i915_gem.c 110 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include "drmP.h"
  28. #include "drm.h"
  29. #include "i915_drm.h"
  30. #include "i915_drv.h"
  31. #include <linux/swap.h>
  32. #include <linux/pci.h>
  33. #define I915_GEM_GPU_DOMAINS (~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
  34. static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
  35. static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
  36. static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
  37. static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
  38. int write);
  39. static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
  40. uint64_t offset,
  41. uint64_t size);
  42. static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
  43. static int i915_gem_object_get_pages(struct drm_gem_object *obj);
  44. static void i915_gem_object_put_pages(struct drm_gem_object *obj);
  45. static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
  46. static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
  47. unsigned alignment);
  48. static int i915_gem_object_get_fence_reg(struct drm_gem_object *obj, bool write);
  49. static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
  50. static int i915_gem_evict_something(struct drm_device *dev);
  51. static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
  52. struct drm_i915_gem_pwrite *args,
  53. struct drm_file *file_priv);
  54. int i915_gem_do_init(struct drm_device *dev, unsigned long start,
  55. unsigned long end)
  56. {
  57. drm_i915_private_t *dev_priv = dev->dev_private;
  58. if (start >= end ||
  59. (start & (PAGE_SIZE - 1)) != 0 ||
  60. (end & (PAGE_SIZE - 1)) != 0) {
  61. return -EINVAL;
  62. }
  63. drm_mm_init(&dev_priv->mm.gtt_space, start,
  64. end - start);
  65. dev->gtt_total = (uint32_t) (end - start);
  66. return 0;
  67. }
  68. int
  69. i915_gem_init_ioctl(struct drm_device *dev, void *data,
  70. struct drm_file *file_priv)
  71. {
  72. struct drm_i915_gem_init *args = data;
  73. int ret;
  74. mutex_lock(&dev->struct_mutex);
  75. ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
  76. mutex_unlock(&dev->struct_mutex);
  77. return ret;
  78. }
  79. int
  80. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  81. struct drm_file *file_priv)
  82. {
  83. struct drm_i915_gem_get_aperture *args = data;
  84. if (!(dev->driver->driver_features & DRIVER_GEM))
  85. return -ENODEV;
  86. args->aper_size = dev->gtt_total;
  87. args->aper_available_size = (args->aper_size -
  88. atomic_read(&dev->pin_memory));
  89. return 0;
  90. }
  91. /**
  92. * Creates a new mm object and returns a handle to it.
  93. */
  94. int
  95. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  96. struct drm_file *file_priv)
  97. {
  98. struct drm_i915_gem_create *args = data;
  99. struct drm_gem_object *obj;
  100. int handle, ret;
  101. args->size = roundup(args->size, PAGE_SIZE);
  102. /* Allocate the new object */
  103. obj = drm_gem_object_alloc(dev, args->size);
  104. if (obj == NULL)
  105. return -ENOMEM;
  106. ret = drm_gem_handle_create(file_priv, obj, &handle);
  107. mutex_lock(&dev->struct_mutex);
  108. drm_gem_object_handle_unreference(obj);
  109. mutex_unlock(&dev->struct_mutex);
  110. if (ret)
  111. return ret;
  112. args->handle = handle;
  113. return 0;
  114. }
  115. static inline int
  116. fast_shmem_read(struct page **pages,
  117. loff_t page_base, int page_offset,
  118. char __user *data,
  119. int length)
  120. {
  121. char __iomem *vaddr;
  122. int ret;
  123. vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
  124. if (vaddr == NULL)
  125. return -ENOMEM;
  126. ret = __copy_to_user_inatomic(data, vaddr + page_offset, length);
  127. kunmap_atomic(vaddr, KM_USER0);
  128. return ret;
  129. }
  130. static inline int
  131. slow_shmem_copy(struct page *dst_page,
  132. int dst_offset,
  133. struct page *src_page,
  134. int src_offset,
  135. int length)
  136. {
  137. char *dst_vaddr, *src_vaddr;
  138. dst_vaddr = kmap_atomic(dst_page, KM_USER0);
  139. if (dst_vaddr == NULL)
  140. return -ENOMEM;
  141. src_vaddr = kmap_atomic(src_page, KM_USER1);
  142. if (src_vaddr == NULL) {
  143. kunmap_atomic(dst_vaddr, KM_USER0);
  144. return -ENOMEM;
  145. }
  146. memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
  147. kunmap_atomic(src_vaddr, KM_USER1);
  148. kunmap_atomic(dst_vaddr, KM_USER0);
  149. return 0;
  150. }
  151. /**
  152. * This is the fast shmem pread path, which attempts to copy_from_user directly
  153. * from the backing pages of the object to the user's address space. On a
  154. * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
  155. */
  156. static int
  157. i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
  158. struct drm_i915_gem_pread *args,
  159. struct drm_file *file_priv)
  160. {
  161. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  162. ssize_t remain;
  163. loff_t offset, page_base;
  164. char __user *user_data;
  165. int page_offset, page_length;
  166. int ret;
  167. user_data = (char __user *) (uintptr_t) args->data_ptr;
  168. remain = args->size;
  169. mutex_lock(&dev->struct_mutex);
  170. ret = i915_gem_object_get_pages(obj);
  171. if (ret != 0)
  172. goto fail_unlock;
  173. ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
  174. args->size);
  175. if (ret != 0)
  176. goto fail_put_pages;
  177. obj_priv = obj->driver_private;
  178. offset = args->offset;
  179. while (remain > 0) {
  180. /* Operation in this page
  181. *
  182. * page_base = page offset within aperture
  183. * page_offset = offset within page
  184. * page_length = bytes to copy for this page
  185. */
  186. page_base = (offset & ~(PAGE_SIZE-1));
  187. page_offset = offset & (PAGE_SIZE-1);
  188. page_length = remain;
  189. if ((page_offset + remain) > PAGE_SIZE)
  190. page_length = PAGE_SIZE - page_offset;
  191. ret = fast_shmem_read(obj_priv->pages,
  192. page_base, page_offset,
  193. user_data, page_length);
  194. if (ret)
  195. goto fail_put_pages;
  196. remain -= page_length;
  197. user_data += page_length;
  198. offset += page_length;
  199. }
  200. fail_put_pages:
  201. i915_gem_object_put_pages(obj);
  202. fail_unlock:
  203. mutex_unlock(&dev->struct_mutex);
  204. return ret;
  205. }
  206. /**
  207. * This is the fallback shmem pread path, which allocates temporary storage
  208. * in kernel space to copy_to_user into outside of the struct_mutex, so we
  209. * can copy out of the object's backing pages while holding the struct mutex
  210. * and not take page faults.
  211. */
  212. static int
  213. i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
  214. struct drm_i915_gem_pread *args,
  215. struct drm_file *file_priv)
  216. {
  217. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  218. struct mm_struct *mm = current->mm;
  219. struct page **user_pages;
  220. ssize_t remain;
  221. loff_t offset, pinned_pages, i;
  222. loff_t first_data_page, last_data_page, num_pages;
  223. int shmem_page_index, shmem_page_offset;
  224. int data_page_index, data_page_offset;
  225. int page_length;
  226. int ret;
  227. uint64_t data_ptr = args->data_ptr;
  228. remain = args->size;
  229. /* Pin the user pages containing the data. We can't fault while
  230. * holding the struct mutex, yet we want to hold it while
  231. * dereferencing the user data.
  232. */
  233. first_data_page = data_ptr / PAGE_SIZE;
  234. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  235. num_pages = last_data_page - first_data_page + 1;
  236. user_pages = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
  237. if (user_pages == NULL)
  238. return -ENOMEM;
  239. down_read(&mm->mmap_sem);
  240. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  241. num_pages, 0, 0, user_pages, NULL);
  242. up_read(&mm->mmap_sem);
  243. if (pinned_pages < num_pages) {
  244. ret = -EFAULT;
  245. goto fail_put_user_pages;
  246. }
  247. mutex_lock(&dev->struct_mutex);
  248. ret = i915_gem_object_get_pages(obj);
  249. if (ret != 0)
  250. goto fail_unlock;
  251. ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
  252. args->size);
  253. if (ret != 0)
  254. goto fail_put_pages;
  255. obj_priv = obj->driver_private;
  256. offset = args->offset;
  257. while (remain > 0) {
  258. /* Operation in this page
  259. *
  260. * shmem_page_index = page number within shmem file
  261. * shmem_page_offset = offset within page in shmem file
  262. * data_page_index = page number in get_user_pages return
  263. * data_page_offset = offset with data_page_index page.
  264. * page_length = bytes to copy for this page
  265. */
  266. shmem_page_index = offset / PAGE_SIZE;
  267. shmem_page_offset = offset & ~PAGE_MASK;
  268. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  269. data_page_offset = data_ptr & ~PAGE_MASK;
  270. page_length = remain;
  271. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  272. page_length = PAGE_SIZE - shmem_page_offset;
  273. if ((data_page_offset + page_length) > PAGE_SIZE)
  274. page_length = PAGE_SIZE - data_page_offset;
  275. ret = slow_shmem_copy(user_pages[data_page_index],
  276. data_page_offset,
  277. obj_priv->pages[shmem_page_index],
  278. shmem_page_offset,
  279. page_length);
  280. if (ret)
  281. goto fail_put_pages;
  282. remain -= page_length;
  283. data_ptr += page_length;
  284. offset += page_length;
  285. }
  286. fail_put_pages:
  287. i915_gem_object_put_pages(obj);
  288. fail_unlock:
  289. mutex_unlock(&dev->struct_mutex);
  290. fail_put_user_pages:
  291. for (i = 0; i < pinned_pages; i++) {
  292. SetPageDirty(user_pages[i]);
  293. page_cache_release(user_pages[i]);
  294. }
  295. kfree(user_pages);
  296. return ret;
  297. }
  298. /**
  299. * Reads data from the object referenced by handle.
  300. *
  301. * On error, the contents of *data are undefined.
  302. */
  303. int
  304. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  305. struct drm_file *file_priv)
  306. {
  307. struct drm_i915_gem_pread *args = data;
  308. struct drm_gem_object *obj;
  309. struct drm_i915_gem_object *obj_priv;
  310. int ret;
  311. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  312. if (obj == NULL)
  313. return -EBADF;
  314. obj_priv = obj->driver_private;
  315. /* Bounds check source.
  316. *
  317. * XXX: This could use review for overflow issues...
  318. */
  319. if (args->offset > obj->size || args->size > obj->size ||
  320. args->offset + args->size > obj->size) {
  321. drm_gem_object_unreference(obj);
  322. return -EINVAL;
  323. }
  324. ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
  325. if (ret != 0)
  326. ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
  327. drm_gem_object_unreference(obj);
  328. return ret;
  329. }
  330. /* This is the fast write path which cannot handle
  331. * page faults in the source data
  332. */
  333. static inline int
  334. fast_user_write(struct io_mapping *mapping,
  335. loff_t page_base, int page_offset,
  336. char __user *user_data,
  337. int length)
  338. {
  339. char *vaddr_atomic;
  340. unsigned long unwritten;
  341. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
  342. unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
  343. user_data, length);
  344. io_mapping_unmap_atomic(vaddr_atomic);
  345. if (unwritten)
  346. return -EFAULT;
  347. return 0;
  348. }
  349. /* Here's the write path which can sleep for
  350. * page faults
  351. */
  352. static inline int
  353. slow_kernel_write(struct io_mapping *mapping,
  354. loff_t gtt_base, int gtt_offset,
  355. struct page *user_page, int user_offset,
  356. int length)
  357. {
  358. char *src_vaddr, *dst_vaddr;
  359. unsigned long unwritten;
  360. dst_vaddr = io_mapping_map_atomic_wc(mapping, gtt_base);
  361. src_vaddr = kmap_atomic(user_page, KM_USER1);
  362. unwritten = __copy_from_user_inatomic_nocache(dst_vaddr + gtt_offset,
  363. src_vaddr + user_offset,
  364. length);
  365. kunmap_atomic(src_vaddr, KM_USER1);
  366. io_mapping_unmap_atomic(dst_vaddr);
  367. if (unwritten)
  368. return -EFAULT;
  369. return 0;
  370. }
  371. static inline int
  372. fast_shmem_write(struct page **pages,
  373. loff_t page_base, int page_offset,
  374. char __user *data,
  375. int length)
  376. {
  377. char __iomem *vaddr;
  378. vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
  379. if (vaddr == NULL)
  380. return -ENOMEM;
  381. __copy_from_user_inatomic(vaddr + page_offset, data, length);
  382. kunmap_atomic(vaddr, KM_USER0);
  383. return 0;
  384. }
  385. /**
  386. * This is the fast pwrite path, where we copy the data directly from the
  387. * user into the GTT, uncached.
  388. */
  389. static int
  390. i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
  391. struct drm_i915_gem_pwrite *args,
  392. struct drm_file *file_priv)
  393. {
  394. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  395. drm_i915_private_t *dev_priv = dev->dev_private;
  396. ssize_t remain;
  397. loff_t offset, page_base;
  398. char __user *user_data;
  399. int page_offset, page_length;
  400. int ret;
  401. user_data = (char __user *) (uintptr_t) args->data_ptr;
  402. remain = args->size;
  403. if (!access_ok(VERIFY_READ, user_data, remain))
  404. return -EFAULT;
  405. mutex_lock(&dev->struct_mutex);
  406. ret = i915_gem_object_pin(obj, 0);
  407. if (ret) {
  408. mutex_unlock(&dev->struct_mutex);
  409. return ret;
  410. }
  411. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  412. if (ret)
  413. goto fail;
  414. obj_priv = obj->driver_private;
  415. offset = obj_priv->gtt_offset + args->offset;
  416. while (remain > 0) {
  417. /* Operation in this page
  418. *
  419. * page_base = page offset within aperture
  420. * page_offset = offset within page
  421. * page_length = bytes to copy for this page
  422. */
  423. page_base = (offset & ~(PAGE_SIZE-1));
  424. page_offset = offset & (PAGE_SIZE-1);
  425. page_length = remain;
  426. if ((page_offset + remain) > PAGE_SIZE)
  427. page_length = PAGE_SIZE - page_offset;
  428. ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
  429. page_offset, user_data, page_length);
  430. /* If we get a fault while copying data, then (presumably) our
  431. * source page isn't available. Return the error and we'll
  432. * retry in the slow path.
  433. */
  434. if (ret)
  435. goto fail;
  436. remain -= page_length;
  437. user_data += page_length;
  438. offset += page_length;
  439. }
  440. fail:
  441. i915_gem_object_unpin(obj);
  442. mutex_unlock(&dev->struct_mutex);
  443. return ret;
  444. }
  445. /**
  446. * This is the fallback GTT pwrite path, which uses get_user_pages to pin
  447. * the memory and maps it using kmap_atomic for copying.
  448. *
  449. * This code resulted in x11perf -rgb10text consuming about 10% more CPU
  450. * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
  451. */
  452. static int
  453. i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
  454. struct drm_i915_gem_pwrite *args,
  455. struct drm_file *file_priv)
  456. {
  457. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  458. drm_i915_private_t *dev_priv = dev->dev_private;
  459. ssize_t remain;
  460. loff_t gtt_page_base, offset;
  461. loff_t first_data_page, last_data_page, num_pages;
  462. loff_t pinned_pages, i;
  463. struct page **user_pages;
  464. struct mm_struct *mm = current->mm;
  465. int gtt_page_offset, data_page_offset, data_page_index, page_length;
  466. int ret;
  467. uint64_t data_ptr = args->data_ptr;
  468. remain = args->size;
  469. /* Pin the user pages containing the data. We can't fault while
  470. * holding the struct mutex, and all of the pwrite implementations
  471. * want to hold it while dereferencing the user data.
  472. */
  473. first_data_page = data_ptr / PAGE_SIZE;
  474. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  475. num_pages = last_data_page - first_data_page + 1;
  476. user_pages = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
  477. if (user_pages == NULL)
  478. return -ENOMEM;
  479. down_read(&mm->mmap_sem);
  480. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  481. num_pages, 0, 0, user_pages, NULL);
  482. up_read(&mm->mmap_sem);
  483. if (pinned_pages < num_pages) {
  484. ret = -EFAULT;
  485. goto out_unpin_pages;
  486. }
  487. mutex_lock(&dev->struct_mutex);
  488. ret = i915_gem_object_pin(obj, 0);
  489. if (ret)
  490. goto out_unlock;
  491. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  492. if (ret)
  493. goto out_unpin_object;
  494. obj_priv = obj->driver_private;
  495. offset = obj_priv->gtt_offset + args->offset;
  496. while (remain > 0) {
  497. /* Operation in this page
  498. *
  499. * gtt_page_base = page offset within aperture
  500. * gtt_page_offset = offset within page in aperture
  501. * data_page_index = page number in get_user_pages return
  502. * data_page_offset = offset with data_page_index page.
  503. * page_length = bytes to copy for this page
  504. */
  505. gtt_page_base = offset & PAGE_MASK;
  506. gtt_page_offset = offset & ~PAGE_MASK;
  507. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  508. data_page_offset = data_ptr & ~PAGE_MASK;
  509. page_length = remain;
  510. if ((gtt_page_offset + page_length) > PAGE_SIZE)
  511. page_length = PAGE_SIZE - gtt_page_offset;
  512. if ((data_page_offset + page_length) > PAGE_SIZE)
  513. page_length = PAGE_SIZE - data_page_offset;
  514. ret = slow_kernel_write(dev_priv->mm.gtt_mapping,
  515. gtt_page_base, gtt_page_offset,
  516. user_pages[data_page_index],
  517. data_page_offset,
  518. page_length);
  519. /* If we get a fault while copying data, then (presumably) our
  520. * source page isn't available. Return the error and we'll
  521. * retry in the slow path.
