &busiest->curr->cpus_allowed)) {
  3330. spin_unlock_irqrestore(&busiest->lock, flags);
  3331. all_pinned = 1;
  3332. goto out_one_pinned;
  3333. }
  3334. if (!busiest->active_balance) {
  3335. busiest->active_balance = 1;
  3336. busiest->push_cpu = this_cpu;
  3337. active_balance = 1;
  3338. }
  3339. spin_unlock_irqrestore(&busiest->lock, flags);
  3340. if (active_balance)
  3341. wake_up_process(busiest->migration_thread);
  3342. /*
  3343. * We've kicked active balancing, reset the failure
  3344. * counter.
  3345. */
  3346. sd->nr_balance_failed = sd->cache_nice_tries+1;
  3347. }
  3348. } else
  3349. sd->nr_balance_failed = 0;
  3350. if (likely(!active_balance)) {
  3351. /* We were unbalanced, so reset the balancing interval */
  3352. sd->balance_interval = sd->min_interval;
  3353. } else {
  3354. /*
  3355. * If we've begun active balancing, start to back off. This
  3356. * case may not be covered by the all_pinned logic if there
  3357. * is only 1 task on the busy runqueue (because we don't call
  3358. * move_tasks).
  3359. */
  3360. if (sd->balance_interval < sd->max_interval)
  3361. sd->balance_interval *= 2;
  3362. }
  3363. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3364. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3365. ld_moved = -1;
  3366. goto out;
  3367. out_balanced:
  3368. schedstat_inc(sd, lb_balanced[idle]);
  3369. sd->nr_balance_failed = 0;
  3370. out_one_pinned:
  3371. /* tune up the balancing interval */
  3372. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  3373. (sd->balance_interval < sd->max_interval))
  3374. sd->balance_interval *= 2;
  3375. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3376. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3377. ld_moved = -1;
  3378. else
  3379. ld_moved = 0;
  3380. out:
  3381. if (ld_moved)
  3382. update_shares(sd);
  3383. return ld_moved;
  3384. }
  3385. /*
  3386. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3387. * tasks if there is an imbalance.
  3388. *
  3389. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  3390. * this_rq is locked.
  3391. */
  3392. static int
  3393. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
  3394. struct cpumask *cpus)
  3395. {
  3396. struct sched_group *group;
  3397. struct rq *busiest = NULL;
  3398. unsigned long imbalance;
  3399. int ld_moved = 0;
  3400. int sd_idle = 0;
  3401. int all_pinned = 0;
  3402. cpumask_setall(cpus);
  3403. /*
  3404. * When power savings policy is enabled for the parent domain, idle
  3405. * sibling can pick up load irrespective of busy siblings. In this case,
  3406. * let the state of idle sibling percolate up as IDLE, instead of
  3407. * portraying it as CPU_NOT_IDLE.
  3408. */
  3409. if (sd->flags & SD_SHARE_CPUPOWER &&
  3410. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3411. sd_idle = 1;
  3412. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  3413. redo:
  3414. update_shares_locked(this_rq, sd);
  3415. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  3416. &sd_idle, cpus, NULL);
  3417. if (!group) {
  3418. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  3419. goto out_balanced;
  3420. }
  3421. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
  3422. if (!busiest) {
  3423. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  3424. goto out_balanced;
  3425. }
  3426. BUG_ON(busiest == this_rq);
  3427. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  3428. ld_moved = 0;
  3429. if (busiest->nr_running > 1) {
  3430. /* Attempt to move tasks */
  3431. double_lock_balance(this_rq, busiest);
  3432. /* this_rq->clock is already updated */
  3433. update_rq_clock(busiest);
  3434. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3435. imbalance, sd, CPU_NEWLY_IDLE,
  3436. &all_pinned);
  3437. double_unlock_balance(this_rq, busiest);
  3438. if (unlikely(all_pinned)) {
  3439. cpumask_clear_cpu(cpu_of(busiest), cpus);
  3440. if (!cpumask_empty(cpus))
  3441. goto redo;
  3442. }
  3443. }
  3444. if (!ld_moved) {
  3445. int active_balance = 0;
  3446. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  3447. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3448. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3449. return -1;
  3450. if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
  3451. return -1;
  3452. if (sd->nr_balance_failed++ < 2)
  3453. return -1;
  3454. /*
  3455. * The only task running in a non-idle cpu can be moved to this
  3456. * cpu in an attempt to completely freeup the other CPU
  3457. * package. The same method used to move task in load_balance()
  3458. * have been extended for load_balance_newidle() to speedup
  3459. * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
  3460. *
  3461. * The package power saving logic comes from
  3462. * find_busiest_group(). If there are no imbalance, then
  3463. * f_b_g() will return NULL. However when sched_mc={1,2} then
  3464. * f_b_g() will select a group from which a running task may be
  3465. * pulled to this cpu in order to make the other package idle.
  3466. * If there is no opportunity to make a package idle and if
  3467. * there are no imbalance, then f_b_g() will return NULL and no
  3468. * action will be taken in load_balance_newidle().
  3469. *
  3470. * Under normal task pull operation due to imbalance, there
  3471. * will be more than one task in the source run queue and
  3472. * move_tasks() will succeed. ld_moved will be true and this
  3473. * active balance code will not be triggered.
  3474. */
  3475. /* Lock busiest in correct order while this_rq is held */
  3476. double_lock_balance(this_rq, busiest);
  3477. /*
  3478. * don't kick the migration_thread, if the curr
  3479. * task on busiest cpu can't be moved to this_cpu
  3480. */
  3481. if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
  3482. double_unlock_balance(this_rq, busiest);
  3483. all_pinned = 1;
  3484. return ld_moved;
  3485. }
  3486. if (!busiest->active_balance) {
  3487. busiest->active_balance = 1;
  3488. busiest->push_cpu = this_cpu;
  3489. active_balance = 1;
  3490. }
  3491. double_unlock_balance(this_rq, busiest);
  3492. /*
  3493. * Should not call ttwu while holding a rq->lock
  3494. */
  3495. spin_unlock(&this_rq->lock);
  3496. if (active_balance)
  3497. wake_up_process(busiest->migration_thread);
  3498. spin_lock(&this_rq->lock);
  3499. } else
  3500. sd->nr_balance_failed = 0;
  3501. update_shares_locked(this_rq, sd);
  3502. return ld_moved;
  3503. out_balanced:
  3504. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  3505. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3506. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3507. return -1;
  3508. sd->nr_balance_failed = 0;
  3509. return 0;
  3510. }
  3511. /*
  3512. * idle_balance is called by schedule() if this_cpu is about to become
  3513. * idle. Attempts to pull tasks from other CPUs.
  3514. */
  3515. static void idle_balance(int this_cpu, struct rq *this_rq)
  3516. {
  3517. struct sched_domain *sd;
  3518. int pulled_task = 0;
  3519. unsigned long next_balance = jiffies + HZ;
  3520. cpumask_var_t tmpmask;
  3521. if (!alloc_cpumask_var(&tmpmask, GFP_ATOMIC))
  3522. return;
  3523. for_each_domain(this_cpu, sd) {
  3524. unsigned long interval;
  3525. if (!(sd->flags & SD_LOAD_BALANCE))
  3526. continue;
  3527. if (sd->flags & SD_BALANCE_NEWIDLE)
  3528. /* If we've pulled tasks over stop searching: */
  3529. pulled_task = load_balance_newidle(this_cpu, this_rq,
  3530. sd, tmpmask);
  3531. interval = msecs_to_jiffies(sd->balance_interval);
  3532. if (time_after(next_balance, sd->last_balance + interval))
  3533. next_balance = sd->last_balance + interval;
  3534. if (pulled_task)
  3535. break;
  3536. }
  3537. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  3538. /*
  3539. * We are going idle. next_balance may be set based on
  3540. * a busy processor. So reset next_balance.
  3541. */
  3542. this_rq->next_balance = next_balance;
  3543. }
  3544. free_cpumask_var(tmpmask);
  3545. }
  3546. /*
  3547. * active_load_balance is run by migration threads. It pushes running tasks
  3548. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  3549. * running on each physical CPU where possible, and avoids physical /
  3550. * logical imbalances.
  3551. *
  3552. * Called with busiest_rq locked.
  3553. */
  3554. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  3555. {
  3556. int target_cpu = busiest_rq->push_cpu;
  3557. struct sched_domain *sd;
  3558. struct rq *target_rq;
  3559. /* Is there any task to move? */
  3560. if (busiest_rq->nr_running <= 1)
  3561. return;
  3562. target_rq = cpu_rq(target_cpu);
  3563. /*
  3564. * This condition is "impossible", if it occurs
  3565. * we need to fix it. Originally reported by
  3566. * Bjorn Helgaas on a 128-cpu setup.
  3567. */
  3568. BUG_ON(busiest_rq == target_rq);
  3569. /* move a task from busiest_rq to target_rq */
  3570. double_lock_balance(busiest_rq, target_rq);
  3571. update_rq_clock(busiest_rq);
  3572. update_rq_clock(target_rq);
  3573. /* Search for an sd spanning us and the target CPU. */
  3574. for_each_domain(target_cpu, sd) {
  3575. if ((sd->flags & SD_LOAD_BALANCE) &&
  3576. cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
  3577. break;
  3578. }
  3579. if (likely(sd)) {
  3580. schedstat_inc(sd, alb_count);
  3581. if (move_one_task(target_rq, target_cpu, busiest_rq,
  3582. sd, CPU_IDLE))
  3583. schedstat_inc(sd, alb_pushed);
  3584. else
  3585. schedstat_inc(sd, alb_failed);
  3586. }
  3587. double_unlock_balance(busiest_rq, target_rq);
  3588. }
  3589. #ifdef CONFIG_NO_HZ
  3590. static struct {
  3591. atomic_t load_balancer;
  3592. cpumask_var_t cpu_mask;
  3593. } nohz ____cacheline_aligned = {
  3594. .load_balancer = ATOMIC_INIT(-1),
  3595. };
  3596. /*
  3597. * This routine will try to nominate the ilb (idle load balancing)
  3598. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  3599. * load balancing on behalf of all those cpus. If all the cpus in the system
  3600. * go into this tickless mode, then there will be no ilb owner (as there is
  3601. * no need for one) and all the cpus will sleep till the next wakeup event
  3602. * arrives...
  3603. *
  3604. * For the ilb owner, tick is not stopped. And this tick will be used
  3605. * for idle load balancing. ilb owner will still be part of
  3606. * nohz.cpu_mask..
  3607. *
  3608. * While stopping the tick, this cpu will become the ilb owner if there
  3609. * is no other owner. And will be the owner till that cpu becomes busy
  3610. * or if all cpus in the system stop their ticks at which point
  3611. * there is no need for ilb owner.
  3612. *
  3613. * When the ilb owner becomes busy, it nominates another owner, during the
  3614. * next busy scheduler_tick()
  3615. */
  3616. int select_nohz_load_balancer(int stop_tick)
  3617. {
  3618. int cpu = smp_processor_id();
  3619. if (stop_tick) {
  3620. cpu_rq(cpu)->in_nohz_recently = 1;
  3621. if (!cpu_active(cpu)) {
  3622. if (atomic_read(&nohz.load_balancer) != cpu)
  3623. return 0;
  3624. /*
  3625. * If we are going offline and still the leader,
  3626. * give up!
  3627. */
  3628. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3629. BUG();
  3630. return 0;
  3631. }
  3632. cpumask_set_cpu(cpu, nohz.cpu_mask);
  3633. /* time for ilb owner also to sleep */
  3634. if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
  3635. if (atomic_read(&nohz.load_balancer) == cpu)
  3636. atomic_set(&nohz.load_balancer, -1);
  3637. return 0;
  3638. }
  3639. if (atomic_read(&nohz.load_balancer) == -1) {
  3640. /* make me the ilb owner */
  3641. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  3642. return 1;
  3643. } else if (atomic_read(&nohz.load_balancer) == cpu)
  3644. return 1;
  3645. } else {
  3646. if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
  3647. return 0;
  3648. cpumask_clear_cpu(cpu, nohz.cpu_mask);
  3649. if (atomic_read(&nohz.load_balancer) == cpu)
  3650. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3651. BUG();
  3652. }
  3653. return 0;
  3654. }
  3655. #endif
  3656. static DEFINE_SPINLOCK(balancing);
  3657. /*
  3658. * It checks each scheduling domain to see if it is due to be balanced,
  3659. * and initiates a balancing operation if so.
  3660. *
  3661. * Balancing parameters are set up in arch_init_sched_domains.
  3662. */
  3663. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  3664. {
  3665. int balance = 1;
  3666. struct rq *rq = cpu_rq(cpu);
  3667. unsigned long interval;
  3668. struct sched_domain *sd;
  3669. /* Earliest time when we have to do rebalance again */
  3670. unsigned long next_balance = jiffies + 60*HZ;
  3671. int update_next_balance = 0;
  3672. int need_serialize;
  3673. cpumask_var_t tmp;
  3674. /* Fails alloc? Rebalancing probably not a priority right now. */
  3675. if (!alloc_cpumask_var(&tmp, GFP_ATOMIC))
  3676. return;
  3677. for_each_domain(cpu, sd) {
  3678. if (!(sd->flags & SD_LOAD_BALANCE))
  3679. continue;
  3680. interval = sd->balance_interval;
  3681. if (idle != CPU_IDLE)
  3682. interval *= sd->busy_factor;
  3683. /* scale ms to jiffies */
  3684. interval = msecs_to_jiffies(interval);
  3685. if (unlikely(!interval))
  3686. interval = 1;
  3687. if (interval > HZ*NR_CPUS/10)
  3688. interval = HZ*NR_CPUS/10;
  3689. need_serialize = sd->flags & SD_SERIALIZE;
  3690. if (need_serialize) {
  3691. if (!spin_trylock(&balancing))
  3692. goto out;
  3693. }
  3694. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  3695. if (load_balance(cpu, rq, sd, idle, &balance, tmp)) {
  3696. /*
  3697. * We've pulled tasks over so either we're no
  3698. * longer idle, or one of our SMT siblings is
  3699. * not idle.
  3700. */
  3701. idle = CPU_NOT_IDLE;
  3702. }
  3703. sd->last_balance = jiffies;
  3704. }
  3705. if (need_serialize)
  3706. spin_unlock(&balancing);
  3707. out:
  3708. if (time_after(next_balance, sd->last_balance + interval)) {
  3709. next_balance = sd->last_balance + interval;
  3710. update_next_balance = 1;
  3711. }
  3712. /*
  3713. * Stop the load balance at this level. There is another
  3714. * CPU in our sched group which is doing load balancing more
  3715. * actively.
  3716. */
  3717. if (!balance)
  3718. break;
  3719. }
  3720. /*
  3721. * next_balance will be updated only when there is a need.
  3722. * When the cpu is attached to null domain for ex, it will not be
  3723. * updated.
  3724. */
  3725. if (likely(update_next_balance))
  3726. rq->next_balance = next_balance;
  3727. free_cpumask_var(tmp);
  3728. }
  3729. /*
  3730. * run_rebalance_domains is triggered when needed from the scheduler tick.
  3731. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  3732. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  3733. */
  3734. static void run_rebalance_domains(struct softirq_action *h)
  3735. {
  3736. int this_cpu = smp_processor_id();
  3737. struct rq *this_rq = cpu_rq(this_cpu);
  3738. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  3739. CPU_IDLE : CPU_NOT_IDLE;
  3740. rebalance_domains(this_cpu, idle);
  3741. #ifdef CONFIG_NO_HZ
  3742. /*
  3743. * If this cpu is the owner for idle load balancing, then do the
  3744. * balancing on behalf of the other idle cpus whose ticks are
  3745. * stopped.
  3746. */
  3747. if (this_rq->idle_at_tick &&
  3748. atomic_read(&nohz.load_balancer) == this_cpu) {
  3749. struct rq *rq;
  3750. int balance_cpu;
  3751. for_each_cpu(balance_cpu, nohz.cpu_mask) {
  3752. if (balance_cpu == this_cpu)
  3753. continue;
  3754. /*
  3755. * If this cpu gets work to do, stop the load balancing
  3756. * work being done for other cpus. Next load
  3757. * balancing owner will pick it up.
  3758. */
  3759. if (need_resched())
  3760. break;
  3761. rebalance_domains(balance_cpu, CPU_IDLE);
  3762. rq = cpu_rq(balance_cpu);
  3763. if (time_after(this_rq->next_balance, rq->next_balance))
  3764. this_rq->next_balance = rq->next_balance;
  3765. }
  3766. }
  3767. #endif
  3768. }
  3769. static inline int on_null_domain(int cpu)
  3770. {
  3771. return !rcu_dereference(cpu_rq(cpu)->sd);
  3772. }
  3773. /*
  3774. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  3775. *
  3776. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  3777. * idle load balancing owner or decide to stop the periodic load balancing,
  3778. * if the whole system is idle.
  3779. */
  3780. static inline void trigger_load_balance(struct rq *rq, int cpu)
  3781. {
  3782. #ifdef CONFIG_NO_HZ
  3783. /*
  3784. * If we were in the nohz mode recently and busy at the current
  3785. * scheduler tick, then check if we need to nominate new idle
  3786. * load balancer.
  3787. */
  3788. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  3789. rq->in_nohz_recently = 0;
  3790. if (atomic_read(&nohz.load_balancer) == cpu) {
  3791. cpumask_clear_cpu(cpu, nohz.cpu_mask);
  3792. atomic_set(&nohz.load_balancer, -1);
  3793. }
  3794. if (atomic_read(&nohz.load_balancer) == -1) {
  3795. /*
  3796. * simple selection for now: Nominate the
  3797. * first cpu in the nohz list to be the next
  3798. * ilb owner.
  3799. *
  3800. * TBD: Traverse the sched domains and nominate
  3801. * the nearest cpu in the nohz.cpu_mask.
  3802. */
  3803. int ilb = cpumask_first(nohz.cpu_mask);
  3804. if (ilb < nr_cpu_ids)
  3805. resched_cpu(ilb);
  3806. }
  3807. }
  3808. /*
  3809. * If this cpu is idle and doing idle load balancing for all the
  3810. * cpus with ticks stopped, is it time for that to stop?
  3811. */
  3812. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  3813. cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
  3814. resched_cpu(cpu);
  3815. return;
  3816. }
  3817. /*
  3818. * If this cpu is idle and the idle load balancing is done by
  3819. * someone else, then no need raise the SCHED_SOFTIRQ
  3820. */
  3821. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  3822. cpumask_test_cpu(cpu, nohz.cpu_mask))
  3823. return;
  3824. #endif
  3825. /* Don't need to rebalance while attached to NULL domain */
  3826. if (time_after_eq(jiffies, rq->next_balance) &&
  3827. likely(!on_null_domain(cpu)))
  3828. raise_softirq(SCHED_SOFTIRQ);
  3829. }
  3830. #else /* CONFIG_SMP */
  3831. /*
  3832. * on UP we do not need to balance between CPUs:
  3833. */
  3834. static inline void idle_balance(int cpu, struct rq *rq)
  3835. {
  3836. }
  3837. #endif
  3838. DEFINE_PER_CPU(struct kernel_stat, kstat);
  3839. EXPORT_PER_CPU_SYMBOL(kstat);
  3840. /*
  3841. * Return any ns on the sched_clock that have not yet been banked in
  3842. * @p in case that task is currently running.
  3843. */
  3844. unsigned long long task_delta_exec(struct task_struct *p)
  3845. {
  3846. unsigned long flags;
  3847. struct rq *rq;
  3848. u64 ns = 0;
  3849. rq = task_rq_lock(p, &flags);
  3850. if (task_current(rq, p)) {
  3851. u64 delta_exec;
  3852. update_rq_clock(rq);
  3853. delta_exec = rq->clock - p->se.exec_start;
  3854. if ((s64)delta_exec > 0)
  3855. ns = delta_exec;
  3856. }
  3857. task_rq_unlock(rq, &flags);
  3858. return ns;
  3859. }
  3860. /*
  3861. * Account user cpu time to a process.
  3862. * @p: the process that the cpu time gets accounted to
  3863. * @cputime: the cpu time spent in user space since the last update
  3864. * @cputime_scaled: cputime scaled by cpu frequency
  3865. */
  3866. void account_user_time(struct task_struct *p, cputime_t cputime,
  3867. cputime_t cputime_scaled)
  3868. {
  3869. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3870. cputime64_t tmp;
  3871. /* Add user time to process. */
  3872. p->utime = cputime_add(p->utime, cputime);
  3873. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  3874. account_group_user_time(p, cputime);
  3875. /* Add user time to cpustat. */
  3876. tmp = cputime_to_cputime64(cputime);
  3877. if (TASK_NICE(p) > 0)
  3878. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3879. else
  3880. cpustat->user = cputime64_add(cpustat->user, tmp);
  3881. /* Account for user time used */
  3882. acct_update_integrals(p);
  3883. }
  3884. /*
  3885. * Account guest cpu time to a process.
  3886. * @p: the process that the cpu time gets accounted to
  3887. * @cputime: the cpu time spent in virtual machine since the last update
  3888. * @cputime_scaled: cputime scaled by cpu frequency
  3889. */
  3890. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  3891. cputime_t cputime_scaled)
  3892. {
  3893. cputime64_t tmp;
  3894. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3895. tmp = cputime_to_cputime64(cputime);
  3896. /* Add guest time to process. */
  3897. p->utime = cputime_add(p->utime, cputime);
  3898. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  3899. account_group_user_time(p, cputime);
  3900. p->gtime = cputime_add(p->gtime, cputime);
  3901. /* Add guest time to cpustat. */
  3902. cpustat->user = cputime64_add(cpustat->user, tmp);
  3903. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  3904. }
  3905. /*
  3906. * Account system cpu time to a process.
  3907. * @p: the process that the cpu time gets accounted to
  3908. * @hardirq_offset: the offset to subtract from hardirq_count()
  3909. * @cputime: the cpu time spent in kernel space since the last update
  3910. * @cputime_scaled: cputime scaled by cpu frequency
  3911. */
  3912. void account_system_time(struct task_struct *p, int hardirq_offset,
  3913. cputime_t cputime, cputime_t cputime_scaled)
  3914. {
  3915. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3916. cputime64_t tmp;
  3917. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  3918. account_guest_time(p, cputime, cputime_scaled);
  3919. return;
  3920. }
  3921. /* Add system time to process. */
  3922. p->stime = cputime_add(p->stime, cputime);
  3923. p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
  3924. account_group_system_time(p, cputime);
  3925. /* Add system time to cpustat. */
  3926. tmp = cputime_to_cputime64(cputime);
  3927. if (hardirq_count() - hardirq_offset)
  3928. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  3929. else if (softirq_count())
  3930. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  3931. else
  3932. cpustat->system = cputime64_add(cpustat->system, tmp);
  3933. /* Account for system time used */
  3934. acct_update_integrals(p);
  3935. }
  3936. /*
  3937. * Account for involuntary wait time.
  3938. * @steal: the cpu time spent in involuntary wait
  3939. */
  3940. void account_steal_time(cputime_t cputime)
  3941. {
  3942. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3943. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  3944. cpustat->steal = cputime64_add(cpustat->steal, cputime64);
  3945. }
  3946. /*
  3947. * Account for idle time.
  3948. * @cputime: the cpu time spent in idle wait
  3949. */
  3950. void account_idle_time(cputime_t cputime)
  3951. {
  3952. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3953. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  3954. struct rq *rq = this_rq();
  3955. if (atomic_read(&rq->nr_iowait) > 0)
  3956. cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
  3957. else
  3958. cpustat->idle = cputime64_add(cpustat->idle, cputime64);
  3959. }
  3960. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  3961. /*
  3962. * Account a single tick of cpu time.
