efx.c 60 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317
  1. /****************************************************************************
  2. * Driver for Solarflare Solarstorm network controllers and boards
  3. * Copyright 2005-2006 Fen Systems Ltd.
  4. * Copyright 2005-2008 Solarflare Communications Inc.
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of the GNU General Public License version 2 as published
  8. * by the Free Software Foundation, incorporated herein by reference.
  9. */
  10. #include <linux/module.h>
  11. #include <linux/pci.h>
  12. #include <linux/netdevice.h>
  13. #include <linux/etherdevice.h>
  14. #include <linux/delay.h>
  15. #include <linux/notifier.h>
  16. #include <linux/ip.h>
  17. #include <linux/tcp.h>
  18. #include <linux/in.h>
  19. #include <linux/crc32.h>
  20. #include <linux/ethtool.h>
  21. #include <linux/topology.h>
  22. #include "net_driver.h"
  23. #include "ethtool.h"
  24. #include "tx.h"
  25. #include "rx.h"
  26. #include "efx.h"
  27. #include "mdio_10g.h"
  28. #include "falcon.h"
  29. #define EFX_MAX_MTU (9 * 1024)
  30. /* RX slow fill workqueue. If memory allocation fails in the fast path,
  31. * a work item is pushed onto this work queue to retry the allocation later,
  32. * to avoid the NIC being starved of RX buffers. Since this is a per cpu
  33. * workqueue, there is nothing to be gained in making it per NIC
  34. */
  35. static struct workqueue_struct *refill_workqueue;
  36. /* Reset workqueue. If any NIC has a hardware failure then a reset will be
  37. * queued onto this work queue. This is not a per-nic work queue, because
  38. * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
  39. */
  40. static struct workqueue_struct *reset_workqueue;
  41. /**************************************************************************
  42. *
  43. * Configurable values
  44. *
  45. *************************************************************************/
  46. /*
  47. * Enable large receive offload (LRO) aka soft segment reassembly (SSR)
  48. *
  49. * This sets the default for new devices. It can be controlled later
  50. * using ethtool.
  51. */
  52. static int lro = true;
  53. module_param(lro, int, 0644);
  54. MODULE_PARM_DESC(lro, "Large receive offload acceleration");
  55. /*
  56. * Use separate channels for TX and RX events
  57. *
  58. * Set this to 1 to use separate channels for TX and RX. It allows us
  59. * to control interrupt affinity separately for TX and RX.
  60. *
  61. * This is only used in MSI-X interrupt mode
  62. */
  63. static unsigned int separate_tx_channels;
  64. module_param(separate_tx_channels, uint, 0644);
  65. MODULE_PARM_DESC(separate_tx_channels,
  66. "Use separate channels for TX and RX");
  67. /* This is the weight assigned to each of the (per-channel) virtual
  68. * NAPI devices.
  69. */
  70. static int napi_weight = 64;
  71. /* This is the time (in jiffies) between invocations of the hardware
  72. * monitor, which checks for known hardware bugs and resets the
  73. * hardware and driver as necessary.
  74. */
  75. unsigned int efx_monitor_interval = 1 * HZ;
  76. /* This controls whether or not the driver will initialise devices
  77. * with invalid MAC addresses stored in the EEPROM or flash. If true,
  78. * such devices will be initialised with a random locally-generated
  79. * MAC address. This allows for loading the sfc_mtd driver to
  80. * reprogram the flash, even if the flash contents (including the MAC
  81. * address) have previously been erased.
  82. */
  83. static unsigned int allow_bad_hwaddr;
  84. /* Initial interrupt moderation settings. They can be modified after
  85. * module load with ethtool.
  86. *
  87. * The default for RX should strike a balance between increasing the
  88. * round-trip latency and reducing overhead.
  89. */
  90. static unsigned int rx_irq_mod_usec = 60;
  91. /* Initial interrupt moderation settings. They can be modified after
  92. * module load with ethtool.
  93. *
  94. * This default is chosen to ensure that a 10G link does not go idle
  95. * while a TX queue is stopped after it has become full. A queue is
  96. * restarted when it drops below half full. The time this takes (assuming
  97. * worst case 3 descriptors per packet and 1024 descriptors) is
  98. * 512 / 3 * 1.2 = 205 usec.
  99. */
  100. static unsigned int tx_irq_mod_usec = 150;
  101. /* This is the first interrupt mode to try out of:
  102. * 0 => MSI-X
  103. * 1 => MSI
  104. * 2 => legacy
  105. */
  106. static unsigned int interrupt_mode;
  107. /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
  108. * i.e. the number of CPUs among which we may distribute simultaneous
  109. * interrupt handling.
  110. *
  111. * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
  112. * The default (0) means to assign an interrupt to each package (level II cache)
  113. */
  114. static unsigned int rss_cpus;
  115. module_param(rss_cpus, uint, 0444);
  116. MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
  117. static int phy_flash_cfg;
  118. module_param(phy_flash_cfg, int, 0644);
  119. MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
  120. static unsigned irq_adapt_low_thresh = 10000;
  121. module_param(irq_adapt_low_thresh, uint, 0644);
  122. MODULE_PARM_DESC(irq_adapt_low_thresh,
  123. "Threshold score for reducing IRQ moderation");
  124. static unsigned irq_adapt_high_thresh = 20000;
  125. module_param(irq_adapt_high_thresh, uint, 0644);
  126. MODULE_PARM_DESC(irq_adapt_high_thresh,
  127. "Threshold score for increasing IRQ moderation");
  128. /**************************************************************************
  129. *
  130. * Utility functions and prototypes
  131. *
  132. *************************************************************************/
  133. static void efx_remove_channel(struct efx_channel *channel);
  134. static void efx_remove_port(struct efx_nic *efx);
  135. static void efx_fini_napi(struct efx_nic *efx);
  136. static void efx_fini_channels(struct efx_nic *efx);
  137. #define EFX_ASSERT_RESET_SERIALISED(efx) \
  138. do { \
  139. if (efx->state == STATE_RUNNING) \
  140. ASSERT_RTNL(); \
  141. } while (0)
  142. /**************************************************************************
  143. *
  144. * Event queue processing
  145. *
  146. *************************************************************************/
  147. /* Process channel's event queue
  148. *
  149. * This function is responsible for processing the event queue of a
  150. * single channel. The caller must guarantee that this function will
  151. * never be concurrently called more than once on the same channel,
  152. * though different channels may be being processed concurrently.
  153. */
  154. static int efx_process_channel(struct efx_channel *channel, int rx_quota)
  155. {
  156. struct efx_nic *efx = channel->efx;
  157. int rx_packets;
  158. if (unlikely(efx->reset_pending != RESET_TYPE_NONE ||
  159. !channel->enabled))
  160. return 0;
  161. rx_packets = falcon_process_eventq(channel, rx_quota);
  162. if (rx_packets == 0)
  163. return 0;
  164. /* Deliver last RX packet. */
  165. if (channel->rx_pkt) {
  166. __efx_rx_packet(channel, channel->rx_pkt,
  167. channel->rx_pkt_csummed);
  168. channel->rx_pkt = NULL;
  169. }
  170. efx_rx_strategy(channel);
  171. efx_fast_push_rx_descriptors(&efx->rx_queue[channel->channel]);
  172. return rx_packets;
  173. }
  174. /* Mark channel as finished processing
  175. *
  176. * Note that since we will not receive further interrupts for this
  177. * channel before we finish processing and call the eventq_read_ack()
  178. * method, there is no need to use the interrupt hold-off timers.
  179. */
  180. static inline void efx_channel_processed(struct efx_channel *channel)
  181. {
  182. /* The interrupt handler for this channel may set work_pending
  183. * as soon as we acknowledge the events we've seen. Make sure
  184. * it's cleared before then. */
  185. channel->work_pending = false;
  186. smp_wmb();
  187. falcon_eventq_read_ack(channel);
  188. }
  189. /* NAPI poll handler
  190. *
  191. * NAPI guarantees serialisation of polls of the same device, which
  192. * provides the guarantee required by efx_process_channel().
  193. */
  194. static int efx_poll(struct napi_struct *napi, int budget)
  195. {
  196. struct efx_channel *channel =
  197. container_of(napi, struct efx_channel, napi_str);
  198. int rx_packets;
  199. EFX_TRACE(channel->efx, "channel %d NAPI poll executing on CPU %d\n",
  200. channel->channel, raw_smp_processor_id());
  201. rx_packets = efx_process_channel(channel, budget);
  202. if (rx_packets < budget) {
  203. struct efx_nic *efx = channel->efx;
  204. if (channel->used_flags & EFX_USED_BY_RX &&
  205. efx->irq_rx_adaptive &&
  206. unlikely(++channel->irq_count == 1000)) {
  207. unsigned old_irq_moderation = channel->irq_moderation;
  208. if (unlikely(channel->irq_mod_score <
  209. irq_adapt_low_thresh)) {
  210. channel->irq_moderation =
  211. max_t(int,
  212. channel->irq_moderation -
  213. FALCON_IRQ_MOD_RESOLUTION,
  214. FALCON_IRQ_MOD_RESOLUTION);
  215. } else if (unlikely(channel->irq_mod_score >
  216. irq_adapt_high_thresh)) {
  217. channel->irq_moderation =
  218. min(channel->irq_moderation +
  219. FALCON_IRQ_MOD_RESOLUTION,
  220. efx->irq_rx_moderation);
  221. }
  222. if (channel->irq_moderation != old_irq_moderation)
  223. falcon_set_int_moderation(channel);
  224. channel->irq_count = 0;
  225. channel->irq_mod_score = 0;
  226. }
  227. /* There is no race here; although napi_disable() will
  228. * only wait for napi_complete(), this isn't a problem
  229. * since efx_channel_processed() will have no effect if
  230. * interrupts have already been disabled.
  231. */
  232. napi_complete(napi);
  233. efx_channel_processed(channel);
  234. }
  235. return rx_packets;
  236. }
  237. /* Process the eventq of the specified channel immediately on this CPU
  238. *
  239. * Disable hardware generated interrupts, wait for any existing
  240. * processing to finish, then directly poll (and ack ) the eventq.
  241. * Finally reenable NAPI and interrupts.
