namespace.c 58 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356
  1. /*
  2. * linux/fs/namespace.c
  3. *
  4. * (C) Copyright Al Viro 2000, 2001
  5. * Released under GPL v2.
  6. *
  7. * Based on code from fs/super.c, copyright Linus Torvalds and others.
  8. * Heavily rewritten.
  9. */
  10. #include <linux/syscalls.h>
  11. #include <linux/slab.h>
  12. #include <linux/sched.h>
  13. #include <linux/smp_lock.h>
  14. #include <linux/init.h>
  15. #include <linux/kernel.h>
  16. #include <linux/acct.h>
  17. #include <linux/capability.h>
  18. #include <linux/cpumask.h>
  19. #include <linux/module.h>
  20. #include <linux/sysfs.h>
  21. #include <linux/seq_file.h>
  22. #include <linux/mnt_namespace.h>
  23. #include <linux/namei.h>
  24. #include <linux/security.h>
  25. #include <linux/mount.h>
  26. #include <linux/ramfs.h>
  27. #include <linux/log2.h>
  28. #include <linux/idr.h>
  29. #include <asm/uaccess.h>
  30. #include <asm/unistd.h>
  31. #include "pnode.h"
  32. #include "internal.h"
  33. #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
  34. #define HASH_SIZE (1UL << HASH_SHIFT)
  35. /* spinlock for vfsmount related operations, inplace of dcache_lock */
  36. __cacheline_aligned_in_smp DEFINE_SPINLOCK(vfsmount_lock);
  37. static int event;
  38. static DEFINE_IDA(mnt_id_ida);
  39. static DEFINE_IDA(mnt_group_ida);
  40. static struct list_head *mount_hashtable __read_mostly;
  41. static struct kmem_cache *mnt_cache __read_mostly;
  42. static struct rw_semaphore namespace_sem;
  43. /* /sys/fs */
  44. struct kobject *fs_kobj;
  45. EXPORT_SYMBOL_GPL(fs_kobj);
  46. static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
  47. {
  48. unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
  49. tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
  50. tmp = tmp + (tmp >> HASH_SHIFT);
  51. return tmp & (HASH_SIZE - 1);
  52. }
  53. #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
  54. /* allocation is serialized by namespace_sem */
  55. static int mnt_alloc_id(struct vfsmount *mnt)
  56. {
  57. int res;
  58. retry:
  59. ida_pre_get(&mnt_id_ida, GFP_KERNEL);
  60. spin_lock(&vfsmount_lock);
  61. res = ida_get_new(&mnt_id_ida, &mnt->mnt_id);
  62. spin_unlock(&vfsmount_lock);
  63. if (res == -EAGAIN)
  64. goto retry;
  65. return res;
  66. }
  67. static void mnt_free_id(struct vfsmount *mnt)
  68. {
  69. spin_lock(&vfsmount_lock);
  70. ida_remove(&mnt_id_ida, mnt->mnt_id);
  71. spin_unlock(&vfsmount_lock);
  72. }
  73. /*
  74. * Allocate a new peer group ID
  75. *
  76. * mnt_group_ida is protected by namespace_sem
  77. */
  78. static int mnt_alloc_group_id(struct vfsmount *mnt)
  79. {
  80. if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
  81. return -ENOMEM;
  82. return ida_get_new_above(&mnt_group_ida, 1, &mnt->mnt_group_id);
  83. }
  84. /*
  85. * Release a peer group ID
  86. */
  87. void mnt_release_group_id(struct vfsmount *mnt)
  88. {
  89. ida_remove(&mnt_group_ida, mnt->mnt_group_id);
  90. mnt->mnt_group_id = 0;
  91. }
  92. struct vfsmount *alloc_vfsmnt(const char *name)
  93. {
  94. struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
  95. if (mnt) {
  96. int err;
  97. err = mnt_alloc_id(mnt);
  98. if (err)
  99. goto out_free_cache;
  100. if (name) {
  101. mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
  102. if (!mnt->mnt_devname)
  103. goto out_free_id;
  104. }
  105. atomic_set(&mnt->mnt_count, 1);
  106. INIT_LIST_HEAD(&mnt->mnt_hash);
  107. INIT_LIST_HEAD(&mnt->mnt_child);
  108. INIT_LIST_HEAD(&mnt->mnt_mounts);
  109. INIT_LIST_HEAD(&mnt->mnt_list);
  110. INIT_LIST_HEAD(&mnt->mnt_expire);
  111. INIT_LIST_HEAD(&mnt->mnt_share);
  112. INIT_LIST_HEAD(&mnt->mnt_slave_list);
  113. INIT_LIST_HEAD(&mnt->mnt_slave);
  114. atomic_set(&mnt->__mnt_writers, 0);
  115. }
  116. return mnt;
  117. out_free_id:
  118. mnt_free_id(mnt);
  119. out_free_cache:
  120. kmem_cache_free(mnt_cache, mnt);
  121. return NULL;
  122. }
  123. /*
  124. * Most r/o checks on a fs are for operations that take
  125. * discrete amounts of time, like a write() or unlink().
  126. * We must keep track of when those operations start
  127. * (for permission checks) and when they end, so that
  128. * we can determine when writes are able to occur to
  129. * a filesystem.
  130. */
  131. /*
  132. * __mnt_is_readonly: check whether a mount is read-only
  133. * @mnt: the mount to check for its write status
  134. *
  135. * This shouldn't be used directly ouside of the VFS.
  136. * It does not guarantee that the filesystem will stay
  137. * r/w, just that it is right *now*. This can not and
  138. * should not be used in place of IS_RDONLY(inode).
  139. * mnt_want/drop_write() will _keep_ the filesystem
  140. * r/w.
  141. */
  142. int __mnt_is_readonly(struct vfsmount *mnt)
  143. {
  144. if (mnt->mnt_flags & MNT_READONLY)
  145. return 1;
  146. if (mnt->mnt_sb->s_flags & MS_RDONLY)
  147. return 1;
  148. return 0;
  149. }
  150. EXPORT_SYMBOL_GPL(__mnt_is_readonly);
  151. struct mnt_writer {
  152. /*
  153. * If holding multiple instances of this lock, they
  154. * must be ordered by cpu number.
  155. */
  156. spinlock_t lock;
  157. struct lock_class_key lock_class; /* compiles out with !lockdep */
  158. unsigned long count;
  159. struct vfsmount *mnt;
  160. } ____cacheline_aligned_in_smp;
  161. static DEFINE_PER_CPU(struct mnt_writer, mnt_writers);
  162. static int __init init_mnt_writers(void)
  163. {
  164. int cpu;
  165. for_each_possible_cpu(cpu) {
  166. struct mnt_writer *writer = &per_cpu(mnt_writers, cpu);
  167. spin_lock_init(&writer->lock);
  168. lockdep_set_class(&writer->lock, &writer->lock_class);
  169. writer->count = 0;
  170. }
  171. return 0;
  172. }
  173. fs_initcall(init_mnt_writers);
  174. static void unlock_mnt_writers(void)
  175. {
  176. int cpu;
  177. struct mnt_writer *cpu_writer;
  178. for_each_possible_cpu(cpu) {
  179. cpu_writer = &per_cpu(mnt_writers, cpu);
  180. spin_unlock(&cpu_writer->lock);
  181. }
  182. }
  183. static inline void __clear_mnt_count(struct mnt_writer *cpu_writer)
  184. {
  185. if (!cpu_writer->mnt)
  186. return;
  187. /*
  188. * This is in case anyone ever leaves an invalid,
  189. * old ->mnt and a count of 0.
  190. */
  191. if (!cpu_writer->count)
  192. return;
  193. atomic_add(cpu_writer->count, &cpu_writer->mnt->__mnt_writers);
  194. cpu_writer->count = 0;
  195. }
  196. /*
  197. * must hold cpu_writer->lock
  198. */
  199. static inline void use_cpu_writer_for_mount(struct mnt_writer *cpu_writer,
  200. struct vfsmount *mnt)
  201. {
  202. if (cpu_writer->mnt == mnt)
  203. return;
  204. __clear_mnt_count(cpu_writer);
  205. cpu_writer->mnt = mnt;
  206. }
  207. /*
  208. * Most r/o checks on a fs are for operations that take
  209. * discrete amounts of time, like a write() or unlink().
  210. * We must keep track of when those operations start
  211. * (for permission checks) and when they end, so that
  212. * we can determine when writes are able to occur to
  213. * a filesystem.
  214. */
  215. /**
  216. * mnt_want_write - get write access to a mount
  217. * @mnt: the mount on which to take a write
  218. *
  219. * This tells the low-level filesystem that a write is
  220. * about to be performed to it, and makes sure that
  221. * writes are allowed before returning success. When
  222. * the write operation is finished, mnt_drop_write()
  223. * must be called. This is effectively a refcount.
  224. */
  225. int mnt_want_write(struct vfsmount *mnt)
  226. {
  227. int ret = 0;
  228. struct mnt_writer *cpu_writer;
  229. cpu_writer = &get_cpu_var(mnt_writers);
  230. spin_lock(&cpu_writer->lock);
  231. if (__mnt_is_readonly(mnt)) {
  232. ret = -EROFS;
  233. goto out;
  234. }
  235. use_cpu_writer_for_mount(cpu_writer, mnt);
  236. cpu_writer->count++;
  237. out:
  238. spin_unlock(&cpu_writer->lock);
  239. put_cpu_var(mnt_writers);
  240. return ret;
  241. }
  242. EXPORT_SYMBOL_GPL(mnt_want_write);
  243. static void lock_mnt_writers(void)
  244. {
  245. int cpu;
  246. struct mnt_writer *cpu_writer;
  247. for_each_possible_cpu(cpu) {
  248. cpu_writer = &per_cpu(mnt_writers, cpu);
  249. spin_lock(&cpu_writer->lock);
  250. __clear_mnt_count(cpu_writer);
  251. cpu_writer->mnt = NULL;
  252. }
  253. }
  254. /*
  255. * These per-cpu write counts are not guaranteed to have
  256. * matched increments and decrements on any given cpu.
  257. * A file open()ed for write on one cpu and close()d on
  258. * another cpu will imbalance this count. Make sure it
  259. * does not get too far out of whack.
