rt2500usb.c 59 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903
  1. /*
  2. Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
  3. <http://rt2x00.serialmonkey.com>
  4. This program is free software; you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation; either version 2 of the License, or
  7. (at your option) any later version.
  8. This program is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program; if not, write to the
  14. Free Software Foundation, Inc.,
  15. 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  16. */
  17. /*
  18. Module: rt2500usb
  19. Abstract: rt2500usb device specific routines.
  20. Supported chipsets: RT2570.
  21. */
  22. #include <linux/delay.h>
  23. #include <linux/etherdevice.h>
  24. #include <linux/init.h>
  25. #include <linux/kernel.h>
  26. #include <linux/module.h>
  27. #include <linux/usb.h>
  28. #include "rt2x00.h"
  29. #include "rt2x00usb.h"
  30. #include "rt2500usb.h"
  31. /*
  32. * Register access.
  33. * All access to the CSR registers will go through the methods
  34. * rt2500usb_register_read and rt2500usb_register_write.
  35. * BBP and RF register require indirect register access,
  36. * and use the CSR registers BBPCSR and RFCSR to achieve this.
  37. * These indirect registers work with busy bits,
  38. * and we will try maximal REGISTER_BUSY_COUNT times to access
  39. * the register while taking a REGISTER_BUSY_DELAY us delay
  40. * between each attampt. When the busy bit is still set at that time,
  41. * the access attempt is considered to have failed,
  42. * and we will print an error.
  43. * If the csr_mutex is already held then the _lock variants must
  44. * be used instead.
  45. */
  46. static inline void rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
  47. const unsigned int offset,
  48. u16 *value)
  49. {
  50. __le16 reg;
  51. rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
  52. USB_VENDOR_REQUEST_IN, offset,
  53. &reg, sizeof(reg), REGISTER_TIMEOUT);
  54. *value = le16_to_cpu(reg);
  55. }
  56. static inline void rt2500usb_register_read_lock(struct rt2x00_dev *rt2x00dev,
  57. const unsigned int offset,
  58. u16 *value)
  59. {
  60. __le16 reg;
  61. rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_READ,
  62. USB_VENDOR_REQUEST_IN, offset,
  63. &reg, sizeof(reg), REGISTER_TIMEOUT);
  64. *value = le16_to_cpu(reg);
  65. }
  66. static inline void rt2500usb_register_multiread(struct rt2x00_dev *rt2x00dev,
  67. const unsigned int offset,
  68. void *value, const u16 length)
  69. {
  70. rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
  71. USB_VENDOR_REQUEST_IN, offset,
  72. value, length,
  73. REGISTER_TIMEOUT16(length));
  74. }
  75. static inline void rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
  76. const unsigned int offset,
  77. u16 value)
  78. {
  79. __le16 reg = cpu_to_le16(value);
  80. rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
  81. USB_VENDOR_REQUEST_OUT, offset,
  82. &reg, sizeof(reg), REGISTER_TIMEOUT);
  83. }
  84. static inline void rt2500usb_register_write_lock(struct rt2x00_dev *rt2x00dev,
  85. const unsigned int offset,
  86. u16 value)
  87. {
  88. __le16 reg = cpu_to_le16(value);
  89. rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_WRITE,
  90. USB_VENDOR_REQUEST_OUT, offset,
  91. &reg, sizeof(reg), REGISTER_TIMEOUT);
  92. }
  93. static inline void rt2500usb_register_multiwrite(struct rt2x00_dev *rt2x00dev,
  94. const unsigned int offset,
  95. void *value, const u16 length)
  96. {
  97. rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
  98. USB_VENDOR_REQUEST_OUT, offset,
  99. value, length,
  100. REGISTER_TIMEOUT16(length));
  101. }
  102. static int rt2500usb_regbusy_read(struct rt2x00_dev *rt2x00dev,
  103. const unsigned int offset,
  104. struct rt2x00_field16 field,
  105. u16 *reg)
  106. {
  107. unsigned int i;
  108. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  109. rt2500usb_register_read_lock(rt2x00dev, offset, reg);
  110. if (!rt2x00_get_field16(*reg, field))
  111. return 1;
  112. udelay(REGISTER_BUSY_DELAY);
  113. }
  114. ERROR(rt2x00dev, "Indirect register access failed: "
  115. "offset=0x%.08x, value=0x%.08x\n", offset, *reg);
  116. *reg = ~0;
  117. return 0;
  118. }
  119. #define WAIT_FOR_BBP(__dev, __reg) \
  120. rt2500usb_regbusy_read((__dev), PHY_CSR8, PHY_CSR8_BUSY, (__reg))
  121. #define WAIT_FOR_RF(__dev, __reg) \
  122. rt2500usb_regbusy_read((__dev), PHY_CSR10, PHY_CSR10_RF_BUSY, (__reg))
  123. static void rt2500usb_bbp_write(struct rt2x00_dev *rt2x00dev,
  124. const unsigned int word, const u8 value)
  125. {
  126. u16 reg;
  127. mutex_lock(&rt2x00dev->csr_mutex);
  128. /*
  129. * Wait until the BBP becomes available, afterwards we
  130. * can safely write the new data into the register.
  131. */
  132. if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
  133. reg = 0;
  134. rt2x00_set_field16(&reg, PHY_CSR7_DATA, value);
  135. rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
  136. rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 0);
  137. rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
  138. }
  139. mutex_unlock(&rt2x00dev->csr_mutex);
  140. }
  141. static void rt2500usb_bbp_read(struct rt2x00_dev *rt2x00dev,
  142. const unsigned int word, u8 *value)
  143. {
  144. u16 reg;
  145. mutex_lock(&rt2x00dev->csr_mutex);
  146. /*
  147. * Wait until the BBP becomes available, afterwards we
  148. * can safely write the read request into the register.
  149. * After the data has been written, we wait until hardware
  150. * returns the correct value, if at any time the register
  151. * doesn't become available in time, reg will be 0xffffffff
  152. * which means we return 0xff to the caller.
  153. */
  154. if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
  155. reg = 0;
  156. rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
  157. rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 1);
  158. rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
  159. if (WAIT_FOR_BBP(rt2x00dev, &reg))
  160. rt2500usb_register_read_lock(rt2x00dev, PHY_CSR7, &reg);
  161. }
  162. *value = rt2x00_get_field16(reg, PHY_CSR7_DATA);
  163. mutex_unlock(&rt2x00dev->csr_mutex);
  164. }
  165. static void rt2500usb_rf_write(struct rt2x00_dev *rt2x00dev,
  166. const unsigned int word, const u32 value)
  167. {
  168. u16 reg;
  169. if (!word)
  170. return;
  171. mutex_lock(&rt2x00dev->csr_mutex);
  172. /*
  173. * Wait until the RF becomes available, afterwards we
  174. * can safely write the new data into the register.
