init_64.c 31 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246
  1. /*
  2. * linux/arch/x86_64/mm/init.c
  3. *
  4. * Copyright (C) 1995 Linus Torvalds
  5. * Copyright (C) 2000 Pavel Machek <pavel@suse.cz>
  6. * Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
  7. */
  8. #include <linux/signal.h>
  9. #include <linux/sched.h>
  10. #include <linux/kernel.h>
  11. #include <linux/errno.h>
  12. #include <linux/string.h>
  13. #include <linux/types.h>
  14. #include <linux/ptrace.h>
  15. #include <linux/mman.h>
  16. #include <linux/mm.h>
  17. #include <linux/swap.h>
  18. #include <linux/smp.h>
  19. #include <linux/init.h>
  20. #include <linux/initrd.h>
  21. #include <linux/pagemap.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/proc_fs.h>
  24. #include <linux/pci.h>
  25. #include <linux/pfn.h>
  26. #include <linux/poison.h>
  27. #include <linux/dma-mapping.h>
  28. #include <linux/module.h>
  29. #include <linux/memory_hotplug.h>
  30. #include <linux/nmi.h>
  31. #include <asm/processor.h>
  32. #include <asm/bios_ebda.h>
  33. #include <asm/system.h>
  34. #include <asm/uaccess.h>
  35. #include <asm/pgtable.h>
  36. #include <asm/pgalloc.h>
  37. #include <asm/dma.h>
  38. #include <asm/fixmap.h>
  39. #include <asm/e820.h>
  40. #include <asm/apic.h>
  41. #include <asm/tlb.h>
  42. #include <asm/mmu_context.h>
  43. #include <asm/proto.h>
  44. #include <asm/smp.h>
  45. #include <asm/sections.h>
  46. #include <asm/kdebug.h>
  47. #include <asm/numa.h>
  48. #include <asm/cacheflush.h>
  49. /*
  50. * end_pfn only includes RAM, while max_pfn_mapped includes all e820 entries.
  51. * The direct mapping extends to max_pfn_mapped, so that we can directly access
  52. * apertures, ACPI and other tables without having to play with fixmaps.
  53. */
  54. unsigned long max_low_pfn_mapped;
  55. unsigned long max_pfn_mapped;
  56. static unsigned long dma_reserve __initdata;
  57. DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
  58. int direct_gbpages
  59. #ifdef CONFIG_DIRECT_GBPAGES
  60. = 1
  61. #endif
  62. ;
  63. static int __init parse_direct_gbpages_off(char *arg)
  64. {
  65. direct_gbpages = 0;
  66. return 0;
  67. }
  68. early_param("nogbpages", parse_direct_gbpages_off);
  69. static int __init parse_direct_gbpages_on(char *arg)
  70. {
  71. direct_gbpages = 1;
  72. return 0;
  73. }
  74. early_param("gbpages", parse_direct_gbpages_on);
  75. /*
  76. * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
  77. * physical space so we can cache the place of the first one and move
  78. * around without checking the pgd every time.
  79. */
  80. int after_bootmem;
  81. pteval_t __supported_pte_mask __read_mostly = ~_PAGE_IOMAP;
  82. EXPORT_SYMBOL_GPL(__supported_pte_mask);
  83. static int do_not_nx __cpuinitdata;
  84. /*
  85. * noexec=on|off
  86. * Control non-executable mappings for 64-bit processes.
  87. *
  88. * on Enable (default)
  89. * off Disable
  90. */
  91. static int __init nonx_setup(char *str)
  92. {
  93. if (!str)
  94. return -EINVAL;
  95. if (!strncmp(str, "on", 2)) {
  96. __supported_pte_mask |= _PAGE_NX;
  97. do_not_nx = 0;
  98. } else if (!strncmp(str, "off", 3)) {
  99. do_not_nx = 1;
  100. __supported_pte_mask &= ~_PAGE_NX;
  101. }
  102. return 0;
  103. }
  104. early_param("noexec", nonx_setup);
  105. void __cpuinit check_efer(void)
  106. {
  107. unsigned long efer;
  108. rdmsrl(MSR_EFER, efer);
  109. if (!(efer & EFER_NX) || do_not_nx)
  110. __supported_pte_mask &= ~_PAGE_NX;
  111. }
  112. int force_personality32;
  113. /*
  114. * noexec32=on|off
  115. * Control non executable heap for 32bit processes.