  242. *
  243. * Since we are touching interrupts the caller should hold the suspend lock
  244. */
  245. void efx_process_channel_now(struct efx_channel *channel)
  246. {
  247. struct efx_nic *efx = channel->efx;
  248. BUG_ON(!channel->used_flags);
  249. BUG_ON(!channel->enabled);
  250. /* Disable interrupts and wait for ISRs to complete */
  251. falcon_disable_interrupts(efx);
  252. if (efx->legacy_irq)
  253. synchronize_irq(efx->legacy_irq);
  254. if (channel->irq)
  255. synchronize_irq(channel->irq);
  256. /* Wait for any NAPI processing to complete */
  257. napi_disable(&channel->napi_str);
  258. /* Poll the channel */
  259. efx_process_channel(channel, efx->type->evq_size);
  260. /* Ack the eventq. This may cause an interrupt to be generated
  261. * when they are reenabled */
  262. efx_channel_processed(channel);
  263. napi_enable(&channel->napi_str);
  264. falcon_enable_interrupts(efx);
  265. }
  266. /* Create event queue
  267. * Event queue memory allocations are done only once. If the channel
  268. * is reset, the memory buffer will be reused; this guards against
  269. * errors during channel reset and also simplifies interrupt handling.
  270. */
  271. static int efx_probe_eventq(struct efx_channel *channel)
  272. {
  273. EFX_LOG(channel->efx, "chan %d create event queue\n", channel->channel);
  274. return falcon_probe_eventq(channel);
  275. }
  276. /* Prepare channel's event queue */
  277. static void efx_init_eventq(struct efx_channel *channel)
  278. {
  279. EFX_LOG(channel->efx, "chan %d init event queue\n", channel->channel);
  280. channel->eventq_read_ptr = 0;
  281. falcon_init_eventq(channel);
  282. }
  283. static void efx_fini_eventq(struct efx_channel *channel)
  284. {
  285. EFX_LOG(channel->efx, "chan %d fini event queue\n", channel->channel);
  286. falcon_fini_eventq(channel);
  287. }
  288. static void efx_remove_eventq(struct efx_channel *channel)
  289. {
  290. EFX_LOG(channel->efx, "chan %d remove event queue\n", channel->channel);
  291. falcon_remove_eventq(channel);
  292. }
  293. /**************************************************************************
  294. *
  295. * Channel handling
  296. *
  297. *************************************************************************/
  298. static int efx_probe_channel(struct efx_channel *channel)
  299. {
  300. struct efx_tx_queue *tx_queue;
  301. struct efx_rx_queue *rx_queue;
  302. int rc;
  303. EFX_LOG(channel->efx, "creating channel %d\n", channel->channel);
  304. rc = efx_probe_eventq(channel);
  305. if (rc)
  306. goto fail1;
  307. efx_for_each_channel_tx_queue(tx_queue, channel) {
  308. rc = efx_probe_tx_queue(tx_queue);
  309. if (rc)
  310. goto fail2;
  311. }
  312. efx_for_each_channel_rx_queue(rx_queue, channel) {
  313. rc = efx_probe_rx_queue(rx_queue);
  314. if (rc)
  315. goto fail3;
  316. }
  317. channel->n_rx_frm_trunc = 0;
  318. return 0;
  319. fail3:
  320. efx_for_each_channel_rx_queue(rx_queue, channel)
  321. efx_remove_rx_queue(rx_queue);
  322. fail2:
  323. efx_for_each_channel_tx_queue(tx_queue, channel)
  324. efx_remove_tx_queue(tx_queue);
  325. fail1:
  326. return rc;
  327. }
  328. static void efx_set_channel_names(struct efx_nic *efx)
  329. {
  330. struct efx_channel *channel;
  331. const char *type = "";
  332. int number;
  333. efx_for_each_channel(channel, efx) {
  334. number = channel->channel;
  335. if (efx->n_channels > efx->n_rx_queues) {
  336. if (channel->channel < efx->n_rx_queues) {
  337. type = "-rx";
  338. } else {
  339. type = "-tx";
  340. number -= efx->n_rx_queues;
  341. }
  342. }
  343. snprintf(channel->name, sizeof(channel->name),
  344. "%s%s-%d", efx->name, type, number);
  345. }
  346. }
  347. /* Channels are shutdown and reinitialised whilst the NIC is running
  348. * to propagate configuration changes (mtu, checksum offload), or
  349. * to clear hardware error conditions
  350. */
  351. static void efx_init_channels(struct efx_nic *efx)
  352. {
  353. struct efx_tx_queue *tx_queue;
  354. struct efx_rx_queue *rx_queue;
  355. struct efx_channel *channel;
  356. /* Calculate the rx buffer allocation parameters required to
  357. * support the current MTU, including padding for header
  358. * alignment and overruns.
  359. */
  360. efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
  361. EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
  362. efx->type->rx_buffer_padding);
  363. efx->rx_buffer_order = get_order(efx->rx_buffer_len);
  364. /* Initialise the channels */
  365. efx_for_each_channel(channel, efx) {
  366. EFX_LOG(channel->efx, "init chan %d\n", channel->channel);
  367. efx_init_eventq(channel);
  368. efx_for_each_channel_tx_queue(tx_queue, channel)
  369. efx_init_tx_queue(tx_queue);
  370. /* The rx buffer allocation strategy is MTU dependent */
  371. efx_rx_strategy(channel);
  372. efx_for_each_channel_rx_queue(rx_queue, channel)
  373. efx_init_rx_queue(rx_queue);
  374. WARN_ON(channel->rx_pkt != NULL);
  375. efx_rx_strategy(channel);
  376. }
  377. }
  378. /* This enables event queue processing and packet transmission.
  379. *
  380. * Note that this function is not allowed to fail, since that would
  381. * introduce too much complexity into the suspend/resume path.
  382. */
  383. static void efx_start_channel(struct efx_channel *channel)
  384. {
  385. struct efx_rx_queue *rx_queue;
  386. EFX_LOG(channel->efx, "starting chan %d\n", channel->channel);
  387. if (!(channel->efx->net_dev->flags & IFF_UP))
  388. netif_napi_add(channel->napi_dev, &channel->napi_str,
  389. efx_poll, napi_weight);
  390. /* The interrupt handler for this channel may set work_pending
  391. * as soon as we enable it. Make sure it's cleared before
  392. * then. Similarly, make sure it sees the enabled flag set. */
  393. channel->work_pending = false;
  394. channel->enabled = true;
  395. smp_wmb();
  396. napi_enable(&channel->napi_str);
  397. /* Load up RX descriptors */
  398. efx_for_each_channel_rx_queue(rx_queue, channel)
  399. efx_fast_push_rx_descriptors(rx_queue);
  400. }
  401. /* This disables event queue processing and packet transmission.
  402. * This function does not guarantee that all queue processing
  403. * (e.g. RX refill) is complete.
  404. */
  405. static void efx_stop_channel(struct efx_channel *channel)
  406. {
  407. struct efx_rx_queue *rx_queue;
  408. if (!channel->enabled)
  409. return;
  410. EFX_LOG(channel->efx, "stop chan %d\n", channel->channel);
  411. channel->enabled = false;
  412. napi_disable(&channel->napi_str);
  413. /* Ensure that any worker threads have exited or will be no-ops */
  414. efx_for_each_channel_rx_queue(rx_queue, channel) {
  415. spin_lock_bh(&rx_queue->add_lock);
  416. spin_unlock_bh(&rx_queue->add_lock);
  417. }
  418. }
  419. static void efx_fini_channels(struct efx_nic *efx)
  420. {
  421. struct efx_channel *channel;
  422. struct efx_tx_queue *tx_queue;
  423. struct efx_rx_queue *rx_queue;
  424. int rc;
  425. EFX_ASSERT_RESET_SERIALISED(efx);
  426. BUG_ON(efx->port_enabled);
  427. rc = falcon_flush_queues(efx);
  428. if (rc)
  429. EFX_ERR(efx, "failed to flush queues\n");
  430. else
  431. EFX_LOG(efx, "successfully flushed all queues\n");
  432. efx_for_each_channel(channel, efx) {
  433. EFX_LOG(channel->efx, "shut down chan %d\n", channel->channel);
  434. efx_for_each_channel_rx_queue(rx_queue, channel)
  435. efx_fini_rx_queue(rx_queue);
  436. efx_for_each_channel_tx_queue(tx_queue, channel)
  437. efx_fini_tx_queue(tx_queue);
  438. efx_fini_eventq(channel);
  439. }
  440. }
  441. static void efx_remove_channel(struct efx_channel *channel)
  442. {
  443. struct efx_tx_queue *tx_queue;
  444. struct efx_rx_queue *rx_queue;
  445. EFX_LOG(channel->efx, "destroy chan %d\n", channel->channel);
  446. efx_for_each_channel_rx_queue(rx_queue, channel)
  447. efx_remove_rx_queue(rx_queue);
  448. efx_for_each_channel_tx_queue(tx_queue, channel)
  449. efx_remove_tx_queue(tx_queue);
  450. efx_remove_eventq(channel);
  451. channel->used_flags = 0;
  452. }
  453. void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue, int delay)
  454. {
  455. queue_delayed_work(refill_workqueue, &rx_queue->work, delay);
  456. }
  457. /**************************************************************************
  458. *
  459. * Port handling
  460. *
  461. **************************************************************************/
  462. /* This ensures that the kernel is kept informed (via
  463. * netif_carrier_on/off) of the link status, and also maintains the
  464. * link status's stop on the port's TX queue.