  175. */
  176. if (WAIT_FOR_RF(rt2x00dev, &reg)) {
  177. reg = 0;
  178. rt2x00_set_field16(&reg, PHY_CSR9_RF_VALUE, value);
  179. rt2500usb_register_write_lock(rt2x00dev, PHY_CSR9, reg);
  180. reg = 0;
  181. rt2x00_set_field16(&reg, PHY_CSR10_RF_VALUE, value >> 16);
  182. rt2x00_set_field16(&reg, PHY_CSR10_RF_NUMBER_OF_BITS, 20);
  183. rt2x00_set_field16(&reg, PHY_CSR10_RF_IF_SELECT, 0);
  184. rt2x00_set_field16(&reg, PHY_CSR10_RF_BUSY, 1);
  185. rt2500usb_register_write_lock(rt2x00dev, PHY_CSR10, reg);
  186. rt2x00_rf_write(rt2x00dev, word, value);
  187. }
  188. mutex_unlock(&rt2x00dev->csr_mutex);
  189. }
  190. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  191. static void _rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
  192. const unsigned int offset,
  193. u32 *value)
  194. {
  195. rt2500usb_register_read(rt2x00dev, offset, (u16 *)value);
  196. }
  197. static void _rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
  198. const unsigned int offset,
  199. u32 value)
  200. {
  201. rt2500usb_register_write(rt2x00dev, offset, value);
  202. }
  203. static const struct rt2x00debug rt2500usb_rt2x00debug = {
  204. .owner = THIS_MODULE,
  205. .csr = {
  206. .read = _rt2500usb_register_read,
  207. .write = _rt2500usb_register_write,
  208. .flags = RT2X00DEBUGFS_OFFSET,
  209. .word_base = CSR_REG_BASE,
  210. .word_size = sizeof(u16),
  211. .word_count = CSR_REG_SIZE / sizeof(u16),
  212. },
  213. .eeprom = {
  214. .read = rt2x00_eeprom_read,
  215. .write = rt2x00_eeprom_write,
  216. .word_base = EEPROM_BASE,
  217. .word_size = sizeof(u16),
  218. .word_count = EEPROM_SIZE / sizeof(u16),
  219. },
  220. .bbp = {
  221. .read = rt2500usb_bbp_read,
  222. .write = rt2500usb_bbp_write,
  223. .word_base = BBP_BASE,
  224. .word_size = sizeof(u8),
  225. .word_count = BBP_SIZE / sizeof(u8),
  226. },
  227. .rf = {
  228. .read = rt2x00_rf_read,
  229. .write = rt2500usb_rf_write,
  230. .word_base = RF_BASE,
  231. .word_size = sizeof(u32),
  232. .word_count = RF_SIZE / sizeof(u32),
  233. },
  234. };
  235. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  236. #ifdef CONFIG_RT2X00_LIB_LEDS
  237. static void rt2500usb_brightness_set(struct led_classdev *led_cdev,
  238. enum led_brightness brightness)
  239. {
  240. struct rt2x00_led *led =
  241. container_of(led_cdev, struct rt2x00_led, led_dev);
  242. unsigned int enabled = brightness != LED_OFF;
  243. u16 reg;
  244. rt2500usb_register_read(led->rt2x00dev, MAC_CSR20, &reg);
  245. if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
  246. rt2x00_set_field16(&reg, MAC_CSR20_LINK, enabled);
  247. else if (led->type == LED_TYPE_ACTIVITY)
  248. rt2x00_set_field16(&reg, MAC_CSR20_ACTIVITY, enabled);
  249. rt2500usb_register_write(led->rt2x00dev, MAC_CSR20, reg);
  250. }
  251. static int rt2500usb_blink_set(struct led_classdev *led_cdev,
  252. unsigned long *delay_on,
  253. unsigned long *delay_off)
  254. {
  255. struct rt2x00_led *led =
  256. container_of(led_cdev, struct rt2x00_led, led_dev);
  257. u16 reg;
  258. rt2500usb_register_read(led->rt2x00dev, MAC_CSR21, &reg);
  259. rt2x00_set_field16(&reg, MAC_CSR21_ON_PERIOD, *delay_on);
  260. rt2x00_set_field16(&reg, MAC_CSR21_OFF_PERIOD, *delay_off);
  261. rt2500usb_register_write(led->rt2x00dev, MAC_CSR21, reg);
  262. return 0;
  263. }
  264. static void rt2500usb_init_led(struct rt2x00_dev *rt2x00dev,
  265. struct rt2x00_led *led,
  266. enum led_type type)
  267. {
  268. led->rt2x00dev = rt2x00dev;
  269. led->type = type;
  270. led->led_dev.brightness_set = rt2500usb_brightness_set;
  271. led->led_dev.blink_set = rt2500usb_blink_set;
  272. led->flags = LED_INITIALIZED;
  273. }
  274. #endif /* CONFIG_RT2X00_LIB_LEDS */
  275. /*
  276. * Configuration handlers.
  277. */
  278. static void rt2500usb_config_filter(struct rt2x00_dev *rt2x00dev,
  279. const unsigned int filter_flags)
  280. {
  281. u16 reg;
  282. /*
  283. * Start configuration steps.
  284. * Note that the version error will always be dropped
  285. * and broadcast frames will always be accepted since
  286. * there is no filter for it at this time.
  287. */
  288. rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
  289. rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CRC,
  290. !(filter_flags & FIF_FCSFAIL));
  291. rt2x00_set_field16(&reg, TXRX_CSR2_DROP_PHYSICAL,
  292. !(filter_flags & FIF_PLCPFAIL));
  293. rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CONTROL,
  294. !(filter_flags & FIF_CONTROL));
  295. rt2x00_set_field16(&reg, TXRX_CSR2_DROP_NOT_TO_ME,
  296. !(filter_flags & FIF_PROMISC_IN_BSS));
  297. rt2x00_set_field16(&reg, TXRX_CSR2_DROP_TODS,
  298. !(filter_flags & FIF_PROMISC_IN_BSS) &&
  299. !rt2x00dev->intf_ap_count);
  300. rt2x00_set_field16(&reg, TXRX_CSR2_DROP_VERSION_ERROR, 1);
  301. rt2x00_set_field16(&reg, TXRX_CSR2_DROP_MULTICAST,
  302. !(filter_flags & FIF_ALLMULTI));
  303. rt2x00_set_field16(&reg, TXRX_CSR2_DROP_BROADCAST, 0);
  304. rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
  305. }
  306. static void rt2500usb_config_intf(struct rt2x00_dev *rt2x00dev,
  307. struct rt2x00_intf *intf,
  308. struct rt2x00intf_conf *conf,
  309. const unsigned int flags)
  310. {
  311. unsigned int bcn_preload;
  312. u16 reg;
  313. if (flags & CONFIG_UPDATE_TYPE) {
  314. /*
  315. * Enable beacon config
  316. */
  317. bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
  318. rt2500usb_register_read(rt2x00dev, TXRX_CSR20, &reg);
  319. rt2x00_set_field16(&reg, TXRX_CSR20_OFFSET, bcn_preload >> 6);
  320. rt2x00_set_field16(&reg, TXRX_CSR20_BCN_EXPECT_WINDOW,
  321. 2 * (conf->type != NL80211_IFTYPE_STATION));
  322. rt2500usb_register_write(rt2x00dev, TXRX_CSR20, reg);
  323. /*
  324. * Enable synchronisation.
  325. */
  326. rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
  327. rt2x00_set_field16(&reg, TXRX_CSR18_OFFSET, 0);
  328. rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
  329. rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
  330. rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
  331. rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, conf->sync);
  332. rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
  333. rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
  334. }
  335. if (flags & CONFIG_UPDATE_MAC)
  336. rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR2, conf->mac,
  337. (3 * sizeof(__le16)));
  338. if (flags & CONFIG_UPDATE_BSSID)
  339. rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR5, conf->bssid,
  340. (3 * sizeof(__le16)));
  341. }
  342. static void rt2500usb_config_erp(struct rt2x00_dev *rt2x00dev,
  343. struct rt2x00lib_erp *erp)
  344. {
  345. u16 reg;
  346. rt2500usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
  347. rt2x00_set_field16(&reg, TXRX_CSR1_ACK_TIMEOUT, erp->ack_timeout);
  348. rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg);
  349. rt2500usb_register_read(rt2x00dev, TXRX_CSR10, &reg);
  350. rt2x00_set_field16(&reg, TXRX_CSR10_AUTORESPOND_PREAMBLE,
  351. !!erp->short_preamble);
  352. rt2500usb_register_write(rt2x00dev, TXRX_CSR10, reg);
  353. rt2500usb_register_write(rt2x00dev, TXRX_CSR11, erp->basic_rates);
  354. rt2500usb_register_write(rt2x00dev, MAC_CSR10, erp->slot_time);
  355. rt2500usb_register_write(rt2x00dev, MAC_CSR11, erp->sifs);
  356. rt2500usb_register_write(rt2x00dev, MAC_CSR12, erp->eifs);
  357. }
  358. static void rt2500usb_config_ant(struct rt2x00_dev *rt2x00dev,
  359. struct antenna_setup *ant)
  360. {
  361. u8 r2;
  362. u8 r14;
  363. u16 csr5;
  364. u16 csr6;
  365. /*
  366. * We should never come here because rt2x00lib is supposed
  367. * to catch this and send us the correct antenna explicitely.
  368. */
  369. BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
  370. ant->tx == ANTENNA_SW_DIVERSITY);
  371. rt2500usb_bbp_read(rt2x00dev, 2, &r2);
  372. rt2500usb_bbp_read(rt2x00dev, 14, &r14);
  373. rt2500usb_register_read(rt2x00dev, PHY_CSR5, &csr5);
  374. rt2500usb_register_read(rt2x00dev, PHY_CSR6, &csr6);
  375. /*
  376. * Configure the TX antenna.
  377. */
  378. switch (ant->tx) {
  379. case ANTENNA_HW_DIVERSITY:
  380. rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 1);
  381. rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 1);
  382. rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 1);
  383. break;
  384. case ANTENNA_A:
  385. rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
  386. rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 0);
  387. rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 0);
  388. break;
  389. case ANTENNA_B:
  390. default:
  391. rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
  392. rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 2);
  393. rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 2);
  394. break;
  395. }
  396. /*
  397. * Configure the RX antenna.
  398. */
  399. switch (ant->rx) {
  400. case ANTENNA_HW_DIVERSITY:
  401. rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 1);
  402. break;
  403. case ANTENNA_A:
  404. rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
  405. break;
  406. case ANTENNA_B:
  407. default:
  408. rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
  409. break;
  410. }
  411. /*
  412. * RT2525E and RT5222 need to flip TX I/Q
  413. */
  414. if (rt2x00_rf(&rt2x00dev->chip, RF2525E) ||
  415. rt2x00_rf(&rt2x00dev->chip, RF5222)) {
  416. rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
  417. rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 1);
  418. rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 1);
  419. /*
  420. * RT2525E does not need RX I/Q Flip.
