page_alloc.c 126 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595
  1. /*
  2. * linux/mm/page_alloc.c
  3. *
  4. * Manages the free list, the system allocates free pages here.
  5. * Note that kmalloc() lives in slab.c
  6. *
  7. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  8. * Swap reorganised 29.12.95, Stephen Tweedie
  9. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10. * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12. * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13. * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14. * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15. */
  16. #include <linux/stddef.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/jiffies.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/compiler.h>
  24. #include <linux/kernel.h>
  25. #include <linux/module.h>
  26. #include <linux/suspend.h>
  27. #include <linux/pagevec.h>
  28. #include <linux/blkdev.h>
  29. #include <linux/slab.h>
  30. #include <linux/oom.h>
  31. #include <linux/notifier.h>
  32. #include <linux/topology.h>
  33. #include <linux/sysctl.h>
  34. #include <linux/cpu.h>
  35. #include <linux/cpuset.h>
  36. #include <linux/memory_hotplug.h>
  37. #include <linux/nodemask.h>
  38. #include <linux/vmalloc.h>
  39. #include <linux/mempolicy.h>
  40. #include <linux/stop_machine.h>
  41. #include <linux/sort.h>
  42. #include <linux/pfn.h>
  43. #include <linux/backing-dev.h>
  44. #include <linux/fault-inject.h>
  45. #include <linux/page-isolation.h>
  46. #include <linux/memcontrol.h>
  47. #include <linux/debugobjects.h>
  48. #include <asm/tlbflush.h>
  49. #include <asm/div64.h>
  50. #include "internal.h"
  51. /*
  52. * Array of node states.
  53. */
  54. nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
  55. [N_POSSIBLE] = NODE_MASK_ALL,
  56. [N_ONLINE] = { { [0] = 1UL } },
  57. #ifndef CONFIG_NUMA
  58. [N_NORMAL_MEMORY] = { { [0] = 1UL } },
  59. #ifdef CONFIG_HIGHMEM
  60. [N_HIGH_MEMORY] = { { [0] = 1UL } },
  61. #endif
  62. [N_CPU] = { { [0] = 1UL } },
  63. #endif /* NUMA */
  64. };
  65. EXPORT_SYMBOL(node_states);
  66. unsigned long totalram_pages __read_mostly;
  67. unsigned long totalreserve_pages __read_mostly;
  68. long nr_swap_pages;
  69. int percpu_pagelist_fraction;
  70. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  71. int pageblock_order __read_mostly;
  72. #endif
  73. static void __free_pages_ok(struct page *page, unsigned int order);
  74. /*
  75. * results with 256, 32 in the lowmem_reserve sysctl:
  76. * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
  77. * 1G machine -> (16M dma, 784M normal, 224M high)
  78. * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
  79. * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
  80. * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
  81. *
  82. * TBD: should special case ZONE_DMA32 machines here - in those we normally
  83. * don't need any ZONE_NORMAL reservation
  84. */
  85. int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
  86. #ifdef CONFIG_ZONE_DMA
  87. 256,
  88. #endif
  89. #ifdef CONFIG_ZONE_DMA32
  90. 256,
  91. #endif
  92. #ifdef CONFIG_HIGHMEM
  93. 32,
  94. #endif
  95. 32,
  96. };
  97. EXPORT_SYMBOL(totalram_pages);
  98. static char * const zone_names[MAX_NR_ZONES] = {
  99. #ifdef CONFIG_ZONE_DMA
  100. "DMA",
  101. #endif
  102. #ifdef CONFIG_ZONE_DMA32
  103. "DMA32",
  104. #endif
  105. "Normal",
  106. #ifdef CONFIG_HIGHMEM
  107. "HighMem",
  108. #endif
  109. "Movable",
  110. };
  111. int min_free_kbytes = 1024;
  112. unsigned long __meminitdata nr_kernel_pages;
  113. unsigned long __meminitdata nr_all_pages;
  114. static unsigned long __meminitdata dma_reserve;
  115. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  116. /*
  117. * MAX_ACTIVE_REGIONS determines the maximum number of distinct
  118. * ranges of memory (RAM) that may be registered with add_active_range().
  119. * Ranges passed to add_active_range() will be merged if possible
  120. * so the number of times add_active_range() can be called is
  121. * related to the number of nodes and the number of holes
  122. */
  123. #ifdef CONFIG_MAX_ACTIVE_REGIONS
  124. /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
  125. #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
  126. #else
  127. #if MAX_NUMNODES >= 32
  128. /* If there can be many nodes, allow up to 50 holes per node */
  129. #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
  130. #else
  131. /* By default, allow up to 256 distinct regions */
  132. #define MAX_ACTIVE_REGIONS 256
  133. #endif
  134. #endif
  135. static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
  136. static int __meminitdata nr_nodemap_entries;
  137. static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
  138. static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
  139. #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
  140. static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
  141. static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
  142. #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
  143. unsigned long __initdata required_kernelcore;
  144. static unsigned long __initdata required_movablecore;
  145. unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
  146. /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
  147. int movable_zone;
  148. EXPORT_SYMBOL(movable_zone);
  149. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  150. #if MAX_NUMNODES > 1
  151. int nr_node_ids __read_mostly = MAX_NUMNODES;
  152. EXPORT_SYMBOL(nr_node_ids);
  153. #endif
  154. int page_group_by_mobility_disabled __read_mostly;
  155. static void set_pageblock_migratetype(struct page *page, int migratetype)
  156. {
  157. set_pageblock_flags_group(page, (unsigned long)migratetype,
  158. PB_migrate, PB_migrate_end);
  159. }
  160. #ifdef CONFIG_DEBUG_VM
  161. static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
  162. {
  163. int ret = 0;
  164. unsigned seq;
  165. unsigned long pfn = page_to_pfn(page);
  166. do {
  167. seq = zone_span_seqbegin(zone);
  168. if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
  169. ret = 1;
  170. else if (pfn < zone->zone_start_pfn)
  171. ret = 1;
  172. } while (zone_span_seqretry(zone, seq));
  173. return ret;
  174. }
  175. static int page_is_consistent(struct zone *zone, struct page *page)
  176. {
  177. if (!pfn_valid_within(page_to_pfn(page)))
  178. return 0;
  179. if (zone != page_zone(page))
  180. return 0;
  181. return 1;
  182. }
  183. /*
  184. * Temporary debugging check for pages not lying within a given zone.
  185. */
  186. static int bad_range(struct zone *zone, struct page *page)
  187. {
  188. if (page_outside_zone_boundaries(zone, page))
  189. return 1;
  190. if (!page_is_consistent(zone, page))
  191. return 1;
  192. return 0;
  193. }
  194. #else
  195. static inline int bad_range(struct zone *zone, struct page *page)
  196. {
  197. return 0;
  198. }
  199. #endif
  200. static void bad_page(struct page *page)
  201. {
  202. void *pc = page_get_page_cgroup(page);
  203. printk(KERN_EMERG "Bad page state in process '%s'\n" KERN_EMERG
  204. "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n",
  205. current->comm, page, (int)(2*sizeof(unsigned long)),
  206. (unsigned long)page->flags, page->mapping,
  207. page_mapcount(page), page_count(page));
  208. if (pc) {
  209. printk(KERN_EMERG "cgroup:%p\n", pc);
  210. page_reset_bad_cgroup(page);
  211. }
  212. printk(KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
  213. KERN_EMERG "Backtrace:\n");
  214. dump_stack();
  215. page->flags &= ~(1 << PG_lru |
  216. 1 << PG_private |
  217. 1 << PG_locked |
  218. 1 << PG_active |
  219. 1 << PG_dirty |
  220. 1 << PG_reclaim |
  221. 1 << PG_slab |
  222. 1 << PG_swapcache |
  223. 1 << PG_writeback |
  224. 1 << PG_buddy );
  225. set_page_count(page, 0);
  226. reset_page_mapcount(page);
  227. page->mapping = NULL;
  228. add_taint(TAINT_BAD_PAGE);
  229. }
  230. /*
  231. * Higher-order pages are called "compound pages". They are structured thusly:
  232. *
  233. * The first PAGE_SIZE page is called the "head page".
  234. *
  235. * The remaining PAGE_SIZE pages are called "tail pages".
  236. *
  237. * All pages have PG_compound set. All pages have their ->private pointing at
  238. * the head page (even the head page has this).
  239. *
  240. * The first tail page's ->lru.next holds the address of the compound page's
  241. * put_page() function. Its ->lru.prev holds the order of allocation.
  242. * This usage means that zero-order pages may not be compound.
  243. */
  244. static void free_compound_page(struct page *page)
  245. {
  246. __free_pages_ok(page, compound_order(page));
  247. }
  248. static void prep_compound_page(struct page *page, unsigned long order)
  249. {
  250. int i;
  251. int nr_pages = 1 << order;
  252. set_compound_page_dtor(page, free_compound_page);
  253. set_compound_order(page, order);
  254. __SetPageHead(page);
  255. for (i = 1; i < nr_pages; i++) {
  256. struct page *p = page + i;
  257. __SetPageTail(p);
  258. p->first_page = page;
  259. }
  260. }
  261. static void destroy_compound_page(struct page *page, unsigned long order)
  262. {
  263. int i;
  264. int nr_pages = 1 << order;
  265. if (unlikely(compound_order(page) != order))
  266. bad_page(page);
  267. if (unlikely(!PageHead(page)))
  268. bad_page(page);
  269. __ClearPageHead(page);
  270. for (i = 1; i < nr_pages; i++) {
  271. struct page *p = page + i;
  272. if (unlikely(!PageTail(p) |
  273. (p->first_page != page)))
  274. bad_page(page);
  275. __ClearPageTail(p);
  276. }
  277. }
  278. static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
  279. {
  280. int i;
  281. /*
  282. * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
  283. * and __GFP_HIGHMEM from hard or soft interrupt context.
  284. */
  285. VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
  286. for (i = 0; i < (1 << order); i++)
  287. clear_highpage(page + i);
  288. }
  289. static inline void set_page_order(struct page *page, int order)
  290. {
  291. set_page_private(page, order);
  292. __SetPageBuddy(page);
  293. }
  294. static inline void rmv_page_order(struct page *page)
  295. {
  296. __ClearPageBuddy(page);
  297. set_page_private(page, 0);
  298. }
  299. /*
  300. * Locate the struct page for both the matching buddy in our
  301. * pair (buddy1) and the combined O(n+1) page they form (page).
  302. *
  303. * 1) Any buddy B1 will have an order O twin B2 which satisfies
  304. * the following equation:
  305. * B2 = B1 ^ (1 << O)
  306. * For example, if the starting buddy (buddy2) is #8 its order
  307. * 1 buddy is #10:
  308. * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
  309. *
  310. * 2) Any buddy B will have an order O+1 parent P which
  311. * satisfies the following equation:
  312. * P = B & ~(1 << O)
  313. *
  314. * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
  315. */
  316. static inline struct page *
  317. __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
  318. {
  319. unsigned long buddy_idx = page_idx ^ (1 << order);
  320. return page + (buddy_idx - page_idx);
  321. }
  322. static inline unsigned long
  323. __find_combined_index(unsigned long page_idx, unsigned int order)
  324. {
  325. return (page_idx & ~(1 << order));
  326. }
  327. /*
  328. * This function checks whether a page is free && is the buddy
  329. * we can do coalesce a page and its buddy if
  330. * (a) the buddy is not in a hole &&
  331. * (b) the buddy is in the buddy system &&
  332. * (c) a page and its buddy have the same order &&
  333. * (d) a page and its buddy are in the same zone.
  334. *
  335. * For recording whether a page is in the buddy system, we use PG_buddy.
  336. * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
  337. *
  338. * For recording page's order, we use page_private(page).
  339. */
  340. static inline int page_is_buddy(struct page *page, struct page *buddy,
  341. int order)
  342. {
  343. if (!pfn_valid_within(page_to_pfn(buddy)))
  344. return 0;
  345. if (page_zone_id(page) != page_zone_id(buddy))
  346. return 0;
  347. if (PageBuddy(buddy) && page_order(buddy) == order) {
  348. BUG_ON(page_count(buddy) != 0);
  349. return 1;
  350. }
  351. return 0;
  352. }
  353. /*
  354. * Freeing function for a buddy system allocator.
  355. *
  356. * The concept of a buddy system is to maintain direct-mapped table
  357. * (containing bit values) for memory blocks of various "orders".
  358. * The bottom level table contains the map for the smallest allocatable
  359. * units of memory (here, pages), and each level above it describes
  360. * pairs of units from the levels below, hence, "buddies".
  361. * At a high level, all that happens here is marking the table entry
  362. * at the bottom level available, and propagating the changes upward
  363. * as necessary, plus some accounting needed to play nicely with other
  364. * parts of the VM system.
  365. * At each level, we keep a list of pages, which are heads of continuous
  366. * free pages of length of (1 << order) and marked with PG_buddy. Page's
  367. * order is recorded in page_private(page) field.
  368. * So when we are allocating or freeing one, we can derive the state of the
  369. * other. That is, if we allocate a small block, and both were
  370. * free, the remainder of the region must be split into blocks.
  371. * If a block is freed, and its buddy is also free, then this
  372. * triggers coalescing into a block of larger size.
  373. *
  374. * -- wli
  375. */
  376. static inline void __free_one_page(struct page *page,
  377. struct zone *zone, unsigned int order)
  378. {
  379. unsigned long page_idx;
  380. int order_size = 1 << order;
  381. int migratetype = get_pageblock_migratetype(page);
  382. if (unlikely(PageCompound(page)))
  383. destroy_compound_page(page, order);
  384. page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
  385. VM_BUG_ON(page_idx & (order_size - 1));
  386. VM_BUG_ON(bad_range(zone, page));
  387. __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
  388. while (order < MAX_ORDER-1) {
  389. unsigned long combined_idx;
  390. struct page *buddy;
  391. buddy = __page_find_buddy(page, page_idx, order);
  392. if (!page_is_buddy(page, buddy, order))
  393. break; /* Move the buddy up one level. */
  394. list_del(&buddy->lru);
  395. zone->free_area[order].nr_free--;
  396. rmv_page_order(buddy);
  397. combined_idx = __find_combined_index(page_idx, order);
  398. page = page + (combined_idx - page_idx);
  399. page_idx = combined_idx;
  400. order++;
  401. }
  402. set_page_order(page, order);
  403. list_add(&page->lru,
  404. &zone->free_area[order].free_list[migratetype]);
  405. zone->free_area[order].nr_free++;
  406. }
  407. static inline int free_pages_check(struct page *page)
  408. {
  409. if (unlikely(page_mapcount(page) |
  410. (page->mapping != NULL) |
  411. (page_get_page_cgroup(page) != NULL) |
  412. (page_count(page) != 0) |
  413. (page->flags & (
  414. 1 << PG_lru |
  415. 1 << PG_private |
  416. 1 << PG_locked |
  417. 1 << PG_active |
  418. 1 << PG_slab |
  419. 1 << PG_swapcache |
  420. 1 << PG_writeback |
  421. 1 << PG_reserved |
  422. 1 << PG_buddy ))))
  423. bad_page(page);
  424. if (PageDirty(page))
  425. __ClearPageDirty(page);
  426. /*
  427. * For now, we report if PG_reserved was found set, but do not
  428. * clear it, and do not free the page. But we shall soon need
  429. * to do more, for when the ZERO_PAGE count wraps negative.
  430. */
  431. return PageReserved(page);
  432. }
  433. /*
  434. * Frees a list of pages.
  435. * Assumes all pages on list are in same zone, and of same order.
  436. * count is the number of pages to free.
  437. *
  438. * If the zone was previously in an "all pages pinned" state then look to
  439. * see if this freeing clears that state.
  440. *
  441. * And clear the zone's pages_scanned counter, to hold off the "all pages are
  442. * pinned" detection logic.
  443. */
  444. static void free_pages_bulk(struct zone *zone, int count,
  445. struct list_head *list, int order)
  446. {
  447. spin_lock(&zone->lock);
  448. zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
  449. zone->pages_scanned = 0;
  450. while (count--) {
  451. struct page *page;
  452. VM_BUG_ON(list_empty(list));
  453. page = list_entry(list->prev, struct page, lru);
  454. /* have to delete it as __free_one_page list manipulates */
  455. list_del(&page->lru);
  456. __free_one_page(page, zone, order);
  457. }
  458. spin_unlock(&zone->lock);
  459. }
  460. static void free_one_page(struct zone *zone, struct page *page, int order)
  461. {
  462. spin_lock(&zone->lock);
  463. zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
  464. zone->pages_scanned = 0;
  465. __free_one_page(page, zone, order);
  466. spin_unlock(&zone->lock);
  467. }
  468. static void __free_pages_ok(struct page *page, unsigned int order)
  469. {
  470. unsigned long flags;
  471. int i;
  472. int reserved = 0;
  473. for (i = 0 ; i < (1 << order) ; ++i)
  474. reserved += free_pages_check(page + i);
  475. if (reserved)
  476. return;
  477. if (!PageHighMem(page)) {
  478. debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
  479. debug_check_no_obj_freed(page_address(page),
  480. PAGE_SIZE << order);
  481. }
  482. arch_free_page(page, order);
  483. kernel_map_pages(page, 1 << order, 0);
  484. local_irq_save(flags);
  485. __count_vm_events(PGFREE, 1 << order);
  486. free_one_page(page_zone(page), page, order);
  487. local_irq_restore(flags);
  488. }
  489. /*
  490. * permit the bootmem allocator to evade page validation on high-order frees
  491. */
  492. void __free_pages_bootmem(struct page *page, unsigned int order)
  493. {
  494. if (order == 0) {
  495. __ClearPageReserved(page);
  496. set_page_count(page, 0);
  497. set_page_refcounted(page);
  498. __free_page(page);
  499. } else {
  500. int loop;
  501. prefetchw(page);
  502. for (loop = 0; loop < BITS_PER_LONG; loop++) {
  503. struct page *p = &page[loop];
  504. if (loop + 1 < BITS_PER_LONG)
  505. prefetchw(p + 1);
  506. __ClearPageReserved(p);
  507. set_page_count(p, 0);
  508. }
  509. set_page_refcounted(page);
  510. __free_pages(page, order);
  511. }
  512. }
  513. /*
  514. * The order of subdivision here is critical for the IO subsystem.
  515. * Please do not alter this order without good reasons and regression
  516. * testing. Specifically, as large blocks of memory are subdivided,
  517. * the order in which smaller blocks are delivered depends on the order
  518. * they're subdivided in this function. This is the primary factor
  519. * influencing the order in which pages are delivered to the IO
  520. * subsystem according to empirical testing, and this is also justified
  521. * by considering the behavior of a buddy system containing a single
  522. * large block of memory acted on by a series of small allocations.
  523. * This behavior is a critical factor in sglist merging's success.