  260. */
  261. static void handle_write_count_underflow(struct vfsmount *mnt)
  262. {
  263. if (atomic_read(&mnt->__mnt_writers) >=
  264. MNT_WRITER_UNDERFLOW_LIMIT)
  265. return;
  266. /*
  267. * It isn't necessary to hold all of the locks
  268. * at the same time, but doing it this way makes
  269. * us share a lot more code.
  270. */
  271. lock_mnt_writers();
  272. /*
  273. * vfsmount_lock is for mnt_flags.
  274. */
  275. spin_lock(&vfsmount_lock);
  276. /*
  277. * If coalescing the per-cpu writer counts did not
  278. * get us back to a positive writer count, we have
  279. * a bug.
  280. */
  281. if ((atomic_read(&mnt->__mnt_writers) < 0) &&
  282. !(mnt->mnt_flags & MNT_IMBALANCED_WRITE_COUNT)) {
  283. WARN(1, KERN_DEBUG "leak detected on mount(%p) writers "
  284. "count: %d\n",
  285. mnt, atomic_read(&mnt->__mnt_writers));
  286. /* use the flag to keep the dmesg spam down */
  287. mnt->mnt_flags |= MNT_IMBALANCED_WRITE_COUNT;
  288. }
  289. spin_unlock(&vfsmount_lock);
  290. unlock_mnt_writers();
  291. }
  292. /**
  293. * mnt_drop_write - give up write access to a mount
  294. * @mnt: the mount on which to give up write access
  295. *
  296. * Tells the low-level filesystem that we are done
  297. * performing writes to it. Must be matched with
  298. * mnt_want_write() call above.
  299. */
  300. void mnt_drop_write(struct vfsmount *mnt)
  301. {
  302. int must_check_underflow = 0;
  303. struct mnt_writer *cpu_writer;
  304. cpu_writer = &get_cpu_var(mnt_writers);
  305. spin_lock(&cpu_writer->lock);
  306. use_cpu_writer_for_mount(cpu_writer, mnt);
  307. if (cpu_writer->count > 0) {
  308. cpu_writer->count--;
  309. } else {
  310. must_check_underflow = 1;
  311. atomic_dec(&mnt->__mnt_writers);
  312. }
  313. spin_unlock(&cpu_writer->lock);
  314. /*
  315. * Logically, we could call this each time,
  316. * but the __mnt_writers cacheline tends to
  317. * be cold, and makes this expensive.
  318. */
  319. if (must_check_underflow)
  320. handle_write_count_underflow(mnt);
  321. /*
  322. * This could be done right after the spinlock
  323. * is taken because the spinlock keeps us on
  324. * the cpu, and disables preemption. However,
  325. * putting it here bounds the amount that
  326. * __mnt_writers can underflow. Without it,
  327. * we could theoretically wrap __mnt_writers.
  328. */
  329. put_cpu_var(mnt_writers);
  330. }
  331. EXPORT_SYMBOL_GPL(mnt_drop_write);
  332. static int mnt_make_readonly(struct vfsmount *mnt)
  333. {
  334. int ret = 0;
  335. lock_mnt_writers();
  336. /*
  337. * With all the locks held, this value is stable
  338. */
  339. if (atomic_read(&mnt->__mnt_writers) > 0) {
  340. ret = -EBUSY;
  341. goto out;
  342. }
  343. /*
  344. * nobody can do a successful mnt_want_write() with all
  345. * of the counts in MNT_DENIED_WRITE and the locks held.
  346. */
  347. spin_lock(&vfsmount_lock);
  348. if (!ret)
  349. mnt->mnt_flags |= MNT_READONLY;
  350. spin_unlock(&vfsmount_lock);
  351. out:
  352. unlock_mnt_writers();
  353. return ret;
  354. }
  355. static void __mnt_unmake_readonly(struct vfsmount *mnt)
  356. {
  357. spin_lock(&vfsmount_lock);
  358. mnt->mnt_flags &= ~MNT_READONLY;
  359. spin_unlock(&vfsmount_lock);
  360. }
  361. void simple_set_mnt(struct vfsmount *mnt, struct super_block *sb)
  362. {
  363. mnt->mnt_sb = sb;
  364. mnt->mnt_root = dget(sb->s_root);
  365. }
  366. EXPORT_SYMBOL(simple_set_mnt);
  367. void free_vfsmnt(struct vfsmount *mnt)
  368. {
  369. kfree(mnt->mnt_devname);
  370. mnt_free_id(mnt);
  371. kmem_cache_free(mnt_cache, mnt);
  372. }
  373. /*
  374. * find the first or last mount at @dentry on vfsmount @mnt depending on
  375. * @dir. If @dir is set return the first mount else return the last mount.
  376. */
  377. struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
  378. int dir)
  379. {
  380. struct list_head *head = mount_hashtable + hash(mnt, dentry);
  381. struct list_head *tmp = head;
  382. struct vfsmount *p, *found = NULL;
  383. for (;;) {
  384. tmp = dir ? tmp->next : tmp->prev;
  385. p = NULL;
  386. if (tmp == head)
  387. break;
  388. p = list_entry(tmp, struct vfsmount, mnt_hash);
  389. if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
  390. found = p;
  391. break;
  392. }
  393. }
  394. return found;
  395. }
  396. /*
  397. * lookup_mnt increments the ref count before returning
  398. * the vfsmount struct.
  399. */
  400. struct vfsmount *lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
  401. {
  402. struct vfsmount *child_mnt;
  403. spin_lock(&vfsmount_lock);
  404. if ((child_mnt = __lookup_mnt(mnt, dentry, 1)))
  405. mntget(child_mnt);
  406. spin_unlock(&vfsmount_lock);
  407. return child_mnt;
  408. }
  409. static inline int check_mnt(struct vfsmount *mnt)
  410. {
  411. return mnt->mnt_ns == current->nsproxy->mnt_ns;
  412. }
  413. static void touch_mnt_namespace(struct mnt_namespace *ns)
  414. {
  415. if (ns) {
  416. ns->event = ++event;
  417. wake_up_interruptible(&ns->poll);
  418. }
  419. }
  420. static void __touch_mnt_namespace(struct mnt_namespace *ns)
  421. {
  422. if (ns && ns->event != event) {
  423. ns->event = event;
  424. wake_up_interruptible(&ns->poll);
  425. }
  426. }
  427. static void detach_mnt(struct vfsmount *mnt, struct path *old_path)
  428. {
  429. old_path->dentry = mnt->mnt_mountpoint;
  430. old_path->mnt = mnt->mnt_parent;
  431. mnt->mnt_parent = mnt;
  432. mnt->mnt_mountpoint = mnt->mnt_root;
  433. list_del_init(&mnt->mnt_child);
  434. list_del_init(&mnt->mnt_hash);
  435. old_path->dentry->d_mounted--;
  436. }
  437. void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
  438. struct vfsmount *child_mnt)
  439. {
  440. child_mnt->mnt_parent = mntget(mnt);
  441. child_mnt->mnt_mountpoint = dget(dentry);
  442. dentry->d_mounted++;
  443. }
  444. static void attach_mnt(struct vfsmount *mnt, struct path *path)
  445. {
  446. mnt_set_mountpoint(path->mnt, path->dentry, mnt);
  447. list_add_tail(&mnt->mnt_hash, mount_hashtable +
  448. hash(path->mnt, path->dentry));
  449. list_add_tail(&mnt->mnt_child, &path->mnt->mnt_mounts);
  450. }
  451. /*
  452. * the caller must hold vfsmount_lock
  453. */
  454. static void commit_tree(struct vfsmount *mnt)
  455. {
  456. struct vfsmount *parent = mnt->mnt_parent;
  457. struct vfsmount *m;
  458. LIST_HEAD(head);
  459. struct mnt_namespace *n = parent->mnt_ns;
  460. BUG_ON(parent == mnt);
  461. list_add_tail(&head, &mnt->mnt_list);
  462. list_for_each_entry(m, &head, mnt_list)
  463. m->mnt_ns = n;
  464. list_splice(&head, n->list.prev);
  465. list_add_tail(&mnt->mnt_hash, mount_hashtable +
  466. hash(parent, mnt->mnt_mountpoint));
  467. list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
  468. touch_mnt_namespace(n);
  469. }
  470. static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
  471. {
  472. struct list_head *next = p->mnt_mounts.next;
  473. if (next == &p->mnt_mounts) {
  474. while (1) {
  475. if (p == root)
  476. return NULL;
  477. next = p->mnt_child.next;
  478. if (next != &p->mnt_parent->mnt_mounts)
  479. break;
  480. p = p->mnt_parent;
  481. }
  482. }
  483. return list_entry(next, struct vfsmount, mnt_child);
  484. }
  485. static struct vfsmount *skip_mnt_tree(struct vfsmount *p)
  486. {
  487. struct list_head *prev = p->mnt_mounts.prev;
  488. while (prev != &p->mnt_mounts) {
  489. p = list_entry(prev, struct vfsmount, mnt_child);
  490. prev = p->mnt_mounts.prev;
  491. }
  492. return p;
  493. }
  494. static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
  495. int flag)
  496. {
  497. struct super_block *sb = old->mnt_sb;
  498. struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
  499. if (mnt) {
  500. if (flag & (CL_SLAVE | CL_PRIVATE))
  501. mnt->mnt_group_id = 0; /* not a peer of original */
  502. else
  503. mnt->mnt_group_id = old->mnt_group_id;
  504. if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
  505. int err = mnt_alloc_group_id(mnt);
  506. if (err)
  507. goto out_free;
  508. }
  509. mnt->mnt_flags = old->mnt_flags;
  510. atomic_inc(&sb->s_active);
  511. mnt->mnt_sb = sb;
  512. mnt->mnt_root = dget(root);
  513. mnt->mnt_mountpoint = mnt->mnt_root;
  514. mnt->mnt_parent = mnt;
  515. if (flag & CL_SLAVE) {
  516. list_add(&mnt->mnt_slave, &old->mnt_slave_list);
  517. mnt->mnt_master = old;
  518. CLEAR_MNT_SHARED(mnt);
  519. } else if (!(flag & CL_PRIVATE)) {
  520. if ((flag & CL_PROPAGATION) || IS_MNT_SHARED(old))
  521. list_add(&mnt->mnt_share, &old->mnt_share);
  522. if (IS_MNT_SLAVE(old))
  523. list_add(&mnt->mnt_slave, &old->mnt_slave);
  524. mnt->mnt_master = old->mnt_master;
  525. }
  526. if (flag & CL_MAKE_SHARED)
  527. set_mnt_shared(mnt);
  528. /* stick the duplicate mount on the same expiry list
  529. * as the original if that was on one */
  530. if (flag & CL_EXPIRE) {
  531. if (!list_empty(&old->mnt_expire))
  532. list_add(&mnt->mnt_expire, &old->mnt_expire);
  533. }
  534. }
  535. return mnt;
  536. out_free:
  537. free_vfsmnt(mnt);
  538. return NULL;
  539. }
  540. static inline void __mntput(struct vfsmount *mnt)
  541. {
  542. int cpu;
  543. struct super_block *sb = mnt->mnt_sb;
  544. /*
  545. * We don't have to hold all of the locks at the
  546. * same time here because we know that we're the
  547. * last reference to mnt and that no new writers
  548. * can come in.
