perf_event.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639
  1. #undef DEBUG
  2. /*
  3. * ARM performance counter support.
  4. *
  5. * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
  6. * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
  7. *
  8. * This code is based on the sparc64 perf event code, which is in turn based
  9. * on the x86 code. Callchain code is based on the ARM OProfile backtrace
  10. * code.
  11. */
  12. #define pr_fmt(fmt) "hw perfevents: " fmt
  13. #include <linux/kernel.h>
  14. #include <linux/platform_device.h>
  15. #include <linux/pm_runtime.h>
  16. #include <linux/uaccess.h>
  17. #include <asm/irq_regs.h>
  18. #include <asm/pmu.h>
  19. #include <asm/stacktrace.h>
  20. static int
  21. armpmu_map_cache_event(const unsigned (*cache_map)
  22. [PERF_COUNT_HW_CACHE_MAX]
  23. [PERF_COUNT_HW_CACHE_OP_MAX]
  24. [PERF_COUNT_HW_CACHE_RESULT_MAX],
  25. u64 config)
  26. {
  27. unsigned int cache_type, cache_op, cache_result, ret;
  28. cache_type = (config >> 0) & 0xff;
  29. if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
  30. return -EINVAL;
  31. cache_op = (config >> 8) & 0xff;
  32. if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
  33. return -EINVAL;
  34. cache_result = (config >> 16) & 0xff;
  35. if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
  36. return -EINVAL;
  37. ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
  38. if (ret == CACHE_OP_UNSUPPORTED)
  39. return -ENOENT;
  40. return ret;
  41. }
  42. static int
  43. armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
  44. {
  45. int mapping = (*event_map)[config];
  46. return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
  47. }
  48. static int
  49. armpmu_map_raw_event(u32 raw_event_mask, u64 config)
  50. {
  51. return (int)(config & raw_event_mask);
  52. }
  53. int
  54. armpmu_map_event(struct perf_event *event,
  55. const unsigned (*event_map)[PERF_COUNT_HW_MAX],
  56. const unsigned (*cache_map)
  57. [PERF_COUNT_HW_CACHE_MAX]
  58. [PERF_COUNT_HW_CACHE_OP_MAX]
  59. [PERF_COUNT_HW_CACHE_RESULT_MAX],
  60. u32 raw_event_mask)
  61. {
  62. u64 config = event->attr.config;
  63. switch (event->attr.type) {
  64. case PERF_TYPE_HARDWARE:
  65. return armpmu_map_hw_event(event_map, config);
  66. case PERF_TYPE_HW_CACHE:
  67. return armpmu_map_cache_event(cache_map, config);
  68. case PERF_TYPE_RAW:
  69. return armpmu_map_raw_event(raw_event_mask, config);
  70. }
  71. return -ENOENT;
  72. }
  73. int armpmu_event_set_period(struct perf_event *event)
  74. {
  75. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  76. struct hw_perf_event *hwc = &event->hw;
  77. s64 left = local64_read(&hwc->period_left);
  78. s64 period = hwc->sample_period;
  79. int ret = 0;
  80. /* The period may have been changed by PERF_EVENT_IOC_PERIOD */
  81. if (unlikely(period != hwc->last_period))
  82. left = period - (hwc->last_period - left);
  83. if (unlikely(left <= -period)) {
  84. left = period;
  85. local64_set(&hwc->period_left, left);
  86. hwc->last_period = period;
  87. ret = 1;
  88. }
  89. if (unlikely(left <= 0)) {
  90. left += period;
  91. local64_set(&hwc->period_left, left);
  92. hwc->last_period = period;
  93. ret = 1;
  94. }
  95. if (left > (s64)armpmu->max_period)
  96. left = armpmu->max_period;
  97. local64_set(&hwc->prev_count, (u64)-left);
  98. armpmu->write_counter(event, (u64)(-left) & 0xffffffff);
  99. perf_event_update_userpage(event);
  100. return ret;
  101. }
  102. u64 armpmu_event_update(struct perf_event *event)
  103. {
  104. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  105. struct hw_perf_event *hwc = &event->hw;
  106. u64 delta, prev_raw_count, new_raw_count;
  107. again:
  108. prev_raw_count = local64_read(&hwc->prev_count);
  109. new_raw_count = armpmu->read_counter(event);
  110. if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
  111. new_raw_count) != prev_raw_count)
  112. goto again;
  113. delta = (new_raw_count - prev_raw_count) & armpmu->max_period;
  114. local64_add(delta, &event->count);
  115. local64_sub(delta, &hwc->period_left);
  116. return new_raw_count;
  117. }
  118. static void
  119. armpmu_read(struct perf_event *event)
  120. {
  121. armpmu_event_update(event);
  122. }
  123. static void
  124. armpmu_stop(struct perf_event *event, int flags)
  125. {
  126. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  127. struct hw_perf_event *hwc = &event->hw;
  128. /*
  129. * ARM pmu always has to update the counter, so ignore
  130. * PERF_EF_UPDATE, see comments in armpmu_start().