  3963. * @p: the process that the cpu time gets accounted to
  3964. * @user_tick: indicates if the tick is a user or a system tick
  3965. */
  3966. void account_process_tick(struct task_struct *p, int user_tick)
  3967. {
  3968. cputime_t one_jiffy = jiffies_to_cputime(1);
  3969. cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
  3970. struct rq *rq = this_rq();
  3971. if (user_tick)
  3972. account_user_time(p, one_jiffy, one_jiffy_scaled);
  3973. else if (p != rq->idle)
  3974. account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
  3975. one_jiffy_scaled);
  3976. else
  3977. account_idle_time(one_jiffy);
  3978. }
  3979. /*
  3980. * Account multiple ticks of steal time.
  3981. * @p: the process from which the cpu time has been stolen
  3982. * @ticks: number of stolen ticks
  3983. */
  3984. void account_steal_ticks(unsigned long ticks)
  3985. {
  3986. account_steal_time(jiffies_to_cputime(ticks));
  3987. }
  3988. /*
  3989. * Account multiple ticks of idle time.
  3990. * @ticks: number of stolen ticks
  3991. */
  3992. void account_idle_ticks(unsigned long ticks)
  3993. {
  3994. account_idle_time(jiffies_to_cputime(ticks));
  3995. }
  3996. #endif
  3997. /*
  3998. * Use precise platform statistics if available:
  3999. */
  4000. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  4001. cputime_t task_utime(struct task_struct *p)
  4002. {
  4003. return p->utime;
  4004. }
  4005. cputime_t task_stime(struct task_struct *p)
  4006. {
  4007. return p->stime;
  4008. }
  4009. #else
  4010. cputime_t task_utime(struct task_struct *p)
  4011. {
  4012. clock_t utime = cputime_to_clock_t(p->utime),
  4013. total = utime + cputime_to_clock_t(p->stime);
  4014. u64 temp;
  4015. /*
  4016. * Use CFS's precise accounting:
  4017. */
  4018. temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
  4019. if (total) {
  4020. temp *= utime;
  4021. do_div(temp, total);
  4022. }
  4023. utime = (clock_t)temp;
  4024. p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
  4025. return p->prev_utime;
  4026. }
  4027. cputime_t task_stime(struct task_struct *p)
  4028. {
  4029. clock_t stime;
  4030. /*
  4031. * Use CFS's precise accounting. (we subtract utime from
  4032. * the total, to make sure the total observed by userspace
  4033. * grows monotonically - apps rely on that):
  4034. */
  4035. stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
  4036. cputime_to_clock_t(task_utime(p));
  4037. if (stime >= 0)
  4038. p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
  4039. return p->prev_stime;
  4040. }
  4041. #endif
  4042. inline cputime_t task_gtime(struct task_struct *p)
  4043. {
  4044. return p->gtime;
  4045. }
  4046. /*
  4047. * This function gets called by the timer code, with HZ frequency.
  4048. * We call it with interrupts disabled.
  4049. *
  4050. * It also gets called by the fork code, when changing the parent's
  4051. * timeslices.
  4052. */
  4053. void scheduler_tick(void)
  4054. {
  4055. int cpu = smp_processor_id();
  4056. struct rq *rq = cpu_rq(cpu);
  4057. struct task_struct *curr = rq->curr;
  4058. sched_clock_tick();
  4059. spin_lock(&rq->lock);
  4060. update_rq_clock(rq);
  4061. update_cpu_load(rq);
  4062. curr->sched_class->task_tick(rq, curr, 0);
  4063. spin_unlock(&rq->lock);
  4064. #ifdef CONFIG_SMP
  4065. rq->idle_at_tick = idle_cpu(cpu);
  4066. trigger_load_balance(rq, cpu);
  4067. #endif
  4068. }
  4069. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  4070. defined(CONFIG_PREEMPT_TRACER))
  4071. static inline unsigned long get_parent_ip(unsigned long addr)
  4072. {
  4073. if (in_lock_functions(addr)) {
  4074. addr = CALLER_ADDR2;
  4075. if (in_lock_functions(addr))
  4076. addr = CALLER_ADDR3;
  4077. }
  4078. return addr;
  4079. }
  4080. void __kprobes add_preempt_count(int val)
  4081. {
  4082. #ifdef CONFIG_DEBUG_PREEMPT
  4083. /*
  4084. * Underflow?
  4085. */
  4086. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  4087. return;
  4088. #endif
  4089. preempt_count() += val;
  4090. #ifdef CONFIG_DEBUG_PREEMPT
  4091. /*
  4092. * Spinlock count overflowing soon?
  4093. */
  4094. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  4095. PREEMPT_MASK - 10);
  4096. #endif
  4097. if (preempt_count() == val)
  4098. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  4099. }
  4100. EXPORT_SYMBOL(add_preempt_count);
  4101. void __kprobes sub_preempt_count(int val)
  4102. {
  4103. #ifdef CONFIG_DEBUG_PREEMPT
  4104. /*
  4105. * Underflow?
  4106. */
  4107. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  4108. return;
  4109. /*
  4110. * Is the spinlock portion underflowing?
  4111. */
  4112. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  4113. !(preempt_count() & PREEMPT_MASK)))
  4114. return;
  4115. #endif
  4116. if (preempt_count() == val)
  4117. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  4118. preempt_count() -= val;
  4119. }
  4120. EXPORT_SYMBOL(sub_preempt_count);
  4121. #endif
  4122. /*
  4123. * Print scheduling while atomic bug:
  4124. */
  4125. static noinline void __schedule_bug(struct task_struct *prev)
  4126. {
  4127. struct pt_regs *regs = get_irq_regs();
  4128. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  4129. prev->comm, prev->pid, preempt_count());
  4130. debug_show_held_locks(prev);
  4131. print_modules();
  4132. if (irqs_disabled())
  4133. print_irqtrace_events(prev);
  4134. if (regs)
  4135. show_regs(regs);
  4136. else
  4137. dump_stack();
  4138. }
  4139. /*
  4140. * Various schedule()-time debugging checks and statistics:
  4141. */
  4142. static inline void schedule_debug(struct task_struct *prev)
  4143. {
  4144. /*
  4145. * Test if we are atomic. Since do_exit() needs to call into
  4146. * schedule() atomically, we ignore that path for now.
  4147. * Otherwise, whine if we are scheduling when we should not be.
  4148. */
  4149. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  4150. __schedule_bug(prev);
  4151. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  4152. schedstat_inc(this_rq(), sched_count);
  4153. #ifdef CONFIG_SCHEDSTATS
  4154. if (unlikely(prev->lock_depth >= 0)) {
  4155. schedstat_inc(this_rq(), bkl_count);
  4156. schedstat_inc(prev, sched_info.bkl_count);
  4157. }
  4158. #endif
  4159. }
  4160. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  4161. {
  4162. if (prev->state == TASK_RUNNING) {
  4163. u64 runtime = prev->se.sum_exec_runtime;
  4164. runtime -= prev->se.prev_sum_exec_runtime;
  4165. runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
  4166. /*
  4167. * In order to avoid avg_overlap growing stale when we are
  4168. * indeed overlapping and hence not getting put to sleep, grow
  4169. * the avg_overlap on preemption.
  4170. *
  4171. * We use the average preemption runtime because that
  4172. * correlates to the amount of cache footprint a task can
  4173. * build up.
  4174. */
  4175. update_avg(&prev->se.avg_overlap, runtime);
  4176. }
  4177. prev->sched_class->put_prev_task(rq, prev);
  4178. }
  4179. /*
  4180. * Pick up the highest-prio task:
  4181. */
  4182. static inline struct task_struct *
  4183. pick_next_task(struct rq *rq)
  4184. {
  4185. const struct sched_class *class;
  4186. struct task_struct *p;
  4187. /*
  4188. * Optimization: we know that if all tasks are in
  4189. * the fair class we can call that function directly:
  4190. */
  4191. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  4192. p = fair_sched_class.pick_next_task(rq);
  4193. if (likely(p))
  4194. return p;
  4195. }
  4196. class = sched_class_highest;
  4197. for ( ; ; ) {
  4198. p = class->pick_next_task(rq);
  4199. if (p)
  4200. return p;
  4201. /*
  4202. * Will never be NULL as the idle class always
  4203. * returns a non-NULL p:
  4204. */
  4205. class = class->next;
  4206. }
  4207. }
  4208. /*
  4209. * schedule() is the main scheduler function.
  4210. */
  4211. asmlinkage void __sched schedule(void)
  4212. {
  4213. struct task_struct *prev, *next;
  4214. unsigned long *switch_count;
  4215. struct rq *rq;
  4216. int cpu;
  4217. need_resched:
  4218. preempt_disable();
  4219. cpu = smp_processor_id();
  4220. rq = cpu_rq(cpu);
  4221. rcu_qsctr_inc(cpu);
  4222. prev = rq->curr;
  4223. switch_count = &prev->nivcsw;
  4224. release_kernel_lock(prev);
  4225. need_resched_nonpreemptible:
  4226. schedule_debug(prev);
  4227. if (sched_feat(HRTICK))
  4228. hrtick_clear(rq);
  4229. spin_lock_irq(&rq->lock);
  4230. update_rq_clock(rq);
  4231. clear_tsk_need_resched(prev);
  4232. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  4233. if (unlikely(signal_pending_state(prev->state, prev)))
  4234. prev->state = TASK_RUNNING;
  4235. else
  4236. deactivate_task(rq, prev, 1);
  4237. switch_count = &prev->nvcsw;
  4238. }
  4239. #ifdef CONFIG_SMP
  4240. if (prev->sched_class->pre_schedule)
  4241. prev->sched_class->pre_schedule(rq, prev);
  4242. #endif
  4243. if (unlikely(!rq->nr_running))
  4244. idle_balance(cpu, rq);
  4245. put_prev_task(rq, prev);
  4246. next = pick_next_task(rq);
  4247. if (likely(prev != next)) {
  4248. sched_info_switch(prev, next);
  4249. rq->nr_switches++;
  4250. rq->curr = next;
  4251. ++*switch_count;
  4252. context_switch(rq, prev, next); /* unlocks the rq */
  4253. /*
  4254. * the context switch might have flipped the stack from under
  4255. * us, hence refresh the local variables.
  4256. */
  4257. cpu = smp_processor_id();
  4258. rq = cpu_rq(cpu);
  4259. } else
  4260. spin_unlock_irq(&rq->lock);
  4261. if (unlikely(reacquire_kernel_lock(current) < 0))
  4262. goto need_resched_nonpreemptible;
  4263. preempt_enable_no_resched();
  4264. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  4265. goto need_resched;
  4266. }
  4267. EXPORT_SYMBOL(schedule);
  4268. #ifdef CONFIG_PREEMPT
  4269. /*
  4270. * this is the entry point to schedule() from in-kernel preemption
  4271. * off of preempt_enable. Kernel preemptions off return from interrupt
  4272. * occur there and call schedule directly.
  4273. */
  4274. asmlinkage void __sched preempt_schedule(void)
  4275. {
  4276. struct thread_info *ti = current_thread_info();
  4277. /*
  4278. * If there is a non-zero preempt_count or interrupts are disabled,
  4279. * we do not want to preempt the current task. Just return..
  4280. */
  4281. if (likely(ti->preempt_count || irqs_disabled()))
  4282. return;
  4283. do {
  4284. add_preempt_count(PREEMPT_ACTIVE);
  4285. schedule();
  4286. sub_preempt_count(PREEMPT_ACTIVE);
  4287. /*
  4288. * Check again in case we missed a preemption opportunity
  4289. * between schedule and now.
  4290. */
  4291. barrier();
  4292. } while (need_resched());
  4293. }
  4294. EXPORT_SYMBOL(preempt_schedule);
  4295. /*
  4296. * this is the entry point to schedule() from kernel preemption
  4297. * off of irq context.
  4298. * Note, that this is called and return with irqs disabled. This will
  4299. * protect us against recursive calling from irq.
  4300. */
  4301. asmlinkage void __sched preempt_schedule_irq(void)
  4302. {
  4303. struct thread_info *ti = current_thread_info();
  4304. /* Catch callers which need to be fixed */
  4305. BUG_ON(ti->preempt_count || !irqs_disabled());
  4306. do {
  4307. add_preempt_count(PREEMPT_ACTIVE);
  4308. local_irq_enable();
  4309. schedule();
  4310. local_irq_disable();
  4311. sub_preempt_count(PREEMPT_ACTIVE);
  4312. /*
  4313. * Check again in case we missed a preemption opportunity
  4314. * between schedule and now.
  4315. */
  4316. barrier();
  4317. } while (need_resched());
  4318. }
  4319. #endif /* CONFIG_PREEMPT */
  4320. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  4321. void *key)
  4322. {
  4323. return try_to_wake_up(curr->private, mode, sync);
  4324. }
  4325. EXPORT_SYMBOL(default_wake_function);
  4326. /*
  4327. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  4328. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  4329. * number) then we wake all the non-exclusive tasks and one exclusive task.
  4330. *
  4331. * There are circumstances in which we can try to wake a task which has already
  4332. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  4333. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  4334. */
  4335. void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  4336. int nr_exclusive, int sync, void *key)
  4337. {
  4338. wait_queue_t *curr, *next;
  4339. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  4340. unsigned flags = curr->flags;
  4341. if (curr->func(curr, mode, sync, key) &&
  4342. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  4343. break;
  4344. }
  4345. }
  4346. /**
  4347. * __wake_up - wake up threads blocked on a waitqueue.
  4348. * @q: the waitqueue
  4349. * @mode: which threads
  4350. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  4351. * @key: is directly passed to the wakeup function
  4352. */
  4353. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  4354. int nr_exclusive, void *key)
  4355. {
  4356. unsigned long flags;
  4357. spin_lock_irqsave(&q->lock, flags);
  4358. __wake_up_common(q, mode, nr_exclusive, 0, key);
  4359. spin_unlock_irqrestore(&q->lock, flags);
  4360. }
  4361. EXPORT_SYMBOL(__wake_up);
  4362. /*
  4363. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  4364. */
  4365. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  4366. {
  4367. __wake_up_common(q, mode, 1, 0, NULL);
  4368. }
  4369. /**
  4370. * __wake_up_sync - wake up threads blocked on a waitqueue.
  4371. * @q: the waitqueue
  4372. * @mode: which threads
  4373. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  4374. *
  4375. * The sync wakeup differs that the waker knows that it will schedule
  4376. * away soon, so while the target thread will be woken up, it will not
  4377. * be migrated to another CPU - ie. the two threads are 'synchronized'
  4378. * with each other. This can prevent needless bouncing between CPUs.
  4379. *
  4380. * On UP it can prevent extra preemption.
  4381. */
  4382. void
  4383. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  4384. {
  4385. unsigned long flags;
  4386. int sync = 1;
  4387. if (unlikely(!q))
  4388. return;
  4389. if (unlikely(!nr_exclusive))
  4390. sync = 0;
  4391. spin_lock_irqsave(&q->lock, flags);
  4392. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  4393. spin_unlock_irqrestore(&q->lock, flags);
  4394. }
  4395. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  4396. /**
  4397. * complete: - signals a single thread waiting on this completion
  4398. * @x: holds the state of this particular completion
  4399. *
  4400. * This will wake up a single thread waiting on this completion. Threads will be
  4401. * awakened in the same order in which they were queued.
  4402. *
  4403. * See also complete_all(), wait_for_completion() and related routines.
  4404. */
  4405. void complete(struct completion *x)
  4406. {
  4407. unsigned long flags;
  4408. spin_lock_irqsave(&x->wait.lock, flags);
  4409. x->done++;
  4410. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  4411. spin_unlock_irqrestore(&x->wait.lock, flags);
  4412. }
  4413. EXPORT_SYMBOL(complete);
  4414. /**
  4415. * complete_all: - signals all threads waiting on this completion
  4416. * @x: holds the state of this particular completion
  4417. *
  4418. * This will wake up all threads waiting on this particular completion event.
  4419. */
  4420. void complete_all(struct completion *x)
  4421. {
  4422. unsigned long flags;
  4423. spin_lock_irqsave(&x->wait.lock, flags);
  4424. x->done += UINT_MAX/2;
  4425. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  4426. spin_unlock_irqrestore(&x->wait.lock, flags);
  4427. }
  4428. EXPORT_SYMBOL(complete_all);
  4429. static inline long __sched
  4430. do_wait_for_common(struct completion *x, long timeout, int state)
  4431. {
  4432. if (!x->done) {
  4433. DECLARE_WAITQUEUE(wait, current);
  4434. wait.flags |= WQ_FLAG_EXCLUSIVE;
  4435. __add_wait_queue_tail(&x->wait, &wait);
  4436. do {
  4437. if (signal_pending_state(state, current)) {
  4438. timeout = -ERESTARTSYS;
  4439. break;
  4440. }
  4441. __set_current_state(state);
  4442. spin_unlock_irq(&x->wait.lock);
  4443. timeout = schedule_timeout(timeout);
  4444. spin_lock_irq(&x->wait.lock);
  4445. } while (!x->done && timeout);
  4446. __remove_wait_queue(&x->wait, &wait);
  4447. if (!x->done)
  4448. return timeout;
  4449. }
  4450. x->done--;
  4451. return timeout ?: 1;
  4452. }
  4453. static long __sched
  4454. wait_for_common(struct completion *x, long timeout, int state)
  4455. {
  4456. might_sleep();
  4457. spin_lock_irq(&x->wait.lock);
  4458. timeout = do_wait_for_common(x, timeout, state);
  4459. spin_unlock_irq(&x->wait.lock);
  4460. return timeout;
  4461. }
  4462. /**
  4463. * wait_for_completion: - waits for completion of a task
  4464. * @x: holds the state of this particular completion
  4465. *
  4466. * This waits to be signaled for completion of a specific task. It is NOT
  4467. * interruptible and there is no timeout.
  4468. *
  4469. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  4470. * and interrupt capability. Also see complete().
  4471. */
  4472. void __sched wait_for_completion(struct completion *x)
  4473. {
  4474. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  4475. }
  4476. EXPORT_SYMBOL(wait_for_completion);
  4477. /**
  4478. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  4479. * @x: holds the state of this particular completion
  4480. * @timeout: timeout value in jiffies
  4481. *
  4482. * This waits for either a completion of a specific task to be signaled or for a
  4483. * specified timeout to expire. The timeout is in jiffies. It is not
  4484. * interruptible.
  4485. */
  4486. unsigned long __sched
  4487. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  4488. {
  4489. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  4490. }
  4491. EXPORT_SYMBOL(wait_for_completion_timeout);
  4492. /**
  4493. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  4494. * @x: holds the state of this particular completion
  4495. *
  4496. * This waits for completion of a specific task to be signaled. It is
  4497. * interruptible.
  4498. */
  4499. int __sched wait_for_completion_interruptible(struct completion *x)
  4500. {
  4501. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  4502. if (t == -ERESTARTSYS)
  4503. return t;
  4504. return 0;
  4505. }
  4506. EXPORT_SYMBOL(wait_for_completion_interruptible);
  4507. /**
  4508. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  4509. * @x: holds the state of this particular completion
  4510. * @timeout: timeout value in jiffies
  4511. *
  4512. * This waits for either a completion of a specific task to be signaled or for a
  4513. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  4514. */
  4515. unsigned long __sched
  4516. wait_for_completion_interruptible_timeout(struct completion *x,
  4517. unsigned long timeout)
  4518. {
  4519. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  4520. }
  4521. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  4522. /**
  4523. * wait_for_completion_killable: - waits for completion of a task (killable)
  4524. * @x: holds the state of this particular completion
  4525. *
  4526. * This waits to be signaled for completion of a specific task. It can be
  4527. * interrupted by a kill signal.
  4528. */
  4529. int __sched wait_for_completion_killable(struct completion *x)
  4530. {
  4531. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  4532. if (t == -ERESTARTSYS)
  4533. return t;
  4534. return 0;
  4535. }
  4536. EXPORT_SYMBOL(wait_for_completion_killable);
  4537. /**
  4538. * try_wait_for_completion - try to decrement a completion without blocking
  4539. * @x: completion structure
  4540. *
  4541. * Returns: 0 if a decrement cannot be done without blocking
  4542. * 1 if a decrement succeeded.
  4543. *
  4544. * If a completion is being used as a counting completion,
  4545. * attempt to decrement the counter without blocking. This
  4546. * enables us to avoid waiting if the resource the completion
  4547. * is protecting is not available.
  4548. */
  4549. bool try_wait_for_completion(struct completion *x)
  4550. {
  4551. int ret = 1;
  4552. spin_lock_irq(&x->wait.lock);
  4553. if (!x->done)
  4554. ret = 0;
  4555. else
  4556. x->done--;
  4557. spin_unlock_irq(&x->wait.lock);
  4558. return ret;
  4559. }
  4560. EXPORT_SYMBOL(try_wait_for_completion);
  4561. /**
  4562. * completion_done - Test to see if a completion has any waiters
  4563. * @x: completion structure
  4564. *
  4565. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  4566. * 1 if there are no waiters.
  4567. *
  4568. */
  4569. bool completion_done(struct completion *x)
  4570. {
  4571. int ret = 1;
  4572. spin_lock_irq(&x->wait.lock);
  4573. if (!x->done)
  4574. ret = 0;
  4575. spin_unlock_irq(&x->wait.lock);
  4576. return ret;
  4577. }
  4578. EXPORT_SYMBOL(completion_done);
  4579. static long __sched
  4580. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  4581. {
  4582. unsigned long flags;
  4583. wait_queue_t wait;
  4584. init_waitqueue_entry(&wait, current);
  4585. __set_current_state(state);
  4586. spin_lock_irqsave(&q->lock, flags);
  4587. __add_wait_queue(q, &wait);
  4588. spin_unlock(&q->lock);
  4589. timeout = schedule_timeout(timeout);
  4590. spin_lock_irq(&q->lock);
  4591. __remove_wait_queue(q, &wait);
  4592. spin_unlock_irqrestore(&q->lock, flags);
  4593. return timeout;
  4594. }
  4595. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  4596. {
  4597. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4598. }
  4599. EXPORT_SYMBOL(interruptible_sleep_on);
  4600. long __sched
  4601. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4602. {
  4603. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  4604. }
  4605. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  4606. void __sched sleep_on(wait_queue_head_t *q)
  4607. {
  4608. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4609. }
  4610. EXPORT_SYMBOL(sleep_on);
  4611. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4612. {
  4613. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  4614. }
  4615. EXPORT_SYMBOL(sleep_on_timeout);
  4616. #ifdef CONFIG_RT_MUTEXES
  4617. /*
  4618. * rt_mutex_setprio - set the current priority of a task
  4619. * @p: task
  4620. * @prio: prio value (kernel-internal form)
  4621. *
  4622. * This function changes the 'effective' priority of a task. It does
  4623. * not touch ->normal_prio like __setscheduler().
  4624. *
  4625. * Used by the rt_mutex code to implement priority inheritance logic.