  524. *
  525. * -- wli
  526. */
  527. static inline void expand(struct zone *zone, struct page *page,
  528. int low, int high, struct free_area *area,
  529. int migratetype)
  530. {
  531. unsigned long size = 1 << high;
  532. while (high > low) {
  533. area--;
  534. high--;
  535. size >>= 1;
  536. VM_BUG_ON(bad_range(zone, &page[size]));
  537. list_add(&page[size].lru, &area->free_list[migratetype]);
  538. area->nr_free++;
  539. set_page_order(&page[size], high);
  540. }
  541. }
  542. /*
  543. * This page is about to be returned from the page allocator
  544. */
  545. static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
  546. {
  547. if (unlikely(page_mapcount(page) |
  548. (page->mapping != NULL) |
  549. (page_get_page_cgroup(page) != NULL) |
  550. (page_count(page) != 0) |
  551. (page->flags & (
  552. 1 << PG_lru |
  553. 1 << PG_private |
  554. 1 << PG_locked |
  555. 1 << PG_active |
  556. 1 << PG_dirty |
  557. 1 << PG_slab |
  558. 1 << PG_swapcache |
  559. 1 << PG_writeback |
  560. 1 << PG_reserved |
  561. 1 << PG_buddy ))))
  562. bad_page(page);
  563. /*
  564. * For now, we report if PG_reserved was found set, but do not
  565. * clear it, and do not allocate the page: as a safety net.
  566. */
  567. if (PageReserved(page))
  568. return 1;
  569. page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 1 << PG_reclaim |
  570. 1 << PG_referenced | 1 << PG_arch_1 |
  571. 1 << PG_owner_priv_1 | 1 << PG_mappedtodisk);
  572. set_page_private(page, 0);
  573. set_page_refcounted(page);
  574. arch_alloc_page(page, order);
  575. kernel_map_pages(page, 1 << order, 1);
  576. if (gfp_flags & __GFP_ZERO)
  577. prep_zero_page(page, order, gfp_flags);
  578. if (order && (gfp_flags & __GFP_COMP))
  579. prep_compound_page(page, order);
  580. return 0;
  581. }
  582. /*
  583. * Go through the free lists for the given migratetype and remove
  584. * the smallest available page from the freelists
  585. */
  586. static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
  587. int migratetype)
  588. {
  589. unsigned int current_order;
  590. struct free_area * area;
  591. struct page *page;
  592. /* Find a page of the appropriate size in the preferred list */
  593. for (current_order = order; current_order < MAX_ORDER; ++current_order) {
  594. area = &(zone->free_area[current_order]);
  595. if (list_empty(&area->free_list[migratetype]))
  596. continue;
  597. page = list_entry(area->free_list[migratetype].next,
  598. struct page, lru);
  599. list_del(&page->lru);
  600. rmv_page_order(page);
  601. area->nr_free--;
  602. __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
  603. expand(zone, page, order, current_order, area, migratetype);
  604. return page;
  605. }
  606. return NULL;
  607. }
  608. /*
  609. * This array describes the order lists are fallen back to when
  610. * the free lists for the desirable migrate type are depleted
  611. */
  612. static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
  613. [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  614. [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  615. [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
  616. [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
  617. };
  618. /*
  619. * Move the free pages in a range to the free lists of the requested type.
  620. * Note that start_page and end_pages are not aligned on a pageblock
  621. * boundary. If alignment is required, use move_freepages_block()
  622. */
  623. int move_freepages(struct zone *zone,
  624. struct page *start_page, struct page *end_page,
  625. int migratetype)
  626. {
  627. struct page *page;
  628. unsigned long order;
  629. int pages_moved = 0;
  630. #ifndef CONFIG_HOLES_IN_ZONE
  631. /*
  632. * page_zone is not safe to call in this context when
  633. * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
  634. * anyway as we check zone boundaries in move_freepages_block().
  635. * Remove at a later date when no bug reports exist related to
  636. * grouping pages by mobility
  637. */
  638. BUG_ON(page_zone(start_page) != page_zone(end_page));
  639. #endif
  640. for (page = start_page; page <= end_page;) {
  641. if (!pfn_valid_within(page_to_pfn(page))) {
  642. page++;
  643. continue;
  644. }
  645. if (!PageBuddy(page)) {
  646. page++;
  647. continue;
  648. }
  649. order = page_order(page);
  650. list_del(&page->lru);
  651. list_add(&page->lru,
  652. &zone->free_area[order].free_list[migratetype]);
  653. page += 1 << order;
  654. pages_moved += 1 << order;
  655. }
  656. return pages_moved;
  657. }
  658. int move_freepages_block(struct zone *zone, struct page *page, int migratetype)
  659. {
  660. unsigned long start_pfn, end_pfn;
  661. struct page *start_page, *end_page;
  662. start_pfn = page_to_pfn(page);
  663. start_pfn = start_pfn & ~(pageblock_nr_pages-1);
  664. start_page = pfn_to_page(start_pfn);
  665. end_page = start_page + pageblock_nr_pages - 1;
  666. end_pfn = start_pfn + pageblock_nr_pages - 1;
  667. /* Do not cross zone boundaries */
  668. if (start_pfn < zone->zone_start_pfn)
  669. start_page = page;
  670. if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
  671. return 0;
  672. return move_freepages(zone, start_page, end_page, migratetype);
  673. }
  674. /* Remove an element from the buddy allocator from the fallback list */
  675. static struct page *__rmqueue_fallback(struct zone *zone, int order,
  676. int start_migratetype)
  677. {
  678. struct free_area * area;
  679. int current_order;
  680. struct page *page;
  681. int migratetype, i;
  682. /* Find the largest possible block of pages in the other list */
  683. for (current_order = MAX_ORDER-1; current_order >= order;
  684. --current_order) {
  685. for (i = 0; i < MIGRATE_TYPES - 1; i++) {
  686. migratetype = fallbacks[start_migratetype][i];
  687. /* MIGRATE_RESERVE handled later if necessary */
  688. if (migratetype == MIGRATE_RESERVE)
  689. continue;
  690. area = &(zone->free_area[current_order]);
  691. if (list_empty(&area->free_list[migratetype]))
  692. continue;
  693. page = list_entry(area->free_list[migratetype].next,
  694. struct page, lru);
  695. area->nr_free--;
  696. /*
  697. * If breaking a large block of pages, move all free
  698. * pages to the preferred allocation list. If falling
  699. * back for a reclaimable kernel allocation, be more
  700. * agressive about taking ownership of free pages
  701. */
  702. if (unlikely(current_order >= (pageblock_order >> 1)) ||
  703. start_migratetype == MIGRATE_RECLAIMABLE) {
  704. unsigned long pages;
  705. pages = move_freepages_block(zone, page,
  706. start_migratetype);
  707. /* Claim the whole block if over half of it is free */
  708. if (pages >= (1 << (pageblock_order-1)))
  709. set_pageblock_migratetype(page,
  710. start_migratetype);
  711. migratetype = start_migratetype;
  712. }
  713. /* Remove the page from the freelists */
  714. list_del(&page->lru);
  715. rmv_page_order(page);
  716. __mod_zone_page_state(zone, NR_FREE_PAGES,
  717. -(1UL << order));
  718. if (current_order == pageblock_order)
  719. set_pageblock_migratetype(page,
  720. start_migratetype);
  721. expand(zone, page, order, current_order, area, migratetype);
  722. return page;
  723. }
  724. }
  725. /* Use MIGRATE_RESERVE rather than fail an allocation */
  726. return __rmqueue_smallest(zone, order, MIGRATE_RESERVE);
  727. }
  728. /*
  729. * Do the hard work of removing an element from the buddy allocator.
  730. * Call me with the zone->lock already held.
  731. */
  732. static struct page *__rmqueue(struct zone *zone, unsigned int order,
  733. int migratetype)
  734. {
  735. struct page *page;
  736. page = __rmqueue_smallest(zone, order, migratetype);
  737. if (unlikely(!page))
  738. page = __rmqueue_fallback(zone, order, migratetype);
  739. return page;
  740. }
  741. /*
  742. * Obtain a specified number of elements from the buddy allocator, all under
  743. * a single hold of the lock, for efficiency. Add them to the supplied list.
  744. * Returns the number of new pages which were placed at *list.
  745. */
  746. static int rmqueue_bulk(struct zone *zone, unsigned int order,
  747. unsigned long count, struct list_head *list,
  748. int migratetype)
  749. {
  750. int i;
  751. spin_lock(&zone->lock);
  752. for (i = 0; i < count; ++i) {
  753. struct page *page = __rmqueue(zone, order, migratetype);
  754. if (unlikely(page == NULL))
  755. break;
  756. /*
  757. * Split buddy pages returned by expand() are received here
  758. * in physical page order. The page is added to the callers and
  759. * list and the list head then moves forward. From the callers
  760. * perspective, the linked list is ordered by page number in
  761. * some conditions. This is useful for IO devices that can
  762. * merge IO requests if the physical pages are ordered
  763. * properly.
  764. */
  765. list_add(&page->lru, list);
  766. set_page_private(page, migratetype);
  767. list = &page->lru;
  768. }
  769. spin_unlock(&zone->lock);
  770. return i;
  771. }
  772. #ifdef CONFIG_NUMA
  773. /*
  774. * Called from the vmstat counter updater to drain pagesets of this
  775. * currently executing processor on remote nodes after they have
  776. * expired.
  777. *
  778. * Note that this function must be called with the thread pinned to
  779. * a single processor.
  780. */
  781. void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
  782. {
  783. unsigned long flags;
  784. int to_drain;
  785. local_irq_save(flags);
  786. if (pcp->count >= pcp->batch)
  787. to_drain = pcp->batch;
  788. else
  789. to_drain = pcp->count;
  790. free_pages_bulk(zone, to_drain, &pcp->list, 0);
  791. pcp->count -= to_drain;
  792. local_irq_restore(flags);
  793. }
  794. #endif
  795. /*
  796. * Drain pages of the indicated processor.
  797. *
  798. * The processor must either be the current processor and the
  799. * thread pinned to the current processor or a processor that
  800. * is not online.
  801. */
  802. static void drain_pages(unsigned int cpu)
  803. {
  804. unsigned long flags;
  805. struct zone *zone;
  806. for_each_zone(zone) {
  807. struct per_cpu_pageset *pset;
  808. struct per_cpu_pages *pcp;
  809. if (!populated_zone(zone))
  810. continue;
  811. pset = zone_pcp(zone, cpu);
  812. pcp = &pset->pcp;
  813. local_irq_save(flags);
  814. free_pages_bulk(zone, pcp->count, &pcp->list, 0);
  815. pcp->count = 0;
  816. local_irq_restore(flags);
  817. }
  818. }
  819. /*
  820. * Spill all of this CPU's per-cpu pages back into the buddy allocator.
  821. */
  822. void drain_local_pages(void *arg)
  823. {
  824. drain_pages(smp_processor_id());
  825. }
  826. /*
  827. * Spill all the per-cpu pages from all CPUs back into the buddy allocator
  828. */
  829. void drain_all_pages(void)
  830. {
  831. on_each_cpu(drain_local_pages, NULL, 0, 1);
  832. }
  833. #ifdef CONFIG_HIBERNATION
  834. void mark_free_pages(struct zone *zone)
  835. {
  836. unsigned long pfn, max_zone_pfn;
  837. unsigned long flags;
  838. int order, t;
  839. struct list_head *curr;
  840. if (!zone->spanned_pages)
  841. return;
  842. spin_lock_irqsave(&zone->lock, flags);
  843. max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
  844. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  845. if (pfn_valid(pfn)) {
  846. struct page *page = pfn_to_page(pfn);
  847. if (!swsusp_page_is_forbidden(page))
  848. swsusp_unset_page_free(page);
  849. }
  850. for_each_migratetype_order(order, t) {
  851. list_for_each(curr, &zone->free_area[order].free_list[t]) {
  852. unsigned long i;
  853. pfn = page_to_pfn(list_entry(curr, struct page, lru));
  854. for (i = 0; i < (1UL << order); i++)
  855. swsusp_set_page_free(pfn_to_page(pfn + i));
  856. }
  857. }
  858. spin_unlock_irqrestore(&zone->lock, flags);
  859. }
  860. #endif /* CONFIG_PM */
  861. /*
  862. * Free a 0-order page
  863. */
  864. static void free_hot_cold_page(struct page *page, int cold)
  865. {
  866. struct zone *zone = page_zone(page);
  867. struct per_cpu_pages *pcp;
  868. unsigned long flags;
  869. if (PageAnon(page))
  870. page->mapping = NULL;
  871. if (free_pages_check(page))
  872. return;
  873. if (!PageHighMem(page)) {
  874. debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
  875. debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
  876. }
  877. arch_free_page(page, 0);
  878. kernel_map_pages(page, 1, 0);
  879. pcp = &zone_pcp(zone, get_cpu())->pcp;
  880. local_irq_save(flags);
  881. __count_vm_event(PGFREE);
  882. if (cold)
  883. list_add_tail(&page->lru, &pcp->list);
  884. else
  885. list_add(&page->lru, &pcp->list);
  886. set_page_private(page, get_pageblock_migratetype(page));
  887. pcp->count++;
  888. if (pcp->count >= pcp->high) {
  889. free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
  890. pcp->count -= pcp->batch;
  891. }
  892. local_irq_restore(flags);
  893. put_cpu();
  894. }
  895. void free_hot_page(struct page *page)
  896. {
  897. free_hot_cold_page(page, 0);
  898. }
  899. void free_cold_page(struct page *page)
  900. {
  901. free_hot_cold_page(page, 1);
  902. }
  903. /*
  904. * split_page takes a non-compound higher-order page, and splits it into
  905. * n (1<<order) sub-pages: page[0..n]
  906. * Each sub-page must be freed individually.
  907. *
  908. * Note: this is probably too low level an operation for use in drivers.
  909. * Please consult with lkml before using this in your driver.
  910. */
  911. void split_page(struct page *page, unsigned int order)
  912. {
  913. int i;
  914. VM_BUG_ON(PageCompound(page));
  915. VM_BUG_ON(!page_count(page));
  916. for (i = 1; i < (1 << order); i++)
  917. set_page_refcounted(page + i);
  918. }
  919. /*
  920. * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
  921. * we cheat by calling it from here, in the order > 0 path. Saves a branch
  922. * or two.
  923. */
  924. static struct page *buffered_rmqueue(struct zone *preferred_zone,
  925. struct zone *zone, int order, gfp_t gfp_flags)
  926. {
  927. unsigned long flags;
  928. struct page *page;
  929. int cold = !!(gfp_flags & __GFP_COLD);
  930. int cpu;
  931. int migratetype = allocflags_to_migratetype(gfp_flags);
  932. again:
  933. cpu = get_cpu();
  934. if (likely(order == 0)) {
  935. struct per_cpu_pages *pcp;
  936. pcp = &zone_pcp(zone, cpu)->pcp;
  937. local_irq_save(flags);
  938. if (!pcp->count) {
  939. pcp->count = rmqueue_bulk(zone, 0,
  940. pcp->batch, &pcp->list, migratetype);
  941. if (unlikely(!pcp->count))
  942. goto failed;
  943. }
  944. /* Find a page of the appropriate migrate type */
  945. if (cold) {
  946. list_for_each_entry_reverse(page, &pcp->list, lru)
  947. if (page_private(page) == migratetype)
  948. break;
  949. } else {
  950. list_for_each_entry(page, &pcp->list, lru)
  951. if (page_private(page) == migratetype)
  952. break;
  953. }
  954. /* Allocate more to the pcp list if necessary */
  955. if (unlikely(&page->lru == &pcp->list)) {
  956. pcp->count += rmqueue_bulk(zone, 0,
  957. pcp->batch, &pcp->list, migratetype);
  958. page = list_entry(pcp->list.next, struct page, lru);
  959. }
  960. list_del(&page->lru);
  961. pcp->count--;
  962. } else {
  963. spin_lock_irqsave(&zone->lock, flags);
  964. page = __rmqueue(zone, order, migratetype);
  965. spin_unlock(&zone->lock);
  966. if (!page)
  967. goto failed;
  968. }
  969. __count_zone_vm_events(PGALLOC, zone, 1 << order);
  970. zone_statistics(preferred_zone, zone);
  971. local_irq_restore(flags);
  972. put_cpu();
  973. VM_BUG_ON(bad_range(zone, page));
  974. if (prep_new_page(page, order, gfp_flags))
  975. goto again;
  976. return page;
  977. failed:
  978. local_irq_restore(flags);
  979. put_cpu();
  980. return NULL;
  981. }
  982. #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
  983. #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
  984. #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
  985. #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
  986. #define ALLOC_HARDER 0x10 /* try to alloc harder */
  987. #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
  988. #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
  989. #ifdef CONFIG_FAIL_PAGE_ALLOC
  990. static struct fail_page_alloc_attr {
  991. struct fault_attr attr;
  992. u32 ignore_gfp_highmem;
  993. u32 ignore_gfp_wait;
  994. u32 min_order;
  995. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  996. struct dentry *ignore_gfp_highmem_file;
  997. struct dentry *ignore_gfp_wait_file;
  998. struct dentry *min_order_file;
  999. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  1000. } fail_page_alloc = {
  1001. .attr = FAULT_ATTR_INITIALIZER,
  1002. .ignore_gfp_wait = 1,
  1003. .ignore_gfp_highmem = 1,
  1004. .min_order = 1,
  1005. };
  1006. static int __init setup_fail_page_alloc(char *str)
  1007. {
  1008. return setup_fault_attr(&fail_page_alloc.attr, str);
  1009. }
  1010. __setup("fail_page_alloc=", setup_fail_page_alloc);
  1011. static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1012. {
  1013. if (order < fail_page_alloc.min_order)
  1014. return 0;
  1015. if (gfp_mask & __GFP_NOFAIL)
  1016. return 0;
  1017. if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
  1018. return 0;
  1019. if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
  1020. return 0;
  1021. return should_fail(&fail_page_alloc.attr, 1 << order);
  1022. }
  1023. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  1024. static int __init fail_page_alloc_debugfs(void)
  1025. {
  1026. mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  1027. struct dentry *dir;
  1028. int err;
  1029. err = init_fault_attr_dentries(&fail_page_alloc.attr,
  1030. "fail_page_alloc");
  1031. if (err)
  1032. return err;
  1033. dir = fail_page_alloc.attr.dentries.dir;
  1034. fail_page_alloc.ignore_gfp_wait_file =
  1035. debugfs_create_bool("ignore-gfp-wait", mode, dir,
  1036. &fail_page_alloc.ignore_gfp_wait);
  1037. fail_page_alloc.ignore_gfp_highmem_file =
  1038. debugfs_create_bool("ignore-gfp-highmem", mode, dir,
  1039. &fail_page_alloc.ignore_gfp_highmem);
  1040. fail_page_alloc.min_order_file =
  1041. debugfs_create_u32("min-order", mode, dir,
  1042. &fail_page_alloc.min_order);
  1043. if (!fail_page_alloc.ignore_gfp_wait_file ||
  1044. !fail_page_alloc.ignore_gfp_highmem_file ||
  1045. !fail_page_alloc.min_order_file) {
  1046. err = -ENOMEM;
  1047. debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
  1048. debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
  1049. debugfs_remove(fail_page_alloc.min_order_file);
  1050. cleanup_fault_attr_dentries(&fail_page_alloc.attr);
  1051. }
  1052. return err;
  1053. }
  1054. late_initcall(fail_page_alloc_debugfs);
  1055. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  1056. #else /* CONFIG_FAIL_PAGE_ALLOC */
  1057. static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1058. {
  1059. return 0;
  1060. }
  1061. #endif /* CONFIG_FAIL_PAGE_ALLOC */
  1062. /*
  1063. * Return 1 if free pages are above 'mark'. This takes into account the order
  1064. * of the allocation.