  522. */
  523. if (ret)
  524. goto out_unpin_object;
  525. remain -= page_length;
  526. offset += page_length;
  527. data_ptr += page_length;
  528. }
  529. out_unpin_object:
  530. i915_gem_object_unpin(obj);
  531. out_unlock:
  532. mutex_unlock(&dev->struct_mutex);
  533. out_unpin_pages:
  534. for (i = 0; i < pinned_pages; i++)
  535. page_cache_release(user_pages[i]);
  536. kfree(user_pages);
  537. return ret;
  538. }
  539. /**
  540. * This is the fast shmem pwrite path, which attempts to directly
  541. * copy_from_user into the kmapped pages backing the object.
  542. */
  543. static int
  544. i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
  545. struct drm_i915_gem_pwrite *args,
  546. struct drm_file *file_priv)
  547. {
  548. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  549. ssize_t remain;
  550. loff_t offset, page_base;
  551. char __user *user_data;
  552. int page_offset, page_length;
  553. int ret;
  554. user_data = (char __user *) (uintptr_t) args->data_ptr;
  555. remain = args->size;
  556. mutex_lock(&dev->struct_mutex);
  557. ret = i915_gem_object_get_pages(obj);
  558. if (ret != 0)
  559. goto fail_unlock;
  560. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  561. if (ret != 0)
  562. goto fail_put_pages;
  563. obj_priv = obj->driver_private;
  564. offset = args->offset;
  565. obj_priv->dirty = 1;
  566. while (remain > 0) {
  567. /* Operation in this page
  568. *
  569. * page_base = page offset within aperture
  570. * page_offset = offset within page
  571. * page_length = bytes to copy for this page
  572. */
  573. page_base = (offset & ~(PAGE_SIZE-1));
  574. page_offset = offset & (PAGE_SIZE-1);
  575. page_length = remain;
  576. if ((page_offset + remain) > PAGE_SIZE)
  577. page_length = PAGE_SIZE - page_offset;
  578. ret = fast_shmem_write(obj_priv->pages,
  579. page_base, page_offset,
  580. user_data, page_length);
  581. if (ret)
  582. goto fail_put_pages;
  583. remain -= page_length;
  584. user_data += page_length;
  585. offset += page_length;
  586. }
  587. fail_put_pages:
  588. i915_gem_object_put_pages(obj);
  589. fail_unlock:
  590. mutex_unlock(&dev->struct_mutex);
  591. return ret;
  592. }
  593. /**
  594. * This is the fallback shmem pwrite path, which uses get_user_pages to pin
  595. * the memory and maps it using kmap_atomic for copying.
  596. *
  597. * This avoids taking mmap_sem for faulting on the user's address while the
  598. * struct_mutex is held.
  599. */
  600. static int
  601. i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
  602. struct drm_i915_gem_pwrite *args,
  603. struct drm_file *file_priv)
  604. {
  605. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  606. struct mm_struct *mm = current->mm;
  607. struct page **user_pages;
  608. ssize_t remain;
  609. loff_t offset, pinned_pages, i;
  610. loff_t first_data_page, last_data_page, num_pages;
  611. int shmem_page_index, shmem_page_offset;
  612. int data_page_index, data_page_offset;
  613. int page_length;
  614. int ret;
  615. uint64_t data_ptr = args->data_ptr;
  616. remain = args->size;
  617. /* Pin the user pages containing the data. We can't fault while
  618. * holding the struct mutex, and all of the pwrite implementations
  619. * want to hold it while dereferencing the user data.
  620. */
  621. first_data_page = data_ptr / PAGE_SIZE;
  622. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  623. num_pages = last_data_page - first_data_page + 1;
  624. user_pages = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
  625. if (user_pages == NULL)
  626. return -ENOMEM;
  627. down_read(&mm->mmap_sem);
  628. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  629. num_pages, 0, 0, user_pages, NULL);
  630. up_read(&mm->mmap_sem);
  631. if (pinned_pages < num_pages) {
  632. ret = -EFAULT;
  633. goto fail_put_user_pages;
  634. }
  635. mutex_lock(&dev->struct_mutex);
  636. ret = i915_gem_object_get_pages(obj);
  637. if (ret != 0)
  638. goto fail_unlock;
  639. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  640. if (ret != 0)
  641. goto fail_put_pages;
  642. obj_priv = obj->driver_private;
  643. offset = args->offset;
  644. obj_priv->dirty = 1;
  645. while (remain > 0) {
  646. /* Operation in this page
  647. *
  648. * shmem_page_index = page number within shmem file
  649. * shmem_page_offset = offset within page in shmem file
  650. * data_page_index = page number in get_user_pages return
  651. * data_page_offset = offset with data_page_index page.
  652. * page_length = bytes to copy for this page
  653. */
  654. shmem_page_index = offset / PAGE_SIZE;
  655. shmem_page_offset = offset & ~PAGE_MASK;
  656. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  657. data_page_offset = data_ptr & ~PAGE_MASK;
  658. page_length = remain;
  659. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  660. page_length = PAGE_SIZE - shmem_page_offset;
  661. if ((data_page_offset + page_length) > PAGE_SIZE)
  662. page_length = PAGE_SIZE - data_page_offset;
  663. ret = slow_shmem_copy(obj_priv->pages[shmem_page_index],
  664. shmem_page_offset,
  665. user_pages[data_page_index],
  666. data_page_offset,
  667. page_length);
  668. if (ret)
  669. goto fail_put_pages;
  670. remain -= page_length;
  671. data_ptr += page_length;
  672. offset += page_length;
  673. }
  674. fail_put_pages:
  675. i915_gem_object_put_pages(obj);
  676. fail_unlock:
  677. mutex_unlock(&dev->struct_mutex);
  678. fail_put_user_pages:
  679. for (i = 0; i < pinned_pages; i++)
  680. page_cache_release(user_pages[i]);
  681. kfree(user_pages);
  682. return ret;
  683. }
  684. /**
  685. * Writes data to the object referenced by handle.
  686. *
  687. * On error, the contents of the buffer that were to be modified are undefined.
  688. */
  689. int
  690. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  691. struct drm_file *file_priv)
  692. {
  693. struct drm_i915_gem_pwrite *args = data;
  694. struct drm_gem_object *obj;
  695. struct drm_i915_gem_object *obj_priv;
  696. int ret = 0;
  697. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  698. if (obj == NULL)
  699. return -EBADF;
  700. obj_priv = obj->driver_private;
  701. /* Bounds check destination.
  702. *
  703. * XXX: This could use review for overflow issues...
  704. */
  705. if (args->offset > obj->size || args->size > obj->size ||
  706. args->offset + args->size > obj->size) {
  707. drm_gem_object_unreference(obj);
  708. return -EINVAL;
  709. }
  710. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  711. * it would end up going through the fenced access, and we'll get
  712. * different detiling behavior between reading and writing.
  713. * pread/pwrite currently are reading and writing from the CPU
  714. * perspective, requiring manual detiling by the client.
  715. */
  716. if (obj_priv->phys_obj)
  717. ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
  718. else if (obj_priv->tiling_mode == I915_TILING_NONE &&
  719. dev->gtt_total != 0) {
  720. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
  721. if (ret == -EFAULT) {
  722. ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
  723. file_priv);
  724. }
  725. } else {
  726. ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
  727. if (ret == -EFAULT) {
  728. ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
  729. file_priv);
  730. }
  731. }
  732. #if WATCH_PWRITE
  733. if (ret)
  734. DRM_INFO("pwrite failed %d\n", ret);
  735. #endif
  736. drm_gem_object_unreference(obj);
  737. return ret;
  738. }
  739. /**
  740. * Called when user space prepares to use an object with the CPU, either
  741. * through the mmap ioctl's mapping or a GTT mapping.
  742. */
  743. int
  744. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  745. struct drm_file *file_priv)
  746. {
  747. struct drm_i915_gem_set_domain *args = data;
  748. struct drm_gem_object *obj;
  749. uint32_t read_domains = args->read_domains;
  750. uint32_t write_domain = args->write_domain;
  751. int ret;
  752. if (!(dev->driver->driver_features & DRIVER_GEM))
  753. return -ENODEV;
  754. /* Only handle setting domains to types used by the CPU. */
  755. if (write_domain & ~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
  756. return -EINVAL;
  757. if (read_domains & ~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
  758. return -EINVAL;
  759. /* Having something in the write domain implies it's in the read
  760. * domain, and only that read domain. Enforce that in the request.
  761. */
  762. if (write_domain != 0 && read_domains != write_domain)
  763. return -EINVAL;
  764. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  765. if (obj == NULL)
  766. return -EBADF;
  767. mutex_lock(&dev->struct_mutex);
  768. #if WATCH_BUF
  769. DRM_INFO("set_domain_ioctl %p(%d), %08x %08x\n",
  770. obj, obj->size, read_domains, write_domain);
  771. #endif
  772. if (read_domains & I915_GEM_DOMAIN_GTT) {
  773. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  774. /* Silently promote "you're not bound, there was nothing to do"
  775. * to success, since the client was just asking us to
  776. * make sure everything was done.
  777. */
  778. if (ret == -EINVAL)
  779. ret = 0;
  780. } else {
  781. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  782. }
  783. drm_gem_object_unreference(obj);
  784. mutex_unlock(&dev->struct_mutex);
  785. return ret;
  786. }
  787. /**
  788. * Called when user space has done writes to this buffer
  789. */
  790. int
  791. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  792. struct drm_file *file_priv)
  793. {
  794. struct drm_i915_gem_sw_finish *args = data;
  795. struct drm_gem_object *obj;
  796. struct drm_i915_gem_object *obj_priv;
  797. int ret = 0;
  798. if (!(dev->driver->driver_features & DRIVER_GEM))
  799. return -ENODEV;
  800. mutex_lock(&dev->struct_mutex);
  801. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  802. if (obj == NULL) {
  803. mutex_unlock(&dev->struct_mutex);
  804. return -EBADF;
  805. }
  806. #if WATCH_BUF
  807. DRM_INFO("%s: sw_finish %d (%p %d)\n",
  808. __func__, args->handle, obj, obj->size);
  809. #endif
  810. obj_priv = obj->driver_private;
  811. /* Pinned buffers may be scanout, so flush the cache */
  812. if (obj_priv->pin_count)
  813. i915_gem_object_flush_cpu_write_domain(obj);
  814. drm_gem_object_unreference(obj);
  815. mutex_unlock(&dev->struct_mutex);
  816. return ret;
  817. }
  818. /**
  819. * Maps the contents of an object, returning the address it is mapped
  820. * into.
  821. *
  822. * While the mapping holds a reference on the contents of the object, it doesn't
  823. * imply a ref on the object itself.
  824. */
  825. int
  826. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  827. struct drm_file *file_priv)
  828. {
  829. struct drm_i915_gem_mmap *args = data;
  830. struct drm_gem_object *obj;
  831. loff_t offset;
  832. unsigned long addr;
  833. if (!(dev->driver->driver_features & DRIVER_GEM))
  834. return -ENODEV;
  835. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  836. if (obj == NULL)
  837. return -EBADF;
  838. offset = args->offset;
  839. down_write(&current->mm->mmap_sem);
  840. addr = do_mmap(obj->filp, 0, args->size,
  841. PROT_READ | PROT_WRITE, MAP_SHARED,
  842. args->offset);
  843. up_write(&current->mm->mmap_sem);
  844. mutex_lock(&dev->struct_mutex);
  845. drm_gem_object_unreference(obj);
  846. mutex_unlock(&dev->struct_mutex);
  847. if (IS_ERR((void *)addr))
  848. return addr;
  849. args->addr_ptr = (uint64_t) addr;
  850. return 0;
  851. }
  852. /**
  853. * i915_gem_fault - fault a page into the GTT
  854. * vma: VMA in question
  855. * vmf: fault info
  856. *
  857. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  858. * from userspace. The fault handler takes care of binding the object to
  859. * the GTT (if needed), allocating and programming a fence register (again,
  860. * only if needed based on whether the old reg is still valid or the object
  861. * is tiled) and inserting a new PTE into the faulting process.
  862. *
  863. * Note that the faulting process may involve evicting existing objects
  864. * from the GTT and/or fence registers to make room. So performance may
  865. * suffer if the GTT working set is large or there are few fence registers
  866. * left.
  867. */
  868. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  869. {
  870. struct drm_gem_object *obj = vma->vm_private_data;
  871. struct drm_device *dev = obj->dev;
  872. struct drm_i915_private *dev_priv = dev->dev_private;
  873. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  874. pgoff_t page_offset;
  875. unsigned long pfn;
  876. int ret = 0;
  877. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  878. /* We don't use vmf->pgoff since that has the fake offset */
  879. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  880. PAGE_SHIFT;
  881. /* Now bind it into the GTT if needed */
  882. mutex_lock(&dev->struct_mutex);
  883. if (!obj_priv->gtt_space) {
  884. ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
  885. if (ret) {
  886. mutex_unlock(&dev->struct_mutex);
  887. return VM_FAULT_SIGBUS;
  888. }
  889. list_add(&obj_priv->list, &dev_priv->mm.inactive_list);
  890. }
  891. /* Need a new fence register? */
  892. if (obj_priv->fence_reg == I915_FENCE_REG_NONE &&
  893. obj_priv->tiling_mode != I915_TILING_NONE) {
  894. ret = i915_gem_object_get_fence_reg(obj, write);
  895. if (ret) {
  896. mutex_unlock(&dev->struct_mutex);
  897. return VM_FAULT_SIGBUS;
  898. }
  899. }
  900. pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
  901. page_offset;
  902. /* Finally, remap it using the new GTT offset */
  903. ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
  904. mutex_unlock(&dev->struct_mutex);
  905. switch (ret) {
  906. case -ENOMEM:
  907. case -EAGAIN:
  908. return VM_FAULT_OOM;
  909. case -EFAULT:
  910. return VM_FAULT_SIGBUS;
  911. default:
  912. return VM_FAULT_NOPAGE;
  913. }
  914. }
  915. /**
  916. * i915_gem_create_mmap_offset - create a fake mmap offset for an object
  917. * @obj: obj in question
  918. *
  919. * GEM memory mapping works by handing back to userspace a fake mmap offset
  920. * it can use in a subsequent mmap(2) call. The DRM core code then looks
  921. * up the object based on the offset and sets up the various memory mapping
  922. * structures.
  923. *
  924. * This routine allocates and attaches a fake offset for @obj.
  925. */
  926. static int
  927. i915_gem_create_mmap_offset(struct drm_gem_object *obj)
  928. {
  929. struct drm_device *dev = obj->dev;
  930. struct drm_gem_mm *mm = dev->mm_private;
  931. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  932. struct drm_map_list *list;
  933. struct drm_map *map;
  934. int ret = 0;
  935. /* Set the object up for mmap'ing */
  936. list = &obj->map_list;
  937. list->map = drm_calloc(1, sizeof(struct drm_map_list),
  938. DRM_MEM_DRIVER);
  939. if (!list->map)
  940. return -ENOMEM;
  941. map = list->map;
  942. map->type = _DRM_GEM;
  943. map->size = obj->size;
  944. map->handle = obj;
  945. /* Get a DRM GEM mmap offset allocated... */
  946. list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
  947. obj->size / PAGE_SIZE, 0, 0);
  948. if (!list->file_offset_node) {
  949. DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
  950. ret = -ENOMEM;
  951. goto out_free_list;
  952. }
  953. list->file_offset_node = drm_mm_get_block(list->file_offset_node,
  954. obj->size / PAGE_SIZE, 0);
  955. if (!list->file_offset_node) {
  956. ret = -ENOMEM;
  957. goto out_free_list;
  958. }
  959. list->hash.key = list->file_offset_node->start;
  960. if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
  961. DRM_ERROR("failed to add to map hash\n");
  962. goto out_free_mm;
  963. }
  964. /* By now we should be all set, any drm_mmap request on the offset
  965. * below will get to our mmap & fault handler */
  966. obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
  967. return 0;
  968. out_free_mm:
  969. drm_mm_put_block(list->file_offset_node);
  970. out_free_list:
  971. drm_free(list->map, sizeof(struct drm_map_list), DRM_MEM_DRIVER);
  972. return ret;
  973. }
  974. static void
  975. i915_gem_free_mmap_offset(struct drm_gem_object *obj)
  976. {
  977. struct drm_device *dev = obj->dev;
  978. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  979. struct drm_gem_mm *mm = dev->mm_private;
  980. struct drm_map_list *list;
  981. list = &obj->map_list;
  982. drm_ht_remove_item(&mm->offset_hash, &list->hash);
  983. if (list->file_offset_node) {
  984. drm_mm_put_block(list->file_offset_node);
  985. list->file_offset_node = NULL;
  986. }
  987. if (list->map) {
  988. drm_free(list->map, sizeof(struct drm_map), DRM_MEM_DRIVER);
  989. list->map = NULL;
  990. }
  991. obj_priv->mmap_offset = 0;
  992. }
  993. /**
  994. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  995. * @obj: object to check
  996. *
  997. * Return the required GTT alignment for an object, taking into account
  998. * potential fence register mapping if needed.
  999. */
  1000. static uint32_t
  1001. i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
  1002. {
  1003. struct drm_device *dev = obj->dev;
  1004. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1005. int start, i;
  1006. /*
  1007. * Minimum alignment is 4k (GTT page size), but might be greater
  1008. * if a fence register is needed for the object.