  116. * To control the stack too use noexec=off
  117. *
  118. * on PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
  119. * off PROT_READ implies PROT_EXEC
  120. */
  121. static int __init nonx32_setup(char *str)
  122. {
  123. if (!strcmp(str, "on"))
  124. force_personality32 &= ~READ_IMPLIES_EXEC;
  125. else if (!strcmp(str, "off"))
  126. force_personality32 |= READ_IMPLIES_EXEC;
  127. return 1;
  128. }
  129. __setup("noexec32=", nonx32_setup);
  130. /*
  131. * NOTE: This function is marked __ref because it calls __init function
  132. * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
  133. */
  134. static __ref void *spp_getpage(void)
  135. {
  136. void *ptr;
  137. if (after_bootmem)
  138. ptr = (void *) get_zeroed_page(GFP_ATOMIC);
  139. else
  140. ptr = alloc_bootmem_pages(PAGE_SIZE);
  141. if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
  142. panic("set_pte_phys: cannot allocate page data %s\n",
  143. after_bootmem ? "after bootmem" : "");
  144. }
  145. pr_debug("spp_getpage %p\n", ptr);
  146. return ptr;
  147. }
  148. static pud_t *fill_pud(pgd_t *pgd, unsigned long vaddr)
  149. {
  150. if (pgd_none(*pgd)) {
  151. pud_t *pud = (pud_t *)spp_getpage();
  152. pgd_populate(&init_mm, pgd, pud);
  153. if (pud != pud_offset(pgd, 0))
  154. printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
  155. pud, pud_offset(pgd, 0));
  156. }
  157. return pud_offset(pgd, vaddr);
  158. }
  159. static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
  160. {
  161. if (pud_none(*pud)) {
  162. pmd_t *pmd = (pmd_t *) spp_getpage();
  163. pud_populate(&init_mm, pud, pmd);
  164. if (pmd != pmd_offset(pud, 0))
  165. printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
  166. pmd, pmd_offset(pud, 0));
  167. }
  168. return pmd_offset(pud, vaddr);
  169. }
  170. static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
  171. {
  172. if (pmd_none(*pmd)) {
  173. pte_t *pte = (pte_t *) spp_getpage();
  174. pmd_populate_kernel(&init_mm, pmd, pte);
  175. if (pte != pte_offset_kernel(pmd, 0))
  176. printk(KERN_ERR "PAGETABLE BUG #02!\n");
  177. }
  178. return pte_offset_kernel(pmd, vaddr);
  179. }
  180. void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
  181. {
  182. pud_t *pud;
  183. pmd_t *pmd;
  184. pte_t *pte;
  185. pud = pud_page + pud_index(vaddr);
  186. pmd = fill_pmd(pud, vaddr);
  187. pte = fill_pte(pmd, vaddr);
  188. set_pte(pte, new_pte);
  189. /*
  190. * It's enough to flush this one mapping.
  191. * (PGE mappings get flushed as well)
  192. */
  193. __flush_tlb_one(vaddr);
  194. }
  195. void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
  196. {
  197. pgd_t *pgd;
  198. pud_t *pud_page;
  199. pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
  200. pgd = pgd_offset_k(vaddr);
  201. if (pgd_none(*pgd)) {
  202. printk(KERN_ERR
  203. "PGD FIXMAP MISSING, it should be setup in head.S!\n");
  204. return;
  205. }
  206. pud_page = (pud_t*)pgd_page_vaddr(*pgd);
  207. set_pte_vaddr_pud(pud_page, vaddr, pteval);
  208. }
  209. pmd_t * __init populate_extra_pmd(unsigned long vaddr)
  210. {
  211. pgd_t *pgd;
  212. pud_t *pud;
  213. pgd = pgd_offset_k(vaddr);
  214. pud = fill_pud(pgd, vaddr);
  215. return fill_pmd(pud, vaddr);
  216. }
  217. pte_t * __init populate_extra_pte(unsigned long vaddr)
  218. {
  219. pmd_t *pmd;
  220. pmd = populate_extra_pmd(vaddr);
  221. return fill_pte(pmd, vaddr);
  222. }
  223. /*
  224. * Create large page table mappings for a range of physical addresses.
  225. */
  226. static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
  227. pgprot_t prot)
  228. {
  229. pgd_t *pgd;
  230. pud_t *pud;
  231. pmd_t *pmd;
  232. BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
  233. for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
  234. pgd = pgd_offset_k((unsigned long)__va(phys));
  235. if (pgd_none(*pgd)) {
  236. pud = (pud_t *) spp_getpage();
  237. set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
  238. _PAGE_USER));
  239. }
  240. pud = pud_offset(pgd, (unsigned long)__va(phys));
  241. if (pud_none(*pud)) {
  242. pmd = (pmd_t *) spp_getpage();
  243. set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
  244. _PAGE_USER));
  245. }
  246. pmd = pmd_offset(pud, phys);
  247. BUG_ON(!pmd_none(*pmd));
  248. set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
  249. }
  250. }
  251. void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
  252. {
  253. __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE);
  254. }
  255. void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
  256. {
  257. __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE_NOCACHE);
  258. }
  259. /*
  260. * The head.S code sets up the kernel high mapping:
  261. *
  262. * from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
  263. *
  264. * phys_addr holds the negative offset to the kernel, which is added
  265. * to the compile time generated pmds. This results in invalid pmds up
  266. * to the point where we hit the physaddr 0 mapping.
