pmac.c 46 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749
  1. /*
  2. * Support for IDE interfaces on PowerMacs.
  3. *
  4. * These IDE interfaces are memory-mapped and have a DBDMA channel
  5. * for doing DMA.
  6. *
  7. * Copyright (C) 1998-2003 Paul Mackerras & Ben. Herrenschmidt
  8. * Copyright (C) 2007-2008 Bartlomiej Zolnierkiewicz
  9. *
  10. * This program is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU General Public License
  12. * as published by the Free Software Foundation; either version
  13. * 2 of the License, or (at your option) any later version.
  14. *
  15. * Some code taken from drivers/ide/ide-dma.c:
  16. *
  17. * Copyright (c) 1995-1998 Mark Lord
  18. *
  19. * TODO: - Use pre-calculated (kauai) timing tables all the time and
  20. * get rid of the "rounded" tables used previously, so we have the
  21. * same table format for all controllers and can then just have one
  22. * big table
  23. *
  24. */
  25. #include <linux/types.h>
  26. #include <linux/kernel.h>
  27. #include <linux/init.h>
  28. #include <linux/delay.h>
  29. #include <linux/ide.h>
  30. #include <linux/notifier.h>
  31. #include <linux/reboot.h>
  32. #include <linux/pci.h>
  33. #include <linux/adb.h>
  34. #include <linux/pmu.h>
  35. #include <linux/scatterlist.h>
  36. #include <asm/prom.h>
  37. #include <asm/io.h>
  38. #include <asm/dbdma.h>
  39. #include <asm/ide.h>
  40. #include <asm/pci-bridge.h>
  41. #include <asm/machdep.h>
  42. #include <asm/pmac_feature.h>
  43. #include <asm/sections.h>
  44. #include <asm/irq.h>
  45. #ifndef CONFIG_PPC64
  46. #include <asm/mediabay.h>
  47. #endif
  48. #define DRV_NAME "ide-pmac"
  49. #undef IDE_PMAC_DEBUG
  50. #define DMA_WAIT_TIMEOUT 50
  51. typedef struct pmac_ide_hwif {
  52. unsigned long regbase;
  53. int irq;
  54. int kind;
  55. int aapl_bus_id;
  56. unsigned mediabay : 1;
  57. unsigned broken_dma : 1;
  58. unsigned broken_dma_warn : 1;
  59. struct device_node* node;
  60. struct macio_dev *mdev;
  61. u32 timings[4];
  62. volatile u32 __iomem * *kauai_fcr;
  63. #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
  64. /* Those fields are duplicating what is in hwif. We currently
  65. * can't use the hwif ones because of some assumptions that are
  66. * beeing done by the generic code about the kind of dma controller
  67. * and format of the dma table. This will have to be fixed though.
  68. */
  69. volatile struct dbdma_regs __iomem * dma_regs;
  70. struct dbdma_cmd* dma_table_cpu;
  71. #endif
  72. } pmac_ide_hwif_t;
  73. enum {
  74. controller_ohare, /* OHare based */
  75. controller_heathrow, /* Heathrow/Paddington */
  76. controller_kl_ata3, /* KeyLargo ATA-3 */
  77. controller_kl_ata4, /* KeyLargo ATA-4 */
  78. controller_un_ata6, /* UniNorth2 ATA-6 */
  79. controller_k2_ata6, /* K2 ATA-6 */
  80. controller_sh_ata6, /* Shasta ATA-6 */
  81. };
  82. static const char* model_name[] = {
  83. "OHare ATA", /* OHare based */
  84. "Heathrow ATA", /* Heathrow/Paddington */
  85. "KeyLargo ATA-3", /* KeyLargo ATA-3 (MDMA only) */
  86. "KeyLargo ATA-4", /* KeyLargo ATA-4 (UDMA/66) */
  87. "UniNorth ATA-6", /* UniNorth2 ATA-6 (UDMA/100) */
  88. "K2 ATA-6", /* K2 ATA-6 (UDMA/100) */
  89. "Shasta ATA-6", /* Shasta ATA-6 (UDMA/133) */
  90. };
  91. /*
  92. * Extra registers, both 32-bit little-endian
  93. */
  94. #define IDE_TIMING_CONFIG 0x200
  95. #define IDE_INTERRUPT 0x300
  96. /* Kauai (U2) ATA has different register setup */
  97. #define IDE_KAUAI_PIO_CONFIG 0x200
  98. #define IDE_KAUAI_ULTRA_CONFIG 0x210
  99. #define IDE_KAUAI_POLL_CONFIG 0x220
  100. /*
  101. * Timing configuration register definitions
  102. */
  103. /* Number of IDE_SYSCLK_NS ticks, argument is in nanoseconds */
  104. #define SYSCLK_TICKS(t) (((t) + IDE_SYSCLK_NS - 1) / IDE_SYSCLK_NS)
  105. #define SYSCLK_TICKS_66(t) (((t) + IDE_SYSCLK_66_NS - 1) / IDE_SYSCLK_66_NS)
  106. #define IDE_SYSCLK_NS 30 /* 33Mhz cell */
  107. #define IDE_SYSCLK_66_NS 15 /* 66Mhz cell */
  108. /* 133Mhz cell, found in shasta.
  109. * See comments about 100 Mhz Uninorth 2...
  110. * Note that PIO_MASK and MDMA_MASK seem to overlap
  111. */
  112. #define TR_133_PIOREG_PIO_MASK 0xff000fff
  113. #define TR_133_PIOREG_MDMA_MASK 0x00fff800
  114. #define TR_133_UDMAREG_UDMA_MASK 0x0003ffff
  115. #define TR_133_UDMAREG_UDMA_EN 0x00000001
  116. /* 100Mhz cell, found in Uninorth 2. I don't have much infos about
  117. * this one yet, it appears as a pci device (106b/0033) on uninorth
  118. * internal PCI bus and it's clock is controlled like gem or fw. It
  119. * appears to be an evolution of keylargo ATA4 with a timing register
  120. * extended to 2 32bits registers and a similar DBDMA channel. Other
  121. * registers seem to exist but I can't tell much about them.
  122. *
  123. * So far, I'm using pre-calculated tables for this extracted from
  124. * the values used by the MacOS X driver.
  125. *
  126. * The "PIO" register controls PIO and MDMA timings, the "ULTRA"
  127. * register controls the UDMA timings. At least, it seems bit 0
  128. * of this one enables UDMA vs. MDMA, and bits 4..7 are the
  129. * cycle time in units of 10ns. Bits 8..15 are used by I don't
  130. * know their meaning yet
  131. */
  132. #define TR_100_PIOREG_PIO_MASK 0xff000fff
  133. #define TR_100_PIOREG_MDMA_MASK 0x00fff000
  134. #define TR_100_UDMAREG_UDMA_MASK 0x0000ffff
  135. #define TR_100_UDMAREG_UDMA_EN 0x00000001
  136. /* 66Mhz cell, found in KeyLargo. Can do ultra mode 0 to 2 on
  137. * 40 connector cable and to 4 on 80 connector one.
  138. * Clock unit is 15ns (66Mhz)
  139. *
  140. * 3 Values can be programmed:
  141. * - Write data setup, which appears to match the cycle time. They
  142. * also call it DIOW setup.
  143. * - Ready to pause time (from spec)
  144. * - Address setup. That one is weird. I don't see where exactly
  145. * it fits in UDMA cycles, I got it's name from an obscure piece
  146. * of commented out code in Darwin. They leave it to 0, we do as
  147. * well, despite a comment that would lead to think it has a
  148. * min value of 45ns.
  149. * Apple also add 60ns to the write data setup (or cycle time ?) on
  150. * reads.
  151. */
  152. #define TR_66_UDMA_MASK 0xfff00000
  153. #define TR_66_UDMA_EN 0x00100000 /* Enable Ultra mode for DMA */
  154. #define TR_66_UDMA_ADDRSETUP_MASK 0xe0000000 /* Address setup */
  155. #define TR_66_UDMA_ADDRSETUP_SHIFT 29
  156. #define TR_66_UDMA_RDY2PAUS_MASK 0x1e000000 /* Ready 2 pause time */
  157. #define TR_66_UDMA_RDY2PAUS_SHIFT 25
  158. #define TR_66_UDMA_WRDATASETUP_MASK 0x01e00000 /* Write data setup time */
  159. #define TR_66_UDMA_WRDATASETUP_SHIFT 21
  160. #define TR_66_MDMA_MASK 0x000ffc00
  161. #define TR_66_MDMA_RECOVERY_MASK 0x000f8000
  162. #define TR_66_MDMA_RECOVERY_SHIFT 15
  163. #define TR_66_MDMA_ACCESS_MASK 0x00007c00
  164. #define TR_66_MDMA_ACCESS_SHIFT 10
  165. #define TR_66_PIO_MASK 0x000003ff
  166. #define TR_66_PIO_RECOVERY_MASK 0x000003e0
  167. #define TR_66_PIO_RECOVERY_SHIFT 5
  168. #define TR_66_PIO_ACCESS_MASK 0x0000001f
  169. #define TR_66_PIO_ACCESS_SHIFT 0
  170. /* 33Mhz cell, found in OHare, Heathrow (& Paddington) and KeyLargo
  171. * Can do pio & mdma modes, clock unit is 30ns (33Mhz)
  172. *
  173. * The access time and recovery time can be programmed. Some older
  174. * Darwin code base limit OHare to 150ns cycle time. I decided to do
  175. * the same here fore safety against broken old hardware ;)
  176. * The HalfTick bit, when set, adds half a clock (15ns) to the access
  177. * time and removes one from recovery. It's not supported on KeyLargo
  178. * implementation afaik. The E bit appears to be set for PIO mode 0 and
  179. * is used to reach long timings used in this mode.