  421. */
  422. if (rt2x00_rf(&rt2x00dev->chip, RF2525E))
  423. rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
  424. } else {
  425. rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 0);
  426. rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 0);
  427. }
  428. rt2500usb_bbp_write(rt2x00dev, 2, r2);
  429. rt2500usb_bbp_write(rt2x00dev, 14, r14);
  430. rt2500usb_register_write(rt2x00dev, PHY_CSR5, csr5);
  431. rt2500usb_register_write(rt2x00dev, PHY_CSR6, csr6);
  432. }
  433. static void rt2500usb_config_channel(struct rt2x00_dev *rt2x00dev,
  434. struct rf_channel *rf, const int txpower)
  435. {
  436. /*
  437. * Set TXpower.
  438. */
  439. rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
  440. /*
  441. * For RT2525E we should first set the channel to half band higher.
  442. */
  443. if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
  444. static const u32 vals[] = {
  445. 0x000008aa, 0x000008ae, 0x000008ae, 0x000008b2,
  446. 0x000008b2, 0x000008b6, 0x000008b6, 0x000008ba,
  447. 0x000008ba, 0x000008be, 0x000008b7, 0x00000902,
  448. 0x00000902, 0x00000906
  449. };
  450. rt2500usb_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
  451. if (rf->rf4)
  452. rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
  453. }
  454. rt2500usb_rf_write(rt2x00dev, 1, rf->rf1);
  455. rt2500usb_rf_write(rt2x00dev, 2, rf->rf2);
  456. rt2500usb_rf_write(rt2x00dev, 3, rf->rf3);
  457. if (rf->rf4)
  458. rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
  459. }
  460. static void rt2500usb_config_txpower(struct rt2x00_dev *rt2x00dev,
  461. const int txpower)
  462. {
  463. u32 rf3;
  464. rt2x00_rf_read(rt2x00dev, 3, &rf3);
  465. rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
  466. rt2500usb_rf_write(rt2x00dev, 3, rf3);
  467. }
  468. static void rt2500usb_config_duration(struct rt2x00_dev *rt2x00dev,
  469. struct rt2x00lib_conf *libconf)
  470. {
  471. u16 reg;
  472. rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
  473. rt2x00_set_field16(&reg, TXRX_CSR18_INTERVAL,
  474. libconf->conf->beacon_int * 4);
  475. rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
  476. }
  477. static void rt2500usb_config(struct rt2x00_dev *rt2x00dev,
  478. struct rt2x00lib_conf *libconf,
  479. const unsigned int flags)
  480. {
  481. if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
  482. rt2500usb_config_channel(rt2x00dev, &libconf->rf,
  483. libconf->conf->power_level);
  484. if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
  485. !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
  486. rt2500usb_config_txpower(rt2x00dev,
  487. libconf->conf->power_level);
  488. if (flags & IEEE80211_CONF_CHANGE_BEACON_INTERVAL)
  489. rt2500usb_config_duration(rt2x00dev, libconf);
  490. }
  491. /*
  492. * Link tuning
  493. */
  494. static void rt2500usb_link_stats(struct rt2x00_dev *rt2x00dev,
  495. struct link_qual *qual)
  496. {
  497. u16 reg;
  498. /*
  499. * Update FCS error count from register.
  500. */
  501. rt2500usb_register_read(rt2x00dev, STA_CSR0, &reg);
  502. qual->rx_failed = rt2x00_get_field16(reg, STA_CSR0_FCS_ERROR);
  503. /*
  504. * Update False CCA count from register.
  505. */
  506. rt2500usb_register_read(rt2x00dev, STA_CSR3, &reg);
  507. qual->false_cca = rt2x00_get_field16(reg, STA_CSR3_FALSE_CCA_ERROR);
  508. }
  509. static void rt2500usb_reset_tuner(struct rt2x00_dev *rt2x00dev)
  510. {
  511. u16 eeprom;
  512. u16 value;
  513. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &eeprom);
  514. value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R24_LOW);
  515. rt2500usb_bbp_write(rt2x00dev, 24, value);
  516. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &eeprom);
  517. value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R25_LOW);
  518. rt2500usb_bbp_write(rt2x00dev, 25, value);
  519. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &eeprom);
  520. value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R61_LOW);
  521. rt2500usb_bbp_write(rt2x00dev, 61, value);
  522. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &eeprom);
  523. value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_VGCUPPER);
  524. rt2500usb_bbp_write(rt2x00dev, 17, value);
  525. rt2x00dev->link.vgc_level = value;
  526. }
  527. /*
  528. * NOTE: This function is directly ported from legacy driver, but
  529. * despite it being declared it was never called. Although link tuning
  530. * sounds like a good idea, and usually works well for the other drivers,
  531. * it does _not_ work with rt2500usb. Enabling this function will result
  532. * in TX capabilities only until association kicks in. Immediately
  533. * after the successful association all TX frames will be kept in the
  534. * hardware queue and never transmitted.
  535. */
  536. #if 0
  537. static void rt2500usb_link_tuner(struct rt2x00_dev *rt2x00dev)
  538. {
  539. int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
  540. u16 bbp_thresh;
  541. u16 vgc_bound;
  542. u16 sens;
  543. u16 r24;
  544. u16 r25;
  545. u16 r61;
  546. u16 r17_sens;
  547. u8 r17;
  548. u8 up_bound;
  549. u8 low_bound;
  550. /*
  551. * Read current r17 value, as well as the sensitivity values
  552. * for the r17 register.
  553. */
  554. rt2500usb_bbp_read(rt2x00dev, 17, &r17);
  555. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17, &r17_sens);
  556. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &vgc_bound);
  557. up_bound = rt2x00_get_field16(vgc_bound, EEPROM_BBPTUNE_VGCUPPER);
  558. low_bound = rt2x00_get_field16(vgc_bound, EEPROM_BBPTUNE_VGCLOWER);
  559. /*
  560. * If we are not associated, we should go straight to the
  561. * dynamic CCA tuning.
  562. */
  563. if (!rt2x00dev->intf_associated)
  564. goto dynamic_cca_tune;
  565. /*
  566. * Determine the BBP tuning threshold and correctly
  567. * set BBP 24, 25 and 61.
  568. */
  569. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE, &bbp_thresh);
  570. bbp_thresh = rt2x00_get_field16(bbp_thresh, EEPROM_BBPTUNE_THRESHOLD);
  571. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &r24);
  572. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &r25);
  573. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &r61);
  574. if ((rssi + bbp_thresh) > 0) {
  575. r24 = rt2x00_get_field16(r24, EEPROM_BBPTUNE_R24_HIGH);
  576. r25 = rt2x00_get_field16(r25, EEPROM_BBPTUNE_R25_HIGH);
  577. r61 = rt2x00_get_field16(r61, EEPROM_BBPTUNE_R61_HIGH);
  578. } else {
  579. r24 = rt2x00_get_field16(r24, EEPROM_BBPTUNE_R24_LOW);
  580. r25 = rt2x00_get_field16(r25, EEPROM_BBPTUNE_R25_LOW);
  581. r61 = rt2x00_get_field16(r61, EEPROM_BBPTUNE_R61_LOW);
  582. }
  583. rt2500usb_bbp_write(rt2x00dev, 24, r24);
  584. rt2500usb_bbp_write(rt2x00dev, 25, r25);
  585. rt2500usb_bbp_write(rt2x00dev, 61, r61);
  586. /*
  587. * A too low RSSI will cause too much false CCA which will
  588. * then corrupt the R17 tuning. To remidy this the tuning should
  589. * be stopped (While making sure the R17 value will not exceed limits)
  590. */
  591. if (rssi >= -40) {
  592. if (r17 != 0x60)
  593. rt2500usb_bbp_write(rt2x00dev, 17, 0x60);
  594. return;
  595. }
  596. /*
  597. * Special big-R17 for short distance
  598. */
  599. if (rssi >= -58) {
  600. sens = rt2x00_get_field16(r17_sens, EEPROM_BBPTUNE_R17_LOW);
  601. if (r17 != sens)
  602. rt2500usb_bbp_write(rt2x00dev, 17, sens);
  603. return;
  604. }
  605. /*
  606. * Special mid-R17 for middle distance
  607. */
  608. if (rssi >= -74) {
  609. sens = rt2x00_get_field16(r17_sens, EEPROM_BBPTUNE_R17_HIGH);
  610. if (r17 != sens)
  611. rt2500usb_bbp_write(rt2x00dev, 17, sens);
  612. return;
  613. }
  614. /*
  615. * Leave short or middle distance condition, restore r17
  616. * to the dynamic tuning range.
  617. */
  618. low_bound = 0x32;
  619. if (rssi < -77)
  620. up_bound -= (-77 - rssi);
  621. if (up_bound < low_bound)
  622. up_bound = low_bound;
  623. if (r17 > up_bound) {
  624. rt2500usb_bbp_write(rt2x00dev, 17, up_bound);
  625. rt2x00dev->link.vgc_level = up_bound;
  626. return;
  627. }
  628. dynamic_cca_tune:
  629. /*
  630. * R17 is inside the dynamic tuning range,
  631. * start tuning the link based on the false cca counter.