  267. *
  268. * We limit the mappings to the region from _text to _end. _end is
  269. * rounded up to the 2MB boundary. This catches the invalid pmds as
  270. * well, as they are located before _text:
  271. */
  272. void __init cleanup_highmap(void)
  273. {
  274. unsigned long vaddr = __START_KERNEL_map;
  275. unsigned long end = roundup((unsigned long)_end, PMD_SIZE) - 1;
  276. pmd_t *pmd = level2_kernel_pgt;
  277. pmd_t *last_pmd = pmd + PTRS_PER_PMD;
  278. for (; pmd < last_pmd; pmd++, vaddr += PMD_SIZE) {
  279. if (pmd_none(*pmd))
  280. continue;
  281. if (vaddr < (unsigned long) _text || vaddr > end)
  282. set_pmd(pmd, __pmd(0));
  283. }
  284. }
  285. static unsigned long __initdata table_start;
  286. static unsigned long __meminitdata table_end;
  287. static unsigned long __meminitdata table_top;
  288. static __ref void *alloc_low_page(unsigned long *phys)
  289. {
  290. unsigned long pfn = table_end++;
  291. void *adr;
  292. if (after_bootmem) {
  293. adr = (void *)get_zeroed_page(GFP_ATOMIC);
  294. *phys = __pa(adr);
  295. return adr;
  296. }
  297. if (pfn >= table_top)
  298. panic("alloc_low_page: ran out of memory");
  299. adr = early_memremap(pfn * PAGE_SIZE, PAGE_SIZE);
  300. memset(adr, 0, PAGE_SIZE);
  301. *phys = pfn * PAGE_SIZE;
  302. return adr;
  303. }
  304. static __ref void unmap_low_page(void *adr)
  305. {
  306. if (after_bootmem)
  307. return;
  308. early_iounmap(adr, PAGE_SIZE);
  309. }
  310. static unsigned long __meminit
  311. phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end,
  312. pgprot_t prot)
  313. {
  314. unsigned pages = 0;
  315. unsigned long last_map_addr = end;
  316. int i;
  317. pte_t *pte = pte_page + pte_index(addr);
  318. for(i = pte_index(addr); i < PTRS_PER_PTE; i++, addr += PAGE_SIZE, pte++) {
  319. if (addr >= end) {
  320. if (!after_bootmem) {
  321. for(; i < PTRS_PER_PTE; i++, pte++)
  322. set_pte(pte, __pte(0));
  323. }
  324. break;
  325. }
  326. /*
  327. * We will re-use the existing mapping.
  328. * Xen for example has some special requirements, like mapping
  329. * pagetable pages as RO. So assume someone who pre-setup
  330. * these mappings are more intelligent.
  331. */
  332. if (pte_val(*pte)) {
  333. pages++;
  334. continue;
  335. }
  336. if (0)
  337. printk(" pte=%p addr=%lx pte=%016lx\n",
  338. pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte);
  339. pages++;
  340. set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, prot));
  341. last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE;
  342. }
  343. update_page_count(PG_LEVEL_4K, pages);
  344. return last_map_addr;
  345. }
  346. static unsigned long __meminit
  347. phys_pte_update(pmd_t *pmd, unsigned long address, unsigned long end,
  348. pgprot_t prot)
  349. {
  350. pte_t *pte = (pte_t *)pmd_page_vaddr(*pmd);
  351. return phys_pte_init(pte, address, end, prot);
  352. }
  353. static unsigned long __meminit
  354. phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end,
  355. unsigned long page_size_mask, pgprot_t prot)
  356. {
  357. unsigned long pages = 0;
  358. unsigned long last_map_addr = end;
  359. int i = pmd_index(address);
  360. for (; i < PTRS_PER_PMD; i++, address += PMD_SIZE) {
  361. unsigned long pte_phys;
  362. pmd_t *pmd = pmd_page + pmd_index(address);
  363. pte_t *pte;
  364. pgprot_t new_prot = prot;
  365. if (address >= end) {
  366. if (!after_bootmem) {
  367. for (; i < PTRS_PER_PMD; i++, pmd++)
  368. set_pmd(pmd, __pmd(0));
  369. }
  370. break;
  371. }
  372. if (pmd_val(*pmd)) {
  373. if (!pmd_large(*pmd)) {
  374. spin_lock(&init_mm.page_table_lock);
  375. last_map_addr = phys_pte_update(pmd, address,
  376. end, prot);
  377. spin_unlock(&init_mm.page_table_lock);
  378. continue;
  379. }
  380. /*
  381. * If we are ok with PG_LEVEL_2M mapping, then we will
  382. * use the existing mapping,
  383. *
  384. * Otherwise, we will split the large page mapping but
  385. * use the same existing protection bits except for
  386. * large page, so that we don't violate Intel's TLB
  387. * Application note (317080) which says, while changing
  388. * the page sizes, new and old translations should
  389. * not differ with respect to page frame and
  390. * attributes.
  391. */
  392. if (page_size_mask & (1 << PG_LEVEL_2M)) {
  393. pages++;
  394. continue;
  395. }
  396. new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
  397. }
  398. if (page_size_mask & (1<<PG_LEVEL_2M)) {
  399. pages++;
  400. spin_lock(&init_mm.page_table_lock);
  401. set_pte((pte_t *)pmd,
  402. pfn_pte(address >> PAGE_SHIFT,
  403. __pgprot(pgprot_val(prot) | _PAGE_PSE)));
  404. spin_unlock(&init_mm.page_table_lock);
  405. last_map_addr = (address & PMD_MASK) + PMD_SIZE;
  406. continue;
  407. }
  408. pte = alloc_low_page(&pte_phys);
  409. last_map_addr = phys_pte_init(pte, address, end, new_prot);
  410. unmap_low_page(pte);
  411. spin_lock(&init_mm.page_table_lock);
  412. pmd_populate_kernel(&init_mm, pmd, __va(pte_phys));
  413. spin_unlock(&init_mm.page_table_lock);
  414. }
  415. update_page_count(PG_LEVEL_2M, pages);
  416. return last_map_addr;
  417. }
  418. static unsigned long __meminit
  419. phys_pmd_update(pud_t *pud, unsigned long address, unsigned long end,
  420. unsigned long page_size_mask, pgprot_t prot)
  421. {
  422. pmd_t *pmd = pmd_offset(pud, 0);
  423. unsigned long last_map_addr;
  424. last_map_addr = phys_pmd_init(pmd, address, end, page_size_mask, prot);
  425. __flush_tlb_all();
  426. return last_map_addr;
  427. }
  428. static unsigned long __meminit
  429. phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end,
  430. unsigned long page_size_mask)
  431. {
  432. unsigned long pages = 0;
  433. unsigned long last_map_addr = end;
  434. int i = pud_index(addr);
  435. for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE) {
  436. unsigned long pmd_phys;
  437. pud_t *pud = pud_page + pud_index(addr);
  438. pmd_t *pmd;
  439. pgprot_t prot = PAGE_KERNEL;
  440. if (addr >= end)
  441. break;
  442. if (!after_bootmem &&
  443. !e820_any_mapped(addr, addr+PUD_SIZE, 0)) {
  444. set_pud(pud, __pud(0));
  445. continue;
  446. }
  447. if (pud_val(*pud)) {
  448. if (!pud_large(*pud)) {
  449. last_map_addr = phys_pmd_update(pud, addr, end,
  450. page_size_mask, prot);
  451. continue;
  452. }
  453. /*
  454. * If we are ok with PG_LEVEL_1G mapping, then we will
  455. * use the existing mapping.