  180. */
  181. #define TR_33_MDMA_MASK 0x003ff800
  182. #define TR_33_MDMA_RECOVERY_MASK 0x001f0000
  183. #define TR_33_MDMA_RECOVERY_SHIFT 16
  184. #define TR_33_MDMA_ACCESS_MASK 0x0000f800
  185. #define TR_33_MDMA_ACCESS_SHIFT 11
  186. #define TR_33_MDMA_HALFTICK 0x00200000
  187. #define TR_33_PIO_MASK 0x000007ff
  188. #define TR_33_PIO_E 0x00000400
  189. #define TR_33_PIO_RECOVERY_MASK 0x000003e0
  190. #define TR_33_PIO_RECOVERY_SHIFT 5
  191. #define TR_33_PIO_ACCESS_MASK 0x0000001f
  192. #define TR_33_PIO_ACCESS_SHIFT 0
  193. /*
  194. * Interrupt register definitions
  195. */
  196. #define IDE_INTR_DMA 0x80000000
  197. #define IDE_INTR_DEVICE 0x40000000
  198. /*
  199. * FCR Register on Kauai. Not sure what bit 0x4 is ...
  200. */
  201. #define KAUAI_FCR_UATA_MAGIC 0x00000004
  202. #define KAUAI_FCR_UATA_RESET_N 0x00000002
  203. #define KAUAI_FCR_UATA_ENABLE 0x00000001
  204. #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
  205. /* Rounded Multiword DMA timings
  206. *
  207. * I gave up finding a generic formula for all controller
  208. * types and instead, built tables based on timing values
  209. * used by Apple in Darwin's implementation.
  210. */
  211. struct mdma_timings_t {
  212. int accessTime;
  213. int recoveryTime;
  214. int cycleTime;
  215. };
  216. struct mdma_timings_t mdma_timings_33[] =
  217. {
  218. { 240, 240, 480 },
  219. { 180, 180, 360 },
  220. { 135, 135, 270 },
  221. { 120, 120, 240 },
  222. { 105, 105, 210 },
  223. { 90, 90, 180 },
  224. { 75, 75, 150 },
  225. { 75, 45, 120 },
  226. { 0, 0, 0 }
  227. };
  228. struct mdma_timings_t mdma_timings_33k[] =
  229. {
  230. { 240, 240, 480 },
  231. { 180, 180, 360 },
  232. { 150, 150, 300 },
  233. { 120, 120, 240 },
  234. { 90, 120, 210 },
  235. { 90, 90, 180 },
  236. { 90, 60, 150 },
  237. { 90, 30, 120 },
  238. { 0, 0, 0 }
  239. };
  240. struct mdma_timings_t mdma_timings_66[] =
  241. {
  242. { 240, 240, 480 },
  243. { 180, 180, 360 },
  244. { 135, 135, 270 },
  245. { 120, 120, 240 },
  246. { 105, 105, 210 },
  247. { 90, 90, 180 },
  248. { 90, 75, 165 },
  249. { 75, 45, 120 },
  250. { 0, 0, 0 }
  251. };
  252. /* KeyLargo ATA-4 Ultra DMA timings (rounded) */
  253. struct {
  254. int addrSetup; /* ??? */
  255. int rdy2pause;
  256. int wrDataSetup;
  257. } kl66_udma_timings[] =
  258. {
  259. { 0, 180, 120 }, /* Mode 0 */
  260. { 0, 150, 90 }, /* 1 */
  261. { 0, 120, 60 }, /* 2 */
  262. { 0, 90, 45 }, /* 3 */
  263. { 0, 90, 30 } /* 4 */
  264. };
  265. /* UniNorth 2 ATA/100 timings */
  266. struct kauai_timing {
  267. int cycle_time;
  268. u32 timing_reg;
  269. };
  270. static struct kauai_timing kauai_pio_timings[] =
  271. {
  272. { 930 , 0x08000fff },
  273. { 600 , 0x08000a92 },
  274. { 383 , 0x0800060f },
  275. { 360 , 0x08000492 },
  276. { 330 , 0x0800048f },
  277. { 300 , 0x080003cf },
  278. { 270 , 0x080003cc },
  279. { 240 , 0x0800038b },
  280. { 239 , 0x0800030c },
  281. { 180 , 0x05000249 },
  282. { 120 , 0x04000148 },
  283. { 0 , 0 },
  284. };
  285. static struct kauai_timing kauai_mdma_timings[] =
  286. {
  287. { 1260 , 0x00fff000 },
  288. { 480 , 0x00618000 },
  289. { 360 , 0x00492000 },
  290. { 270 , 0x0038e000 },
  291. { 240 , 0x0030c000 },
  292. { 210 , 0x002cb000 },
  293. { 180 , 0x00249000 },
  294. { 150 , 0x00209000 },
  295. { 120 , 0x00148000 },
  296. { 0 , 0 },
  297. };
  298. static struct kauai_timing kauai_udma_timings[] =
  299. {
  300. { 120 , 0x000070c0 },
  301. { 90 , 0x00005d80 },
  302. { 60 , 0x00004a60 },
  303. { 45 , 0x00003a50 },
  304. { 30 , 0x00002a30 },
  305. { 20 , 0x00002921 },
  306. { 0 , 0 },
  307. };
  308. static struct kauai_timing shasta_pio_timings[] =
  309. {
  310. { 930 , 0x08000fff },
  311. { 600 , 0x0A000c97 },
  312. { 383 , 0x07000712 },
  313. { 360 , 0x040003cd },
  314. { 330 , 0x040003cd },
  315. { 300 , 0x040003cd },
  316. { 270 , 0x040003cd },
  317. { 240 , 0x040003cd },
  318. { 239 , 0x040003cd },
  319. { 180 , 0x0400028b },
  320. { 120 , 0x0400010a },
  321. { 0 , 0 },
  322. };
  323. static struct kauai_timing shasta_mdma_timings[] =
  324. {
  325. { 1260 , 0x00fff000 },
  326. { 480 , 0x00820800 },
  327. { 360 , 0x00820800 },
  328. { 270 , 0x00820800 },
  329. { 240 , 0x00820800 },
  330. { 210 , 0x00820800 },
  331. { 180 , 0x00820800 },
  332. { 150 , 0x0028b000 },
  333. { 120 , 0x001ca000 },
  334. { 0 , 0 },
  335. };
  336. static struct kauai_timing shasta_udma133_timings[] =
  337. {
  338. { 120 , 0x00035901, },
  339. { 90 , 0x000348b1, },
  340. { 60 , 0x00033881, },
  341. { 45 , 0x00033861, },
  342. { 30 , 0x00033841, },
  343. { 20 , 0x00033031, },
  344. { 15 , 0x00033021, },
  345. { 0 , 0 },
  346. };
  347. static inline u32
  348. kauai_lookup_timing(struct kauai_timing* table, int cycle_time)
  349. {
  350. int i;
  351. for (i=0; table[i].cycle_time; i++)
  352. if (cycle_time > table[i+1].cycle_time)
  353. return table[i].timing_reg;
  354. BUG();
  355. return 0;
  356. }
  357. /* allow up to 256 DBDMA commands per xfer */
  358. #define MAX_DCMDS 256
  359. /*
  360. * Wait 1s for disk to answer on IDE bus after a hard reset
  361. * of the device (via GPIO/FCR).
  362. *
  363. * Some devices seem to "pollute" the bus even after dropping
  364. * the BSY bit (typically some combo drives slave on the UDMA
  365. * bus) after a hard reset. Since we hard reset all drives on
  366. * KeyLargo ATA66, we have to keep that delay around. I may end
  367. * up not hard resetting anymore on these and keep the delay only
  368. * for older interfaces instead (we have to reset when coming
  369. * from MacOS...) --BenH.