  465. */
  466. static void efx_link_status_changed(struct efx_nic *efx)
  467. {
  468. /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
  469. * that no events are triggered between unregister_netdev() and the
  470. * driver unloading. A more general condition is that NETDEV_CHANGE
  471. * can only be generated between NETDEV_UP and NETDEV_DOWN */
  472. if (!netif_running(efx->net_dev))
  473. return;
  474. if (efx->port_inhibited) {
  475. netif_carrier_off(efx->net_dev);
  476. return;
  477. }
  478. if (efx->link_up != netif_carrier_ok(efx->net_dev)) {
  479. efx->n_link_state_changes++;
  480. if (efx->link_up)
  481. netif_carrier_on(efx->net_dev);
  482. else
  483. netif_carrier_off(efx->net_dev);
  484. }
  485. /* Status message for kernel log */
  486. if (efx->link_up) {
  487. EFX_INFO(efx, "link up at %uMbps %s-duplex (MTU %d)%s\n",
  488. efx->link_speed, efx->link_fd ? "full" : "half",
  489. efx->net_dev->mtu,
  490. (efx->promiscuous ? " [PROMISC]" : ""));
  491. } else {
  492. EFX_INFO(efx, "link down\n");
  493. }
  494. }
  495. static void efx_fini_port(struct efx_nic *efx);
  496. /* This call reinitialises the MAC to pick up new PHY settings. The
  497. * caller must hold the mac_lock */
  498. void __efx_reconfigure_port(struct efx_nic *efx)
  499. {
  500. WARN_ON(!mutex_is_locked(&efx->mac_lock));
  501. EFX_LOG(efx, "reconfiguring MAC from PHY settings on CPU %d\n",
  502. raw_smp_processor_id());
  503. /* Serialise the promiscuous flag with efx_set_multicast_list. */
  504. if (efx_dev_registered(efx)) {
  505. netif_addr_lock_bh(efx->net_dev);
  506. netif_addr_unlock_bh(efx->net_dev);
  507. }
  508. falcon_deconfigure_mac_wrapper(efx);
  509. /* Reconfigure the PHY, disabling transmit in mac level loopback. */
  510. if (LOOPBACK_INTERNAL(efx))
  511. efx->phy_mode |= PHY_MODE_TX_DISABLED;
  512. else
  513. efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
  514. efx->phy_op->reconfigure(efx);
  515. if (falcon_switch_mac(efx))
  516. goto fail;
  517. efx->mac_op->reconfigure(efx);
  518. /* Inform kernel of loss/gain of carrier */
  519. efx_link_status_changed(efx);
  520. return;
  521. fail:
  522. EFX_ERR(efx, "failed to reconfigure MAC\n");
  523. efx->port_enabled = false;
  524. efx_fini_port(efx);
  525. }
  526. /* Reinitialise the MAC to pick up new PHY settings, even if the port is
  527. * disabled. */
  528. void efx_reconfigure_port(struct efx_nic *efx)
  529. {
  530. EFX_ASSERT_RESET_SERIALISED(efx);
  531. mutex_lock(&efx->mac_lock);
  532. __efx_reconfigure_port(efx);
  533. mutex_unlock(&efx->mac_lock);
  534. }
  535. /* Asynchronous efx_reconfigure_port work item. To speed up efx_flush_all()
  536. * we don't efx_reconfigure_port() if the port is disabled. Care is taken
  537. * in efx_stop_all() and efx_start_port() to prevent PHY events being lost */
  538. static void efx_phy_work(struct work_struct *data)
  539. {
  540. struct efx_nic *efx = container_of(data, struct efx_nic, phy_work);
  541. mutex_lock(&efx->mac_lock);
  542. if (efx->port_enabled)
  543. __efx_reconfigure_port(efx);
  544. mutex_unlock(&efx->mac_lock);
  545. }
  546. static void efx_mac_work(struct work_struct *data)
  547. {
  548. struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
  549. mutex_lock(&efx->mac_lock);
  550. if (efx->port_enabled)
  551. efx->mac_op->irq(efx);
  552. mutex_unlock(&efx->mac_lock);
  553. }
  554. static int efx_probe_port(struct efx_nic *efx)
  555. {
  556. int rc;
  557. EFX_LOG(efx, "create port\n");
  558. /* Connect up MAC/PHY operations table and read MAC address */
  559. rc = falcon_probe_port(efx);
  560. if (rc)
  561. goto err;
  562. if (phy_flash_cfg)
  563. efx->phy_mode = PHY_MODE_SPECIAL;
  564. /* Sanity check MAC address */
  565. if (is_valid_ether_addr(efx->mac_address)) {
  566. memcpy(efx->net_dev->dev_addr, efx->mac_address, ETH_ALEN);
  567. } else {
  568. EFX_ERR(efx, "invalid MAC address %pM\n",
  569. efx->mac_address);
  570. if (!allow_bad_hwaddr) {
  571. rc = -EINVAL;
  572. goto err;
  573. }
  574. random_ether_addr(efx->net_dev->dev_addr);
  575. EFX_INFO(efx, "using locally-generated MAC %pM\n",
  576. efx->net_dev->dev_addr);
  577. }
  578. return 0;
  579. err:
  580. efx_remove_port(efx);
  581. return rc;
  582. }
  583. static int efx_init_port(struct efx_nic *efx)
  584. {
  585. int rc;
  586. EFX_LOG(efx, "init port\n");
  587. rc = efx->phy_op->init(efx);
  588. if (rc)
  589. return rc;
  590. mutex_lock(&efx->mac_lock);
  591. efx->phy_op->reconfigure(efx);
  592. rc = falcon_switch_mac(efx);
  593. mutex_unlock(&efx->mac_lock);
  594. if (rc)
  595. goto fail;
  596. efx->mac_op->reconfigure(efx);
  597. efx->port_initialized = true;
  598. efx_stats_enable(efx);
  599. return 0;
  600. fail:
  601. efx->phy_op->fini(efx);
  602. return rc;
  603. }
  604. /* Allow efx_reconfigure_port() to be scheduled, and close the window
  605. * between efx_stop_port and efx_flush_all whereby a previously scheduled
  606. * efx_phy_work()/efx_mac_work() may have been cancelled */
  607. static void efx_start_port(struct efx_nic *efx)
  608. {
  609. EFX_LOG(efx, "start port\n");
  610. BUG_ON(efx->port_enabled);
  611. mutex_lock(&efx->mac_lock);
  612. efx->port_enabled = true;
  613. __efx_reconfigure_port(efx);
  614. efx->mac_op->irq(efx);
  615. mutex_unlock(&efx->mac_lock);
  616. }
  617. /* Prevent efx_phy_work, efx_mac_work, and efx_monitor() from executing,
  618. * and efx_set_multicast_list() from scheduling efx_phy_work. efx_phy_work
  619. * and efx_mac_work may still be scheduled via NAPI processing until
  620. * efx_flush_all() is called */
  621. static void efx_stop_port(struct efx_nic *efx)
  622. {
  623. EFX_LOG(efx, "stop port\n");
  624. mutex_lock(&efx->mac_lock);
  625. efx->port_enabled = false;
  626. mutex_unlock(&efx->mac_lock);
  627. /* Serialise against efx_set_multicast_list() */
  628. if (efx_dev_registered(efx)) {
  629. netif_addr_lock_bh(efx->net_dev);
  630. netif_addr_unlock_bh(efx->net_dev);
  631. }
  632. }
  633. static void efx_fini_port(struct efx_nic *efx)
  634. {
  635. EFX_LOG(efx, "shut down port\n");
  636. if (!efx->port_initialized)
  637. return;
  638. efx_stats_disable(efx);
  639. efx->phy_op->fini(efx);
  640. efx->port_initialized = false;
  641. efx->link_up = false;
  642. efx_link_status_changed(efx);
  643. }
  644. static void efx_remove_port(struct efx_nic *efx)
  645. {
  646. EFX_LOG(efx, "destroying port\n");
  647. falcon_remove_port(efx);
  648. }
  649. /**************************************************************************
  650. *
  651. * NIC handling
  652. *
  653. **************************************************************************/
  654. /* This configures the PCI device to enable I/O and DMA. */
  655. static int efx_init_io(struct efx_nic *efx)
  656. {
  657. struct pci_dev *pci_dev = efx->pci_dev;
  658. dma_addr_t dma_mask = efx->type->max_dma_mask;
  659. int rc;
  660. EFX_LOG(efx, "initialising I/O\n");
  661. rc = pci_enable_device(pci_dev);
  662. if (rc) {
  663. EFX_ERR(efx, "failed to enable PCI device\n");
  664. goto fail1;
  665. }
  666. pci_set_master(pci_dev);
  667. /* Set the PCI DMA mask. Try all possibilities from our
  668. * genuine mask down to 32 bits, because some architectures
  669. * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
  670. * masks event though they reject 46 bit masks.
  671. */
  672. while (dma_mask > 0x7fffffffUL) {
  673. if (pci_dma_supported(pci_dev, dma_mask) &&
  674. ((rc = pci_set_dma_mask(pci_dev, dma_mask)) == 0))
  675. break;
  676. dma_mask >>= 1;
  677. }
  678. if (rc) {
  679. EFX_ERR(efx, "could not find a suitable DMA mask\n");
  680. goto fail2;
  681. }
  682. EFX_LOG(efx, "using DMA mask %llx\n", (unsigned long long) dma_mask);
  683. rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
  684. if (rc) {
  685. /* pci_set_consistent_dma_mask() is not *allowed* to
  686. * fail with a mask that pci_set_dma_mask() accepted,
  687. * but just in case...
  688. */
  689. EFX_ERR(efx, "failed to set consistent DMA mask\n");
  690. goto fail2;
  691. }
  692. efx->membase_phys = pci_resource_start(efx->pci_dev,
  693. efx->type->mem_bar);
  694. rc = pci_request_region(pci_dev, efx->type->mem_bar, "sfc");
  695. if (rc) {
  696. EFX_ERR(efx, "request for memory BAR failed\n");
  697. rc = -EIO;
  698. goto fail3;
  699. }
  700. efx->membase = ioremap_nocache(efx->membase_phys,
  701. efx->type->mem_map_size);
  702. if (!efx->membase) {
  703. EFX_ERR(efx, "could not map memory BAR %d at %llx+%x\n",
  704. efx->type->mem_bar,
  705. (unsigned long long)efx->membase_phys,
  706. efx->type->mem_map_size);
  707. rc = -ENOMEM;
  708. goto fail4;
  709. }
  710. EFX_LOG(efx, "memory BAR %u at %llx+%x (virtual %p)\n",
  711. efx->type->mem_bar, (unsigned long long)efx->membase_phys,
  712. efx->type->mem_map_size, efx->membase);
  713. return 0;
  714. fail4:
  715. pci_release_region(efx->pci_dev, efx->type->mem_bar);
  716. fail3:
  717. efx->membase_phys = 0;
  718. fail2:
  719. pci_disable_device(efx->pci_dev);
  720. fail1:
  721. return rc;
  722. }
  723. static void efx_fini_io(struct efx_nic *efx)
  724. {
  725. EFX_LOG(efx, "shutting down I/O\n");
  726. if (efx->membase) {
  727. iounmap(efx->membase);
  728. efx->membase = NULL;
  729. }
  730. if (efx->membase_phys) {
  731. pci_release_region(efx->pci_dev, efx->type->mem_bar);
  732. efx->membase_phys = 0;
  733. }
  734. pci_disable_device(efx->pci_dev);
  735. }
  736. /* Get number of RX queues wanted. Return number of online CPU
  737. * packages in the expectation that an IRQ balancer will spread
  738. * interrupts across them. */
  739. static int efx_wanted_rx_queues(void)
  740. {
  741. cpumask_var_t core_mask;
  742. int count;
  743. int cpu;
  744. if (!alloc_cpumask_var(&core_mask, GFP_KERNEL)) {
  745. printk(KERN_WARNING
  746. "efx.c: allocation failure, irq balancing hobbled\n");
  747. return 1;
  748. }
  749. cpumask_clear(core_mask);
  750. count = 0;
  751. for_each_online_cpu(cpu) {
  752. if (!cpumask_test_cpu(cpu, core_mask)) {
  753. ++count;
  754. cpumask_or(core_mask, core_mask,
  755. topology_core_cpumask(cpu));
  756. }
  757. }
  758. free_cpumask_var(core_mask);
  759. return count;
  760. }
  761. /* Probe the number and type of interrupts we are able to obtain, and
  762. * the resulting numbers of channels and RX queues.