  456. *
  457. * Otherwise, we will split the gbpage mapping but use
  458. * the same existing protection bits except for large
  459. * page, so that we don't violate Intel's TLB
  460. * Application note (317080) which says, while changing
  461. * the page sizes, new and old translations should
  462. * not differ with respect to page frame and
  463. * attributes.
  464. */
  465. if (page_size_mask & (1 << PG_LEVEL_1G)) {
  466. pages++;
  467. continue;
  468. }
  469. prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
  470. }
  471. if (page_size_mask & (1<<PG_LEVEL_1G)) {
  472. pages++;
  473. spin_lock(&init_mm.page_table_lock);
  474. set_pte((pte_t *)pud,
  475. pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
  476. spin_unlock(&init_mm.page_table_lock);
  477. last_map_addr = (addr & PUD_MASK) + PUD_SIZE;
  478. continue;
  479. }
  480. pmd = alloc_low_page(&pmd_phys);
  481. last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask,
  482. prot);
  483. unmap_low_page(pmd);
  484. spin_lock(&init_mm.page_table_lock);
  485. pud_populate(&init_mm, pud, __va(pmd_phys));
  486. spin_unlock(&init_mm.page_table_lock);
  487. }
  488. __flush_tlb_all();
  489. update_page_count(PG_LEVEL_1G, pages);
  490. return last_map_addr;
  491. }
  492. static unsigned long __meminit
  493. phys_pud_update(pgd_t *pgd, unsigned long addr, unsigned long end,
  494. unsigned long page_size_mask)
  495. {
  496. pud_t *pud;
  497. pud = (pud_t *)pgd_page_vaddr(*pgd);
  498. return phys_pud_init(pud, addr, end, page_size_mask);
  499. }
  500. static void __init find_early_table_space(unsigned long end, int use_pse,
  501. int use_gbpages)
  502. {
  503. unsigned long puds, pmds, ptes, tables, start;
  504. puds = (end + PUD_SIZE - 1) >> PUD_SHIFT;
  505. tables = roundup(puds * sizeof(pud_t), PAGE_SIZE);
  506. if (use_gbpages) {
  507. unsigned long extra;
  508. extra = end - ((end>>PUD_SHIFT) << PUD_SHIFT);
  509. pmds = (extra + PMD_SIZE - 1) >> PMD_SHIFT;
  510. } else
  511. pmds = (end + PMD_SIZE - 1) >> PMD_SHIFT;
  512. tables += roundup(pmds * sizeof(pmd_t), PAGE_SIZE);
  513. if (use_pse) {
  514. unsigned long extra;
  515. extra = end - ((end>>PMD_SHIFT) << PMD_SHIFT);
  516. ptes = (extra + PAGE_SIZE - 1) >> PAGE_SHIFT;
  517. } else
  518. ptes = (end + PAGE_SIZE - 1) >> PAGE_SHIFT;
  519. tables += roundup(ptes * sizeof(pte_t), PAGE_SIZE);
  520. /*
  521. * RED-PEN putting page tables only on node 0 could
  522. * cause a hotspot and fill up ZONE_DMA. The page tables
  523. * need roughly 0.5KB per GB.