  549. */
  550. for_each_possible_cpu(cpu) {
  551. struct mnt_writer *cpu_writer = &per_cpu(mnt_writers, cpu);
  552. spin_lock(&cpu_writer->lock);
  553. if (cpu_writer->mnt != mnt) {
  554. spin_unlock(&cpu_writer->lock);
  555. continue;
  556. }
  557. atomic_add(cpu_writer->count, &mnt->__mnt_writers);
  558. cpu_writer->count = 0;
  559. /*
  560. * Might as well do this so that no one
  561. * ever sees the pointer and expects
  562. * it to be valid.
  563. */
  564. cpu_writer->mnt = NULL;
  565. spin_unlock(&cpu_writer->lock);
  566. }
  567. /*
  568. * This probably indicates that somebody messed
  569. * up a mnt_want/drop_write() pair. If this
  570. * happens, the filesystem was probably unable
  571. * to make r/w->r/o transitions.
  572. */
  573. WARN_ON(atomic_read(&mnt->__mnt_writers));
  574. dput(mnt->mnt_root);
  575. free_vfsmnt(mnt);
  576. deactivate_super(sb);
  577. }
  578. void mntput_no_expire(struct vfsmount *mnt)
  579. {
  580. repeat:
  581. if (atomic_dec_and_lock(&mnt->mnt_count, &vfsmount_lock)) {
  582. if (likely(!mnt->mnt_pinned)) {
  583. spin_unlock(&vfsmount_lock);
  584. __mntput(mnt);
  585. return;
  586. }
  587. atomic_add(mnt->mnt_pinned + 1, &mnt->mnt_count);
  588. mnt->mnt_pinned = 0;
  589. spin_unlock(&vfsmount_lock);
  590. acct_auto_close_mnt(mnt);
  591. security_sb_umount_close(mnt);
  592. goto repeat;
  593. }
  594. }
  595. EXPORT_SYMBOL(mntput_no_expire);
  596. void mnt_pin(struct vfsmount *mnt)
  597. {
  598. spin_lock(&vfsmount_lock);
  599. mnt->mnt_pinned++;
  600. spin_unlock(&vfsmount_lock);
  601. }
  602. EXPORT_SYMBOL(mnt_pin);
  603. void mnt_unpin(struct vfsmount *mnt)
  604. {
  605. spin_lock(&vfsmount_lock);
  606. if (mnt->mnt_pinned) {
  607. atomic_inc(&mnt->mnt_count);
  608. mnt->mnt_pinned--;
  609. }
  610. spin_unlock(&vfsmount_lock);
  611. }
  612. EXPORT_SYMBOL(mnt_unpin);
  613. static inline void mangle(struct seq_file *m, const char *s)
  614. {
  615. seq_escape(m, s, " \t\n\\");
  616. }
  617. /*
  618. * Simple .show_options callback for filesystems which don't want to
  619. * implement more complex mount option showing.
  620. *
  621. * See also save_mount_options().
  622. */
  623. int generic_show_options(struct seq_file *m, struct vfsmount *mnt)
  624. {
  625. const char *options = mnt->mnt_sb->s_options;
  626. if (options != NULL && options[0]) {
  627. seq_putc(m, ',');
  628. mangle(m, options);
  629. }
  630. return 0;
  631. }
  632. EXPORT_SYMBOL(generic_show_options);
  633. /*
  634. * If filesystem uses generic_show_options(), this function should be
  635. * called from the fill_super() callback.
  636. *
  637. * The .remount_fs callback usually needs to be handled in a special
  638. * way, to make sure, that previous options are not overwritten if the
  639. * remount fails.
  640. *
  641. * Also note, that if the filesystem's .remount_fs function doesn't
  642. * reset all options to their default value, but changes only newly
  643. * given options, then the displayed options will not reflect reality
  644. * any more.
  645. */
  646. void save_mount_options(struct super_block *sb, char *options)
  647. {
  648. kfree(sb->s_options);
  649. sb->s_options = kstrdup(options, GFP_KERNEL);
  650. }
  651. EXPORT_SYMBOL(save_mount_options);
  652. #ifdef CONFIG_PROC_FS
  653. /* iterator */
  654. static void *m_start(struct seq_file *m, loff_t *pos)
  655. {
  656. struct proc_mounts *p = m->private;
  657. down_read(&namespace_sem);
  658. return seq_list_start(&p->ns->list, *pos);
  659. }
  660. static void *m_next(struct seq_file *m, void *v, loff_t *pos)
  661. {
  662. struct proc_mounts *p = m->private;
  663. return seq_list_next(v, &p->ns->list, pos);
  664. }
  665. static void m_stop(struct seq_file *m, void *v)
  666. {
  667. up_read(&namespace_sem);
  668. }
  669. struct proc_fs_info {
  670. int flag;
  671. const char *str;
  672. };
  673. static int show_sb_opts(struct seq_file *m, struct super_block *sb)
  674. {
  675. static const struct proc_fs_info fs_info[] = {
  676. { MS_SYNCHRONOUS, ",sync" },
  677. { MS_DIRSYNC, ",dirsync" },
  678. { MS_MANDLOCK, ",mand" },
  679. { 0, NULL }
  680. };
  681. const struct proc_fs_info *fs_infop;
  682. for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
  683. if (sb->s_flags & fs_infop->flag)
  684. seq_puts(m, fs_infop->str);
  685. }
  686. return security_sb_show_options(m, sb);
  687. }
  688. static void show_mnt_opts(struct seq_file *m, struct vfsmount *mnt)
  689. {
  690. static const struct proc_fs_info mnt_info[] = {
  691. { MNT_NOSUID, ",nosuid" },
  692. { MNT_NODEV, ",nodev" },
  693. { MNT_NOEXEC, ",noexec" },
  694. { MNT_NOATIME, ",noatime" },
  695. { MNT_NODIRATIME, ",nodiratime" },
  696. { MNT_RELATIME, ",relatime" },
  697. { MNT_STRICTATIME, ",strictatime" },
  698. { 0, NULL }
  699. };
  700. const struct proc_fs_info *fs_infop;
  701. for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
  702. if (mnt->mnt_flags & fs_infop->flag)
  703. seq_puts(m, fs_infop->str);
  704. }
  705. }
  706. static void show_type(struct seq_file *m, struct super_block *sb)
  707. {
  708. mangle(m, sb->s_type->name);
  709. if (sb->s_subtype && sb->s_subtype[0]) {
  710. seq_putc(m, '.');
  711. mangle(m, sb->s_subtype);
  712. }
  713. }
  714. static int show_vfsmnt(struct seq_file *m, void *v)
  715. {
  716. struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
  717. int err = 0;
  718. struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
  719. mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
  720. seq_putc(m, ' ');
  721. seq_path(m, &mnt_path, " \t\n\\");
  722. seq_putc(m, ' ');
  723. show_type(m, mnt->mnt_sb);
  724. seq_puts(m, __mnt_is_readonly(mnt) ? " ro" : " rw");
  725. err = show_sb_opts(m, mnt->mnt_sb);
  726. if (err)
  727. goto out;
  728. show_mnt_opts(m, mnt);
  729. if (mnt->mnt_sb->s_op->show_options)
  730. err = mnt->mnt_sb->s_op->show_options(m, mnt);
  731. seq_puts(m, " 0 0\n");
  732. out:
  733. return err;
  734. }
  735. const struct seq_operations mounts_op = {
  736. .start = m_start,
  737. .next = m_next,
  738. .stop = m_stop,
  739. .show = show_vfsmnt
  740. };
  741. static int show_mountinfo(struct seq_file *m, void *v)
  742. {
  743. struct proc_mounts *p = m->private;
  744. struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
  745. struct super_block *sb = mnt->mnt_sb;
  746. struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
  747. struct path root = p->root;
  748. int err = 0;
  749. seq_printf(m, "%i %i %u:%u ", mnt->mnt_id, mnt->mnt_parent->mnt_id,
  750. MAJOR(sb->s_dev), MINOR(sb->s_dev));
  751. seq_dentry(m, mnt->mnt_root, " \t\n\\");
  752. seq_putc(m, ' ');
  753. seq_path_root(m, &mnt_path, &root, " \t\n\\");
  754. if (root.mnt != p->root.mnt || root.dentry != p->root.dentry) {
  755. /*
  756. * Mountpoint is outside root, discard that one. Ugly,
  757. * but less so than trying to do that in iterator in a
  758. * race-free way (due to renames).