  131. */
  132. if (!(hwc->state & PERF_HES_STOPPED)) {
  133. armpmu->disable(event);
  134. armpmu_event_update(event);
  135. hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
  136. }
  137. }
  138. static void armpmu_start(struct perf_event *event, int flags)
  139. {
  140. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  141. struct hw_perf_event *hwc = &event->hw;
  142. /*
  143. * ARM pmu always has to reprogram the period, so ignore
  144. * PERF_EF_RELOAD, see the comment below.
  145. */
  146. if (flags & PERF_EF_RELOAD)
  147. WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
  148. hwc->state = 0;
  149. /*
  150. * Set the period again. Some counters can't be stopped, so when we
  151. * were stopped we simply disabled the IRQ source and the counter
  152. * may have been left counting. If we don't do this step then we may
  153. * get an interrupt too soon or *way* too late if the overflow has
  154. * happened since disabling.
  155. */
  156. armpmu_event_set_period(event);
  157. armpmu->enable(event);
  158. }
  159. static void
  160. armpmu_del(struct perf_event *event, int flags)
  161. {
  162. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  163. struct pmu_hw_events *hw_events = armpmu->get_hw_events();
  164. struct hw_perf_event *hwc = &event->hw;
  165. int idx = hwc->idx;
  166. armpmu_stop(event, PERF_EF_UPDATE);
  167. hw_events->events[idx] = NULL;
  168. clear_bit(idx, hw_events->used_mask);
  169. perf_event_update_userpage(event);
  170. }
  171. static int
  172. armpmu_add(struct perf_event *event, int flags)
  173. {
  174. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  175. struct pmu_hw_events *hw_events = armpmu->get_hw_events();
  176. struct hw_perf_event *hwc = &event->hw;
  177. int idx;
  178. int err = 0;
  179. perf_pmu_disable(event->pmu);
  180. /* If we don't have a space for the counter then finish early. */
  181. idx = armpmu->get_event_idx(hw_events, event);
  182. if (idx < 0) {
  183. err = idx;
  184. goto out;
  185. }
  186. /*
  187. * If there is an event in the counter we are going to use then make
  188. * sure it is disabled.
  189. */
  190. event->hw.idx = idx;
  191. armpmu->disable(event);
  192. hw_events->events[idx] = event;
  193. hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
  194. if (flags & PERF_EF_START)
  195. armpmu_start(event, PERF_EF_RELOAD);
  196. /* Propagate our changes to the userspace mapping. */
  197. perf_event_update_userpage(event);
  198. out:
  199. perf_pmu_enable(event->pmu);
  200. return err;
  201. }
  202. static int
  203. validate_event(struct pmu_hw_events *hw_events,
  204. struct perf_event *event)
  205. {
  206. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  207. struct pmu *leader_pmu = event->group_leader->pmu;
  208. if (is_software_event(event))
  209. return 1;
  210. if (event->pmu != leader_pmu || event->state < PERF_EVENT_STATE_OFF)
  211. return 1;
  212. if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
  213. return 1;
  214. return armpmu->get_event_idx(hw_events, event) >= 0;
  215. }
  216. static int
  217. validate_group(struct perf_event *event)
  218. {
  219. struct perf_event *sibling, *leader = event->group_leader;
  220. struct pmu_hw_events fake_pmu;
  221. DECLARE_BITMAP(fake_used_mask, ARMPMU_MAX_HWEVENTS);
  222. /*
  223. * Initialise the fake PMU. We only need to populate the
  224. * used_mask for the purposes of validation.