  1009. */
  1010. if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
  1011. return 4096;
  1012. /*
  1013. * Previous chips need to be aligned to the size of the smallest
  1014. * fence register that can contain the object.
  1015. */
  1016. if (IS_I9XX(dev))
  1017. start = 1024*1024;
  1018. else
  1019. start = 512*1024;
  1020. for (i = start; i < obj->size; i <<= 1)
  1021. ;
  1022. return i;
  1023. }
  1024. /**
  1025. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1026. * @dev: DRM device
  1027. * @data: GTT mapping ioctl data
  1028. * @file_priv: GEM object info
  1029. *
  1030. * Simply returns the fake offset to userspace so it can mmap it.
  1031. * The mmap call will end up in drm_gem_mmap(), which will set things
  1032. * up so we can get faults in the handler above.
  1033. *
  1034. * The fault handler will take care of binding the object into the GTT
  1035. * (since it may have been evicted to make room for something), allocating
  1036. * a fence register, and mapping the appropriate aperture address into
  1037. * userspace.
  1038. */
  1039. int
  1040. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1041. struct drm_file *file_priv)
  1042. {
  1043. struct drm_i915_gem_mmap_gtt *args = data;
  1044. struct drm_i915_private *dev_priv = dev->dev_private;
  1045. struct drm_gem_object *obj;
  1046. struct drm_i915_gem_object *obj_priv;
  1047. int ret;
  1048. if (!(dev->driver->driver_features & DRIVER_GEM))
  1049. return -ENODEV;
  1050. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  1051. if (obj == NULL)
  1052. return -EBADF;
  1053. mutex_lock(&dev->struct_mutex);
  1054. obj_priv = obj->driver_private;
  1055. if (!obj_priv->mmap_offset) {
  1056. ret = i915_gem_create_mmap_offset(obj);
  1057. if (ret) {
  1058. drm_gem_object_unreference(obj);
  1059. mutex_unlock(&dev->struct_mutex);
  1060. return ret;
  1061. }
  1062. }
  1063. args->offset = obj_priv->mmap_offset;
  1064. obj_priv->gtt_alignment = i915_gem_get_gtt_alignment(obj);
  1065. /* Make sure the alignment is correct for fence regs etc */
  1066. if (obj_priv->agp_mem &&
  1067. (obj_priv->gtt_offset & (obj_priv->gtt_alignment - 1))) {
  1068. drm_gem_object_unreference(obj);
  1069. mutex_unlock(&dev->struct_mutex);
  1070. return -EINVAL;
  1071. }
  1072. /*
  1073. * Pull it into the GTT so that we have a page list (makes the
  1074. * initial fault faster and any subsequent flushing possible).
  1075. */
  1076. if (!obj_priv->agp_mem) {
  1077. ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
  1078. if (ret) {
  1079. drm_gem_object_unreference(obj);
  1080. mutex_unlock(&dev->struct_mutex);
  1081. return ret;
  1082. }
  1083. list_add(&obj_priv->list, &dev_priv->mm.inactive_list);
  1084. }
  1085. drm_gem_object_unreference(obj);
  1086. mutex_unlock(&dev->struct_mutex);
  1087. return 0;
  1088. }
  1089. static void
  1090. i915_gem_object_put_pages(struct drm_gem_object *obj)
  1091. {
  1092. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1093. int page_count = obj->size / PAGE_SIZE;
  1094. int i;
  1095. BUG_ON(obj_priv->pages_refcount == 0);
  1096. if (--obj_priv->pages_refcount != 0)
  1097. return;
  1098. for (i = 0; i < page_count; i++)
  1099. if (obj_priv->pages[i] != NULL) {
  1100. if (obj_priv->dirty)
  1101. set_page_dirty(obj_priv->pages[i]);
  1102. mark_page_accessed(obj_priv->pages[i]);
  1103. page_cache_release(obj_priv->pages[i]);
  1104. }
  1105. obj_priv->dirty = 0;
  1106. drm_free(obj_priv->pages,
  1107. page_count * sizeof(struct page *),
  1108. DRM_MEM_DRIVER);
  1109. obj_priv->pages = NULL;
  1110. }
  1111. static void
  1112. i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
  1113. {
  1114. struct drm_device *dev = obj->dev;
  1115. drm_i915_private_t *dev_priv = dev->dev_private;
  1116. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1117. /* Add a reference if we're newly entering the active list. */
  1118. if (!obj_priv->active) {
  1119. drm_gem_object_reference(obj);
  1120. obj_priv->active = 1;
  1121. }
  1122. /* Move from whatever list we were on to the tail of execution. */
  1123. list_move_tail(&obj_priv->list,
  1124. &dev_priv->mm.active_list);
  1125. obj_priv->last_rendering_seqno = seqno;
  1126. }
  1127. static void
  1128. i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
  1129. {
  1130. struct drm_device *dev = obj->dev;
  1131. drm_i915_private_t *dev_priv = dev->dev_private;
  1132. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1133. BUG_ON(!obj_priv->active);
  1134. list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
  1135. obj_priv->last_rendering_seqno = 0;
  1136. }
  1137. static void
  1138. i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
  1139. {
  1140. struct drm_device *dev = obj->dev;
  1141. drm_i915_private_t *dev_priv = dev->dev_private;
  1142. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1143. i915_verify_inactive(dev, __FILE__, __LINE__);
  1144. if (obj_priv->pin_count != 0)
  1145. list_del_init(&obj_priv->list);
  1146. else
  1147. list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
  1148. obj_priv->last_rendering_seqno = 0;
  1149. if (obj_priv->active) {
  1150. obj_priv->active = 0;
  1151. drm_gem_object_unreference(obj);
  1152. }
  1153. i915_verify_inactive(dev, __FILE__, __LINE__);
  1154. }
  1155. /**
  1156. * Creates a new sequence number, emitting a write of it to the status page
  1157. * plus an interrupt, which will trigger i915_user_interrupt_handler.
  1158. *
  1159. * Must be called with struct_lock held.
  1160. *
  1161. * Returned sequence numbers are nonzero on success.
  1162. */
  1163. static uint32_t
  1164. i915_add_request(struct drm_device *dev, uint32_t flush_domains)
  1165. {
  1166. drm_i915_private_t *dev_priv = dev->dev_private;
  1167. struct drm_i915_gem_request *request;
  1168. uint32_t seqno;
  1169. int was_empty;
  1170. RING_LOCALS;
  1171. request = drm_calloc(1, sizeof(*request), DRM_MEM_DRIVER);
  1172. if (request == NULL)
  1173. return 0;
  1174. /* Grab the seqno we're going to make this request be, and bump the
  1175. * next (skipping 0 so it can be the reserved no-seqno value).
  1176. */
  1177. seqno = dev_priv->mm.next_gem_seqno;
  1178. dev_priv->mm.next_gem_seqno++;
  1179. if (dev_priv->mm.next_gem_seqno == 0)
  1180. dev_priv->mm.next_gem_seqno++;
  1181. BEGIN_LP_RING(4);
  1182. OUT_RING(MI_STORE_DWORD_INDEX);
  1183. OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1184. OUT_RING(seqno);
  1185. OUT_RING(MI_USER_INTERRUPT);
  1186. ADVANCE_LP_RING();
  1187. DRM_DEBUG("%d\n", seqno);
  1188. request->seqno = seqno;
  1189. request->emitted_jiffies = jiffies;
  1190. was_empty = list_empty(&dev_priv->mm.request_list);
  1191. list_add_tail(&request->list, &dev_priv->mm.request_list);
  1192. /* Associate any objects on the flushing list matching the write
  1193. * domain we're flushing with our flush.
  1194. */
  1195. if (flush_domains != 0) {
  1196. struct drm_i915_gem_object *obj_priv, *next;
  1197. list_for_each_entry_safe(obj_priv, next,
  1198. &dev_priv->mm.flushing_list, list) {
  1199. struct drm_gem_object *obj = obj_priv->obj;
  1200. if ((obj->write_domain & flush_domains) ==
  1201. obj->write_domain) {
  1202. obj->write_domain = 0;
  1203. i915_gem_object_move_to_active(obj, seqno);
  1204. }
  1205. }
  1206. }
  1207. if (was_empty && !dev_priv->mm.suspended)
  1208. schedule_delayed_work(&dev_priv->mm.retire_work, HZ);
  1209. return seqno;
  1210. }
  1211. /**
  1212. * Command execution barrier
  1213. *
  1214. * Ensures that all commands in the ring are finished
  1215. * before signalling the CPU
  1216. */
  1217. static uint32_t
  1218. i915_retire_commands(struct drm_device *dev)
  1219. {
  1220. drm_i915_private_t *dev_priv = dev->dev_private;
  1221. uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
  1222. uint32_t flush_domains = 0;
  1223. RING_LOCALS;
  1224. /* The sampler always gets flushed on i965 (sigh) */
  1225. if (IS_I965G(dev))
  1226. flush_domains |= I915_GEM_DOMAIN_SAMPLER;
  1227. BEGIN_LP_RING(2);
  1228. OUT_RING(cmd);
  1229. OUT_RING(0); /* noop */
  1230. ADVANCE_LP_RING();
  1231. return flush_domains;
  1232. }
  1233. /**
  1234. * Moves buffers associated only with the given active seqno from the active
  1235. * to inactive list, potentially freeing them.
  1236. */
  1237. static void
  1238. i915_gem_retire_request(struct drm_device *dev,
  1239. struct drm_i915_gem_request *request)
  1240. {
  1241. drm_i915_private_t *dev_priv = dev->dev_private;
  1242. /* Move any buffers on the active list that are no longer referenced
  1243. * by the ringbuffer to the flushing/inactive lists as appropriate.
  1244. */
  1245. while (!list_empty(&dev_priv->mm.active_list)) {
  1246. struct drm_gem_object *obj;
  1247. struct drm_i915_gem_object *obj_priv;
  1248. obj_priv = list_first_entry(&dev_priv->mm.active_list,
  1249. struct drm_i915_gem_object,
  1250. list);
  1251. obj = obj_priv->obj;
  1252. /* If the seqno being retired doesn't match the oldest in the
  1253. * list, then the oldest in the list must still be newer than
  1254. * this seqno.
  1255. */
  1256. if (obj_priv->last_rendering_seqno != request->seqno)
  1257. return;
  1258. #if WATCH_LRU
  1259. DRM_INFO("%s: retire %d moves to inactive list %p\n",
  1260. __func__, request->seqno, obj);
  1261. #endif
  1262. if (obj->write_domain != 0)
  1263. i915_gem_object_move_to_flushing(obj);
  1264. else
  1265. i915_gem_object_move_to_inactive(obj);
  1266. }
  1267. }
  1268. /**
  1269. * Returns true if seq1 is later than seq2.
  1270. */
  1271. static int
  1272. i915_seqno_passed(uint32_t seq1, uint32_t seq2)
  1273. {
  1274. return (int32_t)(seq1 - seq2) >= 0;
  1275. }
  1276. uint32_t
  1277. i915_get_gem_seqno(struct drm_device *dev)
  1278. {
  1279. drm_i915_private_t *dev_priv = dev->dev_private;
  1280. return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
  1281. }
  1282. /**
  1283. * This function clears the request list as sequence numbers are passed.
  1284. */
  1285. void
  1286. i915_gem_retire_requests(struct drm_device *dev)
  1287. {
  1288. drm_i915_private_t *dev_priv = dev->dev_private;
  1289. uint32_t seqno;
  1290. if (!dev_priv->hw_status_page)
  1291. return;
  1292. seqno = i915_get_gem_seqno(dev);
  1293. while (!list_empty(&dev_priv->mm.request_list)) {
  1294. struct drm_i915_gem_request *request;
  1295. uint32_t retiring_seqno;
  1296. request = list_first_entry(&dev_priv->mm.request_list,
  1297. struct drm_i915_gem_request,
  1298. list);
  1299. retiring_seqno = request->seqno;
  1300. if (i915_seqno_passed(seqno, retiring_seqno) ||
  1301. dev_priv->mm.wedged) {
  1302. i915_gem_retire_request(dev, request);
  1303. list_del(&request->list);
  1304. drm_free(request, sizeof(*request), DRM_MEM_DRIVER);
  1305. } else
  1306. break;
  1307. }
  1308. }
  1309. void
  1310. i915_gem_retire_work_handler(struct work_struct *work)
  1311. {
  1312. drm_i915_private_t *dev_priv;
  1313. struct drm_device *dev;
  1314. dev_priv = container_of(work, drm_i915_private_t,
  1315. mm.retire_work.work);
  1316. dev = dev_priv->dev;
  1317. mutex_lock(&dev->struct_mutex);
  1318. i915_gem_retire_requests(dev);
  1319. if (!dev_priv->mm.suspended &&
  1320. !list_empty(&dev_priv->mm.request_list))
  1321. schedule_delayed_work(&dev_priv->mm.retire_work, HZ);
  1322. mutex_unlock(&dev->struct_mutex);
  1323. }
  1324. /**
  1325. * Waits for a sequence number to be signaled, and cleans up the
  1326. * request and object lists appropriately for that event.
  1327. */
  1328. static int
  1329. i915_wait_request(struct drm_device *dev, uint32_t seqno)
  1330. {
  1331. drm_i915_private_t *dev_priv = dev->dev_private;
  1332. int ret = 0;
  1333. BUG_ON(seqno == 0);
  1334. if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
  1335. dev_priv->mm.waiting_gem_seqno = seqno;
  1336. i915_user_irq_get(dev);
  1337. ret = wait_event_interruptible(dev_priv->irq_queue,
  1338. i915_seqno_passed(i915_get_gem_seqno(dev),
  1339. seqno) ||
  1340. dev_priv->mm.wedged);
  1341. i915_user_irq_put(dev);
  1342. dev_priv->mm.waiting_gem_seqno = 0;
  1343. }
  1344. if (dev_priv->mm.wedged)
  1345. ret = -EIO;
  1346. if (ret && ret != -ERESTARTSYS)
  1347. DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
  1348. __func__, ret, seqno, i915_get_gem_seqno(dev));
  1349. /* Directly dispatch request retiring. While we have the work queue
  1350. * to handle this, the waiter on a request often wants an associated
  1351. * buffer to have made it to the inactive list, and we would need
  1352. * a separate wait queue to handle that.
  1353. */
  1354. if (ret == 0)
  1355. i915_gem_retire_requests(dev);
  1356. return ret;
  1357. }
  1358. static void
  1359. i915_gem_flush(struct drm_device *dev,
  1360. uint32_t invalidate_domains,
  1361. uint32_t flush_domains)
  1362. {
  1363. drm_i915_private_t *dev_priv = dev->dev_private;
  1364. uint32_t cmd;
  1365. RING_LOCALS;
  1366. #if WATCH_EXEC
  1367. DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
  1368. invalidate_domains, flush_domains);
  1369. #endif
  1370. if (flush_domains & I915_GEM_DOMAIN_CPU)
  1371. drm_agp_chipset_flush(dev);
  1372. if ((invalidate_domains | flush_domains) & ~(I915_GEM_DOMAIN_CPU |
  1373. I915_GEM_DOMAIN_GTT)) {
  1374. /*
  1375. * read/write caches:
  1376. *
  1377. * I915_GEM_DOMAIN_RENDER is always invalidated, but is
  1378. * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
  1379. * also flushed at 2d versus 3d pipeline switches.
  1380. *
  1381. * read-only caches:
  1382. *
  1383. * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
  1384. * MI_READ_FLUSH is set, and is always flushed on 965.
  1385. *
  1386. * I915_GEM_DOMAIN_COMMAND may not exist?
  1387. *
  1388. * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
  1389. * invalidated when MI_EXE_FLUSH is set.
  1390. *
  1391. * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
  1392. * invalidated with every MI_FLUSH.
  1393. *
  1394. * TLBs:
  1395. *
  1396. * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
  1397. * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
  1398. * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
  1399. * are flushed at any MI_FLUSH.
  1400. */
  1401. cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
  1402. if ((invalidate_domains|flush_domains) &
  1403. I915_GEM_DOMAIN_RENDER)
  1404. cmd &= ~MI_NO_WRITE_FLUSH;
  1405. if (!IS_I965G(dev)) {
  1406. /*
  1407. * On the 965, the sampler cache always gets flushed
  1408. * and this bit is reserved.
  1409. */
  1410. if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
  1411. cmd |= MI_READ_FLUSH;
  1412. }
  1413. if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
  1414. cmd |= MI_EXE_FLUSH;
  1415. #if WATCH_EXEC
  1416. DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
  1417. #endif
  1418. BEGIN_LP_RING(2);
  1419. OUT_RING(cmd);
  1420. OUT_RING(0); /* noop */
  1421. ADVANCE_LP_RING();
  1422. }
  1423. }
  1424. /**
  1425. * Ensures that all rendering to the object has completed and the object is
  1426. * safe to unbind from the GTT or access from the CPU.
  1427. */
  1428. static int
  1429. i915_gem_object_wait_rendering(struct drm_gem_object *obj)
  1430. {
  1431. struct drm_device *dev = obj->dev;
  1432. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1433. int ret;
  1434. /* This function only exists to support waiting for existing rendering,
  1435. * not for emitting required flushes.
  1436. */
  1437. BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
  1438. /* If there is rendering queued on the buffer being evicted, wait for
  1439. * it.