  759. */
  760. return SEQ_SKIP;
  761. }
  762. seq_puts(m, mnt->mnt_flags & MNT_READONLY ? " ro" : " rw");
  763. show_mnt_opts(m, mnt);
  764. /* Tagged fields ("foo:X" or "bar") */
  765. if (IS_MNT_SHARED(mnt))
  766. seq_printf(m, " shared:%i", mnt->mnt_group_id);
  767. if (IS_MNT_SLAVE(mnt)) {
  768. int master = mnt->mnt_master->mnt_group_id;
  769. int dom = get_dominating_id(mnt, &p->root);
  770. seq_printf(m, " master:%i", master);
  771. if (dom && dom != master)
  772. seq_printf(m, " propagate_from:%i", dom);
  773. }
  774. if (IS_MNT_UNBINDABLE(mnt))
  775. seq_puts(m, " unbindable");
  776. /* Filesystem specific data */
  777. seq_puts(m, " - ");
  778. show_type(m, sb);
  779. seq_putc(m, ' ');
  780. mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
  781. seq_puts(m, sb->s_flags & MS_RDONLY ? " ro" : " rw");
  782. err = show_sb_opts(m, sb);
  783. if (err)
  784. goto out;
  785. if (sb->s_op->show_options)
  786. err = sb->s_op->show_options(m, mnt);
  787. seq_putc(m, '\n');
  788. out:
  789. return err;
  790. }
  791. const struct seq_operations mountinfo_op = {
  792. .start = m_start,
  793. .next = m_next,
  794. .stop = m_stop,
  795. .show = show_mountinfo,
  796. };
  797. static int show_vfsstat(struct seq_file *m, void *v)
  798. {
  799. struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
  800. struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
  801. int err = 0;
  802. /* device */
  803. if (mnt->mnt_devname) {
  804. seq_puts(m, "device ");
  805. mangle(m, mnt->mnt_devname);
  806. } else
  807. seq_puts(m, "no device");
  808. /* mount point */
  809. seq_puts(m, " mounted on ");
  810. seq_path(m, &mnt_path, " \t\n\\");
  811. seq_putc(m, ' ');
  812. /* file system type */
  813. seq_puts(m, "with fstype ");
  814. show_type(m, mnt->mnt_sb);
  815. /* optional statistics */
  816. if (mnt->mnt_sb->s_op->show_stats) {
  817. seq_putc(m, ' ');
  818. err = mnt->mnt_sb->s_op->show_stats(m, mnt);
  819. }
  820. seq_putc(m, '\n');
  821. return err;
  822. }
  823. const struct seq_operations mountstats_op = {
  824. .start = m_start,
  825. .next = m_next,
  826. .stop = m_stop,
  827. .show = show_vfsstat,
  828. };
  829. #endif /* CONFIG_PROC_FS */
  830. /**
  831. * may_umount_tree - check if a mount tree is busy
  832. * @mnt: root of mount tree
  833. *
  834. * This is called to check if a tree of mounts has any
  835. * open files, pwds, chroots or sub mounts that are
  836. * busy.
  837. */
  838. int may_umount_tree(struct vfsmount *mnt)
  839. {
  840. int actual_refs = 0;
  841. int minimum_refs = 0;
  842. struct vfsmount *p;
  843. spin_lock(&vfsmount_lock);
  844. for (p = mnt; p; p = next_mnt(p, mnt)) {
  845. actual_refs += atomic_read(&p->mnt_count);
  846. minimum_refs += 2;
  847. }
  848. spin_unlock(&vfsmount_lock);
  849. if (actual_refs > minimum_refs)
  850. return 0;
  851. return 1;
  852. }
  853. EXPORT_SYMBOL(may_umount_tree);
  854. /**
  855. * may_umount - check if a mount point is busy
  856. * @mnt: root of mount
  857. *
  858. * This is called to check if a mount point has any
  859. * open files, pwds, chroots or sub mounts. If the
  860. * mount has sub mounts this will return busy
  861. * regardless of whether the sub mounts are busy.
  862. *
  863. * Doesn't take quota and stuff into account. IOW, in some cases it will
  864. * give false negatives. The main reason why it's here is that we need
  865. * a non-destructive way to look for easily umountable filesystems.
  866. */
  867. int may_umount(struct vfsmount *mnt)
  868. {
  869. int ret = 1;
  870. spin_lock(&vfsmount_lock);
  871. if (propagate_mount_busy(mnt, 2))
  872. ret = 0;
  873. spin_unlock(&vfsmount_lock);
  874. return ret;
  875. }
  876. EXPORT_SYMBOL(may_umount);
  877. void release_mounts(struct list_head *head)
  878. {
  879. struct vfsmount *mnt;
  880. while (!list_empty(head)) {
  881. mnt = list_first_entry(head, struct vfsmount, mnt_hash);
  882. list_del_init(&mnt->mnt_hash);
  883. if (mnt->mnt_parent != mnt) {
  884. struct dentry *dentry;
  885. struct vfsmount *m;
  886. spin_lock(&vfsmount_lock);
  887. dentry = mnt->mnt_mountpoint;
  888. m = mnt->mnt_parent;
  889. mnt->mnt_mountpoint = mnt->mnt_root;
  890. mnt->mnt_parent = mnt;
  891. m->mnt_ghosts--;
  892. spin_unlock(&vfsmount_lock);
  893. dput(dentry);
  894. mntput(m);
  895. }
  896. mntput(mnt);
  897. }
  898. }
  899. void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
  900. {
  901. struct vfsmount *p;
  902. for (p = mnt; p; p = next_mnt(p, mnt))
  903. list_move(&p->mnt_hash, kill);
  904. if (propagate)
  905. propagate_umount(kill);
  906. list_for_each_entry(p, kill, mnt_hash) {
  907. list_del_init(&p->mnt_expire);
  908. list_del_init(&p->mnt_list);
  909. __touch_mnt_namespace(p->mnt_ns);
  910. p->mnt_ns = NULL;
  911. list_del_init(&p->mnt_child);
  912. if (p->mnt_parent != p) {
  913. p->mnt_parent->mnt_ghosts++;
  914. p->mnt_mountpoint->d_mounted--;
  915. }
  916. change_mnt_propagation(p, MS_PRIVATE);
  917. }
  918. }
  919. static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts);
  920. static int do_umount(struct vfsmount *mnt, int flags)
  921. {
  922. struct super_block *sb = mnt->mnt_sb;
  923. int retval;
  924. LIST_HEAD(umount_list);
  925. retval = security_sb_umount(mnt, flags);
  926. if (retval)
  927. return retval;
  928. /*
  929. * Allow userspace to request a mountpoint be expired rather than
  930. * unmounting unconditionally. Unmount only happens if:
  931. * (1) the mark is already set (the mark is cleared by mntput())
  932. * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
  933. */
  934. if (flags & MNT_EXPIRE) {
  935. if (mnt == current->fs->root.mnt ||
  936. flags & (MNT_FORCE | MNT_DETACH))
  937. return -EINVAL;
  938. if (atomic_read(&mnt->mnt_count) != 2)
  939. return -EBUSY;
  940. if (!xchg(&mnt->mnt_expiry_mark, 1))
  941. return -EAGAIN;
  942. }
  943. /*
  944. * If we may have to abort operations to get out of this
  945. * mount, and they will themselves hold resources we must
  946. * allow the fs to do things. In the Unix tradition of
  947. * 'Gee thats tricky lets do it in userspace' the umount_begin
  948. * might fail to complete on the first run through as other tasks
  949. * must return, and the like. Thats for the mount program to worry
  950. * about for the moment.
  951. */
  952. if (flags & MNT_FORCE && sb->s_op->umount_begin) {
  953. lock_kernel();
  954. sb->s_op->umount_begin(sb);
  955. unlock_kernel();
  956. }
  957. /*
  958. * No sense to grab the lock for this test, but test itself looks
  959. * somewhat bogus. Suggestions for better replacement?
  960. * Ho-hum... In principle, we might treat that as umount + switch
  961. * to rootfs. GC would eventually take care of the old vfsmount.
  962. * Actually it makes sense, especially if rootfs would contain a
  963. * /reboot - static binary that would close all descriptors and
  964. * call reboot(9). Then init(8) could umount root and exec /reboot.
  965. */
  966. if (mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
  967. /*
  968. * Special case for "unmounting" root ...
  969. * we just try to remount it readonly.
  970. */
  971. down_write(&sb->s_umount);
  972. if (!(sb->s_flags & MS_RDONLY)) {
  973. lock_kernel();
  974. retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
  975. unlock_kernel();
  976. }
  977. up_write(&sb->s_umount);
  978. return retval;
  979. }
  980. down_write(&namespace_sem);
  981. spin_lock(&vfsmount_lock);
  982. event++;
  983. if (!(flags & MNT_DETACH))
  984. shrink_submounts(mnt, &umount_list);
  985. retval = -EBUSY;
  986. if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
  987. if (!list_empty(&mnt->mnt_list))
  988. umount_tree(mnt, 1, &umount_list);
  989. retval = 0;
  990. }
  991. spin_unlock(&vfsmount_lock);
  992. if (retval)
  993. security_sb_umount_busy(mnt);
  994. up_write(&namespace_sem);
  995. release_mounts(&umount_list);
  996. return retval;
  997. }
  998. /*
  999. * Now umount can handle mount points as well as block devices.
  1000. * This is important for filesystems which use unnamed block devices.
  1001. *
  1002. * We now support a flag for forced unmount like the other 'big iron'
  1003. * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
  1004. */
  1005. SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
  1006. {
  1007. struct path path;
  1008. int retval;
  1009. retval = user_path(name, &path);
  1010. if (retval)
  1011. goto out;
  1012. retval = -EINVAL;
  1013. if (path.dentry != path.mnt->mnt_root)
  1014. goto dput_and_out;
  1015. if (!check_mnt(path.mnt))
  1016. goto dput_and_out;
  1017. retval = -EPERM;
  1018. if (!capable(CAP_SYS_ADMIN))
  1019. goto dput_and_out;
  1020. retval = do_umount(path.mnt, flags);
  1021. dput_and_out:
  1022. /* we mustn't call path_put() as that would clear mnt_expiry_mark */
  1023. dput(path.dentry);
  1024. mntput_no_expire(path.mnt);
  1025. out:
  1026. return retval;
  1027. }
  1028. #ifdef __ARCH_WANT_SYS_OLDUMOUNT
  1029. /*
  1030. * The 2.0 compatible umount. No flags.