  524. */
  525. start = 0x8000;
  526. table_start = find_e820_area(start, end, tables, PAGE_SIZE);
  527. if (table_start == -1UL)
  528. panic("Cannot find space for the kernel page tables");
  529. table_start >>= PAGE_SHIFT;
  530. table_end = table_start;
  531. table_top = table_start + (tables >> PAGE_SHIFT);
  532. printk(KERN_DEBUG "kernel direct mapping tables up to %lx @ %lx-%lx\n",
  533. end, table_start << PAGE_SHIFT, table_top << PAGE_SHIFT);
  534. }
  535. static void __init init_gbpages(void)
  536. {
  537. if (direct_gbpages && cpu_has_gbpages)
  538. printk(KERN_INFO "Using GB pages for direct mapping\n");
  539. else
  540. direct_gbpages = 0;
  541. }
  542. static unsigned long __meminit kernel_physical_mapping_init(unsigned long start,
  543. unsigned long end,
  544. unsigned long page_size_mask)
  545. {
  546. unsigned long next, last_map_addr = end;
  547. start = (unsigned long)__va(start);
  548. end = (unsigned long)__va(end);
  549. for (; start < end; start = next) {
  550. pgd_t *pgd = pgd_offset_k(start);
  551. unsigned long pud_phys;
  552. pud_t *pud;
  553. next = (start + PGDIR_SIZE) & PGDIR_MASK;
  554. if (next > end)
  555. next = end;
  556. if (pgd_val(*pgd)) {
  557. last_map_addr = phys_pud_update(pgd, __pa(start),
  558. __pa(end), page_size_mask);
  559. continue;
  560. }
  561. pud = alloc_low_page(&pud_phys);
  562. last_map_addr = phys_pud_init(pud, __pa(start), __pa(next),
  563. page_size_mask);
  564. unmap_low_page(pud);
  565. spin_lock(&init_mm.page_table_lock);
  566. pgd_populate(&init_mm, pgd, __va(pud_phys));
  567. spin_unlock(&init_mm.page_table_lock);
  568. }
  569. __flush_tlb_all();
  570. return last_map_addr;
  571. }
  572. struct map_range {
  573. unsigned long start;
  574. unsigned long end;
  575. unsigned page_size_mask;
  576. };
  577. #define NR_RANGE_MR 5
  578. static int save_mr(struct map_range *mr, int nr_range,
  579. unsigned long start_pfn, unsigned long end_pfn,
  580. unsigned long page_size_mask)
  581. {
  582. if (start_pfn < end_pfn) {
  583. if (nr_range >= NR_RANGE_MR)
  584. panic("run out of range for init_memory_mapping\n");
  585. mr[nr_range].start = start_pfn<<PAGE_SHIFT;
  586. mr[nr_range].end = end_pfn<<PAGE_SHIFT;
  587. mr[nr_range].page_size_mask = page_size_mask;
  588. nr_range++;
  589. }
  590. return nr_range;
  591. }
  592. /*
  593. * Setup the direct mapping of the physical memory at PAGE_OFFSET.
  594. * This runs before bootmem is initialized and gets pages directly from
  595. * the physical memory. To access them they are temporarily mapped.
  596. */
  597. unsigned long __init_refok init_memory_mapping(unsigned long start,
  598. unsigned long end)
  599. {
  600. unsigned long last_map_addr = 0;
  601. unsigned long page_size_mask = 0;
  602. unsigned long start_pfn, end_pfn;
  603. unsigned long pos;
  604. struct map_range mr[NR_RANGE_MR];
  605. int nr_range, i;
  606. int use_pse, use_gbpages;
  607. printk(KERN_INFO "init_memory_mapping: %016lx-%016lx\n", start, end);
  608. /*
  609. * Find space for the kernel direct mapping tables.
  610. *
  611. * Later we should allocate these tables in the local node of the
  612. * memory mapped. Unfortunately this is done currently before the
  613. * nodes are discovered.
  614. */
  615. if (!after_bootmem)
  616. init_gbpages();
  617. #ifdef CONFIG_DEBUG_PAGEALLOC
  618. /*
  619. * For CONFIG_DEBUG_PAGEALLOC, identity mapping will use small pages.
  620. * This will simplify cpa(), which otherwise needs to support splitting
  621. * large pages into small in interrupt context, etc.
  622. */
  623. use_pse = use_gbpages = 0;
  624. #else
  625. use_pse = cpu_has_pse;
  626. use_gbpages = direct_gbpages;
  627. #endif
  628. if (use_gbpages)
  629. page_size_mask |= 1 << PG_LEVEL_1G;
  630. if (use_pse)
  631. page_size_mask |= 1 << PG_LEVEL_2M;
  632. memset(mr, 0, sizeof(mr));
  633. nr_range = 0;
  634. /* head if not big page alignment ?*/
  635. start_pfn = start >> PAGE_SHIFT;
  636. pos = start_pfn << PAGE_SHIFT;
  637. end_pfn = ((pos + (PMD_SIZE - 1)) >> PMD_SHIFT)
  638. << (PMD_SHIFT - PAGE_SHIFT);
  639. if (end_pfn > (end >> PAGE_SHIFT))
  640. end_pfn = end >> PAGE_SHIFT;
  641. if (start_pfn < end_pfn) {
  642. nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
  643. pos = end_pfn << PAGE_SHIFT;
  644. }
  645. /* big page (2M) range*/
  646. start_pfn = ((pos + (PMD_SIZE - 1))>>PMD_SHIFT)
  647. << (PMD_SHIFT - PAGE_SHIFT);
  648. end_pfn = ((pos + (PUD_SIZE - 1))>>PUD_SHIFT)
  649. << (PUD_SHIFT - PAGE_SHIFT);
  650. if (end_pfn > ((end>>PMD_SHIFT)<<(PMD_SHIFT - PAGE_SHIFT)))
  651. end_pfn = ((end>>PMD_SHIFT)<<(PMD_SHIFT - PAGE_SHIFT));
  652. if (start_pfn < end_pfn) {
  653. nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
  654. page_size_mask & (1<<PG_LEVEL_2M));
  655. pos = end_pfn << PAGE_SHIFT;
  656. }
  657. /* big page (1G) range */
  658. start_pfn = ((pos + (PUD_SIZE - 1))>>PUD_SHIFT)