  370. */
  371. #define IDE_WAKEUP_DELAY (1*HZ)
  372. static int pmac_ide_init_dma(ide_hwif_t *, const struct ide_port_info *);
  373. static int pmac_ide_build_dmatable(ide_drive_t *drive, struct request *rq);
  374. static void pmac_ide_selectproc(ide_drive_t *drive);
  375. static void pmac_ide_kauai_selectproc(ide_drive_t *drive);
  376. #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
  377. #define PMAC_IDE_REG(x) \
  378. ((void __iomem *)((drive)->hwif->io_ports.data_addr + (x)))
  379. /*
  380. * Apply the timings of the proper unit (master/slave) to the shared
  381. * timing register when selecting that unit. This version is for
  382. * ASICs with a single timing register
  383. */
  384. static void
  385. pmac_ide_selectproc(ide_drive_t *drive)
  386. {
  387. ide_hwif_t *hwif = drive->hwif;
  388. pmac_ide_hwif_t *pmif =
  389. (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
  390. if (pmif == NULL)
  391. return;
  392. if (drive->select.b.unit & 0x01)
  393. writel(pmif->timings[1], PMAC_IDE_REG(IDE_TIMING_CONFIG));
  394. else
  395. writel(pmif->timings[0], PMAC_IDE_REG(IDE_TIMING_CONFIG));
  396. (void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG));
  397. }
  398. /*
  399. * Apply the timings of the proper unit (master/slave) to the shared
  400. * timing register when selecting that unit. This version is for
  401. * ASICs with a dual timing register (Kauai)
  402. */
  403. static void
  404. pmac_ide_kauai_selectproc(ide_drive_t *drive)
  405. {
  406. ide_hwif_t *hwif = drive->hwif;
  407. pmac_ide_hwif_t *pmif =
  408. (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
  409. if (pmif == NULL)
  410. return;
  411. if (drive->select.b.unit & 0x01) {
  412. writel(pmif->timings[1], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
  413. writel(pmif->timings[3], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG));
  414. } else {
  415. writel(pmif->timings[0], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
  416. writel(pmif->timings[2], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG));
  417. }
  418. (void)readl(PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
  419. }
  420. /*
  421. * Force an update of controller timing values for a given drive
  422. */
  423. static void
  424. pmac_ide_do_update_timings(ide_drive_t *drive)
  425. {
  426. ide_hwif_t *hwif = drive->hwif;
  427. pmac_ide_hwif_t *pmif =
  428. (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
  429. if (pmif == NULL)
  430. return;
  431. if (pmif->kind == controller_sh_ata6 ||
  432. pmif->kind == controller_un_ata6 ||
  433. pmif->kind == controller_k2_ata6)
  434. pmac_ide_kauai_selectproc(drive);
  435. else
  436. pmac_ide_selectproc(drive);
  437. }
  438. static void pmac_outbsync(ide_hwif_t *hwif, u8 value, unsigned long port)
  439. {
  440. u32 tmp;
  441. writeb(value, (void __iomem *) port);
  442. tmp = readl((void __iomem *)(hwif->io_ports.data_addr
  443. + IDE_TIMING_CONFIG));
  444. }
  445. /*
  446. * Old tuning functions (called on hdparm -p), sets up drive PIO timings
  447. */
  448. static void
  449. pmac_ide_set_pio_mode(ide_drive_t *drive, const u8 pio)
  450. {
  451. ide_hwif_t *hwif = drive->hwif;
  452. pmac_ide_hwif_t *pmif =
  453. (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
  454. struct ide_timing *tim = ide_timing_find_mode(XFER_PIO_0 + pio);
  455. u32 *timings, t;
  456. unsigned accessTicks, recTicks;
  457. unsigned accessTime, recTime;
  458. unsigned int cycle_time;
  459. if (pmif == NULL)
  460. return;
  461. /* which drive is it ? */
  462. timings = &pmif->timings[drive->select.b.unit & 0x01];
  463. t = *timings;
  464. cycle_time = ide_pio_cycle_time(drive, pio);
  465. switch (pmif->kind) {
  466. case controller_sh_ata6: {
  467. /* 133Mhz cell */
  468. u32 tr = kauai_lookup_timing(shasta_pio_timings, cycle_time);
  469. t = (t & ~TR_133_PIOREG_PIO_MASK) | tr;
  470. break;
  471. }
  472. case controller_un_ata6:
  473. case controller_k2_ata6: {
  474. /* 100Mhz cell */
  475. u32 tr = kauai_lookup_timing(kauai_pio_timings, cycle_time);
  476. t = (t & ~TR_100_PIOREG_PIO_MASK) | tr;
  477. break;
  478. }
  479. case controller_kl_ata4:
  480. /* 66Mhz cell */
  481. recTime = cycle_time - tim->active - tim->setup;
  482. recTime = max(recTime, 150U);
  483. accessTime = tim->active;
  484. accessTime = max(accessTime, 150U);
  485. accessTicks = SYSCLK_TICKS_66(accessTime);
  486. accessTicks = min(accessTicks, 0x1fU);
  487. recTicks = SYSCLK_TICKS_66(recTime);
  488. recTicks = min(recTicks, 0x1fU);
  489. t = (t & ~TR_66_PIO_MASK) |
  490. (accessTicks << TR_66_PIO_ACCESS_SHIFT) |
  491. (recTicks << TR_66_PIO_RECOVERY_SHIFT);
  492. break;
  493. default: {
  494. /* 33Mhz cell */
  495. int ebit = 0;
  496. recTime = cycle_time - tim->active - tim->setup;
  497. recTime = max(recTime, 150U);
  498. accessTime = tim->active;
  499. accessTime = max(accessTime, 150U);
  500. accessTicks = SYSCLK_TICKS(accessTime);
  501. accessTicks = min(accessTicks, 0x1fU);
  502. accessTicks = max(accessTicks, 4U);
  503. recTicks = SYSCLK_TICKS(recTime);
  504. recTicks = min(recTicks, 0x1fU);
  505. recTicks = max(recTicks, 5U) - 4;
  506. if (recTicks > 9) {
  507. recTicks--; /* guess, but it's only for PIO0, so... */
  508. ebit = 1;
  509. }
  510. t = (t & ~TR_33_PIO_MASK) |
  511. (accessTicks << TR_33_PIO_ACCESS_SHIFT) |
  512. (recTicks << TR_33_PIO_RECOVERY_SHIFT);
  513. if (ebit)
  514. t |= TR_33_PIO_E;
  515. break;
  516. }
  517. }
  518. #ifdef IDE_PMAC_DEBUG
  519. printk(KERN_ERR "%s: Set PIO timing for mode %d, reg: 0x%08x\n",
  520. drive->name, pio, *timings);
  521. #endif
  522. *timings = t;
  523. pmac_ide_do_update_timings(drive);
  524. }
  525. #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
  526. /*
  527. * Calculate KeyLargo ATA/66 UDMA timings
  528. */
  529. static int
  530. set_timings_udma_ata4(u32 *timings, u8 speed)
  531. {
  532. unsigned rdyToPauseTicks, wrDataSetupTicks, addrTicks;
  533. if (speed > XFER_UDMA_4)
  534. return 1;
  535. rdyToPauseTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].rdy2pause);
  536. wrDataSetupTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].wrDataSetup);
  537. addrTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].addrSetup);
  538. *timings = ((*timings) & ~(TR_66_UDMA_MASK | TR_66_MDMA_MASK)) |
  539. (wrDataSetupTicks << TR_66_UDMA_WRDATASETUP_SHIFT) |