  4626. */
  4627. void rt_mutex_setprio(struct task_struct *p, int prio)
  4628. {
  4629. unsigned long flags;
  4630. int oldprio, on_rq, running;
  4631. struct rq *rq;
  4632. const struct sched_class *prev_class = p->sched_class;
  4633. BUG_ON(prio < 0 || prio > MAX_PRIO);
  4634. rq = task_rq_lock(p, &flags);
  4635. update_rq_clock(rq);
  4636. oldprio = p->prio;
  4637. on_rq = p->se.on_rq;
  4638. running = task_current(rq, p);
  4639. if (on_rq)
  4640. dequeue_task(rq, p, 0);
  4641. if (running)
  4642. p->sched_class->put_prev_task(rq, p);
  4643. if (rt_prio(prio))
  4644. p->sched_class = &rt_sched_class;
  4645. else
  4646. p->sched_class = &fair_sched_class;
  4647. p->prio = prio;
  4648. if (running)
  4649. p->sched_class->set_curr_task(rq);
  4650. if (on_rq) {
  4651. enqueue_task(rq, p, 0);
  4652. check_class_changed(rq, p, prev_class, oldprio, running);
  4653. }
  4654. task_rq_unlock(rq, &flags);
  4655. }
  4656. #endif
  4657. void set_user_nice(struct task_struct *p, long nice)
  4658. {
  4659. int old_prio, delta, on_rq;
  4660. unsigned long flags;
  4661. struct rq *rq;
  4662. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  4663. return;
  4664. /*
  4665. * We have to be careful, if called from sys_setpriority(),
  4666. * the task might be in the middle of scheduling on another CPU.
  4667. */
  4668. rq = task_rq_lock(p, &flags);
  4669. update_rq_clock(rq);
  4670. /*
  4671. * The RT priorities are set via sched_setscheduler(), but we still
  4672. * allow the 'normal' nice value to be set - but as expected
  4673. * it wont have any effect on scheduling until the task is
  4674. * SCHED_FIFO/SCHED_RR:
  4675. */
  4676. if (task_has_rt_policy(p)) {
  4677. p->static_prio = NICE_TO_PRIO(nice);
  4678. goto out_unlock;
  4679. }
  4680. on_rq = p->se.on_rq;
  4681. if (on_rq)
  4682. dequeue_task(rq, p, 0);
  4683. p->static_prio = NICE_TO_PRIO(nice);
  4684. set_load_weight(p);
  4685. old_prio = p->prio;
  4686. p->prio = effective_prio(p);
  4687. delta = p->prio - old_prio;
  4688. if (on_rq) {
  4689. enqueue_task(rq, p, 0);
  4690. /*
  4691. * If the task increased its priority or is running and
  4692. * lowered its priority, then reschedule its CPU:
  4693. */
  4694. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  4695. resched_task(rq->curr);
  4696. }
  4697. out_unlock:
  4698. task_rq_unlock(rq, &flags);
  4699. }
  4700. EXPORT_SYMBOL(set_user_nice);
  4701. /*
  4702. * can_nice - check if a task can reduce its nice value
  4703. * @p: task
  4704. * @nice: nice value
  4705. */
  4706. int can_nice(const struct task_struct *p, const int nice)
  4707. {
  4708. /* convert nice value [19,-20] to rlimit style value [1,40] */
  4709. int nice_rlim = 20 - nice;
  4710. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  4711. capable(CAP_SYS_NICE));
  4712. }
  4713. #ifdef __ARCH_WANT_SYS_NICE
  4714. /*
  4715. * sys_nice - change the priority of the current process.
  4716. * @increment: priority increment
  4717. *
  4718. * sys_setpriority is a more generic, but much slower function that
  4719. * does similar things.
  4720. */
  4721. SYSCALL_DEFINE1(nice, int, increment)
  4722. {
  4723. long nice, retval;
  4724. /*
  4725. * Setpriority might change our priority at the same moment.
  4726. * We don't have to worry. Conceptually one call occurs first
  4727. * and we have a single winner.
  4728. */
  4729. if (increment < -40)
  4730. increment = -40;
  4731. if (increment > 40)
  4732. increment = 40;
  4733. nice = TASK_NICE(current) + increment;
  4734. if (nice < -20)
  4735. nice = -20;
  4736. if (nice > 19)
  4737. nice = 19;
  4738. if (increment < 0 && !can_nice(current, nice))
  4739. return -EPERM;
  4740. retval = security_task_setnice(current, nice);
  4741. if (retval)
  4742. return retval;
  4743. set_user_nice(current, nice);
  4744. return 0;
  4745. }
  4746. #endif
  4747. /**
  4748. * task_prio - return the priority value of a given task.
  4749. * @p: the task in question.
  4750. *
  4751. * This is the priority value as seen by users in /proc.
  4752. * RT tasks are offset by -200. Normal tasks are centered
  4753. * around 0, value goes from -16 to +15.
  4754. */
  4755. int task_prio(const struct task_struct *p)
  4756. {
  4757. return p->prio - MAX_RT_PRIO;
  4758. }
  4759. /**
  4760. * task_nice - return the nice value of a given task.
  4761. * @p: the task in question.
  4762. */
  4763. int task_nice(const struct task_struct *p)
  4764. {
  4765. return TASK_NICE(p);
  4766. }
  4767. EXPORT_SYMBOL(task_nice);
  4768. /**
  4769. * idle_cpu - is a given cpu idle currently?
  4770. * @cpu: the processor in question.
  4771. */
  4772. int idle_cpu(int cpu)
  4773. {
  4774. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  4775. }
  4776. /**
  4777. * idle_task - return the idle task for a given cpu.
  4778. * @cpu: the processor in question.
  4779. */
  4780. struct task_struct *idle_task(int cpu)
  4781. {
  4782. return cpu_rq(cpu)->idle;
  4783. }
  4784. /**
  4785. * find_process_by_pid - find a process with a matching PID value.
  4786. * @pid: the pid in question.
  4787. */
  4788. static struct task_struct *find_process_by_pid(pid_t pid)
  4789. {
  4790. return pid ? find_task_by_vpid(pid) : current;
  4791. }
  4792. /* Actually do priority change: must hold rq lock. */
  4793. static void
  4794. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  4795. {
  4796. BUG_ON(p->se.on_rq);
  4797. p->policy = policy;
  4798. switch (p->policy) {
  4799. case SCHED_NORMAL:
  4800. case SCHED_BATCH:
  4801. case SCHED_IDLE:
  4802. p->sched_class = &fair_sched_class;
  4803. break;
  4804. case SCHED_FIFO:
  4805. case SCHED_RR:
  4806. p->sched_class = &rt_sched_class;
  4807. break;
  4808. }
  4809. p->rt_priority = prio;
  4810. p->normal_prio = normal_prio(p);
  4811. /* we are holding p->pi_lock already */
  4812. p->prio = rt_mutex_getprio(p);
  4813. set_load_weight(p);
  4814. }
  4815. /*
  4816. * check the target process has a UID that matches the current process's
  4817. */
  4818. static bool check_same_owner(struct task_struct *p)
  4819. {
  4820. const struct cred *cred = current_cred(), *pcred;
  4821. bool match;
  4822. rcu_read_lock();
  4823. pcred = __task_cred(p);
  4824. match = (cred->euid == pcred->euid ||
  4825. cred->euid == pcred->uid);
  4826. rcu_read_unlock();
  4827. return match;
  4828. }
  4829. static int __sched_setscheduler(struct task_struct *p, int policy,
  4830. struct sched_param *param, bool user)
  4831. {
  4832. int retval, oldprio, oldpolicy = -1, on_rq, running;
  4833. unsigned long flags;
  4834. const struct sched_class *prev_class = p->sched_class;
  4835. struct rq *rq;
  4836. /* may grab non-irq protected spin_locks */
  4837. BUG_ON(in_interrupt());
  4838. recheck:
  4839. /* double check policy once rq lock held */
  4840. if (policy < 0)
  4841. policy = oldpolicy = p->policy;
  4842. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  4843. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  4844. policy != SCHED_IDLE)
  4845. return -EINVAL;
  4846. /*
  4847. * Valid priorities for SCHED_FIFO and SCHED_RR are
  4848. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  4849. * SCHED_BATCH and SCHED_IDLE is 0.
  4850. */
  4851. if (param->sched_priority < 0 ||
  4852. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  4853. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  4854. return -EINVAL;
  4855. if (rt_policy(policy) != (param->sched_priority != 0))
  4856. return -EINVAL;
  4857. /*
  4858. * Allow unprivileged RT tasks to decrease priority:
  4859. */
  4860. if (user && !capable(CAP_SYS_NICE)) {
  4861. if (rt_policy(policy)) {
  4862. unsigned long rlim_rtprio;
  4863. if (!lock_task_sighand(p, &flags))
  4864. return -ESRCH;
  4865. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  4866. unlock_task_sighand(p, &flags);
  4867. /* can't set/change the rt policy */
  4868. if (policy != p->policy && !rlim_rtprio)
  4869. return -EPERM;
  4870. /* can't increase priority */
  4871. if (param->sched_priority > p->rt_priority &&
  4872. param->sched_priority > rlim_rtprio)
  4873. return -EPERM;
  4874. }
  4875. /*
  4876. * Like positive nice levels, dont allow tasks to
  4877. * move out of SCHED_IDLE either:
  4878. */
  4879. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  4880. return -EPERM;
  4881. /* can't change other user's priorities */
  4882. if (!check_same_owner(p))
  4883. return -EPERM;
  4884. }
  4885. if (user) {
  4886. #ifdef CONFIG_RT_GROUP_SCHED
  4887. /*
  4888. * Do not allow realtime tasks into groups that have no runtime
  4889. * assigned.
  4890. */
  4891. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  4892. task_group(p)->rt_bandwidth.rt_runtime == 0)
  4893. return -EPERM;
  4894. #endif
  4895. retval = security_task_setscheduler(p, policy, param);
  4896. if (retval)
  4897. return retval;
  4898. }
  4899. /*
  4900. * make sure no PI-waiters arrive (or leave) while we are
  4901. * changing the priority of the task:
  4902. */
  4903. spin_lock_irqsave(&p->pi_lock, flags);
  4904. /*
  4905. * To be able to change p->policy safely, the apropriate
  4906. * runqueue lock must be held.
  4907. */
  4908. rq = __task_rq_lock(p);
  4909. /* recheck policy now with rq lock held */
  4910. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  4911. policy = oldpolicy = -1;
  4912. __task_rq_unlock(rq);
  4913. spin_unlock_irqrestore(&p->pi_lock, flags);
  4914. goto recheck;
  4915. }
  4916. update_rq_clock(rq);
  4917. on_rq = p->se.on_rq;
  4918. running = task_current(rq, p);
  4919. if (on_rq)
  4920. deactivate_task(rq, p, 0);
  4921. if (running)
  4922. p->sched_class->put_prev_task(rq, p);
  4923. oldprio = p->prio;
  4924. __setscheduler(rq, p, policy, param->sched_priority);
  4925. if (running)
  4926. p->sched_class->set_curr_task(rq);
  4927. if (on_rq) {
  4928. activate_task(rq, p, 0);
  4929. check_class_changed(rq, p, prev_class, oldprio, running);
  4930. }
  4931. __task_rq_unlock(rq);
  4932. spin_unlock_irqrestore(&p->pi_lock, flags);
  4933. rt_mutex_adjust_pi(p);
  4934. return 0;
  4935. }
  4936. /**
  4937. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  4938. * @p: the task in question.
  4939. * @policy: new policy.
  4940. * @param: structure containing the new RT priority.
  4941. *
  4942. * NOTE that the task may be already dead.
  4943. */
  4944. int sched_setscheduler(struct task_struct *p, int policy,
  4945. struct sched_param *param)
  4946. {
  4947. return __sched_setscheduler(p, policy, param, true);
  4948. }
  4949. EXPORT_SYMBOL_GPL(sched_setscheduler);
  4950. /**
  4951. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  4952. * @p: the task in question.
  4953. * @policy: new policy.
  4954. * @param: structure containing the new RT priority.
  4955. *
  4956. * Just like sched_setscheduler, only don't bother checking if the
  4957. * current context has permission. For example, this is needed in
  4958. * stop_machine(): we create temporary high priority worker threads,
  4959. * but our caller might not have that capability.
  4960. */
  4961. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  4962. struct sched_param *param)
  4963. {
  4964. return __sched_setscheduler(p, policy, param, false);
  4965. }
  4966. static int
  4967. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4968. {
  4969. struct sched_param lparam;
  4970. struct task_struct *p;
  4971. int retval;
  4972. if (!param || pid < 0)
  4973. return -EINVAL;
  4974. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  4975. return -EFAULT;
  4976. rcu_read_lock();
  4977. retval = -ESRCH;
  4978. p = find_process_by_pid(pid);
  4979. if (p != NULL)
  4980. retval = sched_setscheduler(p, policy, &lparam);
  4981. rcu_read_unlock();
  4982. return retval;
  4983. }
  4984. /**
  4985. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  4986. * @pid: the pid in question.
  4987. * @policy: new policy.
  4988. * @param: structure containing the new RT priority.
  4989. */
  4990. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  4991. struct sched_param __user *, param)
  4992. {
  4993. /* negative values for policy are not valid */
  4994. if (policy < 0)
  4995. return -EINVAL;
  4996. return do_sched_setscheduler(pid, policy, param);
  4997. }
  4998. /**
  4999. * sys_sched_setparam - set/change the RT priority of a thread
  5000. * @pid: the pid in question.
  5001. * @param: structure containing the new RT priority.
  5002. */
  5003. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  5004. {
  5005. return do_sched_setscheduler(pid, -1, param);
  5006. }
  5007. /**
  5008. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  5009. * @pid: the pid in question.
  5010. */
  5011. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  5012. {
  5013. struct task_struct *p;
  5014. int retval;
  5015. if (pid < 0)
  5016. return -EINVAL;
  5017. retval = -ESRCH;
  5018. read_lock(&tasklist_lock);
  5019. p = find_process_by_pid(pid);
  5020. if (p) {
  5021. retval = security_task_getscheduler(p);
  5022. if (!retval)
  5023. retval = p->policy;
  5024. }
  5025. read_unlock(&tasklist_lock);
  5026. return retval;
  5027. }
  5028. /**
  5029. * sys_sched_getscheduler - get the RT priority of a thread
  5030. * @pid: the pid in question.
  5031. * @param: structure containing the RT priority.
  5032. */
  5033. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  5034. {
  5035. struct sched_param lp;
  5036. struct task_struct *p;
  5037. int retval;
  5038. if (!param || pid < 0)
  5039. return -EINVAL;
  5040. read_lock(&tasklist_lock);
  5041. p = find_process_by_pid(pid);
  5042. retval = -ESRCH;
  5043. if (!p)
  5044. goto out_unlock;
  5045. retval = security_task_getscheduler(p);
  5046. if (retval)
  5047. goto out_unlock;
  5048. lp.sched_priority = p->rt_priority;
  5049. read_unlock(&tasklist_lock);
  5050. /*
  5051. * This one might sleep, we cannot do it with a spinlock held ...
  5052. */
  5053. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  5054. return retval;
  5055. out_unlock:
  5056. read_unlock(&tasklist_lock);
  5057. return retval;
  5058. }
  5059. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  5060. {
  5061. cpumask_var_t cpus_allowed, new_mask;
  5062. struct task_struct *p;
  5063. int retval;
  5064. get_online_cpus();
  5065. read_lock(&tasklist_lock);
  5066. p = find_process_by_pid(pid);
  5067. if (!p) {
  5068. read_unlock(&tasklist_lock);
  5069. put_online_cpus();
  5070. return -ESRCH;
  5071. }
  5072. /*
  5073. * It is not safe to call set_cpus_allowed with the
  5074. * tasklist_lock held. We will bump the task_struct's
  5075. * usage count and then drop tasklist_lock.
  5076. */
  5077. get_task_struct(p);
  5078. read_unlock(&tasklist_lock);
  5079. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  5080. retval = -ENOMEM;
  5081. goto out_put_task;
  5082. }
  5083. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  5084. retval = -ENOMEM;
  5085. goto out_free_cpus_allowed;
  5086. }
  5087. retval = -EPERM;
  5088. if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
  5089. goto out_unlock;
  5090. retval = security_task_setscheduler(p, 0, NULL);
  5091. if (retval)
  5092. goto out_unlock;
  5093. cpuset_cpus_allowed(p, cpus_allowed);
  5094. cpumask_and(new_mask, in_mask, cpus_allowed);
  5095. again:
  5096. retval = set_cpus_allowed_ptr(p, new_mask);
  5097. if (!retval) {
  5098. cpuset_cpus_allowed(p, cpus_allowed);
  5099. if (!cpumask_subset(new_mask, cpus_allowed)) {
  5100. /*
  5101. * We must have raced with a concurrent cpuset
  5102. * update. Just reset the cpus_allowed to the
  5103. * cpuset's cpus_allowed
  5104. */
  5105. cpumask_copy(new_mask, cpus_allowed);
  5106. goto again;
  5107. }
  5108. }
  5109. out_unlock:
  5110. free_cpumask_var(new_mask);
  5111. out_free_cpus_allowed:
  5112. free_cpumask_var(cpus_allowed);
  5113. out_put_task:
  5114. put_task_struct(p);
  5115. put_online_cpus();
  5116. return retval;
  5117. }
  5118. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  5119. struct cpumask *new_mask)
  5120. {
  5121. if (len < cpumask_size())
  5122. cpumask_clear(new_mask);
  5123. else if (len > cpumask_size())
  5124. len = cpumask_size();
  5125. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  5126. }
  5127. /**
  5128. * sys_sched_setaffinity - set the cpu affinity of a process
  5129. * @pid: pid of the process
  5130. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  5131. * @user_mask_ptr: user-space pointer to the new cpu mask
  5132. */
  5133. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  5134. unsigned long __user *, user_mask_ptr)
  5135. {
  5136. cpumask_var_t new_mask;
  5137. int retval;
  5138. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  5139. return -ENOMEM;
  5140. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  5141. if (retval == 0)
  5142. retval = sched_setaffinity(pid, new_mask);
  5143. free_cpumask_var(new_mask);
  5144. return retval;
  5145. }
  5146. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  5147. {
  5148. struct task_struct *p;
  5149. int retval;
  5150. get_online_cpus();
  5151. read_lock(&tasklist_lock);
  5152. retval = -ESRCH;
  5153. p = find_process_by_pid(pid);
  5154. if (!p)
  5155. goto out_unlock;
  5156. retval = security_task_getscheduler(p);
  5157. if (retval)
  5158. goto out_unlock;
  5159. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  5160. out_unlock:
  5161. read_unlock(&tasklist_lock);
  5162. put_online_cpus();
  5163. return retval;
  5164. }
  5165. /**
  5166. * sys_sched_getaffinity - get the cpu affinity of a process
  5167. * @pid: pid of the process
  5168. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  5169. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  5170. */
  5171. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  5172. unsigned long __user *, user_mask_ptr)
  5173. {
  5174. int ret;
  5175. cpumask_var_t mask;
  5176. if (len < cpumask_size())
  5177. return -EINVAL;
  5178. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  5179. return -ENOMEM;
  5180. ret = sched_getaffinity(pid, mask);
  5181. if (ret == 0) {
  5182. if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
  5183. ret = -EFAULT;
  5184. else
  5185. ret = cpumask_size();
  5186. }
  5187. free_cpumask_var(mask);
  5188. return ret;
  5189. }
  5190. /**
  5191. * sys_sched_yield - yield the current processor to other threads.
  5192. *
  5193. * This function yields the current CPU to other tasks. If there are no
  5194. * other threads running on this CPU then this function will return.
  5195. */
  5196. SYSCALL_DEFINE0(sched_yield)
  5197. {
  5198. struct rq *rq = this_rq_lock();
  5199. schedstat_inc(rq, yld_count);
  5200. current->sched_class->yield_task(rq);
  5201. /*
  5202. * Since we are going to call schedule() anyway, there's
  5203. * no need to preempt or enable interrupts:
  5204. */
  5205. __release(rq->lock);
  5206. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  5207. _raw_spin_unlock(&rq->lock);
  5208. preempt_enable_no_resched();
  5209. schedule();
  5210. return 0;
  5211. }
  5212. static void __cond_resched(void)
  5213. {
  5214. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  5215. __might_sleep(__FILE__, __LINE__);
  5216. #endif
  5217. /*
  5218. * The BKS might be reacquired before we have dropped
  5219. * PREEMPT_ACTIVE, which could trigger a second
  5220. * cond_resched() call.
  5221. */
  5222. do {
  5223. add_preempt_count(PREEMPT_ACTIVE);
  5224. schedule();
  5225. sub_preempt_count(PREEMPT_ACTIVE);
  5226. } while (need_resched());
  5227. }
  5228. int __sched _cond_resched(void)
  5229. {
  5230. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  5231. system_state == SYSTEM_RUNNING) {
  5232. __cond_resched();
  5233. return 1;
  5234. }
  5235. return 0;
  5236. }
  5237. EXPORT_SYMBOL(_cond_resched);
  5238. /*
  5239. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  5240. * call schedule, and on return reacquire the lock.
  5241. *
  5242. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  5243. * operations here to prevent schedule() from being called twice (once via
  5244. * spin_unlock(), once by hand).
  5245. */
  5246. int cond_resched_lock(spinlock_t *lock)
  5247. {
  5248. int resched = need_resched() && system_state == SYSTEM_RUNNING;
  5249. int ret = 0;
  5250. if (spin_needbreak(lock) || resched) {
  5251. spin_unlock(lock);
  5252. if (resched && need_resched())
  5253. __cond_resched();
  5254. else
  5255. cpu_relax();
  5256. ret = 1;
  5257. spin_lock(lock);
  5258. }
  5259. return ret;
  5260. }
  5261. EXPORT_SYMBOL(cond_resched_lock);
  5262. int __sched cond_resched_softirq(void)
  5263. {
  5264. BUG_ON(!in_softirq());
  5265. if (need_resched() && system_state == SYSTEM_RUNNING) {
  5266. local_bh_enable();
  5267. __cond_resched();
  5268. local_bh_disable();
  5269. return 1;
  5270. }
  5271. return 0;
  5272. }
  5273. EXPORT_SYMBOL(cond_resched_softirq);
  5274. /**
  5275. * yield - yield the current processor to other threads.
  5276. *
  5277. * This is a shortcut for kernel-space yielding - it marks the
  5278. * thread runnable and calls sys_sched_yield().
  5279. */
  5280. void __sched yield(void)
  5281. {
  5282. set_current_state(TASK_RUNNING);
  5283. sys_sched_yield();
  5284. }
  5285. EXPORT_SYMBOL(yield);
  5286. /*
  5287. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  5288. * that process accounting knows that this is a task in IO wait state.
  5289. *
  5290. * But don't do that if it is a deliberate, throttling IO wait (this task
  5291. * has set its backing_dev_info: the queue against which it should throttle)
  5292. */
  5293. void __sched io_schedule(void)
  5294. {
  5295. struct rq *rq = &__raw_get_cpu_var(runqueues);
  5296. delayacct_blkio_start();
  5297. atomic_inc(&rq->nr_iowait);
  5298. schedule();
  5299. atomic_dec(&rq->nr_iowait);
  5300. delayacct_blkio_end();
  5301. }
  5302. EXPORT_SYMBOL(io_schedule);
  5303. long __sched io_schedule_timeout(long timeout)
  5304. {
  5305. struct rq *rq = &__raw_get_cpu_var(runqueues);
  5306. long ret;
  5307. delayacct_blkio_start();
  5308. atomic_inc(&rq->nr_iowait);
  5309. ret = schedule_timeout(timeout);
  5310. atomic_dec(&rq->nr_iowait);
  5311. delayacct_blkio_end();
  5312. return ret;
  5313. }
  5314. /**
  5315. * sys_sched_get_priority_max - return maximum RT priority.
  5316. * @policy: scheduling class.