  763. */
  764. static void efx_probe_interrupts(struct efx_nic *efx)
  765. {
  766. int max_channels =
  767. min_t(int, efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
  768. int rc, i;
  769. if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
  770. struct msix_entry xentries[EFX_MAX_CHANNELS];
  771. int wanted_ints;
  772. int rx_queues;
  773. /* We want one RX queue and interrupt per CPU package
  774. * (or as specified by the rss_cpus module parameter).
  775. * We will need one channel per interrupt.
  776. */
  777. rx_queues = rss_cpus ? rss_cpus : efx_wanted_rx_queues();
  778. wanted_ints = rx_queues + (separate_tx_channels ? 1 : 0);
  779. wanted_ints = min(wanted_ints, max_channels);
  780. for (i = 0; i < wanted_ints; i++)
  781. xentries[i].entry = i;
  782. rc = pci_enable_msix(efx->pci_dev, xentries, wanted_ints);
  783. if (rc > 0) {
  784. EFX_ERR(efx, "WARNING: Insufficient MSI-X vectors"
  785. " available (%d < %d).\n", rc, wanted_ints);
  786. EFX_ERR(efx, "WARNING: Performance may be reduced.\n");
  787. EFX_BUG_ON_PARANOID(rc >= wanted_ints);
  788. wanted_ints = rc;
  789. rc = pci_enable_msix(efx->pci_dev, xentries,
  790. wanted_ints);
  791. }
  792. if (rc == 0) {
  793. efx->n_rx_queues = min(rx_queues, wanted_ints);
  794. efx->n_channels = wanted_ints;
  795. for (i = 0; i < wanted_ints; i++)
  796. efx->channel[i].irq = xentries[i].vector;
  797. } else {
  798. /* Fall back to single channel MSI */
  799. efx->interrupt_mode = EFX_INT_MODE_MSI;
  800. EFX_ERR(efx, "could not enable MSI-X\n");
  801. }
  802. }
  803. /* Try single interrupt MSI */
  804. if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
  805. efx->n_rx_queues = 1;
  806. efx->n_channels = 1;
  807. rc = pci_enable_msi(efx->pci_dev);
  808. if (rc == 0) {
  809. efx->channel[0].irq = efx->pci_dev->irq;
  810. } else {
  811. EFX_ERR(efx, "could not enable MSI\n");
  812. efx->interrupt_mode = EFX_INT_MODE_LEGACY;
  813. }
  814. }
  815. /* Assume legacy interrupts */
  816. if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
  817. efx->n_rx_queues = 1;
  818. efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
  819. efx->legacy_irq = efx->pci_dev->irq;
  820. }
  821. }
  822. static void efx_remove_interrupts(struct efx_nic *efx)
  823. {
  824. struct efx_channel *channel;
  825. /* Remove MSI/MSI-X interrupts */
  826. efx_for_each_channel(channel, efx)
  827. channel->irq = 0;
  828. pci_disable_msi(efx->pci_dev);
  829. pci_disable_msix(efx->pci_dev);
  830. /* Remove legacy interrupt */
  831. efx->legacy_irq = 0;
  832. }
  833. static void efx_set_channels(struct efx_nic *efx)
  834. {
  835. struct efx_tx_queue *tx_queue;
  836. struct efx_rx_queue *rx_queue;
  837. efx_for_each_tx_queue(tx_queue, efx) {
  838. if (separate_tx_channels)
  839. tx_queue->channel = &efx->channel[efx->n_channels-1];
  840. else
  841. tx_queue->channel = &efx->channel[0];
  842. tx_queue->channel->used_flags |= EFX_USED_BY_TX;
  843. }
  844. efx_for_each_rx_queue(rx_queue, efx) {
  845. rx_queue->channel = &efx->channel[rx_queue->queue];
  846. rx_queue->channel->used_flags |= EFX_USED_BY_RX;
  847. }
  848. }
  849. static int efx_probe_nic(struct efx_nic *efx)
  850. {
  851. int rc;
  852. EFX_LOG(efx, "creating NIC\n");
  853. /* Carry out hardware-type specific initialisation */
  854. rc = falcon_probe_nic(efx);
  855. if (rc)
  856. return rc;
  857. /* Determine the number of channels and RX queues by trying to hook
  858. * in MSI-X interrupts. */
  859. efx_probe_interrupts(efx);
  860. efx_set_channels(efx);
  861. /* Initialise the interrupt moderation settings */
  862. efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true);
  863. return 0;
  864. }
  865. static void efx_remove_nic(struct efx_nic *efx)
  866. {
  867. EFX_LOG(efx, "destroying NIC\n");
  868. efx_remove_interrupts(efx);
  869. falcon_remove_nic(efx);
  870. }
  871. /**************************************************************************
  872. *
  873. * NIC startup/shutdown
  874. *
  875. *************************************************************************/
  876. static int efx_probe_all(struct efx_nic *efx)
  877. {
  878. struct efx_channel *channel;
  879. int rc;
  880. /* Create NIC */
  881. rc = efx_probe_nic(efx);
  882. if (rc) {
  883. EFX_ERR(efx, "failed to create NIC\n");
  884. goto fail1;
  885. }
  886. /* Create port */
  887. rc = efx_probe_port(efx);
  888. if (rc) {
  889. EFX_ERR(efx, "failed to create port\n");
  890. goto fail2;
  891. }
  892. /* Create channels */
  893. efx_for_each_channel(channel, efx) {
  894. rc = efx_probe_channel(channel);
  895. if (rc) {
  896. EFX_ERR(efx, "failed to create channel %d\n",
  897. channel->channel);
  898. goto fail3;
  899. }
  900. }
  901. efx_set_channel_names(efx);
  902. return 0;
  903. fail3:
  904. efx_for_each_channel(channel, efx)
  905. efx_remove_channel(channel);
  906. efx_remove_port(efx);
  907. fail2:
  908. efx_remove_nic(efx);
  909. fail1:
  910. return rc;
  911. }
  912. /* Called after previous invocation(s) of efx_stop_all, restarts the
  913. * port, kernel transmit queue, NAPI processing and hardware interrupts,
  914. * and ensures that the port is scheduled to be reconfigured.
  915. * This function is safe to call multiple times when the NIC is in any
  916. * state. */
  917. static void efx_start_all(struct efx_nic *efx)
  918. {
  919. struct efx_channel *channel;
  920. EFX_ASSERT_RESET_SERIALISED(efx);
  921. /* Check that it is appropriate to restart the interface. All
  922. * of these flags are safe to read under just the rtnl lock */
  923. if (efx->port_enabled)
  924. return;
  925. if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
  926. return;
  927. if (efx_dev_registered(efx) && !netif_running(efx->net_dev))
  928. return;
  929. /* Mark the port as enabled so port reconfigurations can start, then
  930. * restart the transmit interface early so the watchdog timer stops */
  931. efx_start_port(efx);
  932. if (efx_dev_registered(efx))
  933. efx_wake_queue(efx);
  934. efx_for_each_channel(channel, efx)
  935. efx_start_channel(channel);
  936. falcon_enable_interrupts(efx);
  937. /* Start hardware monitor if we're in RUNNING */
  938. if (efx->state == STATE_RUNNING)
  939. queue_delayed_work(efx->workqueue, &efx->monitor_work,
  940. efx_monitor_interval);
  941. }
  942. /* Flush all delayed work. Should only be called when no more delayed work
  943. * will be scheduled. This doesn't flush pending online resets (efx_reset),
  944. * since we're holding the rtnl_lock at this point. */
  945. static void efx_flush_all(struct efx_nic *efx)
  946. {
  947. struct efx_rx_queue *rx_queue;
  948. /* Make sure the hardware monitor is stopped */
  949. cancel_delayed_work_sync(&efx->monitor_work);
  950. /* Ensure that all RX slow refills are complete. */
  951. efx_for_each_rx_queue(rx_queue, efx)
  952. cancel_delayed_work_sync(&rx_queue->work);
  953. /* Stop scheduled port reconfigurations */
  954. cancel_work_sync(&efx->mac_work);
  955. cancel_work_sync(&efx->phy_work);
  956. }
  957. /* Quiesce hardware and software without bringing the link down.