  540. (rdyToPauseTicks << TR_66_UDMA_RDY2PAUS_SHIFT) |
  541. (addrTicks <<TR_66_UDMA_ADDRSETUP_SHIFT) |
  542. TR_66_UDMA_EN;
  543. #ifdef IDE_PMAC_DEBUG
  544. printk(KERN_ERR "ide_pmac: Set UDMA timing for mode %d, reg: 0x%08x\n",
  545. speed & 0xf, *timings);
  546. #endif
  547. return 0;
  548. }
  549. /*
  550. * Calculate Kauai ATA/100 UDMA timings
  551. */
  552. static int
  553. set_timings_udma_ata6(u32 *pio_timings, u32 *ultra_timings, u8 speed)
  554. {
  555. struct ide_timing *t = ide_timing_find_mode(speed);
  556. u32 tr;
  557. if (speed > XFER_UDMA_5 || t == NULL)
  558. return 1;
  559. tr = kauai_lookup_timing(kauai_udma_timings, (int)t->udma);
  560. *ultra_timings = ((*ultra_timings) & ~TR_100_UDMAREG_UDMA_MASK) | tr;
  561. *ultra_timings = (*ultra_timings) | TR_100_UDMAREG_UDMA_EN;
  562. return 0;
  563. }
  564. /*
  565. * Calculate Shasta ATA/133 UDMA timings
  566. */
  567. static int
  568. set_timings_udma_shasta(u32 *pio_timings, u32 *ultra_timings, u8 speed)
  569. {
  570. struct ide_timing *t = ide_timing_find_mode(speed);
  571. u32 tr;
  572. if (speed > XFER_UDMA_6 || t == NULL)
  573. return 1;
  574. tr = kauai_lookup_timing(shasta_udma133_timings, (int)t->udma);
  575. *ultra_timings = ((*ultra_timings) & ~TR_133_UDMAREG_UDMA_MASK) | tr;
  576. *ultra_timings = (*ultra_timings) | TR_133_UDMAREG_UDMA_EN;
  577. return 0;
  578. }
  579. /*
  580. * Calculate MDMA timings for all cells
  581. */
  582. static void
  583. set_timings_mdma(ide_drive_t *drive, int intf_type, u32 *timings, u32 *timings2,
  584. u8 speed)
  585. {
  586. int cycleTime, accessTime = 0, recTime = 0;
  587. unsigned accessTicks, recTicks;
  588. struct hd_driveid *id = drive->id;
  589. struct mdma_timings_t* tm = NULL;
  590. int i;
  591. /* Get default cycle time for mode */
  592. switch(speed & 0xf) {
  593. case 0: cycleTime = 480; break;
  594. case 1: cycleTime = 150; break;
  595. case 2: cycleTime = 120; break;
  596. default:
  597. BUG();
  598. break;
  599. }
  600. /* Check if drive provides explicit DMA cycle time */
  601. if ((id->field_valid & 2) && id->eide_dma_time)
  602. cycleTime = max_t(int, id->eide_dma_time, cycleTime);
  603. /* OHare limits according to some old Apple sources */
  604. if ((intf_type == controller_ohare) && (cycleTime < 150))
  605. cycleTime = 150;
  606. /* Get the proper timing array for this controller */
  607. switch(intf_type) {
  608. case controller_sh_ata6:
  609. case controller_un_ata6:
  610. case controller_k2_ata6:
  611. break;
  612. case controller_kl_ata4:
  613. tm = mdma_timings_66;
  614. break;
  615. case controller_kl_ata3:
  616. tm = mdma_timings_33k;
  617. break;
  618. default:
  619. tm = mdma_timings_33;
  620. break;
  621. }
  622. if (tm != NULL) {
  623. /* Lookup matching access & recovery times */
  624. i = -1;
  625. for (;;) {
  626. if (tm[i+1].cycleTime < cycleTime)
  627. break;
  628. i++;
  629. }
  630. cycleTime = tm[i].cycleTime;
  631. accessTime = tm[i].accessTime;
  632. recTime = tm[i].recoveryTime;
  633. #ifdef IDE_PMAC_DEBUG
  634. printk(KERN_ERR "%s: MDMA, cycleTime: %d, accessTime: %d, recTime: %d\n",
  635. drive->name, cycleTime, accessTime, recTime);
  636. #endif
  637. }
  638. switch(intf_type) {
  639. case controller_sh_ata6: {
  640. /* 133Mhz cell */
  641. u32 tr = kauai_lookup_timing(shasta_mdma_timings, cycleTime);
  642. *timings = ((*timings) & ~TR_133_PIOREG_MDMA_MASK) | tr;
  643. *timings2 = (*timings2) & ~TR_133_UDMAREG_UDMA_EN;
  644. }
  645. case controller_un_ata6:
  646. case controller_k2_ata6: {
  647. /* 100Mhz cell */
  648. u32 tr = kauai_lookup_timing(kauai_mdma_timings, cycleTime);
  649. *timings = ((*timings) & ~TR_100_PIOREG_MDMA_MASK) | tr;
  650. *timings2 = (*timings2) & ~TR_100_UDMAREG_UDMA_EN;
  651. }
  652. break;
  653. case controller_kl_ata4:
  654. /* 66Mhz cell */
  655. accessTicks = SYSCLK_TICKS_66(accessTime);
  656. accessTicks = min(accessTicks, 0x1fU);
  657. accessTicks = max(accessTicks, 0x1U);
  658. recTicks = SYSCLK_TICKS_66(recTime);
  659. recTicks = min(recTicks, 0x1fU);
  660. recTicks = max(recTicks, 0x3U);
  661. /* Clear out mdma bits and disable udma */
  662. *timings = ((*timings) & ~(TR_66_MDMA_MASK | TR_66_UDMA_MASK)) |
  663. (accessTicks << TR_66_MDMA_ACCESS_SHIFT) |
  664. (recTicks << TR_66_MDMA_RECOVERY_SHIFT);
  665. break;
  666. case controller_kl_ata3:
  667. /* 33Mhz cell on KeyLargo */
  668. accessTicks = SYSCLK_TICKS(accessTime);
  669. accessTicks = max(accessTicks, 1U);
  670. accessTicks = min(accessTicks, 0x1fU);
  671. accessTime = accessTicks * IDE_SYSCLK_NS;
  672. recTicks = SYSCLK_TICKS(recTime);
  673. recTicks = max(recTicks, 1U);
  674. recTicks = min(recTicks, 0x1fU);
  675. *timings = ((*timings) & ~TR_33_MDMA_MASK) |
  676. (accessTicks << TR_33_MDMA_ACCESS_SHIFT) |
  677. (recTicks << TR_33_MDMA_RECOVERY_SHIFT);
  678. break;
  679. default: {
  680. /* 33Mhz cell on others */
  681. int halfTick = 0;
  682. int origAccessTime = accessTime;
  683. int origRecTime = recTime;
  684. accessTicks = SYSCLK_TICKS(accessTime);
  685. accessTicks = max(accessTicks, 1U);
  686. accessTicks = min(accessTicks, 0x1fU);
  687. accessTime = accessTicks * IDE_SYSCLK_NS;
  688. recTicks = SYSCLK_TICKS(recTime);
  689. recTicks = max(recTicks, 2U) - 1;
  690. recTicks = min(recTicks, 0x1fU);
  691. recTime = (recTicks + 1) * IDE_SYSCLK_NS;
  692. if ((accessTicks > 1) &&
  693. ((accessTime - IDE_SYSCLK_NS/2) >= origAccessTime) &&
  694. ((recTime - IDE_SYSCLK_NS/2) >= origRecTime)) {
  695. halfTick = 1;
  696. accessTicks--;
  697. }
  698. *timings = ((*timings) & ~TR_33_MDMA_MASK) |
  699. (accessTicks << TR_33_MDMA_ACCESS_SHIFT) |
  700. (recTicks << TR_33_MDMA_RECOVERY_SHIFT);
  701. if (halfTick)
  702. *timings |= TR_33_MDMA_HALFTICK;
  703. }
  704. }
  705. #ifdef IDE_PMAC_DEBUG
  706. printk(KERN_ERR "%s: Set MDMA timing for mode %d, reg: 0x%08x\n",
  707. drive->name, speed & 0xf, *timings);
  708. #endif
  709. }
  710. #endif /* #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC */
  711. static void pmac_ide_set_dma_mode(ide_drive_t *drive, const u8 speed)
  712. {
  713. ide_hwif_t *hwif = drive->hwif;
  714. pmac_ide_hwif_t *pmif =
  715. (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
  716. int unit = (drive->select.b.unit & 0x01);
  717. int ret = 0;
  718. u32 *timings, *timings2, tl[2];
  719. timings = &pmif->timings[unit];
