super.c 48 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046
  1. /*
  2. * bcache setup/teardown code, and some metadata io - read a superblock and
  3. * figure out what to do with it.
  4. *
  5. * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
  6. * Copyright 2012 Google, Inc.
  7. */
  8. #include "bcache.h"
  9. #include "btree.h"
  10. #include "debug.h"
  11. #include "request.h"
  12. #include "writeback.h"
  13. #include <linux/blkdev.h>
  14. #include <linux/buffer_head.h>
  15. #include <linux/debugfs.h>
  16. #include <linux/genhd.h>
  17. #include <linux/module.h>
  18. #include <linux/random.h>
  19. #include <linux/reboot.h>
  20. #include <linux/sysfs.h>
  21. MODULE_LICENSE("GPL");
  22. MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
  23. static const char bcache_magic[] = {
  24. 0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca,
  25. 0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81
  26. };
  27. static const char invalid_uuid[] = {
  28. 0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78,
  29. 0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99
  30. };
  31. /* Default is -1; we skip past it for struct cached_dev's cache mode */
  32. const char * const bch_cache_modes[] = {
  33. "default",
  34. "writethrough",
  35. "writeback",
  36. "writearound",
  37. "none",
  38. NULL
  39. };
  40. struct uuid_entry_v0 {
  41. uint8_t uuid[16];
  42. uint8_t label[32];
  43. uint32_t first_reg;
  44. uint32_t last_reg;
  45. uint32_t invalidated;
  46. uint32_t pad;
  47. };
  48. static struct kobject *bcache_kobj;
  49. struct mutex bch_register_lock;
  50. LIST_HEAD(bch_cache_sets);
  51. static LIST_HEAD(uncached_devices);
  52. static int bcache_major, bcache_minor;
  53. static wait_queue_head_t unregister_wait;
  54. struct workqueue_struct *bcache_wq;
  55. #define BTREE_MAX_PAGES (256 * 1024 / PAGE_SIZE)
  56. static void bio_split_pool_free(struct bio_split_pool *p)
  57. {
  58. if (p->bio_split_hook)
  59. mempool_destroy(p->bio_split_hook);
  60. if (p->bio_split)
  61. bioset_free(p->bio_split);
  62. }
  63. static int bio_split_pool_init(struct bio_split_pool *p)
  64. {
  65. p->bio_split = bioset_create(4, 0);
  66. if (!p->bio_split)
  67. return -ENOMEM;
  68. p->bio_split_hook = mempool_create_kmalloc_pool(4,
  69. sizeof(struct bio_split_hook));
  70. if (!p->bio_split_hook)
  71. return -ENOMEM;
  72. return 0;
  73. }
  74. /* Superblock */
  75. static const char *read_super(struct cache_sb *sb, struct block_device *bdev,
  76. struct page **res)
  77. {
  78. const char *err;
  79. struct cache_sb *s;
  80. struct buffer_head *bh = __bread(bdev, 1, SB_SIZE);
  81. unsigned i;
  82. if (!bh)
  83. return "IO error";
  84. s = (struct cache_sb *) bh->b_data;
  85. sb->offset = le64_to_cpu(s->offset);
  86. sb->version = le64_to_cpu(s->version);
  87. memcpy(sb->magic, s->magic, 16);
  88. memcpy(sb->uuid, s->uuid, 16);
  89. memcpy(sb->set_uuid, s->set_uuid, 16);
  90. memcpy(sb->label, s->label, SB_LABEL_SIZE);
  91. sb->flags = le64_to_cpu(s->flags);
  92. sb->seq = le64_to_cpu(s->seq);
  93. sb->last_mount = le32_to_cpu(s->last_mount);
  94. sb->first_bucket = le16_to_cpu(s->first_bucket);
  95. sb->keys = le16_to_cpu(s->keys);
  96. for (i = 0; i < SB_JOURNAL_BUCKETS; i++)
  97. sb->d[i] = le64_to_cpu(s->d[i]);
  98. pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u",
  99. sb->version, sb->flags, sb->seq, sb->keys);
  100. err = "Not a bcache superblock";
  101. if (sb->offset != SB_SECTOR)
  102. goto err;
  103. if (memcmp(sb->magic, bcache_magic, 16))
  104. goto err;
  105. err = "Too many journal buckets";
  106. if (sb->keys > SB_JOURNAL_BUCKETS)
  107. goto err;
  108. err = "Bad checksum";
  109. if (s->csum != csum_set(s))
  110. goto err;
  111. err = "Bad UUID";
  112. if (bch_is_zero(sb->uuid, 16))
  113. goto err;
  114. sb->block_size = le16_to_cpu(s->block_size);
  115. err = "Superblock block size smaller than device block size";
  116. if (sb->block_size << 9 < bdev_logical_block_size(bdev))
  117. goto err;
  118. switch (sb->version) {
  119. case BCACHE_SB_VERSION_BDEV:
  120. sb->data_offset = BDEV_DATA_START_DEFAULT;
  121. break;
  122. case BCACHE_SB_VERSION_BDEV_WITH_OFFSET:
  123. sb->data_offset = le64_to_cpu(s->data_offset);
  124. err = "Bad data offset";