  1440. */
  1441. if (obj_priv->active) {
  1442. #if WATCH_BUF
  1443. DRM_INFO("%s: object %p wait for seqno %08x\n",
  1444. __func__, obj, obj_priv->last_rendering_seqno);
  1445. #endif
  1446. ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
  1447. if (ret != 0)
  1448. return ret;
  1449. }
  1450. return 0;
  1451. }
  1452. /**
  1453. * Unbinds an object from the GTT aperture.
  1454. */
  1455. int
  1456. i915_gem_object_unbind(struct drm_gem_object *obj)
  1457. {
  1458. struct drm_device *dev = obj->dev;
  1459. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1460. loff_t offset;
  1461. int ret = 0;
  1462. #if WATCH_BUF
  1463. DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
  1464. DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
  1465. #endif
  1466. if (obj_priv->gtt_space == NULL)
  1467. return 0;
  1468. if (obj_priv->pin_count != 0) {
  1469. DRM_ERROR("Attempting to unbind pinned buffer\n");
  1470. return -EINVAL;
  1471. }
  1472. /* Move the object to the CPU domain to ensure that
  1473. * any possible CPU writes while it's not in the GTT
  1474. * are flushed when we go to remap it. This will
  1475. * also ensure that all pending GPU writes are finished
  1476. * before we unbind.
  1477. */
  1478. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  1479. if (ret) {
  1480. if (ret != -ERESTARTSYS)
  1481. DRM_ERROR("set_domain failed: %d\n", ret);
  1482. return ret;
  1483. }
  1484. if (obj_priv->agp_mem != NULL) {
  1485. drm_unbind_agp(obj_priv->agp_mem);
  1486. drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
  1487. obj_priv->agp_mem = NULL;
  1488. }
  1489. BUG_ON(obj_priv->active);
  1490. /* blow away mappings if mapped through GTT */
  1491. offset = ((loff_t) obj->map_list.hash.key) << PAGE_SHIFT;
  1492. if (dev->dev_mapping)
  1493. unmap_mapping_range(dev->dev_mapping, offset, obj->size, 1);
  1494. if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
  1495. i915_gem_clear_fence_reg(obj);
  1496. i915_gem_object_put_pages(obj);
  1497. if (obj_priv->gtt_space) {
  1498. atomic_dec(&dev->gtt_count);
  1499. atomic_sub(obj->size, &dev->gtt_memory);
  1500. drm_mm_put_block(obj_priv->gtt_space);
  1501. obj_priv->gtt_space = NULL;
  1502. }
  1503. /* Remove ourselves from the LRU list if present. */
  1504. if (!list_empty(&obj_priv->list))
  1505. list_del_init(&obj_priv->list);
  1506. return 0;
  1507. }
  1508. static int
  1509. i915_gem_evict_something(struct drm_device *dev)
  1510. {
  1511. drm_i915_private_t *dev_priv = dev->dev_private;
  1512. struct drm_gem_object *obj;
  1513. struct drm_i915_gem_object *obj_priv;
  1514. int ret = 0;
  1515. for (;;) {
  1516. /* If there's an inactive buffer available now, grab it
  1517. * and be done.
  1518. */
  1519. if (!list_empty(&dev_priv->mm.inactive_list)) {
  1520. obj_priv = list_first_entry(&dev_priv->mm.inactive_list,
  1521. struct drm_i915_gem_object,
  1522. list);
  1523. obj = obj_priv->obj;
  1524. BUG_ON(obj_priv->pin_count != 0);
  1525. #if WATCH_LRU
  1526. DRM_INFO("%s: evicting %p\n", __func__, obj);
  1527. #endif
  1528. BUG_ON(obj_priv->active);
  1529. /* Wait on the rendering and unbind the buffer. */
  1530. ret = i915_gem_object_unbind(obj);
  1531. break;
  1532. }
  1533. /* If we didn't get anything, but the ring is still processing
  1534. * things, wait for one of those things to finish and hopefully
  1535. * leave us a buffer to evict.
  1536. */
  1537. if (!list_empty(&dev_priv->mm.request_list)) {
  1538. struct drm_i915_gem_request *request;
  1539. request = list_first_entry(&dev_priv->mm.request_list,
  1540. struct drm_i915_gem_request,
  1541. list);
  1542. ret = i915_wait_request(dev, request->seqno);
  1543. if (ret)
  1544. break;
  1545. /* if waiting caused an object to become inactive,
  1546. * then loop around and wait for it. Otherwise, we
  1547. * assume that waiting freed and unbound something,
  1548. * so there should now be some space in the GTT
  1549. */
  1550. if (!list_empty(&dev_priv->mm.inactive_list))
  1551. continue;
  1552. break;
  1553. }
  1554. /* If we didn't have anything on the request list but there
  1555. * are buffers awaiting a flush, emit one and try again.
  1556. * When we wait on it, those buffers waiting for that flush
  1557. * will get moved to inactive.
  1558. */
  1559. if (!list_empty(&dev_priv->mm.flushing_list)) {
  1560. obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
  1561. struct drm_i915_gem_object,
  1562. list);
  1563. obj = obj_priv->obj;
  1564. i915_gem_flush(dev,
  1565. obj->write_domain,
  1566. obj->write_domain);
  1567. i915_add_request(dev, obj->write_domain);
  1568. obj = NULL;
  1569. continue;
  1570. }
  1571. DRM_ERROR("inactive empty %d request empty %d "
  1572. "flushing empty %d\n",
  1573. list_empty(&dev_priv->mm.inactive_list),
  1574. list_empty(&dev_priv->mm.request_list),
  1575. list_empty(&dev_priv->mm.flushing_list));
  1576. /* If we didn't do any of the above, there's nothing to be done
  1577. * and we just can't fit it in.
  1578. */
  1579. return -ENOMEM;
  1580. }
  1581. return ret;
  1582. }
  1583. static int
  1584. i915_gem_evict_everything(struct drm_device *dev)
  1585. {
  1586. int ret;
  1587. for (;;) {
  1588. ret = i915_gem_evict_something(dev);
  1589. if (ret != 0)
  1590. break;
  1591. }
  1592. if (ret == -ENOMEM)
  1593. return 0;
  1594. return ret;
  1595. }
  1596. static int
  1597. i915_gem_object_get_pages(struct drm_gem_object *obj)
  1598. {
  1599. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1600. int page_count, i;
  1601. struct address_space *mapping;
  1602. struct inode *inode;
  1603. struct page *page;
  1604. int ret;
  1605. if (obj_priv->pages_refcount++ != 0)
  1606. return 0;
  1607. /* Get the list of pages out of our struct file. They'll be pinned
  1608. * at this point until we release them.
  1609. */
  1610. page_count = obj->size / PAGE_SIZE;
  1611. BUG_ON(obj_priv->pages != NULL);
  1612. obj_priv->pages = drm_calloc(page_count, sizeof(struct page *),
  1613. DRM_MEM_DRIVER);
  1614. if (obj_priv->pages == NULL) {
  1615. DRM_ERROR("Faled to allocate page list\n");
  1616. obj_priv->pages_refcount--;
  1617. return -ENOMEM;
  1618. }
  1619. inode = obj->filp->f_path.dentry->d_inode;
  1620. mapping = inode->i_mapping;
  1621. for (i = 0; i < page_count; i++) {
  1622. page = read_mapping_page(mapping, i, NULL);
  1623. if (IS_ERR(page)) {
  1624. ret = PTR_ERR(page);
  1625. DRM_ERROR("read_mapping_page failed: %d\n", ret);
  1626. i915_gem_object_put_pages(obj);
  1627. return ret;
  1628. }
  1629. obj_priv->pages[i] = page;
  1630. }
  1631. return 0;
  1632. }
  1633. static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
  1634. {
  1635. struct drm_gem_object *obj = reg->obj;
  1636. struct drm_device *dev = obj->dev;
  1637. drm_i915_private_t *dev_priv = dev->dev_private;
  1638. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1639. int regnum = obj_priv->fence_reg;
  1640. uint64_t val;
  1641. val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
  1642. 0xfffff000) << 32;
  1643. val |= obj_priv->gtt_offset & 0xfffff000;
  1644. val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
  1645. if (obj_priv->tiling_mode == I915_TILING_Y)
  1646. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1647. val |= I965_FENCE_REG_VALID;
  1648. I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
  1649. }
  1650. static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
  1651. {
  1652. struct drm_gem_object *obj = reg->obj;
  1653. struct drm_device *dev = obj->dev;
  1654. drm_i915_private_t *dev_priv = dev->dev_private;
  1655. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1656. int regnum = obj_priv->fence_reg;
  1657. int tile_width;
  1658. uint32_t fence_reg, val;
  1659. uint32_t pitch_val;
  1660. if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
  1661. (obj_priv->gtt_offset & (obj->size - 1))) {
  1662. WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
  1663. __func__, obj_priv->gtt_offset, obj->size);
  1664. return;
  1665. }
  1666. if (obj_priv->tiling_mode == I915_TILING_Y &&
  1667. HAS_128_BYTE_Y_TILING(dev))
  1668. tile_width = 128;
  1669. else
  1670. tile_width = 512;
  1671. /* Note: pitch better be a power of two tile widths */
  1672. pitch_val = obj_priv->stride / tile_width;
  1673. pitch_val = ffs(pitch_val) - 1;
  1674. val = obj_priv->gtt_offset;
  1675. if (obj_priv->tiling_mode == I915_TILING_Y)
  1676. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1677. val |= I915_FENCE_SIZE_BITS(obj->size);
  1678. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1679. val |= I830_FENCE_REG_VALID;
  1680. if (regnum < 8)
  1681. fence_reg = FENCE_REG_830_0 + (regnum * 4);
  1682. else
  1683. fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
  1684. I915_WRITE(fence_reg, val);
  1685. }
  1686. static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
  1687. {
  1688. struct drm_gem_object *obj = reg->obj;
  1689. struct drm_device *dev = obj->dev;
  1690. drm_i915_private_t *dev_priv = dev->dev_private;
  1691. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1692. int regnum = obj_priv->fence_reg;
  1693. uint32_t val;
  1694. uint32_t pitch_val;
  1695. if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
  1696. (obj_priv->gtt_offset & (obj->size - 1))) {
  1697. WARN(1, "%s: object 0x%08x not 1M or size aligned\n",
  1698. __func__, obj_priv->gtt_offset);
  1699. return;
  1700. }
  1701. pitch_val = (obj_priv->stride / 128) - 1;
  1702. val = obj_priv->gtt_offset;
  1703. if (obj_priv->tiling_mode == I915_TILING_Y)
  1704. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1705. val |= I830_FENCE_SIZE_BITS(obj->size);
  1706. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1707. val |= I830_FENCE_REG_VALID;
  1708. I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
  1709. }
  1710. /**
  1711. * i915_gem_object_get_fence_reg - set up a fence reg for an object
  1712. * @obj: object to map through a fence reg
  1713. * @write: object is about to be written
  1714. *
  1715. * When mapping objects through the GTT, userspace wants to be able to write
  1716. * to them without having to worry about swizzling if the object is tiled.
  1717. *
  1718. * This function walks the fence regs looking for a free one for @obj,
  1719. * stealing one if it can't find any.
  1720. *
  1721. * It then sets up the reg based on the object's properties: address, pitch
  1722. * and tiling format.
  1723. */
  1724. static int
  1725. i915_gem_object_get_fence_reg(struct drm_gem_object *obj, bool write)
  1726. {
  1727. struct drm_device *dev = obj->dev;
  1728. struct drm_i915_private *dev_priv = dev->dev_private;
  1729. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1730. struct drm_i915_fence_reg *reg = NULL;
  1731. struct drm_i915_gem_object *old_obj_priv = NULL;
  1732. int i, ret, avail;
  1733. switch (obj_priv->tiling_mode) {
  1734. case I915_TILING_NONE:
  1735. WARN(1, "allocating a fence for non-tiled object?\n");
  1736. break;
  1737. case I915_TILING_X:
  1738. if (!obj_priv->stride)
  1739. return -EINVAL;
  1740. WARN((obj_priv->stride & (512 - 1)),
  1741. "object 0x%08x is X tiled but has non-512B pitch\n",
  1742. obj_priv->gtt_offset);
  1743. break;
  1744. case I915_TILING_Y:
  1745. if (!obj_priv->stride)
  1746. return -EINVAL;
  1747. WARN((obj_priv->stride & (128 - 1)),
  1748. "object 0x%08x is Y tiled but has non-128B pitch\n",
  1749. obj_priv->gtt_offset);
  1750. break;
  1751. }
  1752. /* First try to find a free reg */
  1753. try_again:
  1754. avail = 0;
  1755. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  1756. reg = &dev_priv->fence_regs[i];
  1757. if (!reg->obj)
  1758. break;
  1759. old_obj_priv = reg->obj->driver_private;
  1760. if (!old_obj_priv->pin_count)
  1761. avail++;
  1762. }
  1763. /* None available, try to steal one or wait for a user to finish */
  1764. if (i == dev_priv->num_fence_regs) {
  1765. uint32_t seqno = dev_priv->mm.next_gem_seqno;
  1766. loff_t offset;
  1767. if (avail == 0)
  1768. return -ENOMEM;
  1769. for (i = dev_priv->fence_reg_start;
  1770. i < dev_priv->num_fence_regs; i++) {
  1771. uint32_t this_seqno;
  1772. reg = &dev_priv->fence_regs[i];
  1773. old_obj_priv = reg->obj->driver_private;
  1774. if (old_obj_priv->pin_count)
  1775. continue;
  1776. /* i915 uses fences for GPU access to tiled buffers */
  1777. if (IS_I965G(dev) || !old_obj_priv->active)
  1778. break;
  1779. /* find the seqno of the first available fence */
  1780. this_seqno = old_obj_priv->last_rendering_seqno;
  1781. if (this_seqno != 0 &&
  1782. reg->obj->write_domain == 0 &&
  1783. i915_seqno_passed(seqno, this_seqno))
  1784. seqno = this_seqno;
  1785. }
  1786. /*
  1787. * Now things get ugly... we have to wait for one of the
  1788. * objects to finish before trying again.
  1789. */
  1790. if (i == dev_priv->num_fence_regs) {
  1791. if (seqno == dev_priv->mm.next_gem_seqno) {
  1792. i915_gem_flush(dev,
  1793. I915_GEM_GPU_DOMAINS,
  1794. I915_GEM_GPU_DOMAINS);
  1795. seqno = i915_add_request(dev,
  1796. I915_GEM_GPU_DOMAINS);
  1797. if (seqno == 0)
  1798. return -ENOMEM;
  1799. }
  1800. ret = i915_wait_request(dev, seqno);
  1801. if (ret)
  1802. return ret;
  1803. goto try_again;
  1804. }
  1805. BUG_ON(old_obj_priv->active ||
  1806. (reg->obj->write_domain & I915_GEM_GPU_DOMAINS));
  1807. /*
  1808. * Zap this virtual mapping so we can set up a fence again
  1809. * for this object next time we need it.
  1810. */
  1811. offset = ((loff_t) reg->obj->map_list.hash.key) << PAGE_SHIFT;
  1812. if (dev->dev_mapping)
  1813. unmap_mapping_range(dev->dev_mapping, offset,
  1814. reg->obj->size, 1);
  1815. old_obj_priv->fence_reg = I915_FENCE_REG_NONE;
  1816. }
  1817. obj_priv->fence_reg = i;
  1818. reg->obj = obj;
  1819. if (IS_I965G(dev))
  1820. i965_write_fence_reg(reg);
  1821. else if (IS_I9XX(dev))
  1822. i915_write_fence_reg(reg);
  1823. else
  1824. i830_write_fence_reg(reg);
  1825. return 0;
  1826. }
  1827. /**
  1828. * i915_gem_clear_fence_reg - clear out fence register info
  1829. * @obj: object to clear
  1830. *
  1831. * Zeroes out the fence register itself and clears out the associated
  1832. * data structures in dev_priv and obj_priv.
  1833. */
  1834. static void
  1835. i915_gem_clear_fence_reg(struct drm_gem_object *obj)
  1836. {
  1837. struct drm_device *dev = obj->dev;
  1838. drm_i915_private_t *dev_priv = dev->dev_private;
  1839. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1840. if (IS_I965G(dev))
  1841. I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
  1842. else {
  1843. uint32_t fence_reg;
  1844. if (obj_priv->fence_reg < 8)
  1845. fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
  1846. else
  1847. fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
  1848. 8) * 4;
  1849. I915_WRITE(fence_reg, 0);
  1850. }
  1851. dev_priv->fence_regs[obj_priv->fence_reg].obj = NULL;
  1852. obj_priv->fence_reg = I915_FENCE_REG_NONE;
  1853. }
  1854. /**
  1855. * Finds free space in the GTT aperture and binds the object there.
  1856. */
  1857. static int
  1858. i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
  1859. {
  1860. struct drm_device *dev = obj->dev;
  1861. drm_i915_private_t *dev_priv = dev->dev_private;
  1862. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1863. struct drm_mm_node *free_space;
  1864. int page_count, ret;
  1865. if (dev_priv->mm.suspended)
  1866. return -EBUSY;
  1867. if (alignment == 0)
  1868. alignment = i915_gem_get_gtt_alignment(obj);
  1869. if (alignment & (PAGE_SIZE - 1)) {
  1870. DRM_ERROR("Invalid object alignment requested %u\n", alignment);
  1871. return -EINVAL;
  1872. }
  1873. search_free:
  1874. free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
  1875. obj->size, alignment, 0);
  1876. if (free_space != NULL) {
  1877. obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
  1878. alignment);
  1879. if (obj_priv->gtt_space != NULL) {
  1880. obj_priv->gtt_space->private = obj;
  1881. obj_priv->gtt_offset = obj_priv->gtt_space->start;
  1882. }
  1883. }
  1884. if (obj_priv->gtt_space == NULL) {
  1885. /* If the gtt is empty and we're still having trouble
  1886. * fitting our object in, we're out of memory.