  659. << (PUD_SHIFT - PAGE_SHIFT);
  660. end_pfn = (end >> PUD_SHIFT) << (PUD_SHIFT - PAGE_SHIFT);
  661. if (start_pfn < end_pfn) {
  662. nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
  663. page_size_mask &
  664. ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
  665. pos = end_pfn << PAGE_SHIFT;
  666. }
  667. /* tail is not big page (1G) alignment */
  668. start_pfn = ((pos + (PMD_SIZE - 1))>>PMD_SHIFT)
  669. << (PMD_SHIFT - PAGE_SHIFT);
  670. end_pfn = (end >> PMD_SHIFT) << (PMD_SHIFT - PAGE_SHIFT);
  671. if (start_pfn < end_pfn) {
  672. nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
  673. page_size_mask & (1<<PG_LEVEL_2M));
  674. pos = end_pfn << PAGE_SHIFT;
  675. }
  676. /* tail is not big page (2M) alignment */
  677. start_pfn = pos>>PAGE_SHIFT;
  678. end_pfn = end>>PAGE_SHIFT;
  679. nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
  680. /* try to merge same page size and continuous */
  681. for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
  682. unsigned long old_start;
  683. if (mr[i].end != mr[i+1].start ||
  684. mr[i].page_size_mask != mr[i+1].page_size_mask)
  685. continue;
  686. /* move it */
  687. old_start = mr[i].start;
  688. memmove(&mr[i], &mr[i+1],
  689. (nr_range - 1 - i) * sizeof (struct map_range));
  690. mr[i--].start = old_start;
  691. nr_range--;
  692. }
  693. for (i = 0; i < nr_range; i++)
  694. printk(KERN_DEBUG " %010lx - %010lx page %s\n",
  695. mr[i].start, mr[i].end,
  696. (mr[i].page_size_mask & (1<<PG_LEVEL_1G))?"1G":(
  697. (mr[i].page_size_mask & (1<<PG_LEVEL_2M))?"2M":"4k"));
  698. if (!after_bootmem)
  699. find_early_table_space(end, use_pse, use_gbpages);
  700. for (i = 0; i < nr_range; i++)
  701. last_map_addr = kernel_physical_mapping_init(
  702. mr[i].start, mr[i].end,
  703. mr[i].page_size_mask);
  704. if (!after_bootmem)
  705. mmu_cr4_features = read_cr4();
  706. __flush_tlb_all();
  707. if (!after_bootmem && table_end > table_start)
  708. reserve_early(table_start << PAGE_SHIFT,
  709. table_end << PAGE_SHIFT, "PGTABLE");
  710. printk(KERN_INFO "last_map_addr: %lx end: %lx\n",
  711. last_map_addr, end);
  712. if (!after_bootmem)
  713. early_memtest(start, end);
  714. return last_map_addr >> PAGE_SHIFT;
  715. }
  716. #ifndef CONFIG_NUMA
  717. void __init initmem_init(unsigned long start_pfn, unsigned long end_pfn)
  718. {
  719. unsigned long bootmap_size, bootmap;
  720. bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT;
  721. bootmap = find_e820_area(0, end_pfn<<PAGE_SHIFT, bootmap_size,
  722. PAGE_SIZE);
  723. if (bootmap == -1L)
  724. panic("Cannot find bootmem map of size %ld\n", bootmap_size);
  725. /* don't touch min_low_pfn */
  726. bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap >> PAGE_SHIFT,
  727. 0, end_pfn);
  728. e820_register_active_regions(0, start_pfn, end_pfn);
  729. free_bootmem_with_active_regions(0, end_pfn);
  730. early_res_to_bootmem(0, end_pfn<<PAGE_SHIFT);
  731. reserve_bootmem(bootmap, bootmap_size, BOOTMEM_DEFAULT);
  732. }
  733. void __init paging_init(void)
  734. {
  735. unsigned long max_zone_pfns[MAX_NR_ZONES];
  736. memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
  737. max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
  738. max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
  739. max_zone_pfns[ZONE_NORMAL] = max_pfn;
  740. memory_present(0, 0, max_pfn);
  741. sparse_init();
  742. free_area_init_nodes(max_zone_pfns);
  743. }
  744. #endif
  745. /*
  746. * Memory hotplug specific functions
  747. */
  748. #ifdef CONFIG_MEMORY_HOTPLUG
  749. /*
  750. * Memory is added always to NORMAL zone. This means you will never get
  751. * additional DMA/DMA32 memory.
  752. */
  753. int arch_add_memory(int nid, u64 start, u64 size)
  754. {
  755. struct pglist_data *pgdat = NODE_DATA(nid);
  756. struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
  757. unsigned long last_mapped_pfn, start_pfn = start >> PAGE_SHIFT;
  758. unsigned long nr_pages = size >> PAGE_SHIFT;
  759. int ret;
  760. last_mapped_pfn = init_memory_mapping(start, start + size);
  761. if (last_mapped_pfn > max_pfn_mapped)
  762. max_pfn_mapped = last_mapped_pfn;
  763. ret = __add_pages(nid, zone, start_pfn, nr_pages);
  764. WARN_ON_ONCE(ret);
  765. return ret;
  766. }
  767. EXPORT_SYMBOL_GPL(arch_add_memory);
  768. #if !defined(CONFIG_ACPI_NUMA) && defined(CONFIG_NUMA)
  769. int memory_add_physaddr_to_nid(u64 start)
  770. {
  771. return 0;
  772. }
  773. EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
  774. #endif
  775. #endif /* CONFIG_MEMORY_HOTPLUG */
  776. /*
  777. * devmem_is_allowed() checks to see if /dev/mem access to a certain address
  778. * is valid. The argument is a physical page number.
  779. *
  780. *
  781. * On x86, access has to be given to the first megabyte of ram because that area
  782. * contains bios code and data regions used by X and dosemu and similar apps.