  125. if (sb->data_offset < BDEV_DATA_START_DEFAULT)
  126. goto err;
  127. break;
  128. case BCACHE_SB_VERSION_CDEV:
  129. case BCACHE_SB_VERSION_CDEV_WITH_UUID:
  130. sb->nbuckets = le64_to_cpu(s->nbuckets);
  131. sb->block_size = le16_to_cpu(s->block_size);
  132. sb->bucket_size = le16_to_cpu(s->bucket_size);
  133. sb->nr_in_set = le16_to_cpu(s->nr_in_set);
  134. sb->nr_this_dev = le16_to_cpu(s->nr_this_dev);
  135. err = "Too many buckets";
  136. if (sb->nbuckets > LONG_MAX)
  137. goto err;
  138. err = "Not enough buckets";
  139. if (sb->nbuckets < 1 << 7)
  140. goto err;
  141. err = "Bad block/bucket size";
  142. if (!is_power_of_2(sb->block_size) ||
  143. sb->block_size > PAGE_SECTORS ||
  144. !is_power_of_2(sb->bucket_size) ||
  145. sb->bucket_size < PAGE_SECTORS)
  146. goto err;
  147. err = "Invalid superblock: device too small";
  148. if (get_capacity(bdev->bd_disk) < sb->bucket_size * sb->nbuckets)
  149. goto err;
  150. err = "Bad UUID";
  151. if (bch_is_zero(sb->set_uuid, 16))
  152. goto err;
  153. err = "Bad cache device number in set";
  154. if (!sb->nr_in_set ||
  155. sb->nr_in_set <= sb->nr_this_dev ||
  156. sb->nr_in_set > MAX_CACHES_PER_SET)
  157. goto err;
  158. err = "Journal buckets not sequential";
  159. for (i = 0; i < sb->keys; i++)
  160. if (sb->d[i] != sb->first_bucket + i)
  161. goto err;
  162. err = "Too many journal buckets";
  163. if (sb->first_bucket + sb->keys > sb->nbuckets)
  164. goto err;
  165. err = "Invalid superblock: first bucket comes before end of super";
  166. if (sb->first_bucket * sb->bucket_size < 16)
  167. goto err;
  168. break;
  169. default:
  170. err = "Unsupported superblock version";
  171. goto err;
  172. }
  173. sb->last_mount = get_seconds();
  174. err = NULL;
  175. get_page(bh->b_page);
  176. *res = bh->b_page;
  177. err:
  178. put_bh(bh);
  179. return err;
  180. }
  181. static void write_bdev_super_endio(struct bio *bio, int error)
  182. {
  183. struct cached_dev *dc = bio->bi_private;
  184. /* XXX: error checking */
  185. closure_put(&dc->sb_write.cl);
  186. }
  187. static void __write_super(struct cache_sb *sb, struct bio *bio)
  188. {
  189. struct cache_sb *out = page_address(bio->bi_io_vec[0].bv_page);
  190. unsigned i;
  191. bio->bi_sector = SB_SECTOR;
  192. bio->bi_rw = REQ_SYNC|REQ_META;
  193. bio->bi_size = SB_SIZE;
  194. bch_bio_map(bio, NULL);
  195. out->offset = cpu_to_le64(sb->offset);
  196. out->version = cpu_to_le64(sb->version);
  197. memcpy(out->uuid, sb->uuid, 16);
  198. memcpy(out->set_uuid, sb->set_uuid, 16);
  199. memcpy(out->label, sb->label, SB_LABEL_SIZE);
  200. out->flags = cpu_to_le64(sb->flags);
  201. out->seq = cpu_to_le64(sb->seq);
  202. out->last_mount = cpu_to_le32(sb->last_mount);
  203. out->first_bucket = cpu_to_le16(sb->first_bucket);
  204. out->keys = cpu_to_le16(sb->keys);
  205. for (i = 0; i < sb->keys; i++)
  206. out->d[i] = cpu_to_le64(sb->d[i]);
  207. out->csum = csum_set(out);
  208. pr_debug("ver %llu, flags %llu, seq %llu",
  209. sb->version, sb->flags, sb->seq);
  210. submit_bio(REQ_WRITE, bio);
  211. }
  212. void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent)
  213. {
  214. struct closure *cl = &dc->sb_write.cl;
  215. struct bio *bio = &dc->sb_bio;
  216. closure_lock(&dc->sb_write, parent);
  217. bio_reset(bio);
  218. bio->bi_bdev = dc->bdev;
  219. bio->bi_end_io = write_bdev_super_endio;
  220. bio->bi_private = dc;
  221. closure_get(cl);
  222. __write_super(&dc->sb, bio);
  223. closure_return(cl);
  224. }
  225. static void write_super_endio(struct bio *bio, int error)
  226. {
  227. struct cache *ca = bio->bi_private;
  228. bch_count_io_errors(ca, error, "writing superblock");
  229. closure_put(&ca->set->sb_write.cl);
  230. }
  231. void bcache_write_super(struct cache_set *c)
  232. {
  233. struct closure *cl = &c->sb_write.cl;
  234. struct cache *ca;
  235. unsigned i;
  236. closure_lock(&c->sb_write, &c->cl);
  237. c->sb.seq++;
  238. for_each_cache(ca, c, i) {
  239. struct bio *bio = &ca->sb_bio;
  240. ca->sb.version = BCACHE_SB_VERSION_CDEV_WITH_UUID;
  241. ca->sb.seq = c->sb.seq;
  242. ca->sb.last_mount = c->sb.last_mount;
  243. SET_CACHE_SYNC(&ca->sb, CACHE_SYNC(&c->sb));
  244. bio_reset(bio);
  245. bio->bi_bdev = ca->bdev;
  246. bio->bi_end_io = write_super_endio;