  5317. *
  5318. * this syscall returns the maximum rt_priority that can be used
  5319. * by a given scheduling class.
  5320. */
  5321. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  5322. {
  5323. int ret = -EINVAL;
  5324. switch (policy) {
  5325. case SCHED_FIFO:
  5326. case SCHED_RR:
  5327. ret = MAX_USER_RT_PRIO-1;
  5328. break;
  5329. case SCHED_NORMAL:
  5330. case SCHED_BATCH:
  5331. case SCHED_IDLE:
  5332. ret = 0;
  5333. break;
  5334. }
  5335. return ret;
  5336. }
  5337. /**
  5338. * sys_sched_get_priority_min - return minimum RT priority.
  5339. * @policy: scheduling class.
  5340. *
  5341. * this syscall returns the minimum rt_priority that can be used
  5342. * by a given scheduling class.
  5343. */
  5344. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  5345. {
  5346. int ret = -EINVAL;
  5347. switch (policy) {
  5348. case SCHED_FIFO:
  5349. case SCHED_RR:
  5350. ret = 1;
  5351. break;
  5352. case SCHED_NORMAL:
  5353. case SCHED_BATCH:
  5354. case SCHED_IDLE:
  5355. ret = 0;
  5356. }
  5357. return ret;
  5358. }
  5359. /**
  5360. * sys_sched_rr_get_interval - return the default timeslice of a process.
  5361. * @pid: pid of the process.
  5362. * @interval: userspace pointer to the timeslice value.
  5363. *
  5364. * this syscall writes the default timeslice value of a given process
  5365. * into the user-space timespec buffer. A value of '0' means infinity.
  5366. */
  5367. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  5368. struct timespec __user *, interval)
  5369. {
  5370. struct task_struct *p;
  5371. unsigned int time_slice;
  5372. int retval;
  5373. struct timespec t;
  5374. if (pid < 0)
  5375. return -EINVAL;
  5376. retval = -ESRCH;
  5377. read_lock(&tasklist_lock);
  5378. p = find_process_by_pid(pid);
  5379. if (!p)
  5380. goto out_unlock;
  5381. retval = security_task_getscheduler(p);
  5382. if (retval)
  5383. goto out_unlock;
  5384. /*
  5385. * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
  5386. * tasks that are on an otherwise idle runqueue:
  5387. */
  5388. time_slice = 0;
  5389. if (p->policy == SCHED_RR) {
  5390. time_slice = DEF_TIMESLICE;
  5391. } else if (p->policy != SCHED_FIFO) {
  5392. struct sched_entity *se = &p->se;
  5393. unsigned long flags;
  5394. struct rq *rq;
  5395. rq = task_rq_lock(p, &flags);
  5396. if (rq->cfs.load.weight)
  5397. time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  5398. task_rq_unlock(rq, &flags);
  5399. }
  5400. read_unlock(&tasklist_lock);
  5401. jiffies_to_timespec(time_slice, &t);
  5402. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  5403. return retval;
  5404. out_unlock:
  5405. read_unlock(&tasklist_lock);
  5406. return retval;
  5407. }
  5408. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  5409. void sched_show_task(struct task_struct *p)
  5410. {
  5411. unsigned long free = 0;
  5412. unsigned state;
  5413. state = p->state ? __ffs(p->state) + 1 : 0;
  5414. printk(KERN_INFO "%-13.13s %c", p->comm,
  5415. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  5416. #if BITS_PER_LONG == 32
  5417. if (state == TASK_RUNNING)
  5418. printk(KERN_CONT " running ");
  5419. else
  5420. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  5421. #else
  5422. if (state == TASK_RUNNING)
  5423. printk(KERN_CONT " running task ");
  5424. else
  5425. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  5426. #endif
  5427. #ifdef CONFIG_DEBUG_STACK_USAGE
  5428. free = stack_not_used(p);
  5429. #endif
  5430. printk(KERN_CONT "%5lu %5d %6d\n", free,
  5431. task_pid_nr(p), task_pid_nr(p->real_parent));
  5432. show_stack(p, NULL);
  5433. }
  5434. void show_state_filter(unsigned long state_filter)
  5435. {
  5436. struct task_struct *g, *p;
  5437. #if BITS_PER_LONG == 32
  5438. printk(KERN_INFO
  5439. " task PC stack pid father\n");
  5440. #else
  5441. printk(KERN_INFO
  5442. " task PC stack pid father\n");
  5443. #endif
  5444. read_lock(&tasklist_lock);
  5445. do_each_thread(g, p) {
  5446. /*
  5447. * reset the NMI-timeout, listing all files on a slow
  5448. * console might take alot of time:
  5449. */
  5450. touch_nmi_watchdog();
  5451. if (!state_filter || (p->state & state_filter))
  5452. sched_show_task(p);
  5453. } while_each_thread(g, p);
  5454. touch_all_softlockup_watchdogs();
  5455. #ifdef CONFIG_SCHED_DEBUG
  5456. sysrq_sched_debug_show();
  5457. #endif
  5458. read_unlock(&tasklist_lock);
  5459. /*
  5460. * Only show locks if all tasks are dumped:
  5461. */
  5462. if (state_filter == -1)
  5463. debug_show_all_locks();
  5464. }
  5465. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  5466. {
  5467. idle->sched_class = &idle_sched_class;
  5468. }
  5469. /**
  5470. * init_idle - set up an idle thread for a given CPU
  5471. * @idle: task in question
  5472. * @cpu: cpu the idle task belongs to
  5473. *
  5474. * NOTE: this function does not set the idle thread's NEED_RESCHED
  5475. * flag, to make booting more robust.
  5476. */
  5477. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  5478. {
  5479. struct rq *rq = cpu_rq(cpu);
  5480. unsigned long flags;
  5481. spin_lock_irqsave(&rq->lock, flags);
  5482. __sched_fork(idle);
  5483. idle->se.exec_start = sched_clock();
  5484. idle->prio = idle->normal_prio = MAX_PRIO;
  5485. cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
  5486. __set_task_cpu(idle, cpu);
  5487. rq->curr = rq->idle = idle;
  5488. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  5489. idle->oncpu = 1;
  5490. #endif
  5491. spin_unlock_irqrestore(&rq->lock, flags);
  5492. /* Set the preempt count _outside_ the spinlocks! */
  5493. #if defined(CONFIG_PREEMPT)
  5494. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  5495. #else
  5496. task_thread_info(idle)->preempt_count = 0;
  5497. #endif
  5498. /*
  5499. * The idle tasks have their own, simple scheduling class:
  5500. */
  5501. idle->sched_class = &idle_sched_class;
  5502. ftrace_graph_init_task(idle);
  5503. }
  5504. /*
  5505. * In a system that switches off the HZ timer nohz_cpu_mask
  5506. * indicates which cpus entered this state. This is used
  5507. * in the rcu update to wait only for active cpus. For system
  5508. * which do not switch off the HZ timer nohz_cpu_mask should
  5509. * always be CPU_BITS_NONE.
  5510. */
  5511. cpumask_var_t nohz_cpu_mask;
  5512. /*
  5513. * Increase the granularity value when there are more CPUs,
  5514. * because with more CPUs the 'effective latency' as visible
  5515. * to users decreases. But the relationship is not linear,
  5516. * so pick a second-best guess by going with the log2 of the
  5517. * number of CPUs.
  5518. *
  5519. * This idea comes from the SD scheduler of Con Kolivas:
  5520. */
  5521. static inline void sched_init_granularity(void)
  5522. {
  5523. unsigned int factor = 1 + ilog2(num_online_cpus());
  5524. const unsigned long limit = 200000000;
  5525. sysctl_sched_min_granularity *= factor;
  5526. if (sysctl_sched_min_granularity > limit)
  5527. sysctl_sched_min_granularity = limit;
  5528. sysctl_sched_latency *= factor;
  5529. if (sysctl_sched_latency > limit)
  5530. sysctl_sched_latency = limit;
  5531. sysctl_sched_wakeup_granularity *= factor;
  5532. sysctl_sched_shares_ratelimit *= factor;
  5533. }
  5534. #ifdef CONFIG_SMP
  5535. /*
  5536. * This is how migration works:
  5537. *
  5538. * 1) we queue a struct migration_req structure in the source CPU's
  5539. * runqueue and wake up that CPU's migration thread.
  5540. * 2) we down() the locked semaphore => thread blocks.
  5541. * 3) migration thread wakes up (implicitly it forces the migrated
  5542. * thread off the CPU)
  5543. * 4) it gets the migration request and checks whether the migrated
  5544. * task is still in the wrong runqueue.
  5545. * 5) if it's in the wrong runqueue then the migration thread removes
  5546. * it and puts it into the right queue.
  5547. * 6) migration thread up()s the semaphore.
  5548. * 7) we wake up and the migration is done.
  5549. */
  5550. /*
  5551. * Change a given task's CPU affinity. Migrate the thread to a
  5552. * proper CPU and schedule it away if the CPU it's executing on
  5553. * is removed from the allowed bitmask.
  5554. *
  5555. * NOTE: the caller must have a valid reference to the task, the
  5556. * task must not exit() & deallocate itself prematurely. The
  5557. * call is not atomic; no spinlocks may be held.
  5558. */
  5559. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  5560. {
  5561. struct migration_req req;
  5562. unsigned long flags;
  5563. struct rq *rq;
  5564. int ret = 0;
  5565. rq = task_rq_lock(p, &flags);
  5566. if (!cpumask_intersects(new_mask, cpu_online_mask)) {
  5567. ret = -EINVAL;
  5568. goto out;
  5569. }
  5570. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  5571. !cpumask_equal(&p->cpus_allowed, new_mask))) {
  5572. ret = -EINVAL;
  5573. goto out;
  5574. }
  5575. if (p->sched_class->set_cpus_allowed)
  5576. p->sched_class->set_cpus_allowed(p, new_mask);
  5577. else {
  5578. cpumask_copy(&p->cpus_allowed, new_mask);
  5579. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  5580. }
  5581. /* Can the task run on the task's current CPU? If so, we're done */
  5582. if (cpumask_test_cpu(task_cpu(p), new_mask))
  5583. goto out;
  5584. if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
  5585. /* Need help from migration thread: drop lock and wait. */
  5586. task_rq_unlock(rq, &flags);
  5587. wake_up_process(rq->migration_thread);
  5588. wait_for_completion(&req.done);
  5589. tlb_migrate_finish(p->mm);
  5590. return 0;
  5591. }
  5592. out:
  5593. task_rq_unlock(rq, &flags);
  5594. return ret;
  5595. }
  5596. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  5597. /*
  5598. * Move (not current) task off this cpu, onto dest cpu. We're doing
  5599. * this because either it can't run here any more (set_cpus_allowed()
  5600. * away from this CPU, or CPU going down), or because we're
  5601. * attempting to rebalance this task on exec (sched_exec).
  5602. *
  5603. * So we race with normal scheduler movements, but that's OK, as long
  5604. * as the task is no longer on this CPU.
  5605. *
  5606. * Returns non-zero if task was successfully migrated.
  5607. */
  5608. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  5609. {
  5610. struct rq *rq_dest, *rq_src;
  5611. int ret = 0, on_rq;
  5612. if (unlikely(!cpu_active(dest_cpu)))
  5613. return ret;
  5614. rq_src = cpu_rq(src_cpu);
  5615. rq_dest = cpu_rq(dest_cpu);
  5616. double_rq_lock(rq_src, rq_dest);
  5617. /* Already moved. */
  5618. if (task_cpu(p) != src_cpu)
  5619. goto done;
  5620. /* Affinity changed (again). */
  5621. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  5622. goto fail;
  5623. on_rq = p->se.on_rq;
  5624. if (on_rq)
  5625. deactivate_task(rq_src, p, 0);
  5626. set_task_cpu(p, dest_cpu);
  5627. if (on_rq) {
  5628. activate_task(rq_dest, p, 0);
  5629. check_preempt_curr(rq_dest, p, 0);
  5630. }
  5631. done:
  5632. ret = 1;
  5633. fail:
  5634. double_rq_unlock(rq_src, rq_dest);
  5635. return ret;
  5636. }
  5637. /*
  5638. * migration_thread - this is a highprio system thread that performs
  5639. * thread migration by bumping thread off CPU then 'pushing' onto
  5640. * another runqueue.
  5641. */
  5642. static int migration_thread(void *data)
  5643. {
  5644. int cpu = (long)data;
  5645. struct rq *rq;
  5646. rq = cpu_rq(cpu);
  5647. BUG_ON(rq->migration_thread != current);
  5648. set_current_state(TASK_INTERRUPTIBLE);
  5649. while (!kthread_should_stop()) {
  5650. struct migration_req *req;
  5651. struct list_head *head;
  5652. spin_lock_irq(&rq->lock);
  5653. if (cpu_is_offline(cpu)) {
  5654. spin_unlock_irq(&rq->lock);
  5655. goto wait_to_die;
  5656. }
  5657. if (rq->active_balance) {
  5658. active_load_balance(rq, cpu);
  5659. rq->active_balance = 0;
  5660. }
  5661. head = &rq->migration_queue;
  5662. if (list_empty(head)) {
  5663. spin_unlock_irq(&rq->lock);
  5664. schedule();
  5665. set_current_state(TASK_INTERRUPTIBLE);
  5666. continue;
  5667. }
  5668. req = list_entry(head->next, struct migration_req, list);
  5669. list_del_init(head->next);
  5670. spin_unlock(&rq->lock);
  5671. __migrate_task(req->task, cpu, req->dest_cpu);
  5672. local_irq_enable();
  5673. complete(&req->done);
  5674. }
  5675. __set_current_state(TASK_RUNNING);
  5676. return 0;
  5677. wait_to_die:
  5678. /* Wait for kthread_stop */
  5679. set_current_state(TASK_INTERRUPTIBLE);
  5680. while (!kthread_should_stop()) {
  5681. schedule();
  5682. set_current_state(TASK_INTERRUPTIBLE);
  5683. }
  5684. __set_current_state(TASK_RUNNING);
  5685. return 0;
  5686. }
  5687. #ifdef CONFIG_HOTPLUG_CPU
  5688. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  5689. {
  5690. int ret;
  5691. local_irq_disable();
  5692. ret = __migrate_task(p, src_cpu, dest_cpu);
  5693. local_irq_enable();
  5694. return ret;
  5695. }
  5696. /*
  5697. * Figure out where task on dead CPU should go, use force if necessary.
  5698. */
  5699. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  5700. {
  5701. int dest_cpu;
  5702. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
  5703. again:
  5704. /* Look for allowed, online CPU in same node. */
  5705. for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
  5706. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  5707. goto move;
  5708. /* Any allowed, online CPU? */
  5709. dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
  5710. if (dest_cpu < nr_cpu_ids)
  5711. goto move;
  5712. /* No more Mr. Nice Guy. */
  5713. if (dest_cpu >= nr_cpu_ids) {
  5714. cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
  5715. dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
  5716. /*
  5717. * Don't tell them about moving exiting tasks or
  5718. * kernel threads (both mm NULL), since they never
  5719. * leave kernel.
  5720. */
  5721. if (p->mm && printk_ratelimit()) {
  5722. printk(KERN_INFO "process %d (%s) no "
  5723. "longer affine to cpu%d\n",
  5724. task_pid_nr(p), p->comm, dead_cpu);
  5725. }
  5726. }
  5727. move:
  5728. /* It can have affinity changed while we were choosing. */
  5729. if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
  5730. goto again;
  5731. }
  5732. /*
  5733. * While a dead CPU has no uninterruptible tasks queued at this point,
  5734. * it might still have a nonzero ->nr_uninterruptible counter, because
  5735. * for performance reasons the counter is not stricly tracking tasks to
  5736. * their home CPUs. So we just add the counter to another CPU's counter,
  5737. * to keep the global sum constant after CPU-down:
  5738. */
  5739. static void migrate_nr_uninterruptible(struct rq *rq_src)
  5740. {
  5741. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
  5742. unsigned long flags;
  5743. local_irq_save(flags);
  5744. double_rq_lock(rq_src, rq_dest);
  5745. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  5746. rq_src->nr_uninterruptible = 0;
  5747. double_rq_unlock(rq_src, rq_dest);
  5748. local_irq_restore(flags);
  5749. }
  5750. /* Run through task list and migrate tasks from the dead cpu. */
  5751. static void migrate_live_tasks(int src_cpu)
  5752. {
  5753. struct task_struct *p, *t;
  5754. read_lock(&tasklist_lock);
  5755. do_each_thread(t, p) {
  5756. if (p == current)
  5757. continue;
  5758. if (task_cpu(p) == src_cpu)
  5759. move_task_off_dead_cpu(src_cpu, p);
  5760. } while_each_thread(t, p);
  5761. read_unlock(&tasklist_lock);
  5762. }
  5763. /*
  5764. * Schedules idle task to be the next runnable task on current CPU.
  5765. * It does so by boosting its priority to highest possible.
  5766. * Used by CPU offline code.
  5767. */
  5768. void sched_idle_next(void)
  5769. {
  5770. int this_cpu = smp_processor_id();
  5771. struct rq *rq = cpu_rq(this_cpu);
  5772. struct task_struct *p = rq->idle;
  5773. unsigned long flags;
  5774. /* cpu has to be offline */
  5775. BUG_ON(cpu_online(this_cpu));
  5776. /*
  5777. * Strictly not necessary since rest of the CPUs are stopped by now
  5778. * and interrupts disabled on the current cpu.
  5779. */
  5780. spin_lock_irqsave(&rq->lock, flags);
  5781. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5782. update_rq_clock(rq);
  5783. activate_task(rq, p, 0);
  5784. spin_unlock_irqrestore(&rq->lock, flags);
  5785. }
  5786. /*
  5787. * Ensures that the idle task is using init_mm right before its cpu goes
  5788. * offline.
  5789. */
  5790. void idle_task_exit(void)
  5791. {
  5792. struct mm_struct *mm = current->active_mm;
  5793. BUG_ON(cpu_online(smp_processor_id()));
  5794. if (mm != &init_mm)
  5795. switch_mm(mm, &init_mm, current);
  5796. mmdrop(mm);
  5797. }
  5798. /* called under rq->lock with disabled interrupts */
  5799. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  5800. {
  5801. struct rq *rq = cpu_rq(dead_cpu);
  5802. /* Must be exiting, otherwise would be on tasklist. */
  5803. BUG_ON(!p->exit_state);
  5804. /* Cannot have done final schedule yet: would have vanished. */
  5805. BUG_ON(p->state == TASK_DEAD);
  5806. get_task_struct(p);
  5807. /*
  5808. * Drop lock around migration; if someone else moves it,
  5809. * that's OK. No task can be added to this CPU, so iteration is
  5810. * fine.
  5811. */
  5812. spin_unlock_irq(&rq->lock);
  5813. move_task_off_dead_cpu(dead_cpu, p);
  5814. spin_lock_irq(&rq->lock);
  5815. put_task_struct(p);
  5816. }
  5817. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  5818. static void migrate_dead_tasks(unsigned int dead_cpu)
  5819. {
  5820. struct rq *rq = cpu_rq(dead_cpu);
  5821. struct task_struct *next;
  5822. for ( ; ; ) {
  5823. if (!rq->nr_running)
  5824. break;
  5825. update_rq_clock(rq);
  5826. next = pick_next_task(rq);
  5827. if (!next)
  5828. break;
  5829. next->sched_class->put_prev_task(rq, next);
  5830. migrate_dead(dead_cpu, next);
  5831. }
  5832. }
  5833. #endif /* CONFIG_HOTPLUG_CPU */
  5834. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  5835. static struct ctl_table sd_ctl_dir[] = {
  5836. {
  5837. .procname = "sched_domain",
  5838. .mode = 0555,
  5839. },
  5840. {0, },
  5841. };
  5842. static struct ctl_table sd_ctl_root[] = {
  5843. {
  5844. .ctl_name = CTL_KERN,
  5845. .procname = "kernel",
  5846. .mode = 0555,
  5847. .child = sd_ctl_dir,
  5848. },
  5849. {0, },
  5850. };
  5851. static struct ctl_table *sd_alloc_ctl_entry(int n)
  5852. {
  5853. struct ctl_table *entry =
  5854. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  5855. return entry;
  5856. }
  5857. static void sd_free_ctl_entry(struct ctl_table **tablep)
  5858. {
  5859. struct ctl_table *entry;
  5860. /*
  5861. * In the intermediate directories, both the child directory and
  5862. * procname are dynamically allocated and could fail but the mode
  5863. * will always be set. In the lowest directory the names are
  5864. * static strings and all have proc handlers.
  5865. */
  5866. for (entry = *tablep; entry->mode; entry++) {
  5867. if (entry->child)
  5868. sd_free_ctl_entry(&entry->child);
  5869. if (entry->proc_handler == NULL)
  5870. kfree(entry->procname);
  5871. }
  5872. kfree(*tablep);
  5873. *tablep = NULL;
  5874. }
  5875. static void
  5876. set_table_entry(struct ctl_table *entry,
  5877. const char *procname, void *data, int maxlen,
  5878. mode_t mode, proc_handler *proc_handler)
  5879. {
  5880. entry->procname = procname;
  5881. entry->data = data;
  5882. entry->maxlen = maxlen;
  5883. entry->mode = mode;
  5884. entry->proc_handler = proc_handler;
  5885. }
  5886. static struct ctl_table *
  5887. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  5888. {
  5889. struct ctl_table *table = sd_alloc_ctl_entry(13);
  5890. if (table == NULL)
  5891. return NULL;
  5892. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  5893. sizeof(long), 0644, proc_doulongvec_minmax);
  5894. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  5895. sizeof(long), 0644, proc_doulongvec_minmax);
  5896. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  5897. sizeof(int), 0644, proc_dointvec_minmax);
  5898. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  5899. sizeof(int), 0644, proc_dointvec_minmax);
  5900. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  5901. sizeof(int), 0644, proc_dointvec_minmax);
  5902. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  5903. sizeof(int), 0644, proc_dointvec_minmax);
  5904. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  5905. sizeof(int), 0644, proc_dointvec_minmax);
  5906. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  5907. sizeof(int), 0644, proc_dointvec_minmax);
  5908. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  5909. sizeof(int), 0644, proc_dointvec_minmax);
  5910. set_table_entry(&table[9], "cache_nice_tries",
  5911. &sd->cache_nice_tries,
  5912. sizeof(int), 0644, proc_dointvec_minmax);
  5913. set_table_entry(&table[10], "flags", &sd->flags,
  5914. sizeof(int), 0644, proc_dointvec_minmax);
  5915. set_table_entry(&table[11], "name", sd->name,
  5916. CORENAME_MAX_SIZE, 0444, proc_dostring);
  5917. /* &table[12] is terminator */
  5918. return table;
  5919. }
  5920. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  5921. {
  5922. struct ctl_table *entry, *table;
  5923. struct sched_domain *sd;
  5924. int domain_num = 0, i;
  5925. char buf[32];
  5926. for_each_domain(cpu, sd)
  5927. domain_num++;
  5928. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  5929. if (table == NULL)
  5930. return NULL;
  5931. i = 0;
  5932. for_each_domain(cpu, sd) {
  5933. snprintf(buf, 32, "domain%d", i);
  5934. entry->procname = kstrdup(buf, GFP_KERNEL);
  5935. entry->mode = 0555;
  5936. entry->child = sd_alloc_ctl_domain_table(sd);
  5937. entry++;
  5938. i++;
  5939. }
  5940. return table;
  5941. }
  5942. static struct ctl_table_header *sd_sysctl_header;
  5943. static void register_sched_domain_sysctl(void)
  5944. {
  5945. int i, cpu_num = num_online_cpus();
  5946. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  5947. char buf[32];
  5948. WARN_ON(sd_ctl_dir[0].child);
  5949. sd_ctl_dir[0].child = entry;
  5950. if (entry == NULL)
  5951. return;
  5952. for_each_online_cpu(i) {
  5953. snprintf(buf, 32, "cpu%d", i);
  5954. entry->procname = kstrdup(buf, GFP_KERNEL);
  5955. entry->mode = 0555;
  5956. entry->child = sd_alloc_ctl_cpu_table(i);
  5957. entry++;
  5958. }
  5959. WARN_ON(sd_sysctl_header);
  5960. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  5961. }
  5962. /* may be called multiple times per register */
  5963. static void unregister_sched_domain_sysctl(void)
  5964. {
  5965. if (sd_sysctl_header)
  5966. unregister_sysctl_table(sd_sysctl_header);
  5967. sd_sysctl_header = NULL;
  5968. if (sd_ctl_dir[0].child)
  5969. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  5970. }
  5971. #else
  5972. static void register_sched_domain_sysctl(void)
  5973. {
  5974. }
  5975. static void unregister_sched_domain_sysctl(void)
  5976. {
  5977. }
  5978. #endif
  5979. static void set_rq_online(struct rq *rq)
  5980. {
  5981. if (!rq->online) {
  5982. const struct sched_class *class;
  5983. cpumask_set_cpu(rq->cpu, rq->rd->online);
  5984. rq->online = 1;
  5985. for_each_class(class) {
  5986. if (class->rq_online)
  5987. class->rq_online(rq);
  5988. }
  5989. }
  5990. }
  5991. static void set_rq_offline(struct rq *rq)
  5992. {
  5993. if (rq->online) {
  5994. const struct sched_class *class;
  5995. for_each_class(class) {
  5996. if (class->rq_offline)
  5997. class->rq_offline(rq);
  5998. }
  5999. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  6000. rq->online = 0;
  6001. }
  6002. }
  6003. /*
  6004. * migration_call - callback that gets triggered when a CPU is added.