  1065. */
  1066. int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  1067. int classzone_idx, int alloc_flags)
  1068. {
  1069. /* free_pages my go negative - that's OK */
  1070. long min = mark;
  1071. long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
  1072. int o;
  1073. if (alloc_flags & ALLOC_HIGH)
  1074. min -= min / 2;
  1075. if (alloc_flags & ALLOC_HARDER)
  1076. min -= min / 4;
  1077. if (free_pages <= min + z->lowmem_reserve[classzone_idx])
  1078. return 0;
  1079. for (o = 0; o < order; o++) {
  1080. /* At the next order, this order's pages become unavailable */
  1081. free_pages -= z->free_area[o].nr_free << o;
  1082. /* Require fewer higher order pages to be free */
  1083. min >>= 1;
  1084. if (free_pages <= min)
  1085. return 0;
  1086. }
  1087. return 1;
  1088. }
  1089. #ifdef CONFIG_NUMA
  1090. /*
  1091. * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
  1092. * skip over zones that are not allowed by the cpuset, or that have
  1093. * been recently (in last second) found to be nearly full. See further
  1094. * comments in mmzone.h. Reduces cache footprint of zonelist scans
  1095. * that have to skip over a lot of full or unallowed zones.
  1096. *
  1097. * If the zonelist cache is present in the passed in zonelist, then
  1098. * returns a pointer to the allowed node mask (either the current
  1099. * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
  1100. *
  1101. * If the zonelist cache is not available for this zonelist, does
  1102. * nothing and returns NULL.
  1103. *
  1104. * If the fullzones BITMAP in the zonelist cache is stale (more than
  1105. * a second since last zap'd) then we zap it out (clear its bits.)
  1106. *
  1107. * We hold off even calling zlc_setup, until after we've checked the
  1108. * first zone in the zonelist, on the theory that most allocations will
  1109. * be satisfied from that first zone, so best to examine that zone as
  1110. * quickly as we can.
  1111. */
  1112. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1113. {
  1114. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1115. nodemask_t *allowednodes; /* zonelist_cache approximation */
  1116. zlc = zonelist->zlcache_ptr;
  1117. if (!zlc)
  1118. return NULL;
  1119. if (time_after(jiffies, zlc->last_full_zap + HZ)) {
  1120. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1121. zlc->last_full_zap = jiffies;
  1122. }
  1123. allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
  1124. &cpuset_current_mems_allowed :
  1125. &node_states[N_HIGH_MEMORY];
  1126. return allowednodes;
  1127. }
  1128. /*
  1129. * Given 'z' scanning a zonelist, run a couple of quick checks to see
  1130. * if it is worth looking at further for free memory:
  1131. * 1) Check that the zone isn't thought to be full (doesn't have its
  1132. * bit set in the zonelist_cache fullzones BITMAP).
  1133. * 2) Check that the zones node (obtained from the zonelist_cache
  1134. * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
  1135. * Return true (non-zero) if zone is worth looking at further, or
  1136. * else return false (zero) if it is not.
  1137. *
  1138. * This check -ignores- the distinction between various watermarks,
  1139. * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
  1140. * found to be full for any variation of these watermarks, it will
  1141. * be considered full for up to one second by all requests, unless
  1142. * we are so low on memory on all allowed nodes that we are forced
  1143. * into the second scan of the zonelist.
  1144. *
  1145. * In the second scan we ignore this zonelist cache and exactly
  1146. * apply the watermarks to all zones, even it is slower to do so.
  1147. * We are low on memory in the second scan, and should leave no stone
  1148. * unturned looking for a free page.
  1149. */
  1150. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1151. nodemask_t *allowednodes)
  1152. {
  1153. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1154. int i; /* index of *z in zonelist zones */
  1155. int n; /* node that zone *z is on */
  1156. zlc = zonelist->zlcache_ptr;
  1157. if (!zlc)
  1158. return 1;
  1159. i = z - zonelist->_zonerefs;
  1160. n = zlc->z_to_n[i];
  1161. /* This zone is worth trying if it is allowed but not full */
  1162. return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
  1163. }
  1164. /*
  1165. * Given 'z' scanning a zonelist, set the corresponding bit in
  1166. * zlc->fullzones, so that subsequent attempts to allocate a page
  1167. * from that zone don't waste time re-examining it.
  1168. */
  1169. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1170. {
  1171. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1172. int i; /* index of *z in zonelist zones */
  1173. zlc = zonelist->zlcache_ptr;
  1174. if (!zlc)
  1175. return;
  1176. i = z - zonelist->_zonerefs;
  1177. set_bit(i, zlc->fullzones);
  1178. }
  1179. #else /* CONFIG_NUMA */
  1180. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1181. {
  1182. return NULL;
  1183. }
  1184. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1185. nodemask_t *allowednodes)
  1186. {
  1187. return 1;
  1188. }
  1189. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1190. {
  1191. }
  1192. #endif /* CONFIG_NUMA */
  1193. /*
  1194. * get_page_from_freelist goes through the zonelist trying to allocate
  1195. * a page.
  1196. */
  1197. static struct page *
  1198. get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
  1199. struct zonelist *zonelist, int high_zoneidx, int alloc_flags)
  1200. {
  1201. struct zoneref *z;
  1202. struct page *page = NULL;
  1203. int classzone_idx;
  1204. struct zone *zone, *preferred_zone;
  1205. nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
  1206. int zlc_active = 0; /* set if using zonelist_cache */
  1207. int did_zlc_setup = 0; /* just call zlc_setup() one time */
  1208. (void)first_zones_zonelist(zonelist, high_zoneidx, nodemask,
  1209. &preferred_zone);
  1210. if (!preferred_zone)
  1211. return NULL;
  1212. classzone_idx = zone_idx(preferred_zone);
  1213. zonelist_scan:
  1214. /*
  1215. * Scan zonelist, looking for a zone with enough free.
  1216. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1217. */
  1218. for_each_zone_zonelist_nodemask(zone, z, zonelist,
  1219. high_zoneidx, nodemask) {
  1220. if (NUMA_BUILD && zlc_active &&
  1221. !zlc_zone_worth_trying(zonelist, z, allowednodes))
  1222. continue;
  1223. if ((alloc_flags & ALLOC_CPUSET) &&
  1224. !cpuset_zone_allowed_softwall(zone, gfp_mask))
  1225. goto try_next_zone;
  1226. if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
  1227. unsigned long mark;
  1228. if (alloc_flags & ALLOC_WMARK_MIN)
  1229. mark = zone->pages_min;
  1230. else if (alloc_flags & ALLOC_WMARK_LOW)
  1231. mark = zone->pages_low;
  1232. else
  1233. mark = zone->pages_high;
  1234. if (!zone_watermark_ok(zone, order, mark,
  1235. classzone_idx, alloc_flags)) {
  1236. if (!zone_reclaim_mode ||
  1237. !zone_reclaim(zone, gfp_mask, order))
  1238. goto this_zone_full;
  1239. }
  1240. }
  1241. page = buffered_rmqueue(preferred_zone, zone, order, gfp_mask);
  1242. if (page)
  1243. break;
  1244. this_zone_full:
  1245. if (NUMA_BUILD)
  1246. zlc_mark_zone_full(zonelist, z);
  1247. try_next_zone:
  1248. if (NUMA_BUILD && !did_zlc_setup) {
  1249. /* we do zlc_setup after the first zone is tried */
  1250. allowednodes = zlc_setup(zonelist, alloc_flags);
  1251. zlc_active = 1;
  1252. did_zlc_setup = 1;
  1253. }
  1254. }
  1255. if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
  1256. /* Disable zlc cache for second zonelist scan */
  1257. zlc_active = 0;
  1258. goto zonelist_scan;
  1259. }
  1260. return page;
  1261. }
  1262. /*
  1263. * This is the 'heart' of the zoned buddy allocator.
  1264. */
  1265. static struct page *
  1266. __alloc_pages_internal(gfp_t gfp_mask, unsigned int order,
  1267. struct zonelist *zonelist, nodemask_t *nodemask)
  1268. {
  1269. const gfp_t wait = gfp_mask & __GFP_WAIT;
  1270. enum zone_type high_zoneidx = gfp_zone(gfp_mask);
  1271. struct zoneref *z;
  1272. struct zone *zone;
  1273. struct page *page;
  1274. struct reclaim_state reclaim_state;
  1275. struct task_struct *p = current;
  1276. int do_retry;
  1277. int alloc_flags;
  1278. unsigned long did_some_progress;
  1279. unsigned long pages_reclaimed = 0;
  1280. might_sleep_if(wait);
  1281. if (should_fail_alloc_page(gfp_mask, order))
  1282. return NULL;
  1283. restart:
  1284. z = zonelist->_zonerefs; /* the list of zones suitable for gfp_mask */
  1285. if (unlikely(!z->zone)) {
  1286. /*
  1287. * Happens if we have an empty zonelist as a result of
  1288. * GFP_THISNODE being used on a memoryless node
  1289. */
  1290. return NULL;
  1291. }
  1292. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
  1293. zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET);
  1294. if (page)
  1295. goto got_pg;
  1296. /*
  1297. * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
  1298. * __GFP_NOWARN set) should not cause reclaim since the subsystem
  1299. * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
  1300. * using a larger set of nodes after it has established that the
  1301. * allowed per node queues are empty and that nodes are
  1302. * over allocated.
  1303. */
  1304. if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
  1305. goto nopage;
  1306. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
  1307. wakeup_kswapd(zone, order);
  1308. /*
  1309. * OK, we're below the kswapd watermark and have kicked background
  1310. * reclaim. Now things get more complex, so set up alloc_flags according
  1311. * to how we want to proceed.
  1312. *
  1313. * The caller may dip into page reserves a bit more if the caller
  1314. * cannot run direct reclaim, or if the caller has realtime scheduling
  1315. * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
  1316. * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
  1317. */
  1318. alloc_flags = ALLOC_WMARK_MIN;
  1319. if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
  1320. alloc_flags |= ALLOC_HARDER;
  1321. if (gfp_mask & __GFP_HIGH)
  1322. alloc_flags |= ALLOC_HIGH;
  1323. if (wait)
  1324. alloc_flags |= ALLOC_CPUSET;
  1325. /*
  1326. * Go through the zonelist again. Let __GFP_HIGH and allocations
  1327. * coming from realtime tasks go deeper into reserves.
  1328. *
  1329. * This is the last chance, in general, before the goto nopage.
  1330. * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
  1331. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1332. */
  1333. page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
  1334. high_zoneidx, alloc_flags);
  1335. if (page)
  1336. goto got_pg;
  1337. /* This allocation should allow future memory freeing. */
  1338. rebalance:
  1339. if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
  1340. && !in_interrupt()) {
  1341. if (!(gfp_mask & __GFP_NOMEMALLOC)) {
  1342. nofail_alloc:
  1343. /* go through the zonelist yet again, ignoring mins */
  1344. page = get_page_from_freelist(gfp_mask, nodemask, order,
  1345. zonelist, high_zoneidx, ALLOC_NO_WATERMARKS);
  1346. if (page)
  1347. goto got_pg;
  1348. if (gfp_mask & __GFP_NOFAIL) {
  1349. congestion_wait(WRITE, HZ/50);
  1350. goto nofail_alloc;
  1351. }
  1352. }
  1353. goto nopage;
  1354. }
  1355. /* Atomic allocations - we can't balance anything */
  1356. if (!wait)
  1357. goto nopage;
  1358. cond_resched();
  1359. /* We now go into synchronous reclaim */
  1360. cpuset_memory_pressure_bump();
  1361. p->flags |= PF_MEMALLOC;
  1362. reclaim_state.reclaimed_slab = 0;
  1363. p->reclaim_state = &reclaim_state;
  1364. did_some_progress = try_to_free_pages(zonelist, order, gfp_mask);
  1365. p->reclaim_state = NULL;
  1366. p->flags &= ~PF_MEMALLOC;
  1367. cond_resched();
  1368. if (order != 0)
  1369. drain_all_pages();
  1370. if (likely(did_some_progress)) {
  1371. page = get_page_from_freelist(gfp_mask, nodemask, order,
  1372. zonelist, high_zoneidx, alloc_flags);
  1373. if (page)
  1374. goto got_pg;
  1375. } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
  1376. if (!try_set_zone_oom(zonelist, gfp_mask)) {
  1377. schedule_timeout_uninterruptible(1);
  1378. goto restart;
  1379. }
  1380. /*
  1381. * Go through the zonelist yet one more time, keep
  1382. * very high watermark here, this is only to catch
  1383. * a parallel oom killing, we must fail if we're still
  1384. * under heavy pressure.
  1385. */
  1386. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
  1387. order, zonelist, high_zoneidx,
  1388. ALLOC_WMARK_HIGH|ALLOC_CPUSET);
  1389. if (page) {
  1390. clear_zonelist_oom(zonelist, gfp_mask);
  1391. goto got_pg;
  1392. }
  1393. /* The OOM killer will not help higher order allocs so fail */
  1394. if (order > PAGE_ALLOC_COSTLY_ORDER) {
  1395. clear_zonelist_oom(zonelist, gfp_mask);
  1396. goto nopage;
  1397. }
  1398. out_of_memory(zonelist, gfp_mask, order);
  1399. clear_zonelist_oom(zonelist, gfp_mask);
  1400. goto restart;
  1401. }
  1402. /*
  1403. * Don't let big-order allocations loop unless the caller explicitly
  1404. * requests that. Wait for some write requests to complete then retry.
  1405. *
  1406. * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
  1407. * means __GFP_NOFAIL, but that may not be true in other
  1408. * implementations.
  1409. *
  1410. * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
  1411. * specified, then we retry until we no longer reclaim any pages
  1412. * (above), or we've reclaimed an order of pages at least as
  1413. * large as the allocation's order. In both cases, if the
  1414. * allocation still fails, we stop retrying.
  1415. */
  1416. pages_reclaimed += did_some_progress;
  1417. do_retry = 0;
  1418. if (!(gfp_mask & __GFP_NORETRY)) {
  1419. if (order <= PAGE_ALLOC_COSTLY_ORDER) {
  1420. do_retry = 1;
  1421. } else {
  1422. if (gfp_mask & __GFP_REPEAT &&
  1423. pages_reclaimed < (1 << order))
  1424. do_retry = 1;
  1425. }
  1426. if (gfp_mask & __GFP_NOFAIL)
  1427. do_retry = 1;
  1428. }
  1429. if (do_retry) {
  1430. congestion_wait(WRITE, HZ/50);
  1431. goto rebalance;
  1432. }
  1433. nopage:
  1434. if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
  1435. printk(KERN_WARNING "%s: page allocation failure."
  1436. " order:%d, mode:0x%x\n",
  1437. p->comm, order, gfp_mask);
  1438. dump_stack();
  1439. show_mem();
  1440. }
  1441. got_pg:
  1442. return page;
  1443. }
  1444. struct page *
  1445. __alloc_pages(gfp_t gfp_mask, unsigned int order,
  1446. struct zonelist *zonelist)
  1447. {
  1448. return __alloc_pages_internal(gfp_mask, order, zonelist, NULL);
  1449. }
  1450. struct page *
  1451. __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
  1452. struct zonelist *zonelist, nodemask_t *nodemask)
  1453. {
  1454. return __alloc_pages_internal(gfp_mask, order, zonelist, nodemask);
  1455. }
  1456. EXPORT_SYMBOL(__alloc_pages);
  1457. /*
  1458. * Common helper functions.
  1459. */
  1460. unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
  1461. {
  1462. struct page * page;
  1463. page = alloc_pages(gfp_mask, order);
  1464. if (!page)
  1465. return 0;
  1466. return (unsigned long) page_address(page);
  1467. }
  1468. EXPORT_SYMBOL(__get_free_pages);
  1469. unsigned long get_zeroed_page(gfp_t gfp_mask)
  1470. {
  1471. struct page * page;
  1472. /*
  1473. * get_zeroed_page() returns a 32-bit address, which cannot represent
  1474. * a highmem page
  1475. */
  1476. VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
  1477. page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
  1478. if (page)
  1479. return (unsigned long) page_address(page);
  1480. return 0;
  1481. }
  1482. EXPORT_SYMBOL(get_zeroed_page);
  1483. void __pagevec_free(struct pagevec *pvec)
  1484. {
  1485. int i = pagevec_count(pvec);
  1486. while (--i >= 0)
  1487. free_hot_cold_page(pvec->pages[i], pvec->cold);
  1488. }
  1489. void __free_pages(struct page *page, unsigned int order)
  1490. {
  1491. if (put_page_testzero(page)) {
  1492. if (order == 0)
  1493. free_hot_page(page);
  1494. else
  1495. __free_pages_ok(page, order);
  1496. }
  1497. }
  1498. EXPORT_SYMBOL(__free_pages);
  1499. void free_pages(unsigned long addr, unsigned int order)
  1500. {
  1501. if (addr != 0) {
  1502. VM_BUG_ON(!virt_addr_valid((void *)addr));
  1503. __free_pages(virt_to_page((void *)addr), order);
  1504. }
  1505. }
  1506. EXPORT_SYMBOL(free_pages);
  1507. static unsigned int nr_free_zone_pages(int offset)
  1508. {
  1509. struct zoneref *z;
  1510. struct zone *zone;
  1511. /* Just pick one node, since fallback list is circular */
  1512. unsigned int sum = 0;
  1513. struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
  1514. for_each_zone_zonelist(zone, z, zonelist, offset) {
  1515. unsigned long size = zone->present_pages;
  1516. unsigned long high = zone->pages_high;
  1517. if (size > high)
  1518. sum += size - high;
  1519. }
  1520. return sum;
  1521. }
  1522. /*
  1523. * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
  1524. */
  1525. unsigned int nr_free_buffer_pages(void)
  1526. {
  1527. return nr_free_zone_pages(gfp_zone(GFP_USER));
  1528. }
  1529. EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
  1530. /*
  1531. * Amount of free RAM allocatable within all zones
  1532. */
  1533. unsigned int nr_free_pagecache_pages(void)
  1534. {
  1535. return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
  1536. }
  1537. static inline void show_node(struct zone *zone)
  1538. {
  1539. if (NUMA_BUILD)
  1540. printk("Node %d ", zone_to_nid(zone));
  1541. }
  1542. void si_meminfo(struct sysinfo *val)
  1543. {
  1544. val->totalram = totalram_pages;
  1545. val->sharedram = 0;
  1546. val->freeram = global_page_state(NR_FREE_PAGES);
  1547. val->bufferram = nr_blockdev_pages();
  1548. val->totalhigh = totalhigh_pages;
  1549. val->freehigh = nr_free_highpages();
  1550. val->mem_unit = PAGE_SIZE;
  1551. }
  1552. EXPORT_SYMBOL(si_meminfo);
  1553. #ifdef CONFIG_NUMA
  1554. void si_meminfo_node(struct sysinfo *val, int nid)
  1555. {
  1556. pg_data_t *pgdat = NODE_DATA(nid);
  1557. val->totalram = pgdat->node_present_pages;
  1558. val->freeram = node_page_state(nid, NR_FREE_PAGES);
  1559. #ifdef CONFIG_HIGHMEM
  1560. val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
  1561. val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
  1562. NR_FREE_PAGES);
  1563. #else
  1564. val->totalhigh = 0;
  1565. val->freehigh = 0;
  1566. #endif
  1567. val->mem_unit = PAGE_SIZE;
  1568. }
  1569. #endif
  1570. #define K(x) ((x) << (PAGE_SHIFT-10))
  1571. /*
  1572. * Show free area list (used inside shift_scroll-lock stuff)
  1573. * We also calculate the percentage fragmentation. We do this by counting the
  1574. * memory on each free list with the exception of the first item on the list.