  958. * Safe to call multiple times, when the nic and interface is in any
  959. * state. The caller is guaranteed to subsequently be in a position
  960. * to modify any hardware and software state they see fit without
  961. * taking locks. */
  962. static void efx_stop_all(struct efx_nic *efx)
  963. {
  964. struct efx_channel *channel;
  965. EFX_ASSERT_RESET_SERIALISED(efx);
  966. /* port_enabled can be read safely under the rtnl lock */
  967. if (!efx->port_enabled)
  968. return;
  969. /* Disable interrupts and wait for ISR to complete */
  970. falcon_disable_interrupts(efx);
  971. if (efx->legacy_irq)
  972. synchronize_irq(efx->legacy_irq);
  973. efx_for_each_channel(channel, efx) {
  974. if (channel->irq)
  975. synchronize_irq(channel->irq);
  976. }
  977. /* Stop all NAPI processing and synchronous rx refills */
  978. efx_for_each_channel(channel, efx)
  979. efx_stop_channel(channel);
  980. /* Stop all asynchronous port reconfigurations. Since all
  981. * event processing has already been stopped, there is no
  982. * window to loose phy events */
  983. efx_stop_port(efx);
  984. /* Flush efx_phy_work, efx_mac_work, refill_workqueue, monitor_work */
  985. efx_flush_all(efx);
  986. /* Isolate the MAC from the TX and RX engines, so that queue
  987. * flushes will complete in a timely fashion. */
  988. falcon_drain_tx_fifo(efx);
  989. /* Stop the kernel transmit interface late, so the watchdog
  990. * timer isn't ticking over the flush */
  991. if (efx_dev_registered(efx)) {
  992. efx_stop_queue(efx);
  993. netif_tx_lock_bh(efx->net_dev);
  994. netif_tx_unlock_bh(efx->net_dev);
  995. }
  996. }
  997. static void efx_remove_all(struct efx_nic *efx)
  998. {
  999. struct efx_channel *channel;
  1000. efx_for_each_channel(channel, efx)
  1001. efx_remove_channel(channel);
  1002. efx_remove_port(efx);
  1003. efx_remove_nic(efx);
  1004. }
  1005. /* A convinience function to safely flush all the queues */
  1006. void efx_flush_queues(struct efx_nic *efx)
  1007. {
  1008. EFX_ASSERT_RESET_SERIALISED(efx);
  1009. efx_stop_all(efx);
  1010. efx_fini_channels(efx);
  1011. efx_init_channels(efx);
  1012. efx_start_all(efx);
  1013. }
  1014. /**************************************************************************
  1015. *
  1016. * Interrupt moderation
  1017. *
  1018. **************************************************************************/
  1019. /* Set interrupt moderation parameters */
  1020. void efx_init_irq_moderation(struct efx_nic *efx, int tx_usecs, int rx_usecs,
  1021. bool rx_adaptive)
  1022. {
  1023. struct efx_tx_queue *tx_queue;
  1024. struct efx_rx_queue *rx_queue;
  1025. EFX_ASSERT_RESET_SERIALISED(efx);
  1026. efx_for_each_tx_queue(tx_queue, efx)
  1027. tx_queue->channel->irq_moderation = tx_usecs;
  1028. efx->irq_rx_adaptive = rx_adaptive;
  1029. efx->irq_rx_moderation = rx_usecs;
  1030. efx_for_each_rx_queue(rx_queue, efx)
  1031. rx_queue->channel->irq_moderation = rx_usecs;
  1032. }
  1033. /**************************************************************************
  1034. *
  1035. * Hardware monitor
  1036. *
  1037. **************************************************************************/
  1038. /* Run periodically off the general workqueue. Serialised against
  1039. * efx_reconfigure_port via the mac_lock */
  1040. static void efx_monitor(struct work_struct *data)
  1041. {
  1042. struct efx_nic *efx = container_of(data, struct efx_nic,
  1043. monitor_work.work);
  1044. int rc;
  1045. EFX_TRACE(efx, "hardware monitor executing on CPU %d\n",
  1046. raw_smp_processor_id());
  1047. /* If the mac_lock is already held then it is likely a port
  1048. * reconfiguration is already in place, which will likely do
  1049. * most of the work of check_hw() anyway. */
  1050. if (!mutex_trylock(&efx->mac_lock))
  1051. goto out_requeue;
  1052. if (!efx->port_enabled)
  1053. goto out_unlock;
  1054. rc = efx->board_info.monitor(efx);
  1055. if (rc) {
  1056. EFX_ERR(efx, "Board sensor %s; shutting down PHY\n",
  1057. (rc == -ERANGE) ? "reported fault" : "failed");
  1058. efx->phy_mode |= PHY_MODE_LOW_POWER;
  1059. falcon_sim_phy_event(efx);
  1060. }
  1061. efx->phy_op->poll(efx);
  1062. efx->mac_op->poll(efx);
  1063. out_unlock:
  1064. mutex_unlock(&efx->mac_lock);
  1065. out_requeue:
  1066. queue_delayed_work(efx->workqueue, &efx->monitor_work,
  1067. efx_monitor_interval);
  1068. }
  1069. /**************************************************************************
  1070. *
  1071. * ioctls
  1072. *
  1073. *************************************************************************/
  1074. /* Net device ioctl
  1075. * Context: process, rtnl_lock() held.
  1076. */
  1077. static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
  1078. {
  1079. struct efx_nic *efx = netdev_priv(net_dev);
  1080. EFX_ASSERT_RESET_SERIALISED(efx);
  1081. return generic_mii_ioctl(&efx->mii, if_mii(ifr), cmd, NULL);
  1082. }
  1083. /**************************************************************************
  1084. *
  1085. * NAPI interface
  1086. *
  1087. **************************************************************************/
  1088. static int efx_init_napi(struct efx_nic *efx)
  1089. {
  1090. struct efx_channel *channel;
  1091. efx_for_each_channel(channel, efx) {
  1092. channel->napi_dev = efx->net_dev;
  1093. }
  1094. return 0;
  1095. }
  1096. static void efx_fini_napi(struct efx_nic *efx)
  1097. {
  1098. struct efx_channel *channel;
  1099. efx_for_each_channel(channel, efx) {
  1100. channel->napi_dev = NULL;
  1101. }
  1102. }
  1103. /**************************************************************************
  1104. *
  1105. * Kernel netpoll interface
  1106. *
  1107. *************************************************************************/
  1108. #ifdef CONFIG_NET_POLL_CONTROLLER
  1109. /* Although in the common case interrupts will be disabled, this is not
  1110. * guaranteed. However, all our work happens inside the NAPI callback,
  1111. * so no locking is required.
  1112. */
  1113. static void efx_netpoll(struct net_device *net_dev)
  1114. {
  1115. struct efx_nic *efx = netdev_priv(net_dev);
  1116. struct efx_channel *channel;
  1117. efx_for_each_channel(channel, efx)
  1118. efx_schedule_channel(channel);
  1119. }
  1120. #endif
  1121. /**************************************************************************
  1122. *
  1123. * Kernel net device interface
  1124. *
  1125. *************************************************************************/
  1126. /* Context: process, rtnl_lock() held. */
  1127. static int efx_net_open(struct net_device *net_dev)
  1128. {
  1129. struct efx_nic *efx = netdev_priv(net_dev);
  1130. EFX_ASSERT_RESET_SERIALISED(efx);
  1131. EFX_LOG(efx, "opening device %s on CPU %d\n", net_dev->name,
  1132. raw_smp_processor_id());
  1133. if (efx->state == STATE_DISABLED)
  1134. return -EIO;
  1135. if (efx->phy_mode & PHY_MODE_SPECIAL)
  1136. return -EBUSY;
  1137. efx_start_all(efx);
  1138. return 0;
  1139. }
  1140. /* Context: process, rtnl_lock() held.
  1141. * Note that the kernel will ignore our return code; this method
  1142. * should really be a void.
  1143. */
  1144. static int efx_net_stop(struct net_device *net_dev)
  1145. {
  1146. struct efx_nic *efx = netdev_priv(net_dev);
  1147. EFX_LOG(efx, "closing %s on CPU %d\n", net_dev->name,
  1148. raw_smp_processor_id());
  1149. if (efx->state != STATE_DISABLED) {
  1150. /* Stop the device and flush all the channels */
  1151. efx_stop_all(efx);
  1152. efx_fini_channels(efx);
  1153. efx_init_channels(efx);
  1154. }
  1155. return 0;
  1156. }
  1157. void efx_stats_disable(struct efx_nic *efx)
  1158. {
  1159. spin_lock(&efx->stats_lock);
  1160. ++efx->stats_disable_count;
  1161. spin_unlock(&efx->stats_lock);
  1162. }
  1163. void efx_stats_enable(struct efx_nic *efx)
  1164. {
  1165. spin_lock(&efx->stats_lock);
  1166. --efx->stats_disable_count;
  1167. spin_unlock(&efx->stats_lock);
  1168. }
  1169. /* Context: process, dev_base_lock or RTNL held, non-blocking. */
  1170. static struct net_device_stats *efx_net_stats(struct net_device *net_dev)
  1171. {
  1172. struct efx_nic *efx = netdev_priv(net_dev);
  1173. struct efx_mac_stats *mac_stats = &efx->mac_stats;
  1174. struct net_device_stats *stats = &net_dev->stats;
  1175. /* Update stats if possible, but do not wait if another thread
  1176. * is updating them or if MAC stats fetches are temporarily
  1177. * disabled; slightly stale stats are acceptable.