  632. */
  633. if (rt2x00dev->link.qual.false_cca > 512 && r17 < up_bound) {
  634. rt2500usb_bbp_write(rt2x00dev, 17, ++r17);
  635. rt2x00dev->link.vgc_level = r17;
  636. } else if (rt2x00dev->link.qual.false_cca < 100 && r17 > low_bound) {
  637. rt2500usb_bbp_write(rt2x00dev, 17, --r17);
  638. rt2x00dev->link.vgc_level = r17;
  639. }
  640. }
  641. #else
  642. #define rt2500usb_link_tuner NULL
  643. #endif
  644. /*
  645. * Initialization functions.
  646. */
  647. static int rt2500usb_init_registers(struct rt2x00_dev *rt2x00dev)
  648. {
  649. u16 reg;
  650. rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0x0001,
  651. USB_MODE_TEST, REGISTER_TIMEOUT);
  652. rt2x00usb_vendor_request_sw(rt2x00dev, USB_SINGLE_WRITE, 0x0308,
  653. 0x00f0, REGISTER_TIMEOUT);
  654. rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
  655. rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
  656. rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
  657. rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x1111);
  658. rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x1e11);
  659. rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
  660. rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 1);
  661. rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 1);
  662. rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
  663. rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
  664. rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
  665. rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
  666. rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
  667. rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
  668. rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
  669. rt2500usb_register_read(rt2x00dev, TXRX_CSR5, &reg);
  670. rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0, 13);
  671. rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0_VALID, 1);
  672. rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1, 12);
  673. rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1_VALID, 1);
  674. rt2500usb_register_write(rt2x00dev, TXRX_CSR5, reg);
  675. rt2500usb_register_read(rt2x00dev, TXRX_CSR6, &reg);
  676. rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0, 10);
  677. rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0_VALID, 1);
  678. rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1, 11);
  679. rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1_VALID, 1);
  680. rt2500usb_register_write(rt2x00dev, TXRX_CSR6, reg);
  681. rt2500usb_register_read(rt2x00dev, TXRX_CSR7, &reg);
  682. rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0, 7);
  683. rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0_VALID, 1);
  684. rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1, 6);
  685. rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1_VALID, 1);
  686. rt2500usb_register_write(rt2x00dev, TXRX_CSR7, reg);
  687. rt2500usb_register_read(rt2x00dev, TXRX_CSR8, &reg);
  688. rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0, 5);
  689. rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0_VALID, 1);
  690. rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1, 0);
  691. rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1_VALID, 0);
  692. rt2500usb_register_write(rt2x00dev, TXRX_CSR8, reg);
  693. rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
  694. rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
  695. rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, 0);
  696. rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
  697. rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
  698. rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
  699. rt2500usb_register_write(rt2x00dev, TXRX_CSR21, 0xe78f);
  700. rt2500usb_register_write(rt2x00dev, MAC_CSR9, 0xff1d);
  701. if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
  702. return -EBUSY;
  703. rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
  704. rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
  705. rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
  706. rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 1);
  707. rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
  708. if (rt2x00_rev(&rt2x00dev->chip) >= RT2570_VERSION_C) {
  709. rt2500usb_register_read(rt2x00dev, PHY_CSR2, &reg);
  710. rt2x00_set_field16(&reg, PHY_CSR2_LNA, 0);
  711. } else {
  712. reg = 0;
  713. rt2x00_set_field16(&reg, PHY_CSR2_LNA, 1);
  714. rt2x00_set_field16(&reg, PHY_CSR2_LNA_MODE, 3);
  715. }
  716. rt2500usb_register_write(rt2x00dev, PHY_CSR2, reg);
  717. rt2500usb_register_write(rt2x00dev, MAC_CSR11, 0x0002);
  718. rt2500usb_register_write(rt2x00dev, MAC_CSR22, 0x0053);
  719. rt2500usb_register_write(rt2x00dev, MAC_CSR15, 0x01ee);
  720. rt2500usb_register_write(rt2x00dev, MAC_CSR16, 0x0000);
  721. rt2500usb_register_read(rt2x00dev, MAC_CSR8, &reg);
  722. rt2x00_set_field16(&reg, MAC_CSR8_MAX_FRAME_UNIT,
  723. rt2x00dev->rx->data_size);
  724. rt2500usb_register_write(rt2x00dev, MAC_CSR8, reg);
  725. rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
  726. rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
  727. rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, 0xff);
  728. rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
  729. rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
  730. rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON, 90);
  731. rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
  732. rt2500usb_register_read(rt2x00dev, PHY_CSR4, &reg);
  733. rt2x00_set_field16(&reg, PHY_CSR4_LOW_RF_LE, 1);
  734. rt2500usb_register_write(rt2x00dev, PHY_CSR4, reg);
  735. rt2500usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
  736. rt2x00_set_field16(&reg, TXRX_CSR1_AUTO_SEQUENCE, 1);
  737. rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg);
  738. return 0;
  739. }
  740. static int rt2500usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
  741. {
  742. unsigned int i;
  743. u8 value;
  744. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  745. rt2500usb_bbp_read(rt2x00dev, 0, &value);
  746. if ((value != 0xff) && (value != 0x00))
  747. return 0;
  748. udelay(REGISTER_BUSY_DELAY);
  749. }
  750. ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
  751. return -EACCES;
  752. }
  753. static int rt2500usb_init_bbp(struct rt2x00_dev *rt2x00dev)
  754. {
  755. unsigned int i;
  756. u16 eeprom;
  757. u8 value;
  758. u8 reg_id;
  759. if (unlikely(rt2500usb_wait_bbp_ready(rt2x00dev)))
  760. return -EACCES;
  761. rt2500usb_bbp_write(rt2x00dev, 3, 0x02);
  762. rt2500usb_bbp_write(rt2x00dev, 4, 0x19);
  763. rt2500usb_bbp_write(rt2x00dev, 14, 0x1c);
  764. rt2500usb_bbp_write(rt2x00dev, 15, 0x30);
  765. rt2500usb_bbp_write(rt2x00dev, 16, 0xac);
  766. rt2500usb_bbp_write(rt2x00dev, 18, 0x18);
  767. rt2500usb_bbp_write(rt2x00dev, 19, 0xff);
  768. rt2500usb_bbp_write(rt2x00dev, 20, 0x1e);
  769. rt2500usb_bbp_write(rt2x00dev, 21, 0x08);
  770. rt2500usb_bbp_write(rt2x00dev, 22, 0x08);
  771. rt2500usb_bbp_write(rt2x00dev, 23, 0x08);
  772. rt2500usb_bbp_write(rt2x00dev, 24, 0x80);
  773. rt2500usb_bbp_write(rt2x00dev, 25, 0x50);
  774. rt2500usb_bbp_write(rt2x00dev, 26, 0x08);
  775. rt2500usb_bbp_write(rt2x00dev, 27, 0x23);
  776. rt2500usb_bbp_write(rt2x00dev, 30, 0x10);
  777. rt2500usb_bbp_write(rt2x00dev, 31, 0x2b);
  778. rt2500usb_bbp_write(rt2x00dev, 32, 0xb9);
  779. rt2500usb_bbp_write(rt2x00dev, 34, 0x12);
  780. rt2500usb_bbp_write(rt2x00dev, 35, 0x50);
  781. rt2500usb_bbp_write(rt2x00dev, 39, 0xc4);
  782. rt2500usb_bbp_write(rt2x00dev, 40, 0x02);
  783. rt2500usb_bbp_write(rt2x00dev, 41, 0x60);
  784. rt2500usb_bbp_write(rt2x00dev, 53, 0x10);
  785. rt2500usb_bbp_write(rt2x00dev, 54, 0x18);
  786. rt2500usb_bbp_write(rt2x00dev, 56, 0x08);
  787. rt2500usb_bbp_write(rt2x00dev, 57, 0x10);
  788. rt2500usb_bbp_write(rt2x00dev, 58, 0x08);
  789. rt2500usb_bbp_write(rt2x00dev, 61, 0x60);
  790. rt2500usb_bbp_write(rt2x00dev, 62, 0x10);
  791. rt2500usb_bbp_write(rt2x00dev, 75, 0xff);
  792. for (i = 0; i < EEPROM_BBP_SIZE; i++) {
  793. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
  794. if (eeprom != 0xffff && eeprom != 0x0000) {
  795. reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
  796. value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
  797. rt2500usb_bbp_write(rt2x00dev, reg_id, value);
  798. }
  799. }
  800. return 0;
  801. }
  802. /*
  803. * Device state switch handlers.
  804. */
  805. static void rt2500usb_toggle_rx(struct rt2x00_dev *rt2x00dev,
  806. enum dev_state state)
  807. {
  808. u16 reg;
  809. rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
  810. rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX,
  811. (state == STATE_RADIO_RX_OFF) ||
  812. (state == STATE_RADIO_RX_OFF_LINK));
  813. rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
  814. }
  815. static int rt2500usb_enable_radio(struct rt2x00_dev *rt2x00dev)
  816. {
  817. /*
  818. * Initialize all registers.