  1031. */
  1032. SYSCALL_DEFINE1(oldumount, char __user *, name)
  1033. {
  1034. return sys_umount(name, 0);
  1035. }
  1036. #endif
  1037. static int mount_is_safe(struct path *path)
  1038. {
  1039. if (capable(CAP_SYS_ADMIN))
  1040. return 0;
  1041. return -EPERM;
  1042. #ifdef notyet
  1043. if (S_ISLNK(path->dentry->d_inode->i_mode))
  1044. return -EPERM;
  1045. if (path->dentry->d_inode->i_mode & S_ISVTX) {
  1046. if (current_uid() != path->dentry->d_inode->i_uid)
  1047. return -EPERM;
  1048. }
  1049. if (inode_permission(path->dentry->d_inode, MAY_WRITE))
  1050. return -EPERM;
  1051. return 0;
  1052. #endif
  1053. }
  1054. struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
  1055. int flag)
  1056. {
  1057. struct vfsmount *res, *p, *q, *r, *s;
  1058. struct path path;
  1059. if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
  1060. return NULL;
  1061. res = q = clone_mnt(mnt, dentry, flag);
  1062. if (!q)
  1063. goto Enomem;
  1064. q->mnt_mountpoint = mnt->mnt_mountpoint;
  1065. p = mnt;
  1066. list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
  1067. if (!is_subdir(r->mnt_mountpoint, dentry))
  1068. continue;
  1069. for (s = r; s; s = next_mnt(s, r)) {
  1070. if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
  1071. s = skip_mnt_tree(s);
  1072. continue;
  1073. }
  1074. while (p != s->mnt_parent) {
  1075. p = p->mnt_parent;
  1076. q = q->mnt_parent;
  1077. }
  1078. p = s;
  1079. path.mnt = q;
  1080. path.dentry = p->mnt_mountpoint;
  1081. q = clone_mnt(p, p->mnt_root, flag);
  1082. if (!q)
  1083. goto Enomem;
  1084. spin_lock(&vfsmount_lock);
  1085. list_add_tail(&q->mnt_list, &res->mnt_list);
  1086. attach_mnt(q, &path);
  1087. spin_unlock(&vfsmount_lock);
  1088. }
  1089. }
  1090. return res;
  1091. Enomem:
  1092. if (res) {
  1093. LIST_HEAD(umount_list);
  1094. spin_lock(&vfsmount_lock);
  1095. umount_tree(res, 0, &umount_list);
  1096. spin_unlock(&vfsmount_lock);
  1097. release_mounts(&umount_list);
  1098. }
  1099. return NULL;
  1100. }
  1101. struct vfsmount *collect_mounts(struct vfsmount *mnt, struct dentry *dentry)
  1102. {
  1103. struct vfsmount *tree;
  1104. down_write(&namespace_sem);
  1105. tree = copy_tree(mnt, dentry, CL_COPY_ALL | CL_PRIVATE);
  1106. up_write(&namespace_sem);
  1107. return tree;
  1108. }
  1109. void drop_collected_mounts(struct vfsmount *mnt)
  1110. {
  1111. LIST_HEAD(umount_list);
  1112. down_write(&namespace_sem);
  1113. spin_lock(&vfsmount_lock);
  1114. umount_tree(mnt, 0, &umount_list);
  1115. spin_unlock(&vfsmount_lock);
  1116. up_write(&namespace_sem);
  1117. release_mounts(&umount_list);
  1118. }
  1119. static void cleanup_group_ids(struct vfsmount *mnt, struct vfsmount *end)
  1120. {
  1121. struct vfsmount *p;
  1122. for (p = mnt; p != end; p = next_mnt(p, mnt)) {
  1123. if (p->mnt_group_id && !IS_MNT_SHARED(p))
  1124. mnt_release_group_id(p);
  1125. }
  1126. }
  1127. static int invent_group_ids(struct vfsmount *mnt, bool recurse)
  1128. {
  1129. struct vfsmount *p;
  1130. for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
  1131. if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
  1132. int err = mnt_alloc_group_id(p);
  1133. if (err) {
  1134. cleanup_group_ids(mnt, p);
  1135. return err;
  1136. }
  1137. }
  1138. }
  1139. return 0;
  1140. }
  1141. /*
  1142. * @source_mnt : mount tree to be attached
  1143. * @nd : place the mount tree @source_mnt is attached
  1144. * @parent_nd : if non-null, detach the source_mnt from its parent and
  1145. * store the parent mount and mountpoint dentry.
  1146. * (done when source_mnt is moved)
  1147. *
  1148. * NOTE: in the table below explains the semantics when a source mount
  1149. * of a given type is attached to a destination mount of a given type.
  1150. * ---------------------------------------------------------------------------
  1151. * | BIND MOUNT OPERATION |
  1152. * |**************************************************************************
  1153. * | source-->| shared | private | slave | unbindable |
  1154. * | dest | | | | |
  1155. * | | | | | | |
  1156. * | v | | | | |
  1157. * |**************************************************************************
  1158. * | shared | shared (++) | shared (+) | shared(+++)| invalid |
  1159. * | | | | | |
  1160. * |non-shared| shared (+) | private | slave (*) | invalid |
  1161. * ***************************************************************************
  1162. * A bind operation clones the source mount and mounts the clone on the
  1163. * destination mount.
  1164. *
  1165. * (++) the cloned mount is propagated to all the mounts in the propagation
  1166. * tree of the destination mount and the cloned mount is added to
  1167. * the peer group of the source mount.
  1168. * (+) the cloned mount is created under the destination mount and is marked
  1169. * as shared. The cloned mount is added to the peer group of the source
  1170. * mount.
  1171. * (+++) the mount is propagated to all the mounts in the propagation tree
  1172. * of the destination mount and the cloned mount is made slave
  1173. * of the same master as that of the source mount. The cloned mount
  1174. * is marked as 'shared and slave'.
  1175. * (*) the cloned mount is made a slave of the same master as that of the
  1176. * source mount.
  1177. *
  1178. * ---------------------------------------------------------------------------
  1179. * | MOVE MOUNT OPERATION |
  1180. * |**************************************************************************
  1181. * | source-->| shared | private | slave | unbindable |
  1182. * | dest | | | | |
  1183. * | | | | | | |
  1184. * | v | | | | |
  1185. * |**************************************************************************
  1186. * | shared | shared (+) | shared (+) | shared(+++) | invalid |
  1187. * | | | | | |
  1188. * |non-shared| shared (+*) | private | slave (*) | unbindable |
  1189. * ***************************************************************************
  1190. *
  1191. * (+) the mount is moved to the destination. And is then propagated to
  1192. * all the mounts in the propagation tree of the destination mount.
  1193. * (+*) the mount is moved to the destination.
  1194. * (+++) the mount is moved to the destination and is then propagated to
  1195. * all the mounts belonging to the destination mount's propagation tree.
  1196. * the mount is marked as 'shared and slave'.
  1197. * (*) the mount continues to be a slave at the new location.
  1198. *
  1199. * if the source mount is a tree, the operations explained above is
  1200. * applied to each mount in the tree.
  1201. * Must be called without spinlocks held, since this function can sleep
  1202. * in allocations.
  1203. */
  1204. static int attach_recursive_mnt(struct vfsmount *source_mnt,
  1205. struct path *path, struct path *parent_path)
  1206. {
  1207. LIST_HEAD(tree_list);
  1208. struct vfsmount *dest_mnt = path->mnt;
  1209. struct dentry *dest_dentry = path->dentry;
  1210. struct vfsmount *child, *p;
  1211. int err;
  1212. if (IS_MNT_SHARED(dest_mnt)) {
  1213. err = invent_group_ids(source_mnt, true);
  1214. if (err)
  1215. goto out;
  1216. }
  1217. err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
  1218. if (err)
  1219. goto out_cleanup_ids;
  1220. if (IS_MNT_SHARED(dest_mnt)) {
  1221. for (p = source_mnt; p; p = next_mnt(p, source_mnt))
  1222. set_mnt_shared(p);
  1223. }
  1224. spin_lock(&vfsmount_lock);
  1225. if (parent_path) {
  1226. detach_mnt(source_mnt, parent_path);
  1227. attach_mnt(source_mnt, path);
  1228. touch_mnt_namespace(current->nsproxy->mnt_ns);
  1229. } else {
  1230. mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
  1231. commit_tree(source_mnt);
  1232. }
  1233. list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
  1234. list_del_init(&child->mnt_hash);
  1235. commit_tree(child);
  1236. }
  1237. spin_unlock(&vfsmount_lock);
  1238. return 0;
  1239. out_cleanup_ids:
  1240. if (IS_MNT_SHARED(dest_mnt))
  1241. cleanup_group_ids(source_mnt, NULL);
  1242. out:
  1243. return err;
  1244. }
  1245. static int graft_tree(struct vfsmount *mnt, struct path *path)
  1246. {
  1247. int err;
  1248. if (mnt->mnt_sb->s_flags & MS_NOUSER)
  1249. return -EINVAL;
  1250. if (S_ISDIR(path->dentry->d_inode->i_mode) !=
  1251. S_ISDIR(mnt->mnt_root->d_inode->i_mode))
  1252. return -ENOTDIR;
  1253. err = -ENOENT;
  1254. mutex_lock(&path->dentry->d_inode->i_mutex);
  1255. if (IS_DEADDIR(path->dentry->d_inode))
  1256. goto out_unlock;
  1257. err = security_sb_check_sb(mnt, path);
  1258. if (err)
  1259. goto out_unlock;
  1260. err = -ENOENT;
  1261. if (IS_ROOT(path->dentry) || !d_unhashed(path->dentry))
  1262. err = attach_recursive_mnt(mnt, path, NULL);
  1263. out_unlock:
  1264. mutex_unlock(&path->dentry->d_inode->i_mutex);
  1265. if (!err)
  1266. security_sb_post_addmount(mnt, path);
  1267. return err;
  1268. }
  1269. /*
  1270. * recursively change the type of the mountpoint.
  1271. */
  1272. static int do_change_type(struct path *path, int flag)
  1273. {
  1274. struct vfsmount *m, *mnt = path->mnt;
  1275. int recurse = flag & MS_REC;
  1276. int type = flag & ~MS_REC;
  1277. int err = 0;
  1278. if (!capable(CAP_SYS_ADMIN))
  1279. return -EPERM;
  1280. if (path->dentry != path->mnt->mnt_root)
  1281. return -EINVAL;
  1282. down_write(&namespace_sem);
  1283. if (type == MS_SHARED) {
  1284. err = invent_group_ids(mnt, recurse);
  1285. if (err)
  1286. goto out_unlock;
  1287. }
  1288. spin_lock(&vfsmount_lock);
  1289. for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
  1290. change_mnt_propagation(m, type);
  1291. spin_unlock(&vfsmount_lock);
  1292. out_unlock:
  1293. up_write(&namespace_sem);
  1294. return err;
  1295. }
  1296. /*
  1297. * do loopback mount.