  1575. */
  1576. void show_free_areas(void)
  1577. {
  1578. int cpu;
  1579. struct zone *zone;
  1580. for_each_zone(zone) {
  1581. if (!populated_zone(zone))
  1582. continue;
  1583. show_node(zone);
  1584. printk("%s per-cpu:\n", zone->name);
  1585. for_each_online_cpu(cpu) {
  1586. struct per_cpu_pageset *pageset;
  1587. pageset = zone_pcp(zone, cpu);
  1588. printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
  1589. cpu, pageset->pcp.high,
  1590. pageset->pcp.batch, pageset->pcp.count);
  1591. }
  1592. }
  1593. printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
  1594. " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
  1595. global_page_state(NR_ACTIVE),
  1596. global_page_state(NR_INACTIVE),
  1597. global_page_state(NR_FILE_DIRTY),
  1598. global_page_state(NR_WRITEBACK),
  1599. global_page_state(NR_UNSTABLE_NFS),
  1600. global_page_state(NR_FREE_PAGES),
  1601. global_page_state(NR_SLAB_RECLAIMABLE) +
  1602. global_page_state(NR_SLAB_UNRECLAIMABLE),
  1603. global_page_state(NR_FILE_MAPPED),
  1604. global_page_state(NR_PAGETABLE),
  1605. global_page_state(NR_BOUNCE));
  1606. for_each_zone(zone) {
  1607. int i;
  1608. if (!populated_zone(zone))
  1609. continue;
  1610. show_node(zone);
  1611. printk("%s"
  1612. " free:%lukB"
  1613. " min:%lukB"
  1614. " low:%lukB"
  1615. " high:%lukB"
  1616. " active:%lukB"
  1617. " inactive:%lukB"
  1618. " present:%lukB"
  1619. " pages_scanned:%lu"
  1620. " all_unreclaimable? %s"
  1621. "\n",
  1622. zone->name,
  1623. K(zone_page_state(zone, NR_FREE_PAGES)),
  1624. K(zone->pages_min),
  1625. K(zone->pages_low),
  1626. K(zone->pages_high),
  1627. K(zone_page_state(zone, NR_ACTIVE)),
  1628. K(zone_page_state(zone, NR_INACTIVE)),
  1629. K(zone->present_pages),
  1630. zone->pages_scanned,
  1631. (zone_is_all_unreclaimable(zone) ? "yes" : "no")
  1632. );
  1633. printk("lowmem_reserve[]:");
  1634. for (i = 0; i < MAX_NR_ZONES; i++)
  1635. printk(" %lu", zone->lowmem_reserve[i]);
  1636. printk("\n");
  1637. }
  1638. for_each_zone(zone) {
  1639. unsigned long nr[MAX_ORDER], flags, order, total = 0;
  1640. if (!populated_zone(zone))
  1641. continue;
  1642. show_node(zone);
  1643. printk("%s: ", zone->name);
  1644. spin_lock_irqsave(&zone->lock, flags);
  1645. for (order = 0; order < MAX_ORDER; order++) {
  1646. nr[order] = zone->free_area[order].nr_free;
  1647. total += nr[order] << order;
  1648. }
  1649. spin_unlock_irqrestore(&zone->lock, flags);
  1650. for (order = 0; order < MAX_ORDER; order++)
  1651. printk("%lu*%lukB ", nr[order], K(1UL) << order);
  1652. printk("= %lukB\n", K(total));
  1653. }
  1654. printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
  1655. show_swap_cache_info();
  1656. }
  1657. static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
  1658. {
  1659. zoneref->zone = zone;
  1660. zoneref->zone_idx = zone_idx(zone);
  1661. }
  1662. /*
  1663. * Builds allocation fallback zone lists.
  1664. *
  1665. * Add all populated zones of a node to the zonelist.
  1666. */
  1667. static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
  1668. int nr_zones, enum zone_type zone_type)
  1669. {
  1670. struct zone *zone;
  1671. BUG_ON(zone_type >= MAX_NR_ZONES);
  1672. zone_type++;
  1673. do {
  1674. zone_type--;
  1675. zone = pgdat->node_zones + zone_type;
  1676. if (populated_zone(zone)) {
  1677. zoneref_set_zone(zone,
  1678. &zonelist->_zonerefs[nr_zones++]);
  1679. check_highest_zone(zone_type);
  1680. }
  1681. } while (zone_type);
  1682. return nr_zones;
  1683. }
  1684. /*
  1685. * zonelist_order:
  1686. * 0 = automatic detection of better ordering.
  1687. * 1 = order by ([node] distance, -zonetype)
  1688. * 2 = order by (-zonetype, [node] distance)
  1689. *
  1690. * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
  1691. * the same zonelist. So only NUMA can configure this param.
  1692. */
  1693. #define ZONELIST_ORDER_DEFAULT 0
  1694. #define ZONELIST_ORDER_NODE 1
  1695. #define ZONELIST_ORDER_ZONE 2
  1696. /* zonelist order in the kernel.
  1697. * set_zonelist_order() will set this to NODE or ZONE.
  1698. */
  1699. static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
  1700. static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
  1701. #ifdef CONFIG_NUMA
  1702. /* The value user specified ....changed by config */
  1703. static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  1704. /* string for sysctl */
  1705. #define NUMA_ZONELIST_ORDER_LEN 16
  1706. char numa_zonelist_order[16] = "default";
  1707. /*
  1708. * interface for configure zonelist ordering.
  1709. * command line option "numa_zonelist_order"
  1710. * = "[dD]efault - default, automatic configuration.
  1711. * = "[nN]ode - order by node locality, then by zone within node
  1712. * = "[zZ]one - order by zone, then by locality within zone
  1713. */
  1714. static int __parse_numa_zonelist_order(char *s)
  1715. {
  1716. if (*s == 'd' || *s == 'D') {
  1717. user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  1718. } else if (*s == 'n' || *s == 'N') {
  1719. user_zonelist_order = ZONELIST_ORDER_NODE;
  1720. } else if (*s == 'z' || *s == 'Z') {
  1721. user_zonelist_order = ZONELIST_ORDER_ZONE;
  1722. } else {
  1723. printk(KERN_WARNING
  1724. "Ignoring invalid numa_zonelist_order value: "
  1725. "%s\n", s);
  1726. return -EINVAL;
  1727. }
  1728. return 0;
  1729. }
  1730. static __init int setup_numa_zonelist_order(char *s)
  1731. {
  1732. if (s)
  1733. return __parse_numa_zonelist_order(s);
  1734. return 0;
  1735. }
  1736. early_param("numa_zonelist_order", setup_numa_zonelist_order);
  1737. /*
  1738. * sysctl handler for numa_zonelist_order
  1739. */
  1740. int numa_zonelist_order_handler(ctl_table *table, int write,
  1741. struct file *file, void __user *buffer, size_t *length,
  1742. loff_t *ppos)
  1743. {
  1744. char saved_string[NUMA_ZONELIST_ORDER_LEN];
  1745. int ret;
  1746. if (write)
  1747. strncpy(saved_string, (char*)table->data,
  1748. NUMA_ZONELIST_ORDER_LEN);
  1749. ret = proc_dostring(table, write, file, buffer, length, ppos);
  1750. if (ret)
  1751. return ret;
  1752. if (write) {
  1753. int oldval = user_zonelist_order;
  1754. if (__parse_numa_zonelist_order((char*)table->data)) {
  1755. /*
  1756. * bogus value. restore saved string
  1757. */
  1758. strncpy((char*)table->data, saved_string,
  1759. NUMA_ZONELIST_ORDER_LEN);
  1760. user_zonelist_order = oldval;
  1761. } else if (oldval != user_zonelist_order)
  1762. build_all_zonelists();
  1763. }
  1764. return 0;
  1765. }
  1766. #define MAX_NODE_LOAD (num_online_nodes())
  1767. static int node_load[MAX_NUMNODES];
  1768. /**
  1769. * find_next_best_node - find the next node that should appear in a given node's fallback list
  1770. * @node: node whose fallback list we're appending
  1771. * @used_node_mask: nodemask_t of already used nodes
  1772. *
  1773. * We use a number of factors to determine which is the next node that should
  1774. * appear on a given node's fallback list. The node should not have appeared
  1775. * already in @node's fallback list, and it should be the next closest node
  1776. * according to the distance array (which contains arbitrary distance values
  1777. * from each node to each node in the system), and should also prefer nodes
  1778. * with no CPUs, since presumably they'll have very little allocation pressure
  1779. * on them otherwise.
  1780. * It returns -1 if no node is found.
  1781. */
  1782. static int find_next_best_node(int node, nodemask_t *used_node_mask)
  1783. {
  1784. int n, val;
  1785. int min_val = INT_MAX;
  1786. int best_node = -1;
  1787. node_to_cpumask_ptr(tmp, 0);
  1788. /* Use the local node if we haven't already */
  1789. if (!node_isset(node, *used_node_mask)) {
  1790. node_set(node, *used_node_mask);
  1791. return node;
  1792. }
  1793. for_each_node_state(n, N_HIGH_MEMORY) {
  1794. /* Don't want a node to appear more than once */
  1795. if (node_isset(n, *used_node_mask))
  1796. continue;
  1797. /* Use the distance array to find the distance */
  1798. val = node_distance(node, n);
  1799. /* Penalize nodes under us ("prefer the next node") */
  1800. val += (n < node);
  1801. /* Give preference to headless and unused nodes */
  1802. node_to_cpumask_ptr_next(tmp, n);
  1803. if (!cpus_empty(*tmp))
  1804. val += PENALTY_FOR_NODE_WITH_CPUS;
  1805. /* Slight preference for less loaded node */
  1806. val *= (MAX_NODE_LOAD*MAX_NUMNODES);
  1807. val += node_load[n];
  1808. if (val < min_val) {
  1809. min_val = val;
  1810. best_node = n;
  1811. }
  1812. }
  1813. if (best_node >= 0)
  1814. node_set(best_node, *used_node_mask);
  1815. return best_node;
  1816. }
  1817. /*
  1818. * Build zonelists ordered by node and zones within node.
  1819. * This results in maximum locality--normal zone overflows into local
  1820. * DMA zone, if any--but risks exhausting DMA zone.
  1821. */
  1822. static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
  1823. {
  1824. int j;
  1825. struct zonelist *zonelist;
  1826. zonelist = &pgdat->node_zonelists[0];
  1827. for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
  1828. ;
  1829. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  1830. MAX_NR_ZONES - 1);
  1831. zonelist->_zonerefs[j].zone = NULL;
  1832. zonelist->_zonerefs[j].zone_idx = 0;
  1833. }
  1834. /*
  1835. * Build gfp_thisnode zonelists
  1836. */
  1837. static void build_thisnode_zonelists(pg_data_t *pgdat)
  1838. {
  1839. int j;
  1840. struct zonelist *zonelist;
  1841. zonelist = &pgdat->node_zonelists[1];
  1842. j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
  1843. zonelist->_zonerefs[j].zone = NULL;
  1844. zonelist->_zonerefs[j].zone_idx = 0;
  1845. }
  1846. /*
  1847. * Build zonelists ordered by zone and nodes within zones.
  1848. * This results in conserving DMA zone[s] until all Normal memory is
  1849. * exhausted, but results in overflowing to remote node while memory
  1850. * may still exist in local DMA zone.
  1851. */
  1852. static int node_order[MAX_NUMNODES];
  1853. static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
  1854. {
  1855. int pos, j, node;
  1856. int zone_type; /* needs to be signed */
  1857. struct zone *z;
  1858. struct zonelist *zonelist;
  1859. zonelist = &pgdat->node_zonelists[0];
  1860. pos = 0;
  1861. for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
  1862. for (j = 0; j < nr_nodes; j++) {
  1863. node = node_order[j];
  1864. z = &NODE_DATA(node)->node_zones[zone_type];
  1865. if (populated_zone(z)) {
  1866. zoneref_set_zone(z,
  1867. &zonelist->_zonerefs[pos++]);
  1868. check_highest_zone(zone_type);
  1869. }
  1870. }
  1871. }
  1872. zonelist->_zonerefs[pos].zone = NULL;
  1873. zonelist->_zonerefs[pos].zone_idx = 0;
  1874. }
  1875. static int default_zonelist_order(void)
  1876. {
  1877. int nid, zone_type;
  1878. unsigned long low_kmem_size,total_size;
  1879. struct zone *z;
  1880. int average_size;
  1881. /*
  1882. * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
  1883. * If they are really small and used heavily, the system can fall
  1884. * into OOM very easily.
  1885. * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
  1886. */
  1887. /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
  1888. low_kmem_size = 0;
  1889. total_size = 0;
  1890. for_each_online_node(nid) {
  1891. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  1892. z = &NODE_DATA(nid)->node_zones[zone_type];
  1893. if (populated_zone(z)) {
  1894. if (zone_type < ZONE_NORMAL)
  1895. low_kmem_size += z->present_pages;
  1896. total_size += z->present_pages;
  1897. }
  1898. }
  1899. }
  1900. if (!low_kmem_size || /* there are no DMA area. */
  1901. low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
  1902. return ZONELIST_ORDER_NODE;
  1903. /*
  1904. * look into each node's config.
  1905. * If there is a node whose DMA/DMA32 memory is very big area on
  1906. * local memory, NODE_ORDER may be suitable.
  1907. */
  1908. average_size = total_size /
  1909. (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
  1910. for_each_online_node(nid) {
  1911. low_kmem_size = 0;
  1912. total_size = 0;
  1913. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  1914. z = &NODE_DATA(nid)->node_zones[zone_type];
  1915. if (populated_zone(z)) {
  1916. if (zone_type < ZONE_NORMAL)
  1917. low_kmem_size += z->present_pages;
  1918. total_size += z->present_pages;
  1919. }
  1920. }
  1921. if (low_kmem_size &&
  1922. total_size > average_size && /* ignore small node */
  1923. low_kmem_size > total_size * 70/100)
  1924. return ZONELIST_ORDER_NODE;
  1925. }
  1926. return ZONELIST_ORDER_ZONE;
  1927. }
  1928. static void set_zonelist_order(void)
  1929. {
  1930. if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
  1931. current_zonelist_order = default_zonelist_order();
  1932. else
  1933. current_zonelist_order = user_zonelist_order;
  1934. }
  1935. static void build_zonelists(pg_data_t *pgdat)
  1936. {
  1937. int j, node, load;
  1938. enum zone_type i;
  1939. nodemask_t used_mask;
  1940. int local_node, prev_node;
  1941. struct zonelist *zonelist;
  1942. int order = current_zonelist_order;
  1943. /* initialize zonelists */
  1944. for (i = 0; i < MAX_ZONELISTS; i++) {
  1945. zonelist = pgdat->node_zonelists + i;
  1946. zonelist->_zonerefs[0].zone = NULL;
  1947. zonelist->_zonerefs[0].zone_idx = 0;
  1948. }
  1949. /* NUMA-aware ordering of nodes */
  1950. local_node = pgdat->node_id;
  1951. load = num_online_nodes();
  1952. prev_node = local_node;
  1953. nodes_clear(used_mask);
  1954. memset(node_load, 0, sizeof(node_load));
  1955. memset(node_order, 0, sizeof(node_order));
  1956. j = 0;
  1957. while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
  1958. int distance = node_distance(local_node, node);
  1959. /*
  1960. * If another node is sufficiently far away then it is better
  1961. * to reclaim pages in a zone before going off node.
  1962. */
  1963. if (distance > RECLAIM_DISTANCE)
  1964. zone_reclaim_mode = 1;
  1965. /*
  1966. * We don't want to pressure a particular node.
  1967. * So adding penalty to the first node in same
  1968. * distance group to make it round-robin.
  1969. */
  1970. if (distance != node_distance(local_node, prev_node))
  1971. node_load[node] = load;
  1972. prev_node = node;
  1973. load--;
  1974. if (order == ZONELIST_ORDER_NODE)
  1975. build_zonelists_in_node_order(pgdat, node);
  1976. else
  1977. node_order[j++] = node; /* remember order */
  1978. }
  1979. if (order == ZONELIST_ORDER_ZONE) {
  1980. /* calculate node order -- i.e., DMA last! */
  1981. build_zonelists_in_zone_order(pgdat, j);
  1982. }
  1983. build_thisnode_zonelists(pgdat);
  1984. }
  1985. /* Construct the zonelist performance cache - see further mmzone.h */
  1986. static void build_zonelist_cache(pg_data_t *pgdat)
  1987. {
  1988. struct zonelist *zonelist;
  1989. struct zonelist_cache *zlc;
  1990. struct zoneref *z;
  1991. zonelist = &pgdat->node_zonelists[0];
  1992. zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
  1993. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1994. for (z = zonelist->_zonerefs; z->zone; z++)
  1995. zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
  1996. }
  1997. #else /* CONFIG_NUMA */
  1998. static void set_zonelist_order(void)
  1999. {
  2000. current_zonelist_order = ZONELIST_ORDER_ZONE;
  2001. }
  2002. static void build_zonelists(pg_data_t *pgdat)
  2003. {
  2004. int node, local_node;
  2005. enum zone_type j;
  2006. struct zonelist *zonelist;
  2007. local_node = pgdat->node_id;
  2008. zonelist = &pgdat->node_zonelists[0];
  2009. j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
  2010. /*
  2011. * Now we build the zonelist so that it contains the zones
  2012. * of all the other nodes.
  2013. * We don't want to pressure a particular node, so when
  2014. * building the zones for node N, we make sure that the
  2015. * zones coming right after the local ones are those from
  2016. * node N+1 (modulo N)
  2017. */
  2018. for (node = local_node + 1; node < MAX_NUMNODES; node++) {
  2019. if (!node_online(node))
  2020. continue;
  2021. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  2022. MAX_NR_ZONES - 1);
  2023. }
  2024. for (node = 0; node < local_node; node++) {
  2025. if (!node_online(node))
  2026. continue;
  2027. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  2028. MAX_NR_ZONES - 1);
  2029. }
  2030. zonelist->_zonerefs[j].zone = NULL;
  2031. zonelist->_zonerefs[j].zone_idx = 0;
  2032. }
  2033. /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
  2034. static void build_zonelist_cache(pg_data_t *pgdat)
  2035. {
  2036. pgdat->node_zonelists[0].zlcache_ptr = NULL;
  2037. pgdat->node_zonelists[1].zlcache_ptr = NULL;
  2038. }
  2039. #endif /* CONFIG_NUMA */
  2040. /* return values int ....just for stop_machine_run() */
  2041. static int __build_all_zonelists(void *dummy)
  2042. {
  2043. int nid;
  2044. for_each_online_node(nid) {
  2045. pg_data_t *pgdat = NODE_DATA(nid);
  2046. build_zonelists(pgdat);
  2047. build_zonelist_cache(pgdat);
  2048. }
  2049. return 0;
  2050. }
  2051. void build_all_zonelists(void)
  2052. {
  2053. set_zonelist_order();
  2054. if (system_state == SYSTEM_BOOTING) {
  2055. __build_all_zonelists(NULL);
  2056. cpuset_init_current_mems_allowed();
  2057. } else {
  2058. /* we have to stop all cpus to guarantee there is no user
  2059. of zonelist */
  2060. stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
  2061. /* cpuset refresh routine should be here */
  2062. }
  2063. vm_total_pages = nr_free_pagecache_pages();
  2064. /*
  2065. * Disable grouping by mobility if the number of pages in the
  2066. * system is too low to allow the mechanism to work. It would be
  2067. * more accurate, but expensive to check per-zone. This check is
  2068. * made on memory-hotadd so a system can start with mobility
  2069. * disabled and enable it later
  2070. */
  2071. if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
  2072. page_group_by_mobility_disabled = 1;
  2073. else
  2074. page_group_by_mobility_disabled = 0;
  2075. printk("Built %i zonelists in %s order, mobility grouping %s. "
  2076. "Total pages: %ld\n",
  2077. num_online_nodes(),
  2078. zonelist_order_name[current_zonelist_order],
  2079. page_group_by_mobility_disabled ? "off" : "on",
  2080. vm_total_pages);
  2081. #ifdef CONFIG_NUMA
  2082. printk("Policy zone: %s\n", zone_names[policy_zone]);
  2083. #endif
  2084. }
  2085. /*
  2086. * Helper functions to size the waitqueue hash table.