  247. bio->bi_private = ca;
  248. closure_get(cl);
  249. __write_super(&ca->sb, bio);
  250. }
  251. closure_return(cl);
  252. }
  253. /* UUID io */
  254. static void uuid_endio(struct bio *bio, int error)
  255. {
  256. struct closure *cl = bio->bi_private;
  257. struct cache_set *c = container_of(cl, struct cache_set, uuid_write.cl);
  258. cache_set_err_on(error, c, "accessing uuids");
  259. bch_bbio_free(bio, c);
  260. closure_put(cl);
  261. }
  262. static void uuid_io(struct cache_set *c, unsigned long rw,
  263. struct bkey *k, struct closure *parent)
  264. {
  265. struct closure *cl = &c->uuid_write.cl;
  266. struct uuid_entry *u;
  267. unsigned i;
  268. char buf[80];
  269. BUG_ON(!parent);
  270. closure_lock(&c->uuid_write, parent);
  271. for (i = 0; i < KEY_PTRS(k); i++) {
  272. struct bio *bio = bch_bbio_alloc(c);
  273. bio->bi_rw = REQ_SYNC|REQ_META|rw;
  274. bio->bi_size = KEY_SIZE(k) << 9;
  275. bio->bi_end_io = uuid_endio;
  276. bio->bi_private = cl;
  277. bch_bio_map(bio, c->uuids);
  278. bch_submit_bbio(bio, c, k, i);
  279. if (!(rw & WRITE))
  280. break;
  281. }
  282. bch_bkey_to_text(buf, sizeof(buf), k);
  283. pr_debug("%s UUIDs at %s", rw & REQ_WRITE ? "wrote" : "read", buf);
  284. for (u = c->uuids; u < c->uuids + c->nr_uuids; u++)
  285. if (!bch_is_zero(u->uuid, 16))
  286. pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u",
  287. u - c->uuids, u->uuid, u->label,
  288. u->first_reg, u->last_reg, u->invalidated);
  289. closure_return(cl);
  290. }
  291. static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl)
  292. {
  293. struct bkey *k = &j->uuid_bucket;
  294. if (__bch_ptr_invalid(c, 1, k))
  295. return "bad uuid pointer";
  296. bkey_copy(&c->uuid_bucket, k);
  297. uuid_io(c, READ_SYNC, k, cl);
  298. if (j->version < BCACHE_JSET_VERSION_UUIDv1) {
  299. struct uuid_entry_v0 *u0 = (void *) c->uuids;
  300. struct uuid_entry *u1 = (void *) c->uuids;
  301. int i;
  302. closure_sync(cl);
  303. /*
  304. * Since the new uuid entry is bigger than the old, we have to
  305. * convert starting at the highest memory address and work down
  306. * in order to do it in place
  307. */
  308. for (i = c->nr_uuids - 1;
  309. i >= 0;
  310. --i) {
  311. memcpy(u1[i].uuid, u0[i].uuid, 16);
  312. memcpy(u1[i].label, u0[i].label, 32);
  313. u1[i].first_reg = u0[i].first_reg;
  314. u1[i].last_reg = u0[i].last_reg;
  315. u1[i].invalidated = u0[i].invalidated;
  316. u1[i].flags = 0;
  317. u1[i].sectors = 0;
  318. }
  319. }
  320. return NULL;
  321. }
  322. static int __uuid_write(struct cache_set *c)
  323. {
  324. BKEY_PADDED(key) k;
  325. struct closure cl;
  326. closure_init_stack(&cl);
  327. lockdep_assert_held(&bch_register_lock);
  328. if (bch_bucket_alloc_set(c, WATERMARK_METADATA, &k.key, 1, &cl))
  329. return 1;
  330. SET_KEY_SIZE(&k.key, c->sb.bucket_size);
  331. uuid_io(c, REQ_WRITE, &k.key, &cl);
  332. closure_sync(&cl);
  333. bkey_copy(&c->uuid_bucket, &k.key);
  334. __bkey_put(c, &k.key);
  335. return 0;
  336. }
  337. int bch_uuid_write(struct cache_set *c)
  338. {
  339. int ret = __uuid_write(c);
  340. if (!ret)
  341. bch_journal_meta(c, NULL);
  342. return ret;
  343. }
  344. static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid)
  345. {
  346. struct uuid_entry *u;
  347. for (u = c->uuids;
  348. u < c->uuids + c->nr_uuids; u++)
  349. if (!memcmp(u->uuid, uuid, 16))
  350. return u;
  351. return NULL;
  352. }
  353. static struct uuid_entry *uuid_find_empty(struct cache_set *c)
  354. {
  355. static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0";
  356. return uuid_find(c, zero_uuid);
  357. }
  358. /*
  359. * Bucket priorities/gens:
  360. *
  361. * For each bucket, we store on disk its
  362. * 8 bit gen
  363. * 16 bit priority
  364. *
  365. * See alloc.c for an explanation of the gen. The priority is used to implement
  366. * lru (and in the future other) cache replacement policies; for most purposes
  367. * it's just an opaque integer.
  368. *
  369. * The gens and the priorities don't have a whole lot to do with each other, and
  370. * it's actually the gens that must be written out at specific times - it's no
  371. * big deal if the priorities don't get written, if we lose them we just reuse
  372. * buckets in suboptimal order.