  225. */
  226. memset(fake_used_mask, 0, sizeof(fake_used_mask));
  227. fake_pmu.used_mask = fake_used_mask;
  228. if (!validate_event(&fake_pmu, leader))
  229. return -EINVAL;
  230. list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
  231. if (!validate_event(&fake_pmu, sibling))
  232. return -EINVAL;
  233. }
  234. if (!validate_event(&fake_pmu, event))
  235. return -EINVAL;
  236. return 0;
  237. }
  238. static irqreturn_t armpmu_dispatch_irq(int irq, void *dev)
  239. {
  240. struct arm_pmu *armpmu = (struct arm_pmu *) dev;
  241. struct platform_device *plat_device = armpmu->plat_device;
  242. struct arm_pmu_platdata *plat = dev_get_platdata(&plat_device->dev);
  243. if (plat && plat->handle_irq)
  244. return plat->handle_irq(irq, dev, armpmu->handle_irq);
  245. else
  246. return armpmu->handle_irq(irq, dev);
  247. }
  248. static void
  249. armpmu_release_hardware(struct arm_pmu *armpmu)
  250. {
  251. armpmu->free_irq(armpmu);
  252. pm_runtime_put_sync(&armpmu->plat_device->dev);
  253. }
  254. static int
  255. armpmu_reserve_hardware(struct arm_pmu *armpmu)
  256. {
  257. int err;
  258. struct platform_device *pmu_device = armpmu->plat_device;
  259. if (!pmu_device)
  260. return -ENODEV;
  261. pm_runtime_get_sync(&pmu_device->dev);
  262. err = armpmu->request_irq(armpmu, armpmu_dispatch_irq);
  263. if (err) {
  264. armpmu_release_hardware(armpmu);
  265. return err;
  266. }
  267. return 0;
  268. }
  269. static void
  270. hw_perf_event_destroy(struct perf_event *event)
  271. {
  272. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  273. atomic_t *active_events = &armpmu->active_events;
  274. struct mutex *pmu_reserve_mutex = &armpmu->reserve_mutex;
  275. if (atomic_dec_and_mutex_lock(active_events, pmu_reserve_mutex)) {
  276. armpmu_release_hardware(armpmu);
  277. mutex_unlock(pmu_reserve_mutex);
  278. }
  279. }
  280. static int
  281. event_requires_mode_exclusion(struct perf_event_attr *attr)
  282. {
  283. return attr->exclude_idle || attr->exclude_user ||
  284. attr->exclude_kernel || attr->exclude_hv;
  285. }
  286. static int
  287. __hw_perf_event_init(struct perf_event *event)
  288. {
  289. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  290. struct hw_perf_event *hwc = &event->hw;
  291. int mapping;
  292. mapping = armpmu->map_event(event);
  293. if (mapping < 0) {
  294. pr_debug("event %x:%llx not supported\n", event->attr.type,
  295. event->attr.config);
  296. return mapping;
  297. }
  298. /*
  299. * We don't assign an index until we actually place the event onto
  300. * hardware. Use -1 to signify that we haven't decided where to put it
  301. * yet. For SMP systems, each core has it's own PMU so we can't do any
  302. * clever allocation or constraints checking at this point.
  303. */
  304. hwc->idx = -1;
  305. hwc->config_base = 0;
  306. hwc->config = 0;
  307. hwc->event_base = 0;
  308. /*
  309. * Check whether we need to exclude the counter from certain modes.