  2087. * Essentially these want to choose hash table sizes sufficiently
  2088. * large so that collisions trying to wait on pages are rare.
  2089. * But in fact, the number of active page waitqueues on typical
  2090. * systems is ridiculously low, less than 200. So this is even
  2091. * conservative, even though it seems large.
  2092. *
  2093. * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
  2094. * waitqueues, i.e. the size of the waitq table given the number of pages.
  2095. */
  2096. #define PAGES_PER_WAITQUEUE 256
  2097. #ifndef CONFIG_MEMORY_HOTPLUG
  2098. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  2099. {
  2100. unsigned long size = 1;
  2101. pages /= PAGES_PER_WAITQUEUE;
  2102. while (size < pages)
  2103. size <<= 1;
  2104. /*
  2105. * Once we have dozens or even hundreds of threads sleeping
  2106. * on IO we've got bigger problems than wait queue collision.
  2107. * Limit the size of the wait table to a reasonable size.
  2108. */
  2109. size = min(size, 4096UL);
  2110. return max(size, 4UL);
  2111. }
  2112. #else
  2113. /*
  2114. * A zone's size might be changed by hot-add, so it is not possible to determine
  2115. * a suitable size for its wait_table. So we use the maximum size now.
  2116. *
  2117. * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
  2118. *
  2119. * i386 (preemption config) : 4096 x 16 = 64Kbyte.
  2120. * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
  2121. * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
  2122. *
  2123. * The maximum entries are prepared when a zone's memory is (512K + 256) pages
  2124. * or more by the traditional way. (See above). It equals:
  2125. *
  2126. * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
  2127. * ia64(16K page size) : = ( 8G + 4M)byte.
  2128. * powerpc (64K page size) : = (32G +16M)byte.
  2129. */
  2130. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  2131. {
  2132. return 4096UL;
  2133. }
  2134. #endif
  2135. /*
  2136. * This is an integer logarithm so that shifts can be used later
  2137. * to extract the more random high bits from the multiplicative
  2138. * hash function before the remainder is taken.
  2139. */
  2140. static inline unsigned long wait_table_bits(unsigned long size)
  2141. {
  2142. return ffz(~size);
  2143. }
  2144. #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
  2145. /*
  2146. * Mark a number of pageblocks as MIGRATE_RESERVE. The number
  2147. * of blocks reserved is based on zone->pages_min. The memory within the
  2148. * reserve will tend to store contiguous free pages. Setting min_free_kbytes
  2149. * higher will lead to a bigger reserve which will get freed as contiguous
  2150. * blocks as reclaim kicks in
  2151. */
  2152. static void setup_zone_migrate_reserve(struct zone *zone)
  2153. {
  2154. unsigned long start_pfn, pfn, end_pfn;
  2155. struct page *page;
  2156. unsigned long reserve, block_migratetype;
  2157. /* Get the start pfn, end pfn and the number of blocks to reserve */
  2158. start_pfn = zone->zone_start_pfn;
  2159. end_pfn = start_pfn + zone->spanned_pages;
  2160. reserve = roundup(zone->pages_min, pageblock_nr_pages) >>
  2161. pageblock_order;
  2162. for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
  2163. if (!pfn_valid(pfn))
  2164. continue;
  2165. page = pfn_to_page(pfn);
  2166. /* Blocks with reserved pages will never free, skip them. */
  2167. if (PageReserved(page))
  2168. continue;
  2169. block_migratetype = get_pageblock_migratetype(page);
  2170. /* If this block is reserved, account for it */
  2171. if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
  2172. reserve--;
  2173. continue;
  2174. }
  2175. /* Suitable for reserving if this block is movable */
  2176. if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
  2177. set_pageblock_migratetype(page, MIGRATE_RESERVE);
  2178. move_freepages_block(zone, page, MIGRATE_RESERVE);
  2179. reserve--;
  2180. continue;
  2181. }
  2182. /*
  2183. * If the reserve is met and this is a previous reserved block,
  2184. * take it back
  2185. */
  2186. if (block_migratetype == MIGRATE_RESERVE) {
  2187. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  2188. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  2189. }
  2190. }
  2191. }
  2192. /*
  2193. * Initially all pages are reserved - free ones are freed
  2194. * up by free_all_bootmem() once the early boot process is
  2195. * done. Non-atomic initialization, single-pass.
  2196. */
  2197. void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
  2198. unsigned long start_pfn, enum memmap_context context)
  2199. {
  2200. struct page *page;
  2201. unsigned long end_pfn = start_pfn + size;
  2202. unsigned long pfn;
  2203. struct zone *z;
  2204. z = &NODE_DATA(nid)->node_zones[zone];
  2205. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  2206. /*
  2207. * There can be holes in boot-time mem_map[]s
  2208. * handed to this function. They do not
  2209. * exist on hotplugged memory.
  2210. */
  2211. if (context == MEMMAP_EARLY) {
  2212. if (!early_pfn_valid(pfn))
  2213. continue;
  2214. if (!early_pfn_in_nid(pfn, nid))
  2215. continue;
  2216. }
  2217. page = pfn_to_page(pfn);
  2218. set_page_links(page, zone, nid, pfn);
  2219. init_page_count(page);
  2220. reset_page_mapcount(page);
  2221. SetPageReserved(page);
  2222. /*
  2223. * Mark the block movable so that blocks are reserved for
  2224. * movable at startup. This will force kernel allocations
  2225. * to reserve their blocks rather than leaking throughout
  2226. * the address space during boot when many long-lived
  2227. * kernel allocations are made. Later some blocks near
  2228. * the start are marked MIGRATE_RESERVE by
  2229. * setup_zone_migrate_reserve()
  2230. *
  2231. * bitmap is created for zone's valid pfn range. but memmap
  2232. * can be created for invalid pages (for alignment)
  2233. * check here not to call set_pageblock_migratetype() against
  2234. * pfn out of zone.
  2235. */
  2236. if ((z->zone_start_pfn <= pfn)
  2237. && (pfn < z->zone_start_pfn + z->spanned_pages)
  2238. && !(pfn & (pageblock_nr_pages - 1)))
  2239. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  2240. INIT_LIST_HEAD(&page->lru);
  2241. #ifdef WANT_PAGE_VIRTUAL
  2242. /* The shift won't overflow because ZONE_NORMAL is below 4G. */
  2243. if (!is_highmem_idx(zone))
  2244. set_page_address(page, __va(pfn << PAGE_SHIFT));
  2245. #endif
  2246. }
  2247. }
  2248. static void __meminit zone_init_free_lists(struct zone *zone)
  2249. {
  2250. int order, t;
  2251. for_each_migratetype_order(order, t) {
  2252. INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
  2253. zone->free_area[order].nr_free = 0;
  2254. }
  2255. }
  2256. #ifndef __HAVE_ARCH_MEMMAP_INIT
  2257. #define memmap_init(size, nid, zone, start_pfn) \
  2258. memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
  2259. #endif
  2260. static int zone_batchsize(struct zone *zone)
  2261. {
  2262. int batch;
  2263. /*
  2264. * The per-cpu-pages pools are set to around 1000th of the
  2265. * size of the zone. But no more than 1/2 of a meg.
  2266. *
  2267. * OK, so we don't know how big the cache is. So guess.
  2268. */
  2269. batch = zone->present_pages / 1024;
  2270. if (batch * PAGE_SIZE > 512 * 1024)
  2271. batch = (512 * 1024) / PAGE_SIZE;
  2272. batch /= 4; /* We effectively *= 4 below */
  2273. if (batch < 1)
  2274. batch = 1;
  2275. /*
  2276. * Clamp the batch to a 2^n - 1 value. Having a power
  2277. * of 2 value was found to be more likely to have
  2278. * suboptimal cache aliasing properties in some cases.
  2279. *
  2280. * For example if 2 tasks are alternately allocating
  2281. * batches of pages, one task can end up with a lot
  2282. * of pages of one half of the possible page colors
  2283. * and the other with pages of the other colors.
  2284. */
  2285. batch = (1 << (fls(batch + batch/2)-1)) - 1;
  2286. return batch;
  2287. }
  2288. inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
  2289. {
  2290. struct per_cpu_pages *pcp;
  2291. memset(p, 0, sizeof(*p));
  2292. pcp = &p->pcp;
  2293. pcp->count = 0;
  2294. pcp->high = 6 * batch;
  2295. pcp->batch = max(1UL, 1 * batch);
  2296. INIT_LIST_HEAD(&pcp->list);
  2297. }
  2298. /*
  2299. * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
  2300. * to the value high for the pageset p.
  2301. */
  2302. static void setup_pagelist_highmark(struct per_cpu_pageset *p,
  2303. unsigned long high)
  2304. {
  2305. struct per_cpu_pages *pcp;
  2306. pcp = &p->pcp;
  2307. pcp->high = high;
  2308. pcp->batch = max(1UL, high/4);
  2309. if ((high/4) > (PAGE_SHIFT * 8))
  2310. pcp->batch = PAGE_SHIFT * 8;
  2311. }
  2312. #ifdef CONFIG_NUMA
  2313. /*
  2314. * Boot pageset table. One per cpu which is going to be used for all
  2315. * zones and all nodes. The parameters will be set in such a way
  2316. * that an item put on a list will immediately be handed over to
  2317. * the buddy list. This is safe since pageset manipulation is done
  2318. * with interrupts disabled.
  2319. *
  2320. * Some NUMA counter updates may also be caught by the boot pagesets.
  2321. *
  2322. * The boot_pagesets must be kept even after bootup is complete for
  2323. * unused processors and/or zones. They do play a role for bootstrapping
  2324. * hotplugged processors.
  2325. *
  2326. * zoneinfo_show() and maybe other functions do
  2327. * not check if the processor is online before following the pageset pointer.
  2328. * Other parts of the kernel may not check if the zone is available.
  2329. */
  2330. static struct per_cpu_pageset boot_pageset[NR_CPUS];
  2331. /*
  2332. * Dynamically allocate memory for the
  2333. * per cpu pageset array in struct zone.
  2334. */
  2335. static int __cpuinit process_zones(int cpu)
  2336. {
  2337. struct zone *zone, *dzone;
  2338. int node = cpu_to_node(cpu);
  2339. node_set_state(node, N_CPU); /* this node has a cpu */
  2340. for_each_zone(zone) {
  2341. if (!populated_zone(zone))
  2342. continue;
  2343. zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
  2344. GFP_KERNEL, node);
  2345. if (!zone_pcp(zone, cpu))
  2346. goto bad;
  2347. setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
  2348. if (percpu_pagelist_fraction)
  2349. setup_pagelist_highmark(zone_pcp(zone, cpu),
  2350. (zone->present_pages / percpu_pagelist_fraction));
  2351. }
  2352. return 0;
  2353. bad:
  2354. for_each_zone(dzone) {
  2355. if (!populated_zone(dzone))
  2356. continue;
  2357. if (dzone == zone)
  2358. break;
  2359. kfree(zone_pcp(dzone, cpu));
  2360. zone_pcp(dzone, cpu) = NULL;
  2361. }
  2362. return -ENOMEM;
  2363. }
  2364. static inline void free_zone_pagesets(int cpu)
  2365. {
  2366. struct zone *zone;
  2367. for_each_zone(zone) {
  2368. struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
  2369. /* Free per_cpu_pageset if it is slab allocated */
  2370. if (pset != &boot_pageset[cpu])
  2371. kfree(pset);
  2372. zone_pcp(zone, cpu) = NULL;
  2373. }
  2374. }
  2375. static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
  2376. unsigned long action,
  2377. void *hcpu)
  2378. {
  2379. int cpu = (long)hcpu;
  2380. int ret = NOTIFY_OK;
  2381. switch (action) {
  2382. case CPU_UP_PREPARE:
  2383. case CPU_UP_PREPARE_FROZEN:
  2384. if (process_zones(cpu))
  2385. ret = NOTIFY_BAD;
  2386. break;
  2387. case CPU_UP_CANCELED:
  2388. case CPU_UP_CANCELED_FROZEN:
  2389. case CPU_DEAD:
  2390. case CPU_DEAD_FROZEN:
  2391. free_zone_pagesets(cpu);
  2392. break;
  2393. default:
  2394. break;
  2395. }
  2396. return ret;
  2397. }
  2398. static struct notifier_block __cpuinitdata pageset_notifier =
  2399. { &pageset_cpuup_callback, NULL, 0 };
  2400. void __init setup_per_cpu_pageset(void)
  2401. {
  2402. int err;
  2403. /* Initialize per_cpu_pageset for cpu 0.
  2404. * A cpuup callback will do this for every cpu
  2405. * as it comes online
  2406. */
  2407. err = process_zones(smp_processor_id());
  2408. BUG_ON(err);
  2409. register_cpu_notifier(&pageset_notifier);
  2410. }
  2411. #endif
  2412. static noinline __init_refok
  2413. int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
  2414. {
  2415. int i;
  2416. struct pglist_data *pgdat = zone->zone_pgdat;
  2417. size_t alloc_size;
  2418. /*
  2419. * The per-page waitqueue mechanism uses hashed waitqueues
  2420. * per zone.
  2421. */
  2422. zone->wait_table_hash_nr_entries =
  2423. wait_table_hash_nr_entries(zone_size_pages);
  2424. zone->wait_table_bits =
  2425. wait_table_bits(zone->wait_table_hash_nr_entries);
  2426. alloc_size = zone->wait_table_hash_nr_entries
  2427. * sizeof(wait_queue_head_t);
  2428. if (!slab_is_available()) {
  2429. zone->wait_table = (wait_queue_head_t *)
  2430. alloc_bootmem_node(pgdat, alloc_size);
  2431. } else {
  2432. /*
  2433. * This case means that a zone whose size was 0 gets new memory
  2434. * via memory hot-add.
  2435. * But it may be the case that a new node was hot-added. In
  2436. * this case vmalloc() will not be able to use this new node's
  2437. * memory - this wait_table must be initialized to use this new
  2438. * node itself as well.
  2439. * To use this new node's memory, further consideration will be
  2440. * necessary.
  2441. */
  2442. zone->wait_table = vmalloc(alloc_size);
  2443. }
  2444. if (!zone->wait_table)
  2445. return -ENOMEM;
  2446. for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
  2447. init_waitqueue_head(zone->wait_table + i);
  2448. return 0;
  2449. }
  2450. static __meminit void zone_pcp_init(struct zone *zone)
  2451. {
  2452. int cpu;
  2453. unsigned long batch = zone_batchsize(zone);
  2454. for (cpu = 0; cpu < NR_CPUS; cpu++) {
  2455. #ifdef CONFIG_NUMA
  2456. /* Early boot. Slab allocator not functional yet */
  2457. zone_pcp(zone, cpu) = &boot_pageset[cpu];
  2458. setup_pageset(&boot_pageset[cpu],0);
  2459. #else
  2460. setup_pageset(zone_pcp(zone,cpu), batch);
  2461. #endif
  2462. }
  2463. if (zone->present_pages)
  2464. printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
  2465. zone->name, zone->present_pages, batch);
  2466. }
  2467. __meminit int init_currently_empty_zone(struct zone *zone,
  2468. unsigned long zone_start_pfn,
  2469. unsigned long size,
  2470. enum memmap_context context)
  2471. {
  2472. struct pglist_data *pgdat = zone->zone_pgdat;
  2473. int ret;
  2474. ret = zone_wait_table_init(zone, size);
  2475. if (ret)
  2476. return ret;
  2477. pgdat->nr_zones = zone_idx(zone) + 1;
  2478. zone->zone_start_pfn = zone_start_pfn;
  2479. zone_init_free_lists(zone);
  2480. return 0;
  2481. }
  2482. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  2483. /*
  2484. * Basic iterator support. Return the first range of PFNs for a node
  2485. * Note: nid == MAX_NUMNODES returns first region regardless of node
  2486. */
  2487. static int __meminit first_active_region_index_in_nid(int nid)
  2488. {
  2489. int i;
  2490. for (i = 0; i < nr_nodemap_entries; i++)
  2491. if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
  2492. return i;
  2493. return -1;
  2494. }
  2495. /*
  2496. * Basic iterator support. Return the next active range of PFNs for a node
  2497. * Note: nid == MAX_NUMNODES returns next region regardless of node
  2498. */
  2499. static int __meminit next_active_region_index_in_nid(int index, int nid)
  2500. {
  2501. for (index = index + 1; index < nr_nodemap_entries; index++)
  2502. if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
  2503. return index;
  2504. return -1;
  2505. }
  2506. #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  2507. /*
  2508. * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
  2509. * Architectures may implement their own version but if add_active_range()
  2510. * was used and there are no special requirements, this is a convenient
  2511. * alternative
  2512. */
  2513. int __meminit early_pfn_to_nid(unsigned long pfn)
  2514. {
  2515. int i;
  2516. for (i = 0; i < nr_nodemap_entries; i++) {
  2517. unsigned long start_pfn = early_node_map[i].start_pfn;
  2518. unsigned long end_pfn = early_node_map[i].end_pfn;
  2519. if (start_pfn <= pfn && pfn < end_pfn)
  2520. return early_node_map[i].nid;
  2521. }
  2522. return 0;
  2523. }
  2524. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  2525. /* Basic iterator support to walk early_node_map[] */
  2526. #define for_each_active_range_index_in_nid(i, nid) \
  2527. for (i = first_active_region_index_in_nid(nid); i != -1; \
  2528. i = next_active_region_index_in_nid(i, nid))
  2529. /**
  2530. * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
  2531. * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
  2532. * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
  2533. *
  2534. * If an architecture guarantees that all ranges registered with
  2535. * add_active_ranges() contain no holes and may be freed, this
  2536. * this function may be used instead of calling free_bootmem() manually.