  1178. */
  1179. if (!spin_trylock(&efx->stats_lock))
  1180. return stats;
  1181. if (!efx->stats_disable_count) {
  1182. efx->mac_op->update_stats(efx);
  1183. falcon_update_nic_stats(efx);
  1184. }
  1185. spin_unlock(&efx->stats_lock);
  1186. stats->rx_packets = mac_stats->rx_packets;
  1187. stats->tx_packets = mac_stats->tx_packets;
  1188. stats->rx_bytes = mac_stats->rx_bytes;
  1189. stats->tx_bytes = mac_stats->tx_bytes;
  1190. stats->multicast = mac_stats->rx_multicast;
  1191. stats->collisions = mac_stats->tx_collision;
  1192. stats->rx_length_errors = (mac_stats->rx_gtjumbo +
  1193. mac_stats->rx_length_error);
  1194. stats->rx_over_errors = efx->n_rx_nodesc_drop_cnt;
  1195. stats->rx_crc_errors = mac_stats->rx_bad;
  1196. stats->rx_frame_errors = mac_stats->rx_align_error;
  1197. stats->rx_fifo_errors = mac_stats->rx_overflow;
  1198. stats->rx_missed_errors = mac_stats->rx_missed;
  1199. stats->tx_window_errors = mac_stats->tx_late_collision;
  1200. stats->rx_errors = (stats->rx_length_errors +
  1201. stats->rx_over_errors +
  1202. stats->rx_crc_errors +
  1203. stats->rx_frame_errors +
  1204. stats->rx_fifo_errors +
  1205. stats->rx_missed_errors +
  1206. mac_stats->rx_symbol_error);
  1207. stats->tx_errors = (stats->tx_window_errors +
  1208. mac_stats->tx_bad);
  1209. return stats;
  1210. }
  1211. /* Context: netif_tx_lock held, BHs disabled. */
  1212. static void efx_watchdog(struct net_device *net_dev)
  1213. {
  1214. struct efx_nic *efx = netdev_priv(net_dev);
  1215. EFX_ERR(efx, "TX stuck with stop_count=%d port_enabled=%d:"
  1216. " resetting channels\n",
  1217. atomic_read(&efx->netif_stop_count), efx->port_enabled);
  1218. efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
  1219. }
  1220. /* Context: process, rtnl_lock() held. */
  1221. static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
  1222. {
  1223. struct efx_nic *efx = netdev_priv(net_dev);
  1224. int rc = 0;
  1225. EFX_ASSERT_RESET_SERIALISED(efx);
  1226. if (new_mtu > EFX_MAX_MTU)
  1227. return -EINVAL;
  1228. efx_stop_all(efx);
  1229. EFX_LOG(efx, "changing MTU to %d\n", new_mtu);
  1230. efx_fini_channels(efx);
  1231. net_dev->mtu = new_mtu;
  1232. efx_init_channels(efx);
  1233. efx_start_all(efx);
  1234. return rc;
  1235. }
  1236. static int efx_set_mac_address(struct net_device *net_dev, void *data)
  1237. {
  1238. struct efx_nic *efx = netdev_priv(net_dev);
  1239. struct sockaddr *addr = data;
  1240. char *new_addr = addr->sa_data;
  1241. EFX_ASSERT_RESET_SERIALISED(efx);
  1242. if (!is_valid_ether_addr(new_addr)) {
  1243. EFX_ERR(efx, "invalid ethernet MAC address requested: %pM\n",
  1244. new_addr);
  1245. return -EINVAL;
  1246. }
  1247. memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
  1248. /* Reconfigure the MAC */
  1249. efx_reconfigure_port(efx);
  1250. return 0;
  1251. }
  1252. /* Context: netif_addr_lock held, BHs disabled. */
  1253. static void efx_set_multicast_list(struct net_device *net_dev)
  1254. {
  1255. struct efx_nic *efx = netdev_priv(net_dev);
  1256. struct dev_mc_list *mc_list = net_dev->mc_list;
  1257. union efx_multicast_hash *mc_hash = &efx->multicast_hash;
  1258. bool promiscuous = !!(net_dev->flags & IFF_PROMISC);
  1259. bool changed = (efx->promiscuous != promiscuous);
  1260. u32 crc;
  1261. int bit;
  1262. int i;
  1263. efx->promiscuous = promiscuous;
  1264. /* Build multicast hash table */
  1265. if (promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
  1266. memset(mc_hash, 0xff, sizeof(*mc_hash));
  1267. } else {
  1268. memset(mc_hash, 0x00, sizeof(*mc_hash));
  1269. for (i = 0; i < net_dev->mc_count; i++) {
  1270. crc = ether_crc_le(ETH_ALEN, mc_list->dmi_addr);
  1271. bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
  1272. set_bit_le(bit, mc_hash->byte);
  1273. mc_list = mc_list->next;
  1274. }
  1275. }
  1276. if (!efx->port_enabled)
  1277. /* Delay pushing settings until efx_start_port() */
  1278. return;
  1279. if (changed)
  1280. queue_work(efx->workqueue, &efx->phy_work);
  1281. /* Create and activate new global multicast hash table */
  1282. falcon_set_multicast_hash(efx);
  1283. }
  1284. static const struct net_device_ops efx_netdev_ops = {
  1285. .ndo_open = efx_net_open,
  1286. .ndo_stop = efx_net_stop,
  1287. .ndo_get_stats = efx_net_stats,
  1288. .ndo_tx_timeout = efx_watchdog,
  1289. .ndo_start_xmit = efx_hard_start_xmit,
  1290. .ndo_validate_addr = eth_validate_addr,
  1291. .ndo_do_ioctl = efx_ioctl,
  1292. .ndo_change_mtu = efx_change_mtu,
  1293. .ndo_set_mac_address = efx_set_mac_address,
  1294. .ndo_set_multicast_list = efx_set_multicast_list,
  1295. #ifdef CONFIG_NET_POLL_CONTROLLER
  1296. .ndo_poll_controller = efx_netpoll,
  1297. #endif
  1298. };
  1299. static void efx_update_name(struct efx_nic *efx)
  1300. {
  1301. strcpy(efx->name, efx->net_dev->name);
  1302. efx_mtd_rename(efx);
  1303. efx_set_channel_names(efx);
  1304. }
  1305. static int efx_netdev_event(struct notifier_block *this,
  1306. unsigned long event, void *ptr)
  1307. {
  1308. struct net_device *net_dev = ptr;
  1309. if (net_dev->netdev_ops == &efx_netdev_ops &&
  1310. event == NETDEV_CHANGENAME)
  1311. efx_update_name(netdev_priv(net_dev));
  1312. return NOTIFY_DONE;
  1313. }
  1314. static struct notifier_block efx_netdev_notifier = {
  1315. .notifier_call = efx_netdev_event,
  1316. };
  1317. static ssize_t
  1318. show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
  1319. {
  1320. struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
  1321. return sprintf(buf, "%d\n", efx->phy_type);
  1322. }
  1323. static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL);
  1324. static int efx_register_netdev(struct efx_nic *efx)
  1325. {
  1326. struct net_device *net_dev = efx->net_dev;
  1327. int rc;
  1328. net_dev->watchdog_timeo = 5 * HZ;
  1329. net_dev->irq = efx->pci_dev->irq;
  1330. net_dev->netdev_ops = &efx_netdev_ops;
  1331. SET_NETDEV_DEV(net_dev, &efx->pci_dev->dev);
  1332. SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
  1333. /* Always start with carrier off; PHY events will detect the link */
  1334. netif_carrier_off(efx->net_dev);
  1335. /* Clear MAC statistics */
  1336. efx->mac_op->update_stats(efx);
  1337. memset(&efx->mac_stats, 0, sizeof(efx->mac_stats));
  1338. rc = register_netdev(net_dev);
  1339. if (rc) {
  1340. EFX_ERR(efx, "could not register net dev\n");
  1341. return rc;
  1342. }
  1343. rtnl_lock();
  1344. efx_update_name(efx);
  1345. rtnl_unlock();
  1346. rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
  1347. if (rc) {
  1348. EFX_ERR(efx, "failed to init net dev attributes\n");
  1349. goto fail_registered;
  1350. }
  1351. return 0;
  1352. fail_registered:
  1353. unregister_netdev(net_dev);
  1354. return rc;
  1355. }
  1356. static void efx_unregister_netdev(struct efx_nic *efx)
  1357. {
  1358. struct efx_tx_queue *tx_queue;
  1359. if (!efx->net_dev)
  1360. return;
  1361. BUG_ON(netdev_priv(efx->net_dev) != efx);
  1362. /* Free up any skbs still remaining. This has to happen before
  1363. * we try to unregister the netdev as running their destructors
  1364. * may be needed to get the device ref. count to 0. */
  1365. efx_for_each_tx_queue(tx_queue, efx)
  1366. efx_release_tx_buffers(tx_queue);
  1367. if (efx_dev_registered(efx)) {
  1368. strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
  1369. device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
  1370. unregister_netdev(efx->net_dev);
  1371. }
  1372. }
  1373. /**************************************************************************
  1374. *
  1375. * Device reset and suspend
  1376. *
  1377. **************************************************************************/
  1378. /* Tears down the entire software state and most of the hardware state
  1379. * before reset. */
  1380. void efx_reset_down(struct efx_nic *efx, enum reset_type method,
  1381. struct ethtool_cmd *ecmd)
  1382. {
  1383. EFX_ASSERT_RESET_SERIALISED(efx);
  1384. efx_stats_disable(efx);
  1385. efx_stop_all(efx);
  1386. mutex_lock(&efx->mac_lock);
  1387. mutex_lock(&efx->spi_lock);
  1388. efx->phy_op->get_settings(efx, ecmd);
  1389. efx_fini_channels(efx);
  1390. if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
  1391. efx->phy_op->fini(efx);
  1392. }
  1393. /* This function will always ensure that the locks acquired in
  1394. * efx_reset_down() are released. A failure return code indicates
  1395. * that we were unable to reinitialise the hardware, and the
  1396. * driver should be disabled. If ok is false, then the rx and tx
  1397. * engines are not restarted, pending a RESET_DISABLE. */
  1398. int efx_reset_up(struct efx_nic *efx, enum reset_type method,
  1399. struct ethtool_cmd *ecmd, bool ok)
  1400. {
  1401. int rc;
  1402. EFX_ASSERT_RESET_SERIALISED(efx);
  1403. rc = falcon_init_nic(efx);
  1404. if (rc) {
  1405. EFX_ERR(efx, "failed to initialise NIC\n");
  1406. ok = false;
  1407. }
  1408. if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
  1409. if (ok) {
  1410. rc = efx->phy_op->init(efx);
  1411. if (rc)
  1412. ok = false;
  1413. }
  1414. if (!ok)
  1415. efx->port_initialized = false;
  1416. }
  1417. if (ok) {
  1418. efx_init_channels(efx);
  1419. if (efx->phy_op->set_settings(efx, ecmd))
  1420. EFX_ERR(efx, "could not restore PHY settings\n");
  1421. }
  1422. mutex_unlock(&efx->spi_lock);
  1423. mutex_unlock(&efx->mac_lock);
  1424. if (ok) {
  1425. efx_start_all(efx);
  1426. efx_stats_enable(efx);
  1427. }
  1428. return rc;
  1429. }
  1430. /* Reset the NIC as transparently as possible. Do not reset the PHY
  1431. * Note that the reset may fail, in which case the card will be left
  1432. * in a most-probably-unusable state.
  1433. *
  1434. * This function will sleep. You cannot reset from within an atomic
  1435. * state; use efx_schedule_reset() instead.
  1436. *
  1437. * Grabs the rtnl_lock.