  1298. */
  1299. static int do_loopback(struct path *path, char *old_name,
  1300. int recurse)
  1301. {
  1302. struct path old_path;
  1303. struct vfsmount *mnt = NULL;
  1304. int err = mount_is_safe(path);
  1305. if (err)
  1306. return err;
  1307. if (!old_name || !*old_name)
  1308. return -EINVAL;
  1309. err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
  1310. if (err)
  1311. return err;
  1312. down_write(&namespace_sem);
  1313. err = -EINVAL;
  1314. if (IS_MNT_UNBINDABLE(old_path.mnt))
  1315. goto out;
  1316. if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
  1317. goto out;
  1318. err = -ENOMEM;
  1319. if (recurse)
  1320. mnt = copy_tree(old_path.mnt, old_path.dentry, 0);
  1321. else
  1322. mnt = clone_mnt(old_path.mnt, old_path.dentry, 0);
  1323. if (!mnt)
  1324. goto out;
  1325. err = graft_tree(mnt, path);
  1326. if (err) {
  1327. LIST_HEAD(umount_list);
  1328. spin_lock(&vfsmount_lock);
  1329. umount_tree(mnt, 0, &umount_list);
  1330. spin_unlock(&vfsmount_lock);
  1331. release_mounts(&umount_list);
  1332. }
  1333. out:
  1334. up_write(&namespace_sem);
  1335. path_put(&old_path);
  1336. return err;
  1337. }
  1338. static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
  1339. {
  1340. int error = 0;
  1341. int readonly_request = 0;
  1342. if (ms_flags & MS_RDONLY)
  1343. readonly_request = 1;
  1344. if (readonly_request == __mnt_is_readonly(mnt))
  1345. return 0;
  1346. if (readonly_request)
  1347. error = mnt_make_readonly(mnt);
  1348. else
  1349. __mnt_unmake_readonly(mnt);
  1350. return error;
  1351. }
  1352. /*
  1353. * change filesystem flags. dir should be a physical root of filesystem.
  1354. * If you've mounted a non-root directory somewhere and want to do remount
  1355. * on it - tough luck.
  1356. */
  1357. static int do_remount(struct path *path, int flags, int mnt_flags,
  1358. void *data)
  1359. {
  1360. int err;
  1361. struct super_block *sb = path->mnt->mnt_sb;
  1362. if (!capable(CAP_SYS_ADMIN))
  1363. return -EPERM;
  1364. if (!check_mnt(path->mnt))
  1365. return -EINVAL;
  1366. if (path->dentry != path->mnt->mnt_root)
  1367. return -EINVAL;
  1368. down_write(&sb->s_umount);
  1369. if (flags & MS_BIND)
  1370. err = change_mount_flags(path->mnt, flags);
  1371. else
  1372. err = do_remount_sb(sb, flags, data, 0);
  1373. if (!err)
  1374. path->mnt->mnt_flags = mnt_flags;
  1375. up_write(&sb->s_umount);
  1376. if (!err) {
  1377. security_sb_post_remount(path->mnt, flags, data);
  1378. spin_lock(&vfsmount_lock);
  1379. touch_mnt_namespace(path->mnt->mnt_ns);
  1380. spin_unlock(&vfsmount_lock);
  1381. }
  1382. return err;
  1383. }
  1384. static inline int tree_contains_unbindable(struct vfsmount *mnt)
  1385. {
  1386. struct vfsmount *p;
  1387. for (p = mnt; p; p = next_mnt(p, mnt)) {
  1388. if (IS_MNT_UNBINDABLE(p))
  1389. return 1;
  1390. }
  1391. return 0;
  1392. }
  1393. static int do_move_mount(struct path *path, char *old_name)
  1394. {
  1395. struct path old_path, parent_path;
  1396. struct vfsmount *p;
  1397. int err = 0;
  1398. if (!capable(CAP_SYS_ADMIN))
  1399. return -EPERM;
  1400. if (!old_name || !*old_name)
  1401. return -EINVAL;
  1402. err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
  1403. if (err)
  1404. return err;
  1405. down_write(&namespace_sem);
  1406. while (d_mountpoint(path->dentry) &&
  1407. follow_down(&path->mnt, &path->dentry))
  1408. ;
  1409. err = -EINVAL;
  1410. if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
  1411. goto out;
  1412. err = -ENOENT;
  1413. mutex_lock(&path->dentry->d_inode->i_mutex);
  1414. if (IS_DEADDIR(path->dentry->d_inode))
  1415. goto out1;
  1416. if (!IS_ROOT(path->dentry) && d_unhashed(path->dentry))
  1417. goto out1;
  1418. err = -EINVAL;
  1419. if (old_path.dentry != old_path.mnt->mnt_root)
  1420. goto out1;
  1421. if (old_path.mnt == old_path.mnt->mnt_parent)
  1422. goto out1;
  1423. if (S_ISDIR(path->dentry->d_inode->i_mode) !=
  1424. S_ISDIR(old_path.dentry->d_inode->i_mode))
  1425. goto out1;
  1426. /*
  1427. * Don't move a mount residing in a shared parent.
  1428. */
  1429. if (old_path.mnt->mnt_parent &&
  1430. IS_MNT_SHARED(old_path.mnt->mnt_parent))
  1431. goto out1;
  1432. /*
  1433. * Don't move a mount tree containing unbindable mounts to a destination
  1434. * mount which is shared.
  1435. */
  1436. if (IS_MNT_SHARED(path->mnt) &&
  1437. tree_contains_unbindable(old_path.mnt))
  1438. goto out1;
  1439. err = -ELOOP;
  1440. for (p = path->mnt; p->mnt_parent != p; p = p->mnt_parent)
  1441. if (p == old_path.mnt)
  1442. goto out1;
  1443. err = attach_recursive_mnt(old_path.mnt, path, &parent_path);
  1444. if (err)
  1445. goto out1;
  1446. /* if the mount is moved, it should no longer be expire
  1447. * automatically */
  1448. list_del_init(&old_path.mnt->mnt_expire);
  1449. out1:
  1450. mutex_unlock(&path->dentry->d_inode->i_mutex);
  1451. out:
  1452. up_write(&namespace_sem);
  1453. if (!err)
  1454. path_put(&parent_path);
  1455. path_put(&old_path);
  1456. return err;
  1457. }
  1458. /*
  1459. * create a new mount for userspace and request it to be added into the
  1460. * namespace's tree
  1461. */
  1462. static int do_new_mount(struct path *path, char *type, int flags,
  1463. int mnt_flags, char *name, void *data)
  1464. {
  1465. struct vfsmount *mnt;
  1466. if (!type || !memchr(type, 0, PAGE_SIZE))
  1467. return -EINVAL;
  1468. /* we need capabilities... */
  1469. if (!capable(CAP_SYS_ADMIN))
  1470. return -EPERM;
  1471. mnt = do_kern_mount(type, flags, name, data);
  1472. if (IS_ERR(mnt))
  1473. return PTR_ERR(mnt);
  1474. return do_add_mount(mnt, path, mnt_flags, NULL);
  1475. }
  1476. /*
  1477. * add a mount into a namespace's mount tree
  1478. * - provide the option of adding the new mount to an expiration list
  1479. */
  1480. int do_add_mount(struct vfsmount *newmnt, struct path *path,
  1481. int mnt_flags, struct list_head *fslist)
  1482. {
  1483. int err;
  1484. down_write(&namespace_sem);
  1485. /* Something was mounted here while we slept */
  1486. while (d_mountpoint(path->dentry) &&
  1487. follow_down(&path->mnt, &path->dentry))
  1488. ;
  1489. err = -EINVAL;
  1490. if (!check_mnt(path->mnt))
  1491. goto unlock;
  1492. /* Refuse the same filesystem on the same mount point */
  1493. err = -EBUSY;
  1494. if (path->mnt->mnt_sb == newmnt->mnt_sb &&
  1495. path->mnt->mnt_root == path->dentry)
  1496. goto unlock;
  1497. err = -EINVAL;
  1498. if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
  1499. goto unlock;
  1500. newmnt->mnt_flags = mnt_flags;
  1501. if ((err = graft_tree(newmnt, path)))
  1502. goto unlock;
  1503. if (fslist) /* add to the specified expiration list */
  1504. list_add_tail(&newmnt->mnt_expire, fslist);
  1505. up_write(&namespace_sem);
  1506. return 0;
  1507. unlock:
  1508. up_write(&namespace_sem);
  1509. mntput(newmnt);
  1510. return err;
  1511. }
  1512. EXPORT_SYMBOL_GPL(do_add_mount);
  1513. /*
  1514. * process a list of expirable mountpoints with the intent of discarding any
  1515. * mountpoints that aren't in use and haven't been touched since last we came
  1516. * here
  1517. */
  1518. void mark_mounts_for_expiry(struct list_head *mounts)
  1519. {
  1520. struct vfsmount *mnt, *next;
  1521. LIST_HEAD(graveyard);
  1522. LIST_HEAD(umounts);
  1523. if (list_empty(mounts))
  1524. return;
  1525. down_write(&namespace_sem);
  1526. spin_lock(&vfsmount_lock);
  1527. /* extract from the expiration list every vfsmount that matches the
  1528. * following criteria:
  1529. * - only referenced by its parent vfsmount
  1530. * - still marked for expiry (marked on the last call here; marks are
  1531. * cleared by mntput())
  1532. */
  1533. list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
  1534. if (!xchg(&mnt->mnt_expiry_mark, 1) ||
  1535. propagate_mount_busy(mnt, 1))
  1536. continue;
  1537. list_move(&mnt->mnt_expire, &graveyard);
  1538. }
  1539. while (!list_empty(&graveyard)) {
  1540. mnt = list_first_entry(&graveyard, struct vfsmount, mnt_expire);
  1541. touch_mnt_namespace(mnt->mnt_ns);
  1542. umount_tree(mnt, 1, &umounts);
  1543. }
  1544. spin_unlock(&vfsmount_lock);
  1545. up_write(&namespace_sem);
  1546. release_mounts(&umounts);
  1547. }
  1548. EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
  1549. /*
  1550. * Ripoff of 'select_parent()'
  1551. *
  1552. * search the list of submounts for a given mountpoint, and move any
  1553. * shrinkable submounts to the 'graveyard' list.