  819. */
  820. if (unlikely(rt2500usb_init_registers(rt2x00dev) ||
  821. rt2500usb_init_bbp(rt2x00dev)))
  822. return -EIO;
  823. return 0;
  824. }
  825. static void rt2500usb_disable_radio(struct rt2x00_dev *rt2x00dev)
  826. {
  827. rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x2121);
  828. rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x2121);
  829. /*
  830. * Disable synchronisation.
  831. */
  832. rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
  833. rt2x00usb_disable_radio(rt2x00dev);
  834. }
  835. static int rt2500usb_set_state(struct rt2x00_dev *rt2x00dev,
  836. enum dev_state state)
  837. {
  838. u16 reg;
  839. u16 reg2;
  840. unsigned int i;
  841. char put_to_sleep;
  842. char bbp_state;
  843. char rf_state;
  844. put_to_sleep = (state != STATE_AWAKE);
  845. reg = 0;
  846. rt2x00_set_field16(&reg, MAC_CSR17_BBP_DESIRE_STATE, state);
  847. rt2x00_set_field16(&reg, MAC_CSR17_RF_DESIRE_STATE, state);
  848. rt2x00_set_field16(&reg, MAC_CSR17_PUT_TO_SLEEP, put_to_sleep);
  849. rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
  850. rt2x00_set_field16(&reg, MAC_CSR17_SET_STATE, 1);
  851. rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
  852. /*
  853. * Device is not guaranteed to be in the requested state yet.
  854. * We must wait until the register indicates that the
  855. * device has entered the correct state.
  856. */
  857. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  858. rt2500usb_register_read(rt2x00dev, MAC_CSR17, &reg2);
  859. bbp_state = rt2x00_get_field16(reg2, MAC_CSR17_BBP_CURR_STATE);
  860. rf_state = rt2x00_get_field16(reg2, MAC_CSR17_RF_CURR_STATE);
  861. if (bbp_state == state && rf_state == state)
  862. return 0;
  863. rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
  864. msleep(30);
  865. }
  866. return -EBUSY;
  867. }
  868. static int rt2500usb_set_device_state(struct rt2x00_dev *rt2x00dev,
  869. enum dev_state state)
  870. {
  871. int retval = 0;
  872. switch (state) {
  873. case STATE_RADIO_ON:
  874. retval = rt2500usb_enable_radio(rt2x00dev);
  875. break;
  876. case STATE_RADIO_OFF:
  877. rt2500usb_disable_radio(rt2x00dev);
  878. break;
  879. case STATE_RADIO_RX_ON:
  880. case STATE_RADIO_RX_ON_LINK:
  881. case STATE_RADIO_RX_OFF:
  882. case STATE_RADIO_RX_OFF_LINK:
  883. rt2500usb_toggle_rx(rt2x00dev, state);
  884. break;
  885. case STATE_RADIO_IRQ_ON:
  886. case STATE_RADIO_IRQ_OFF:
  887. /* No support, but no error either */
  888. break;
  889. case STATE_DEEP_SLEEP:
  890. case STATE_SLEEP:
  891. case STATE_STANDBY:
  892. case STATE_AWAKE:
  893. retval = rt2500usb_set_state(rt2x00dev, state);
  894. break;
  895. default:
  896. retval = -ENOTSUPP;
  897. break;
  898. }
  899. if (unlikely(retval))
  900. ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
  901. state, retval);
  902. return retval;
  903. }
  904. /*
  905. * TX descriptor initialization
  906. */
  907. static void rt2500usb_write_tx_desc(struct rt2x00_dev *rt2x00dev,
  908. struct sk_buff *skb,
  909. struct txentry_desc *txdesc)
  910. {
  911. struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
  912. __le32 *txd = skbdesc->desc;
  913. u32 word;
  914. /*
  915. * Start writing the descriptor words.
  916. */
  917. rt2x00_desc_read(txd, 1, &word);
  918. rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, IEEE80211_HEADER);
  919. rt2x00_set_field32(&word, TXD_W1_AIFS, txdesc->aifs);
  920. rt2x00_set_field32(&word, TXD_W1_CWMIN, txdesc->cw_min);
  921. rt2x00_set_field32(&word, TXD_W1_CWMAX, txdesc->cw_max);
  922. rt2x00_desc_write(txd, 1, word);
  923. rt2x00_desc_read(txd, 2, &word);
  924. rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->signal);
  925. rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->service);
  926. rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->length_low);
  927. rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->length_high);
  928. rt2x00_desc_write(txd, 2, word);
  929. rt2x00_desc_read(txd, 0, &word);
  930. rt2x00_set_field32(&word, TXD_W0_RETRY_LIMIT, txdesc->retry_limit);
  931. rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
  932. test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
  933. rt2x00_set_field32(&word, TXD_W0_ACK,
  934. test_bit(ENTRY_TXD_ACK, &txdesc->flags));
  935. rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
  936. test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
  937. rt2x00_set_field32(&word, TXD_W0_OFDM,
  938. test_bit(ENTRY_TXD_OFDM_RATE, &txdesc->flags));
  939. rt2x00_set_field32(&word, TXD_W0_NEW_SEQ,
  940. test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags));
  941. rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
  942. rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skb->len);
  943. rt2x00_set_field32(&word, TXD_W0_CIPHER, CIPHER_NONE);
  944. rt2x00_desc_write(txd, 0, word);
  945. }
  946. /*
  947. * TX data initialization
  948. */
  949. static void rt2500usb_beacondone(struct urb *urb);
  950. static void rt2500usb_write_beacon(struct queue_entry *entry)
  951. {
  952. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  953. struct usb_device *usb_dev = to_usb_device_intf(rt2x00dev->dev);
  954. struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
  955. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  956. int pipe = usb_sndbulkpipe(usb_dev, 1);
  957. int length;
  958. u16 reg;
  959. /*
  960. * Add the descriptor in front of the skb.
  961. */
  962. skb_push(entry->skb, entry->queue->desc_size);
  963. memcpy(entry->skb->data, skbdesc->desc, skbdesc->desc_len);
  964. skbdesc->desc = entry->skb->data;
  965. /*
  966. * Disable beaconing while we are reloading the beacon data,
  967. * otherwise we might be sending out invalid data.
  968. */
  969. rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
  970. rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
  971. rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
  972. rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
  973. rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
  974. /*
  975. * USB devices cannot blindly pass the skb->len as the
  976. * length of the data to usb_fill_bulk_urb. Pass the skb
  977. * to the driver to determine what the length should be.
  978. */
  979. length = rt2x00dev->ops->lib->get_tx_data_len(rt2x00dev, entry->skb);
  980. usb_fill_bulk_urb(bcn_priv->urb, usb_dev, pipe,
  981. entry->skb->data, length, rt2500usb_beacondone,
  982. entry);
  983. /*
  984. * Second we need to create the guardian byte.
  985. * We only need a single byte, so lets recycle
  986. * the 'flags' field we are not using for beacons.
  987. */
  988. bcn_priv->guardian_data = 0;
  989. usb_fill_bulk_urb(bcn_priv->guardian_urb, usb_dev, pipe,
  990. &bcn_priv->guardian_data, 1, rt2500usb_beacondone,
  991. entry);
  992. /*
  993. * Send out the guardian byte.
  994. */
  995. usb_submit_urb(bcn_priv->guardian_urb, GFP_ATOMIC);
  996. }
  997. static int rt2500usb_get_tx_data_len(struct rt2x00_dev *rt2x00dev,
  998. struct sk_buff *skb)
  999. {
  1000. int length;
  1001. /*
  1002. * The length _must_ be a multiple of 2,
  1003. * but it must _not_ be a multiple of the USB packet size.
  1004. */
  1005. length = roundup(skb->len, 2);
  1006. length += (2 * !(length % rt2x00dev->usb_maxpacket));
  1007. return length;
  1008. }
  1009. static void rt2500usb_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
  1010. const enum data_queue_qid queue)
  1011. {
  1012. u16 reg;
  1013. if (queue != QID_BEACON) {
  1014. rt2x00usb_kick_tx_queue(rt2x00dev, queue);
  1015. return;
  1016. }
  1017. rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
  1018. if (!rt2x00_get_field16(reg, TXRX_CSR19_BEACON_GEN)) {
  1019. rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
  1020. rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
  1021. rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
  1022. /*
  1023. * Beacon generation will fail initially.
  1024. * To prevent this we need to register the TXRX_CSR19
  1025. * register several times.
  1026. */
  1027. rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
  1028. rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
  1029. rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
  1030. rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
  1031. rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
  1032. }
  1033. }
  1034. /*
  1035. * RX control handlers
  1036. */
  1037. static void rt2500usb_fill_rxdone(struct queue_entry *entry,
  1038. struct rxdone_entry_desc *rxdesc)
  1039. {
  1040. struct queue_entry_priv_usb *entry_priv = entry->priv_data;
  1041. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  1042. __le32 *rxd =
  1043. (__le32 *)(entry->skb->data +
  1044. (entry_priv->urb->actual_length -
  1045. entry->queue->desc_size));
  1046. u32 word0;
  1047. u32 word1;
  1048. /*
  1049. * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of
  1050. * frame data in rt2x00usb.