  720. timings2 = &pmif->timings[unit+2];
  721. /* Copy timings to local image */
  722. tl[0] = *timings;
  723. tl[1] = *timings2;
  724. #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
  725. if (speed >= XFER_UDMA_0) {
  726. if (pmif->kind == controller_kl_ata4)
  727. ret = set_timings_udma_ata4(&tl[0], speed);
  728. else if (pmif->kind == controller_un_ata6
  729. || pmif->kind == controller_k2_ata6)
  730. ret = set_timings_udma_ata6(&tl[0], &tl[1], speed);
  731. else if (pmif->kind == controller_sh_ata6)
  732. ret = set_timings_udma_shasta(&tl[0], &tl[1], speed);
  733. else
  734. ret = -1;
  735. } else
  736. set_timings_mdma(drive, pmif->kind, &tl[0], &tl[1], speed);
  737. #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
  738. if (ret)
  739. return;
  740. /* Apply timings to controller */
  741. *timings = tl[0];
  742. *timings2 = tl[1];
  743. pmac_ide_do_update_timings(drive);
  744. }
  745. /*
  746. * Blast some well known "safe" values to the timing registers at init or
  747. * wakeup from sleep time, before we do real calculation
  748. */
  749. static void
  750. sanitize_timings(pmac_ide_hwif_t *pmif)
  751. {
  752. unsigned int value, value2 = 0;
  753. switch(pmif->kind) {
  754. case controller_sh_ata6:
  755. value = 0x0a820c97;
  756. value2 = 0x00033031;
  757. break;
  758. case controller_un_ata6:
  759. case controller_k2_ata6:
  760. value = 0x08618a92;
  761. value2 = 0x00002921;
  762. break;
  763. case controller_kl_ata4:
  764. value = 0x0008438c;
  765. break;
  766. case controller_kl_ata3:
  767. value = 0x00084526;
  768. break;
  769. case controller_heathrow:
  770. case controller_ohare:
  771. default:
  772. value = 0x00074526;
  773. break;
  774. }
  775. pmif->timings[0] = pmif->timings[1] = value;
  776. pmif->timings[2] = pmif->timings[3] = value2;
  777. }
  778. /* Suspend call back, should be called after the child devices
  779. * have actually been suspended
  780. */
  781. static int pmac_ide_do_suspend(pmac_ide_hwif_t *pmif)
  782. {
  783. /* We clear the timings */
  784. pmif->timings[0] = 0;
  785. pmif->timings[1] = 0;
  786. disable_irq(pmif->irq);
  787. /* The media bay will handle itself just fine */
  788. if (pmif->mediabay)
  789. return 0;
  790. /* Kauai has bus control FCRs directly here */
  791. if (pmif->kauai_fcr) {
  792. u32 fcr = readl(pmif->kauai_fcr);
  793. fcr &= ~(KAUAI_FCR_UATA_RESET_N | KAUAI_FCR_UATA_ENABLE);
  794. writel(fcr, pmif->kauai_fcr);
  795. }
  796. /* Disable the bus on older machines and the cell on kauai */
  797. ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, pmif->node, pmif->aapl_bus_id,
  798. 0);
  799. return 0;
  800. }
  801. /* Resume call back, should be called before the child devices
  802. * are resumed
  803. */
  804. static int pmac_ide_do_resume(pmac_ide_hwif_t *pmif)
  805. {
  806. /* Hard reset & re-enable controller (do we really need to reset ? -BenH) */
  807. if (!pmif->mediabay) {
  808. ppc_md.feature_call(PMAC_FTR_IDE_RESET, pmif->node, pmif->aapl_bus_id, 1);
  809. ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, pmif->node, pmif->aapl_bus_id, 1);
  810. msleep(10);
  811. ppc_md.feature_call(PMAC_FTR_IDE_RESET, pmif->node, pmif->aapl_bus_id, 0);
  812. /* Kauai has it different */
  813. if (pmif->kauai_fcr) {
  814. u32 fcr = readl(pmif->kauai_fcr);
  815. fcr |= KAUAI_FCR_UATA_RESET_N | KAUAI_FCR_UATA_ENABLE;
  816. writel(fcr, pmif->kauai_fcr);
  817. }
  818. msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY));
  819. }
  820. /* Sanitize drive timings */
  821. sanitize_timings(pmif);
  822. enable_irq(pmif->irq);
  823. return 0;
  824. }
  825. static u8 pmac_ide_cable_detect(ide_hwif_t *hwif)
  826. {
  827. pmac_ide_hwif_t *pmif =
  828. (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
  829. struct device_node *np = pmif->node;
  830. const char *cable = of_get_property(np, "cable-type", NULL);
  831. /* Get cable type from device-tree. */
  832. if (cable && !strncmp(cable, "80-", 3))
  833. return ATA_CBL_PATA80;
  834. /*
  835. * G5's seem to have incorrect cable type in device-tree.
  836. * Let's assume they have a 80 conductor cable, this seem
  837. * to be always the case unless the user mucked around.
  838. */
  839. if (of_device_is_compatible(np, "K2-UATA") ||
  840. of_device_is_compatible(np, "shasta-ata"))
  841. return ATA_CBL_PATA80;
  842. return ATA_CBL_PATA40;
  843. }
  844. static void pmac_ide_init_dev(ide_drive_t *drive)
  845. {
  846. ide_hwif_t *hwif = drive->hwif;
  847. pmac_ide_hwif_t *pmif =
  848. (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
  849. if (pmif->mediabay) {
  850. #ifdef CONFIG_PMAC_MEDIABAY
  851. if (check_media_bay_by_base(pmif->regbase, MB_CD) == 0) {
  852. drive->noprobe = 0;
  853. return;
  854. }
  855. #endif
  856. drive->noprobe = 1;
  857. }
  858. }
  859. static const struct ide_port_ops pmac_ide_ata6_port_ops = {
  860. .init_dev = pmac_ide_init_dev,
  861. .set_pio_mode = pmac_ide_set_pio_mode,
  862. .set_dma_mode = pmac_ide_set_dma_mode,
  863. .selectproc = pmac_ide_kauai_selectproc,
  864. .cable_detect = pmac_ide_cable_detect,
  865. };
  866. static const struct ide_port_ops pmac_ide_ata4_port_ops = {
  867. .init_dev = pmac_ide_init_dev,
  868. .set_pio_mode = pmac_ide_set_pio_mode,
  869. .set_dma_mode = pmac_ide_set_dma_mode,
  870. .selectproc = pmac_ide_selectproc,
  871. .cable_detect = pmac_ide_cable_detect,
  872. };
  873. static const struct ide_port_ops pmac_ide_port_ops = {
  874. .init_dev = pmac_ide_init_dev,
  875. .set_pio_mode = pmac_ide_set_pio_mode,
  876. .set_dma_mode = pmac_ide_set_dma_mode,
  877. .selectproc = pmac_ide_selectproc,
  878. };
  879. static const struct ide_dma_ops pmac_dma_ops;
  880. static const struct ide_port_info pmac_port_info = {
  881. .name = DRV_NAME,
  882. .init_dma = pmac_ide_init_dma,
  883. .chipset = ide_pmac,
  884. #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
  885. .dma_ops = &pmac_dma_ops,
  886. #endif
  887. .port_ops = &pmac_ide_port_ops,
  888. .host_flags = IDE_HFLAG_SET_PIO_MODE_KEEP_DMA |
  889. IDE_HFLAG_POST_SET_MODE |
  890. IDE_HFLAG_MMIO |
  891. IDE_HFLAG_UNMASK_IRQS,
  892. .pio_mask = ATA_PIO4,
  893. .mwdma_mask = ATA_MWDMA2,
  894. };
  895. /*
  896. * Setup, register & probe an IDE channel driven by this driver, this is
  897. * called by one of the 2 probe functions (macio or PCI).