  1438. */
  1439. static int efx_reset(struct efx_nic *efx)
  1440. {
  1441. struct ethtool_cmd ecmd;
  1442. enum reset_type method = efx->reset_pending;
  1443. int rc = 0;
  1444. /* Serialise with kernel interfaces */
  1445. rtnl_lock();
  1446. /* If we're not RUNNING then don't reset. Leave the reset_pending
  1447. * flag set so that efx_pci_probe_main will be retried */
  1448. if (efx->state != STATE_RUNNING) {
  1449. EFX_INFO(efx, "scheduled reset quenched. NIC not RUNNING\n");
  1450. goto out_unlock;
  1451. }
  1452. EFX_INFO(efx, "resetting (%d)\n", method);
  1453. efx_reset_down(efx, method, &ecmd);
  1454. rc = falcon_reset_hw(efx, method);
  1455. if (rc) {
  1456. EFX_ERR(efx, "failed to reset hardware\n");
  1457. goto out_disable;
  1458. }
  1459. /* Allow resets to be rescheduled. */
  1460. efx->reset_pending = RESET_TYPE_NONE;
  1461. /* Reinitialise bus-mastering, which may have been turned off before
  1462. * the reset was scheduled. This is still appropriate, even in the
  1463. * RESET_TYPE_DISABLE since this driver generally assumes the hardware
  1464. * can respond to requests. */
  1465. pci_set_master(efx->pci_dev);
  1466. /* Leave device stopped if necessary */
  1467. if (method == RESET_TYPE_DISABLE) {
  1468. efx_reset_up(efx, method, &ecmd, false);
  1469. rc = -EIO;
  1470. } else {
  1471. rc = efx_reset_up(efx, method, &ecmd, true);
  1472. }
  1473. out_disable:
  1474. if (rc) {
  1475. EFX_ERR(efx, "has been disabled\n");
  1476. efx->state = STATE_DISABLED;
  1477. dev_close(efx->net_dev);
  1478. } else {
  1479. EFX_LOG(efx, "reset complete\n");
  1480. }
  1481. out_unlock:
  1482. rtnl_unlock();
  1483. return rc;
  1484. }
  1485. /* The worker thread exists so that code that cannot sleep can
  1486. * schedule a reset for later.
  1487. */
  1488. static void efx_reset_work(struct work_struct *data)
  1489. {
  1490. struct efx_nic *nic = container_of(data, struct efx_nic, reset_work);
  1491. efx_reset(nic);
  1492. }
  1493. void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
  1494. {
  1495. enum reset_type method;
  1496. if (efx->reset_pending != RESET_TYPE_NONE) {
  1497. EFX_INFO(efx, "quenching already scheduled reset\n");
  1498. return;
  1499. }
  1500. switch (type) {
  1501. case RESET_TYPE_INVISIBLE:
  1502. case RESET_TYPE_ALL:
  1503. case RESET_TYPE_WORLD:
  1504. case RESET_TYPE_DISABLE:
  1505. method = type;
  1506. break;
  1507. case RESET_TYPE_RX_RECOVERY:
  1508. case RESET_TYPE_RX_DESC_FETCH:
  1509. case RESET_TYPE_TX_DESC_FETCH:
  1510. case RESET_TYPE_TX_SKIP:
  1511. method = RESET_TYPE_INVISIBLE;
  1512. break;
  1513. default:
  1514. method = RESET_TYPE_ALL;
  1515. break;
  1516. }
  1517. if (method != type)
  1518. EFX_LOG(efx, "scheduling reset (%d:%d)\n", type, method);
  1519. else
  1520. EFX_LOG(efx, "scheduling reset (%d)\n", method);
  1521. efx->reset_pending = method;
  1522. queue_work(reset_workqueue, &efx->reset_work);
  1523. }
  1524. /**************************************************************************
  1525. *
  1526. * List of NICs we support
  1527. *
  1528. **************************************************************************/
  1529. /* PCI device ID table */
  1530. static struct pci_device_id efx_pci_table[] __devinitdata = {
  1531. {PCI_DEVICE(EFX_VENDID_SFC, FALCON_A_P_DEVID),
  1532. .driver_data = (unsigned long) &falcon_a_nic_type},
  1533. {PCI_DEVICE(EFX_VENDID_SFC, FALCON_B_P_DEVID),
  1534. .driver_data = (unsigned long) &falcon_b_nic_type},
  1535. {0} /* end of list */
  1536. };
  1537. /**************************************************************************
  1538. *
  1539. * Dummy PHY/MAC/Board operations
  1540. *
  1541. * Can be used for some unimplemented operations
  1542. * Needed so all function pointers are valid and do not have to be tested
  1543. * before use
  1544. *
  1545. **************************************************************************/
  1546. int efx_port_dummy_op_int(struct efx_nic *efx)
  1547. {
  1548. return 0;
  1549. }
  1550. void efx_port_dummy_op_void(struct efx_nic *efx) {}
  1551. void efx_port_dummy_op_blink(struct efx_nic *efx, bool blink) {}
  1552. static struct efx_mac_operations efx_dummy_mac_operations = {
  1553. .reconfigure = efx_port_dummy_op_void,
  1554. .poll = efx_port_dummy_op_void,
  1555. .irq = efx_port_dummy_op_void,
  1556. };
  1557. static struct efx_phy_operations efx_dummy_phy_operations = {
  1558. .init = efx_port_dummy_op_int,
  1559. .reconfigure = efx_port_dummy_op_void,
  1560. .poll = efx_port_dummy_op_void,
  1561. .fini = efx_port_dummy_op_void,
  1562. .clear_interrupt = efx_port_dummy_op_void,
  1563. };
  1564. static struct efx_board efx_dummy_board_info = {
  1565. .init = efx_port_dummy_op_int,
  1566. .init_leds = efx_port_dummy_op_void,
  1567. .set_id_led = efx_port_dummy_op_blink,
  1568. .monitor = efx_port_dummy_op_int,
  1569. .blink = efx_port_dummy_op_blink,
  1570. .fini = efx_port_dummy_op_void,
  1571. };
  1572. /**************************************************************************
  1573. *
  1574. * Data housekeeping
  1575. *
  1576. **************************************************************************/
  1577. /* This zeroes out and then fills in the invariants in a struct
  1578. * efx_nic (including all sub-structures).
  1579. */
  1580. static int efx_init_struct(struct efx_nic *efx, struct efx_nic_type *type,
  1581. struct pci_dev *pci_dev, struct net_device *net_dev)
  1582. {
  1583. struct efx_channel *channel;
  1584. struct efx_tx_queue *tx_queue;
  1585. struct efx_rx_queue *rx_queue;
  1586. int i;
  1587. /* Initialise common structures */
  1588. memset(efx, 0, sizeof(*efx));
  1589. spin_lock_init(&efx->biu_lock);
  1590. spin_lock_init(&efx->phy_lock);
  1591. mutex_init(&efx->spi_lock);
  1592. INIT_WORK(&efx->reset_work, efx_reset_work);
  1593. INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
  1594. efx->pci_dev = pci_dev;
  1595. efx->state = STATE_INIT;
  1596. efx->reset_pending = RESET_TYPE_NONE;
  1597. strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
  1598. efx->board_info = efx_dummy_board_info;
  1599. efx->net_dev = net_dev;
  1600. efx->rx_checksum_enabled = true;
  1601. spin_lock_init(&efx->netif_stop_lock);
  1602. spin_lock_init(&efx->stats_lock);
  1603. efx->stats_disable_count = 1;
  1604. mutex_init(&efx->mac_lock);
  1605. efx->mac_op = &efx_dummy_mac_operations;
  1606. efx->phy_op = &efx_dummy_phy_operations;
  1607. efx->mii.dev = net_dev;
  1608. INIT_WORK(&efx->phy_work, efx_phy_work);
  1609. INIT_WORK(&efx->mac_work, efx_mac_work);
  1610. atomic_set(&efx->netif_stop_count, 1);
  1611. for (i = 0; i < EFX_MAX_CHANNELS; i++) {
  1612. channel = &efx->channel[i];
  1613. channel->efx = efx;
  1614. channel->channel = i;
  1615. channel->work_pending = false;
  1616. }
  1617. for (i = 0; i < EFX_TX_QUEUE_COUNT; i++) {
  1618. tx_queue = &efx->tx_queue[i];
  1619. tx_queue->efx = efx;
  1620. tx_queue->queue = i;
  1621. tx_queue->buffer = NULL;
  1622. tx_queue->channel = &efx->channel[0]; /* for safety */
  1623. tx_queue->tso_headers_free = NULL;
  1624. }
  1625. for (i = 0; i < EFX_MAX_RX_QUEUES; i++) {
  1626. rx_queue = &efx->rx_queue[i];
  1627. rx_queue->efx = efx;
  1628. rx_queue->queue = i;
  1629. rx_queue->channel = &efx->channel[0]; /* for safety */
  1630. rx_queue->buffer = NULL;
  1631. spin_lock_init(&rx_queue->add_lock);
  1632. INIT_DELAYED_WORK(&rx_queue->work, efx_rx_work);
  1633. }
  1634. efx->type = type;
  1635. /* Sanity-check NIC type */
  1636. EFX_BUG_ON_PARANOID(efx->type->txd_ring_mask &
  1637. (efx->type->txd_ring_mask + 1));
  1638. EFX_BUG_ON_PARANOID(efx->type->rxd_ring_mask &
  1639. (efx->type->rxd_ring_mask + 1));
  1640. EFX_BUG_ON_PARANOID(efx->type->evq_size &
  1641. (efx->type->evq_size - 1));
  1642. /* As close as we can get to guaranteeing that we don't overflow */
  1643. EFX_BUG_ON_PARANOID(efx->type->evq_size <
  1644. (efx->type->txd_ring_mask + 1 +
  1645. efx->type->rxd_ring_mask + 1));
  1646. EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);
  1647. /* Higher numbered interrupt modes are less capable! */
  1648. efx->interrupt_mode = max(efx->type->max_interrupt_mode,
  1649. interrupt_mode);
  1650. /* Would be good to use the net_dev name, but we're too early */
  1651. snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
  1652. pci_name(pci_dev));
  1653. efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
  1654. if (!efx->workqueue)
  1655. return -ENOMEM;
  1656. return 0;
  1657. }
  1658. static void efx_fini_struct(struct efx_nic *efx)
  1659. {
  1660. if (efx->workqueue) {
  1661. destroy_workqueue(efx->workqueue);
  1662. efx->workqueue = NULL;
  1663. }
  1664. }
  1665. /**************************************************************************
  1666. *
  1667. * PCI interface
  1668. *
  1669. **************************************************************************/
  1670. /* Main body of final NIC shutdown code
  1671. * This is called only at module unload (or hotplug removal).