  1051. */
  1052. memcpy(skbdesc->desc, rxd, skbdesc->desc_len);
  1053. rxd = (__le32 *)skbdesc->desc;
  1054. /*
  1055. * It is now safe to read the descriptor on all architectures.
  1056. */
  1057. rt2x00_desc_read(rxd, 0, &word0);
  1058. rt2x00_desc_read(rxd, 1, &word1);
  1059. if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
  1060. rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
  1061. if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
  1062. rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
  1063. /*
  1064. * Obtain the status about this packet.
  1065. * When frame was received with an OFDM bitrate,
  1066. * the signal is the PLCP value. If it was received with
  1067. * a CCK bitrate the signal is the rate in 100kbit/s.
  1068. */
  1069. rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
  1070. rxdesc->rssi = rt2x00_get_field32(word1, RXD_W1_RSSI) -
  1071. entry->queue->rt2x00dev->rssi_offset;
  1072. rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
  1073. if (rt2x00_get_field32(word0, RXD_W0_OFDM))
  1074. rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
  1075. else
  1076. rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
  1077. if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
  1078. rxdesc->dev_flags |= RXDONE_MY_BSS;
  1079. /*
  1080. * Adjust the skb memory window to the frame boundaries.
  1081. */
  1082. skb_trim(entry->skb, rxdesc->size);
  1083. }
  1084. /*
  1085. * Interrupt functions.
  1086. */
  1087. static void rt2500usb_beacondone(struct urb *urb)
  1088. {
  1089. struct queue_entry *entry = (struct queue_entry *)urb->context;
  1090. struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
  1091. if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &entry->queue->rt2x00dev->flags))
  1092. return;
  1093. /*
  1094. * Check if this was the guardian beacon,
  1095. * if that was the case we need to send the real beacon now.
  1096. * Otherwise we should free the sk_buffer, the device
  1097. * should be doing the rest of the work now.
  1098. */
  1099. if (bcn_priv->guardian_urb == urb) {
  1100. usb_submit_urb(bcn_priv->urb, GFP_ATOMIC);
  1101. } else if (bcn_priv->urb == urb) {
  1102. dev_kfree_skb(entry->skb);
  1103. entry->skb = NULL;
  1104. }
  1105. }
  1106. /*
  1107. * Device probe functions.
  1108. */
  1109. static int rt2500usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
  1110. {
  1111. u16 word;
  1112. u8 *mac;
  1113. u8 bbp;
  1114. rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);
  1115. /*
  1116. * Start validation of the data that has been read.
  1117. */
  1118. mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
  1119. if (!is_valid_ether_addr(mac)) {
  1120. random_ether_addr(mac);
  1121. EEPROM(rt2x00dev, "MAC: %pM\n", mac);
  1122. }
  1123. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
  1124. if (word == 0xffff) {
  1125. rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
  1126. rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
  1127. ANTENNA_SW_DIVERSITY);
  1128. rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
  1129. ANTENNA_SW_DIVERSITY);
  1130. rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
  1131. LED_MODE_DEFAULT);
  1132. rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
  1133. rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
  1134. rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
  1135. rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
  1136. EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
  1137. }
  1138. rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
  1139. if (word == 0xffff) {
  1140. rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
  1141. rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
  1142. rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
  1143. rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
  1144. EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
  1145. }
  1146. rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
  1147. if (word == 0xffff) {
  1148. rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
  1149. DEFAULT_RSSI_OFFSET);
  1150. rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
  1151. EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
  1152. }
  1153. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE, &word);
  1154. if (word == 0xffff) {
  1155. rt2x00_set_field16(&word, EEPROM_BBPTUNE_THRESHOLD, 45);
  1156. rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE, word);
  1157. EEPROM(rt2x00dev, "BBPtune: 0x%04x\n", word);
  1158. }
  1159. /*
  1160. * Switch lower vgc bound to current BBP R17 value,
  1161. * lower the value a bit for better quality.
  1162. */
  1163. rt2500usb_bbp_read(rt2x00dev, 17, &bbp);
  1164. bbp -= 6;
  1165. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &word);
  1166. if (word == 0xffff) {
  1167. rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCUPPER, 0x40);
  1168. rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
  1169. rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
  1170. EEPROM(rt2x00dev, "BBPtune vgc: 0x%04x\n", word);
  1171. } else {
  1172. rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
  1173. rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
  1174. }
  1175. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17, &word);
  1176. if (word == 0xffff) {
  1177. rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_LOW, 0x48);
  1178. rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_HIGH, 0x41);
  1179. rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R17, word);
  1180. EEPROM(rt2x00dev, "BBPtune r17: 0x%04x\n", word);
  1181. }
  1182. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &word);
  1183. if (word == 0xffff) {
  1184. rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_LOW, 0x40);
  1185. rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_HIGH, 0x80);
  1186. rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R24, word);
  1187. EEPROM(rt2x00dev, "BBPtune r24: 0x%04x\n", word);
  1188. }
  1189. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &word);
  1190. if (word == 0xffff) {
  1191. rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_LOW, 0x40);
  1192. rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_HIGH, 0x50);
  1193. rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R25, word);
  1194. EEPROM(rt2x00dev, "BBPtune r25: 0x%04x\n", word);
  1195. }
  1196. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &word);
  1197. if (word == 0xffff) {
  1198. rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_LOW, 0x60);
  1199. rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_HIGH, 0x6d);
  1200. rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R61, word);
  1201. EEPROM(rt2x00dev, "BBPtune r61: 0x%04x\n", word);
  1202. }
  1203. return 0;
  1204. }
  1205. static int rt2500usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
  1206. {
  1207. u16 reg;
  1208. u16 value;
  1209. u16 eeprom;
  1210. /*
  1211. * Read EEPROM word for configuration.
  1212. */
  1213. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
  1214. /*
  1215. * Identify RF chipset.
  1216. */
  1217. value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
  1218. rt2500usb_register_read(rt2x00dev, MAC_CSR0, &reg);
  1219. rt2x00_set_chip(rt2x00dev, RT2570, value, reg);
  1220. if (!rt2x00_check_rev(&rt2x00dev->chip, 0)) {
  1221. ERROR(rt2x00dev, "Invalid RT chipset detected.\n");
  1222. return -ENODEV;
  1223. }
  1224. if (!rt2x00_rf(&rt2x00dev->chip, RF2522) &&
  1225. !rt2x00_rf(&rt2x00dev->chip, RF2523) &&
  1226. !rt2x00_rf(&rt2x00dev->chip, RF2524) &&
  1227. !rt2x00_rf(&rt2x00dev->chip, RF2525) &&
  1228. !rt2x00_rf(&rt2x00dev->chip, RF2525E) &&
  1229. !rt2x00_rf(&rt2x00dev->chip, RF5222)) {
  1230. ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
  1231. return -ENODEV;
  1232. }
  1233. /*
  1234. * Identify default antenna configuration.
  1235. */
  1236. rt2x00dev->default_ant.tx =
  1237. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
  1238. rt2x00dev->default_ant.rx =
  1239. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
  1240. /*
  1241. * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
  1242. * I am not 100% sure about this, but the legacy drivers do not
  1243. * indicate antenna swapping in software is required when
  1244. * diversity is enabled.
  1245. */
  1246. if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
  1247. rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
  1248. if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
  1249. rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
  1250. /*
  1251. * Store led mode, for correct led behaviour.
  1252. */
  1253. #ifdef CONFIG_RT2X00_LIB_LEDS
  1254. value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
  1255. rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
  1256. if (value == LED_MODE_TXRX_ACTIVITY)
  1257. rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_qual,
  1258. LED_TYPE_ACTIVITY);
  1259. #endif /* CONFIG_RT2X00_LIB_LEDS */
  1260. /*
  1261. * Check if the BBP tuning should be disabled.
  1262. */
  1263. rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
  1264. if (rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
  1265. __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
  1266. /*
  1267. * Read the RSSI <-> dBm offset information.