  6005. * Here we can start up the necessary migration thread for the new CPU.
  6006. */
  6007. static int __cpuinit
  6008. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  6009. {
  6010. struct task_struct *p;
  6011. int cpu = (long)hcpu;
  6012. unsigned long flags;
  6013. struct rq *rq;
  6014. switch (action) {
  6015. case CPU_UP_PREPARE:
  6016. case CPU_UP_PREPARE_FROZEN:
  6017. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  6018. if (IS_ERR(p))
  6019. return NOTIFY_BAD;
  6020. kthread_bind(p, cpu);
  6021. /* Must be high prio: stop_machine expects to yield to it. */
  6022. rq = task_rq_lock(p, &flags);
  6023. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  6024. task_rq_unlock(rq, &flags);
  6025. cpu_rq(cpu)->migration_thread = p;
  6026. break;
  6027. case CPU_ONLINE:
  6028. case CPU_ONLINE_FROZEN:
  6029. /* Strictly unnecessary, as first user will wake it. */
  6030. wake_up_process(cpu_rq(cpu)->migration_thread);
  6031. /* Update our root-domain */
  6032. rq = cpu_rq(cpu);
  6033. spin_lock_irqsave(&rq->lock, flags);
  6034. if (rq->rd) {
  6035. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  6036. set_rq_online(rq);
  6037. }
  6038. spin_unlock_irqrestore(&rq->lock, flags);
  6039. break;
  6040. #ifdef CONFIG_HOTPLUG_CPU
  6041. case CPU_UP_CANCELED:
  6042. case CPU_UP_CANCELED_FROZEN:
  6043. if (!cpu_rq(cpu)->migration_thread)
  6044. break;
  6045. /* Unbind it from offline cpu so it can run. Fall thru. */
  6046. kthread_bind(cpu_rq(cpu)->migration_thread,
  6047. cpumask_any(cpu_online_mask));
  6048. kthread_stop(cpu_rq(cpu)->migration_thread);
  6049. cpu_rq(cpu)->migration_thread = NULL;
  6050. break;
  6051. case CPU_DEAD:
  6052. case CPU_DEAD_FROZEN:
  6053. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  6054. migrate_live_tasks(cpu);
  6055. rq = cpu_rq(cpu);
  6056. kthread_stop(rq->migration_thread);
  6057. rq->migration_thread = NULL;
  6058. /* Idle task back to normal (off runqueue, low prio) */
  6059. spin_lock_irq(&rq->lock);
  6060. update_rq_clock(rq);
  6061. deactivate_task(rq, rq->idle, 0);
  6062. rq->idle->static_prio = MAX_PRIO;
  6063. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  6064. rq->idle->sched_class = &idle_sched_class;
  6065. migrate_dead_tasks(cpu);
  6066. spin_unlock_irq(&rq->lock);
  6067. cpuset_unlock();
  6068. migrate_nr_uninterruptible(rq);
  6069. BUG_ON(rq->nr_running != 0);
  6070. /*
  6071. * No need to migrate the tasks: it was best-effort if
  6072. * they didn't take sched_hotcpu_mutex. Just wake up
  6073. * the requestors.
  6074. */
  6075. spin_lock_irq(&rq->lock);
  6076. while (!list_empty(&rq->migration_queue)) {
  6077. struct migration_req *req;
  6078. req = list_entry(rq->migration_queue.next,
  6079. struct migration_req, list);
  6080. list_del_init(&req->list);
  6081. spin_unlock_irq(&rq->lock);
  6082. complete(&req->done);
  6083. spin_lock_irq(&rq->lock);
  6084. }
  6085. spin_unlock_irq(&rq->lock);
  6086. break;
  6087. case CPU_DYING:
  6088. case CPU_DYING_FROZEN:
  6089. /* Update our root-domain */
  6090. rq = cpu_rq(cpu);
  6091. spin_lock_irqsave(&rq->lock, flags);
  6092. if (rq->rd) {
  6093. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  6094. set_rq_offline(rq);
  6095. }
  6096. spin_unlock_irqrestore(&rq->lock, flags);
  6097. break;
  6098. #endif
  6099. }
  6100. return NOTIFY_OK;
  6101. }
  6102. /* Register at highest priority so that task migration (migrate_all_tasks)
  6103. * happens before everything else.
  6104. */
  6105. static struct notifier_block __cpuinitdata migration_notifier = {
  6106. .notifier_call = migration_call,
  6107. .priority = 10
  6108. };
  6109. static int __init migration_init(void)
  6110. {
  6111. void *cpu = (void *)(long)smp_processor_id();
  6112. int err;
  6113. /* Start one for the boot CPU: */
  6114. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  6115. BUG_ON(err == NOTIFY_BAD);
  6116. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  6117. register_cpu_notifier(&migration_notifier);
  6118. return err;
  6119. }
  6120. early_initcall(migration_init);
  6121. #endif
  6122. #ifdef CONFIG_SMP
  6123. #ifdef CONFIG_SCHED_DEBUG
  6124. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  6125. struct cpumask *groupmask)
  6126. {
  6127. struct sched_group *group = sd->groups;
  6128. char str[256];
  6129. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  6130. cpumask_clear(groupmask);
  6131. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  6132. if (!(sd->flags & SD_LOAD_BALANCE)) {
  6133. printk("does not load-balance\n");
  6134. if (sd->parent)
  6135. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  6136. " has parent");
  6137. return -1;
  6138. }
  6139. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  6140. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  6141. printk(KERN_ERR "ERROR: domain->span does not contain "
  6142. "CPU%d\n", cpu);
  6143. }
  6144. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  6145. printk(KERN_ERR "ERROR: domain->groups does not contain"
  6146. " CPU%d\n", cpu);
  6147. }
  6148. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  6149. do {
  6150. if (!group) {
  6151. printk("\n");
  6152. printk(KERN_ERR "ERROR: group is NULL\n");
  6153. break;
  6154. }
  6155. if (!group->__cpu_power) {
  6156. printk(KERN_CONT "\n");
  6157. printk(KERN_ERR "ERROR: domain->cpu_power not "
  6158. "set\n");
  6159. break;
  6160. }
  6161. if (!cpumask_weight(sched_group_cpus(group))) {
  6162. printk(KERN_CONT "\n");
  6163. printk(KERN_ERR "ERROR: empty group\n");
  6164. break;
  6165. }
  6166. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  6167. printk(KERN_CONT "\n");
  6168. printk(KERN_ERR "ERROR: repeated CPUs\n");
  6169. break;
  6170. }
  6171. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  6172. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  6173. printk(KERN_CONT " %s", str);
  6174. group = group->next;
  6175. } while (group != sd->groups);
  6176. printk(KERN_CONT "\n");
  6177. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  6178. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  6179. if (sd->parent &&
  6180. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  6181. printk(KERN_ERR "ERROR: parent span is not a superset "
  6182. "of domain->span\n");
  6183. return 0;
  6184. }
  6185. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  6186. {
  6187. cpumask_var_t groupmask;
  6188. int level = 0;
  6189. if (!sd) {
  6190. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  6191. return;
  6192. }
  6193. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  6194. if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
  6195. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  6196. return;
  6197. }
  6198. for (;;) {
  6199. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  6200. break;
  6201. level++;
  6202. sd = sd->parent;
  6203. if (!sd)
  6204. break;
  6205. }
  6206. free_cpumask_var(groupmask);
  6207. }
  6208. #else /* !CONFIG_SCHED_DEBUG */
  6209. # define sched_domain_debug(sd, cpu) do { } while (0)
  6210. #endif /* CONFIG_SCHED_DEBUG */
  6211. static int sd_degenerate(struct sched_domain *sd)
  6212. {
  6213. if (cpumask_weight(sched_domain_span(sd)) == 1)
  6214. return 1;
  6215. /* Following flags need at least 2 groups */
  6216. if (sd->flags & (SD_LOAD_BALANCE |
  6217. SD_BALANCE_NEWIDLE |
  6218. SD_BALANCE_FORK |
  6219. SD_BALANCE_EXEC |
  6220. SD_SHARE_CPUPOWER |
  6221. SD_SHARE_PKG_RESOURCES)) {
  6222. if (sd->groups != sd->groups->next)
  6223. return 0;
  6224. }
  6225. /* Following flags don't use groups */
  6226. if (sd->flags & (SD_WAKE_IDLE |
  6227. SD_WAKE_AFFINE |
  6228. SD_WAKE_BALANCE))
  6229. return 0;
  6230. return 1;
  6231. }
  6232. static int
  6233. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  6234. {
  6235. unsigned long cflags = sd->flags, pflags = parent->flags;
  6236. if (sd_degenerate(parent))
  6237. return 1;
  6238. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  6239. return 0;
  6240. /* Does parent contain flags not in child? */
  6241. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  6242. if (cflags & SD_WAKE_AFFINE)
  6243. pflags &= ~SD_WAKE_BALANCE;
  6244. /* Flags needing groups don't count if only 1 group in parent */
  6245. if (parent->groups == parent->groups->next) {
  6246. pflags &= ~(SD_LOAD_BALANCE |
  6247. SD_BALANCE_NEWIDLE |
  6248. SD_BALANCE_FORK |
  6249. SD_BALANCE_EXEC |
  6250. SD_SHARE_CPUPOWER |
  6251. SD_SHARE_PKG_RESOURCES);
  6252. if (nr_node_ids == 1)
  6253. pflags &= ~SD_SERIALIZE;
  6254. }
  6255. if (~cflags & pflags)
  6256. return 0;
  6257. return 1;
  6258. }
  6259. static void free_rootdomain(struct root_domain *rd)
  6260. {
  6261. cpupri_cleanup(&rd->cpupri);
  6262. free_cpumask_var(rd->rto_mask);
  6263. free_cpumask_var(rd->online);
  6264. free_cpumask_var(rd->span);
  6265. kfree(rd);
  6266. }
  6267. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  6268. {
  6269. struct root_domain *old_rd = NULL;
  6270. unsigned long flags;
  6271. spin_lock_irqsave(&rq->lock, flags);
  6272. if (rq->rd) {
  6273. old_rd = rq->rd;
  6274. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  6275. set_rq_offline(rq);
  6276. cpumask_clear_cpu(rq->cpu, old_rd->span);
  6277. /*
  6278. * If we dont want to free the old_rt yet then
  6279. * set old_rd to NULL to skip the freeing later
  6280. * in this function:
  6281. */
  6282. if (!atomic_dec_and_test(&old_rd->refcount))
  6283. old_rd = NULL;
  6284. }
  6285. atomic_inc(&rd->refcount);
  6286. rq->rd = rd;
  6287. cpumask_set_cpu(rq->cpu, rd->span);
  6288. if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
  6289. set_rq_online(rq);
  6290. spin_unlock_irqrestore(&rq->lock, flags);
  6291. if (old_rd)
  6292. free_rootdomain(old_rd);
  6293. }
  6294. static int __init_refok init_rootdomain(struct root_domain *rd, bool bootmem)
  6295. {
  6296. memset(rd, 0, sizeof(*rd));
  6297. if (bootmem) {
  6298. alloc_bootmem_cpumask_var(&def_root_domain.span);
  6299. alloc_bootmem_cpumask_var(&def_root_domain.online);
  6300. alloc_bootmem_cpumask_var(&def_root_domain.rto_mask);
  6301. cpupri_init(&rd->cpupri, true);
  6302. return 0;
  6303. }
  6304. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  6305. goto out;
  6306. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  6307. goto free_span;
  6308. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  6309. goto free_online;
  6310. if (cpupri_init(&rd->cpupri, false) != 0)
  6311. goto free_rto_mask;
  6312. return 0;
  6313. free_rto_mask:
  6314. free_cpumask_var(rd->rto_mask);
  6315. free_online:
  6316. free_cpumask_var(rd->online);
  6317. free_span:
  6318. free_cpumask_var(rd->span);
  6319. out:
  6320. return -ENOMEM;
  6321. }
  6322. static void init_defrootdomain(void)
  6323. {
  6324. init_rootdomain(&def_root_domain, true);
  6325. atomic_set(&def_root_domain.refcount, 1);
  6326. }
  6327. static struct root_domain *alloc_rootdomain(void)
  6328. {
  6329. struct root_domain *rd;
  6330. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  6331. if (!rd)
  6332. return NULL;
  6333. if (init_rootdomain(rd, false) != 0) {
  6334. kfree(rd);
  6335. return NULL;
  6336. }
  6337. return rd;
  6338. }
  6339. /*
  6340. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  6341. * hold the hotplug lock.
  6342. */
  6343. static void
  6344. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  6345. {
  6346. struct rq *rq = cpu_rq(cpu);
  6347. struct sched_domain *tmp;
  6348. /* Remove the sched domains which do not contribute to scheduling. */
  6349. for (tmp = sd; tmp; ) {
  6350. struct sched_domain *parent = tmp->parent;
  6351. if (!parent)
  6352. break;
  6353. if (sd_parent_degenerate(tmp, parent)) {
  6354. tmp->parent = parent->parent;
  6355. if (parent->parent)
  6356. parent->parent->child = tmp;
  6357. } else
  6358. tmp = tmp->parent;
  6359. }
  6360. if (sd && sd_degenerate(sd)) {
  6361. sd = sd->parent;
  6362. if (sd)
  6363. sd->child = NULL;
  6364. }
  6365. sched_domain_debug(sd, cpu);
  6366. rq_attach_root(rq, rd);
  6367. rcu_assign_pointer(rq->sd, sd);
  6368. }
  6369. /* cpus with isolated domains */
  6370. static cpumask_var_t cpu_isolated_map;
  6371. /* Setup the mask of cpus configured for isolated domains */
  6372. static int __init isolated_cpu_setup(char *str)
  6373. {
  6374. cpulist_parse(str, cpu_isolated_map);
  6375. return 1;
  6376. }
  6377. __setup("isolcpus=", isolated_cpu_setup);
  6378. /*
  6379. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  6380. * to a function which identifies what group(along with sched group) a CPU
  6381. * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
  6382. * (due to the fact that we keep track of groups covered with a struct cpumask).
  6383. *
  6384. * init_sched_build_groups will build a circular linked list of the groups
  6385. * covered by the given span, and will set each group's ->cpumask correctly,
  6386. * and ->cpu_power to 0.
  6387. */
  6388. static void
  6389. init_sched_build_groups(const struct cpumask *span,
  6390. const struct cpumask *cpu_map,
  6391. int (*group_fn)(int cpu, const struct cpumask *cpu_map,
  6392. struct sched_group **sg,
  6393. struct cpumask *tmpmask),
  6394. struct cpumask *covered, struct cpumask *tmpmask)
  6395. {
  6396. struct sched_group *first = NULL, *last = NULL;
  6397. int i;
  6398. cpumask_clear(covered);
  6399. for_each_cpu(i, span) {
  6400. struct sched_group *sg;
  6401. int group = group_fn(i, cpu_map, &sg, tmpmask);
  6402. int j;
  6403. if (cpumask_test_cpu(i, covered))
  6404. continue;
  6405. cpumask_clear(sched_group_cpus(sg));
  6406. sg->__cpu_power = 0;
  6407. for_each_cpu(j, span) {
  6408. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  6409. continue;
  6410. cpumask_set_cpu(j, covered);
  6411. cpumask_set_cpu(j, sched_group_cpus(sg));
  6412. }
  6413. if (!first)
  6414. first = sg;
  6415. if (last)
  6416. last->next = sg;
  6417. last = sg;
  6418. }
  6419. last->next = first;
  6420. }
  6421. #define SD_NODES_PER_DOMAIN 16
  6422. #ifdef CONFIG_NUMA
  6423. /**
  6424. * find_next_best_node - find the next node to include in a sched_domain
  6425. * @node: node whose sched_domain we're building
  6426. * @used_nodes: nodes already in the sched_domain
  6427. *
  6428. * Find the next node to include in a given scheduling domain. Simply
  6429. * finds the closest node not already in the @used_nodes map.
  6430. *
  6431. * Should use nodemask_t.
  6432. */
  6433. static int find_next_best_node(int node, nodemask_t *used_nodes)
  6434. {
  6435. int i, n, val, min_val, best_node = 0;
  6436. min_val = INT_MAX;
  6437. for (i = 0; i < nr_node_ids; i++) {
  6438. /* Start at @node */
  6439. n = (node + i) % nr_node_ids;
  6440. if (!nr_cpus_node(n))
  6441. continue;
  6442. /* Skip already used nodes */
  6443. if (node_isset(n, *used_nodes))
  6444. continue;
  6445. /* Simple min distance search */
  6446. val = node_distance(node, n);
  6447. if (val < min_val) {
  6448. min_val = val;
  6449. best_node = n;
  6450. }
  6451. }
  6452. node_set(best_node, *used_nodes);
  6453. return best_node;
  6454. }
  6455. /**
  6456. * sched_domain_node_span - get a cpumask for a node's sched_domain
  6457. * @node: node whose cpumask we're constructing
  6458. * @span: resulting cpumask
  6459. *
  6460. * Given a node, construct a good cpumask for its sched_domain to span. It
  6461. * should be one that prevents unnecessary balancing, but also spreads tasks
  6462. * out optimally.
  6463. */
  6464. static void sched_domain_node_span(int node, struct cpumask *span)
  6465. {
  6466. nodemask_t used_nodes;
  6467. int i;
  6468. cpumask_clear(span);
  6469. nodes_clear(used_nodes);
  6470. cpumask_or(span, span, cpumask_of_node(node));
  6471. node_set(node, used_nodes);
  6472. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  6473. int next_node = find_next_best_node(node, &used_nodes);
  6474. cpumask_or(span, span, cpumask_of_node(next_node));
  6475. }
  6476. }
  6477. #endif /* CONFIG_NUMA */
  6478. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  6479. /*
  6480. * The cpus mask in sched_group and sched_domain hangs off the end.
  6481. * FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space
  6482. * for nr_cpu_ids < CONFIG_NR_CPUS.
  6483. */
  6484. struct static_sched_group {
  6485. struct sched_group sg;
  6486. DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
  6487. };
  6488. struct static_sched_domain {
  6489. struct sched_domain sd;
  6490. DECLARE_BITMAP(span, CONFIG_NR_CPUS);
  6491. };
  6492. /*
  6493. * SMT sched-domains:
  6494. */
  6495. #ifdef CONFIG_SCHED_SMT
  6496. static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
  6497. static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
  6498. static int
  6499. cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
  6500. struct sched_group **sg, struct cpumask *unused)
  6501. {
  6502. if (sg)
  6503. *sg = &per_cpu(sched_group_cpus, cpu).sg;
  6504. return cpu;
  6505. }
  6506. #endif /* CONFIG_SCHED_SMT */
  6507. /*
  6508. * multi-core sched-domains:
  6509. */
  6510. #ifdef CONFIG_SCHED_MC
  6511. static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
  6512. static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
  6513. #endif /* CONFIG_SCHED_MC */
  6514. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  6515. static int
  6516. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  6517. struct sched_group **sg, struct cpumask *mask)
  6518. {
  6519. int group;
  6520. cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
  6521. group = cpumask_first(mask);
  6522. if (sg)
  6523. *sg = &per_cpu(sched_group_core, group).sg;
  6524. return group;
  6525. }
  6526. #elif defined(CONFIG_SCHED_MC)
  6527. static int
  6528. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  6529. struct sched_group **sg, struct cpumask *unused)
  6530. {
  6531. if (sg)
  6532. *sg = &per_cpu(sched_group_core, cpu).sg;
  6533. return cpu;
  6534. }
  6535. #endif
  6536. static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
  6537. static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
  6538. static int
  6539. cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
  6540. struct sched_group **sg, struct cpumask *mask)
  6541. {
  6542. int group;
  6543. #ifdef CONFIG_SCHED_MC
  6544. cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
  6545. group = cpumask_first(mask);
  6546. #elif defined(CONFIG_SCHED_SMT)
  6547. cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
  6548. group = cpumask_first(mask);
  6549. #else
  6550. group = cpu;
  6551. #endif
  6552. if (sg)
  6553. *sg = &per_cpu(sched_group_phys, group).sg;
  6554. return group;
  6555. }
  6556. #ifdef CONFIG_NUMA
  6557. /*
  6558. * The init_sched_build_groups can't handle what we want to do with node
  6559. * groups, so roll our own. Now each node has its own list of groups which
  6560. * gets dynamically allocated.
  6561. */
  6562. static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
  6563. static struct sched_group ***sched_group_nodes_bycpu;
  6564. static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
  6565. static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
  6566. static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
  6567. struct sched_group **sg,
  6568. struct cpumask *nodemask)
  6569. {
  6570. int group;
  6571. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
  6572. group = cpumask_first(nodemask);
  6573. if (sg)
  6574. *sg = &per_cpu(sched_group_allnodes, group).sg;
  6575. return group;
  6576. }
  6577. static void init_numa_sched_groups_power(struct sched_group *group_head)
  6578. {
  6579. struct sched_group *sg = group_head;
  6580. int j;
  6581. if (!sg)
  6582. return;
  6583. do {
  6584. for_each_cpu(j, sched_group_cpus(sg)) {
  6585. struct sched_domain *sd;
  6586. sd = &per_cpu(phys_domains, j).sd;
  6587. if (j != cpumask_first(sched_group_cpus(sd->groups))) {
  6588. /*
  6589. * Only add "power" once for each
  6590. * physical package.