  373. *
  374. * On disk they're stored in a packed array, and in as many buckets are required
  375. * to fit them all. The buckets we use to store them form a list; the journal
  376. * header points to the first bucket, the first bucket points to the second
  377. * bucket, et cetera.
  378. *
  379. * This code is used by the allocation code; periodically (whenever it runs out
  380. * of buckets to allocate from) the allocation code will invalidate some
  381. * buckets, but it can't use those buckets until their new gens are safely on
  382. * disk.
  383. */
  384. static void prio_endio(struct bio *bio, int error)
  385. {
  386. struct cache *ca = bio->bi_private;
  387. cache_set_err_on(error, ca->set, "accessing priorities");
  388. bch_bbio_free(bio, ca->set);
  389. closure_put(&ca->prio);
  390. }
  391. static void prio_io(struct cache *ca, uint64_t bucket, unsigned long rw)
  392. {
  393. struct closure *cl = &ca->prio;
  394. struct bio *bio = bch_bbio_alloc(ca->set);
  395. closure_init_stack(cl);
  396. bio->bi_sector = bucket * ca->sb.bucket_size;
  397. bio->bi_bdev = ca->bdev;
  398. bio->bi_rw = REQ_SYNC|REQ_META|rw;
  399. bio->bi_size = bucket_bytes(ca);
  400. bio->bi_end_io = prio_endio;
  401. bio->bi_private = ca;
  402. bch_bio_map(bio, ca->disk_buckets);
  403. closure_bio_submit(bio, &ca->prio, ca);
  404. closure_sync(cl);
  405. }
  406. #define buckets_free(c) "free %zu, free_inc %zu, unused %zu", \
  407. fifo_used(&c->free), fifo_used(&c->free_inc), fifo_used(&c->unused)
  408. void bch_prio_write(struct cache *ca)
  409. {
  410. int i;
  411. struct bucket *b;
  412. struct closure cl;
  413. closure_init_stack(&cl);
  414. lockdep_assert_held(&ca->set->bucket_lock);
  415. for (b = ca->buckets;
  416. b < ca->buckets + ca->sb.nbuckets; b++)
  417. b->disk_gen = b->gen;
  418. ca->disk_buckets->seq++;
  419. atomic_long_add(ca->sb.bucket_size * prio_buckets(ca),
  420. &ca->meta_sectors_written);
  421. pr_debug("free %zu, free_inc %zu, unused %zu", fifo_used(&ca->free),
  422. fifo_used(&ca->free_inc), fifo_used(&ca->unused));
  423. for (i = prio_buckets(ca) - 1; i >= 0; --i) {
  424. long bucket;
  425. struct prio_set *p = ca->disk_buckets;
  426. struct bucket_disk *d = p->data;
  427. struct bucket_disk *end = d + prios_per_bucket(ca);
  428. for (b = ca->buckets + i * prios_per_bucket(ca);
  429. b < ca->buckets + ca->sb.nbuckets && d < end;
  430. b++, d++) {
  431. d->prio = cpu_to_le16(b->prio);
  432. d->gen = b->gen;
  433. }
  434. p->next_bucket = ca->prio_buckets[i + 1];
  435. p->magic = pset_magic(ca);
  436. p->csum = bch_crc64(&p->magic, bucket_bytes(ca) - 8);
  437. bucket = bch_bucket_alloc(ca, WATERMARK_PRIO, &cl);
  438. BUG_ON(bucket == -1);
  439. mutex_unlock(&ca->set->bucket_lock);
  440. prio_io(ca, bucket, REQ_WRITE);
  441. mutex_lock(&ca->set->bucket_lock);
  442. ca->prio_buckets[i] = bucket;
  443. atomic_dec_bug(&ca->buckets[bucket].pin);
  444. }
  445. mutex_unlock(&ca->set->bucket_lock);
  446. bch_journal_meta(ca->set, &cl);
  447. closure_sync(&cl);
  448. mutex_lock(&ca->set->bucket_lock);
  449. ca->need_save_prio = 0;
  450. /*
  451. * Don't want the old priorities to get garbage collected until after we
  452. * finish writing the new ones, and they're journalled
  453. */
  454. for (i = 0; i < prio_buckets(ca); i++)
  455. ca->prio_last_buckets[i] = ca->prio_buckets[i];
  456. }
  457. static void prio_read(struct cache *ca, uint64_t bucket)
  458. {
  459. struct prio_set *p = ca->disk_buckets;
  460. struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d;
  461. struct bucket *b;
  462. unsigned bucket_nr = 0;
  463. for (b = ca->buckets;
  464. b < ca->buckets + ca->sb.nbuckets;
  465. b++, d++) {
  466. if (d == end) {
  467. ca->prio_buckets[bucket_nr] = bucket;
  468. ca->prio_last_buckets[bucket_nr] = bucket;
  469. bucket_nr++;
  470. prio_io(ca, bucket, READ_SYNC);
  471. if (p->csum != bch_crc64(&p->magic, bucket_bytes(ca) - 8))
  472. pr_warn("bad csum reading priorities");
  473. if (p->magic != pset_magic(ca))
  474. pr_warn("bad magic reading priorities");
  475. bucket = p->next_bucket;
  476. d = p->data;
  477. }
  478. b->prio = le16_to_cpu(d->prio);
  479. b->gen = b->disk_gen = b->last_gc = b->gc_gen = d->gen;
  480. }
  481. }
  482. /* Bcache device */
  483. static int open_dev(struct block_device *b, fmode_t mode)
  484. {
  485. struct bcache_device *d = b->bd_disk->private_data;
  486. if (atomic_read(&d->closing))
  487. return -ENXIO;
  488. closure_get(&d->cl);
  489. return 0;
  490. }
  491. static void release_dev(struct gendisk *b, fmode_t mode)
  492. {