  1268. */
  1269. rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
  1270. rt2x00dev->rssi_offset =
  1271. rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
  1272. return 0;
  1273. }
  1274. /*
  1275. * RF value list for RF2522
  1276. * Supports: 2.4 GHz
  1277. */
  1278. static const struct rf_channel rf_vals_bg_2522[] = {
  1279. { 1, 0x00002050, 0x000c1fda, 0x00000101, 0 },
  1280. { 2, 0x00002050, 0x000c1fee, 0x00000101, 0 },
  1281. { 3, 0x00002050, 0x000c2002, 0x00000101, 0 },
  1282. { 4, 0x00002050, 0x000c2016, 0x00000101, 0 },
  1283. { 5, 0x00002050, 0x000c202a, 0x00000101, 0 },
  1284. { 6, 0x00002050, 0x000c203e, 0x00000101, 0 },
  1285. { 7, 0x00002050, 0x000c2052, 0x00000101, 0 },
  1286. { 8, 0x00002050, 0x000c2066, 0x00000101, 0 },
  1287. { 9, 0x00002050, 0x000c207a, 0x00000101, 0 },
  1288. { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
  1289. { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
  1290. { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
  1291. { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
  1292. { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
  1293. };
  1294. /*
  1295. * RF value list for RF2523
  1296. * Supports: 2.4 GHz
  1297. */
  1298. static const struct rf_channel rf_vals_bg_2523[] = {
  1299. { 1, 0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
  1300. { 2, 0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
  1301. { 3, 0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
  1302. { 4, 0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
  1303. { 5, 0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
  1304. { 6, 0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
  1305. { 7, 0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
  1306. { 8, 0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
  1307. { 9, 0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
  1308. { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
  1309. { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
  1310. { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
  1311. { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
  1312. { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
  1313. };
  1314. /*
  1315. * RF value list for RF2524
  1316. * Supports: 2.4 GHz
  1317. */
  1318. static const struct rf_channel rf_vals_bg_2524[] = {
  1319. { 1, 0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
  1320. { 2, 0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
  1321. { 3, 0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
  1322. { 4, 0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
  1323. { 5, 0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
  1324. { 6, 0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
  1325. { 7, 0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
  1326. { 8, 0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
  1327. { 9, 0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
  1328. { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
  1329. { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
  1330. { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
  1331. { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
  1332. { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
  1333. };
  1334. /*
  1335. * RF value list for RF2525
  1336. * Supports: 2.4 GHz
  1337. */
  1338. static const struct rf_channel rf_vals_bg_2525[] = {
  1339. { 1, 0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
  1340. { 2, 0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
  1341. { 3, 0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
  1342. { 4, 0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
  1343. { 5, 0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
  1344. { 6, 0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
  1345. { 7, 0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
  1346. { 8, 0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
  1347. { 9, 0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
  1348. { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
  1349. { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
  1350. { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
  1351. { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
  1352. { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
  1353. };
  1354. /*
  1355. * RF value list for RF2525e
  1356. * Supports: 2.4 GHz
  1357. */
  1358. static const struct rf_channel rf_vals_bg_2525e[] = {
  1359. { 1, 0x00022010, 0x0000089a, 0x00060111, 0x00000e1b },
  1360. { 2, 0x00022010, 0x0000089e, 0x00060111, 0x00000e07 },
  1361. { 3, 0x00022010, 0x0000089e, 0x00060111, 0x00000e1b },
  1362. { 4, 0x00022010, 0x000008a2, 0x00060111, 0x00000e07 },
  1363. { 5, 0x00022010, 0x000008a2, 0x00060111, 0x00000e1b },
  1364. { 6, 0x00022010, 0x000008a6, 0x00060111, 0x00000e07 },
  1365. { 7, 0x00022010, 0x000008a6, 0x00060111, 0x00000e1b },
  1366. { 8, 0x00022010, 0x000008aa, 0x00060111, 0x00000e07 },
  1367. { 9, 0x00022010, 0x000008aa, 0x00060111, 0x00000e1b },
  1368. { 10, 0x00022010, 0x000008ae, 0x00060111, 0x00000e07 },
  1369. { 11, 0x00022010, 0x000008ae, 0x00060111, 0x00000e1b },
  1370. { 12, 0x00022010, 0x000008b2, 0x00060111, 0x00000e07 },
  1371. { 13, 0x00022010, 0x000008b2, 0x00060111, 0x00000e1b },
  1372. { 14, 0x00022010, 0x000008b6, 0x00060111, 0x00000e23 },
  1373. };
  1374. /*
  1375. * RF value list for RF5222
  1376. * Supports: 2.4 GHz & 5.2 GHz
  1377. */
  1378. static const struct rf_channel rf_vals_5222[] = {
  1379. { 1, 0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
  1380. { 2, 0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
  1381. { 3, 0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
  1382. { 4, 0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
  1383. { 5, 0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
  1384. { 6, 0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
  1385. { 7, 0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
  1386. { 8, 0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
  1387. { 9, 0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
  1388. { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
  1389. { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
  1390. { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
  1391. { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
  1392. { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
  1393. /* 802.11 UNI / HyperLan 2 */
  1394. { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
  1395. { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
  1396. { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
  1397. { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
  1398. { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
  1399. { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
  1400. { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
  1401. { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
  1402. /* 802.11 HyperLan 2 */
  1403. { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
  1404. { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
  1405. { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
  1406. { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
  1407. { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
  1408. { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
  1409. { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
  1410. { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
  1411. { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
  1412. { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
  1413. /* 802.11 UNII */
  1414. { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
  1415. { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
  1416. { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
  1417. { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
  1418. { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
  1419. };
  1420. static int rt2500usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
  1421. {
  1422. struct hw_mode_spec *spec = &rt2x00dev->spec;
  1423. struct channel_info *info;
  1424. char *tx_power;
  1425. unsigned int i;
  1426. /*
  1427. * Initialize all hw fields.
  1428. */
  1429. rt2x00dev->hw->flags =
  1430. IEEE80211_HW_RX_INCLUDES_FCS |
  1431. IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
  1432. IEEE80211_HW_SIGNAL_DBM;
  1433. rt2x00dev->hw->extra_tx_headroom = TXD_DESC_SIZE;
  1434. SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
  1435. SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
  1436. rt2x00_eeprom_addr(rt2x00dev,
  1437. EEPROM_MAC_ADDR_0));
  1438. /*
  1439. * Initialize hw_mode information.
  1440. */
  1441. spec->supported_bands = SUPPORT_BAND_2GHZ;
  1442. spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
  1443. if (rt2x00_rf(&rt2x00dev->chip, RF2522)) {
  1444. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
  1445. spec->channels = rf_vals_bg_2522;
  1446. } else if (rt2x00_rf(&rt2x00dev->chip, RF2523)) {
  1447. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
  1448. spec->channels = rf_vals_bg_2523;
  1449. } else if (rt2x00_rf(&rt2x00dev->chip, RF2524)) {
  1450. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
  1451. spec->channels = rf_vals_bg_2524;
  1452. } else if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
  1453. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
  1454. spec->channels = rf_vals_bg_2525;
  1455. } else if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
  1456. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
  1457. spec->channels = rf_vals_bg_2525e;
  1458. } else if (rt2x00_rf(&rt2x00dev->chip, RF5222)) {
  1459. spec->supported_bands |= SUPPORT_BAND_5GHZ;
  1460. spec->num_channels = ARRAY_SIZE(rf_vals_5222);
  1461. spec->channels = rf_vals_5222;
  1462. }
  1463. /*
  1464. * Create channel information array
  1465. */
  1466. info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
  1467. if (!info)
  1468. return -ENOMEM;
  1469. spec->channels_info = info;
  1470. tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
  1471. for (i = 0; i < 14; i++)
  1472. info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
  1473. if (spec->num_channels > 14) {
  1474. for (i = 14; i < spec->num_channels; i++)
  1475. info[i].tx_power1 = DEFAULT_TXPOWER;
  1476. }
  1477. return 0;
  1478. }
  1479. static int rt2500usb_probe_hw(struct rt2x00_dev *rt2x00dev)
  1480. {
  1481. int retval;
  1482. /*
  1483. * Allocate eeprom data.
  1484. */
  1485. retval = rt2500usb_validate_eeprom(rt2x00dev);
  1486. if (retval)
  1487. return retval;
  1488. retval = rt2500usb_init_eeprom(rt2x00dev);
  1489. if (retval)
  1490. return retval;
  1491. /*
  1492. * Initialize hw specifications.
  1493. */
  1494. retval = rt2500usb_probe_hw_mode(rt2x00dev);
  1495. if (retval)
  1496. return retval;
  1497. /*
  1498. * This device requires the atim queue
  1499. */
  1500. __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
  1501. __set_bit(DRIVER_REQUIRE_BEACON_GUARD, &rt2x00dev->flags);
  1502. __set_bit(DRIVER_REQUIRE_SCHEDULED, &rt2x00dev->flags);
  1503. __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
  1504. /*
  1505. * Set the rssi offset.
