highmem_32.c 4.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192
  1. #include <linux/highmem.h>
  2. #include <linux/module.h>
  3. #include <linux/swap.h> /* for totalram_pages */
  4. void *kmap(struct page *page)
  5. {
  6. might_sleep();
  7. if (!PageHighMem(page))
  8. return page_address(page);
  9. return kmap_high(page);
  10. }
  11. void kunmap(struct page *page)
  12. {
  13. if (in_interrupt())
  14. BUG();
  15. if (!PageHighMem(page))
  16. return;
  17. kunmap_high(page);
  18. }
  19. static void debug_kmap_atomic_prot(enum km_type type)
  20. {
  21. #ifdef CONFIG_DEBUG_HIGHMEM
  22. static unsigned warn_count = 10;
  23. if (unlikely(warn_count == 0))
  24. return;
  25. if (unlikely(in_interrupt())) {
  26. if (in_irq()) {
  27. if (type != KM_IRQ0 && type != KM_IRQ1 &&
  28. type != KM_BIO_SRC_IRQ && type != KM_BIO_DST_IRQ &&
  29. type != KM_BOUNCE_READ) {
  30. WARN_ON(1);
  31. warn_count--;
  32. }
  33. } else if (!irqs_disabled()) { /* softirq */
  34. if (type != KM_IRQ0 && type != KM_IRQ1 &&
  35. type != KM_SOFTIRQ0 && type != KM_SOFTIRQ1 &&
  36. type != KM_SKB_SUNRPC_DATA &&
  37. type != KM_SKB_DATA_SOFTIRQ &&
  38. type != KM_BOUNCE_READ) {
  39. WARN_ON(1);
  40. warn_count--;
  41. }
  42. }
  43. }
  44. if (type == KM_IRQ0 || type == KM_IRQ1 || type == KM_BOUNCE_READ ||
  45. type == KM_BIO_SRC_IRQ || type == KM_BIO_DST_IRQ) {
  46. if (!irqs_disabled()) {
  47. WARN_ON(1);
  48. warn_count--;
  49. }
  50. } else if (type == KM_SOFTIRQ0 || type == KM_SOFTIRQ1) {
  51. if (irq_count() == 0 && !irqs_disabled()) {
  52. WARN_ON(1);
  53. warn_count--;
  54. }
  55. }
  56. #endif
  57. }
  58. /*
  59. * kmap_atomic/kunmap_atomic is significantly faster than kmap/kunmap because
  60. * no global lock is needed and because the kmap code must perform a global TLB
  61. * invalidation when the kmap pool wraps.
  62. *
  63. * However when holding an atomic kmap is is not legal to sleep, so atomic
  64. * kmaps are appropriate for short, tight code paths only.
  65. */
  66. void *kmap_atomic_prot(struct page *page, enum km_type type, pgprot_t prot)
  67. {
  68. enum fixed_addresses idx;
  69. unsigned long vaddr;
  70. /* even !CONFIG_PREEMPT needs this, for in_atomic in do_page_fault */
  71. pagefault_disable();
  72. if (!PageHighMem(page))
  73. return page_address(page);
  74. debug_kmap_atomic_prot(type);
  75. idx = type + KM_TYPE_NR*smp_processor_id();
  76. vaddr = __fix_to_virt(FIX_KMAP_BEGIN + idx);
  77. BUG_ON(!pte_none(*(kmap_pte-idx)));
  78. set_pte(kmap_pte-idx, mk_pte(page, prot));
  79. arch_flush_lazy_mmu_mode();
  80. return (void *)vaddr;
  81. }
  82. void *kmap_atomic(struct page *page, enum km_type type)
  83. {
  84. return kmap_atomic_prot(page, type, kmap_prot);
  85. }
  86. void kunmap_atomic(void *kvaddr, enum km_type type)
  87. {
  88. unsigned long vaddr = (unsigned long) kvaddr & PAGE_MASK;
  89. enum fixed_addresses idx = type + KM_TYPE_NR*smp_processor_id();
  90. /*
  91. * Force other mappings to Oops if they'll try to access this pte
  92. * without first remap it. Keeping stale mappings around is a bad idea
  93. * also, in case the page changes cacheability attributes or becomes
  94. * a protected page in a hypervisor.
  95. */
  96. if (vaddr == __fix_to_virt(FIX_KMAP_BEGIN+idx))
  97. kpte_clear_flush(kmap_pte-idx, vaddr);
  98. else {
  99. #ifdef CONFIG_DEBUG_HIGHMEM
  100. BUG_ON(vaddr < PAGE_OFFSET);
  101. BUG_ON(vaddr >= (unsigned long)high_memory);
  102. #endif
  103. }
  104. arch_flush_lazy_mmu_mode();
  105. pagefault_enable();
  106. }
  107. /* This is the same as kmap_atomic() but can map memory that doesn't
  108. * have a struct page associated with it.
  109. */
  110. void *kmap_atomic_pfn(unsigned long pfn, enum km_type type)
  111. {
  112. enum fixed_addresses idx;
  113. unsigned long vaddr;
  114. pagefault_disable();
  115. idx = type + KM_TYPE_NR*smp_processor_id();
  116. vaddr = __fix_to_virt(FIX_KMAP_BEGIN + idx);
  117. set_pte(kmap_pte-idx, pfn_pte(pfn, kmap_prot));
  118. arch_flush_lazy_mmu_mode();
  119. return (void*) vaddr;
  120. }
  121. EXPORT_SYMBOL_GPL(kmap_atomic_pfn); /* temporarily in use by i915 GEM until vmap */
  122. struct page *kmap_atomic_to_page(void *ptr)
  123. {
  124. unsigned long idx, vaddr = (unsigned long)ptr;
  125. pte_t *pte;
  126. if (vaddr < FIXADDR_START)
  127. return virt_to_page(ptr);
  128. idx = virt_to_fix(vaddr);
  129. pte = kmap_pte - (idx - FIX_KMAP_BEGIN);
  130. return pte_page(*pte);
  131. }
  132. EXPORT_SYMBOL(kmap);
  133. EXPORT_SYMBOL(kunmap);
  134. EXPORT_SYMBOL(kmap_atomic);
  135. EXPORT_SYMBOL(kunmap_atomic);
  136. #ifdef CONFIG_NUMA
  137. void __init set_highmem_pages_init(void)
  138. {
  139. struct zone *zone;
  140. int nid;
  141. for_each_zone(zone) {
  142. unsigned long zone_start_pfn, zone_end_pfn;
  143. if (!is_highmem(zone))
  144. continue;
  145. zone_start_pfn = zone->zone_start_pfn;
  146. zone_end_pfn = zone_start_pfn + zone->spanned_pages;
  147. nid = zone_to_nid(zone);
  148. printk(KERN_INFO "Initializing %s for node %d (%08lx:%08lx)\n",
  149. zone->name, nid, zone_start_pfn, zone_end_pfn);
  150. add_highpages_with_active_regions(nid, zone_start_pfn,
  151. zone_end_pfn);
  152. }
  153. totalram_pages += totalhigh_pages;
  154. }
  155. #else
  156. void __init set_highmem_pages_init(void)
  157. {
  158. add_highpages_with_active_regions(0, highstart_pfn, highend_pfn);
  159. totalram_pages += totalhigh_pages;
  160. }
  161. #endif /* CONFIG_NUMA */