  1554. */
  1555. static int select_submounts(struct vfsmount *parent, struct list_head *graveyard)
  1556. {
  1557. struct vfsmount *this_parent = parent;
  1558. struct list_head *next;
  1559. int found = 0;
  1560. repeat:
  1561. next = this_parent->mnt_mounts.next;
  1562. resume:
  1563. while (next != &this_parent->mnt_mounts) {
  1564. struct list_head *tmp = next;
  1565. struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child);
  1566. next = tmp->next;
  1567. if (!(mnt->mnt_flags & MNT_SHRINKABLE))
  1568. continue;
  1569. /*
  1570. * Descend a level if the d_mounts list is non-empty.
  1571. */
  1572. if (!list_empty(&mnt->mnt_mounts)) {
  1573. this_parent = mnt;
  1574. goto repeat;
  1575. }
  1576. if (!propagate_mount_busy(mnt, 1)) {
  1577. list_move_tail(&mnt->mnt_expire, graveyard);
  1578. found++;
  1579. }
  1580. }
  1581. /*
  1582. * All done at this level ... ascend and resume the search
  1583. */
  1584. if (this_parent != parent) {
  1585. next = this_parent->mnt_child.next;
  1586. this_parent = this_parent->mnt_parent;
  1587. goto resume;
  1588. }
  1589. return found;
  1590. }
  1591. /*
  1592. * process a list of expirable mountpoints with the intent of discarding any
  1593. * submounts of a specific parent mountpoint
  1594. */
  1595. static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts)
  1596. {
  1597. LIST_HEAD(graveyard);
  1598. struct vfsmount *m;
  1599. /* extract submounts of 'mountpoint' from the expiration list */
  1600. while (select_submounts(mnt, &graveyard)) {
  1601. while (!list_empty(&graveyard)) {
  1602. m = list_first_entry(&graveyard, struct vfsmount,
  1603. mnt_expire);
  1604. touch_mnt_namespace(m->mnt_ns);
  1605. umount_tree(m, 1, umounts);
  1606. }
  1607. }
  1608. }
  1609. /*
  1610. * Some copy_from_user() implementations do not return the exact number of
  1611. * bytes remaining to copy on a fault. But copy_mount_options() requires that.
  1612. * Note that this function differs from copy_from_user() in that it will oops
  1613. * on bad values of `to', rather than returning a short copy.
  1614. */
  1615. static long exact_copy_from_user(void *to, const void __user * from,
  1616. unsigned long n)
  1617. {
  1618. char *t = to;
  1619. const char __user *f = from;
  1620. char c;
  1621. if (!access_ok(VERIFY_READ, from, n))
  1622. return n;
  1623. while (n) {
  1624. if (__get_user(c, f)) {
  1625. memset(t, 0, n);
  1626. break;
  1627. }
  1628. *t++ = c;
  1629. f++;
  1630. n--;
  1631. }
  1632. return n;
  1633. }
  1634. int copy_mount_options(const void __user * data, unsigned long *where)
  1635. {
  1636. int i;
  1637. unsigned long page;
  1638. unsigned long size;
  1639. *where = 0;
  1640. if (!data)
  1641. return 0;
  1642. if (!(page = __get_free_page(GFP_KERNEL)))
  1643. return -ENOMEM;
  1644. /* We only care that *some* data at the address the user
  1645. * gave us is valid. Just in case, we'll zero
  1646. * the remainder of the page.
  1647. */
  1648. /* copy_from_user cannot cross TASK_SIZE ! */
  1649. size = TASK_SIZE - (unsigned long)data;
  1650. if (size > PAGE_SIZE)
  1651. size = PAGE_SIZE;
  1652. i = size - exact_copy_from_user((void *)page, data, size);
  1653. if (!i) {
  1654. free_page(page);
  1655. return -EFAULT;
  1656. }
  1657. if (i != PAGE_SIZE)
  1658. memset((char *)page + i, 0, PAGE_SIZE - i);
  1659. *where = page;
  1660. return 0;
  1661. }
  1662. /*
  1663. * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
  1664. * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
  1665. *
  1666. * data is a (void *) that can point to any structure up to
  1667. * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
  1668. * information (or be NULL).
  1669. *
  1670. * Pre-0.97 versions of mount() didn't have a flags word.
  1671. * When the flags word was introduced its top half was required
  1672. * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
  1673. * Therefore, if this magic number is present, it carries no information
  1674. * and must be discarded.
  1675. */
  1676. long do_mount(char *dev_name, char *dir_name, char *type_page,
  1677. unsigned long flags, void *data_page)
  1678. {
  1679. struct path path;
  1680. int retval = 0;
  1681. int mnt_flags = 0;
  1682. /* Discard magic */
  1683. if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
  1684. flags &= ~MS_MGC_MSK;
  1685. /* Basic sanity checks */
  1686. if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
  1687. return -EINVAL;
  1688. if (dev_name && !memchr(dev_name, 0, PAGE_SIZE))
  1689. return -EINVAL;
  1690. if (data_page)
  1691. ((char *)data_page)[PAGE_SIZE - 1] = 0;
  1692. /* Default to relatime */
  1693. mnt_flags |= MNT_RELATIME;
  1694. /* Separate the per-mountpoint flags */
  1695. if (flags & MS_NOSUID)
  1696. mnt_flags |= MNT_NOSUID;
  1697. if (flags & MS_NODEV)
  1698. mnt_flags |= MNT_NODEV;
  1699. if (flags & MS_NOEXEC)
  1700. mnt_flags |= MNT_NOEXEC;
  1701. if (flags & MS_NOATIME)
  1702. mnt_flags |= MNT_NOATIME;
  1703. if (flags & MS_NODIRATIME)
  1704. mnt_flags |= MNT_NODIRATIME;
  1705. if (flags & MS_STRICTATIME)
  1706. mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
  1707. if (flags & MS_RDONLY)
  1708. mnt_flags |= MNT_READONLY;
  1709. flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE |
  1710. MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
  1711. MS_STRICTATIME);
  1712. /* ... and get the mountpoint */
  1713. retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
  1714. if (retval)
  1715. return retval;
  1716. retval = security_sb_mount(dev_name, &path,
  1717. type_page, flags, data_page);
  1718. if (retval)
  1719. goto dput_out;
  1720. if (flags & MS_REMOUNT)
  1721. retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
  1722. data_page);
  1723. else if (flags & MS_BIND)
  1724. retval = do_loopback(&path, dev_name, flags & MS_REC);
  1725. else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
  1726. retval = do_change_type(&path, flags);
  1727. else if (flags & MS_MOVE)
  1728. retval = do_move_mount(&path, dev_name);
  1729. else
  1730. retval = do_new_mount(&path, type_page, flags, mnt_flags,
  1731. dev_name, data_page);
  1732. dput_out:
  1733. path_put(&path);
  1734. return retval;
  1735. }
  1736. /*
  1737. * Allocate a new namespace structure and populate it with contents
  1738. * copied from the namespace of the passed in task structure.
  1739. */
  1740. static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
  1741. struct fs_struct *fs)
  1742. {
  1743. struct mnt_namespace *new_ns;
  1744. struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
  1745. struct vfsmount *p, *q;
  1746. new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
  1747. if (!new_ns)
  1748. return ERR_PTR(-ENOMEM);
  1749. atomic_set(&new_ns->count, 1);
  1750. INIT_LIST_HEAD(&new_ns->list);
  1751. init_waitqueue_head(&new_ns->poll);
  1752. new_ns->event = 0;
  1753. down_write(&namespace_sem);
  1754. /* First pass: copy the tree topology */
  1755. new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root,
  1756. CL_COPY_ALL | CL_EXPIRE);
  1757. if (!new_ns->root) {
  1758. up_write(&namespace_sem);
  1759. kfree(new_ns);
  1760. return ERR_PTR(-ENOMEM);
  1761. }
  1762. spin_lock(&vfsmount_lock);
  1763. list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
  1764. spin_unlock(&vfsmount_lock);
  1765. /*
  1766. * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
  1767. * as belonging to new namespace. We have already acquired a private
  1768. * fs_struct, so tsk->fs->lock is not needed.
  1769. */
  1770. p = mnt_ns->root;
  1771. q = new_ns->root;
  1772. while (p) {
  1773. q->mnt_ns = new_ns;
  1774. if (fs) {
  1775. if (p == fs->root.mnt) {
  1776. rootmnt = p;
  1777. fs->root.mnt = mntget(q);
  1778. }
  1779. if (p == fs->pwd.mnt) {
  1780. pwdmnt = p;
  1781. fs->pwd.mnt = mntget(q);
  1782. }
  1783. }
  1784. p = next_mnt(p, mnt_ns->root);
  1785. q = next_mnt(q, new_ns->root);
  1786. }
  1787. up_write(&namespace_sem);
  1788. if (rootmnt)
  1789. mntput(rootmnt);
  1790. if (pwdmnt)
  1791. mntput(pwdmnt);
  1792. return new_ns;
  1793. }
  1794. struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
  1795. struct fs_struct *new_fs)
  1796. {
  1797. struct mnt_namespace *new_ns;
  1798. BUG_ON(!ns);
  1799. get_mnt_ns(ns);
  1800. if (!(flags & CLONE_NEWNS))
  1801. return ns;
  1802. new_ns = dup_mnt_ns(ns, new_fs);
  1803. put_mnt_ns(ns);
  1804. return new_ns;
  1805. }
  1806. SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
  1807. char __user *, type, unsigned long, flags, void __user *, data)
  1808. {
  1809. int retval;
  1810. unsigned long data_page;
  1811. unsigned long type_page;
  1812. unsigned long dev_page;
  1813. char *dir_page;
  1814. retval = copy_mount_options(type, &type_page);
  1815. if (retval < 0)
  1816. return retval;
  1817. dir_page = getname(dir_name);
  1818. retval = PTR_ERR(dir_page);
  1819. if (IS_ERR(dir_page))
  1820. goto out1;
  1821. retval = copy_mount_options(dev_name, &dev_page);
  1822. if (retval < 0)
  1823. goto out2;
  1824. retval = copy_mount_options(data, &data_page);
  1825. if (retval < 0)
  1826. goto out3;
  1827. lock_kernel();
  1828. retval = do_mount((char *)dev_page, dir_page, (char *)type_page,
  1829. flags, (void *)data_page);
  1830. unlock_kernel();
  1831. free_page(data_page);
  1832. out3:
  1833. free_page(dev_page);
  1834. out2:
  1835. putname(dir_page);
  1836. out1:
  1837. free_page(type_page);
  1838. return retval;
  1839. }
  1840. /*
  1841. * Replace the fs->{rootmnt,root} with {mnt,dentry}. Put the old values.