  1506. */
  1507. rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
  1508. return 0;
  1509. }
  1510. static const struct ieee80211_ops rt2500usb_mac80211_ops = {
  1511. .tx = rt2x00mac_tx,
  1512. .start = rt2x00mac_start,
  1513. .stop = rt2x00mac_stop,
  1514. .add_interface = rt2x00mac_add_interface,
  1515. .remove_interface = rt2x00mac_remove_interface,
  1516. .config = rt2x00mac_config,
  1517. .config_interface = rt2x00mac_config_interface,
  1518. .configure_filter = rt2x00mac_configure_filter,
  1519. .get_stats = rt2x00mac_get_stats,
  1520. .bss_info_changed = rt2x00mac_bss_info_changed,
  1521. .conf_tx = rt2x00mac_conf_tx,
  1522. .get_tx_stats = rt2x00mac_get_tx_stats,
  1523. };
  1524. static const struct rt2x00lib_ops rt2500usb_rt2x00_ops = {
  1525. .probe_hw = rt2500usb_probe_hw,
  1526. .initialize = rt2x00usb_initialize,
  1527. .uninitialize = rt2x00usb_uninitialize,
  1528. .clear_entry = rt2x00usb_clear_entry,
  1529. .set_device_state = rt2500usb_set_device_state,
  1530. .link_stats = rt2500usb_link_stats,
  1531. .reset_tuner = rt2500usb_reset_tuner,
  1532. .link_tuner = rt2500usb_link_tuner,
  1533. .write_tx_desc = rt2500usb_write_tx_desc,
  1534. .write_tx_data = rt2x00usb_write_tx_data,
  1535. .write_beacon = rt2500usb_write_beacon,
  1536. .get_tx_data_len = rt2500usb_get_tx_data_len,
  1537. .kick_tx_queue = rt2500usb_kick_tx_queue,
  1538. .fill_rxdone = rt2500usb_fill_rxdone,
  1539. .config_filter = rt2500usb_config_filter,
  1540. .config_intf = rt2500usb_config_intf,
  1541. .config_erp = rt2500usb_config_erp,
  1542. .config_ant = rt2500usb_config_ant,
  1543. .config = rt2500usb_config,
  1544. };
  1545. static const struct data_queue_desc rt2500usb_queue_rx = {
  1546. .entry_num = RX_ENTRIES,
  1547. .data_size = DATA_FRAME_SIZE,
  1548. .desc_size = RXD_DESC_SIZE,
  1549. .priv_size = sizeof(struct queue_entry_priv_usb),
  1550. };
  1551. static const struct data_queue_desc rt2500usb_queue_tx = {
  1552. .entry_num = TX_ENTRIES,
  1553. .data_size = DATA_FRAME_SIZE,
  1554. .desc_size = TXD_DESC_SIZE,
  1555. .priv_size = sizeof(struct queue_entry_priv_usb),
  1556. };
  1557. static const struct data_queue_desc rt2500usb_queue_bcn = {
  1558. .entry_num = BEACON_ENTRIES,
  1559. .data_size = MGMT_FRAME_SIZE,
  1560. .desc_size = TXD_DESC_SIZE,
  1561. .priv_size = sizeof(struct queue_entry_priv_usb_bcn),
  1562. };
  1563. static const struct data_queue_desc rt2500usb_queue_atim = {
  1564. .entry_num = ATIM_ENTRIES,
  1565. .data_size = DATA_FRAME_SIZE,
  1566. .desc_size = TXD_DESC_SIZE,
  1567. .priv_size = sizeof(struct queue_entry_priv_usb),
  1568. };
  1569. static const struct rt2x00_ops rt2500usb_ops = {
  1570. .name = KBUILD_MODNAME,
  1571. .max_sta_intf = 1,
  1572. .max_ap_intf = 1,
  1573. .eeprom_size = EEPROM_SIZE,
  1574. .rf_size = RF_SIZE,
  1575. .tx_queues = NUM_TX_QUEUES,
  1576. .rx = &rt2500usb_queue_rx,
  1577. .tx = &rt2500usb_queue_tx,
  1578. .bcn = &rt2500usb_queue_bcn,
  1579. .atim = &rt2500usb_queue_atim,
  1580. .lib = &rt2500usb_rt2x00_ops,
  1581. .hw = &rt2500usb_mac80211_ops,
  1582. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  1583. .debugfs = &rt2500usb_rt2x00debug,
  1584. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  1585. };
  1586. /*
  1587. * rt2500usb module information.
  1588. */
  1589. static struct usb_device_id rt2500usb_device_table[] = {
  1590. /* ASUS */
  1591. { USB_DEVICE(0x0b05, 0x1706), USB_DEVICE_DATA(&rt2500usb_ops) },
  1592. { USB_DEVICE(0x0b05, 0x1707), USB_DEVICE_DATA(&rt2500usb_ops) },
  1593. /* Belkin */
  1594. { USB_DEVICE(0x050d, 0x7050), USB_DEVICE_DATA(&rt2500usb_ops) },
  1595. { USB_DEVICE(0x050d, 0x7051), USB_DEVICE_DATA(&rt2500usb_ops) },
  1596. { USB_DEVICE(0x050d, 0x705a), USB_DEVICE_DATA(&rt2500usb_ops) },
  1597. /* Cisco Systems */
  1598. { USB_DEVICE(0x13b1, 0x000d), USB_DEVICE_DATA(&rt2500usb_ops) },
  1599. { USB_DEVICE(0x13b1, 0x0011), USB_DEVICE_DATA(&rt2500usb_ops) },
  1600. { USB_DEVICE(0x13b1, 0x001a), USB_DEVICE_DATA(&rt2500usb_ops) },
  1601. /* Conceptronic */
  1602. { USB_DEVICE(0x14b2, 0x3c02), USB_DEVICE_DATA(&rt2500usb_ops) },
  1603. /* D-LINK */
  1604. { USB_DEVICE(0x2001, 0x3c00), USB_DEVICE_DATA(&rt2500usb_ops) },
  1605. /* Gigabyte */
  1606. { USB_DEVICE(0x1044, 0x8001), USB_DEVICE_DATA(&rt2500usb_ops) },
  1607. { USB_DEVICE(0x1044, 0x8007), USB_DEVICE_DATA(&rt2500usb_ops) },
  1608. /* Hercules */
  1609. { USB_DEVICE(0x06f8, 0xe000), USB_DEVICE_DATA(&rt2500usb_ops) },
  1610. /* Melco */
  1611. { USB_DEVICE(0x0411, 0x005e), USB_DEVICE_DATA(&rt2500usb_ops) },
  1612. { USB_DEVICE(0x0411, 0x0066), USB_DEVICE_DATA(&rt2500usb_ops) },
  1613. { USB_DEVICE(0x0411, 0x0067), USB_DEVICE_DATA(&rt2500usb_ops) },
  1614. { USB_DEVICE(0x0411, 0x008b), USB_DEVICE_DATA(&rt2500usb_ops) },
  1615. { USB_DEVICE(0x0411, 0x0097), USB_DEVICE_DATA(&rt2500usb_ops) },
  1616. /* MSI */
  1617. { USB_DEVICE(0x0db0, 0x6861), USB_DEVICE_DATA(&rt2500usb_ops) },
  1618. { USB_DEVICE(0x0db0, 0x6865), USB_DEVICE_DATA(&rt2500usb_ops) },
  1619. { USB_DEVICE(0x0db0, 0x6869), USB_DEVICE_DATA(&rt2500usb_ops) },
  1620. /* Ralink */
  1621. { USB_DEVICE(0x148f, 0x1706), USB_DEVICE_DATA(&rt2500usb_ops) },
  1622. { USB_DEVICE(0x148f, 0x2570), USB_DEVICE_DATA(&rt2500usb_ops) },
  1623. { USB_DEVICE(0x148f, 0x2573), USB_DEVICE_DATA(&rt2500usb_ops) },
  1624. { USB_DEVICE(0x148f, 0x9020), USB_DEVICE_DATA(&rt2500usb_ops) },
  1625. /* Siemens */
  1626. { USB_DEVICE(0x0681, 0x3c06), USB_DEVICE_DATA(&rt2500usb_ops) },
  1627. /* SMC */
  1628. { USB_DEVICE(0x0707, 0xee13), USB_DEVICE_DATA(&rt2500usb_ops) },
  1629. /* Spairon */
  1630. { USB_DEVICE(0x114b, 0x0110), USB_DEVICE_DATA(&rt2500usb_ops) },
  1631. /* Trust */
  1632. { USB_DEVICE(0x0eb0, 0x9020), USB_DEVICE_DATA(&rt2500usb_ops) },
  1633. /* Zinwell */
  1634. { USB_DEVICE(0x5a57, 0x0260), USB_DEVICE_DATA(&rt2500usb_ops) },
  1635. { 0, }
  1636. };
  1637. MODULE_AUTHOR(DRV_PROJECT);
  1638. MODULE_VERSION(DRV_VERSION);
  1639. MODULE_DESCRIPTION("Ralink RT2500 USB Wireless LAN driver.");
  1640. MODULE_SUPPORTED_DEVICE("Ralink RT2570 USB chipset based cards");
  1641. MODULE_DEVICE_TABLE(usb, rt2500usb_device_table);
  1642. MODULE_LICENSE("GPL");
  1643. static struct usb_driver rt2500usb_driver = {
  1644. .name = KBUILD_MODNAME,
  1645. .id_table = rt2500usb_device_table,
  1646. .probe = rt2x00usb_probe,
  1647. .disconnect = rt2x00usb_disconnect,
  1648. .suspend = rt2x00usb_suspend,
  1649. .resume = rt2x00usb_resume,
  1650. };
  1651. static int __init rt2500usb_init(void)
  1652. {
  1653. return usb_register(&rt2500usb_driver);
  1654. }
  1655. static void __exit rt2500usb_exit(void)
  1656. {
  1657. usb_deregister(&rt2500usb_driver);
  1658. }
  1659. module_init(rt2500usb_init);
  1660. module_exit(rt2500usb_exit);