  2537. */
  2538. void __init free_bootmem_with_active_regions(int nid,
  2539. unsigned long max_low_pfn)
  2540. {
  2541. int i;
  2542. for_each_active_range_index_in_nid(i, nid) {
  2543. unsigned long size_pages = 0;
  2544. unsigned long end_pfn = early_node_map[i].end_pfn;
  2545. if (early_node_map[i].start_pfn >= max_low_pfn)
  2546. continue;
  2547. if (end_pfn > max_low_pfn)
  2548. end_pfn = max_low_pfn;
  2549. size_pages = end_pfn - early_node_map[i].start_pfn;
  2550. free_bootmem_node(NODE_DATA(early_node_map[i].nid),
  2551. PFN_PHYS(early_node_map[i].start_pfn),
  2552. size_pages << PAGE_SHIFT);
  2553. }
  2554. }
  2555. /**
  2556. * sparse_memory_present_with_active_regions - Call memory_present for each active range
  2557. * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
  2558. *
  2559. * If an architecture guarantees that all ranges registered with
  2560. * add_active_ranges() contain no holes and may be freed, this
  2561. * function may be used instead of calling memory_present() manually.
  2562. */
  2563. void __init sparse_memory_present_with_active_regions(int nid)
  2564. {
  2565. int i;
  2566. for_each_active_range_index_in_nid(i, nid)
  2567. memory_present(early_node_map[i].nid,
  2568. early_node_map[i].start_pfn,
  2569. early_node_map[i].end_pfn);
  2570. }
  2571. /**
  2572. * push_node_boundaries - Push node boundaries to at least the requested boundary
  2573. * @nid: The nid of the node to push the boundary for
  2574. * @start_pfn: The start pfn of the node
  2575. * @end_pfn: The end pfn of the node
  2576. *
  2577. * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
  2578. * time. Specifically, on x86_64, SRAT will report ranges that can potentially
  2579. * be hotplugged even though no physical memory exists. This function allows
  2580. * an arch to push out the node boundaries so mem_map is allocated that can
  2581. * be used later.
  2582. */
  2583. #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
  2584. void __init push_node_boundaries(unsigned int nid,
  2585. unsigned long start_pfn, unsigned long end_pfn)
  2586. {
  2587. printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n",
  2588. nid, start_pfn, end_pfn);
  2589. /* Initialise the boundary for this node if necessary */
  2590. if (node_boundary_end_pfn[nid] == 0)
  2591. node_boundary_start_pfn[nid] = -1UL;
  2592. /* Update the boundaries */
  2593. if (node_boundary_start_pfn[nid] > start_pfn)
  2594. node_boundary_start_pfn[nid] = start_pfn;
  2595. if (node_boundary_end_pfn[nid] < end_pfn)
  2596. node_boundary_end_pfn[nid] = end_pfn;
  2597. }
  2598. /* If necessary, push the node boundary out for reserve hotadd */
  2599. static void __meminit account_node_boundary(unsigned int nid,
  2600. unsigned long *start_pfn, unsigned long *end_pfn)
  2601. {
  2602. printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n",
  2603. nid, *start_pfn, *end_pfn);
  2604. /* Return if boundary information has not been provided */
  2605. if (node_boundary_end_pfn[nid] == 0)
  2606. return;
  2607. /* Check the boundaries and update if necessary */
  2608. if (node_boundary_start_pfn[nid] < *start_pfn)
  2609. *start_pfn = node_boundary_start_pfn[nid];
  2610. if (node_boundary_end_pfn[nid] > *end_pfn)
  2611. *end_pfn = node_boundary_end_pfn[nid];
  2612. }
  2613. #else
  2614. void __init push_node_boundaries(unsigned int nid,
  2615. unsigned long start_pfn, unsigned long end_pfn) {}
  2616. static void __meminit account_node_boundary(unsigned int nid,
  2617. unsigned long *start_pfn, unsigned long *end_pfn) {}
  2618. #endif
  2619. /**
  2620. * get_pfn_range_for_nid - Return the start and end page frames for a node
  2621. * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
  2622. * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
  2623. * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
  2624. *
  2625. * It returns the start and end page frame of a node based on information
  2626. * provided by an arch calling add_active_range(). If called for a node
  2627. * with no available memory, a warning is printed and the start and end
  2628. * PFNs will be 0.
  2629. */
  2630. void __meminit get_pfn_range_for_nid(unsigned int nid,
  2631. unsigned long *start_pfn, unsigned long *end_pfn)
  2632. {
  2633. int i;
  2634. *start_pfn = -1UL;
  2635. *end_pfn = 0;
  2636. for_each_active_range_index_in_nid(i, nid) {
  2637. *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
  2638. *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
  2639. }
  2640. if (*start_pfn == -1UL)
  2641. *start_pfn = 0;
  2642. /* Push the node boundaries out if requested */
  2643. account_node_boundary(nid, start_pfn, end_pfn);
  2644. }
  2645. /*
  2646. * This finds a zone that can be used for ZONE_MOVABLE pages. The
  2647. * assumption is made that zones within a node are ordered in monotonic
  2648. * increasing memory addresses so that the "highest" populated zone is used
  2649. */
  2650. void __init find_usable_zone_for_movable(void)
  2651. {
  2652. int zone_index;
  2653. for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
  2654. if (zone_index == ZONE_MOVABLE)
  2655. continue;
  2656. if (arch_zone_highest_possible_pfn[zone_index] >
  2657. arch_zone_lowest_possible_pfn[zone_index])
  2658. break;
  2659. }
  2660. VM_BUG_ON(zone_index == -1);
  2661. movable_zone = zone_index;
  2662. }
  2663. /*
  2664. * The zone ranges provided by the architecture do not include ZONE_MOVABLE
  2665. * because it is sized independant of architecture. Unlike the other zones,
  2666. * the starting point for ZONE_MOVABLE is not fixed. It may be different
  2667. * in each node depending on the size of each node and how evenly kernelcore
  2668. * is distributed. This helper function adjusts the zone ranges
  2669. * provided by the architecture for a given node by using the end of the
  2670. * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
  2671. * zones within a node are in order of monotonic increases memory addresses
  2672. */
  2673. void __meminit adjust_zone_range_for_zone_movable(int nid,
  2674. unsigned long zone_type,
  2675. unsigned long node_start_pfn,
  2676. unsigned long node_end_pfn,
  2677. unsigned long *zone_start_pfn,
  2678. unsigned long *zone_end_pfn)
  2679. {
  2680. /* Only adjust if ZONE_MOVABLE is on this node */
  2681. if (zone_movable_pfn[nid]) {
  2682. /* Size ZONE_MOVABLE */
  2683. if (zone_type == ZONE_MOVABLE) {
  2684. *zone_start_pfn = zone_movable_pfn[nid];
  2685. *zone_end_pfn = min(node_end_pfn,
  2686. arch_zone_highest_possible_pfn[movable_zone]);
  2687. /* Adjust for ZONE_MOVABLE starting within this range */
  2688. } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
  2689. *zone_end_pfn > zone_movable_pfn[nid]) {
  2690. *zone_end_pfn = zone_movable_pfn[nid];
  2691. /* Check if this whole range is within ZONE_MOVABLE */
  2692. } else if (*zone_start_pfn >= zone_movable_pfn[nid])
  2693. *zone_start_pfn = *zone_end_pfn;
  2694. }
  2695. }
  2696. /*
  2697. * Return the number of pages a zone spans in a node, including holes
  2698. * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
  2699. */
  2700. static unsigned long __meminit zone_spanned_pages_in_node(int nid,
  2701. unsigned long zone_type,
  2702. unsigned long *ignored)
  2703. {
  2704. unsigned long node_start_pfn, node_end_pfn;
  2705. unsigned long zone_start_pfn, zone_end_pfn;
  2706. /* Get the start and end of the node and zone */
  2707. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  2708. zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
  2709. zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
  2710. adjust_zone_range_for_zone_movable(nid, zone_type,
  2711. node_start_pfn, node_end_pfn,
  2712. &zone_start_pfn, &zone_end_pfn);
  2713. /* Check that this node has pages within the zone's required range */
  2714. if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
  2715. return 0;
  2716. /* Move the zone boundaries inside the node if necessary */
  2717. zone_end_pfn = min(zone_end_pfn, node_end_pfn);
  2718. zone_start_pfn = max(zone_start_pfn, node_start_pfn);
  2719. /* Return the spanned pages */
  2720. return zone_end_pfn - zone_start_pfn;
  2721. }
  2722. /*
  2723. * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
  2724. * then all holes in the requested range will be accounted for.
  2725. */
  2726. unsigned long __meminit __absent_pages_in_range(int nid,
  2727. unsigned long range_start_pfn,
  2728. unsigned long range_end_pfn)
  2729. {
  2730. int i = 0;
  2731. unsigned long prev_end_pfn = 0, hole_pages = 0;
  2732. unsigned long start_pfn;
  2733. /* Find the end_pfn of the first active range of pfns in the node */
  2734. i = first_active_region_index_in_nid(nid);
  2735. if (i == -1)
  2736. return 0;
  2737. prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
  2738. /* Account for ranges before physical memory on this node */
  2739. if (early_node_map[i].start_pfn > range_start_pfn)
  2740. hole_pages = prev_end_pfn - range_start_pfn;
  2741. /* Find all holes for the zone within the node */
  2742. for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
  2743. /* No need to continue if prev_end_pfn is outside the zone */
  2744. if (prev_end_pfn >= range_end_pfn)
  2745. break;
  2746. /* Make sure the end of the zone is not within the hole */
  2747. start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
  2748. prev_end_pfn = max(prev_end_pfn, range_start_pfn);
  2749. /* Update the hole size cound and move on */
  2750. if (start_pfn > range_start_pfn) {
  2751. BUG_ON(prev_end_pfn > start_pfn);
  2752. hole_pages += start_pfn - prev_end_pfn;
  2753. }
  2754. prev_end_pfn = early_node_map[i].end_pfn;
  2755. }
  2756. /* Account for ranges past physical memory on this node */
  2757. if (range_end_pfn > prev_end_pfn)
  2758. hole_pages += range_end_pfn -
  2759. max(range_start_pfn, prev_end_pfn);
  2760. return hole_pages;
  2761. }
  2762. /**
  2763. * absent_pages_in_range - Return number of page frames in holes within a range
  2764. * @start_pfn: The start PFN to start searching for holes
  2765. * @end_pfn: The end PFN to stop searching for holes
  2766. *
  2767. * It returns the number of pages frames in memory holes within a range.
  2768. */
  2769. unsigned long __init absent_pages_in_range(unsigned long start_pfn,
  2770. unsigned long end_pfn)
  2771. {
  2772. return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
  2773. }
  2774. /* Return the number of page frames in holes in a zone on a node */
  2775. static unsigned long __meminit zone_absent_pages_in_node(int nid,
  2776. unsigned long zone_type,
  2777. unsigned long *ignored)
  2778. {
  2779. unsigned long node_start_pfn, node_end_pfn;
  2780. unsigned long zone_start_pfn, zone_end_pfn;
  2781. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  2782. zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
  2783. node_start_pfn);
  2784. zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
  2785. node_end_pfn);
  2786. adjust_zone_range_for_zone_movable(nid, zone_type,
  2787. node_start_pfn, node_end_pfn,
  2788. &zone_start_pfn, &zone_end_pfn);
  2789. return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
  2790. }
  2791. #else
  2792. static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
  2793. unsigned long zone_type,
  2794. unsigned long *zones_size)
  2795. {
  2796. return zones_size[zone_type];
  2797. }
  2798. static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
  2799. unsigned long zone_type,
  2800. unsigned long *zholes_size)
  2801. {
  2802. if (!zholes_size)
  2803. return 0;
  2804. return zholes_size[zone_type];
  2805. }
  2806. #endif
  2807. static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
  2808. unsigned long *zones_size, unsigned long *zholes_size)
  2809. {
  2810. unsigned long realtotalpages, totalpages = 0;
  2811. enum zone_type i;
  2812. for (i = 0; i < MAX_NR_ZONES; i++)
  2813. totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
  2814. zones_size);
  2815. pgdat->node_spanned_pages = totalpages;
  2816. realtotalpages = totalpages;
  2817. for (i = 0; i < MAX_NR_ZONES; i++)
  2818. realtotalpages -=
  2819. zone_absent_pages_in_node(pgdat->node_id, i,
  2820. zholes_size);
  2821. pgdat->node_present_pages = realtotalpages;
  2822. printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
  2823. realtotalpages);
  2824. }
  2825. #ifndef CONFIG_SPARSEMEM
  2826. /*
  2827. * Calculate the size of the zone->blockflags rounded to an unsigned long
  2828. * Start by making sure zonesize is a multiple of pageblock_order by rounding
  2829. * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
  2830. * round what is now in bits to nearest long in bits, then return it in
  2831. * bytes.
  2832. */
  2833. static unsigned long __init usemap_size(unsigned long zonesize)
  2834. {
  2835. unsigned long usemapsize;
  2836. usemapsize = roundup(zonesize, pageblock_nr_pages);
  2837. usemapsize = usemapsize >> pageblock_order;
  2838. usemapsize *= NR_PAGEBLOCK_BITS;
  2839. usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
  2840. return usemapsize / 8;
  2841. }
  2842. static void __init setup_usemap(struct pglist_data *pgdat,
  2843. struct zone *zone, unsigned long zonesize)
  2844. {
  2845. unsigned long usemapsize = usemap_size(zonesize);
  2846. zone->pageblock_flags = NULL;
  2847. if (usemapsize) {
  2848. zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
  2849. memset(zone->pageblock_flags, 0, usemapsize);
  2850. }
  2851. }
  2852. #else
  2853. static void inline setup_usemap(struct pglist_data *pgdat,
  2854. struct zone *zone, unsigned long zonesize) {}
  2855. #endif /* CONFIG_SPARSEMEM */
  2856. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  2857. /* Return a sensible default order for the pageblock size. */
  2858. static inline int pageblock_default_order(void)
  2859. {
  2860. if (HPAGE_SHIFT > PAGE_SHIFT)
  2861. return HUGETLB_PAGE_ORDER;
  2862. return MAX_ORDER-1;
  2863. }
  2864. /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
  2865. static inline void __init set_pageblock_order(unsigned int order)
  2866. {
  2867. /* Check that pageblock_nr_pages has not already been setup */
  2868. if (pageblock_order)
  2869. return;
  2870. /*
  2871. * Assume the largest contiguous order of interest is a huge page.
  2872. * This value may be variable depending on boot parameters on IA64
  2873. */
  2874. pageblock_order = order;
  2875. }
  2876. #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  2877. /*
  2878. * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
  2879. * and pageblock_default_order() are unused as pageblock_order is set
  2880. * at compile-time. See include/linux/pageblock-flags.h for the values of
  2881. * pageblock_order based on the kernel config
  2882. */
  2883. static inline int pageblock_default_order(unsigned int order)
  2884. {
  2885. return MAX_ORDER-1;
  2886. }
  2887. #define set_pageblock_order(x) do {} while (0)
  2888. #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  2889. /*
  2890. * Set up the zone data structures:
  2891. * - mark all pages reserved
  2892. * - mark all memory queues empty
  2893. * - clear the memory bitmaps
  2894. */
  2895. static void __paginginit free_area_init_core(struct pglist_data *pgdat,
  2896. unsigned long *zones_size, unsigned long *zholes_size)
  2897. {
  2898. enum zone_type j;
  2899. int nid = pgdat->node_id;
  2900. unsigned long zone_start_pfn = pgdat->node_start_pfn;
  2901. int ret;
  2902. pgdat_resize_init(pgdat);
  2903. pgdat->nr_zones = 0;
  2904. init_waitqueue_head(&pgdat->kswapd_wait);
  2905. pgdat->kswapd_max_order = 0;
  2906. for (j = 0; j < MAX_NR_ZONES; j++) {
  2907. struct zone *zone = pgdat->node_zones + j;
  2908. unsigned long size, realsize, memmap_pages;
  2909. size = zone_spanned_pages_in_node(nid, j, zones_size);
  2910. realsize = size - zone_absent_pages_in_node(nid, j,
  2911. zholes_size);
  2912. /*
  2913. * Adjust realsize so that it accounts for how much memory
  2914. * is used by this zone for memmap. This affects the watermark
  2915. * and per-cpu initialisations
  2916. */
  2917. memmap_pages =
  2918. PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
  2919. if (realsize >= memmap_pages) {
  2920. realsize -= memmap_pages;
  2921. printk(KERN_DEBUG
  2922. " %s zone: %lu pages used for memmap\n",
  2923. zone_names[j], memmap_pages);
  2924. } else
  2925. printk(KERN_WARNING
  2926. " %s zone: %lu pages exceeds realsize %lu\n",
  2927. zone_names[j], memmap_pages, realsize);
  2928. /* Account for reserved pages */
  2929. if (j == 0 && realsize > dma_reserve) {
  2930. realsize -= dma_reserve;
  2931. printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
  2932. zone_names[0], dma_reserve);
  2933. }
  2934. if (!is_highmem_idx(j))
  2935. nr_kernel_pages += realsize;
  2936. nr_all_pages += realsize;
  2937. zone->spanned_pages = size;
  2938. zone->present_pages = realsize;
  2939. #ifdef CONFIG_NUMA
  2940. zone->node = nid;
  2941. zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
  2942. / 100;
  2943. zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
  2944. #endif
  2945. zone->name = zone_names[j];
  2946. spin_lock_init(&zone->lock);
  2947. spin_lock_init(&zone->lru_lock);
  2948. zone_seqlock_init(zone);
  2949. zone->zone_pgdat = pgdat;
  2950. zone->prev_priority = DEF_PRIORITY;
  2951. zone_pcp_init(zone);
  2952. INIT_LIST_HEAD(&zone->active_list);
  2953. INIT_LIST_HEAD(&zone->inactive_list);
  2954. zone->nr_scan_active = 0;
  2955. zone->nr_scan_inactive = 0;
  2956. zap_zone_vm_stats(zone);
  2957. zone->flags = 0;
  2958. if (!size)
  2959. continue;
  2960. set_pageblock_order(pageblock_default_order());
  2961. setup_usemap(pgdat, zone, size);
  2962. ret = init_currently_empty_zone(zone, zone_start_pfn,
  2963. size, MEMMAP_EARLY);
  2964. BUG_ON(ret);
  2965. memmap_init(size, nid, j, zone_start_pfn);
  2966. zone_start_pfn += size;
  2967. }
  2968. }
  2969. static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
  2970. {
  2971. /* Skip empty nodes */
  2972. if (!pgdat->node_spanned_pages)
  2973. return;
  2974. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  2975. /* ia64 gets its own node_mem_map, before this, without bootmem */
  2976. if (!pgdat->node_mem_map) {
  2977. unsigned long size, start, end;
  2978. struct page *map;
  2979. /*
  2980. * The zone's endpoints aren't required to be MAX_ORDER
  2981. * aligned but the node_mem_map endpoints must be in order
  2982. * for the buddy allocator to function correctly.