  898. */
  899. static int __devinit pmac_ide_setup_device(pmac_ide_hwif_t *pmif, hw_regs_t *hw)
  900. {
  901. struct device_node *np = pmif->node;
  902. const int *bidp;
  903. ide_hwif_t *hwif;
  904. hw_regs_t *hws[] = { hw, NULL, NULL, NULL };
  905. u8 idx[4] = { 0xff, 0xff, 0xff, 0xff };
  906. struct ide_port_info d = pmac_port_info;
  907. pmif->broken_dma = pmif->broken_dma_warn = 0;
  908. if (of_device_is_compatible(np, "shasta-ata")) {
  909. pmif->kind = controller_sh_ata6;
  910. d.port_ops = &pmac_ide_ata6_port_ops;
  911. d.udma_mask = ATA_UDMA6;
  912. } else if (of_device_is_compatible(np, "kauai-ata")) {
  913. pmif->kind = controller_un_ata6;
  914. d.port_ops = &pmac_ide_ata6_port_ops;
  915. d.udma_mask = ATA_UDMA5;
  916. } else if (of_device_is_compatible(np, "K2-UATA")) {
  917. pmif->kind = controller_k2_ata6;
  918. d.port_ops = &pmac_ide_ata6_port_ops;
  919. d.udma_mask = ATA_UDMA5;
  920. } else if (of_device_is_compatible(np, "keylargo-ata")) {
  921. if (strcmp(np->name, "ata-4") == 0) {
  922. pmif->kind = controller_kl_ata4;
  923. d.port_ops = &pmac_ide_ata4_port_ops;
  924. d.udma_mask = ATA_UDMA4;
  925. } else
  926. pmif->kind = controller_kl_ata3;
  927. } else if (of_device_is_compatible(np, "heathrow-ata")) {
  928. pmif->kind = controller_heathrow;
  929. } else {
  930. pmif->kind = controller_ohare;
  931. pmif->broken_dma = 1;
  932. }
  933. bidp = of_get_property(np, "AAPL,bus-id", NULL);
  934. pmif->aapl_bus_id = bidp ? *bidp : 0;
  935. /* On Kauai-type controllers, we make sure the FCR is correct */
  936. if (pmif->kauai_fcr)
  937. writel(KAUAI_FCR_UATA_MAGIC |
  938. KAUAI_FCR_UATA_RESET_N |
  939. KAUAI_FCR_UATA_ENABLE, pmif->kauai_fcr);
  940. pmif->mediabay = 0;
  941. /* Make sure we have sane timings */
  942. sanitize_timings(pmif);
  943. #ifndef CONFIG_PPC64
  944. /* XXX FIXME: Media bay stuff need re-organizing */
  945. if (np->parent && np->parent->name
  946. && strcasecmp(np->parent->name, "media-bay") == 0) {
  947. #ifdef CONFIG_PMAC_MEDIABAY
  948. media_bay_set_ide_infos(np->parent, pmif->regbase, pmif->irq,
  949. hwif);
  950. #endif /* CONFIG_PMAC_MEDIABAY */
  951. pmif->mediabay = 1;
  952. if (!bidp)
  953. pmif->aapl_bus_id = 1;
  954. } else if (pmif->kind == controller_ohare) {
  955. /* The code below is having trouble on some ohare machines
  956. * (timing related ?). Until I can put my hand on one of these
  957. * units, I keep the old way
  958. */
  959. ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, 0, 1);
  960. } else
  961. #endif
  962. {
  963. /* This is necessary to enable IDE when net-booting */
  964. ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 1);
  965. ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, pmif->aapl_bus_id, 1);
  966. msleep(10);
  967. ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 0);
  968. msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY));
  969. }
  970. printk(KERN_INFO DRV_NAME ": Found Apple %s controller (%s), "
  971. "bus ID %d%s, irq %d\n", model_name[pmif->kind],
  972. pmif->mdev ? "macio" : "PCI", pmif->aapl_bus_id,
  973. pmif->mediabay ? " (mediabay)" : "", hw->irq);
  974. hwif = ide_find_port_slot(&d);
  975. if (hwif == NULL)
  976. return -ENOENT;
  977. /* Setup MMIO ops */
  978. default_hwif_mmiops(hwif);
  979. hwif->OUTBSYNC = pmac_outbsync;
  980. idx[0] = hwif->index;
  981. ide_device_add(idx, &d, hws);
  982. return 0;
  983. }
  984. static void __devinit pmac_ide_init_ports(hw_regs_t *hw, unsigned long base)
  985. {
  986. int i;
  987. for (i = 0; i < 8; ++i)
  988. hw->io_ports_array[i] = base + i * 0x10;
  989. hw->io_ports.ctl_addr = base + 0x160;
  990. }
  991. /*
  992. * Attach to a macio probed interface
  993. */
  994. static int __devinit
  995. pmac_ide_macio_attach(struct macio_dev *mdev, const struct of_device_id *match)
  996. {
  997. void __iomem *base;
  998. unsigned long regbase;
  999. pmac_ide_hwif_t *pmif;
  1000. int irq, rc;
  1001. hw_regs_t hw;
  1002. pmif = kzalloc(sizeof(*pmif), GFP_KERNEL);
  1003. if (pmif == NULL)
  1004. return -ENOMEM;
  1005. if (macio_resource_count(mdev) == 0) {
  1006. printk(KERN_WARNING "ide-pmac: no address for %s\n",
  1007. mdev->ofdev.node->full_name);
  1008. rc = -ENXIO;
  1009. goto out_free_pmif;
  1010. }
  1011. /* Request memory resource for IO ports */
  1012. if (macio_request_resource(mdev, 0, "ide-pmac (ports)")) {
  1013. printk(KERN_ERR "ide-pmac: can't request MMIO resource for "
  1014. "%s!\n", mdev->ofdev.node->full_name);
  1015. rc = -EBUSY;
  1016. goto out_free_pmif;
  1017. }
  1018. /* XXX This is bogus. Should be fixed in the registry by checking
  1019. * the kind of host interrupt controller, a bit like gatwick
  1020. * fixes in irq.c. That works well enough for the single case
  1021. * where that happens though...
  1022. */
  1023. if (macio_irq_count(mdev) == 0) {
  1024. printk(KERN_WARNING "ide-pmac: no intrs for device %s, using "
  1025. "13\n", mdev->ofdev.node->full_name);
  1026. irq = irq_create_mapping(NULL, 13);
  1027. } else
  1028. irq = macio_irq(mdev, 0);
  1029. base = ioremap(macio_resource_start(mdev, 0), 0x400);
  1030. regbase = (unsigned long) base;
  1031. pmif->mdev = mdev;
  1032. pmif->node = mdev->ofdev.node;
  1033. pmif->regbase = regbase;
  1034. pmif->irq = irq;
  1035. pmif->kauai_fcr = NULL;
  1036. #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
  1037. if (macio_resource_count(mdev) >= 2) {
  1038. if (macio_request_resource(mdev, 1, "ide-pmac (dma)"))
  1039. printk(KERN_WARNING "ide-pmac: can't request DMA "
  1040. "resource for %s!\n",
  1041. mdev->ofdev.node->full_name);
  1042. else
  1043. pmif->dma_regs = ioremap(macio_resource_start(mdev, 1), 0x1000);
  1044. } else
  1045. pmif->dma_regs = NULL;
  1046. #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
  1047. dev_set_drvdata(&mdev->ofdev.dev, pmif);
  1048. memset(&hw, 0, sizeof(hw));
  1049. pmac_ide_init_ports(&hw, pmif->regbase);
  1050. hw.irq = irq;
  1051. hw.dev = &mdev->bus->pdev->dev;
  1052. hw.parent = &mdev->ofdev.dev;
  1053. rc = pmac_ide_setup_device(pmif, &hw);
  1054. if (rc != 0) {
  1055. /* The inteface is released to the common IDE layer */
  1056. dev_set_drvdata(&mdev->ofdev.dev, NULL);
  1057. iounmap(base);
  1058. if (pmif->dma_regs) {
  1059. iounmap(pmif->dma_regs);
  1060. macio_release_resource(mdev, 1);
  1061. }
  1062. macio_release_resource(mdev, 0);
  1063. kfree(pmif);
  1064. }
  1065. return rc;
  1066. out_free_pmif:
  1067. kfree(pmif);
  1068. return rc;
  1069. }
  1070. static int
  1071. pmac_ide_macio_suspend(struct macio_dev *mdev, pm_message_t mesg)
  1072. {
  1073. pmac_ide_hwif_t *pmif =
  1074. (pmac_ide_hwif_t *)dev_get_drvdata(&mdev->ofdev.dev);
  1075. int rc = 0;
  1076. if (mesg.event != mdev->ofdev.dev.power.power_state.event
  1077. && (mesg.event & PM_EVENT_SLEEP)) {
  1078. rc = pmac_ide_do_suspend(pmif);
  1079. if (rc == 0)
  1080. mdev->ofdev.dev.power.power_state = mesg;
  1081. }
  1082. return rc;
  1083. }
  1084. static int
  1085. pmac_ide_macio_resume(struct macio_dev *mdev)
  1086. {
  1087. pmac_ide_hwif_t *pmif =
  1088. (pmac_ide_hwif_t *)dev_get_drvdata(&mdev->ofdev.dev);
  1089. int rc = 0;
  1090. if (mdev->ofdev.dev.power.power_state.event != PM_EVENT_ON) {
  1091. rc = pmac_ide_do_resume(pmif);
  1092. if (rc == 0)
  1093. mdev->ofdev.dev.power.power_state = PMSG_ON;
  1094. }
  1095. return rc;
  1096. }
  1097. /*
  1098. * Attach to a PCI probed interface
  1099. */
  1100. static int __devinit
  1101. pmac_ide_pci_attach(struct pci_dev *pdev, const struct pci_device_id *id)
  1102. {
  1103. struct device_node *np;
  1104. pmac_ide_hwif_t *pmif;
  1105. void __iomem *base;
  1106. unsigned long rbase, rlen;
  1107. int rc;
  1108. hw_regs_t hw;
  1109. np = pci_device_to_OF_node(pdev);
  1110. if (np == NULL) {
  1111. printk(KERN_ERR "ide-pmac: cannot find MacIO node for Kauai ATA interface\n");
  1112. return -ENODEV;
  1113. }
  1114. pmif = kzalloc(sizeof(*pmif), GFP_KERNEL);
  1115. if (pmif == NULL)
  1116. return -ENOMEM;
  1117. if (pci_enable_device(pdev)) {
  1118. printk(KERN_WARNING "ide-pmac: Can't enable PCI device for "
  1119. "%s\n", np->full_name);
  1120. rc = -ENXIO;
  1121. goto out_free_pmif;
  1122. }
  1123. pci_set_master(pdev);
  1124. if (pci_request_regions(pdev, "Kauai ATA")) {
  1125. printk(KERN_ERR "ide-pmac: Cannot obtain PCI resources for "