  310. */
  311. if ((!armpmu->set_event_filter ||
  312. armpmu->set_event_filter(hwc, &event->attr)) &&
  313. event_requires_mode_exclusion(&event->attr)) {
  314. pr_debug("ARM performance counters do not support "
  315. "mode exclusion\n");
  316. return -EOPNOTSUPP;
  317. }
  318. /*
  319. * Store the event encoding into the config_base field.
  320. */
  321. hwc->config_base |= (unsigned long)mapping;
  322. if (!hwc->sample_period) {
  323. /*
  324. * For non-sampling runs, limit the sample_period to half
  325. * of the counter width. That way, the new counter value
  326. * is far less likely to overtake the previous one unless
  327. * you have some serious IRQ latency issues.
  328. */
  329. hwc->sample_period = armpmu->max_period >> 1;
  330. hwc->last_period = hwc->sample_period;
  331. local64_set(&hwc->period_left, hwc->sample_period);
  332. }
  333. if (event->group_leader != event) {
  334. if (validate_group(event) != 0)
  335. return -EINVAL;
  336. }
  337. return 0;
  338. }
  339. static int armpmu_event_init(struct perf_event *event)
  340. {
  341. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  342. int err = 0;
  343. atomic_t *active_events = &armpmu->active_events;
  344. /* does not support taken branch sampling */
  345. if (has_branch_stack(event))
  346. return -EOPNOTSUPP;
  347. if (armpmu->map_event(event) == -ENOENT)
  348. return -ENOENT;
  349. event->destroy = hw_perf_event_destroy;
  350. if (!atomic_inc_not_zero(active_events)) {
  351. mutex_lock(&armpmu->reserve_mutex);
  352. if (atomic_read(active_events) == 0)
  353. err = armpmu_reserve_hardware(armpmu);
  354. if (!err)
  355. atomic_inc(active_events);
  356. mutex_unlock(&armpmu->reserve_mutex);
  357. }
  358. if (err)
  359. return err;
  360. err = __hw_perf_event_init(event);
  361. if (err)
  362. hw_perf_event_destroy(event);
  363. return err;
  364. }
  365. static void armpmu_enable(struct pmu *pmu)
  366. {
  367. struct arm_pmu *armpmu = to_arm_pmu(pmu);
  368. struct pmu_hw_events *hw_events = armpmu->get_hw_events();
  369. int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
  370. if (enabled)
  371. armpmu->start(armpmu);
  372. }
  373. static void armpmu_disable(struct pmu *pmu)
  374. {
  375. struct arm_pmu *armpmu = to_arm_pmu(pmu);
  376. armpmu->stop(armpmu);
  377. }
  378. #ifdef CONFIG_PM_RUNTIME
  379. static int armpmu_runtime_resume(struct device *dev)
  380. {
  381. struct arm_pmu_platdata *plat = dev_get_platdata(dev);
  382. if (plat && plat->runtime_resume)
  383. return plat->runtime_resume(dev);
  384. return 0;
  385. }
  386. static int armpmu_runtime_suspend(struct device *dev)
  387. {
  388. struct arm_pmu_platdata *plat = dev_get_platdata(dev);
  389. if (plat && plat->runtime_suspend)
  390. return plat->runtime_suspend(dev);
  391. return 0;
  392. }
  393. #endif
  394. const struct dev_pm_ops armpmu_dev_pm_ops = {
  395. SET_RUNTIME_PM_OPS(armpmu_runtime_suspend, armpmu_runtime_resume, NULL)
  396. };
  397. static void armpmu_init(struct arm_pmu *armpmu)
  398. {
  399. atomic_set(&armpmu->active_events, 0);
  400. mutex_init(&armpmu->reserve_mutex);
  401. armpmu->pmu = (struct pmu) {
  402. .pmu_enable = armpmu_enable,
  403. .pmu_disable = armpmu_disable,
  404. .event_init = armpmu_event_init,
  405. .add = armpmu_add,
  406. .del = armpmu_del,
  407. .start = armpmu_start,
  408. .stop = armpmu_stop,
  409. .read = armpmu_read,
  410. };
  411. }
  412. int armpmu_register(struct arm_pmu *armpmu, int type)
  413. {
  414. armpmu_init(armpmu);
  415. pm_runtime_enable(&armpmu->plat_device->dev);
  416. pr_info("enabled with %s PMU driver, %d counters available\n",
  417. armpmu->name, armpmu->num_events);
  418. return perf_pmu_register(&armpmu->pmu, armpmu->name, type);
  419. }
  420. /*
  421. * Callchain handling code.