  2983. */
  2984. start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
  2985. end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
  2986. end = ALIGN(end, MAX_ORDER_NR_PAGES);
  2987. size = (end - start) * sizeof(struct page);
  2988. map = alloc_remap(pgdat->node_id, size);
  2989. if (!map)
  2990. map = alloc_bootmem_node(pgdat, size);
  2991. pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
  2992. }
  2993. #ifndef CONFIG_NEED_MULTIPLE_NODES
  2994. /*
  2995. * With no DISCONTIG, the global mem_map is just set as node 0's
  2996. */
  2997. if (pgdat == NODE_DATA(0)) {
  2998. mem_map = NODE_DATA(0)->node_mem_map;
  2999. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  3000. if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
  3001. mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
  3002. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  3003. }
  3004. #endif
  3005. #endif /* CONFIG_FLAT_NODE_MEM_MAP */
  3006. }
  3007. void __paginginit free_area_init_node(int nid, struct pglist_data *pgdat,
  3008. unsigned long *zones_size, unsigned long node_start_pfn,
  3009. unsigned long *zholes_size)
  3010. {
  3011. pgdat->node_id = nid;
  3012. pgdat->node_start_pfn = node_start_pfn;
  3013. calculate_node_totalpages(pgdat, zones_size, zholes_size);
  3014. alloc_node_mem_map(pgdat);
  3015. free_area_init_core(pgdat, zones_size, zholes_size);
  3016. }
  3017. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  3018. #if MAX_NUMNODES > 1
  3019. /*
  3020. * Figure out the number of possible node ids.
  3021. */
  3022. static void __init setup_nr_node_ids(void)
  3023. {
  3024. unsigned int node;
  3025. unsigned int highest = 0;
  3026. for_each_node_mask(node, node_possible_map)
  3027. highest = node;
  3028. nr_node_ids = highest + 1;
  3029. }
  3030. #else
  3031. static inline void setup_nr_node_ids(void)
  3032. {
  3033. }
  3034. #endif
  3035. /**
  3036. * add_active_range - Register a range of PFNs backed by physical memory
  3037. * @nid: The node ID the range resides on
  3038. * @start_pfn: The start PFN of the available physical memory
  3039. * @end_pfn: The end PFN of the available physical memory
  3040. *
  3041. * These ranges are stored in an early_node_map[] and later used by
  3042. * free_area_init_nodes() to calculate zone sizes and holes. If the
  3043. * range spans a memory hole, it is up to the architecture to ensure
  3044. * the memory is not freed by the bootmem allocator. If possible
  3045. * the range being registered will be merged with existing ranges.
  3046. */
  3047. void __init add_active_range(unsigned int nid, unsigned long start_pfn,
  3048. unsigned long end_pfn)
  3049. {
  3050. int i;
  3051. printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) "
  3052. "%d entries of %d used\n",
  3053. nid, start_pfn, end_pfn,
  3054. nr_nodemap_entries, MAX_ACTIVE_REGIONS);
  3055. /* Merge with existing active regions if possible */
  3056. for (i = 0; i < nr_nodemap_entries; i++) {
  3057. if (early_node_map[i].nid != nid)
  3058. continue;
  3059. /* Skip if an existing region covers this new one */
  3060. if (start_pfn >= early_node_map[i].start_pfn &&
  3061. end_pfn <= early_node_map[i].end_pfn)
  3062. return;
  3063. /* Merge forward if suitable */
  3064. if (start_pfn <= early_node_map[i].end_pfn &&
  3065. end_pfn > early_node_map[i].end_pfn) {
  3066. early_node_map[i].end_pfn = end_pfn;
  3067. return;
  3068. }
  3069. /* Merge backward if suitable */
  3070. if (start_pfn < early_node_map[i].end_pfn &&
  3071. end_pfn >= early_node_map[i].start_pfn) {
  3072. early_node_map[i].start_pfn = start_pfn;
  3073. return;
  3074. }
  3075. }
  3076. /* Check that early_node_map is large enough */
  3077. if (i >= MAX_ACTIVE_REGIONS) {
  3078. printk(KERN_CRIT "More than %d memory regions, truncating\n",
  3079. MAX_ACTIVE_REGIONS);
  3080. return;
  3081. }
  3082. early_node_map[i].nid = nid;
  3083. early_node_map[i].start_pfn = start_pfn;
  3084. early_node_map[i].end_pfn = end_pfn;
  3085. nr_nodemap_entries = i + 1;
  3086. }
  3087. /**
  3088. * shrink_active_range - Shrink an existing registered range of PFNs
  3089. * @nid: The node id the range is on that should be shrunk
  3090. * @old_end_pfn: The old end PFN of the range
  3091. * @new_end_pfn: The new PFN of the range
  3092. *
  3093. * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
  3094. * The map is kept at the end physical page range that has already been
  3095. * registered with add_active_range(). This function allows an arch to shrink
  3096. * an existing registered range.
  3097. */
  3098. void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
  3099. unsigned long new_end_pfn)
  3100. {
  3101. int i;
  3102. /* Find the old active region end and shrink */
  3103. for_each_active_range_index_in_nid(i, nid)
  3104. if (early_node_map[i].end_pfn == old_end_pfn) {
  3105. early_node_map[i].end_pfn = new_end_pfn;
  3106. break;
  3107. }
  3108. }
  3109. /**
  3110. * remove_all_active_ranges - Remove all currently registered regions
  3111. *
  3112. * During discovery, it may be found that a table like SRAT is invalid
  3113. * and an alternative discovery method must be used. This function removes
  3114. * all currently registered regions.
  3115. */
  3116. void __init remove_all_active_ranges(void)
  3117. {
  3118. memset(early_node_map, 0, sizeof(early_node_map));
  3119. nr_nodemap_entries = 0;
  3120. #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
  3121. memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
  3122. memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
  3123. #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
  3124. }
  3125. /* Compare two active node_active_regions */
  3126. static int __init cmp_node_active_region(const void *a, const void *b)
  3127. {
  3128. struct node_active_region *arange = (struct node_active_region *)a;
  3129. struct node_active_region *brange = (struct node_active_region *)b;
  3130. /* Done this way to avoid overflows */
  3131. if (arange->start_pfn > brange->start_pfn)
  3132. return 1;
  3133. if (arange->start_pfn < brange->start_pfn)
  3134. return -1;
  3135. return 0;
  3136. }
  3137. /* sort the node_map by start_pfn */
  3138. static void __init sort_node_map(void)
  3139. {
  3140. sort(early_node_map, (size_t)nr_nodemap_entries,
  3141. sizeof(struct node_active_region),
  3142. cmp_node_active_region, NULL);
  3143. }
  3144. /* Find the lowest pfn for a node */
  3145. unsigned long __init find_min_pfn_for_node(unsigned long nid)
  3146. {
  3147. int i;
  3148. unsigned long min_pfn = ULONG_MAX;
  3149. /* Assuming a sorted map, the first range found has the starting pfn */
  3150. for_each_active_range_index_in_nid(i, nid)
  3151. min_pfn = min(min_pfn, early_node_map[i].start_pfn);
  3152. if (min_pfn == ULONG_MAX) {
  3153. printk(KERN_WARNING
  3154. "Could not find start_pfn for node %lu\n", nid);
  3155. return 0;
  3156. }
  3157. return min_pfn;
  3158. }
  3159. /**
  3160. * find_min_pfn_with_active_regions - Find the minimum PFN registered
  3161. *
  3162. * It returns the minimum PFN based on information provided via
  3163. * add_active_range().
  3164. */
  3165. unsigned long __init find_min_pfn_with_active_regions(void)
  3166. {
  3167. return find_min_pfn_for_node(MAX_NUMNODES);
  3168. }
  3169. /**
  3170. * find_max_pfn_with_active_regions - Find the maximum PFN registered
  3171. *
  3172. * It returns the maximum PFN based on information provided via
  3173. * add_active_range().
  3174. */
  3175. unsigned long __init find_max_pfn_with_active_regions(void)
  3176. {
  3177. int i;
  3178. unsigned long max_pfn = 0;
  3179. for (i = 0; i < nr_nodemap_entries; i++)
  3180. max_pfn = max(max_pfn, early_node_map[i].end_pfn);
  3181. return max_pfn;
  3182. }
  3183. /*
  3184. * early_calculate_totalpages()
  3185. * Sum pages in active regions for movable zone.
  3186. * Populate N_HIGH_MEMORY for calculating usable_nodes.
  3187. */
  3188. static unsigned long __init early_calculate_totalpages(void)
  3189. {
  3190. int i;
  3191. unsigned long totalpages = 0;
  3192. for (i = 0; i < nr_nodemap_entries; i++) {
  3193. unsigned long pages = early_node_map[i].end_pfn -
  3194. early_node_map[i].start_pfn;
  3195. totalpages += pages;
  3196. if (pages)
  3197. node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
  3198. }
  3199. return totalpages;
  3200. }
  3201. /*
  3202. * Find the PFN the Movable zone begins in each node. Kernel memory
  3203. * is spread evenly between nodes as long as the nodes have enough
  3204. * memory. When they don't, some nodes will have more kernelcore than
  3205. * others
  3206. */
  3207. void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
  3208. {
  3209. int i, nid;
  3210. unsigned long usable_startpfn;
  3211. unsigned long kernelcore_node, kernelcore_remaining;
  3212. unsigned long totalpages = early_calculate_totalpages();
  3213. int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
  3214. /*
  3215. * If movablecore was specified, calculate what size of
  3216. * kernelcore that corresponds so that memory usable for
  3217. * any allocation type is evenly spread. If both kernelcore
  3218. * and movablecore are specified, then the value of kernelcore
  3219. * will be used for required_kernelcore if it's greater than
  3220. * what movablecore would have allowed.
  3221. */
  3222. if (required_movablecore) {
  3223. unsigned long corepages;
  3224. /*
  3225. * Round-up so that ZONE_MOVABLE is at least as large as what
  3226. * was requested by the user
  3227. */
  3228. required_movablecore =
  3229. roundup(required_movablecore, MAX_ORDER_NR_PAGES);
  3230. corepages = totalpages - required_movablecore;
  3231. required_kernelcore = max(required_kernelcore, corepages);
  3232. }
  3233. /* If kernelcore was not specified, there is no ZONE_MOVABLE */
  3234. if (!required_kernelcore)
  3235. return;
  3236. /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
  3237. find_usable_zone_for_movable();
  3238. usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
  3239. restart:
  3240. /* Spread kernelcore memory as evenly as possible throughout nodes */
  3241. kernelcore_node = required_kernelcore / usable_nodes;
  3242. for_each_node_state(nid, N_HIGH_MEMORY) {
  3243. /*
  3244. * Recalculate kernelcore_node if the division per node
  3245. * now exceeds what is necessary to satisfy the requested
  3246. * amount of memory for the kernel
  3247. */
  3248. if (required_kernelcore < kernelcore_node)
  3249. kernelcore_node = required_kernelcore / usable_nodes;
  3250. /*
  3251. * As the map is walked, we track how much memory is usable
  3252. * by the kernel using kernelcore_remaining. When it is
  3253. * 0, the rest of the node is usable by ZONE_MOVABLE
  3254. */
  3255. kernelcore_remaining = kernelcore_node;
  3256. /* Go through each range of PFNs within this node */
  3257. for_each_active_range_index_in_nid(i, nid) {
  3258. unsigned long start_pfn, end_pfn;
  3259. unsigned long size_pages;
  3260. start_pfn = max(early_node_map[i].start_pfn,
  3261. zone_movable_pfn[nid]);
  3262. end_pfn = early_node_map[i].end_pfn;
  3263. if (start_pfn >= end_pfn)
  3264. continue;
  3265. /* Account for what is only usable for kernelcore */
  3266. if (start_pfn < usable_startpfn) {
  3267. unsigned long kernel_pages;
  3268. kernel_pages = min(end_pfn, usable_startpfn)
  3269. - start_pfn;
  3270. kernelcore_remaining -= min(kernel_pages,
  3271. kernelcore_remaining);
  3272. required_kernelcore -= min(kernel_pages,
  3273. required_kernelcore);
  3274. /* Continue if range is now fully accounted */
  3275. if (end_pfn <= usable_startpfn) {
  3276. /*
  3277. * Push zone_movable_pfn to the end so
  3278. * that if we have to rebalance
  3279. * kernelcore across nodes, we will
  3280. * not double account here
  3281. */
  3282. zone_movable_pfn[nid] = end_pfn;
  3283. continue;
  3284. }
  3285. start_pfn = usable_startpfn;
  3286. }
  3287. /*
  3288. * The usable PFN range for ZONE_MOVABLE is from
  3289. * start_pfn->end_pfn. Calculate size_pages as the
  3290. * number of pages used as kernelcore
  3291. */
  3292. size_pages = end_pfn - start_pfn;
  3293. if (size_pages > kernelcore_remaining)
  3294. size_pages = kernelcore_remaining;
  3295. zone_movable_pfn[nid] = start_pfn + size_pages;
  3296. /*
  3297. * Some kernelcore has been met, update counts and
  3298. * break if the kernelcore for this node has been
  3299. * satisified
  3300. */
  3301. required_kernelcore -= min(required_kernelcore,
  3302. size_pages);
  3303. kernelcore_remaining -= size_pages;
  3304. if (!kernelcore_remaining)
  3305. break;
  3306. }
  3307. }
  3308. /*
  3309. * If there is still required_kernelcore, we do another pass with one
  3310. * less node in the count. This will push zone_movable_pfn[nid] further
  3311. * along on the nodes that still have memory until kernelcore is
  3312. * satisified
  3313. */
  3314. usable_nodes--;
  3315. if (usable_nodes && required_kernelcore > usable_nodes)
  3316. goto restart;
  3317. /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
  3318. for (nid = 0; nid < MAX_NUMNODES; nid++)
  3319. zone_movable_pfn[nid] =
  3320. roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
  3321. }
  3322. /* Any regular memory on that node ? */
  3323. static void check_for_regular_memory(pg_data_t *pgdat)
  3324. {
  3325. #ifdef CONFIG_HIGHMEM
  3326. enum zone_type zone_type;
  3327. for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
  3328. struct zone *zone = &pgdat->node_zones[zone_type];
  3329. if (zone->present_pages)
  3330. node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
  3331. }
  3332. #endif
  3333. }
  3334. /**
  3335. * free_area_init_nodes - Initialise all pg_data_t and zone data
  3336. * @max_zone_pfn: an array of max PFNs for each zone
  3337. *
  3338. * This will call free_area_init_node() for each active node in the system.
  3339. * Using the page ranges provided by add_active_range(), the size of each
  3340. * zone in each node and their holes is calculated. If the maximum PFN
  3341. * between two adjacent zones match, it is assumed that the zone is empty.
  3342. * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
  3343. * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
  3344. * starts where the previous one ended. For example, ZONE_DMA32 starts
  3345. * at arch_max_dma_pfn.
  3346. */
  3347. void __init free_area_init_nodes(unsigned long *max_zone_pfn)
  3348. {
  3349. unsigned long nid;
  3350. enum zone_type i;
  3351. /* Sort early_node_map as initialisation assumes it is sorted */
  3352. sort_node_map();
  3353. /* Record where the zone boundaries are */
  3354. memset(arch_zone_lowest_possible_pfn, 0,
  3355. sizeof(arch_zone_lowest_possible_pfn));
  3356. memset(arch_zone_highest_possible_pfn, 0,
  3357. sizeof(arch_zone_highest_possible_pfn));
  3358. arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
  3359. arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
  3360. for (i = 1; i < MAX_NR_ZONES; i++) {
  3361. if (i == ZONE_MOVABLE)
  3362. continue;
  3363. arch_zone_lowest_possible_pfn[i] =
  3364. arch_zone_highest_possible_pfn[i-1];
  3365. arch_zone_highest_possible_pfn[i] =
  3366. max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
  3367. }
  3368. arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
  3369. arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
  3370. /* Find the PFNs that ZONE_MOVABLE begins at in each node */
  3371. memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
  3372. find_zone_movable_pfns_for_nodes(zone_movable_pfn);
  3373. /* Print out the zone ranges */
  3374. printk("Zone PFN ranges:\n");
  3375. for (i = 0; i < MAX_NR_ZONES; i++) {
  3376. if (i == ZONE_MOVABLE)
  3377. continue;
  3378. printk(" %-8s %8lu -> %8lu\n",
  3379. zone_names[i],
  3380. arch_zone_lowest_possible_pfn[i],
  3381. arch_zone_highest_possible_pfn[i]);
  3382. }
  3383. /* Print out the PFNs ZONE_MOVABLE begins at in each node */
  3384. printk("Movable zone start PFN for each node\n");
  3385. for (i = 0; i < MAX_NUMNODES; i++) {
  3386. if (zone_movable_pfn[i])
  3387. printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
  3388. }
  3389. /* Print out the early_node_map[] */
  3390. printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
  3391. for (i = 0; i < nr_nodemap_entries; i++)
  3392. printk(" %3d: %8lu -> %8lu\n", early_node_map[i].nid,
  3393. early_node_map[i].start_pfn,
  3394. early_node_map[i].end_pfn);
  3395. /* Initialise every node */
  3396. setup_nr_node_ids();
  3397. for_each_online_node(nid) {
  3398. pg_data_t *pgdat = NODE_DATA(nid);
  3399. free_area_init_node(nid, pgdat, NULL,
  3400. find_min_pfn_for_node(nid), NULL);
  3401. /* Any memory on that node */
  3402. if (pgdat->node_present_pages)
  3403. node_set_state(nid, N_HIGH_MEMORY);
  3404. check_for_regular_memory(pgdat);
  3405. }
  3406. }
  3407. static int __init cmdline_parse_core(char *p, unsigned long *core)
  3408. {
  3409. unsigned long long coremem;
  3410. if (!p)
  3411. return -EINVAL;
  3412. coremem = memparse(p, &p);
  3413. *core = coremem >> PAGE_SHIFT;
  3414. /* Paranoid check that UL is enough for the coremem value */
  3415. WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
  3416. return 0;
  3417. }
  3418. /*
  3419. * kernelcore=size sets the amount of memory for use for allocations that
  3420. * cannot be reclaimed or migrated.
  3421. */
  3422. static int __init cmdline_parse_kernelcore(char *p)
  3423. {
  3424. return cmdline_parse_core(p, &required_kernelcore);
  3425. }
  3426. /*
  3427. * movablecore=size sets the amount of memory for use for allocations that
  3428. * can be reclaimed or migrated.
  3429. */
  3430. static int __init cmdline_parse_movablecore(char *p)
  3431. {
  3432. return cmdline_parse_core(p, &required_movablecore);
  3433. }
  3434. early_param("kernelcore", cmdline_parse_kernelcore);
  3435. early_param("movablecore", cmdline_parse_movablecore);
  3436. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  3437. /**
  3438. * set_dma_reserve - set the specified number of pages reserved in the first zone
  3439. * @new_dma_reserve: The number of pages to mark reserved
  3440. *
  3441. * The per-cpu batchsize and zone watermarks are determined by present_pages.
  3442. * In the DMA zone, a significant percentage may be consumed by kernel image
  3443. * and other unfreeable allocations which can skew the watermarks badly. This
  3444. * function may optionally be used to account for unfreeable pages in the
  3445. * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
  3446. * smaller per-cpu batchsize.
  3447. */
  3448. void __init set_dma_reserve(unsigned long new_dma_reserve)
  3449. {
  3450. dma_reserve = new_dma_reserve;
  3451. }
  3452. #ifndef CONFIG_NEED_MULTIPLE_NODES
  3453. static bootmem_data_t contig_bootmem_data;
  3454. struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
  3455. EXPORT_SYMBOL(contig_page_data);
  3456. #endif
  3457. void __init free_area_init(unsigned long *zones_size)
  3458. {
  3459. free_area_init_node(0, NODE_DATA(0), zones_size,
  3460. __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
  3461. }
  3462. static int page_alloc_cpu_notify(struct notifier_block *self,
  3463. unsigned long action, void *hcpu)
  3464. {
  3465. int cpu = (unsigned long)hcpu;
  3466. if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
  3467. drain_pages(cpu);
  3468. /*
  3469. * Spill the event counters of the dead processor
  3470. * into the current processors event counters.