  1887. */
  1888. #if WATCH_LRU
  1889. DRM_INFO("%s: GTT full, evicting something\n", __func__);
  1890. #endif
  1891. if (list_empty(&dev_priv->mm.inactive_list) &&
  1892. list_empty(&dev_priv->mm.flushing_list) &&
  1893. list_empty(&dev_priv->mm.active_list)) {
  1894. DRM_ERROR("GTT full, but LRU list empty\n");
  1895. return -ENOMEM;
  1896. }
  1897. ret = i915_gem_evict_something(dev);
  1898. if (ret != 0) {
  1899. if (ret != -ERESTARTSYS)
  1900. DRM_ERROR("Failed to evict a buffer %d\n", ret);
  1901. return ret;
  1902. }
  1903. goto search_free;
  1904. }
  1905. #if WATCH_BUF
  1906. DRM_INFO("Binding object of size %d at 0x%08x\n",
  1907. obj->size, obj_priv->gtt_offset);
  1908. #endif
  1909. ret = i915_gem_object_get_pages(obj);
  1910. if (ret) {
  1911. drm_mm_put_block(obj_priv->gtt_space);
  1912. obj_priv->gtt_space = NULL;
  1913. return ret;
  1914. }
  1915. page_count = obj->size / PAGE_SIZE;
  1916. /* Create an AGP memory structure pointing at our pages, and bind it
  1917. * into the GTT.
  1918. */
  1919. obj_priv->agp_mem = drm_agp_bind_pages(dev,
  1920. obj_priv->pages,
  1921. page_count,
  1922. obj_priv->gtt_offset,
  1923. obj_priv->agp_type);
  1924. if (obj_priv->agp_mem == NULL) {
  1925. i915_gem_object_put_pages(obj);
  1926. drm_mm_put_block(obj_priv->gtt_space);
  1927. obj_priv->gtt_space = NULL;
  1928. return -ENOMEM;
  1929. }
  1930. atomic_inc(&dev->gtt_count);
  1931. atomic_add(obj->size, &dev->gtt_memory);
  1932. /* Assert that the object is not currently in any GPU domain. As it
  1933. * wasn't in the GTT, there shouldn't be any way it could have been in
  1934. * a GPU cache
  1935. */
  1936. BUG_ON(obj->read_domains & ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
  1937. BUG_ON(obj->write_domain & ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
  1938. return 0;
  1939. }
  1940. void
  1941. i915_gem_clflush_object(struct drm_gem_object *obj)
  1942. {
  1943. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1944. /* If we don't have a page list set up, then we're not pinned
  1945. * to GPU, and we can ignore the cache flush because it'll happen
  1946. * again at bind time.
  1947. */
  1948. if (obj_priv->pages == NULL)
  1949. return;
  1950. drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
  1951. }
  1952. /** Flushes any GPU write domain for the object if it's dirty. */
  1953. static void
  1954. i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
  1955. {
  1956. struct drm_device *dev = obj->dev;
  1957. uint32_t seqno;
  1958. if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
  1959. return;
  1960. /* Queue the GPU write cache flushing we need. */
  1961. i915_gem_flush(dev, 0, obj->write_domain);
  1962. seqno = i915_add_request(dev, obj->write_domain);
  1963. obj->write_domain = 0;
  1964. i915_gem_object_move_to_active(obj, seqno);
  1965. }
  1966. /** Flushes the GTT write domain for the object if it's dirty. */
  1967. static void
  1968. i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
  1969. {
  1970. if (obj->write_domain != I915_GEM_DOMAIN_GTT)
  1971. return;
  1972. /* No actual flushing is required for the GTT write domain. Writes
  1973. * to it immediately go to main memory as far as we know, so there's
  1974. * no chipset flush. It also doesn't land in render cache.
  1975. */
  1976. obj->write_domain = 0;
  1977. }
  1978. /** Flushes the CPU write domain for the object if it's dirty. */
  1979. static void
  1980. i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
  1981. {
  1982. struct drm_device *dev = obj->dev;
  1983. if (obj->write_domain != I915_GEM_DOMAIN_CPU)
  1984. return;
  1985. i915_gem_clflush_object(obj);
  1986. drm_agp_chipset_flush(dev);
  1987. obj->write_domain = 0;
  1988. }
  1989. /**
  1990. * Moves a single object to the GTT read, and possibly write domain.
  1991. *
  1992. * This function returns when the move is complete, including waiting on
  1993. * flushes to occur.
  1994. */
  1995. int
  1996. i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
  1997. {
  1998. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1999. int ret;
  2000. /* Not valid to be called on unbound objects. */
  2001. if (obj_priv->gtt_space == NULL)
  2002. return -EINVAL;
  2003. i915_gem_object_flush_gpu_write_domain(obj);
  2004. /* Wait on any GPU rendering and flushing to occur. */
  2005. ret = i915_gem_object_wait_rendering(obj);
  2006. if (ret != 0)
  2007. return ret;
  2008. /* If we're writing through the GTT domain, then CPU and GPU caches
  2009. * will need to be invalidated at next use.
  2010. */
  2011. if (write)
  2012. obj->read_domains &= I915_GEM_DOMAIN_GTT;
  2013. i915_gem_object_flush_cpu_write_domain(obj);
  2014. /* It should now be out of any other write domains, and we can update
  2015. * the domain values for our changes.
  2016. */
  2017. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2018. obj->read_domains |= I915_GEM_DOMAIN_GTT;
  2019. if (write) {
  2020. obj->write_domain = I915_GEM_DOMAIN_GTT;
  2021. obj_priv->dirty = 1;
  2022. }
  2023. return 0;
  2024. }
  2025. /**
  2026. * Moves a single object to the CPU read, and possibly write domain.
  2027. *
  2028. * This function returns when the move is complete, including waiting on
  2029. * flushes to occur.
  2030. */
  2031. static int
  2032. i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
  2033. {
  2034. int ret;
  2035. i915_gem_object_flush_gpu_write_domain(obj);
  2036. /* Wait on any GPU rendering and flushing to occur. */
  2037. ret = i915_gem_object_wait_rendering(obj);
  2038. if (ret != 0)
  2039. return ret;
  2040. i915_gem_object_flush_gtt_write_domain(obj);
  2041. /* If we have a partially-valid cache of the object in the CPU,
  2042. * finish invalidating it and free the per-page flags.
  2043. */
  2044. i915_gem_object_set_to_full_cpu_read_domain(obj);
  2045. /* Flush the CPU cache if it's still invalid. */
  2046. if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  2047. i915_gem_clflush_object(obj);
  2048. obj->read_domains |= I915_GEM_DOMAIN_CPU;
  2049. }
  2050. /* It should now be out of any other write domains, and we can update
  2051. * the domain values for our changes.
  2052. */
  2053. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2054. /* If we're writing through the CPU, then the GPU read domains will
  2055. * need to be invalidated at next use.
  2056. */
  2057. if (write) {
  2058. obj->read_domains &= I915_GEM_DOMAIN_CPU;
  2059. obj->write_domain = I915_GEM_DOMAIN_CPU;
  2060. }
  2061. return 0;
  2062. }
  2063. /*
  2064. * Set the next domain for the specified object. This
  2065. * may not actually perform the necessary flushing/invaliding though,
  2066. * as that may want to be batched with other set_domain operations
  2067. *
  2068. * This is (we hope) the only really tricky part of gem. The goal
  2069. * is fairly simple -- track which caches hold bits of the object
  2070. * and make sure they remain coherent. A few concrete examples may
  2071. * help to explain how it works. For shorthand, we use the notation
  2072. * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
  2073. * a pair of read and write domain masks.
  2074. *
  2075. * Case 1: the batch buffer
  2076. *
  2077. * 1. Allocated
  2078. * 2. Written by CPU
  2079. * 3. Mapped to GTT
  2080. * 4. Read by GPU
  2081. * 5. Unmapped from GTT
  2082. * 6. Freed
  2083. *
  2084. * Let's take these a step at a time
  2085. *
  2086. * 1. Allocated
  2087. * Pages allocated from the kernel may still have
  2088. * cache contents, so we set them to (CPU, CPU) always.
  2089. * 2. Written by CPU (using pwrite)
  2090. * The pwrite function calls set_domain (CPU, CPU) and
  2091. * this function does nothing (as nothing changes)
  2092. * 3. Mapped by GTT
  2093. * This function asserts that the object is not
  2094. * currently in any GPU-based read or write domains
  2095. * 4. Read by GPU
  2096. * i915_gem_execbuffer calls set_domain (COMMAND, 0).
  2097. * As write_domain is zero, this function adds in the
  2098. * current read domains (CPU+COMMAND, 0).
  2099. * flush_domains is set to CPU.
  2100. * invalidate_domains is set to COMMAND
  2101. * clflush is run to get data out of the CPU caches
  2102. * then i915_dev_set_domain calls i915_gem_flush to
  2103. * emit an MI_FLUSH and drm_agp_chipset_flush
  2104. * 5. Unmapped from GTT
  2105. * i915_gem_object_unbind calls set_domain (CPU, CPU)
  2106. * flush_domains and invalidate_domains end up both zero
  2107. * so no flushing/invalidating happens
  2108. * 6. Freed
  2109. * yay, done
  2110. *
  2111. * Case 2: The shared render buffer
  2112. *
  2113. * 1. Allocated
  2114. * 2. Mapped to GTT
  2115. * 3. Read/written by GPU
  2116. * 4. set_domain to (CPU,CPU)
  2117. * 5. Read/written by CPU
  2118. * 6. Read/written by GPU
  2119. *
  2120. * 1. Allocated
  2121. * Same as last example, (CPU, CPU)
  2122. * 2. Mapped to GTT
  2123. * Nothing changes (assertions find that it is not in the GPU)
  2124. * 3. Read/written by GPU
  2125. * execbuffer calls set_domain (RENDER, RENDER)
  2126. * flush_domains gets CPU
  2127. * invalidate_domains gets GPU
  2128. * clflush (obj)
  2129. * MI_FLUSH and drm_agp_chipset_flush
  2130. * 4. set_domain (CPU, CPU)
  2131. * flush_domains gets GPU
  2132. * invalidate_domains gets CPU
  2133. * wait_rendering (obj) to make sure all drawing is complete.
  2134. * This will include an MI_FLUSH to get the data from GPU
  2135. * to memory
  2136. * clflush (obj) to invalidate the CPU cache
  2137. * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
  2138. * 5. Read/written by CPU
  2139. * cache lines are loaded and dirtied
  2140. * 6. Read written by GPU
  2141. * Same as last GPU access
  2142. *
  2143. * Case 3: The constant buffer
  2144. *
  2145. * 1. Allocated
  2146. * 2. Written by CPU
  2147. * 3. Read by GPU
  2148. * 4. Updated (written) by CPU again
  2149. * 5. Read by GPU
  2150. *
  2151. * 1. Allocated
  2152. * (CPU, CPU)
  2153. * 2. Written by CPU
  2154. * (CPU, CPU)
  2155. * 3. Read by GPU
  2156. * (CPU+RENDER, 0)
  2157. * flush_domains = CPU
  2158. * invalidate_domains = RENDER
  2159. * clflush (obj)
  2160. * MI_FLUSH
  2161. * drm_agp_chipset_flush
  2162. * 4. Updated (written) by CPU again
  2163. * (CPU, CPU)
  2164. * flush_domains = 0 (no previous write domain)
  2165. * invalidate_domains = 0 (no new read domains)
  2166. * 5. Read by GPU
  2167. * (CPU+RENDER, 0)
  2168. * flush_domains = CPU
  2169. * invalidate_domains = RENDER
  2170. * clflush (obj)
  2171. * MI_FLUSH
  2172. * drm_agp_chipset_flush
  2173. */
  2174. static void
  2175. i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
  2176. {
  2177. struct drm_device *dev = obj->dev;
  2178. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2179. uint32_t invalidate_domains = 0;
  2180. uint32_t flush_domains = 0;
  2181. BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
  2182. BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
  2183. #if WATCH_BUF
  2184. DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
  2185. __func__, obj,
  2186. obj->read_domains, obj->pending_read_domains,
  2187. obj->write_domain, obj->pending_write_domain);
  2188. #endif
  2189. /*
  2190. * If the object isn't moving to a new write domain,
  2191. * let the object stay in multiple read domains
  2192. */
  2193. if (obj->pending_write_domain == 0)
  2194. obj->pending_read_domains |= obj->read_domains;
  2195. else
  2196. obj_priv->dirty = 1;
  2197. /*
  2198. * Flush the current write domain if
  2199. * the new read domains don't match. Invalidate
  2200. * any read domains which differ from the old
  2201. * write domain
  2202. */
  2203. if (obj->write_domain &&
  2204. obj->write_domain != obj->pending_read_domains) {
  2205. flush_domains |= obj->write_domain;
  2206. invalidate_domains |=
  2207. obj->pending_read_domains & ~obj->write_domain;
  2208. }
  2209. /*
  2210. * Invalidate any read caches which may have
  2211. * stale data. That is, any new read domains.
  2212. */
  2213. invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
  2214. if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
  2215. #if WATCH_BUF
  2216. DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
  2217. __func__, flush_domains, invalidate_domains);
  2218. #endif
  2219. i915_gem_clflush_object(obj);
  2220. }
  2221. /* The actual obj->write_domain will be updated with
  2222. * pending_write_domain after we emit the accumulated flush for all
  2223. * of our domain changes in execbuffers (which clears objects'
  2224. * write_domains). So if we have a current write domain that we
  2225. * aren't changing, set pending_write_domain to that.
  2226. */
  2227. if (flush_domains == 0 && obj->pending_write_domain == 0)
  2228. obj->pending_write_domain = obj->write_domain;
  2229. obj->read_domains = obj->pending_read_domains;
  2230. dev->invalidate_domains |= invalidate_domains;
  2231. dev->flush_domains |= flush_domains;
  2232. #if WATCH_BUF
  2233. DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
  2234. __func__,
  2235. obj->read_domains, obj->write_domain,
  2236. dev->invalidate_domains, dev->flush_domains);
  2237. #endif
  2238. }
  2239. /**
  2240. * Moves the object from a partially CPU read to a full one.
  2241. *
  2242. * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
  2243. * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
  2244. */
  2245. static void
  2246. i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
  2247. {
  2248. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2249. if (!obj_priv->page_cpu_valid)
  2250. return;
  2251. /* If we're partially in the CPU read domain, finish moving it in.
  2252. */
  2253. if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
  2254. int i;
  2255. for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
  2256. if (obj_priv->page_cpu_valid[i])
  2257. continue;
  2258. drm_clflush_pages(obj_priv->pages + i, 1);
  2259. }
  2260. }
  2261. /* Free the page_cpu_valid mappings which are now stale, whether
  2262. * or not we've got I915_GEM_DOMAIN_CPU.
  2263. */
  2264. drm_free(obj_priv->page_cpu_valid, obj->size / PAGE_SIZE,
  2265. DRM_MEM_DRIVER);
  2266. obj_priv->page_cpu_valid = NULL;
  2267. }
  2268. /**
  2269. * Set the CPU read domain on a range of the object.
  2270. *
  2271. * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
  2272. * not entirely valid. The page_cpu_valid member of the object flags which
  2273. * pages have been flushed, and will be respected by
  2274. * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
  2275. * of the whole object.
  2276. *
  2277. * This function returns when the move is complete, including waiting on
  2278. * flushes to occur.
  2279. */
  2280. static int
  2281. i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
  2282. uint64_t offset, uint64_t size)
  2283. {
  2284. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2285. int i, ret;
  2286. if (offset == 0 && size == obj->size)
  2287. return i915_gem_object_set_to_cpu_domain(obj, 0);
  2288. i915_gem_object_flush_gpu_write_domain(obj);
  2289. /* Wait on any GPU rendering and flushing to occur. */
  2290. ret = i915_gem_object_wait_rendering(obj);
  2291. if (ret != 0)
  2292. return ret;
  2293. i915_gem_object_flush_gtt_write_domain(obj);
  2294. /* If we're already fully in the CPU read domain, we're done. */
  2295. if (obj_priv->page_cpu_valid == NULL &&
  2296. (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
  2297. return 0;
  2298. /* Otherwise, create/clear the per-page CPU read domain flag if we're
  2299. * newly adding I915_GEM_DOMAIN_CPU
  2300. */
  2301. if (obj_priv->page_cpu_valid == NULL) {
  2302. obj_priv->page_cpu_valid = drm_calloc(1, obj->size / PAGE_SIZE,
  2303. DRM_MEM_DRIVER);
  2304. if (obj_priv->page_cpu_valid == NULL)
  2305. return -ENOMEM;
  2306. } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
  2307. memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
  2308. /* Flush the cache on any pages that are still invalid from the CPU's
  2309. * perspective.
  2310. */
  2311. for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
  2312. i++) {
  2313. if (obj_priv->page_cpu_valid[i])
  2314. continue;
  2315. drm_clflush_pages(obj_priv->pages + i, 1);
  2316. obj_priv->page_cpu_valid[i] = 1;
  2317. }
  2318. /* It should now be out of any other write domains, and we can update
  2319. * the domain values for our changes.