  493. struct bcache_device *d = b->private_data;
  494. closure_put(&d->cl);
  495. }
  496. static int ioctl_dev(struct block_device *b, fmode_t mode,
  497. unsigned int cmd, unsigned long arg)
  498. {
  499. struct bcache_device *d = b->bd_disk->private_data;
  500. return d->ioctl(d, mode, cmd, arg);
  501. }
  502. static const struct block_device_operations bcache_ops = {
  503. .open = open_dev,
  504. .release = release_dev,
  505. .ioctl = ioctl_dev,
  506. .owner = THIS_MODULE,
  507. };
  508. void bcache_device_stop(struct bcache_device *d)
  509. {
  510. if (!atomic_xchg(&d->closing, 1))
  511. closure_queue(&d->cl);
  512. }
  513. static void bcache_device_unlink(struct bcache_device *d)
  514. {
  515. unsigned i;
  516. struct cache *ca;
  517. sysfs_remove_link(&d->c->kobj, d->name);
  518. sysfs_remove_link(&d->kobj, "cache");
  519. for_each_cache(ca, d->c, i)
  520. bd_unlink_disk_holder(ca->bdev, d->disk);
  521. }
  522. static void bcache_device_link(struct bcache_device *d, struct cache_set *c,
  523. const char *name)
  524. {
  525. unsigned i;
  526. struct cache *ca;
  527. for_each_cache(ca, d->c, i)
  528. bd_link_disk_holder(ca->bdev, d->disk);
  529. snprintf(d->name, BCACHEDEVNAME_SIZE,
  530. "%s%u", name, d->id);
  531. WARN(sysfs_create_link(&d->kobj, &c->kobj, "cache") ||
  532. sysfs_create_link(&c->kobj, &d->kobj, d->name),
  533. "Couldn't create device <-> cache set symlinks");
  534. }
  535. static void bcache_device_detach(struct bcache_device *d)
  536. {
  537. lockdep_assert_held(&bch_register_lock);
  538. if (atomic_read(&d->detaching)) {
  539. struct uuid_entry *u = d->c->uuids + d->id;
  540. SET_UUID_FLASH_ONLY(u, 0);
  541. memcpy(u->uuid, invalid_uuid, 16);
  542. u->invalidated = cpu_to_le32(get_seconds());
  543. bch_uuid_write(d->c);
  544. atomic_set(&d->detaching, 0);
  545. }
  546. if (!d->flush_done)
  547. bcache_device_unlink(d);
  548. d->c->devices[d->id] = NULL;
  549. closure_put(&d->c->caching);
  550. d->c = NULL;
  551. }
  552. static void bcache_device_attach(struct bcache_device *d, struct cache_set *c,
  553. unsigned id)
  554. {
  555. BUG_ON(test_bit(CACHE_SET_STOPPING, &c->flags));
  556. d->id = id;
  557. d->c = c;
  558. c->devices[id] = d;
  559. closure_get(&c->caching);
  560. }
  561. static void bcache_device_free(struct bcache_device *d)
  562. {
  563. lockdep_assert_held(&bch_register_lock);
  564. pr_info("%s stopped", d->disk->disk_name);
  565. if (d->c)
  566. bcache_device_detach(d);
  567. if (d->disk && d->disk->flags & GENHD_FL_UP)
  568. del_gendisk(d->disk);
  569. if (d->disk && d->disk->queue)
  570. blk_cleanup_queue(d->disk->queue);
  571. if (d->disk)
  572. put_disk(d->disk);
  573. bio_split_pool_free(&d->bio_split_hook);
  574. if (d->unaligned_bvec)
  575. mempool_destroy(d->unaligned_bvec);
  576. if (d->bio_split)
  577. bioset_free(d->bio_split);
  578. if (is_vmalloc_addr(d->stripe_sectors_dirty))
  579. vfree(d->stripe_sectors_dirty);
  580. else
  581. kfree(d->stripe_sectors_dirty);
  582. closure_debug_destroy(&d->cl);
  583. }
  584. static int bcache_device_init(struct bcache_device *d, unsigned block_size,
  585. sector_t sectors)
  586. {
  587. struct request_queue *q;
  588. size_t n;
  589. if (!d->stripe_size_bits)
  590. d->stripe_size_bits = 31;
  591. d->nr_stripes = round_up(sectors, 1 << d->stripe_size_bits) >>
  592. d->stripe_size_bits;
  593. if (!d->nr_stripes || d->nr_stripes > SIZE_MAX / sizeof(atomic_t))
  594. return -ENOMEM;
  595. n = d->nr_stripes * sizeof(atomic_t);
  596. d->stripe_sectors_dirty = n < PAGE_SIZE << 6
  597. ? kzalloc(n, GFP_KERNEL)
  598. : vzalloc(n);
  599. if (!d->stripe_sectors_dirty)
  600. return -ENOMEM;
  601. if (!(d->bio_split = bioset_create(4, offsetof(struct bbio, bio))) ||
  602. !(d->unaligned_bvec = mempool_create_kmalloc_pool(1,
  603. sizeof(struct bio_vec) * BIO_MAX_PAGES)) ||
  604. bio_split_pool_init(&d->bio_split_hook) ||
  605. !(d->disk = alloc_disk(1)) ||
  606. !(q = blk_alloc_queue(GFP_KERNEL)))
  607. return -ENOMEM;
  608. set_capacity(d->disk, sectors);
  609. snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", bcache_minor);
  610. d->disk->major = bcache_major;
  611. d->disk->first_minor = bcache_minor++;
  612. d->disk->fops = &bcache_ops;
  613. d->disk->private_data = d;
  614. blk_queue_make_request(q, NULL);
  615. d->disk->queue = q;
  616. q->queuedata = d;
  617. q->backing_dev_info.congested_data = d;
  618. q->limits.max_hw_sectors = UINT_MAX;
  619. q->limits.max_sectors = UINT_MAX;
  620. q->limits.max_segment_size = UINT_MAX;
  621. q->limits.max_segments = BIO_MAX_PAGES;