  3471. * This artificially elevates the count of the current
  3472. * processor.
  3473. */
  3474. vm_events_fold_cpu(cpu);
  3475. /*
  3476. * Zero the differential counters of the dead processor
  3477. * so that the vm statistics are consistent.
  3478. *
  3479. * This is only okay since the processor is dead and cannot
  3480. * race with what we are doing.
  3481. */
  3482. refresh_cpu_vm_stats(cpu);
  3483. }
  3484. return NOTIFY_OK;
  3485. }
  3486. void __init page_alloc_init(void)
  3487. {
  3488. hotcpu_notifier(page_alloc_cpu_notify, 0);
  3489. }
  3490. /*
  3491. * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
  3492. * or min_free_kbytes changes.
  3493. */
  3494. static void calculate_totalreserve_pages(void)
  3495. {
  3496. struct pglist_data *pgdat;
  3497. unsigned long reserve_pages = 0;
  3498. enum zone_type i, j;
  3499. for_each_online_pgdat(pgdat) {
  3500. for (i = 0; i < MAX_NR_ZONES; i++) {
  3501. struct zone *zone = pgdat->node_zones + i;
  3502. unsigned long max = 0;
  3503. /* Find valid and maximum lowmem_reserve in the zone */
  3504. for (j = i; j < MAX_NR_ZONES; j++) {
  3505. if (zone->lowmem_reserve[j] > max)
  3506. max = zone->lowmem_reserve[j];
  3507. }
  3508. /* we treat pages_high as reserved pages. */
  3509. max += zone->pages_high;
  3510. if (max > zone->present_pages)
  3511. max = zone->present_pages;
  3512. reserve_pages += max;
  3513. }
  3514. }
  3515. totalreserve_pages = reserve_pages;
  3516. }
  3517. /*
  3518. * setup_per_zone_lowmem_reserve - called whenever
  3519. * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
  3520. * has a correct pages reserved value, so an adequate number of
  3521. * pages are left in the zone after a successful __alloc_pages().
  3522. */
  3523. static void setup_per_zone_lowmem_reserve(void)
  3524. {
  3525. struct pglist_data *pgdat;
  3526. enum zone_type j, idx;
  3527. for_each_online_pgdat(pgdat) {
  3528. for (j = 0; j < MAX_NR_ZONES; j++) {
  3529. struct zone *zone = pgdat->node_zones + j;
  3530. unsigned long present_pages = zone->present_pages;
  3531. zone->lowmem_reserve[j] = 0;
  3532. idx = j;
  3533. while (idx) {
  3534. struct zone *lower_zone;
  3535. idx--;
  3536. if (sysctl_lowmem_reserve_ratio[idx] < 1)
  3537. sysctl_lowmem_reserve_ratio[idx] = 1;
  3538. lower_zone = pgdat->node_zones + idx;
  3539. lower_zone->lowmem_reserve[j] = present_pages /
  3540. sysctl_lowmem_reserve_ratio[idx];
  3541. present_pages += lower_zone->present_pages;
  3542. }
  3543. }
  3544. }
  3545. /* update totalreserve_pages */
  3546. calculate_totalreserve_pages();
  3547. }
  3548. /**
  3549. * setup_per_zone_pages_min - called when min_free_kbytes changes.
  3550. *
  3551. * Ensures that the pages_{min,low,high} values for each zone are set correctly
  3552. * with respect to min_free_kbytes.
  3553. */
  3554. void setup_per_zone_pages_min(void)
  3555. {
  3556. unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
  3557. unsigned long lowmem_pages = 0;
  3558. struct zone *zone;
  3559. unsigned long flags;
  3560. /* Calculate total number of !ZONE_HIGHMEM pages */
  3561. for_each_zone(zone) {
  3562. if (!is_highmem(zone))
  3563. lowmem_pages += zone->present_pages;
  3564. }
  3565. for_each_zone(zone) {
  3566. u64 tmp;
  3567. spin_lock_irqsave(&zone->lru_lock, flags);
  3568. tmp = (u64)pages_min * zone->present_pages;
  3569. do_div(tmp, lowmem_pages);
  3570. if (is_highmem(zone)) {
  3571. /*
  3572. * __GFP_HIGH and PF_MEMALLOC allocations usually don't
  3573. * need highmem pages, so cap pages_min to a small
  3574. * value here.
  3575. *
  3576. * The (pages_high-pages_low) and (pages_low-pages_min)
  3577. * deltas controls asynch page reclaim, and so should
  3578. * not be capped for highmem.
  3579. */
  3580. int min_pages;
  3581. min_pages = zone->present_pages / 1024;
  3582. if (min_pages < SWAP_CLUSTER_MAX)
  3583. min_pages = SWAP_CLUSTER_MAX;
  3584. if (min_pages > 128)
  3585. min_pages = 128;
  3586. zone->pages_min = min_pages;
  3587. } else {
  3588. /*
  3589. * If it's a lowmem zone, reserve a number of pages
  3590. * proportionate to the zone's size.
  3591. */
  3592. zone->pages_min = tmp;
  3593. }
  3594. zone->pages_low = zone->pages_min + (tmp >> 2);
  3595. zone->pages_high = zone->pages_min + (tmp >> 1);
  3596. setup_zone_migrate_reserve(zone);
  3597. spin_unlock_irqrestore(&zone->lru_lock, flags);
  3598. }
  3599. /* update totalreserve_pages */
  3600. calculate_totalreserve_pages();
  3601. }
  3602. /*
  3603. * Initialise min_free_kbytes.
  3604. *
  3605. * For small machines we want it small (128k min). For large machines
  3606. * we want it large (64MB max). But it is not linear, because network
  3607. * bandwidth does not increase linearly with machine size. We use
  3608. *
  3609. * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
  3610. * min_free_kbytes = sqrt(lowmem_kbytes * 16)
  3611. *
  3612. * which yields
  3613. *
  3614. * 16MB: 512k
  3615. * 32MB: 724k
  3616. * 64MB: 1024k
  3617. * 128MB: 1448k
  3618. * 256MB: 2048k
  3619. * 512MB: 2896k
  3620. * 1024MB: 4096k
  3621. * 2048MB: 5792k
  3622. * 4096MB: 8192k
  3623. * 8192MB: 11584k
  3624. * 16384MB: 16384k
  3625. */
  3626. static int __init init_per_zone_pages_min(void)
  3627. {
  3628. unsigned long lowmem_kbytes;
  3629. lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
  3630. min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
  3631. if (min_free_kbytes < 128)
  3632. min_free_kbytes = 128;
  3633. if (min_free_kbytes > 65536)
  3634. min_free_kbytes = 65536;
  3635. setup_per_zone_pages_min();
  3636. setup_per_zone_lowmem_reserve();
  3637. return 0;
  3638. }
  3639. module_init(init_per_zone_pages_min)
  3640. /*
  3641. * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
  3642. * that we can call two helper functions whenever min_free_kbytes
  3643. * changes.
  3644. */
  3645. int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
  3646. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3647. {
  3648. proc_dointvec(table, write, file, buffer, length, ppos);
  3649. if (write)
  3650. setup_per_zone_pages_min();
  3651. return 0;
  3652. }
  3653. #ifdef CONFIG_NUMA
  3654. int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
  3655. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3656. {
  3657. struct zone *zone;
  3658. int rc;
  3659. rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3660. if (rc)
  3661. return rc;
  3662. for_each_zone(zone)
  3663. zone->min_unmapped_pages = (zone->present_pages *
  3664. sysctl_min_unmapped_ratio) / 100;
  3665. return 0;
  3666. }
  3667. int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
  3668. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3669. {
  3670. struct zone *zone;
  3671. int rc;
  3672. rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3673. if (rc)
  3674. return rc;
  3675. for_each_zone(zone)
  3676. zone->min_slab_pages = (zone->present_pages *
  3677. sysctl_min_slab_ratio) / 100;
  3678. return 0;
  3679. }
  3680. #endif
  3681. /*
  3682. * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
  3683. * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
  3684. * whenever sysctl_lowmem_reserve_ratio changes.
  3685. *
  3686. * The reserve ratio obviously has absolutely no relation with the
  3687. * pages_min watermarks. The lowmem reserve ratio can only make sense
  3688. * if in function of the boot time zone sizes.
  3689. */
  3690. int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
  3691. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3692. {
  3693. proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3694. setup_per_zone_lowmem_reserve();
  3695. return 0;
  3696. }
  3697. /*
  3698. * percpu_pagelist_fraction - changes the pcp->high for each zone on each
  3699. * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
  3700. * can have before it gets flushed back to buddy allocator.
  3701. */
  3702. int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
  3703. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3704. {
  3705. struct zone *zone;
  3706. unsigned int cpu;
  3707. int ret;
  3708. ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3709. if (!write || (ret == -EINVAL))
  3710. return ret;
  3711. for_each_zone(zone) {
  3712. for_each_online_cpu(cpu) {
  3713. unsigned long high;
  3714. high = zone->present_pages / percpu_pagelist_fraction;
  3715. setup_pagelist_highmark(zone_pcp(zone, cpu), high);
  3716. }
  3717. }
  3718. return 0;
  3719. }
  3720. int hashdist = HASHDIST_DEFAULT;
  3721. #ifdef CONFIG_NUMA
  3722. static int __init set_hashdist(char *str)
  3723. {
  3724. if (!str)
  3725. return 0;
  3726. hashdist = simple_strtoul(str, &str, 0);
  3727. return 1;
  3728. }
  3729. __setup("hashdist=", set_hashdist);
  3730. #endif
  3731. /*
  3732. * allocate a large system hash table from bootmem
  3733. * - it is assumed that the hash table must contain an exact power-of-2
  3734. * quantity of entries
  3735. * - limit is the number of hash buckets, not the total allocation size
  3736. */
  3737. void *__init alloc_large_system_hash(const char *tablename,
  3738. unsigned long bucketsize,
  3739. unsigned long numentries,
  3740. int scale,
  3741. int flags,
  3742. unsigned int *_hash_shift,
  3743. unsigned int *_hash_mask,
  3744. unsigned long limit)
  3745. {
  3746. unsigned long long max = limit;
  3747. unsigned long log2qty, size;
  3748. void *table = NULL;
  3749. /* allow the kernel cmdline to have a say */
  3750. if (!numentries) {
  3751. /* round applicable memory size up to nearest megabyte */
  3752. numentries = nr_kernel_pages;
  3753. numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
  3754. numentries >>= 20 - PAGE_SHIFT;
  3755. numentries <<= 20 - PAGE_SHIFT;
  3756. /* limit to 1 bucket per 2^scale bytes of low memory */
  3757. if (scale > PAGE_SHIFT)
  3758. numentries >>= (scale - PAGE_SHIFT);
  3759. else
  3760. numentries <<= (PAGE_SHIFT - scale);
  3761. /* Make sure we've got at least a 0-order allocation.. */
  3762. if (unlikely((numentries * bucketsize) < PAGE_SIZE))
  3763. numentries = PAGE_SIZE / bucketsize;
  3764. }
  3765. numentries = roundup_pow_of_two(numentries);
  3766. /* limit allocation size to 1/16 total memory by default */
  3767. if (max == 0) {
  3768. max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
  3769. do_div(max, bucketsize);
  3770. }
  3771. if (numentries > max)
  3772. numentries = max;
  3773. log2qty = ilog2(numentries);
  3774. do {
  3775. size = bucketsize << log2qty;
  3776. if (flags & HASH_EARLY)
  3777. table = alloc_bootmem(size);
  3778. else if (hashdist)
  3779. table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
  3780. else {
  3781. unsigned long order = get_order(size);
  3782. table = (void*) __get_free_pages(GFP_ATOMIC, order);
  3783. /*
  3784. * If bucketsize is not a power-of-two, we may free
  3785. * some pages at the end of hash table.
  3786. */
  3787. if (table) {
  3788. unsigned long alloc_end = (unsigned long)table +
  3789. (PAGE_SIZE << order);
  3790. unsigned long used = (unsigned long)table +
  3791. PAGE_ALIGN(size);
  3792. split_page(virt_to_page(table), order);
  3793. while (used < alloc_end) {
  3794. free_page(used);
  3795. used += PAGE_SIZE;
  3796. }
  3797. }
  3798. }
  3799. } while (!table && size > PAGE_SIZE && --log2qty);
  3800. if (!table)
  3801. panic("Failed to allocate %s hash table\n", tablename);
  3802. printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
  3803. tablename,
  3804. (1U << log2qty),
  3805. ilog2(size) - PAGE_SHIFT,
  3806. size);
  3807. if (_hash_shift)
  3808. *_hash_shift = log2qty;
  3809. if (_hash_mask)
  3810. *_hash_mask = (1 << log2qty) - 1;
  3811. return table;
  3812. }
  3813. #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
  3814. struct page *pfn_to_page(unsigned long pfn)
  3815. {
  3816. return __pfn_to_page(pfn);
  3817. }
  3818. unsigned long page_to_pfn(struct page *page)
  3819. {
  3820. return __page_to_pfn(page);
  3821. }
  3822. EXPORT_SYMBOL(pfn_to_page);
  3823. EXPORT_SYMBOL(page_to_pfn);
  3824. #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
  3825. /* Return a pointer to the bitmap storing bits affecting a block of pages */
  3826. static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
  3827. unsigned long pfn)
  3828. {
  3829. #ifdef CONFIG_SPARSEMEM
  3830. return __pfn_to_section(pfn)->pageblock_flags;
  3831. #else
  3832. return zone->pageblock_flags;
  3833. #endif /* CONFIG_SPARSEMEM */
  3834. }
  3835. static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
  3836. {
  3837. #ifdef CONFIG_SPARSEMEM
  3838. pfn &= (PAGES_PER_SECTION-1);
  3839. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  3840. #else
  3841. pfn = pfn - zone->zone_start_pfn;
  3842. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  3843. #endif /* CONFIG_SPARSEMEM */
  3844. }
  3845. /**
  3846. * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
  3847. * @page: The page within the block of interest
  3848. * @start_bitidx: The first bit of interest to retrieve
  3849. * @end_bitidx: The last bit of interest
  3850. * returns pageblock_bits flags
  3851. */
  3852. unsigned long get_pageblock_flags_group(struct page *page,
  3853. int start_bitidx, int end_bitidx)
  3854. {
  3855. struct zone *zone;
  3856. unsigned long *bitmap;
  3857. unsigned long pfn, bitidx;
  3858. unsigned long flags = 0;
  3859. unsigned long value = 1;
  3860. zone = page_zone(page);
  3861. pfn = page_to_pfn(page);
  3862. bitmap = get_pageblock_bitmap(zone, pfn);
  3863. bitidx = pfn_to_bitidx(zone, pfn);
  3864. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  3865. if (test_bit(bitidx + start_bitidx, bitmap))
  3866. flags |= value;
  3867. return flags;
  3868. }
  3869. /**
  3870. * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
  3871. * @page: The page within the block of interest
  3872. * @start_bitidx: The first bit of interest
  3873. * @end_bitidx: The last bit of interest
  3874. * @flags: The flags to set
  3875. */
  3876. void set_pageblock_flags_group(struct page *page, unsigned long flags,
  3877. int start_bitidx, int end_bitidx)
  3878. {
  3879. struct zone *zone;
  3880. unsigned long *bitmap;
  3881. unsigned long pfn, bitidx;
  3882. unsigned long value = 1;
  3883. zone = page_zone(page);
  3884. pfn = page_to_pfn(page);
  3885. bitmap = get_pageblock_bitmap(zone, pfn);
  3886. bitidx = pfn_to_bitidx(zone, pfn);
  3887. VM_BUG_ON(pfn < zone->zone_start_pfn);
  3888. VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
  3889. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  3890. if (flags & value)
  3891. __set_bit(bitidx + start_bitidx, bitmap);
  3892. else
  3893. __clear_bit(bitidx + start_bitidx, bitmap);
  3894. }
  3895. /*
  3896. * This is designed as sub function...plz see page_isolation.c also.
  3897. * set/clear page block's type to be ISOLATE.
  3898. * page allocater never alloc memory from ISOLATE block.
  3899. */
  3900. int set_migratetype_isolate(struct page *page)
  3901. {
  3902. struct zone *zone;
  3903. unsigned long flags;
  3904. int ret = -EBUSY;
  3905. zone = page_zone(page);
  3906. spin_lock_irqsave(&zone->lock, flags);
  3907. /*
  3908. * In future, more migrate types will be able to be isolation target.
  3909. */
  3910. if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
  3911. goto out;
  3912. set_pageblock_migratetype(page, MIGRATE_ISOLATE);
  3913. move_freepages_block(zone, page, MIGRATE_ISOLATE);
  3914. ret = 0;
  3915. out:
  3916. spin_unlock_irqrestore(&zone->lock, flags);
  3917. if (!ret)
  3918. drain_all_pages();
  3919. return ret;
  3920. }
  3921. void unset_migratetype_isolate(struct page *page)
  3922. {
  3923. struct zone *zone;
  3924. unsigned long flags;
  3925. zone = page_zone(page);
  3926. spin_lock_irqsave(&zone->lock, flags);
  3927. if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
  3928. goto out;
  3929. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  3930. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  3931. out:
  3932. spin_unlock_irqrestore(&zone->lock, flags);
  3933. }
  3934. #ifdef CONFIG_MEMORY_HOTREMOVE
  3935. /*
  3936. * All pages in the range must be isolated before calling this.
  3937. */
  3938. void
  3939. __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
  3940. {
  3941. struct page *page;
  3942. struct zone *zone;
  3943. int order, i;
  3944. unsigned long pfn;
  3945. unsigned long flags;
  3946. /* find the first valid pfn */
  3947. for (pfn = start_pfn; pfn < end_pfn; pfn++)
  3948. if (pfn_valid(pfn))
  3949. break;
  3950. if (pfn == end_pfn)
  3951. return;
  3952. zone = page_zone(pfn_to_page(pfn));
  3953. spin_lock_irqsave(&zone->lock, flags);
  3954. pfn = start_pfn;
  3955. while (pfn < end_pfn) {
  3956. if (!pfn_valid(pfn)) {
  3957. pfn++;
  3958. continue;
  3959. }
  3960. page = pfn_to_page(pfn);
  3961. BUG_ON(page_count(page));
  3962. BUG_ON(!PageBuddy(page));
  3963. order = page_order(page);
  3964. #ifdef CONFIG_DEBUG_VM
  3965. printk(KERN_INFO "remove from free list %lx %d %lx\n",
  3966. pfn, 1 << order, end_pfn);
  3967. #endif
  3968. list_del(&page->lru);
  3969. rmv_page_order(page);
  3970. zone->free_area[order].nr_free--;
  3971. __mod_zone_page_state(zone, NR_FREE_PAGES,
  3972. - (1UL << order));
  3973. for (i = 0; i < (1 << order); i++)
  3974. SetPageReserved((page+i));
  3975. pfn += (1 << order);
  3976. }
  3977. spin_unlock_irqrestore(&zone->lock, flags);
  3978. }
  3979. #endif