  6591. */
  6592. continue;
  6593. }
  6594. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  6595. }
  6596. sg = sg->next;
  6597. } while (sg != group_head);
  6598. }
  6599. #endif /* CONFIG_NUMA */
  6600. #ifdef CONFIG_NUMA
  6601. /* Free memory allocated for various sched_group structures */
  6602. static void free_sched_groups(const struct cpumask *cpu_map,
  6603. struct cpumask *nodemask)
  6604. {
  6605. int cpu, i;
  6606. for_each_cpu(cpu, cpu_map) {
  6607. struct sched_group **sched_group_nodes
  6608. = sched_group_nodes_bycpu[cpu];
  6609. if (!sched_group_nodes)
  6610. continue;
  6611. for (i = 0; i < nr_node_ids; i++) {
  6612. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  6613. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  6614. if (cpumask_empty(nodemask))
  6615. continue;
  6616. if (sg == NULL)
  6617. continue;
  6618. sg = sg->next;
  6619. next_sg:
  6620. oldsg = sg;
  6621. sg = sg->next;
  6622. kfree(oldsg);
  6623. if (oldsg != sched_group_nodes[i])
  6624. goto next_sg;
  6625. }
  6626. kfree(sched_group_nodes);
  6627. sched_group_nodes_bycpu[cpu] = NULL;
  6628. }
  6629. }
  6630. #else /* !CONFIG_NUMA */
  6631. static void free_sched_groups(const struct cpumask *cpu_map,
  6632. struct cpumask *nodemask)
  6633. {
  6634. }
  6635. #endif /* CONFIG_NUMA */
  6636. /*
  6637. * Initialize sched groups cpu_power.
  6638. *
  6639. * cpu_power indicates the capacity of sched group, which is used while
  6640. * distributing the load between different sched groups in a sched domain.
  6641. * Typically cpu_power for all the groups in a sched domain will be same unless
  6642. * there are asymmetries in the topology. If there are asymmetries, group
  6643. * having more cpu_power will pickup more load compared to the group having
  6644. * less cpu_power.
  6645. *
  6646. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  6647. * the maximum number of tasks a group can handle in the presence of other idle
  6648. * or lightly loaded groups in the same sched domain.
  6649. */
  6650. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  6651. {
  6652. struct sched_domain *child;
  6653. struct sched_group *group;
  6654. WARN_ON(!sd || !sd->groups);
  6655. if (cpu != cpumask_first(sched_group_cpus(sd->groups)))
  6656. return;
  6657. child = sd->child;
  6658. sd->groups->__cpu_power = 0;
  6659. /*
  6660. * For perf policy, if the groups in child domain share resources
  6661. * (for example cores sharing some portions of the cache hierarchy
  6662. * or SMT), then set this domain groups cpu_power such that each group
  6663. * can handle only one task, when there are other idle groups in the
  6664. * same sched domain.
  6665. */
  6666. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  6667. (child->flags &
  6668. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  6669. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  6670. return;
  6671. }
  6672. /*
  6673. * add cpu_power of each child group to this groups cpu_power
  6674. */
  6675. group = child->groups;
  6676. do {
  6677. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  6678. group = group->next;
  6679. } while (group != child->groups);
  6680. }
  6681. /*
  6682. * Initializers for schedule domains
  6683. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  6684. */
  6685. #ifdef CONFIG_SCHED_DEBUG
  6686. # define SD_INIT_NAME(sd, type) sd->name = #type
  6687. #else
  6688. # define SD_INIT_NAME(sd, type) do { } while (0)
  6689. #endif
  6690. #define SD_INIT(sd, type) sd_init_##type(sd)
  6691. #define SD_INIT_FUNC(type) \
  6692. static noinline void sd_init_##type(struct sched_domain *sd) \
  6693. { \
  6694. memset(sd, 0, sizeof(*sd)); \
  6695. *sd = SD_##type##_INIT; \
  6696. sd->level = SD_LV_##type; \
  6697. SD_INIT_NAME(sd, type); \
  6698. }
  6699. SD_INIT_FUNC(CPU)
  6700. #ifdef CONFIG_NUMA
  6701. SD_INIT_FUNC(ALLNODES)
  6702. SD_INIT_FUNC(NODE)
  6703. #endif
  6704. #ifdef CONFIG_SCHED_SMT
  6705. SD_INIT_FUNC(SIBLING)
  6706. #endif
  6707. #ifdef CONFIG_SCHED_MC
  6708. SD_INIT_FUNC(MC)
  6709. #endif
  6710. static int default_relax_domain_level = -1;
  6711. static int __init setup_relax_domain_level(char *str)
  6712. {
  6713. unsigned long val;
  6714. val = simple_strtoul(str, NULL, 0);
  6715. if (val < SD_LV_MAX)
  6716. default_relax_domain_level = val;
  6717. return 1;
  6718. }
  6719. __setup("relax_domain_level=", setup_relax_domain_level);
  6720. static void set_domain_attribute(struct sched_domain *sd,
  6721. struct sched_domain_attr *attr)
  6722. {
  6723. int request;
  6724. if (!attr || attr->relax_domain_level < 0) {
  6725. if (default_relax_domain_level < 0)
  6726. return;
  6727. else
  6728. request = default_relax_domain_level;
  6729. } else
  6730. request = attr->relax_domain_level;
  6731. if (request < sd->level) {
  6732. /* turn off idle balance on this domain */
  6733. sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
  6734. } else {
  6735. /* turn on idle balance on this domain */
  6736. sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
  6737. }
  6738. }
  6739. /*
  6740. * Build sched domains for a given set of cpus and attach the sched domains
  6741. * to the individual cpus
  6742. */
  6743. static int __build_sched_domains(const struct cpumask *cpu_map,
  6744. struct sched_domain_attr *attr)
  6745. {
  6746. int i, err = -ENOMEM;
  6747. struct root_domain *rd;
  6748. cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
  6749. tmpmask;
  6750. #ifdef CONFIG_NUMA
  6751. cpumask_var_t domainspan, covered, notcovered;
  6752. struct sched_group **sched_group_nodes = NULL;
  6753. int sd_allnodes = 0;
  6754. if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
  6755. goto out;
  6756. if (!alloc_cpumask_var(&covered, GFP_KERNEL))
  6757. goto free_domainspan;
  6758. if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
  6759. goto free_covered;
  6760. #endif
  6761. if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
  6762. goto free_notcovered;
  6763. if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
  6764. goto free_nodemask;
  6765. if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
  6766. goto free_this_sibling_map;
  6767. if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
  6768. goto free_this_core_map;
  6769. if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
  6770. goto free_send_covered;
  6771. #ifdef CONFIG_NUMA
  6772. /*
  6773. * Allocate the per-node list of sched groups
  6774. */
  6775. sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
  6776. GFP_KERNEL);
  6777. if (!sched_group_nodes) {
  6778. printk(KERN_WARNING "Can not alloc sched group node list\n");
  6779. goto free_tmpmask;
  6780. }
  6781. #endif
  6782. rd = alloc_rootdomain();
  6783. if (!rd) {
  6784. printk(KERN_WARNING "Cannot alloc root domain\n");
  6785. goto free_sched_groups;
  6786. }
  6787. #ifdef CONFIG_NUMA
  6788. sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
  6789. #endif
  6790. /*
  6791. * Set up domains for cpus specified by the cpu_map.
  6792. */
  6793. for_each_cpu(i, cpu_map) {
  6794. struct sched_domain *sd = NULL, *p;
  6795. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
  6796. #ifdef CONFIG_NUMA
  6797. if (cpumask_weight(cpu_map) >
  6798. SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
  6799. sd = &per_cpu(allnodes_domains, i).sd;
  6800. SD_INIT(sd, ALLNODES);
  6801. set_domain_attribute(sd, attr);
  6802. cpumask_copy(sched_domain_span(sd), cpu_map);
  6803. cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
  6804. p = sd;
  6805. sd_allnodes = 1;
  6806. } else
  6807. p = NULL;
  6808. sd = &per_cpu(node_domains, i).sd;
  6809. SD_INIT(sd, NODE);
  6810. set_domain_attribute(sd, attr);
  6811. sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
  6812. sd->parent = p;
  6813. if (p)
  6814. p->child = sd;
  6815. cpumask_and(sched_domain_span(sd),
  6816. sched_domain_span(sd), cpu_map);
  6817. #endif
  6818. p = sd;
  6819. sd = &per_cpu(phys_domains, i).sd;
  6820. SD_INIT(sd, CPU);
  6821. set_domain_attribute(sd, attr);
  6822. cpumask_copy(sched_domain_span(sd), nodemask);
  6823. sd->parent = p;
  6824. if (p)
  6825. p->child = sd;
  6826. cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
  6827. #ifdef CONFIG_SCHED_MC
  6828. p = sd;
  6829. sd = &per_cpu(core_domains, i).sd;
  6830. SD_INIT(sd, MC);
  6831. set_domain_attribute(sd, attr);
  6832. cpumask_and(sched_domain_span(sd), cpu_map,
  6833. cpu_coregroup_mask(i));
  6834. sd->parent = p;
  6835. p->child = sd;
  6836. cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
  6837. #endif
  6838. #ifdef CONFIG_SCHED_SMT
  6839. p = sd;
  6840. sd = &per_cpu(cpu_domains, i).sd;
  6841. SD_INIT(sd, SIBLING);
  6842. set_domain_attribute(sd, attr);
  6843. cpumask_and(sched_domain_span(sd),
  6844. &per_cpu(cpu_sibling_map, i), cpu_map);
  6845. sd->parent = p;
  6846. p->child = sd;
  6847. cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
  6848. #endif
  6849. }
  6850. #ifdef CONFIG_SCHED_SMT
  6851. /* Set up CPU (sibling) groups */
  6852. for_each_cpu(i, cpu_map) {
  6853. cpumask_and(this_sibling_map,
  6854. &per_cpu(cpu_sibling_map, i), cpu_map);
  6855. if (i != cpumask_first(this_sibling_map))
  6856. continue;
  6857. init_sched_build_groups(this_sibling_map, cpu_map,
  6858. &cpu_to_cpu_group,
  6859. send_covered, tmpmask);
  6860. }
  6861. #endif
  6862. #ifdef CONFIG_SCHED_MC
  6863. /* Set up multi-core groups */
  6864. for_each_cpu(i, cpu_map) {
  6865. cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
  6866. if (i != cpumask_first(this_core_map))
  6867. continue;
  6868. init_sched_build_groups(this_core_map, cpu_map,
  6869. &cpu_to_core_group,
  6870. send_covered, tmpmask);
  6871. }
  6872. #endif
  6873. /* Set up physical groups */
  6874. for (i = 0; i < nr_node_ids; i++) {
  6875. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  6876. if (cpumask_empty(nodemask))
  6877. continue;
  6878. init_sched_build_groups(nodemask, cpu_map,
  6879. &cpu_to_phys_group,
  6880. send_covered, tmpmask);
  6881. }
  6882. #ifdef CONFIG_NUMA
  6883. /* Set up node groups */
  6884. if (sd_allnodes) {
  6885. init_sched_build_groups(cpu_map, cpu_map,
  6886. &cpu_to_allnodes_group,
  6887. send_covered, tmpmask);
  6888. }
  6889. for (i = 0; i < nr_node_ids; i++) {
  6890. /* Set up node groups */
  6891. struct sched_group *sg, *prev;
  6892. int j;
  6893. cpumask_clear(covered);
  6894. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  6895. if (cpumask_empty(nodemask)) {
  6896. sched_group_nodes[i] = NULL;
  6897. continue;
  6898. }
  6899. sched_domain_node_span(i, domainspan);
  6900. cpumask_and(domainspan, domainspan, cpu_map);
  6901. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  6902. GFP_KERNEL, i);
  6903. if (!sg) {
  6904. printk(KERN_WARNING "Can not alloc domain group for "
  6905. "node %d\n", i);
  6906. goto error;
  6907. }
  6908. sched_group_nodes[i] = sg;
  6909. for_each_cpu(j, nodemask) {
  6910. struct sched_domain *sd;
  6911. sd = &per_cpu(node_domains, j).sd;
  6912. sd->groups = sg;
  6913. }
  6914. sg->__cpu_power = 0;
  6915. cpumask_copy(sched_group_cpus(sg), nodemask);
  6916. sg->next = sg;
  6917. cpumask_or(covered, covered, nodemask);
  6918. prev = sg;
  6919. for (j = 0; j < nr_node_ids; j++) {
  6920. int n = (i + j) % nr_node_ids;
  6921. cpumask_complement(notcovered, covered);
  6922. cpumask_and(tmpmask, notcovered, cpu_map);
  6923. cpumask_and(tmpmask, tmpmask, domainspan);
  6924. if (cpumask_empty(tmpmask))
  6925. break;
  6926. cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
  6927. if (cpumask_empty(tmpmask))
  6928. continue;
  6929. sg = kmalloc_node(sizeof(struct sched_group) +
  6930. cpumask_size(),
  6931. GFP_KERNEL, i);
  6932. if (!sg) {
  6933. printk(KERN_WARNING
  6934. "Can not alloc domain group for node %d\n", j);
  6935. goto error;
  6936. }
  6937. sg->__cpu_power = 0;
  6938. cpumask_copy(sched_group_cpus(sg), tmpmask);
  6939. sg->next = prev->next;
  6940. cpumask_or(covered, covered, tmpmask);
  6941. prev->next = sg;
  6942. prev = sg;
  6943. }
  6944. }
  6945. #endif
  6946. /* Calculate CPU power for physical packages and nodes */
  6947. #ifdef CONFIG_SCHED_SMT
  6948. for_each_cpu(i, cpu_map) {
  6949. struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
  6950. init_sched_groups_power(i, sd);
  6951. }
  6952. #endif
  6953. #ifdef CONFIG_SCHED_MC
  6954. for_each_cpu(i, cpu_map) {
  6955. struct sched_domain *sd = &per_cpu(core_domains, i).sd;
  6956. init_sched_groups_power(i, sd);
  6957. }
  6958. #endif
  6959. for_each_cpu(i, cpu_map) {
  6960. struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
  6961. init_sched_groups_power(i, sd);
  6962. }
  6963. #ifdef CONFIG_NUMA
  6964. for (i = 0; i < nr_node_ids; i++)
  6965. init_numa_sched_groups_power(sched_group_nodes[i]);
  6966. if (sd_allnodes) {
  6967. struct sched_group *sg;
  6968. cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
  6969. tmpmask);
  6970. init_numa_sched_groups_power(sg);
  6971. }
  6972. #endif
  6973. /* Attach the domains */
  6974. for_each_cpu(i, cpu_map) {
  6975. struct sched_domain *sd;
  6976. #ifdef CONFIG_SCHED_SMT
  6977. sd = &per_cpu(cpu_domains, i).sd;
  6978. #elif defined(CONFIG_SCHED_MC)
  6979. sd = &per_cpu(core_domains, i).sd;
  6980. #else
  6981. sd = &per_cpu(phys_domains, i).sd;
  6982. #endif
  6983. cpu_attach_domain(sd, rd, i);
  6984. }
  6985. err = 0;
  6986. free_tmpmask:
  6987. free_cpumask_var(tmpmask);
  6988. free_send_covered:
  6989. free_cpumask_var(send_covered);
  6990. free_this_core_map:
  6991. free_cpumask_var(this_core_map);
  6992. free_this_sibling_map:
  6993. free_cpumask_var(this_sibling_map);
  6994. free_nodemask:
  6995. free_cpumask_var(nodemask);
  6996. free_notcovered:
  6997. #ifdef CONFIG_NUMA
  6998. free_cpumask_var(notcovered);
  6999. free_covered:
  7000. free_cpumask_var(covered);
  7001. free_domainspan:
  7002. free_cpumask_var(domainspan);
  7003. out:
  7004. #endif
  7005. return err;
  7006. free_sched_groups:
  7007. #ifdef CONFIG_NUMA
  7008. kfree(sched_group_nodes);
  7009. #endif
  7010. goto free_tmpmask;
  7011. #ifdef CONFIG_NUMA
  7012. error:
  7013. free_sched_groups(cpu_map, tmpmask);
  7014. free_rootdomain(rd);
  7015. goto free_tmpmask;
  7016. #endif
  7017. }
  7018. static int build_sched_domains(const struct cpumask *cpu_map)
  7019. {
  7020. return __build_sched_domains(cpu_map, NULL);
  7021. }
  7022. static struct cpumask *doms_cur; /* current sched domains */
  7023. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  7024. static struct sched_domain_attr *dattr_cur;
  7025. /* attribues of custom domains in 'doms_cur' */
  7026. /*
  7027. * Special case: If a kmalloc of a doms_cur partition (array of
  7028. * cpumask) fails, then fallback to a single sched domain,
  7029. * as determined by the single cpumask fallback_doms.
  7030. */
  7031. static cpumask_var_t fallback_doms;
  7032. /*
  7033. * arch_update_cpu_topology lets virtualized architectures update the
  7034. * cpu core maps. It is supposed to return 1 if the topology changed
  7035. * or 0 if it stayed the same.
  7036. */
  7037. int __attribute__((weak)) arch_update_cpu_topology(void)
  7038. {
  7039. return 0;
  7040. }
  7041. /*
  7042. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  7043. * For now this just excludes isolated cpus, but could be used to
  7044. * exclude other special cases in the future.
  7045. */
  7046. static int arch_init_sched_domains(const struct cpumask *cpu_map)
  7047. {
  7048. int err;
  7049. arch_update_cpu_topology();
  7050. ndoms_cur = 1;
  7051. doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
  7052. if (!doms_cur)
  7053. doms_cur = fallback_doms;
  7054. cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
  7055. dattr_cur = NULL;
  7056. err = build_sched_domains(doms_cur);
  7057. register_sched_domain_sysctl();
  7058. return err;
  7059. }
  7060. static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
  7061. struct cpumask *tmpmask)
  7062. {
  7063. free_sched_groups(cpu_map, tmpmask);
  7064. }
  7065. /*
  7066. * Detach sched domains from a group of cpus specified in cpu_map
  7067. * These cpus will now be attached to the NULL domain
  7068. */
  7069. static void detach_destroy_domains(const struct cpumask *cpu_map)
  7070. {
  7071. /* Save because hotplug lock held. */
  7072. static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
  7073. int i;
  7074. for_each_cpu(i, cpu_map)
  7075. cpu_attach_domain(NULL, &def_root_domain, i);
  7076. synchronize_sched();
  7077. arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
  7078. }
  7079. /* handle null as "default" */
  7080. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  7081. struct sched_domain_attr *new, int idx_new)
  7082. {
  7083. struct sched_domain_attr tmp;
  7084. /* fast path */
  7085. if (!new && !cur)
  7086. return 1;
  7087. tmp = SD_ATTR_INIT;
  7088. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  7089. new ? (new + idx_new) : &tmp,
  7090. sizeof(struct sched_domain_attr));
  7091. }
  7092. /*
  7093. * Partition sched domains as specified by the 'ndoms_new'
  7094. * cpumasks in the array doms_new[] of cpumasks. This compares
  7095. * doms_new[] to the current sched domain partitioning, doms_cur[].
  7096. * It destroys each deleted domain and builds each new domain.
  7097. *
  7098. * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
  7099. * The masks don't intersect (don't overlap.) We should setup one
  7100. * sched domain for each mask. CPUs not in any of the cpumasks will
  7101. * not be load balanced. If the same cpumask appears both in the
  7102. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  7103. * it as it is.
  7104. *
  7105. * The passed in 'doms_new' should be kmalloc'd. This routine takes
  7106. * ownership of it and will kfree it when done with it. If the caller
  7107. * failed the kmalloc call, then it can pass in doms_new == NULL &&
  7108. * ndoms_new == 1, and partition_sched_domains() will fallback to
  7109. * the single partition 'fallback_doms', it also forces the domains
  7110. * to be rebuilt.
  7111. *
  7112. * If doms_new == NULL it will be replaced with cpu_online_mask.
  7113. * ndoms_new == 0 is a special case for destroying existing domains,
  7114. * and it will not create the default domain.
  7115. *
  7116. * Call with hotplug lock held
  7117. */
  7118. /* FIXME: Change to struct cpumask *doms_new[] */
  7119. void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
  7120. struct sched_domain_attr *dattr_new)
  7121. {
  7122. int i, j, n;
  7123. int new_topology;
  7124. mutex_lock(&sched_domains_mutex);
  7125. /* always unregister in case we don't destroy any domains */
  7126. unregister_sched_domain_sysctl();
  7127. /* Let architecture update cpu core mappings. */
  7128. new_topology = arch_update_cpu_topology();
  7129. n = doms_new ? ndoms_new : 0;
  7130. /* Destroy deleted domains */
  7131. for (i = 0; i < ndoms_cur; i++) {
  7132. for (j = 0; j < n && !new_topology; j++) {
  7133. if (cpumask_equal(&doms_cur[i], &doms_new[j])
  7134. && dattrs_equal(dattr_cur, i, dattr_new, j))
  7135. goto match1;
  7136. }
  7137. /* no match - a current sched domain not in new doms_new[] */
  7138. detach_destroy_domains(doms_cur + i);
  7139. match1:
  7140. ;
  7141. }
  7142. if (doms_new == NULL) {
  7143. ndoms_cur = 0;
  7144. doms_new = fallback_doms;
  7145. cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
  7146. WARN_ON_ONCE(dattr_new);
  7147. }
  7148. /* Build new domains */
  7149. for (i = 0; i < ndoms_new; i++) {
  7150. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  7151. if (cpumask_equal(&doms_new[i], &doms_cur[j])
  7152. && dattrs_equal(dattr_new, i, dattr_cur, j))
  7153. goto match2;
  7154. }
  7155. /* no match - add a new doms_new */
  7156. __build_sched_domains(doms_new + i,
  7157. dattr_new ? dattr_new + i : NULL);
  7158. match2:
  7159. ;
  7160. }
  7161. /* Remember the new sched domains */
  7162. if (doms_cur != fallback_doms)
  7163. kfree(doms_cur);
  7164. kfree(dattr_cur); /* kfree(NULL) is safe */
  7165. doms_cur = doms_new;
  7166. dattr_cur = dattr_new;
  7167. ndoms_cur = ndoms_new;
  7168. register_sched_domain_sysctl();
  7169. mutex_unlock(&sched_domains_mutex);
  7170. }
  7171. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  7172. static void arch_reinit_sched_domains(void)
  7173. {
  7174. get_online_cpus();
  7175. /* Destroy domains first to force the rebuild */
  7176. partition_sched_domains(0, NULL, NULL);
  7177. rebuild_sched_domains();
  7178. put_online_cpus();
  7179. }
  7180. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  7181. {
  7182. unsigned int level = 0;
  7183. if (sscanf(buf, "%u", &level) != 1)
  7184. return -EINVAL;
  7185. /*
  7186. * level is always be positive so don't check for
  7187. * level < POWERSAVINGS_BALANCE_NONE which is 0
  7188. * What happens on 0 or 1 byte write,
  7189. * need to check for count as well?