  1126. "%s\n", np->full_name);
  1127. rc = -ENXIO;
  1128. goto out_free_pmif;
  1129. }
  1130. pmif->mdev = NULL;
  1131. pmif->node = np;
  1132. rbase = pci_resource_start(pdev, 0);
  1133. rlen = pci_resource_len(pdev, 0);
  1134. base = ioremap(rbase, rlen);
  1135. pmif->regbase = (unsigned long) base + 0x2000;
  1136. #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
  1137. pmif->dma_regs = base + 0x1000;
  1138. #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
  1139. pmif->kauai_fcr = base;
  1140. pmif->irq = pdev->irq;
  1141. pci_set_drvdata(pdev, pmif);
  1142. memset(&hw, 0, sizeof(hw));
  1143. pmac_ide_init_ports(&hw, pmif->regbase);
  1144. hw.irq = pdev->irq;
  1145. hw.dev = &pdev->dev;
  1146. rc = pmac_ide_setup_device(pmif, &hw);
  1147. if (rc != 0) {
  1148. /* The inteface is released to the common IDE layer */
  1149. pci_set_drvdata(pdev, NULL);
  1150. iounmap(base);
  1151. pci_release_regions(pdev);
  1152. kfree(pmif);
  1153. }
  1154. return rc;
  1155. out_free_pmif:
  1156. kfree(pmif);
  1157. return rc;
  1158. }
  1159. static int
  1160. pmac_ide_pci_suspend(struct pci_dev *pdev, pm_message_t mesg)
  1161. {
  1162. pmac_ide_hwif_t *pmif = (pmac_ide_hwif_t *)pci_get_drvdata(pdev);
  1163. int rc = 0;
  1164. if (mesg.event != pdev->dev.power.power_state.event
  1165. && (mesg.event & PM_EVENT_SLEEP)) {
  1166. rc = pmac_ide_do_suspend(pmif);
  1167. if (rc == 0)
  1168. pdev->dev.power.power_state = mesg;
  1169. }
  1170. return rc;
  1171. }
  1172. static int
  1173. pmac_ide_pci_resume(struct pci_dev *pdev)
  1174. {
  1175. pmac_ide_hwif_t *pmif = (pmac_ide_hwif_t *)pci_get_drvdata(pdev);
  1176. int rc = 0;
  1177. if (pdev->dev.power.power_state.event != PM_EVENT_ON) {
  1178. rc = pmac_ide_do_resume(pmif);
  1179. if (rc == 0)
  1180. pdev->dev.power.power_state = PMSG_ON;
  1181. }
  1182. return rc;
  1183. }
  1184. static struct of_device_id pmac_ide_macio_match[] =
  1185. {
  1186. {
  1187. .name = "IDE",
  1188. },
  1189. {
  1190. .name = "ATA",
  1191. },
  1192. {
  1193. .type = "ide",
  1194. },
  1195. {
  1196. .type = "ata",
  1197. },
  1198. {},
  1199. };
  1200. static struct macio_driver pmac_ide_macio_driver =
  1201. {
  1202. .name = "ide-pmac",
  1203. .match_table = pmac_ide_macio_match,
  1204. .probe = pmac_ide_macio_attach,
  1205. .suspend = pmac_ide_macio_suspend,
  1206. .resume = pmac_ide_macio_resume,
  1207. };
  1208. static const struct pci_device_id pmac_ide_pci_match[] = {
  1209. { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_UNI_N_ATA), 0 },
  1210. { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_IPID_ATA100), 0 },
  1211. { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_K2_ATA100), 0 },
  1212. { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_SH_ATA), 0 },
  1213. { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_IPID2_ATA), 0 },
  1214. {},
  1215. };
  1216. static struct pci_driver pmac_ide_pci_driver = {
  1217. .name = "ide-pmac",
  1218. .id_table = pmac_ide_pci_match,
  1219. .probe = pmac_ide_pci_attach,
  1220. .suspend = pmac_ide_pci_suspend,
  1221. .resume = pmac_ide_pci_resume,
  1222. };
  1223. MODULE_DEVICE_TABLE(pci, pmac_ide_pci_match);
  1224. int __init pmac_ide_probe(void)
  1225. {
  1226. int error;
  1227. if (!machine_is(powermac))
  1228. return -ENODEV;
  1229. #ifdef CONFIG_BLK_DEV_IDE_PMAC_ATA100FIRST
  1230. error = pci_register_driver(&pmac_ide_pci_driver);
  1231. if (error)
  1232. goto out;
  1233. error = macio_register_driver(&pmac_ide_macio_driver);
  1234. if (error) {
  1235. pci_unregister_driver(&pmac_ide_pci_driver);
  1236. goto out;
  1237. }
  1238. #else
  1239. error = macio_register_driver(&pmac_ide_macio_driver);
  1240. if (error)
  1241. goto out;
  1242. error = pci_register_driver(&pmac_ide_pci_driver);
  1243. if (error) {
  1244. macio_unregister_driver(&pmac_ide_macio_driver);
  1245. goto out;
  1246. }
  1247. #endif
  1248. out:
  1249. return error;
  1250. }
  1251. #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
  1252. /*
  1253. * pmac_ide_build_dmatable builds the DBDMA command list
  1254. * for a transfer and sets the DBDMA channel to point to it.
  1255. */
  1256. static int
  1257. pmac_ide_build_dmatable(ide_drive_t *drive, struct request *rq)
  1258. {
  1259. ide_hwif_t *hwif = drive->hwif;
  1260. pmac_ide_hwif_t *pmif =
  1261. (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
  1262. struct dbdma_cmd *table;
  1263. int i, count = 0;
  1264. volatile struct dbdma_regs __iomem *dma = pmif->dma_regs;
  1265. struct scatterlist *sg;
  1266. int wr = (rq_data_dir(rq) == WRITE);
  1267. /* DMA table is already aligned */
  1268. table = (struct dbdma_cmd *) pmif->dma_table_cpu;
  1269. /* Make sure DMA controller is stopped (necessary ?) */
  1270. writel((RUN|PAUSE|FLUSH|WAKE|DEAD) << 16, &dma->control);
  1271. while (readl(&dma->status) & RUN)
  1272. udelay(1);
  1273. hwif->sg_nents = i = ide_build_sglist(drive, rq);
  1274. if (!i)
  1275. return 0;
  1276. /* Build DBDMA commands list */
  1277. sg = hwif->sg_table;
  1278. while (i && sg_dma_len(sg)) {
  1279. u32 cur_addr;
  1280. u32 cur_len;
  1281. cur_addr = sg_dma_address(sg);
  1282. cur_len = sg_dma_len(sg);
  1283. if (pmif->broken_dma && cur_addr & (L1_CACHE_BYTES - 1)) {
  1284. if (pmif->broken_dma_warn == 0) {
  1285. printk(KERN_WARNING "%s: DMA on non aligned address, "
  1286. "switching to PIO on Ohare chipset\n", drive->name);
  1287. pmif->broken_dma_warn = 1;
  1288. }
  1289. goto use_pio_instead;
  1290. }
  1291. while (cur_len) {
  1292. unsigned int tc = (cur_len < 0xfe00)? cur_len: 0xfe00;
  1293. if (count++ >= MAX_DCMDS) {
  1294. printk(KERN_WARNING "%s: DMA table too small\n",
  1295. drive->name);
  1296. goto use_pio_instead;
  1297. }
  1298. st_le16(&table->command, wr? OUTPUT_MORE: INPUT_MORE);
  1299. st_le16(&table->req_count, tc);
  1300. st_le32(&table->phy_addr, cur_addr);
  1301. table->cmd_dep = 0;
  1302. table->xfer_status = 0;
  1303. table->res_count = 0;
  1304. cur_addr += tc;
  1305. cur_len -= tc;
  1306. ++table;
  1307. }
  1308. sg = sg_next(sg);
  1309. i--;
  1310. }
  1311. /* convert the last command to an input/output last command */
  1312. if (count) {
  1313. st_le16(&table[-1].command, wr? OUTPUT_LAST: INPUT_LAST);
  1314. /* add the stop command to the end of the list */
  1315. memset(table, 0, sizeof(struct dbdma_cmd));
  1316. st_le16(&table->command, DBDMA_STOP);
  1317. mb();
  1318. writel(hwif->dmatable_dma, &dma->cmdptr);
  1319. return 1;
  1320. }
  1321. printk(KERN_DEBUG "%s: empty DMA table?\n", drive->name);
  1322. use_pio_instead:
  1323. ide_destroy_dmatable(drive);
  1324. return 0; /* revert to PIO for this request */
  1325. }
  1326. /* Teardown mappings after DMA has completed. */
  1327. static void
  1328. pmac_ide_destroy_dmatable (ide_drive_t *drive)
  1329. {
  1330. ide_hwif_t *hwif = drive->hwif;
  1331. if (hwif->sg_nents) {
  1332. ide_destroy_dmatable(drive);
  1333. hwif->sg_nents = 0;
  1334. }
  1335. }
  1336. /*
  1337. * Prepare a DMA transfer. We build the DMA table, adjust the timings for
  1338. * a read on KeyLargo ATA/66 and mark us as waiting for DMA completion
  1339. */
  1340. static int
  1341. pmac_ide_dma_setup(ide_drive_t *drive)
  1342. {
  1343. ide_hwif_t *hwif = HWIF(drive);
  1344. pmac_ide_hwif_t *pmif =
  1345. (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
  1346. struct request *rq = HWGROUP(drive)->rq;
  1347. u8 unit = (drive->select.b.unit & 0x01);
  1348. u8 ata4;
  1349. if (pmif == NULL)
  1350. return 1;
  1351. ata4 = (pmif->kind == controller_kl_ata4);
  1352. if (!pmac_ide_build_dmatable(drive, rq)) {
  1353. ide_map_sg(drive, rq);
  1354. return 1;
  1355. }
  1356. /* Apple adds 60ns to wrDataSetup on reads */
  1357. if (ata4 && (pmif->timings[unit] & TR_66_UDMA_EN)) {
  1358. writel(pmif->timings[unit] + (!rq_data_dir(rq) ? 0x00800000UL : 0),
  1359. PMAC_IDE_REG(IDE_TIMING_CONFIG));
  1360. (void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG));
  1361. }
  1362. drive->waiting_for_dma = 1;
  1363. return 0;
  1364. }
  1365. static void
  1366. pmac_ide_dma_exec_cmd(ide_drive_t *drive, u8 command)
  1367. {
  1368. /* issue cmd to drive */
  1369. ide_execute_command(drive, command, &ide_dma_intr, 2*WAIT_CMD, NULL);
  1370. }
  1371. /*
  1372. * Kick the DMA controller into life after the DMA command has been issued
  1373. * to the drive.