  783. * Access has to be given to non-kernel-ram areas as well, these contain the PCI
  784. * mmio resources as well as potential bios/acpi data regions.
  785. */
  786. int devmem_is_allowed(unsigned long pagenr)
  787. {
  788. if (pagenr <= 256)
  789. return 1;
  790. if (iomem_is_exclusive(pagenr << PAGE_SHIFT))
  791. return 0;
  792. if (!page_is_ram(pagenr))
  793. return 1;
  794. return 0;
  795. }
  796. static struct kcore_list kcore_mem, kcore_vmalloc, kcore_kernel,
  797. kcore_modules, kcore_vsyscall;
  798. void __init mem_init(void)
  799. {
  800. long codesize, reservedpages, datasize, initsize;
  801. unsigned long absent_pages;
  802. pci_iommu_alloc();
  803. /* clear_bss() already clear the empty_zero_page */
  804. reservedpages = 0;
  805. /* this will put all low memory onto the freelists */
  806. #ifdef CONFIG_NUMA
  807. totalram_pages = numa_free_all_bootmem();
  808. #else
  809. totalram_pages = free_all_bootmem();
  810. #endif
  811. absent_pages = absent_pages_in_range(0, max_pfn);
  812. reservedpages = max_pfn - totalram_pages - absent_pages;
  813. after_bootmem = 1;
  814. codesize = (unsigned long) &_etext - (unsigned long) &_text;
  815. datasize = (unsigned long) &_edata - (unsigned long) &_etext;
  816. initsize = (unsigned long) &__init_end - (unsigned long) &__init_begin;
  817. /* Register memory areas for /proc/kcore */
  818. kclist_add(&kcore_mem, __va(0), max_low_pfn << PAGE_SHIFT);
  819. kclist_add(&kcore_vmalloc, (void *)VMALLOC_START,
  820. VMALLOC_END-VMALLOC_START);
  821. kclist_add(&kcore_kernel, &_stext, _end - _stext);
  822. kclist_add(&kcore_modules, (void *)MODULES_VADDR, MODULES_LEN);
  823. kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
  824. VSYSCALL_END - VSYSCALL_START);
  825. printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
  826. "%ldk absent, %ldk reserved, %ldk data, %ldk init)\n",
  827. (unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
  828. max_pfn << (PAGE_SHIFT-10),
  829. codesize >> 10,
  830. absent_pages << (PAGE_SHIFT-10),
  831. reservedpages << (PAGE_SHIFT-10),
  832. datasize >> 10,
  833. initsize >> 10);
  834. }
  835. #ifdef CONFIG_DEBUG_RODATA
  836. const int rodata_test_data = 0xC3;
  837. EXPORT_SYMBOL_GPL(rodata_test_data);
  838. void mark_rodata_ro(void)
  839. {
  840. unsigned long start = PFN_ALIGN(_stext), end = PFN_ALIGN(__end_rodata);
  841. unsigned long rodata_start =
  842. ((unsigned long)__start_rodata + PAGE_SIZE - 1) & PAGE_MASK;
  843. #ifdef CONFIG_DYNAMIC_FTRACE
  844. /* Dynamic tracing modifies the kernel text section */
  845. start = rodata_start;
  846. #endif
  847. printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
  848. (end - start) >> 10);
  849. set_memory_ro(start, (end - start) >> PAGE_SHIFT);
  850. /*
  851. * The rodata section (but not the kernel text!) should also be
  852. * not-executable.
  853. */
  854. set_memory_nx(rodata_start, (end - rodata_start) >> PAGE_SHIFT);
  855. rodata_test();
  856. #ifdef CONFIG_CPA_DEBUG
  857. printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
  858. set_memory_rw(start, (end-start) >> PAGE_SHIFT);
  859. printk(KERN_INFO "Testing CPA: again\n");
  860. set_memory_ro(start, (end-start) >> PAGE_SHIFT);
  861. #endif
  862. }
  863. #endif
  864. #ifdef CONFIG_BLK_DEV_INITRD
  865. void free_initrd_mem(unsigned long start, unsigned long end)
  866. {
  867. free_init_pages("initrd memory", start, end);
  868. }
  869. #endif
  870. int __init reserve_bootmem_generic(unsigned long phys, unsigned long len,
  871. int flags)
  872. {
  873. #ifdef CONFIG_NUMA
  874. int nid, next_nid;
  875. int ret;
  876. #endif
  877. unsigned long pfn = phys >> PAGE_SHIFT;
  878. if (pfn >= max_pfn) {
  879. /*
  880. * This can happen with kdump kernels when accessing
  881. * firmware tables:
  882. */
  883. if (pfn < max_pfn_mapped)
  884. return -EFAULT;
  885. printk(KERN_ERR "reserve_bootmem: illegal reserve %lx %lu\n",
  886. phys, len);
  887. return -EFAULT;
  888. }
  889. /* Should check here against the e820 map to avoid double free */
  890. #ifdef CONFIG_NUMA
  891. nid = phys_to_nid(phys);
  892. next_nid = phys_to_nid(phys + len - 1);
  893. if (nid == next_nid)
  894. ret = reserve_bootmem_node(NODE_DATA(nid), phys, len, flags);
  895. else
  896. ret = reserve_bootmem(phys, len, flags);
  897. if (ret != 0)
  898. return ret;
  899. #else
  900. reserve_bootmem(phys, len, BOOTMEM_DEFAULT);
  901. #endif
  902. if (phys+len <= MAX_DMA_PFN*PAGE_SIZE) {
  903. dma_reserve += len / PAGE_SIZE;
  904. set_dma_reserve(dma_reserve);