  2320. */
  2321. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2322. obj->read_domains |= I915_GEM_DOMAIN_CPU;
  2323. return 0;
  2324. }
  2325. /**
  2326. * Pin an object to the GTT and evaluate the relocations landing in it.
  2327. */
  2328. static int
  2329. i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
  2330. struct drm_file *file_priv,
  2331. struct drm_i915_gem_exec_object *entry,
  2332. struct drm_i915_gem_relocation_entry *relocs)
  2333. {
  2334. struct drm_device *dev = obj->dev;
  2335. drm_i915_private_t *dev_priv = dev->dev_private;
  2336. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2337. int i, ret;
  2338. void __iomem *reloc_page;
  2339. /* Choose the GTT offset for our buffer and put it there. */
  2340. ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
  2341. if (ret)
  2342. return ret;
  2343. entry->offset = obj_priv->gtt_offset;
  2344. /* Apply the relocations, using the GTT aperture to avoid cache
  2345. * flushing requirements.
  2346. */
  2347. for (i = 0; i < entry->relocation_count; i++) {
  2348. struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
  2349. struct drm_gem_object *target_obj;
  2350. struct drm_i915_gem_object *target_obj_priv;
  2351. uint32_t reloc_val, reloc_offset;
  2352. uint32_t __iomem *reloc_entry;
  2353. target_obj = drm_gem_object_lookup(obj->dev, file_priv,
  2354. reloc->target_handle);
  2355. if (target_obj == NULL) {
  2356. i915_gem_object_unpin(obj);
  2357. return -EBADF;
  2358. }
  2359. target_obj_priv = target_obj->driver_private;
  2360. /* The target buffer should have appeared before us in the
  2361. * exec_object list, so it should have a GTT space bound by now.
  2362. */
  2363. if (target_obj_priv->gtt_space == NULL) {
  2364. DRM_ERROR("No GTT space found for object %d\n",
  2365. reloc->target_handle);
  2366. drm_gem_object_unreference(target_obj);
  2367. i915_gem_object_unpin(obj);
  2368. return -EINVAL;
  2369. }
  2370. if (reloc->offset > obj->size - 4) {
  2371. DRM_ERROR("Relocation beyond object bounds: "
  2372. "obj %p target %d offset %d size %d.\n",
  2373. obj, reloc->target_handle,
  2374. (int) reloc->offset, (int) obj->size);
  2375. drm_gem_object_unreference(target_obj);
  2376. i915_gem_object_unpin(obj);
  2377. return -EINVAL;
  2378. }
  2379. if (reloc->offset & 3) {
  2380. DRM_ERROR("Relocation not 4-byte aligned: "
  2381. "obj %p target %d offset %d.\n",
  2382. obj, reloc->target_handle,
  2383. (int) reloc->offset);
  2384. drm_gem_object_unreference(target_obj);
  2385. i915_gem_object_unpin(obj);
  2386. return -EINVAL;
  2387. }
  2388. if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
  2389. reloc->read_domains & I915_GEM_DOMAIN_CPU) {
  2390. DRM_ERROR("reloc with read/write CPU domains: "
  2391. "obj %p target %d offset %d "
  2392. "read %08x write %08x",
  2393. obj, reloc->target_handle,
  2394. (int) reloc->offset,
  2395. reloc->read_domains,
  2396. reloc->write_domain);
  2397. drm_gem_object_unreference(target_obj);
  2398. i915_gem_object_unpin(obj);
  2399. return -EINVAL;
  2400. }
  2401. if (reloc->write_domain && target_obj->pending_write_domain &&
  2402. reloc->write_domain != target_obj->pending_write_domain) {
  2403. DRM_ERROR("Write domain conflict: "
  2404. "obj %p target %d offset %d "
  2405. "new %08x old %08x\n",
  2406. obj, reloc->target_handle,
  2407. (int) reloc->offset,
  2408. reloc->write_domain,
  2409. target_obj->pending_write_domain);
  2410. drm_gem_object_unreference(target_obj);
  2411. i915_gem_object_unpin(obj);
  2412. return -EINVAL;
  2413. }
  2414. #if WATCH_RELOC
  2415. DRM_INFO("%s: obj %p offset %08x target %d "
  2416. "read %08x write %08x gtt %08x "
  2417. "presumed %08x delta %08x\n",
  2418. __func__,
  2419. obj,
  2420. (int) reloc->offset,
  2421. (int) reloc->target_handle,
  2422. (int) reloc->read_domains,
  2423. (int) reloc->write_domain,
  2424. (int) target_obj_priv->gtt_offset,
  2425. (int) reloc->presumed_offset,
  2426. reloc->delta);
  2427. #endif
  2428. target_obj->pending_read_domains |= reloc->read_domains;
  2429. target_obj->pending_write_domain |= reloc->write_domain;
  2430. /* If the relocation already has the right value in it, no
  2431. * more work needs to be done.
  2432. */
  2433. if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
  2434. drm_gem_object_unreference(target_obj);
  2435. continue;
  2436. }
  2437. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  2438. if (ret != 0) {
  2439. drm_gem_object_unreference(target_obj);
  2440. i915_gem_object_unpin(obj);
  2441. return -EINVAL;
  2442. }
  2443. /* Map the page containing the relocation we're going to
  2444. * perform.
  2445. */
  2446. reloc_offset = obj_priv->gtt_offset + reloc->offset;
  2447. reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
  2448. (reloc_offset &
  2449. ~(PAGE_SIZE - 1)));
  2450. reloc_entry = (uint32_t __iomem *)(reloc_page +
  2451. (reloc_offset & (PAGE_SIZE - 1)));
  2452. reloc_val = target_obj_priv->gtt_offset + reloc->delta;
  2453. #if WATCH_BUF
  2454. DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
  2455. obj, (unsigned int) reloc->offset,
  2456. readl(reloc_entry), reloc_val);
  2457. #endif
  2458. writel(reloc_val, reloc_entry);
  2459. io_mapping_unmap_atomic(reloc_page);
  2460. /* The updated presumed offset for this entry will be
  2461. * copied back out to the user.
  2462. */
  2463. reloc->presumed_offset = target_obj_priv->gtt_offset;
  2464. drm_gem_object_unreference(target_obj);
  2465. }
  2466. #if WATCH_BUF
  2467. if (0)
  2468. i915_gem_dump_object(obj, 128, __func__, ~0);
  2469. #endif
  2470. return 0;
  2471. }
  2472. /** Dispatch a batchbuffer to the ring
  2473. */
  2474. static int
  2475. i915_dispatch_gem_execbuffer(struct drm_device *dev,
  2476. struct drm_i915_gem_execbuffer *exec,
  2477. struct drm_clip_rect *cliprects,
  2478. uint64_t exec_offset)
  2479. {
  2480. drm_i915_private_t *dev_priv = dev->dev_private;
  2481. int nbox = exec->num_cliprects;
  2482. int i = 0, count;
  2483. uint32_t exec_start, exec_len;
  2484. RING_LOCALS;
  2485. exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
  2486. exec_len = (uint32_t) exec->batch_len;
  2487. if ((exec_start | exec_len) & 0x7) {
  2488. DRM_ERROR("alignment\n");
  2489. return -EINVAL;
  2490. }
  2491. if (!exec_start)
  2492. return -EINVAL;
  2493. count = nbox ? nbox : 1;
  2494. for (i = 0; i < count; i++) {
  2495. if (i < nbox) {
  2496. int ret = i915_emit_box(dev, cliprects, i,
  2497. exec->DR1, exec->DR4);
  2498. if (ret)
  2499. return ret;
  2500. }
  2501. if (IS_I830(dev) || IS_845G(dev)) {
  2502. BEGIN_LP_RING(4);
  2503. OUT_RING(MI_BATCH_BUFFER);
  2504. OUT_RING(exec_start | MI_BATCH_NON_SECURE);
  2505. OUT_RING(exec_start + exec_len - 4);
  2506. OUT_RING(0);
  2507. ADVANCE_LP_RING();
  2508. } else {
  2509. BEGIN_LP_RING(2);
  2510. if (IS_I965G(dev)) {
  2511. OUT_RING(MI_BATCH_BUFFER_START |
  2512. (2 << 6) |
  2513. MI_BATCH_NON_SECURE_I965);
  2514. OUT_RING(exec_start);
  2515. } else {
  2516. OUT_RING(MI_BATCH_BUFFER_START |
  2517. (2 << 6));
  2518. OUT_RING(exec_start | MI_BATCH_NON_SECURE);
  2519. }
  2520. ADVANCE_LP_RING();
  2521. }
  2522. }
  2523. /* XXX breadcrumb */
  2524. return 0;
  2525. }
  2526. /* Throttle our rendering by waiting until the ring has completed our requests
  2527. * emitted over 20 msec ago.
  2528. *
  2529. * This should get us reasonable parallelism between CPU and GPU but also
  2530. * relatively low latency when blocking on a particular request to finish.
  2531. */
  2532. static int
  2533. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
  2534. {
  2535. struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
  2536. int ret = 0;
  2537. uint32_t seqno;
  2538. mutex_lock(&dev->struct_mutex);
  2539. seqno = i915_file_priv->mm.last_gem_throttle_seqno;
  2540. i915_file_priv->mm.last_gem_throttle_seqno =
  2541. i915_file_priv->mm.last_gem_seqno;
  2542. if (seqno)
  2543. ret = i915_wait_request(dev, seqno);
  2544. mutex_unlock(&dev->struct_mutex);
  2545. return ret;
  2546. }
  2547. static int
  2548. i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object *exec_list,
  2549. uint32_t buffer_count,
  2550. struct drm_i915_gem_relocation_entry **relocs)
  2551. {
  2552. uint32_t reloc_count = 0, reloc_index = 0, i;
  2553. int ret;
  2554. *relocs = NULL;
  2555. for (i = 0; i < buffer_count; i++) {
  2556. if (reloc_count + exec_list[i].relocation_count < reloc_count)
  2557. return -EINVAL;
  2558. reloc_count += exec_list[i].relocation_count;
  2559. }
  2560. *relocs = drm_calloc(reloc_count, sizeof(**relocs), DRM_MEM_DRIVER);
  2561. if (*relocs == NULL)
  2562. return -ENOMEM;
  2563. for (i = 0; i < buffer_count; i++) {
  2564. struct drm_i915_gem_relocation_entry __user *user_relocs;
  2565. user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
  2566. ret = copy_from_user(&(*relocs)[reloc_index],
  2567. user_relocs,
  2568. exec_list[i].relocation_count *
  2569. sizeof(**relocs));
  2570. if (ret != 0) {
  2571. drm_free(*relocs, reloc_count * sizeof(**relocs),
  2572. DRM_MEM_DRIVER);
  2573. *relocs = NULL;
  2574. return ret;
  2575. }
  2576. reloc_index += exec_list[i].relocation_count;
  2577. }
  2578. return ret;
  2579. }
  2580. static int
  2581. i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object *exec_list,
  2582. uint32_t buffer_count,
  2583. struct drm_i915_gem_relocation_entry *relocs)
  2584. {
  2585. uint32_t reloc_count = 0, i;
  2586. int ret;
  2587. for (i = 0; i < buffer_count; i++) {
  2588. struct drm_i915_gem_relocation_entry __user *user_relocs;
  2589. user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
  2590. if (ret == 0) {
  2591. ret = copy_to_user(user_relocs,
  2592. &relocs[reloc_count],
  2593. exec_list[i].relocation_count *
  2594. sizeof(*relocs));
  2595. }
  2596. reloc_count += exec_list[i].relocation_count;
  2597. }
  2598. drm_free(relocs, reloc_count * sizeof(*relocs), DRM_MEM_DRIVER);
  2599. return ret;
  2600. }
  2601. int
  2602. i915_gem_execbuffer(struct drm_device *dev, void *data,
  2603. struct drm_file *file_priv)
  2604. {
  2605. drm_i915_private_t *dev_priv = dev->dev_private;
  2606. struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
  2607. struct drm_i915_gem_execbuffer *args = data;
  2608. struct drm_i915_gem_exec_object *exec_list = NULL;
  2609. struct drm_gem_object **object_list = NULL;
  2610. struct drm_gem_object *batch_obj;
  2611. struct drm_i915_gem_object *obj_priv;
  2612. struct drm_clip_rect *cliprects = NULL;
  2613. struct drm_i915_gem_relocation_entry *relocs;
  2614. int ret, ret2, i, pinned = 0;
  2615. uint64_t exec_offset;
  2616. uint32_t seqno, flush_domains, reloc_index;
  2617. int pin_tries;
  2618. #if WATCH_EXEC
  2619. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  2620. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  2621. #endif
  2622. if (args->buffer_count < 1) {
  2623. DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
  2624. return -EINVAL;
  2625. }
  2626. /* Copy in the exec list from userland */
  2627. exec_list = drm_calloc(sizeof(*exec_list), args->buffer_count,
  2628. DRM_MEM_DRIVER);
  2629. object_list = drm_calloc(sizeof(*object_list), args->buffer_count,
  2630. DRM_MEM_DRIVER);
  2631. if (exec_list == NULL || object_list == NULL) {
  2632. DRM_ERROR("Failed to allocate exec or object list "
  2633. "for %d buffers\n",
  2634. args->buffer_count);
  2635. ret = -ENOMEM;
  2636. goto pre_mutex_err;
  2637. }
  2638. ret = copy_from_user(exec_list,
  2639. (struct drm_i915_relocation_entry __user *)
  2640. (uintptr_t) args->buffers_ptr,
  2641. sizeof(*exec_list) * args->buffer_count);
  2642. if (ret != 0) {
  2643. DRM_ERROR("copy %d exec entries failed %d\n",
  2644. args->buffer_count, ret);
  2645. goto pre_mutex_err;
  2646. }
  2647. if (args->num_cliprects != 0) {
  2648. cliprects = drm_calloc(args->num_cliprects, sizeof(*cliprects),
  2649. DRM_MEM_DRIVER);
  2650. if (cliprects == NULL)
  2651. goto pre_mutex_err;
  2652. ret = copy_from_user(cliprects,
  2653. (struct drm_clip_rect __user *)
  2654. (uintptr_t) args->cliprects_ptr,
  2655. sizeof(*cliprects) * args->num_cliprects);
  2656. if (ret != 0) {
  2657. DRM_ERROR("copy %d cliprects failed: %d\n",
  2658. args->num_cliprects, ret);
  2659. goto pre_mutex_err;
  2660. }
  2661. }
  2662. ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
  2663. &relocs);
  2664. if (ret != 0)
  2665. goto pre_mutex_err;
  2666. mutex_lock(&dev->struct_mutex);
  2667. i915_verify_inactive(dev, __FILE__, __LINE__);
  2668. if (dev_priv->mm.wedged) {
  2669. DRM_ERROR("Execbuf while wedged\n");
  2670. mutex_unlock(&dev->struct_mutex);
  2671. ret = -EIO;
  2672. goto pre_mutex_err;
  2673. }
  2674. if (dev_priv->mm.suspended) {
  2675. DRM_ERROR("Execbuf while VT-switched.\n");
  2676. mutex_unlock(&dev->struct_mutex);
  2677. ret = -EBUSY;
  2678. goto pre_mutex_err;
  2679. }
  2680. /* Look up object handles */
  2681. for (i = 0; i < args->buffer_count; i++) {
  2682. object_list[i] = drm_gem_object_lookup(dev, file_priv,
  2683. exec_list[i].handle);
  2684. if (object_list[i] == NULL) {
  2685. DRM_ERROR("Invalid object handle %d at index %d\n",
  2686. exec_list[i].handle, i);
  2687. ret = -EBADF;
  2688. goto err;
  2689. }
  2690. obj_priv = object_list[i]->driver_private;
  2691. if (obj_priv->in_execbuffer) {
  2692. DRM_ERROR("Object %p appears more than once in object list\n",
  2693. object_list[i]);
  2694. ret = -EBADF;
  2695. goto err;
  2696. }
  2697. obj_priv->in_execbuffer = true;
  2698. }
  2699. /* Pin and relocate */
  2700. for (pin_tries = 0; ; pin_tries++) {
  2701. ret = 0;
  2702. reloc_index = 0;
  2703. for (i = 0; i < args->buffer_count; i++) {
  2704. object_list[i]->pending_read_domains = 0;
  2705. object_list[i]->pending_write_domain = 0;
  2706. ret = i915_gem_object_pin_and_relocate(object_list[i],
  2707. file_priv,
  2708. &exec_list[i],
  2709. &relocs[reloc_index]);
  2710. if (ret)
  2711. break;
  2712. pinned = i + 1;
  2713. reloc_index += exec_list[i].relocation_count;
  2714. }
  2715. /* success */
  2716. if (ret == 0)
  2717. break;
  2718. /* error other than GTT full, or we've already tried again */
  2719. if (ret != -ENOMEM || pin_tries >= 1) {
  2720. if (ret != -ERESTARTSYS)
  2721. DRM_ERROR("Failed to pin buffers %d\n", ret);
  2722. goto err;
  2723. }
  2724. /* unpin all of our buffers */
  2725. for (i = 0; i < pinned; i++)
  2726. i915_gem_object_unpin(object_list[i]);
  2727. pinned = 0;
  2728. /* evict everyone we can from the aperture */
  2729. ret = i915_gem_evict_everything(dev);
  2730. if (ret)
  2731. goto err;
  2732. }
  2733. /* Set the pending read domains for the batch buffer to COMMAND */
  2734. batch_obj = object_list[args->buffer_count-1];
  2735. batch_obj->pending_read_domains = I915_GEM_DOMAIN_COMMAND;
  2736. batch_obj->pending_write_domain = 0;
  2737. i915_verify_inactive(dev, __FILE__, __LINE__);
  2738. /* Zero the global flush/invalidate flags. These
  2739. * will be modified as new domains are computed
  2740. * for each object
  2741. */
  2742. dev->invalidate_domains = 0;
  2743. dev->flush_domains = 0;
  2744. for (i = 0; i < args->buffer_count; i++) {
  2745. struct drm_gem_object *obj = object_list[i];
  2746. /* Compute new gpu domains and update invalidate/flush */
  2747. i915_gem_object_set_to_gpu_domain(obj);
  2748. }
  2749. i915_verify_inactive(dev, __FILE__, __LINE__);
  2750. if (dev->invalidate_domains | dev->flush_domains) {
  2751. #if WATCH_EXEC
  2752. DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
  2753. __func__,
  2754. dev->invalidate_domains,
  2755. dev->flush_domains);
  2756. #endif
  2757. i915_gem_flush(dev,
  2758. dev->invalidate_domains,
  2759. dev->flush_domains);
  2760. if (dev->flush_domains)
  2761. (void)i915_add_request(dev, dev->flush_domains);
  2762. }
  2763. for (i = 0; i < args->buffer_count; i++) {
  2764. struct drm_gem_object *obj = object_list[i];
  2765. obj->write_domain = obj->pending_write_domain;
  2766. }
  2767. i915_verify_inactive(dev, __FILE__, __LINE__);
  2768. #if WATCH_COHERENCY
  2769. for (i = 0; i < args->buffer_count; i++) {
  2770. i915_gem_object_check_coherency(object_list[i],
  2771. exec_list[i].handle);
  2772. }
  2773. #endif
  2774. exec_offset = exec_list[args->buffer_count - 1].offset;
  2775. #if WATCH_EXEC
  2776. i915_gem_dump_object(object_list[args->buffer_count - 1],
  2777. args->batch_len,
  2778. __func__,
  2779. ~0);
  2780. #endif
  2781. /* Exec the batchbuffer */
  2782. ret = i915_dispatch_gem_execbuffer(dev, args, cliprects, exec_offset);
  2783. if (ret) {
  2784. DRM_ERROR("dispatch failed %d\n", ret);
  2785. goto err;
  2786. }
  2787. /*
  2788. * Ensure that the commands in the batch buffer are
  2789. * finished before the interrupt fires
  2790. */
  2791. flush_domains = i915_retire_commands(dev);
  2792. i915_verify_inactive(dev, __FILE__, __LINE__);
  2793. /*
  2794. * Get a seqno representing the execution of the current buffer,
  2795. * which we can wait on. We would like to mitigate these interrupts,
  2796. * likely by only creating seqnos occasionally (so that we have
  2797. * *some* interrupts representing completion of buffers that we can
  2798. * wait on when trying to clear up gtt space).