  1374. */
  1375. static void
  1376. pmac_ide_dma_start(ide_drive_t *drive)
  1377. {
  1378. ide_hwif_t *hwif = drive->hwif;
  1379. pmac_ide_hwif_t *pmif =
  1380. (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
  1381. volatile struct dbdma_regs __iomem *dma;
  1382. dma = pmif->dma_regs;
  1383. writel((RUN << 16) | RUN, &dma->control);
  1384. /* Make sure it gets to the controller right now */
  1385. (void)readl(&dma->control);
  1386. }
  1387. /*
  1388. * After a DMA transfer, make sure the controller is stopped
  1389. */
  1390. static int
  1391. pmac_ide_dma_end (ide_drive_t *drive)
  1392. {
  1393. ide_hwif_t *hwif = drive->hwif;
  1394. pmac_ide_hwif_t *pmif =
  1395. (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
  1396. volatile struct dbdma_regs __iomem *dma;
  1397. u32 dstat;
  1398. if (pmif == NULL)
  1399. return 0;
  1400. dma = pmif->dma_regs;
  1401. drive->waiting_for_dma = 0;
  1402. dstat = readl(&dma->status);
  1403. writel(((RUN|WAKE|DEAD) << 16), &dma->control);
  1404. pmac_ide_destroy_dmatable(drive);
  1405. /* verify good dma status. we don't check for ACTIVE beeing 0. We should...
  1406. * in theory, but with ATAPI decices doing buffer underruns, that would
  1407. * cause us to disable DMA, which isn't what we want
  1408. */
  1409. return (dstat & (RUN|DEAD)) != RUN;
  1410. }
  1411. /*
  1412. * Check out that the interrupt we got was for us. We can't always know this
  1413. * for sure with those Apple interfaces (well, we could on the recent ones but
  1414. * that's not implemented yet), on the other hand, we don't have shared interrupts
  1415. * so it's not really a problem
  1416. */
  1417. static int
  1418. pmac_ide_dma_test_irq (ide_drive_t *drive)
  1419. {
  1420. ide_hwif_t *hwif = drive->hwif;
  1421. pmac_ide_hwif_t *pmif =
  1422. (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
  1423. volatile struct dbdma_regs __iomem *dma;
  1424. unsigned long status, timeout;
  1425. if (pmif == NULL)
  1426. return 0;
  1427. dma = pmif->dma_regs;
  1428. /* We have to things to deal with here:
  1429. *
  1430. * - The dbdma won't stop if the command was started
  1431. * but completed with an error without transferring all
  1432. * datas. This happens when bad blocks are met during
  1433. * a multi-block transfer.
  1434. *
  1435. * - The dbdma fifo hasn't yet finished flushing to
  1436. * to system memory when the disk interrupt occurs.
  1437. *
  1438. */
  1439. /* If ACTIVE is cleared, the STOP command have passed and
  1440. * transfer is complete.
  1441. */
  1442. status = readl(&dma->status);
  1443. if (!(status & ACTIVE))
  1444. return 1;
  1445. if (!drive->waiting_for_dma)
  1446. printk(KERN_WARNING "ide%d, ide_dma_test_irq \
  1447. called while not waiting\n", HWIF(drive)->index);
  1448. /* If dbdma didn't execute the STOP command yet, the
  1449. * active bit is still set. We consider that we aren't
  1450. * sharing interrupts (which is hopefully the case with
  1451. * those controllers) and so we just try to flush the
  1452. * channel for pending data in the fifo
  1453. */
  1454. udelay(1);
  1455. writel((FLUSH << 16) | FLUSH, &dma->control);
  1456. timeout = 0;
  1457. for (;;) {
  1458. udelay(1);
  1459. status = readl(&dma->status);
  1460. if ((status & FLUSH) == 0)
  1461. break;
  1462. if (++timeout > 100) {
  1463. printk(KERN_WARNING "ide%d, ide_dma_test_irq \
  1464. timeout flushing channel\n", HWIF(drive)->index);
  1465. break;
  1466. }
  1467. }
  1468. return 1;
  1469. }
  1470. static void pmac_ide_dma_host_set(ide_drive_t *drive, int on)
  1471. {
  1472. }
  1473. static void
  1474. pmac_ide_dma_lost_irq (ide_drive_t *drive)
  1475. {
  1476. ide_hwif_t *hwif = drive->hwif;
  1477. pmac_ide_hwif_t *pmif =
  1478. (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
  1479. volatile struct dbdma_regs __iomem *dma;
  1480. unsigned long status;
  1481. if (pmif == NULL)
  1482. return;
  1483. dma = pmif->dma_regs;
  1484. status = readl(&dma->status);
  1485. printk(KERN_ERR "ide-pmac lost interrupt, dma status: %lx\n", status);
  1486. }
  1487. static const struct ide_dma_ops pmac_dma_ops = {
  1488. .dma_host_set = pmac_ide_dma_host_set,
  1489. .dma_setup = pmac_ide_dma_setup,
  1490. .dma_exec_cmd = pmac_ide_dma_exec_cmd,
  1491. .dma_start = pmac_ide_dma_start,
  1492. .dma_end = pmac_ide_dma_end,
  1493. .dma_test_irq = pmac_ide_dma_test_irq,
  1494. .dma_timeout = ide_dma_timeout,
  1495. .dma_lost_irq = pmac_ide_dma_lost_irq,
  1496. };
  1497. /*
  1498. * Allocate the data structures needed for using DMA with an interface
  1499. * and fill the proper list of functions pointers
  1500. */
  1501. static int __devinit pmac_ide_init_dma(ide_hwif_t *hwif,
  1502. const struct ide_port_info *d)
  1503. {
  1504. pmac_ide_hwif_t *pmif =
  1505. (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
  1506. struct pci_dev *dev = to_pci_dev(hwif->dev);
  1507. /* We won't need pci_dev if we switch to generic consistent
  1508. * DMA routines ...
  1509. */
  1510. if (dev == NULL || pmif->dma_regs == 0)
  1511. return -ENODEV;
  1512. /*
  1513. * Allocate space for the DBDMA commands.
  1514. * The +2 is +1 for the stop command and +1 to allow for
  1515. * aligning the start address to a multiple of 16 bytes.
  1516. */
  1517. pmif->dma_table_cpu = (struct dbdma_cmd*)pci_alloc_consistent(
  1518. dev,
  1519. (MAX_DCMDS + 2) * sizeof(struct dbdma_cmd),
  1520. &hwif->dmatable_dma);
  1521. if (pmif->dma_table_cpu == NULL) {
  1522. printk(KERN_ERR "%s: unable to allocate DMA command list\n",
  1523. hwif->name);
  1524. return -ENOMEM;
  1525. }
  1526. hwif->sg_max_nents = MAX_DCMDS;
  1527. return 0;
  1528. }
  1529. #else
  1530. static int __devinit pmac_ide_init_dma(ide_hwif_t *hwif,
  1531. const struct ide_port_info *d)
  1532. {
  1533. return -EOPNOTSUPP;
  1534. }
  1535. #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
  1536. module_init(pmac_ide_probe);
  1537. MODULE_LICENSE("GPL");