  1672. */
  1673. static void efx_pci_remove_main(struct efx_nic *efx)
  1674. {
  1675. EFX_ASSERT_RESET_SERIALISED(efx);
  1676. /* Skip everything if we never obtained a valid membase */
  1677. if (!efx->membase)
  1678. return;
  1679. efx_fini_channels(efx);
  1680. efx_fini_port(efx);
  1681. /* Shutdown the board, then the NIC and board state */
  1682. efx->board_info.fini(efx);
  1683. falcon_fini_interrupt(efx);
  1684. efx_fini_napi(efx);
  1685. efx_remove_all(efx);
  1686. }
  1687. /* Final NIC shutdown
  1688. * This is called only at module unload (or hotplug removal).
  1689. */
  1690. static void efx_pci_remove(struct pci_dev *pci_dev)
  1691. {
  1692. struct efx_nic *efx;
  1693. efx = pci_get_drvdata(pci_dev);
  1694. if (!efx)
  1695. return;
  1696. /* Mark the NIC as fini, then stop the interface */
  1697. rtnl_lock();
  1698. efx->state = STATE_FINI;
  1699. dev_close(efx->net_dev);
  1700. /* Allow any queued efx_resets() to complete */
  1701. rtnl_unlock();
  1702. if (efx->membase == NULL)
  1703. goto out;
  1704. efx_unregister_netdev(efx);
  1705. efx_mtd_remove(efx);
  1706. /* Wait for any scheduled resets to complete. No more will be
  1707. * scheduled from this point because efx_stop_all() has been
  1708. * called, we are no longer registered with driverlink, and
  1709. * the net_device's have been removed. */
  1710. cancel_work_sync(&efx->reset_work);
  1711. efx_pci_remove_main(efx);
  1712. out:
  1713. efx_fini_io(efx);
  1714. EFX_LOG(efx, "shutdown successful\n");
  1715. pci_set_drvdata(pci_dev, NULL);
  1716. efx_fini_struct(efx);
  1717. free_netdev(efx->net_dev);
  1718. };
  1719. /* Main body of NIC initialisation
  1720. * This is called at module load (or hotplug insertion, theoretically).
  1721. */
  1722. static int efx_pci_probe_main(struct efx_nic *efx)
  1723. {
  1724. int rc;
  1725. /* Do start-of-day initialisation */
  1726. rc = efx_probe_all(efx);
  1727. if (rc)
  1728. goto fail1;
  1729. rc = efx_init_napi(efx);
  1730. if (rc)
  1731. goto fail2;
  1732. /* Initialise the board */
  1733. rc = efx->board_info.init(efx);
  1734. if (rc) {
  1735. EFX_ERR(efx, "failed to initialise board\n");
  1736. goto fail3;
  1737. }
  1738. rc = falcon_init_nic(efx);
  1739. if (rc) {
  1740. EFX_ERR(efx, "failed to initialise NIC\n");
  1741. goto fail4;
  1742. }
  1743. rc = efx_init_port(efx);
  1744. if (rc) {
  1745. EFX_ERR(efx, "failed to initialise port\n");
  1746. goto fail5;
  1747. }
  1748. efx_init_channels(efx);
  1749. rc = falcon_init_interrupt(efx);
  1750. if (rc)
  1751. goto fail6;
  1752. return 0;
  1753. fail6:
  1754. efx_fini_channels(efx);
  1755. efx_fini_port(efx);
  1756. fail5:
  1757. fail4:
  1758. efx->board_info.fini(efx);
  1759. fail3:
  1760. efx_fini_napi(efx);
  1761. fail2:
  1762. efx_remove_all(efx);
  1763. fail1:
  1764. return rc;
  1765. }
  1766. /* NIC initialisation
  1767. *
  1768. * This is called at module load (or hotplug insertion,
  1769. * theoretically). It sets up PCI mappings, tests and resets the NIC,
  1770. * sets up and registers the network devices with the kernel and hooks
  1771. * the interrupt service routine. It does not prepare the device for
  1772. * transmission; this is left to the first time one of the network
  1773. * interfaces is brought up (i.e. efx_net_open).
  1774. */
  1775. static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
  1776. const struct pci_device_id *entry)
  1777. {
  1778. struct efx_nic_type *type = (struct efx_nic_type *) entry->driver_data;
  1779. struct net_device *net_dev;
  1780. struct efx_nic *efx;
  1781. int i, rc;
  1782. /* Allocate and initialise a struct net_device and struct efx_nic */
  1783. net_dev = alloc_etherdev(sizeof(*efx));
  1784. if (!net_dev)
  1785. return -ENOMEM;
  1786. net_dev->features |= (NETIF_F_IP_CSUM | NETIF_F_SG |
  1787. NETIF_F_HIGHDMA | NETIF_F_TSO);
  1788. if (lro)
  1789. net_dev->features |= NETIF_F_GRO;
  1790. /* Mask for features that also apply to VLAN devices */
  1791. net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
  1792. NETIF_F_HIGHDMA | NETIF_F_TSO);
  1793. efx = netdev_priv(net_dev);
  1794. pci_set_drvdata(pci_dev, efx);
  1795. rc = efx_init_struct(efx, type, pci_dev, net_dev);
  1796. if (rc)
  1797. goto fail1;
  1798. EFX_INFO(efx, "Solarflare Communications NIC detected\n");
  1799. /* Set up basic I/O (BAR mappings etc) */
  1800. rc = efx_init_io(efx);
  1801. if (rc)
  1802. goto fail2;
  1803. /* No serialisation is required with the reset path because
  1804. * we're in STATE_INIT. */
  1805. for (i = 0; i < 5; i++) {
  1806. rc = efx_pci_probe_main(efx);
  1807. /* Serialise against efx_reset(). No more resets will be
  1808. * scheduled since efx_stop_all() has been called, and we
  1809. * have not and never have been registered with either
  1810. * the rtnetlink or driverlink layers. */
  1811. cancel_work_sync(&efx->reset_work);
  1812. if (rc == 0) {
  1813. if (efx->reset_pending != RESET_TYPE_NONE) {
  1814. /* If there was a scheduled reset during
  1815. * probe, the NIC is probably hosed anyway */
  1816. efx_pci_remove_main(efx);
  1817. rc = -EIO;
  1818. } else {
  1819. break;
  1820. }
  1821. }
  1822. /* Retry if a recoverably reset event has been scheduled */
  1823. if ((efx->reset_pending != RESET_TYPE_INVISIBLE) &&
  1824. (efx->reset_pending != RESET_TYPE_ALL))
  1825. goto fail3;
  1826. efx->reset_pending = RESET_TYPE_NONE;
  1827. }
  1828. if (rc) {
  1829. EFX_ERR(efx, "Could not reset NIC\n");
  1830. goto fail4;
  1831. }
  1832. /* Switch to the running state before we expose the device to
  1833. * the OS. This is to ensure that the initial gathering of
  1834. * MAC stats succeeds. */
  1835. efx->state = STATE_RUNNING;
  1836. efx_mtd_probe(efx); /* allowed to fail */
  1837. rc = efx_register_netdev(efx);
  1838. if (rc)
  1839. goto fail5;
  1840. EFX_LOG(efx, "initialisation successful\n");
  1841. return 0;
  1842. fail5:
  1843. efx_pci_remove_main(efx);
  1844. fail4:
  1845. fail3:
  1846. efx_fini_io(efx);
  1847. fail2:
  1848. efx_fini_struct(efx);
  1849. fail1:
  1850. EFX_LOG(efx, "initialisation failed. rc=%d\n", rc);
  1851. free_netdev(net_dev);
  1852. return rc;
  1853. }
  1854. static struct pci_driver efx_pci_driver = {
  1855. .name = EFX_DRIVER_NAME,
  1856. .id_table = efx_pci_table,
  1857. .probe = efx_pci_probe,
  1858. .remove = efx_pci_remove,
  1859. };
  1860. /**************************************************************************
  1861. *
  1862. * Kernel module interface
  1863. *
  1864. *************************************************************************/
  1865. module_param(interrupt_mode, uint, 0444);
  1866. MODULE_PARM_DESC(interrupt_mode,
  1867. "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
  1868. static int __init efx_init_module(void)
  1869. {
  1870. int rc;
  1871. printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
  1872. rc = register_netdevice_notifier(&efx_netdev_notifier);
  1873. if (rc)
  1874. goto err_notifier;
  1875. refill_workqueue = create_workqueue("sfc_refill");
  1876. if (!refill_workqueue) {
  1877. rc = -ENOMEM;
  1878. goto err_refill;
  1879. }
  1880. reset_workqueue = create_singlethread_workqueue("sfc_reset");
  1881. if (!reset_workqueue) {
  1882. rc = -ENOMEM;
  1883. goto err_reset;
  1884. }
  1885. rc = pci_register_driver(&efx_pci_driver);
  1886. if (rc < 0)
  1887. goto err_pci;
  1888. return 0;
  1889. err_pci:
  1890. destroy_workqueue(reset_workqueue);
  1891. err_reset:
  1892. destroy_workqueue(refill_workqueue);
  1893. err_refill:
  1894. unregister_netdevice_notifier(&efx_netdev_notifier);
  1895. err_notifier:
  1896. return rc;
  1897. }
  1898. static void __exit efx_exit_module(void)
  1899. {
  1900. printk(KERN_INFO "Solarflare NET driver unloading\n");
  1901. pci_unregister_driver(&efx_pci_driver);
  1902. destroy_workqueue(reset_workqueue);
  1903. destroy_workqueue(refill_workqueue);
  1904. unregister_netdevice_notifier(&efx_netdev_notifier);
  1905. }
  1906. module_init(efx_init_module);
  1907. module_exit(efx_exit_module);
  1908. MODULE_AUTHOR("Michael Brown <mbrown@fensystems.co.uk> and "
  1909. "Solarflare Communications");
  1910. MODULE_DESCRIPTION("Solarflare Communications network driver");
  1911. MODULE_LICENSE("GPL");
  1912. MODULE_DEVICE_TABLE(pci, efx_pci_table);