  2799. */
  2800. seqno = i915_add_request(dev, flush_domains);
  2801. BUG_ON(seqno == 0);
  2802. i915_file_priv->mm.last_gem_seqno = seqno;
  2803. for (i = 0; i < args->buffer_count; i++) {
  2804. struct drm_gem_object *obj = object_list[i];
  2805. i915_gem_object_move_to_active(obj, seqno);
  2806. #if WATCH_LRU
  2807. DRM_INFO("%s: move to exec list %p\n", __func__, obj);
  2808. #endif
  2809. }
  2810. #if WATCH_LRU
  2811. i915_dump_lru(dev, __func__);
  2812. #endif
  2813. i915_verify_inactive(dev, __FILE__, __LINE__);
  2814. err:
  2815. for (i = 0; i < pinned; i++)
  2816. i915_gem_object_unpin(object_list[i]);
  2817. for (i = 0; i < args->buffer_count; i++) {
  2818. if (object_list[i]) {
  2819. obj_priv = object_list[i]->driver_private;
  2820. obj_priv->in_execbuffer = false;
  2821. }
  2822. drm_gem_object_unreference(object_list[i]);
  2823. }
  2824. mutex_unlock(&dev->struct_mutex);
  2825. if (!ret) {
  2826. /* Copy the new buffer offsets back to the user's exec list. */
  2827. ret = copy_to_user((struct drm_i915_relocation_entry __user *)
  2828. (uintptr_t) args->buffers_ptr,
  2829. exec_list,
  2830. sizeof(*exec_list) * args->buffer_count);
  2831. if (ret)
  2832. DRM_ERROR("failed to copy %d exec entries "
  2833. "back to user (%d)\n",
  2834. args->buffer_count, ret);
  2835. }
  2836. /* Copy the updated relocations out regardless of current error
  2837. * state. Failure to update the relocs would mean that the next
  2838. * time userland calls execbuf, it would do so with presumed offset
  2839. * state that didn't match the actual object state.
  2840. */
  2841. ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
  2842. relocs);
  2843. if (ret2 != 0) {
  2844. DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
  2845. if (ret == 0)
  2846. ret = ret2;
  2847. }
  2848. pre_mutex_err:
  2849. drm_free(object_list, sizeof(*object_list) * args->buffer_count,
  2850. DRM_MEM_DRIVER);
  2851. drm_free(exec_list, sizeof(*exec_list) * args->buffer_count,
  2852. DRM_MEM_DRIVER);
  2853. drm_free(cliprects, sizeof(*cliprects) * args->num_cliprects,
  2854. DRM_MEM_DRIVER);
  2855. return ret;
  2856. }
  2857. int
  2858. i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
  2859. {
  2860. struct drm_device *dev = obj->dev;
  2861. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2862. int ret;
  2863. i915_verify_inactive(dev, __FILE__, __LINE__);
  2864. if (obj_priv->gtt_space == NULL) {
  2865. ret = i915_gem_object_bind_to_gtt(obj, alignment);
  2866. if (ret != 0) {
  2867. if (ret != -EBUSY && ret != -ERESTARTSYS)
  2868. DRM_ERROR("Failure to bind: %d\n", ret);
  2869. return ret;
  2870. }
  2871. }
  2872. /*
  2873. * Pre-965 chips need a fence register set up in order to
  2874. * properly handle tiled surfaces.
  2875. */
  2876. if (!IS_I965G(dev) &&
  2877. obj_priv->fence_reg == I915_FENCE_REG_NONE &&
  2878. obj_priv->tiling_mode != I915_TILING_NONE) {
  2879. ret = i915_gem_object_get_fence_reg(obj, true);
  2880. if (ret != 0) {
  2881. if (ret != -EBUSY && ret != -ERESTARTSYS)
  2882. DRM_ERROR("Failure to install fence: %d\n",
  2883. ret);
  2884. return ret;
  2885. }
  2886. }
  2887. obj_priv->pin_count++;
  2888. /* If the object is not active and not pending a flush,
  2889. * remove it from the inactive list
  2890. */
  2891. if (obj_priv->pin_count == 1) {
  2892. atomic_inc(&dev->pin_count);
  2893. atomic_add(obj->size, &dev->pin_memory);
  2894. if (!obj_priv->active &&
  2895. (obj->write_domain & ~(I915_GEM_DOMAIN_CPU |
  2896. I915_GEM_DOMAIN_GTT)) == 0 &&
  2897. !list_empty(&obj_priv->list))
  2898. list_del_init(&obj_priv->list);
  2899. }
  2900. i915_verify_inactive(dev, __FILE__, __LINE__);
  2901. return 0;
  2902. }
  2903. void
  2904. i915_gem_object_unpin(struct drm_gem_object *obj)
  2905. {
  2906. struct drm_device *dev = obj->dev;
  2907. drm_i915_private_t *dev_priv = dev->dev_private;
  2908. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2909. i915_verify_inactive(dev, __FILE__, __LINE__);
  2910. obj_priv->pin_count--;
  2911. BUG_ON(obj_priv->pin_count < 0);
  2912. BUG_ON(obj_priv->gtt_space == NULL);
  2913. /* If the object is no longer pinned, and is
  2914. * neither active nor being flushed, then stick it on
  2915. * the inactive list
  2916. */
  2917. if (obj_priv->pin_count == 0) {
  2918. if (!obj_priv->active &&
  2919. (obj->write_domain & ~(I915_GEM_DOMAIN_CPU |
  2920. I915_GEM_DOMAIN_GTT)) == 0)
  2921. list_move_tail(&obj_priv->list,
  2922. &dev_priv->mm.inactive_list);
  2923. atomic_dec(&dev->pin_count);
  2924. atomic_sub(obj->size, &dev->pin_memory);
  2925. }
  2926. i915_verify_inactive(dev, __FILE__, __LINE__);
  2927. }
  2928. int
  2929. i915_gem_pin_ioctl(struct drm_device *dev, void *data,
  2930. struct drm_file *file_priv)
  2931. {
  2932. struct drm_i915_gem_pin *args = data;
  2933. struct drm_gem_object *obj;
  2934. struct drm_i915_gem_object *obj_priv;
  2935. int ret;
  2936. mutex_lock(&dev->struct_mutex);
  2937. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  2938. if (obj == NULL) {
  2939. DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
  2940. args->handle);
  2941. mutex_unlock(&dev->struct_mutex);
  2942. return -EBADF;
  2943. }
  2944. obj_priv = obj->driver_private;
  2945. if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
  2946. DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
  2947. args->handle);
  2948. drm_gem_object_unreference(obj);
  2949. mutex_unlock(&dev->struct_mutex);
  2950. return -EINVAL;
  2951. }
  2952. obj_priv->user_pin_count++;
  2953. obj_priv->pin_filp = file_priv;
  2954. if (obj_priv->user_pin_count == 1) {
  2955. ret = i915_gem_object_pin(obj, args->alignment);
  2956. if (ret != 0) {
  2957. drm_gem_object_unreference(obj);
  2958. mutex_unlock(&dev->struct_mutex);
  2959. return ret;
  2960. }
  2961. }
  2962. /* XXX - flush the CPU caches for pinned objects
  2963. * as the X server doesn't manage domains yet
  2964. */
  2965. i915_gem_object_flush_cpu_write_domain(obj);
  2966. args->offset = obj_priv->gtt_offset;
  2967. drm_gem_object_unreference(obj);
  2968. mutex_unlock(&dev->struct_mutex);
  2969. return 0;
  2970. }
  2971. int
  2972. i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
  2973. struct drm_file *file_priv)
  2974. {
  2975. struct drm_i915_gem_pin *args = data;
  2976. struct drm_gem_object *obj;
  2977. struct drm_i915_gem_object *obj_priv;
  2978. mutex_lock(&dev->struct_mutex);
  2979. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  2980. if (obj == NULL) {
  2981. DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
  2982. args->handle);
  2983. mutex_unlock(&dev->struct_mutex);
  2984. return -EBADF;
  2985. }
  2986. obj_priv = obj->driver_private;
  2987. if (obj_priv->pin_filp != file_priv) {
  2988. DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
  2989. args->handle);
  2990. drm_gem_object_unreference(obj);
  2991. mutex_unlock(&dev->struct_mutex);
  2992. return -EINVAL;
  2993. }
  2994. obj_priv->user_pin_count--;
  2995. if (obj_priv->user_pin_count == 0) {
  2996. obj_priv->pin_filp = NULL;
  2997. i915_gem_object_unpin(obj);
  2998. }
  2999. drm_gem_object_unreference(obj);
  3000. mutex_unlock(&dev->struct_mutex);
  3001. return 0;
  3002. }
  3003. int
  3004. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  3005. struct drm_file *file_priv)
  3006. {
  3007. struct drm_i915_gem_busy *args = data;
  3008. struct drm_gem_object *obj;
  3009. struct drm_i915_gem_object *obj_priv;
  3010. mutex_lock(&dev->struct_mutex);
  3011. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3012. if (obj == NULL) {
  3013. DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
  3014. args->handle);
  3015. mutex_unlock(&dev->struct_mutex);
  3016. return -EBADF;
  3017. }
  3018. /* Update the active list for the hardware's current position.
  3019. * Otherwise this only updates on a delayed timer or when irqs are
  3020. * actually unmasked, and our working set ends up being larger than
  3021. * required.
  3022. */
  3023. i915_gem_retire_requests(dev);
  3024. obj_priv = obj->driver_private;
  3025. /* Don't count being on the flushing list against the object being
  3026. * done. Otherwise, a buffer left on the flushing list but not getting
  3027. * flushed (because nobody's flushing that domain) won't ever return
  3028. * unbusy and get reused by libdrm's bo cache. The other expected
  3029. * consumer of this interface, OpenGL's occlusion queries, also specs
  3030. * that the objects get unbusy "eventually" without any interference.
  3031. */
  3032. args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
  3033. drm_gem_object_unreference(obj);
  3034. mutex_unlock(&dev->struct_mutex);
  3035. return 0;
  3036. }
  3037. int
  3038. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  3039. struct drm_file *file_priv)
  3040. {
  3041. return i915_gem_ring_throttle(dev, file_priv);
  3042. }
  3043. int i915_gem_init_object(struct drm_gem_object *obj)
  3044. {
  3045. struct drm_i915_gem_object *obj_priv;
  3046. obj_priv = drm_calloc(1, sizeof(*obj_priv), DRM_MEM_DRIVER);
  3047. if (obj_priv == NULL)
  3048. return -ENOMEM;
  3049. /*
  3050. * We've just allocated pages from the kernel,
  3051. * so they've just been written by the CPU with
  3052. * zeros. They'll need to be clflushed before we
  3053. * use them with the GPU.
  3054. */
  3055. obj->write_domain = I915_GEM_DOMAIN_CPU;
  3056. obj->read_domains = I915_GEM_DOMAIN_CPU;
  3057. obj_priv->agp_type = AGP_USER_MEMORY;
  3058. obj->driver_private = obj_priv;
  3059. obj_priv->obj = obj;
  3060. obj_priv->fence_reg = I915_FENCE_REG_NONE;
  3061. INIT_LIST_HEAD(&obj_priv->list);
  3062. return 0;
  3063. }
  3064. void i915_gem_free_object(struct drm_gem_object *obj)
  3065. {
  3066. struct drm_device *dev = obj->dev;
  3067. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  3068. while (obj_priv->pin_count > 0)
  3069. i915_gem_object_unpin(obj);
  3070. if (obj_priv->phys_obj)
  3071. i915_gem_detach_phys_object(dev, obj);
  3072. i915_gem_object_unbind(obj);
  3073. i915_gem_free_mmap_offset(obj);
  3074. drm_free(obj_priv->page_cpu_valid, 1, DRM_MEM_DRIVER);
  3075. drm_free(obj->driver_private, 1, DRM_MEM_DRIVER);
  3076. }
  3077. /** Unbinds all objects that are on the given buffer list. */
  3078. static int
  3079. i915_gem_evict_from_list(struct drm_device *dev, struct list_head *head)
  3080. {
  3081. struct drm_gem_object *obj;
  3082. struct drm_i915_gem_object *obj_priv;
  3083. int ret;
  3084. while (!list_empty(head)) {
  3085. obj_priv = list_first_entry(head,
  3086. struct drm_i915_gem_object,
  3087. list);
  3088. obj = obj_priv->obj;
  3089. if (obj_priv->pin_count != 0) {
  3090. DRM_ERROR("Pinned object in unbind list\n");
  3091. mutex_unlock(&dev->struct_mutex);
  3092. return -EINVAL;
  3093. }
  3094. ret = i915_gem_object_unbind(obj);
  3095. if (ret != 0) {
  3096. DRM_ERROR("Error unbinding object in LeaveVT: %d\n",
  3097. ret);
  3098. mutex_unlock(&dev->struct_mutex);
  3099. return ret;
  3100. }
  3101. }
  3102. return 0;
  3103. }
  3104. int
  3105. i915_gem_idle(struct drm_device *dev)
  3106. {
  3107. drm_i915_private_t *dev_priv = dev->dev_private;
  3108. uint32_t seqno, cur_seqno, last_seqno;
  3109. int stuck, ret;
  3110. mutex_lock(&dev->struct_mutex);
  3111. if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
  3112. mutex_unlock(&dev->struct_mutex);
  3113. return 0;
  3114. }
  3115. /* Hack! Don't let anybody do execbuf while we don't control the chip.
  3116. * We need to replace this with a semaphore, or something.
  3117. */
  3118. dev_priv->mm.suspended = 1;
  3119. /* Cancel the retire work handler, wait for it to finish if running
  3120. */
  3121. mutex_unlock(&dev->struct_mutex);
  3122. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  3123. mutex_lock(&dev->struct_mutex);
  3124. i915_kernel_lost_context(dev);
  3125. /* Flush the GPU along with all non-CPU write domains
  3126. */
  3127. i915_gem_flush(dev, ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT),
  3128. ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
  3129. seqno = i915_add_request(dev, ~I915_GEM_DOMAIN_CPU);
  3130. if (seqno == 0) {
  3131. mutex_unlock(&dev->struct_mutex);
  3132. return -ENOMEM;
  3133. }
  3134. dev_priv->mm.waiting_gem_seqno = seqno;
  3135. last_seqno = 0;
  3136. stuck = 0;
  3137. for (;;) {
  3138. cur_seqno = i915_get_gem_seqno(dev);
  3139. if (i915_seqno_passed(cur_seqno, seqno))
  3140. break;
  3141. if (last_seqno == cur_seqno) {
  3142. if (stuck++ > 100) {
  3143. DRM_ERROR("hardware wedged\n");
  3144. dev_priv->mm.wedged = 1;
  3145. DRM_WAKEUP(&dev_priv->irq_queue);
  3146. break;
  3147. }
  3148. }
  3149. msleep(10);
  3150. last_seqno = cur_seqno;
  3151. }
  3152. dev_priv->mm.waiting_gem_seqno = 0;
  3153. i915_gem_retire_requests(dev);
  3154. if (!dev_priv->mm.wedged) {
  3155. /* Active and flushing should now be empty as we've
  3156. * waited for a sequence higher than any pending execbuffer
  3157. */
  3158. WARN_ON(!list_empty(&dev_priv->mm.active_list));
  3159. WARN_ON(!list_empty(&dev_priv->mm.flushing_list));
  3160. /* Request should now be empty as we've also waited
  3161. * for the last request in the list
  3162. */
  3163. WARN_ON(!list_empty(&dev_priv->mm.request_list));
  3164. }
  3165. /* Empty the active and flushing lists to inactive. If there's
  3166. * anything left at this point, it means that we're wedged and
  3167. * nothing good's going to happen by leaving them there. So strip
  3168. * the GPU domains and just stuff them onto inactive.