  622. q->limits.max_discard_sectors = UINT_MAX;
  623. q->limits.io_min = block_size;
  624. q->limits.logical_block_size = block_size;
  625. q->limits.physical_block_size = block_size;
  626. set_bit(QUEUE_FLAG_NONROT, &d->disk->queue->queue_flags);
  627. set_bit(QUEUE_FLAG_DISCARD, &d->disk->queue->queue_flags);
  628. blk_queue_flush(q, REQ_FLUSH|REQ_FUA);
  629. return 0;
  630. }
  631. /* Cached device */
  632. static void calc_cached_dev_sectors(struct cache_set *c)
  633. {
  634. uint64_t sectors = 0;
  635. struct cached_dev *dc;
  636. list_for_each_entry(dc, &c->cached_devs, list)
  637. sectors += bdev_sectors(dc->bdev);
  638. c->cached_dev_sectors = sectors;
  639. }
  640. void bch_cached_dev_run(struct cached_dev *dc)
  641. {
  642. struct bcache_device *d = &dc->disk;
  643. char buf[SB_LABEL_SIZE + 1];
  644. char *env[] = {
  645. "DRIVER=bcache",
  646. kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid),
  647. NULL,
  648. NULL,
  649. };
  650. memcpy(buf, dc->sb.label, SB_LABEL_SIZE);
  651. buf[SB_LABEL_SIZE] = '\0';
  652. env[2] = kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf);
  653. if (atomic_xchg(&dc->running, 1))
  654. return;
  655. if (!d->c &&
  656. BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) {
  657. struct closure cl;
  658. closure_init_stack(&cl);
  659. SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE);
  660. bch_write_bdev_super(dc, &cl);
  661. closure_sync(&cl);
  662. }
  663. add_disk(d->disk);
  664. bd_link_disk_holder(dc->bdev, dc->disk.disk);
  665. /* won't show up in the uevent file, use udevadm monitor -e instead
  666. * only class / kset properties are persistent */
  667. kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env);
  668. kfree(env[1]);
  669. kfree(env[2]);
  670. if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") ||
  671. sysfs_create_link(&disk_to_dev(d->disk)->kobj, &d->kobj, "bcache"))
  672. pr_debug("error creating sysfs link");
  673. }
  674. static void cached_dev_detach_finish(struct work_struct *w)
  675. {
  676. struct cached_dev *dc = container_of(w, struct cached_dev, detach);
  677. char buf[BDEVNAME_SIZE];
  678. struct closure cl;
  679. closure_init_stack(&cl);
  680. BUG_ON(!atomic_read(&dc->disk.detaching));
  681. BUG_ON(atomic_read(&dc->count));
  682. mutex_lock(&bch_register_lock);
  683. memset(&dc->sb.set_uuid, 0, 16);
  684. SET_BDEV_STATE(&dc->sb, BDEV_STATE_NONE);
  685. bch_write_bdev_super(dc, &cl);
  686. closure_sync(&cl);
  687. bcache_device_detach(&dc->disk);
  688. list_move(&dc->list, &uncached_devices);
  689. mutex_unlock(&bch_register_lock);
  690. pr_info("Caching disabled for %s", bdevname(dc->bdev, buf));
  691. /* Drop ref we took in cached_dev_detach() */
  692. closure_put(&dc->disk.cl);
  693. }
  694. void bch_cached_dev_detach(struct cached_dev *dc)
  695. {
  696. lockdep_assert_held(&bch_register_lock);
  697. if (atomic_read(&dc->disk.closing))
  698. return;
  699. if (atomic_xchg(&dc->disk.detaching, 1))
  700. return;
  701. /*
  702. * Block the device from being closed and freed until we're finished
  703. * detaching
  704. */
  705. closure_get(&dc->disk.cl);
  706. bch_writeback_queue(dc);
  707. cached_dev_put(dc);
  708. }
  709. int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c)
  710. {
  711. uint32_t rtime = cpu_to_le32(get_seconds());
  712. struct uuid_entry *u;
  713. char buf[BDEVNAME_SIZE];
  714. bdevname(dc->bdev, buf);
  715. if (memcmp(dc->sb.set_uuid, c->sb.set_uuid, 16))
  716. return -ENOENT;
  717. if (dc->disk.c) {
  718. pr_err("Can't attach %s: already attached", buf);
  719. return -EINVAL;
  720. }
  721. if (test_bit(CACHE_SET_STOPPING, &c->flags)) {
  722. pr_err("Can't attach %s: shutting down", buf);
  723. return -EINVAL;
  724. }
  725. if (dc->sb.block_size < c->sb.block_size) {
  726. /* Will die */
  727. pr_err("Couldn't attach %s: block size less than set's block size",
  728. buf);
  729. return -EINVAL;
  730. }
  731. u = uuid_find(c, dc->sb.uuid);
  732. if (u &&
  733. (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE ||
  734. BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) {
  735. memcpy(u->uuid, invalid_uuid, 16);
  736. u->invalidated = cpu_to_le32(get_seconds());
  737. u = NULL;
  738. }
  739. if (!u) {
  740. if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
  741. pr_err("Couldn't find uuid for %s in set", buf);
  742. return -ENOENT;
  743. }
  744. u = uuid_find_empty(c);
  745. if (!u) {
  746. pr_err("Not caching %s, no room for UUID", buf);
  747. return -EINVAL;
  748. }
  749. }
  750. /* Deadlocks since we're called via sysfs...