  1842. * It can block. Requires the big lock held.
  1843. */
  1844. void set_fs_root(struct fs_struct *fs, struct path *path)
  1845. {
  1846. struct path old_root;
  1847. write_lock(&fs->lock);
  1848. old_root = fs->root;
  1849. fs->root = *path;
  1850. path_get(path);
  1851. write_unlock(&fs->lock);
  1852. if (old_root.dentry)
  1853. path_put(&old_root);
  1854. }
  1855. /*
  1856. * Replace the fs->{pwdmnt,pwd} with {mnt,dentry}. Put the old values.
  1857. * It can block. Requires the big lock held.
  1858. */
  1859. void set_fs_pwd(struct fs_struct *fs, struct path *path)
  1860. {
  1861. struct path old_pwd;
  1862. write_lock(&fs->lock);
  1863. old_pwd = fs->pwd;
  1864. fs->pwd = *path;
  1865. path_get(path);
  1866. write_unlock(&fs->lock);
  1867. if (old_pwd.dentry)
  1868. path_put(&old_pwd);
  1869. }
  1870. static void chroot_fs_refs(struct path *old_root, struct path *new_root)
  1871. {
  1872. struct task_struct *g, *p;
  1873. struct fs_struct *fs;
  1874. read_lock(&tasklist_lock);
  1875. do_each_thread(g, p) {
  1876. task_lock(p);
  1877. fs = p->fs;
  1878. if (fs) {
  1879. atomic_inc(&fs->count);
  1880. task_unlock(p);
  1881. if (fs->root.dentry == old_root->dentry
  1882. && fs->root.mnt == old_root->mnt)
  1883. set_fs_root(fs, new_root);
  1884. if (fs->pwd.dentry == old_root->dentry
  1885. && fs->pwd.mnt == old_root->mnt)
  1886. set_fs_pwd(fs, new_root);
  1887. put_fs_struct(fs);
  1888. } else
  1889. task_unlock(p);
  1890. } while_each_thread(g, p);
  1891. read_unlock(&tasklist_lock);
  1892. }
  1893. /*
  1894. * pivot_root Semantics:
  1895. * Moves the root file system of the current process to the directory put_old,
  1896. * makes new_root as the new root file system of the current process, and sets
  1897. * root/cwd of all processes which had them on the current root to new_root.
  1898. *
  1899. * Restrictions:
  1900. * The new_root and put_old must be directories, and must not be on the
  1901. * same file system as the current process root. The put_old must be
  1902. * underneath new_root, i.e. adding a non-zero number of /.. to the string
  1903. * pointed to by put_old must yield the same directory as new_root. No other
  1904. * file system may be mounted on put_old. After all, new_root is a mountpoint.
  1905. *
  1906. * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
  1907. * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
  1908. * in this situation.
  1909. *
  1910. * Notes:
  1911. * - we don't move root/cwd if they are not at the root (reason: if something
  1912. * cared enough to change them, it's probably wrong to force them elsewhere)
  1913. * - it's okay to pick a root that isn't the root of a file system, e.g.
  1914. * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
  1915. * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
  1916. * first.
  1917. */
  1918. SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
  1919. const char __user *, put_old)
  1920. {
  1921. struct vfsmount *tmp;
  1922. struct path new, old, parent_path, root_parent, root;
  1923. int error;
  1924. if (!capable(CAP_SYS_ADMIN))
  1925. return -EPERM;
  1926. error = user_path_dir(new_root, &new);
  1927. if (error)
  1928. goto out0;
  1929. error = -EINVAL;
  1930. if (!check_mnt(new.mnt))
  1931. goto out1;
  1932. error = user_path_dir(put_old, &old);
  1933. if (error)
  1934. goto out1;
  1935. error = security_sb_pivotroot(&old, &new);
  1936. if (error) {
  1937. path_put(&old);
  1938. goto out1;
  1939. }
  1940. read_lock(&current->fs->lock);
  1941. root = current->fs->root;
  1942. path_get(&current->fs->root);
  1943. read_unlock(&current->fs->lock);
  1944. down_write(&namespace_sem);
  1945. mutex_lock(&old.dentry->d_inode->i_mutex);
  1946. error = -EINVAL;
  1947. if (IS_MNT_SHARED(old.mnt) ||
  1948. IS_MNT_SHARED(new.mnt->mnt_parent) ||
  1949. IS_MNT_SHARED(root.mnt->mnt_parent))
  1950. goto out2;
  1951. if (!check_mnt(root.mnt))
  1952. goto out2;
  1953. error = -ENOENT;
  1954. if (IS_DEADDIR(new.dentry->d_inode))
  1955. goto out2;
  1956. if (d_unhashed(new.dentry) && !IS_ROOT(new.dentry))
  1957. goto out2;
  1958. if (d_unhashed(old.dentry) && !IS_ROOT(old.dentry))
  1959. goto out2;
  1960. error = -EBUSY;
  1961. if (new.mnt == root.mnt ||
  1962. old.mnt == root.mnt)
  1963. goto out2; /* loop, on the same file system */
  1964. error = -EINVAL;
  1965. if (root.mnt->mnt_root != root.dentry)
  1966. goto out2; /* not a mountpoint */
  1967. if (root.mnt->mnt_parent == root.mnt)
  1968. goto out2; /* not attached */
  1969. if (new.mnt->mnt_root != new.dentry)
  1970. goto out2; /* not a mountpoint */
  1971. if (new.mnt->mnt_parent == new.mnt)
  1972. goto out2; /* not attached */
  1973. /* make sure we can reach put_old from new_root */
  1974. tmp = old.mnt;
  1975. spin_lock(&vfsmount_lock);
  1976. if (tmp != new.mnt) {
  1977. for (;;) {
  1978. if (tmp->mnt_parent == tmp)
  1979. goto out3; /* already mounted on put_old */
  1980. if (tmp->mnt_parent == new.mnt)
  1981. break;
  1982. tmp = tmp->mnt_parent;
  1983. }
  1984. if (!is_subdir(tmp->mnt_mountpoint, new.dentry))
  1985. goto out3;
  1986. } else if (!is_subdir(old.dentry, new.dentry))
  1987. goto out3;
  1988. detach_mnt(new.mnt, &parent_path);
  1989. detach_mnt(root.mnt, &root_parent);
  1990. /* mount old root on put_old */
  1991. attach_mnt(root.mnt, &old);
  1992. /* mount new_root on / */
  1993. attach_mnt(new.mnt, &root_parent);
  1994. touch_mnt_namespace(current->nsproxy->mnt_ns);
  1995. spin_unlock(&vfsmount_lock);
  1996. chroot_fs_refs(&root, &new);
  1997. security_sb_post_pivotroot(&root, &new);
  1998. error = 0;
  1999. path_put(&root_parent);
  2000. path_put(&parent_path);
  2001. out2:
  2002. mutex_unlock(&old.dentry->d_inode->i_mutex);
  2003. up_write(&namespace_sem);
  2004. path_put(&root);
  2005. path_put(&old);
  2006. out1:
  2007. path_put(&new);
  2008. out0:
  2009. return error;
  2010. out3:
  2011. spin_unlock(&vfsmount_lock);
  2012. goto out2;
  2013. }
  2014. static void __init init_mount_tree(void)
  2015. {
  2016. struct vfsmount *mnt;
  2017. struct mnt_namespace *ns;
  2018. struct path root;
  2019. mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
  2020. if (IS_ERR(mnt))
  2021. panic("Can't create rootfs");
  2022. ns = kmalloc(sizeof(*ns), GFP_KERNEL);
  2023. if (!ns)
  2024. panic("Can't allocate initial namespace");
  2025. atomic_set(&ns->count, 1);
  2026. INIT_LIST_HEAD(&ns->list);
  2027. init_waitqueue_head(&ns->poll);
  2028. ns->event = 0;
  2029. list_add(&mnt->mnt_list, &ns->list);
  2030. ns->root = mnt;
  2031. mnt->mnt_ns = ns;
  2032. init_task.nsproxy->mnt_ns = ns;
  2033. get_mnt_ns(ns);
  2034. root.mnt = ns->root;
  2035. root.dentry = ns->root->mnt_root;
  2036. set_fs_pwd(current->fs, &root);
  2037. set_fs_root(current->fs, &root);
  2038. }
  2039. void __init mnt_init(void)
  2040. {
  2041. unsigned u;
  2042. int err;
  2043. init_rwsem(&namespace_sem);
  2044. mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
  2045. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  2046. mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
  2047. if (!mount_hashtable)
  2048. panic("Failed to allocate mount hash table\n");
  2049. printk("Mount-cache hash table entries: %lu\n", HASH_SIZE);
  2050. for (u = 0; u < HASH_SIZE; u++)
  2051. INIT_LIST_HEAD(&mount_hashtable[u]);
  2052. err = sysfs_init();
  2053. if (err)
  2054. printk(KERN_WARNING "%s: sysfs_init error: %d\n",
  2055. __func__, err);
  2056. fs_kobj = kobject_create_and_add("fs", NULL);
  2057. if (!fs_kobj)
  2058. printk(KERN_WARNING "%s: kobj create error\n", __func__);
  2059. init_rootfs();
  2060. init_mount_tree();
  2061. }
  2062. void __put_mnt_ns(struct mnt_namespace *ns)
  2063. {
  2064. struct vfsmount *root = ns->root;
  2065. LIST_HEAD(umount_list);
  2066. ns->root = NULL;
  2067. spin_unlock(&vfsmount_lock);
  2068. down_write(&namespace_sem);
  2069. spin_lock(&vfsmount_lock);
  2070. umount_tree(root, 0, &umount_list);
  2071. spin_unlock(&vfsmount_lock);
  2072. up_write(&namespace_sem);
  2073. release_mounts(&umount_list);
  2074. kfree(ns);
  2075. }