  3169. */
  3170. while (!list_empty(&dev_priv->mm.active_list)) {
  3171. struct drm_i915_gem_object *obj_priv;
  3172. obj_priv = list_first_entry(&dev_priv->mm.active_list,
  3173. struct drm_i915_gem_object,
  3174. list);
  3175. obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
  3176. i915_gem_object_move_to_inactive(obj_priv->obj);
  3177. }
  3178. while (!list_empty(&dev_priv->mm.flushing_list)) {
  3179. struct drm_i915_gem_object *obj_priv;
  3180. obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
  3181. struct drm_i915_gem_object,
  3182. list);
  3183. obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
  3184. i915_gem_object_move_to_inactive(obj_priv->obj);
  3185. }
  3186. /* Move all inactive buffers out of the GTT. */
  3187. ret = i915_gem_evict_from_list(dev, &dev_priv->mm.inactive_list);
  3188. WARN_ON(!list_empty(&dev_priv->mm.inactive_list));
  3189. if (ret) {
  3190. mutex_unlock(&dev->struct_mutex);
  3191. return ret;
  3192. }
  3193. i915_gem_cleanup_ringbuffer(dev);
  3194. mutex_unlock(&dev->struct_mutex);
  3195. return 0;
  3196. }
  3197. static int
  3198. i915_gem_init_hws(struct drm_device *dev)
  3199. {
  3200. drm_i915_private_t *dev_priv = dev->dev_private;
  3201. struct drm_gem_object *obj;
  3202. struct drm_i915_gem_object *obj_priv;
  3203. int ret;
  3204. /* If we need a physical address for the status page, it's already
  3205. * initialized at driver load time.
  3206. */
  3207. if (!I915_NEED_GFX_HWS(dev))
  3208. return 0;
  3209. obj = drm_gem_object_alloc(dev, 4096);
  3210. if (obj == NULL) {
  3211. DRM_ERROR("Failed to allocate status page\n");
  3212. return -ENOMEM;
  3213. }
  3214. obj_priv = obj->driver_private;
  3215. obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
  3216. ret = i915_gem_object_pin(obj, 4096);
  3217. if (ret != 0) {
  3218. drm_gem_object_unreference(obj);
  3219. return ret;
  3220. }
  3221. dev_priv->status_gfx_addr = obj_priv->gtt_offset;
  3222. dev_priv->hw_status_page = kmap(obj_priv->pages[0]);
  3223. if (dev_priv->hw_status_page == NULL) {
  3224. DRM_ERROR("Failed to map status page.\n");
  3225. memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
  3226. i915_gem_object_unpin(obj);
  3227. drm_gem_object_unreference(obj);
  3228. return -EINVAL;
  3229. }
  3230. dev_priv->hws_obj = obj;
  3231. memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
  3232. I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
  3233. I915_READ(HWS_PGA); /* posting read */
  3234. DRM_DEBUG("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
  3235. return 0;
  3236. }
  3237. static void
  3238. i915_gem_cleanup_hws(struct drm_device *dev)
  3239. {
  3240. drm_i915_private_t *dev_priv = dev->dev_private;
  3241. struct drm_gem_object *obj;
  3242. struct drm_i915_gem_object *obj_priv;
  3243. if (dev_priv->hws_obj == NULL)
  3244. return;
  3245. obj = dev_priv->hws_obj;
  3246. obj_priv = obj->driver_private;
  3247. kunmap(obj_priv->pages[0]);
  3248. i915_gem_object_unpin(obj);
  3249. drm_gem_object_unreference(obj);
  3250. dev_priv->hws_obj = NULL;
  3251. memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
  3252. dev_priv->hw_status_page = NULL;
  3253. /* Write high address into HWS_PGA when disabling. */
  3254. I915_WRITE(HWS_PGA, 0x1ffff000);
  3255. }
  3256. int
  3257. i915_gem_init_ringbuffer(struct drm_device *dev)
  3258. {
  3259. drm_i915_private_t *dev_priv = dev->dev_private;
  3260. struct drm_gem_object *obj;
  3261. struct drm_i915_gem_object *obj_priv;
  3262. drm_i915_ring_buffer_t *ring = &dev_priv->ring;
  3263. int ret;
  3264. u32 head;
  3265. ret = i915_gem_init_hws(dev);
  3266. if (ret != 0)
  3267. return ret;
  3268. obj = drm_gem_object_alloc(dev, 128 * 1024);
  3269. if (obj == NULL) {
  3270. DRM_ERROR("Failed to allocate ringbuffer\n");
  3271. i915_gem_cleanup_hws(dev);
  3272. return -ENOMEM;
  3273. }
  3274. obj_priv = obj->driver_private;
  3275. ret = i915_gem_object_pin(obj, 4096);
  3276. if (ret != 0) {
  3277. drm_gem_object_unreference(obj);
  3278. i915_gem_cleanup_hws(dev);
  3279. return ret;
  3280. }
  3281. /* Set up the kernel mapping for the ring. */
  3282. ring->Size = obj->size;
  3283. ring->tail_mask = obj->size - 1;
  3284. ring->map.offset = dev->agp->base + obj_priv->gtt_offset;
  3285. ring->map.size = obj->size;
  3286. ring->map.type = 0;
  3287. ring->map.flags = 0;
  3288. ring->map.mtrr = 0;
  3289. drm_core_ioremap_wc(&ring->map, dev);
  3290. if (ring->map.handle == NULL) {
  3291. DRM_ERROR("Failed to map ringbuffer.\n");
  3292. memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
  3293. i915_gem_object_unpin(obj);
  3294. drm_gem_object_unreference(obj);
  3295. i915_gem_cleanup_hws(dev);
  3296. return -EINVAL;
  3297. }
  3298. ring->ring_obj = obj;
  3299. ring->virtual_start = ring->map.handle;
  3300. /* Stop the ring if it's running. */
  3301. I915_WRITE(PRB0_CTL, 0);
  3302. I915_WRITE(PRB0_TAIL, 0);
  3303. I915_WRITE(PRB0_HEAD, 0);
  3304. /* Initialize the ring. */
  3305. I915_WRITE(PRB0_START, obj_priv->gtt_offset);
  3306. head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
  3307. /* G45 ring initialization fails to reset head to zero */
  3308. if (head != 0) {
  3309. DRM_ERROR("Ring head not reset to zero "
  3310. "ctl %08x head %08x tail %08x start %08x\n",
  3311. I915_READ(PRB0_CTL),
  3312. I915_READ(PRB0_HEAD),
  3313. I915_READ(PRB0_TAIL),
  3314. I915_READ(PRB0_START));
  3315. I915_WRITE(PRB0_HEAD, 0);
  3316. DRM_ERROR("Ring head forced to zero "
  3317. "ctl %08x head %08x tail %08x start %08x\n",
  3318. I915_READ(PRB0_CTL),
  3319. I915_READ(PRB0_HEAD),
  3320. I915_READ(PRB0_TAIL),
  3321. I915_READ(PRB0_START));
  3322. }
  3323. I915_WRITE(PRB0_CTL,
  3324. ((obj->size - 4096) & RING_NR_PAGES) |
  3325. RING_NO_REPORT |
  3326. RING_VALID);
  3327. head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
  3328. /* If the head is still not zero, the ring is dead */
  3329. if (head != 0) {
  3330. DRM_ERROR("Ring initialization failed "
  3331. "ctl %08x head %08x tail %08x start %08x\n",
  3332. I915_READ(PRB0_CTL),
  3333. I915_READ(PRB0_HEAD),
  3334. I915_READ(PRB0_TAIL),
  3335. I915_READ(PRB0_START));
  3336. return -EIO;
  3337. }
  3338. /* Update our cache of the ring state */
  3339. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3340. i915_kernel_lost_context(dev);
  3341. else {
  3342. ring->head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
  3343. ring->tail = I915_READ(PRB0_TAIL) & TAIL_ADDR;
  3344. ring->space = ring->head - (ring->tail + 8);
  3345. if (ring->space < 0)
  3346. ring->space += ring->Size;
  3347. }
  3348. return 0;
  3349. }
  3350. void
  3351. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  3352. {
  3353. drm_i915_private_t *dev_priv = dev->dev_private;
  3354. if (dev_priv->ring.ring_obj == NULL)
  3355. return;
  3356. drm_core_ioremapfree(&dev_priv->ring.map, dev);
  3357. i915_gem_object_unpin(dev_priv->ring.ring_obj);
  3358. drm_gem_object_unreference(dev_priv->ring.ring_obj);
  3359. dev_priv->ring.ring_obj = NULL;
  3360. memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
  3361. i915_gem_cleanup_hws(dev);
  3362. }
  3363. int
  3364. i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
  3365. struct drm_file *file_priv)
  3366. {
  3367. drm_i915_private_t *dev_priv = dev->dev_private;
  3368. int ret;
  3369. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3370. return 0;
  3371. if (dev_priv->mm.wedged) {
  3372. DRM_ERROR("Reenabling wedged hardware, good luck\n");
  3373. dev_priv->mm.wedged = 0;
  3374. }
  3375. mutex_lock(&dev->struct_mutex);
  3376. dev_priv->mm.suspended = 0;
  3377. ret = i915_gem_init_ringbuffer(dev);
  3378. if (ret != 0)
  3379. return ret;
  3380. BUG_ON(!list_empty(&dev_priv->mm.active_list));
  3381. BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
  3382. BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
  3383. BUG_ON(!list_empty(&dev_priv->mm.request_list));
  3384. mutex_unlock(&dev->struct_mutex);
  3385. drm_irq_install(dev);
  3386. return 0;
  3387. }
  3388. int
  3389. i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
  3390. struct drm_file *file_priv)
  3391. {
  3392. int ret;
  3393. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3394. return 0;
  3395. ret = i915_gem_idle(dev);
  3396. drm_irq_uninstall(dev);
  3397. return ret;
  3398. }
  3399. void
  3400. i915_gem_lastclose(struct drm_device *dev)
  3401. {
  3402. int ret;
  3403. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3404. return;
  3405. ret = i915_gem_idle(dev);
  3406. if (ret)
  3407. DRM_ERROR("failed to idle hardware: %d\n", ret);
  3408. }
  3409. void
  3410. i915_gem_load(struct drm_device *dev)
  3411. {
  3412. drm_i915_private_t *dev_priv = dev->dev_private;
  3413. INIT_LIST_HEAD(&dev_priv->mm.active_list);
  3414. INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
  3415. INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
  3416. INIT_LIST_HEAD(&dev_priv->mm.request_list);
  3417. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  3418. i915_gem_retire_work_handler);
  3419. dev_priv->mm.next_gem_seqno = 1;
  3420. /* Old X drivers will take 0-2 for front, back, depth buffers */
  3421. dev_priv->fence_reg_start = 3;
  3422. if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3423. dev_priv->num_fence_regs = 16;
  3424. else
  3425. dev_priv->num_fence_regs = 8;
  3426. i915_gem_detect_bit_6_swizzle(dev);
  3427. }
  3428. /*
  3429. * Create a physically contiguous memory object for this object
  3430. * e.g. for cursor + overlay regs
  3431. */
  3432. int i915_gem_init_phys_object(struct drm_device *dev,
  3433. int id, int size)
  3434. {
  3435. drm_i915_private_t *dev_priv = dev->dev_private;
  3436. struct drm_i915_gem_phys_object *phys_obj;
  3437. int ret;
  3438. if (dev_priv->mm.phys_objs[id - 1] || !size)
  3439. return 0;
  3440. phys_obj = drm_calloc(1, sizeof(struct drm_i915_gem_phys_object), DRM_MEM_DRIVER);
  3441. if (!phys_obj)
  3442. return -ENOMEM;
  3443. phys_obj->id = id;
  3444. phys_obj->handle = drm_pci_alloc(dev, size, 0, 0xffffffff);
  3445. if (!phys_obj->handle) {
  3446. ret = -ENOMEM;
  3447. goto kfree_obj;
  3448. }
  3449. #ifdef CONFIG_X86
  3450. set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3451. #endif
  3452. dev_priv->mm.phys_objs[id - 1] = phys_obj;
  3453. return 0;
  3454. kfree_obj:
  3455. drm_free(phys_obj, sizeof(struct drm_i915_gem_phys_object), DRM_MEM_DRIVER);
  3456. return ret;
  3457. }
  3458. void i915_gem_free_phys_object(struct drm_device *dev, int id)
  3459. {
  3460. drm_i915_private_t *dev_priv = dev->dev_private;
  3461. struct drm_i915_gem_phys_object *phys_obj;
  3462. if (!dev_priv->mm.phys_objs[id - 1])
  3463. return;
  3464. phys_obj = dev_priv->mm.phys_objs[id - 1];
  3465. if (phys_obj->cur_obj) {
  3466. i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
  3467. }
  3468. #ifdef CONFIG_X86
  3469. set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3470. #endif
  3471. drm_pci_free(dev, phys_obj->handle);
  3472. kfree(phys_obj);
  3473. dev_priv->mm.phys_objs[id - 1] = NULL;
  3474. }
  3475. void i915_gem_free_all_phys_object(struct drm_device *dev)
  3476. {
  3477. int i;
  3478. for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
  3479. i915_gem_free_phys_object(dev, i);
  3480. }
  3481. void i915_gem_detach_phys_object(struct drm_device *dev,
  3482. struct drm_gem_object *obj)
  3483. {
  3484. struct drm_i915_gem_object *obj_priv;
  3485. int i;
  3486. int ret;
  3487. int page_count;
  3488. obj_priv = obj->driver_private;
  3489. if (!obj_priv->phys_obj)
  3490. return;
  3491. ret = i915_gem_object_get_pages(obj);
  3492. if (ret)
  3493. goto out;
  3494. page_count = obj->size / PAGE_SIZE;
  3495. for (i = 0; i < page_count; i++) {
  3496. char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
  3497. char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  3498. memcpy(dst, src, PAGE_SIZE);
  3499. kunmap_atomic(dst, KM_USER0);
  3500. }
  3501. drm_clflush_pages(obj_priv->pages, page_count);
  3502. drm_agp_chipset_flush(dev);
  3503. out:
  3504. obj_priv->phys_obj->cur_obj = NULL;
  3505. obj_priv->phys_obj = NULL;
  3506. }
  3507. int
  3508. i915_gem_attach_phys_object(struct drm_device *dev,
  3509. struct drm_gem_object *obj, int id)
  3510. {
  3511. drm_i915_private_t *dev_priv = dev->dev_private;
  3512. struct drm_i915_gem_object *obj_priv;
  3513. int ret = 0;
  3514. int page_count;
  3515. int i;
  3516. if (id > I915_MAX_PHYS_OBJECT)
  3517. return -EINVAL;
  3518. obj_priv = obj->driver_private;
  3519. if (obj_priv->phys_obj) {
  3520. if (obj_priv->phys_obj->id == id)
  3521. return 0;
  3522. i915_gem_detach_phys_object(dev, obj);
  3523. }
  3524. /* create a new object */
  3525. if (!dev_priv->mm.phys_objs[id - 1]) {
  3526. ret = i915_gem_init_phys_object(dev, id,
  3527. obj->size);
  3528. if (ret) {
  3529. DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
  3530. goto out;
  3531. }
  3532. }
  3533. /* bind to the object */
  3534. obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
  3535. obj_priv->phys_obj->cur_obj = obj;
  3536. ret = i915_gem_object_get_pages(obj);
  3537. if (ret) {
  3538. DRM_ERROR("failed to get page list\n");
  3539. goto out;
  3540. }
  3541. page_count = obj->size / PAGE_SIZE;
  3542. for (i = 0; i < page_count; i++) {
  3543. char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
  3544. char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  3545. memcpy(dst, src, PAGE_SIZE);
  3546. kunmap_atomic(src, KM_USER0);
  3547. }
  3548. return 0;
  3549. out:
  3550. return ret;
  3551. }
  3552. static int
  3553. i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
  3554. struct drm_i915_gem_pwrite *args,
  3555. struct drm_file *file_priv)
  3556. {
  3557. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  3558. void *obj_addr;
  3559. int ret;
  3560. char __user *user_data;
  3561. user_data = (char __user *) (uintptr_t) args->data_ptr;
  3562. obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
  3563. DRM_DEBUG("obj_addr %p, %lld\n", obj_addr, args->size);
  3564. ret = copy_from_user(obj_addr, user_data, args->size);
  3565. if (ret)
  3566. return -EFAULT;
  3567. drm_agp_chipset_flush(dev);
  3568. return 0;
  3569. }