  905. }
  906. return 0;
  907. }
  908. int kern_addr_valid(unsigned long addr)
  909. {
  910. unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
  911. pgd_t *pgd;
  912. pud_t *pud;
  913. pmd_t *pmd;
  914. pte_t *pte;
  915. if (above != 0 && above != -1UL)
  916. return 0;
  917. pgd = pgd_offset_k(addr);
  918. if (pgd_none(*pgd))
  919. return 0;
  920. pud = pud_offset(pgd, addr);
  921. if (pud_none(*pud))
  922. return 0;
  923. pmd = pmd_offset(pud, addr);
  924. if (pmd_none(*pmd))
  925. return 0;
  926. if (pmd_large(*pmd))
  927. return pfn_valid(pmd_pfn(*pmd));
  928. pte = pte_offset_kernel(pmd, addr);
  929. if (pte_none(*pte))
  930. return 0;
  931. return pfn_valid(pte_pfn(*pte));
  932. }
  933. /*
  934. * A pseudo VMA to allow ptrace access for the vsyscall page. This only
  935. * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
  936. * not need special handling anymore:
  937. */
  938. static struct vm_area_struct gate_vma = {
  939. .vm_start = VSYSCALL_START,
  940. .vm_end = VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
  941. .vm_page_prot = PAGE_READONLY_EXEC,
  942. .vm_flags = VM_READ | VM_EXEC
  943. };
  944. struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
  945. {
  946. #ifdef CONFIG_IA32_EMULATION
  947. if (test_tsk_thread_flag(tsk, TIF_IA32))
  948. return NULL;
  949. #endif
  950. return &gate_vma;
  951. }
  952. int in_gate_area(struct task_struct *task, unsigned long addr)
  953. {
  954. struct vm_area_struct *vma = get_gate_vma(task);
  955. if (!vma)
  956. return 0;
  957. return (addr >= vma->vm_start) && (addr < vma->vm_end);
  958. }
  959. /*
  960. * Use this when you have no reliable task/vma, typically from interrupt
  961. * context. It is less reliable than using the task's vma and may give
  962. * false positives:
  963. */
  964. int in_gate_area_no_task(unsigned long addr)
  965. {
  966. return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
  967. }
  968. const char *arch_vma_name(struct vm_area_struct *vma)
  969. {
  970. if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
  971. return "[vdso]";
  972. if (vma == &gate_vma)
  973. return "[vsyscall]";
  974. return NULL;
  975. }
  976. #ifdef CONFIG_SPARSEMEM_VMEMMAP
  977. /*
  978. * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
  979. */
  980. static long __meminitdata addr_start, addr_end;
  981. static void __meminitdata *p_start, *p_end;
  982. static int __meminitdata node_start;
  983. int __meminit
  984. vmemmap_populate(struct page *start_page, unsigned long size, int node)
  985. {
  986. unsigned long addr = (unsigned long)start_page;
  987. unsigned long end = (unsigned long)(start_page + size);
  988. unsigned long next;
  989. pgd_t *pgd;
  990. pud_t *pud;
  991. pmd_t *pmd;
  992. for (; addr < end; addr = next) {
  993. void *p = NULL;
  994. pgd = vmemmap_pgd_populate(addr, node);
  995. if (!pgd)
  996. return -ENOMEM;
  997. pud = vmemmap_pud_populate(pgd, addr, node);
  998. if (!pud)
  999. return -ENOMEM;
  1000. if (!cpu_has_pse) {
  1001. next = (addr + PAGE_SIZE) & PAGE_MASK;
  1002. pmd = vmemmap_pmd_populate(pud, addr, node);
  1003. if (!pmd)
  1004. return -ENOMEM;
  1005. p = vmemmap_pte_populate(pmd, addr, node);
  1006. if (!p)
  1007. return -ENOMEM;
  1008. addr_end = addr + PAGE_SIZE;
  1009. p_end = p + PAGE_SIZE;
  1010. } else {
  1011. next = pmd_addr_end(addr, end);
  1012. pmd = pmd_offset(pud, addr);
  1013. if (pmd_none(*pmd)) {
  1014. pte_t entry;
  1015. p = vmemmap_alloc_block(PMD_SIZE, node);
  1016. if (!p)
  1017. return -ENOMEM;
  1018. entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
  1019. PAGE_KERNEL_LARGE);
  1020. set_pmd(pmd, __pmd(pte_val(entry)));
  1021. /* check to see if we have contiguous blocks */
  1022. if (p_end != p || node_start != node) {
  1023. if (p_start)
  1024. printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
  1025. addr_start, addr_end-1, p_start, p_end-1, node_start);
  1026. addr_start = addr;
  1027. node_start = node;
  1028. p_start = p;
  1029. }
  1030. addr_end = addr + PMD_SIZE;
  1031. p_end = p + PMD_SIZE;
  1032. } else
  1033. vmemmap_verify((pte_t *)pmd, node, addr, next);
  1034. }
  1035. }
  1036. return 0;
  1037. }
  1038. void __meminit vmemmap_populate_print_last(void)
  1039. {
  1040. if (p_start) {
  1041. printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
  1042. addr_start, addr_end-1, p_start, p_end-1, node_start);
  1043. p_start = NULL;
  1044. p_end = NULL;
  1045. node_start = 0;
  1046. }
  1047. }
  1048. #endif