  751. sysfs_remove_file(&dc->kobj, &sysfs_attach);
  752. */
  753. if (bch_is_zero(u->uuid, 16)) {
  754. struct closure cl;
  755. closure_init_stack(&cl);
  756. memcpy(u->uuid, dc->sb.uuid, 16);
  757. memcpy(u->label, dc->sb.label, SB_LABEL_SIZE);
  758. u->first_reg = u->last_reg = rtime;
  759. bch_uuid_write(c);
  760. memcpy(dc->sb.set_uuid, c->sb.set_uuid, 16);
  761. SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
  762. bch_write_bdev_super(dc, &cl);
  763. closure_sync(&cl);
  764. } else {
  765. u->last_reg = rtime;
  766. bch_uuid_write(c);
  767. }
  768. bcache_device_attach(&dc->disk, c, u - c->uuids);
  769. list_move(&dc->list, &c->cached_devs);
  770. calc_cached_dev_sectors(c);
  771. smp_wmb();
  772. /*
  773. * dc->c must be set before dc->count != 0 - paired with the mb in
  774. * cached_dev_get()
  775. */
  776. atomic_set(&dc->count, 1);
  777. if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
  778. bch_sectors_dirty_init(dc);
  779. atomic_set(&dc->has_dirty, 1);
  780. atomic_inc(&dc->count);
  781. bch_writeback_queue(dc);
  782. }
  783. bch_cached_dev_run(dc);
  784. bcache_device_link(&dc->disk, c, "bdev");
  785. pr_info("Caching %s as %s on set %pU",
  786. bdevname(dc->bdev, buf), dc->disk.disk->disk_name,
  787. dc->disk.c->sb.set_uuid);
  788. return 0;
  789. }
  790. void bch_cached_dev_release(struct kobject *kobj)
  791. {
  792. struct cached_dev *dc = container_of(kobj, struct cached_dev,
  793. disk.kobj);
  794. kfree(dc);
  795. module_put(THIS_MODULE);
  796. }
  797. static void cached_dev_free(struct closure *cl)
  798. {
  799. struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
  800. cancel_delayed_work_sync(&dc->writeback_rate_update);
  801. mutex_lock(&bch_register_lock);
  802. if (atomic_read(&dc->running))
  803. bd_unlink_disk_holder(dc->bdev, dc->disk.disk);
  804. bcache_device_free(&dc->disk);
  805. list_del(&dc->list);
  806. mutex_unlock(&bch_register_lock);
  807. if (!IS_ERR_OR_NULL(dc->bdev)) {
  808. if (dc->bdev->bd_disk)
  809. blk_sync_queue(bdev_get_queue(dc->bdev));
  810. blkdev_put(dc->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
  811. }
  812. wake_up(&unregister_wait);
  813. kobject_put(&dc->disk.kobj);
  814. }
  815. static void cached_dev_flush(struct closure *cl)
  816. {
  817. struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
  818. struct bcache_device *d = &dc->disk;
  819. mutex_lock(&bch_register_lock);
  820. d->flush_done = 1;
  821. if (d->c)
  822. bcache_device_unlink(d);
  823. mutex_unlock(&bch_register_lock);
  824. bch_cache_accounting_destroy(&dc->accounting);
  825. kobject_del(&d->kobj);
  826. continue_at(cl, cached_dev_free, system_wq);
  827. }
  828. static int cached_dev_init(struct cached_dev *dc, unsigned block_size)
  829. {
  830. int ret;
  831. struct io *io;
  832. struct request_queue *q = bdev_get_queue(dc->bdev);
  833. __module_get(THIS_MODULE);
  834. INIT_LIST_HEAD(&dc->list);
  835. closure_init(&dc->disk.cl, NULL);
  836. set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq);
  837. kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype);
  838. INIT_WORK(&dc->detach, cached_dev_detach_finish);
  839. closure_init_unlocked(&dc->sb_write);
  840. INIT_LIST_HEAD(&dc->io_lru);
  841. spin_lock_init(&dc->io_lock);
  842. bch_cache_accounting_init(&dc->accounting, &dc->disk.cl);
  843. dc->sequential_merge = true;
  844. dc->sequential_cutoff = 4 << 20;
  845. for (io = dc->io; io < dc->io + RECENT_IO; io++) {
  846. list_add(&io->lru, &dc->io_lru);
  847. hlist_add_head(&io->hash, dc->io_hash + RECENT_IO);
  848. }
  849. ret = bcache_device_init(&dc->disk, block_size,
  850. dc->bdev->bd_part->nr_sects - dc->sb.data_offset);
  851. if (ret)
  852. return ret;
  853. set_capacity(dc->disk.disk,
  854. dc->bdev->bd_part->nr_sects - dc->sb.data_offset);
  855. dc->disk.disk->queue->backing_dev_info.ra_pages =
  856. max(dc->disk.disk->queue->backing_dev_info.ra_pages,
  857. q->backing_dev_info.ra_pages);
  858. bch_cached_dev_request_init(dc);
  859. bch_cached_dev_writeback_init(dc);