  7190. */
  7191. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  7192. return -EINVAL;
  7193. if (smt)
  7194. sched_smt_power_savings = level;
  7195. else
  7196. sched_mc_power_savings = level;
  7197. arch_reinit_sched_domains();
  7198. return count;
  7199. }
  7200. #ifdef CONFIG_SCHED_MC
  7201. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  7202. char *page)
  7203. {
  7204. return sprintf(page, "%u\n", sched_mc_power_savings);
  7205. }
  7206. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  7207. const char *buf, size_t count)
  7208. {
  7209. return sched_power_savings_store(buf, count, 0);
  7210. }
  7211. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  7212. sched_mc_power_savings_show,
  7213. sched_mc_power_savings_store);
  7214. #endif
  7215. #ifdef CONFIG_SCHED_SMT
  7216. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  7217. char *page)
  7218. {
  7219. return sprintf(page, "%u\n", sched_smt_power_savings);
  7220. }
  7221. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  7222. const char *buf, size_t count)
  7223. {
  7224. return sched_power_savings_store(buf, count, 1);
  7225. }
  7226. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  7227. sched_smt_power_savings_show,
  7228. sched_smt_power_savings_store);
  7229. #endif
  7230. int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  7231. {
  7232. int err = 0;
  7233. #ifdef CONFIG_SCHED_SMT
  7234. if (smt_capable())
  7235. err = sysfs_create_file(&cls->kset.kobj,
  7236. &attr_sched_smt_power_savings.attr);
  7237. #endif
  7238. #ifdef CONFIG_SCHED_MC
  7239. if (!err && mc_capable())
  7240. err = sysfs_create_file(&cls->kset.kobj,
  7241. &attr_sched_mc_power_savings.attr);
  7242. #endif
  7243. return err;
  7244. }
  7245. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  7246. #ifndef CONFIG_CPUSETS
  7247. /*
  7248. * Add online and remove offline CPUs from the scheduler domains.
  7249. * When cpusets are enabled they take over this function.
  7250. */
  7251. static int update_sched_domains(struct notifier_block *nfb,
  7252. unsigned long action, void *hcpu)
  7253. {
  7254. switch (action) {
  7255. case CPU_ONLINE:
  7256. case CPU_ONLINE_FROZEN:
  7257. case CPU_DEAD:
  7258. case CPU_DEAD_FROZEN:
  7259. partition_sched_domains(1, NULL, NULL);
  7260. return NOTIFY_OK;
  7261. default:
  7262. return NOTIFY_DONE;
  7263. }
  7264. }
  7265. #endif
  7266. static int update_runtime(struct notifier_block *nfb,
  7267. unsigned long action, void *hcpu)
  7268. {
  7269. int cpu = (int)(long)hcpu;
  7270. switch (action) {
  7271. case CPU_DOWN_PREPARE:
  7272. case CPU_DOWN_PREPARE_FROZEN:
  7273. disable_runtime(cpu_rq(cpu));
  7274. return NOTIFY_OK;
  7275. case CPU_DOWN_FAILED:
  7276. case CPU_DOWN_FAILED_FROZEN:
  7277. case CPU_ONLINE:
  7278. case CPU_ONLINE_FROZEN:
  7279. enable_runtime(cpu_rq(cpu));
  7280. return NOTIFY_OK;
  7281. default:
  7282. return NOTIFY_DONE;
  7283. }
  7284. }
  7285. void __init sched_init_smp(void)
  7286. {
  7287. cpumask_var_t non_isolated_cpus;
  7288. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  7289. #if defined(CONFIG_NUMA)
  7290. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  7291. GFP_KERNEL);
  7292. BUG_ON(sched_group_nodes_bycpu == NULL);
  7293. #endif
  7294. get_online_cpus();
  7295. mutex_lock(&sched_domains_mutex);
  7296. arch_init_sched_domains(cpu_online_mask);
  7297. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  7298. if (cpumask_empty(non_isolated_cpus))
  7299. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  7300. mutex_unlock(&sched_domains_mutex);
  7301. put_online_cpus();
  7302. #ifndef CONFIG_CPUSETS
  7303. /* XXX: Theoretical race here - CPU may be hotplugged now */
  7304. hotcpu_notifier(update_sched_domains, 0);
  7305. #endif
  7306. /* RT runtime code needs to handle some hotplug events */
  7307. hotcpu_notifier(update_runtime, 0);
  7308. init_hrtick();
  7309. /* Move init over to a non-isolated CPU */
  7310. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  7311. BUG();
  7312. sched_init_granularity();
  7313. free_cpumask_var(non_isolated_cpus);
  7314. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  7315. init_sched_rt_class();
  7316. }
  7317. #else
  7318. void __init sched_init_smp(void)
  7319. {
  7320. sched_init_granularity();
  7321. }
  7322. #endif /* CONFIG_SMP */
  7323. int in_sched_functions(unsigned long addr)
  7324. {
  7325. return in_lock_functions(addr) ||
  7326. (addr >= (unsigned long)__sched_text_start
  7327. && addr < (unsigned long)__sched_text_end);
  7328. }
  7329. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  7330. {
  7331. cfs_rq->tasks_timeline = RB_ROOT;
  7332. INIT_LIST_HEAD(&cfs_rq->tasks);
  7333. #ifdef CONFIG_FAIR_GROUP_SCHED
  7334. cfs_rq->rq = rq;
  7335. #endif
  7336. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  7337. }
  7338. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  7339. {
  7340. struct rt_prio_array *array;
  7341. int i;
  7342. array = &rt_rq->active;
  7343. for (i = 0; i < MAX_RT_PRIO; i++) {
  7344. INIT_LIST_HEAD(array->queue + i);
  7345. __clear_bit(i, array->bitmap);
  7346. }
  7347. /* delimiter for bitsearch: */
  7348. __set_bit(MAX_RT_PRIO, array->bitmap);
  7349. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  7350. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  7351. #ifdef CONFIG_SMP
  7352. rt_rq->highest_prio.next = MAX_RT_PRIO;
  7353. #endif
  7354. #endif
  7355. #ifdef CONFIG_SMP
  7356. rt_rq->rt_nr_migratory = 0;
  7357. rt_rq->overloaded = 0;
  7358. plist_head_init(&rq->rt.pushable_tasks, &rq->lock);
  7359. #endif
  7360. rt_rq->rt_time = 0;
  7361. rt_rq->rt_throttled = 0;
  7362. rt_rq->rt_runtime = 0;
  7363. spin_lock_init(&rt_rq->rt_runtime_lock);
  7364. #ifdef CONFIG_RT_GROUP_SCHED
  7365. rt_rq->rt_nr_boosted = 0;
  7366. rt_rq->rq = rq;
  7367. #endif
  7368. }
  7369. #ifdef CONFIG_FAIR_GROUP_SCHED
  7370. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  7371. struct sched_entity *se, int cpu, int add,
  7372. struct sched_entity *parent)
  7373. {
  7374. struct rq *rq = cpu_rq(cpu);
  7375. tg->cfs_rq[cpu] = cfs_rq;
  7376. init_cfs_rq(cfs_rq, rq);
  7377. cfs_rq->tg = tg;
  7378. if (add)
  7379. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  7380. tg->se[cpu] = se;
  7381. /* se could be NULL for init_task_group */
  7382. if (!se)
  7383. return;
  7384. if (!parent)
  7385. se->cfs_rq = &rq->cfs;
  7386. else
  7387. se->cfs_rq = parent->my_q;
  7388. se->my_q = cfs_rq;
  7389. se->load.weight = tg->shares;
  7390. se->load.inv_weight = 0;
  7391. se->parent = parent;
  7392. }
  7393. #endif
  7394. #ifdef CONFIG_RT_GROUP_SCHED
  7395. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  7396. struct sched_rt_entity *rt_se, int cpu, int add,
  7397. struct sched_rt_entity *parent)
  7398. {
  7399. struct rq *rq = cpu_rq(cpu);
  7400. tg->rt_rq[cpu] = rt_rq;
  7401. init_rt_rq(rt_rq, rq);
  7402. rt_rq->tg = tg;
  7403. rt_rq->rt_se = rt_se;
  7404. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  7405. if (add)
  7406. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  7407. tg->rt_se[cpu] = rt_se;
  7408. if (!rt_se)
  7409. return;
  7410. if (!parent)
  7411. rt_se->rt_rq = &rq->rt;
  7412. else
  7413. rt_se->rt_rq = parent->my_q;
  7414. rt_se->my_q = rt_rq;
  7415. rt_se->parent = parent;
  7416. INIT_LIST_HEAD(&rt_se->run_list);
  7417. }
  7418. #endif
  7419. void __init sched_init(void)
  7420. {
  7421. int i, j;
  7422. unsigned long alloc_size = 0, ptr;
  7423. #ifdef CONFIG_FAIR_GROUP_SCHED
  7424. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  7425. #endif
  7426. #ifdef CONFIG_RT_GROUP_SCHED
  7427. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  7428. #endif
  7429. #ifdef CONFIG_USER_SCHED
  7430. alloc_size *= 2;
  7431. #endif
  7432. /*
  7433. * As sched_init() is called before page_alloc is setup,
  7434. * we use alloc_bootmem().
  7435. */
  7436. if (alloc_size) {
  7437. ptr = (unsigned long)alloc_bootmem(alloc_size);
  7438. #ifdef CONFIG_FAIR_GROUP_SCHED
  7439. init_task_group.se = (struct sched_entity **)ptr;
  7440. ptr += nr_cpu_ids * sizeof(void **);
  7441. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  7442. ptr += nr_cpu_ids * sizeof(void **);
  7443. #ifdef CONFIG_USER_SCHED
  7444. root_task_group.se = (struct sched_entity **)ptr;
  7445. ptr += nr_cpu_ids * sizeof(void **);
  7446. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  7447. ptr += nr_cpu_ids * sizeof(void **);
  7448. #endif /* CONFIG_USER_SCHED */
  7449. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7450. #ifdef CONFIG_RT_GROUP_SCHED
  7451. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  7452. ptr += nr_cpu_ids * sizeof(void **);
  7453. init_task_group.rt_rq = (struct rt_rq **)ptr;
  7454. ptr += nr_cpu_ids * sizeof(void **);
  7455. #ifdef CONFIG_USER_SCHED
  7456. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  7457. ptr += nr_cpu_ids * sizeof(void **);
  7458. root_task_group.rt_rq = (struct rt_rq **)ptr;
  7459. ptr += nr_cpu_ids * sizeof(void **);
  7460. #endif /* CONFIG_USER_SCHED */
  7461. #endif /* CONFIG_RT_GROUP_SCHED */
  7462. }
  7463. #ifdef CONFIG_SMP
  7464. init_defrootdomain();
  7465. #endif
  7466. init_rt_bandwidth(&def_rt_bandwidth,
  7467. global_rt_period(), global_rt_runtime());
  7468. #ifdef CONFIG_RT_GROUP_SCHED
  7469. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  7470. global_rt_period(), global_rt_runtime());
  7471. #ifdef CONFIG_USER_SCHED
  7472. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  7473. global_rt_period(), RUNTIME_INF);
  7474. #endif /* CONFIG_USER_SCHED */
  7475. #endif /* CONFIG_RT_GROUP_SCHED */
  7476. #ifdef CONFIG_GROUP_SCHED
  7477. list_add(&init_task_group.list, &task_groups);
  7478. INIT_LIST_HEAD(&init_task_group.children);
  7479. #ifdef CONFIG_USER_SCHED
  7480. INIT_LIST_HEAD(&root_task_group.children);
  7481. init_task_group.parent = &root_task_group;
  7482. list_add(&init_task_group.siblings, &root_task_group.children);
  7483. #endif /* CONFIG_USER_SCHED */
  7484. #endif /* CONFIG_GROUP_SCHED */
  7485. for_each_possible_cpu(i) {
  7486. struct rq *rq;
  7487. rq = cpu_rq(i);
  7488. spin_lock_init(&rq->lock);
  7489. rq->nr_running = 0;
  7490. init_cfs_rq(&rq->cfs, rq);
  7491. init_rt_rq(&rq->rt, rq);
  7492. #ifdef CONFIG_FAIR_GROUP_SCHED
  7493. init_task_group.shares = init_task_group_load;
  7494. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  7495. #ifdef CONFIG_CGROUP_SCHED
  7496. /*
  7497. * How much cpu bandwidth does init_task_group get?
  7498. *
  7499. * In case of task-groups formed thr' the cgroup filesystem, it
  7500. * gets 100% of the cpu resources in the system. This overall
  7501. * system cpu resource is divided among the tasks of
  7502. * init_task_group and its child task-groups in a fair manner,
  7503. * based on each entity's (task or task-group's) weight
  7504. * (se->load.weight).
  7505. *
  7506. * In other words, if init_task_group has 10 tasks of weight
  7507. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  7508. * then A0's share of the cpu resource is:
  7509. *
  7510. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  7511. *
  7512. * We achieve this by letting init_task_group's tasks sit
  7513. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  7514. */
  7515. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  7516. #elif defined CONFIG_USER_SCHED
  7517. root_task_group.shares = NICE_0_LOAD;
  7518. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
  7519. /*
  7520. * In case of task-groups formed thr' the user id of tasks,
  7521. * init_task_group represents tasks belonging to root user.
  7522. * Hence it forms a sibling of all subsequent groups formed.
  7523. * In this case, init_task_group gets only a fraction of overall
  7524. * system cpu resource, based on the weight assigned to root
  7525. * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
  7526. * by letting tasks of init_task_group sit in a separate cfs_rq
  7527. * (init_cfs_rq) and having one entity represent this group of
  7528. * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
  7529. */
  7530. init_tg_cfs_entry(&init_task_group,
  7531. &per_cpu(init_cfs_rq, i),
  7532. &per_cpu(init_sched_entity, i), i, 1,
  7533. root_task_group.se[i]);
  7534. #endif
  7535. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7536. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  7537. #ifdef CONFIG_RT_GROUP_SCHED
  7538. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  7539. #ifdef CONFIG_CGROUP_SCHED
  7540. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  7541. #elif defined CONFIG_USER_SCHED
  7542. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
  7543. init_tg_rt_entry(&init_task_group,
  7544. &per_cpu(init_rt_rq, i),
  7545. &per_cpu(init_sched_rt_entity, i), i, 1,
  7546. root_task_group.rt_se[i]);
  7547. #endif
  7548. #endif
  7549. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  7550. rq->cpu_load[j] = 0;
  7551. #ifdef CONFIG_SMP
  7552. rq->sd = NULL;
  7553. rq->rd = NULL;
  7554. rq->active_balance = 0;
  7555. rq->next_balance = jiffies;
  7556. rq->push_cpu = 0;
  7557. rq->cpu = i;
  7558. rq->online = 0;
  7559. rq->migration_thread = NULL;
  7560. INIT_LIST_HEAD(&rq->migration_queue);
  7561. rq_attach_root(rq, &def_root_domain);
  7562. #endif
  7563. init_rq_hrtick(rq);
  7564. atomic_set(&rq->nr_iowait, 0);
  7565. }
  7566. set_load_weight(&init_task);
  7567. #ifdef CONFIG_PREEMPT_NOTIFIERS
  7568. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  7569. #endif
  7570. #ifdef CONFIG_SMP
  7571. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  7572. #endif
  7573. #ifdef CONFIG_RT_MUTEXES
  7574. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  7575. #endif
  7576. /*
  7577. * The boot idle thread does lazy MMU switching as well:
  7578. */
  7579. atomic_inc(&init_mm.mm_count);
  7580. enter_lazy_tlb(&init_mm, current);
  7581. /*
  7582. * Make us the idle thread. Technically, schedule() should not be
  7583. * called from this thread, however somewhere below it might be,
  7584. * but because we are the idle thread, we just pick up running again
  7585. * when this runqueue becomes "idle".
  7586. */
  7587. init_idle(current, smp_processor_id());
  7588. /*
  7589. * During early bootup we pretend to be a normal task:
  7590. */
  7591. current->sched_class = &fair_sched_class;
  7592. /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
  7593. alloc_bootmem_cpumask_var(&nohz_cpu_mask);
  7594. #ifdef CONFIG_SMP
  7595. #ifdef CONFIG_NO_HZ
  7596. alloc_bootmem_cpumask_var(&nohz.cpu_mask);
  7597. #endif
  7598. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  7599. #endif /* SMP */
  7600. scheduler_running = 1;
  7601. }
  7602. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  7603. void __might_sleep(char *file, int line)
  7604. {
  7605. #ifdef in_atomic
  7606. static unsigned long prev_jiffy; /* ratelimiting */
  7607. if ((!in_atomic() && !irqs_disabled()) ||
  7608. system_state != SYSTEM_RUNNING || oops_in_progress)
  7609. return;
  7610. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  7611. return;
  7612. prev_jiffy = jiffies;
  7613. printk(KERN_ERR
  7614. "BUG: sleeping function called from invalid context at %s:%d\n",
  7615. file, line);
  7616. printk(KERN_ERR
  7617. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  7618. in_atomic(), irqs_disabled(),
  7619. current->pid, current->comm);
  7620. debug_show_held_locks(current);
  7621. if (irqs_disabled())
  7622. print_irqtrace_events(current);
  7623. dump_stack();
  7624. #endif
  7625. }
  7626. EXPORT_SYMBOL(__might_sleep);
  7627. #endif
  7628. #ifdef CONFIG_MAGIC_SYSRQ
  7629. static void normalize_task(struct rq *rq, struct task_struct *p)
  7630. {
  7631. int on_rq;
  7632. update_rq_clock(rq);
  7633. on_rq = p->se.on_rq;
  7634. if (on_rq)
  7635. deactivate_task(rq, p, 0);
  7636. __setscheduler(rq, p, SCHED_NORMAL, 0);
  7637. if (on_rq) {
  7638. activate_task(rq, p, 0);
  7639. resched_task(rq->curr);
  7640. }
  7641. }
  7642. void normalize_rt_tasks(void)
  7643. {
  7644. struct task_struct *g, *p;
  7645. unsigned long flags;
  7646. struct rq *rq;
  7647. read_lock_irqsave(&tasklist_lock, flags);
  7648. do_each_thread(g, p) {
  7649. /*
  7650. * Only normalize user tasks:
  7651. */
  7652. if (!p->mm)
  7653. continue;
  7654. p->se.exec_start = 0;
  7655. #ifdef CONFIG_SCHEDSTATS
  7656. p->se.wait_start = 0;
  7657. p->se.sleep_start = 0;
  7658. p->se.block_start = 0;
  7659. #endif
  7660. if (!rt_task(p)) {
  7661. /*
  7662. * Renice negative nice level userspace
  7663. * tasks back to 0:
  7664. */
  7665. if (TASK_NICE(p) < 0 && p->mm)
  7666. set_user_nice(p, 0);
  7667. continue;
  7668. }
  7669. spin_lock(&p->pi_lock);
  7670. rq = __task_rq_lock(p);
  7671. normalize_task(rq, p);
  7672. __task_rq_unlock(rq);
  7673. spin_unlock(&p->pi_lock);
  7674. } while_each_thread(g, p);
  7675. read_unlock_irqrestore(&tasklist_lock, flags);
  7676. }
  7677. #endif /* CONFIG_MAGIC_SYSRQ */
  7678. #ifdef CONFIG_IA64
  7679. /*
  7680. * These functions are only useful for the IA64 MCA handling.
  7681. *
  7682. * They can only be called when the whole system has been
  7683. * stopped - every CPU needs to be quiescent, and no scheduling
  7684. * activity can take place. Using them for anything else would
  7685. * be a serious bug, and as a result, they aren't even visible
  7686. * under any other configuration.
  7687. */
  7688. /**
  7689. * curr_task - return the current task for a given cpu.
  7690. * @cpu: the processor in question.
  7691. *
  7692. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7693. */
  7694. struct task_struct *curr_task(int cpu)
  7695. {
  7696. return cpu_curr(cpu);
  7697. }
  7698. /**
  7699. * set_curr_task - set the current task for a given cpu.
  7700. * @cpu: the processor in question.
  7701. * @p: the task pointer to set.
  7702. *
  7703. * Description: This function must only be used when non-maskable interrupts
  7704. * are serviced on a separate stack. It allows the architecture to switch the
  7705. * notion of the current task on a cpu in a non-blocking manner. This function
  7706. * must be called with all CPU's synchronized, and interrupts disabled, the
  7707. * and caller must save the original value of the current task (see
  7708. * curr_task() above) and restore that value before reenabling interrupts and
  7709. * re-starting the system.
  7710. *
  7711. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7712. */
  7713. void set_curr_task(int cpu, struct task_struct *p)
  7714. {
  7715. cpu_curr(cpu) = p;
  7716. }
  7717. #endif
  7718. #ifdef CONFIG_FAIR_GROUP_SCHED
  7719. static void free_fair_sched_group(struct task_group *tg)
  7720. {
  7721. int i;
  7722. for_each_possible_cpu(i) {
  7723. if (tg->cfs_rq)
  7724. kfree(tg->cfs_rq[i]);
  7725. if (tg->se)
  7726. kfree(tg->se[i]);
  7727. }
  7728. kfree(tg->cfs_rq);
  7729. kfree(tg->se);
  7730. }
  7731. static
  7732. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7733. {
  7734. struct cfs_rq *cfs_rq;
  7735. struct sched_entity *se;
  7736. struct rq *rq;
  7737. int i;
  7738. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  7739. if (!tg->cfs_rq)
  7740. goto err;
  7741. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  7742. if (!tg->se)
  7743. goto err;
  7744. tg->shares = NICE_0_LOAD;
  7745. for_each_possible_cpu(i) {
  7746. rq = cpu_rq(i);
  7747. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  7748. GFP_KERNEL, cpu_to_node(i));
  7749. if (!cfs_rq)
  7750. goto err;
  7751. se = kzalloc_node(sizeof(struct sched_entity),
  7752. GFP_KERNEL, cpu_to_node(i));
  7753. if (!se)
  7754. goto err;
  7755. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
  7756. }
  7757. return 1;
  7758. err:
  7759. return 0;
  7760. }
  7761. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7762. {
  7763. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  7764. &cpu_rq(cpu)->leaf_cfs_rq_list);
  7765. }
  7766. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7767. {
  7768. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  7769. }
  7770. #else /* !CONFG_FAIR_GROUP_SCHED */
  7771. static inline void free_fair_sched_group(struct task_group *tg)
  7772. {
  7773. }
  7774. static inline
  7775. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7776. {
  7777. return 1;
  7778. }
  7779. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7780. {
  7781. }
  7782. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7783. {
  7784. }
  7785. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7786. #ifdef CONFIG_RT_GROUP_SCHED
  7787. static void free_rt_sched_group(struct task_group *tg)
  7788. {
  7789. int i;
  7790. destroy_rt_bandwidth(&tg->rt_bandwidth);
  7791. for_each_possible_cpu(i) {
  7792. if (tg->rt_rq)
  7793. kfree(tg->rt_rq[i]);
  7794. if (tg->rt_se)
  7795. kfree(tg->rt_se[i]);
  7796. }
  7797. kfree(tg->rt_rq);
  7798. kfree(tg->rt_se);
  7799. }
  7800. static
  7801. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7802. {
  7803. struct rt_rq *rt_rq;
  7804. struct sched_rt_entity *rt_se;
  7805. struct rq *rq;
  7806. int i;
  7807. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  7808. if (!tg->rt_rq)
  7809. goto err;
  7810. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  7811. if (!tg->rt_se)
  7812. goto err;
  7813. init_rt_bandwidth(&tg->rt_bandwidth,
  7814. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  7815. for_each_possible_cpu(i) {
  7816. rq = cpu_rq(i);
  7817. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  7818. GFP_KERNEL, cpu_to_node(i));
  7819. if (!rt_rq)
  7820. goto err;
  7821. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  7822. GFP_KERNEL, cpu_to_node(i));
  7823. if (!rt_se)
  7824. goto err;
  7825. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
  7826. }
  7827. return 1;
  7828. err:
  7829. return 0;
  7830. }
  7831. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  7832. {
  7833. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  7834. &cpu_rq(cpu)->leaf_rt_rq_list);
  7835. }
  7836. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  7837. {
  7838. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  7839. }
  7840. #else /* !CONFIG_RT_GROUP_SCHED */
  7841. static inline void free_rt_sched_group(struct task_group *tg)
  7842. {
  7843. }
  7844. static inline
  7845. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7846. {
  7847. return 1;
  7848. }
  7849. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  7850. {
  7851. }
  7852. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  7853. {
  7854. }
  7855. #endif /* CONFIG_RT_GROUP_SCHED */
  7856. #ifdef CONFIG_GROUP_SCHED
  7857. static void free_sched_group(struct task_group *tg)
  7858. {
  7859. free_fair_sched_group(tg);
  7860. free_rt_sched_group(tg);
  7861. kfree(tg);
  7862. }
  7863. /* allocate runqueue etc for a new task group */
  7864. struct task_group *sched_create_group(struct task_group *parent)
  7865. {
  7866. struct task_group *tg;
  7867. unsigned long flags;
  7868. int i;
  7869. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  7870. if (!tg)
  7871. return ERR_PTR(-ENOMEM);
  7872. if (!alloc_fair_sched_group(tg, parent))
  7873. goto err;
  7874. if (!alloc_rt_sched_group(tg, parent))
  7875. goto err;
  7876. spin_lock_irqsave(&task_group_lock, flags);
  7877. for_each_possible_cpu(i) {
  7878. register_fair_sched_group(tg, i);
  7879. register_rt_sched_group(tg, i);
  7880. }
  7881. list_add_rcu(&tg->list, &task_groups);
  7882. WARN_ON(!parent); /* root should already exist */
  7883. tg->parent = parent;
  7884. INIT_LIST_HEAD(&tg->children);
  7885. list_add_rcu(&tg->siblings, &parent->children);
  7886. spin_unlock_irqrestore(&task_group_lock, flags);
  7887. return tg;
  7888. err:
  7889. free_sched_group(tg);
  7890. return ERR_PTR(-ENOMEM);
  7891. }
  7892. /* rcu callback to free various structures associated with a task group */
  7893. static void free_sched_group_rcu(struct rcu_head *rhp)
  7894. {
  7895. /* now it should be safe to free those cfs_rqs */
  7896. free_sched_group(container_of(rhp, struct task_group, rcu));
  7897. }
  7898. /* Destroy runqueue etc associated with a task group */
  7899. void sched_destroy_group(struct task_group *tg)
  7900. {
  7901. unsigned long flags;
  7902. int i;
  7903. spin_lock_irqsave(&task_group_lock, flags);
  7904. for_each_possible_cpu(i) {
  7905. unregister_fair_sched_group(tg, i);
  7906. unregister_rt_sched_group(tg, i);
  7907. }
  7908. list_del_rcu(&tg->list);
  7909. list_del_rcu(&tg->siblings);
  7910. spin_unlock_irqrestore(&task_group_lock, flags);
  7911. /* wait for possible concurrent references to cfs_rqs complete */
  7912. call_rcu(&tg->rcu, free_sched_group_rcu);
  7913. }
  7914. /* change task's runqueue when it moves between groups.