  422. */
  423. /*
  424. * The registers we're interested in are at the end of the variable
  425. * length saved register structure. The fp points at the end of this
  426. * structure so the address of this struct is:
  427. * (struct frame_tail *)(xxx->fp)-1
  428. *
  429. * This code has been adapted from the ARM OProfile support.
  430. */
  431. struct frame_tail {
  432. struct frame_tail __user *fp;
  433. unsigned long sp;
  434. unsigned long lr;
  435. } __attribute__((packed));
  436. /*
  437. * Get the return address for a single stackframe and return a pointer to the
  438. * next frame tail.
  439. */
  440. static struct frame_tail __user *
  441. user_backtrace(struct frame_tail __user *tail,
  442. struct perf_callchain_entry *entry)
  443. {
  444. struct frame_tail buftail;
  445. /* Also check accessibility of one struct frame_tail beyond */
  446. if (!access_ok(VERIFY_READ, tail, sizeof(buftail)))
  447. return NULL;
  448. if (__copy_from_user_inatomic(&buftail, tail, sizeof(buftail)))
  449. return NULL;
  450. perf_callchain_store(entry, buftail.lr);
  451. /*
  452. * Frame pointers should strictly progress back up the stack
  453. * (towards higher addresses).
  454. */
  455. if (tail + 1 >= buftail.fp)
  456. return NULL;
  457. return buftail.fp - 1;
  458. }
  459. void
  460. perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
  461. {
  462. struct frame_tail __user *tail;
  463. if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
  464. /* We don't support guest os callchain now */
  465. return;
  466. }
  467. perf_callchain_store(entry, regs->ARM_pc);
  468. tail = (struct frame_tail __user *)regs->ARM_fp - 1;
  469. while ((entry->nr < PERF_MAX_STACK_DEPTH) &&
  470. tail && !((unsigned long)tail & 0x3))
  471. tail = user_backtrace(tail, entry);
  472. }
  473. /*
  474. * Gets called by walk_stackframe() for every stackframe. This will be called
  475. * whist unwinding the stackframe and is like a subroutine return so we use
  476. * the PC.
  477. */
  478. static int
  479. callchain_trace(struct stackframe *fr,
  480. void *data)
  481. {
  482. struct perf_callchain_entry *entry = data;
  483. perf_callchain_store(entry, fr->pc);
  484. return 0;
  485. }
  486. void
  487. perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
  488. {
  489. struct stackframe fr;
  490. if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
  491. /* We don't support guest os callchain now */
  492. return;
  493. }
  494. fr.fp = regs->ARM_fp;
  495. fr.sp = regs->ARM_sp;
  496. fr.lr = regs->ARM_lr;
  497. fr.pc = regs->ARM_pc;
  498. walk_stackframe(&fr, callchain_trace, entry);
  499. }
  500. unsigned long perf_instruction_pointer(struct pt_regs *regs)
  501. {
  502. if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
  503. return perf_guest_cbs->get_guest_ip();
  504. return instruction_pointer(regs);
  505. }
  506. unsigned long perf_misc_flags(struct pt_regs *regs)
  507. {
  508. int misc = 0;
  509. if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
  510. if (perf_guest_cbs->is_user_mode())
  511. misc |= PERF_RECORD_MISC_GUEST_USER;
  512. else
  513. misc |= PERF_RECORD_MISC_GUEST_KERNEL;
  514. } else {
  515. if (user_mode(regs))
  516. misc |= PERF_RECORD_MISC_USER;
  517. else
  518. misc |= PERF_RECORD_MISC_KERNEL;
  519. }
  520. return misc;
  521. }