  7915. * The caller of this function should have put the task in its new group
  7916. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  7917. * reflect its new group.
  7918. */
  7919. void sched_move_task(struct task_struct *tsk)
  7920. {
  7921. int on_rq, running;
  7922. unsigned long flags;
  7923. struct rq *rq;
  7924. rq = task_rq_lock(tsk, &flags);
  7925. update_rq_clock(rq);
  7926. running = task_current(rq, tsk);
  7927. on_rq = tsk->se.on_rq;
  7928. if (on_rq)
  7929. dequeue_task(rq, tsk, 0);
  7930. if (unlikely(running))
  7931. tsk->sched_class->put_prev_task(rq, tsk);
  7932. set_task_rq(tsk, task_cpu(tsk));
  7933. #ifdef CONFIG_FAIR_GROUP_SCHED
  7934. if (tsk->sched_class->moved_group)
  7935. tsk->sched_class->moved_group(tsk);
  7936. #endif
  7937. if (unlikely(running))
  7938. tsk->sched_class->set_curr_task(rq);
  7939. if (on_rq)
  7940. enqueue_task(rq, tsk, 0);
  7941. task_rq_unlock(rq, &flags);
  7942. }
  7943. #endif /* CONFIG_GROUP_SCHED */
  7944. #ifdef CONFIG_FAIR_GROUP_SCHED
  7945. static void __set_se_shares(struct sched_entity *se, unsigned long shares)
  7946. {
  7947. struct cfs_rq *cfs_rq = se->cfs_rq;
  7948. int on_rq;
  7949. on_rq = se->on_rq;
  7950. if (on_rq)
  7951. dequeue_entity(cfs_rq, se, 0);
  7952. se->load.weight = shares;
  7953. se->load.inv_weight = 0;
  7954. if (on_rq)
  7955. enqueue_entity(cfs_rq, se, 0);
  7956. }
  7957. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  7958. {
  7959. struct cfs_rq *cfs_rq = se->cfs_rq;
  7960. struct rq *rq = cfs_rq->rq;
  7961. unsigned long flags;
  7962. spin_lock_irqsave(&rq->lock, flags);
  7963. __set_se_shares(se, shares);
  7964. spin_unlock_irqrestore(&rq->lock, flags);
  7965. }
  7966. static DEFINE_MUTEX(shares_mutex);
  7967. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  7968. {
  7969. int i;
  7970. unsigned long flags;
  7971. /*
  7972. * We can't change the weight of the root cgroup.
  7973. */
  7974. if (!tg->se[0])
  7975. return -EINVAL;
  7976. if (shares < MIN_SHARES)
  7977. shares = MIN_SHARES;
  7978. else if (shares > MAX_SHARES)
  7979. shares = MAX_SHARES;
  7980. mutex_lock(&shares_mutex);
  7981. if (tg->shares == shares)
  7982. goto done;
  7983. spin_lock_irqsave(&task_group_lock, flags);
  7984. for_each_possible_cpu(i)
  7985. unregister_fair_sched_group(tg, i);
  7986. list_del_rcu(&tg->siblings);
  7987. spin_unlock_irqrestore(&task_group_lock, flags);
  7988. /* wait for any ongoing reference to this group to finish */
  7989. synchronize_sched();
  7990. /*
  7991. * Now we are free to modify the group's share on each cpu
  7992. * w/o tripping rebalance_share or load_balance_fair.
  7993. */
  7994. tg->shares = shares;
  7995. for_each_possible_cpu(i) {
  7996. /*
  7997. * force a rebalance
  7998. */
  7999. cfs_rq_set_shares(tg->cfs_rq[i], 0);
  8000. set_se_shares(tg->se[i], shares);
  8001. }
  8002. /*
  8003. * Enable load balance activity on this group, by inserting it back on
  8004. * each cpu's rq->leaf_cfs_rq_list.
  8005. */
  8006. spin_lock_irqsave(&task_group_lock, flags);
  8007. for_each_possible_cpu(i)
  8008. register_fair_sched_group(tg, i);
  8009. list_add_rcu(&tg->siblings, &tg->parent->children);
  8010. spin_unlock_irqrestore(&task_group_lock, flags);
  8011. done:
  8012. mutex_unlock(&shares_mutex);
  8013. return 0;
  8014. }
  8015. unsigned long sched_group_shares(struct task_group *tg)
  8016. {
  8017. return tg->shares;
  8018. }
  8019. #endif
  8020. #ifdef CONFIG_RT_GROUP_SCHED
  8021. /*
  8022. * Ensure that the real time constraints are schedulable.
  8023. */
  8024. static DEFINE_MUTEX(rt_constraints_mutex);
  8025. static unsigned long to_ratio(u64 period, u64 runtime)
  8026. {
  8027. if (runtime == RUNTIME_INF)
  8028. return 1ULL << 20;
  8029. return div64_u64(runtime << 20, period);
  8030. }
  8031. /* Must be called with tasklist_lock held */
  8032. static inline int tg_has_rt_tasks(struct task_group *tg)
  8033. {
  8034. struct task_struct *g, *p;
  8035. do_each_thread(g, p) {
  8036. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  8037. return 1;
  8038. } while_each_thread(g, p);
  8039. return 0;
  8040. }
  8041. struct rt_schedulable_data {
  8042. struct task_group *tg;
  8043. u64 rt_period;
  8044. u64 rt_runtime;
  8045. };
  8046. static int tg_schedulable(struct task_group *tg, void *data)
  8047. {
  8048. struct rt_schedulable_data *d = data;
  8049. struct task_group *child;
  8050. unsigned long total, sum = 0;
  8051. u64 period, runtime;
  8052. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8053. runtime = tg->rt_bandwidth.rt_runtime;
  8054. if (tg == d->tg) {
  8055. period = d->rt_period;
  8056. runtime = d->rt_runtime;
  8057. }
  8058. #ifdef CONFIG_USER_SCHED
  8059. if (tg == &root_task_group) {
  8060. period = global_rt_period();
  8061. runtime = global_rt_runtime();
  8062. }
  8063. #endif
  8064. /*
  8065. * Cannot have more runtime than the period.
  8066. */
  8067. if (runtime > period && runtime != RUNTIME_INF)
  8068. return -EINVAL;
  8069. /*
  8070. * Ensure we don't starve existing RT tasks.
  8071. */
  8072. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  8073. return -EBUSY;
  8074. total = to_ratio(period, runtime);
  8075. /*
  8076. * Nobody can have more than the global setting allows.
  8077. */
  8078. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  8079. return -EINVAL;
  8080. /*
  8081. * The sum of our children's runtime should not exceed our own.
  8082. */
  8083. list_for_each_entry_rcu(child, &tg->children, siblings) {
  8084. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  8085. runtime = child->rt_bandwidth.rt_runtime;
  8086. if (child == d->tg) {
  8087. period = d->rt_period;
  8088. runtime = d->rt_runtime;
  8089. }
  8090. sum += to_ratio(period, runtime);
  8091. }
  8092. if (sum > total)
  8093. return -EINVAL;
  8094. return 0;
  8095. }
  8096. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  8097. {
  8098. struct rt_schedulable_data data = {
  8099. .tg = tg,
  8100. .rt_period = period,
  8101. .rt_runtime = runtime,
  8102. };
  8103. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  8104. }
  8105. static int tg_set_bandwidth(struct task_group *tg,
  8106. u64 rt_period, u64 rt_runtime)
  8107. {
  8108. int i, err = 0;
  8109. mutex_lock(&rt_constraints_mutex);
  8110. read_lock(&tasklist_lock);
  8111. err = __rt_schedulable(tg, rt_period, rt_runtime);
  8112. if (err)
  8113. goto unlock;
  8114. spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  8115. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  8116. tg->rt_bandwidth.rt_runtime = rt_runtime;
  8117. for_each_possible_cpu(i) {
  8118. struct rt_rq *rt_rq = tg->rt_rq[i];
  8119. spin_lock(&rt_rq->rt_runtime_lock);
  8120. rt_rq->rt_runtime = rt_runtime;
  8121. spin_unlock(&rt_rq->rt_runtime_lock);
  8122. }
  8123. spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  8124. unlock:
  8125. read_unlock(&tasklist_lock);
  8126. mutex_unlock(&rt_constraints_mutex);
  8127. return err;
  8128. }
  8129. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  8130. {
  8131. u64 rt_runtime, rt_period;
  8132. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8133. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  8134. if (rt_runtime_us < 0)
  8135. rt_runtime = RUNTIME_INF;
  8136. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  8137. }
  8138. long sched_group_rt_runtime(struct task_group *tg)
  8139. {
  8140. u64 rt_runtime_us;
  8141. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  8142. return -1;
  8143. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  8144. do_div(rt_runtime_us, NSEC_PER_USEC);
  8145. return rt_runtime_us;
  8146. }
  8147. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  8148. {
  8149. u64 rt_runtime, rt_period;
  8150. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  8151. rt_runtime = tg->rt_bandwidth.rt_runtime;
  8152. if (rt_period == 0)
  8153. return -EINVAL;
  8154. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  8155. }
  8156. long sched_group_rt_period(struct task_group *tg)
  8157. {
  8158. u64 rt_period_us;
  8159. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8160. do_div(rt_period_us, NSEC_PER_USEC);
  8161. return rt_period_us;
  8162. }
  8163. static int sched_rt_global_constraints(void)
  8164. {
  8165. u64 runtime, period;
  8166. int ret = 0;
  8167. if (sysctl_sched_rt_period <= 0)
  8168. return -EINVAL;
  8169. runtime = global_rt_runtime();
  8170. period = global_rt_period();
  8171. /*
  8172. * Sanity check on the sysctl variables.
  8173. */
  8174. if (runtime > period && runtime != RUNTIME_INF)
  8175. return -EINVAL;
  8176. mutex_lock(&rt_constraints_mutex);
  8177. read_lock(&tasklist_lock);
  8178. ret = __rt_schedulable(NULL, 0, 0);
  8179. read_unlock(&tasklist_lock);
  8180. mutex_unlock(&rt_constraints_mutex);
  8181. return ret;
  8182. }
  8183. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  8184. {
  8185. /* Don't accept realtime tasks when there is no way for them to run */
  8186. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  8187. return 0;
  8188. return 1;
  8189. }
  8190. #else /* !CONFIG_RT_GROUP_SCHED */
  8191. static int sched_rt_global_constraints(void)
  8192. {
  8193. unsigned long flags;
  8194. int i;
  8195. if (sysctl_sched_rt_period <= 0)
  8196. return -EINVAL;
  8197. spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  8198. for_each_possible_cpu(i) {
  8199. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  8200. spin_lock(&rt_rq->rt_runtime_lock);
  8201. rt_rq->rt_runtime = global_rt_runtime();
  8202. spin_unlock(&rt_rq->rt_runtime_lock);
  8203. }
  8204. spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  8205. return 0;
  8206. }
  8207. #endif /* CONFIG_RT_GROUP_SCHED */
  8208. int sched_rt_handler(struct ctl_table *table, int write,
  8209. struct file *filp, void __user *buffer, size_t *lenp,
  8210. loff_t *ppos)
  8211. {
  8212. int ret;
  8213. int old_period, old_runtime;
  8214. static DEFINE_MUTEX(mutex);
  8215. mutex_lock(&mutex);
  8216. old_period = sysctl_sched_rt_period;
  8217. old_runtime = sysctl_sched_rt_runtime;
  8218. ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
  8219. if (!ret && write) {
  8220. ret = sched_rt_global_constraints();
  8221. if (ret) {
  8222. sysctl_sched_rt_period = old_period;
  8223. sysctl_sched_rt_runtime = old_runtime;
  8224. } else {
  8225. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  8226. def_rt_bandwidth.rt_period =
  8227. ns_to_ktime(global_rt_period());
  8228. }
  8229. }
  8230. mutex_unlock(&mutex);
  8231. return ret;
  8232. }
  8233. #ifdef CONFIG_CGROUP_SCHED
  8234. /* return corresponding task_group object of a cgroup */
  8235. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  8236. {
  8237. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  8238. struct task_group, css);
  8239. }
  8240. static struct cgroup_subsys_state *
  8241. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8242. {
  8243. struct task_group *tg, *parent;
  8244. if (!cgrp->parent) {
  8245. /* This is early initialization for the top cgroup */
  8246. return &init_task_group.css;
  8247. }
  8248. parent = cgroup_tg(cgrp->parent);
  8249. tg = sched_create_group(parent);
  8250. if (IS_ERR(tg))
  8251. return ERR_PTR(-ENOMEM);
  8252. return &tg->css;
  8253. }
  8254. static void
  8255. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8256. {
  8257. struct task_group *tg = cgroup_tg(cgrp);
  8258. sched_destroy_group(tg);
  8259. }
  8260. static int
  8261. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  8262. struct task_struct *tsk)
  8263. {
  8264. #ifdef CONFIG_RT_GROUP_SCHED
  8265. if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
  8266. return -EINVAL;
  8267. #else
  8268. /* We don't support RT-tasks being in separate groups */
  8269. if (tsk->sched_class != &fair_sched_class)
  8270. return -EINVAL;
  8271. #endif
  8272. return 0;
  8273. }
  8274. static void
  8275. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  8276. struct cgroup *old_cont, struct task_struct *tsk)
  8277. {
  8278. sched_move_task(tsk);
  8279. }
  8280. #ifdef CONFIG_FAIR_GROUP_SCHED
  8281. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  8282. u64 shareval)
  8283. {
  8284. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  8285. }
  8286. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  8287. {
  8288. struct task_group *tg = cgroup_tg(cgrp);
  8289. return (u64) tg->shares;
  8290. }
  8291. #endif /* CONFIG_FAIR_GROUP_SCHED */
  8292. #ifdef CONFIG_RT_GROUP_SCHED
  8293. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  8294. s64 val)
  8295. {
  8296. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  8297. }
  8298. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  8299. {
  8300. return sched_group_rt_runtime(cgroup_tg(cgrp));
  8301. }
  8302. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  8303. u64 rt_period_us)
  8304. {
  8305. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  8306. }
  8307. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  8308. {
  8309. return sched_group_rt_period(cgroup_tg(cgrp));
  8310. }
  8311. #endif /* CONFIG_RT_GROUP_SCHED */
  8312. static struct cftype cpu_files[] = {
  8313. #ifdef CONFIG_FAIR_GROUP_SCHED
  8314. {
  8315. .name = "shares",
  8316. .read_u64 = cpu_shares_read_u64,
  8317. .write_u64 = cpu_shares_write_u64,
  8318. },
  8319. #endif
  8320. #ifdef CONFIG_RT_GROUP_SCHED
  8321. {
  8322. .name = "rt_runtime_us",
  8323. .read_s64 = cpu_rt_runtime_read,
  8324. .write_s64 = cpu_rt_runtime_write,
  8325. },
  8326. {
  8327. .name = "rt_period_us",
  8328. .read_u64 = cpu_rt_period_read_uint,
  8329. .write_u64 = cpu_rt_period_write_uint,
  8330. },
  8331. #endif
  8332. };
  8333. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  8334. {
  8335. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  8336. }
  8337. struct cgroup_subsys cpu_cgroup_subsys = {
  8338. .name = "cpu",
  8339. .create = cpu_cgroup_create,
  8340. .destroy = cpu_cgroup_destroy,
  8341. .can_attach = cpu_cgroup_can_attach,
  8342. .attach = cpu_cgroup_attach,
  8343. .populate = cpu_cgroup_populate,
  8344. .subsys_id = cpu_cgroup_subsys_id,
  8345. .early_init = 1,
  8346. };
  8347. #endif /* CONFIG_CGROUP_SCHED */
  8348. #ifdef CONFIG_CGROUP_CPUACCT
  8349. /*
  8350. * CPU accounting code for task groups.
  8351. *
  8352. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  8353. * (balbir@in.ibm.com).
  8354. */
  8355. /* track cpu usage of a group of tasks and its child groups */
  8356. struct cpuacct {
  8357. struct cgroup_subsys_state css;
  8358. /* cpuusage holds pointer to a u64-type object on every cpu */
  8359. u64 *cpuusage;
  8360. struct cpuacct *parent;
  8361. };
  8362. struct cgroup_subsys cpuacct_subsys;
  8363. /* return cpu accounting group corresponding to this container */
  8364. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  8365. {
  8366. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  8367. struct cpuacct, css);
  8368. }
  8369. /* return cpu accounting group to which this task belongs */
  8370. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  8371. {
  8372. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  8373. struct cpuacct, css);
  8374. }
  8375. /* create a new cpu accounting group */
  8376. static struct cgroup_subsys_state *cpuacct_create(
  8377. struct cgroup_subsys *ss, struct cgroup *cgrp)
  8378. {
  8379. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  8380. if (!ca)
  8381. return ERR_PTR(-ENOMEM);
  8382. ca->cpuusage = alloc_percpu(u64);
  8383. if (!ca->cpuusage) {
  8384. kfree(ca);
  8385. return ERR_PTR(-ENOMEM);
  8386. }
  8387. if (cgrp->parent)
  8388. ca->parent = cgroup_ca(cgrp->parent);
  8389. return &ca->css;
  8390. }
  8391. /* destroy an existing cpu accounting group */
  8392. static void
  8393. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8394. {
  8395. struct cpuacct *ca = cgroup_ca(cgrp);
  8396. free_percpu(ca->cpuusage);
  8397. kfree(ca);
  8398. }
  8399. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  8400. {
  8401. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  8402. u64 data;
  8403. #ifndef CONFIG_64BIT
  8404. /*
  8405. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  8406. */
  8407. spin_lock_irq(&cpu_rq(cpu)->lock);
  8408. data = *cpuusage;
  8409. spin_unlock_irq(&cpu_rq(cpu)->lock);
  8410. #else
  8411. data = *cpuusage;
  8412. #endif
  8413. return data;
  8414. }
  8415. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  8416. {
  8417. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  8418. #ifndef CONFIG_64BIT
  8419. /*
  8420. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  8421. */
  8422. spin_lock_irq(&cpu_rq(cpu)->lock);
  8423. *cpuusage = val;
  8424. spin_unlock_irq(&cpu_rq(cpu)->lock);
  8425. #else
  8426. *cpuusage = val;
  8427. #endif
  8428. }
  8429. /* return total cpu usage (in nanoseconds) of a group */
  8430. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  8431. {
  8432. struct cpuacct *ca = cgroup_ca(cgrp);
  8433. u64 totalcpuusage = 0;
  8434. int i;
  8435. for_each_present_cpu(i)
  8436. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  8437. return totalcpuusage;
  8438. }
  8439. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  8440. u64 reset)
  8441. {
  8442. struct cpuacct *ca = cgroup_ca(cgrp);
  8443. int err = 0;
  8444. int i;
  8445. if (reset) {
  8446. err = -EINVAL;
  8447. goto out;
  8448. }
  8449. for_each_present_cpu(i)
  8450. cpuacct_cpuusage_write(ca, i, 0);
  8451. out:
  8452. return err;
  8453. }
  8454. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  8455. struct seq_file *m)
  8456. {
  8457. struct cpuacct *ca = cgroup_ca(cgroup);
  8458. u64 percpu;
  8459. int i;
  8460. for_each_present_cpu(i) {
  8461. percpu = cpuacct_cpuusage_read(ca, i);
  8462. seq_printf(m, "%llu ", (unsigned long long) percpu);
  8463. }
  8464. seq_printf(m, "\n");
  8465. return 0;
  8466. }
  8467. static struct cftype files[] = {
  8468. {
  8469. .name = "usage",
  8470. .read_u64 = cpuusage_read,
  8471. .write_u64 = cpuusage_write,
  8472. },
  8473. {
  8474. .name = "usage_percpu",
  8475. .read_seq_string = cpuacct_percpu_seq_read,
  8476. },
  8477. };
  8478. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8479. {
  8480. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  8481. }
  8482. /*
  8483. * charge this task's execution time to its accounting group.
  8484. *
  8485. * called with rq->lock held.
  8486. */
  8487. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  8488. {
  8489. struct cpuacct *ca;
  8490. int cpu;
  8491. if (unlikely(!cpuacct_subsys.active))
  8492. return;
  8493. cpu = task_cpu(tsk);
  8494. ca = task_ca(tsk);
  8495. for (; ca; ca = ca->parent) {
  8496. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  8497. *cpuusage += cputime;
  8498. }
  8499. }
  8500. struct cgroup_subsys cpuacct_subsys = {
  8501. .name = "cpuacct",
  8502. .create = cpuacct_create,
  8503. .destroy = cpuacct_destroy,
  8504. .populate = cpuacct_populate,
  8505. .subsys_id = cpuacct_subsys_id,
  8506. };
  8507. #endif /* CONFIG_CGROUP_CPUACCT */