  860. return 0;
  861. }
  862. /* Cached device - bcache superblock */
  863. static void register_bdev(struct cache_sb *sb, struct page *sb_page,
  864. struct block_device *bdev,
  865. struct cached_dev *dc)
  866. {
  867. char name[BDEVNAME_SIZE];
  868. const char *err = "cannot allocate memory";
  869. struct cache_set *c;
  870. memcpy(&dc->sb, sb, sizeof(struct cache_sb));
  871. dc->bdev = bdev;
  872. dc->bdev->bd_holder = dc;
  873. bio_init(&dc->sb_bio);
  874. dc->sb_bio.bi_max_vecs = 1;
  875. dc->sb_bio.bi_io_vec = dc->sb_bio.bi_inline_vecs;
  876. dc->sb_bio.bi_io_vec[0].bv_page = sb_page;
  877. get_page(sb_page);
  878. if (cached_dev_init(dc, sb->block_size << 9))
  879. goto err;
  880. err = "error creating kobject";
  881. if (kobject_add(&dc->disk.kobj, &part_to_dev(bdev->bd_part)->kobj,
  882. "bcache"))
  883. goto err;
  884. if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj))
  885. goto err;
  886. pr_info("registered backing device %s", bdevname(bdev, name));
  887. list_add(&dc->list, &uncached_devices);
  888. list_for_each_entry(c, &bch_cache_sets, list)
  889. bch_cached_dev_attach(dc, c);
  890. if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE ||
  891. BDEV_STATE(&dc->sb) == BDEV_STATE_STALE)
  892. bch_cached_dev_run(dc);
  893. return;
  894. err:
  895. pr_notice("error opening %s: %s", bdevname(bdev, name), err);
  896. bcache_device_stop(&dc->disk);
  897. }
  898. /* Flash only volumes */
  899. void bch_flash_dev_release(struct kobject *kobj)
  900. {
  901. struct bcache_device *d = container_of(kobj, struct bcache_device,
  902. kobj);
  903. kfree(d);
  904. }
  905. static void flash_dev_free(struct closure *cl)
  906. {
  907. struct bcache_device *d = container_of(cl, struct bcache_device, cl);
  908. bcache_device_free(d);
  909. kobject_put(&d->kobj);
  910. }
  911. static void flash_dev_flush(struct closure *cl)
  912. {
  913. struct bcache_device *d = container_of(cl, struct bcache_device, cl);
  914. bcache_device_unlink(d);
  915. kobject_del(&d->kobj);
  916. continue_at(cl, flash_dev_free, system_wq);
  917. }
  918. static int flash_dev_run(struct cache_set *c, struct uuid_entry *u)
  919. {
  920. struct bcache_device *d = kzalloc(sizeof(struct bcache_device),
  921. GFP_KERNEL);
  922. if (!d)
  923. return -ENOMEM;
  924. closure_init(&d->cl, NULL);
  925. set_closure_fn(&d->cl, flash_dev_flush, system_wq);
  926. kobject_init(&d->kobj, &bch_flash_dev_ktype);
  927. if (bcache_device_init(d, block_bytes(c), u->sectors))
  928. goto err;
  929. bcache_device_attach(d, c, u - c->uuids);
  930. bch_flash_dev_request_init(d);
  931. add_disk(d->disk);
  932. if (kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache"))
  933. goto err;
  934. bcache_device_link(d, c, "volume");
  935. return 0;
  936. err:
  937. kobject_put(&d->kobj);
  938. return -ENOMEM;
  939. }
  940. static int flash_devs_run(struct cache_set *c)
  941. {
  942. int ret = 0;
  943. struct uuid_entry *u;
  944. for (u = c->uuids;
  945. u < c->uuids + c->nr_uuids && !ret;
  946. u++)
  947. if (UUID_FLASH_ONLY(u))
  948. ret = flash_dev_run(c, u);
  949. return ret;
  950. }
  951. int bch_flash_dev_create(struct cache_set *c, uint64_t size)
  952. {
  953. struct uuid_entry *u;
  954. if (test_bit(CACHE_SET_STOPPING, &c->flags))
  955. return -EINTR;
  956. u = uuid_find_empty(c);
  957. if (!u) {
  958. pr_err("Can't create volume, no room for UUID");
  959. return -EINVAL;
  960. }
  961. get_random_bytes(u->uuid, 16);
  962. memset(u->label, 0, 32);
  963. u->first_reg = u->last_reg = cpu_to_le32(get_seconds());
  964. SET_UUID_FLASH_ONLY(u, 1);
  965. u->sectors = size >> 9;
  966. bch_uuid_write(c);
  967. return flash_dev_run(c, u);
  968. }
  969. /* Cache set */
  970. __printf(2, 3)
  971. bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...)
  972. {
  973. va_list args;
  974. if (test_bit(CACHE_SET_STOPPING, &c->flags))
  975. return false;
  976. /* XXX: we can be called from atomic context
  977. acquire_console_sem();
  978. */
  979. printk(KERN_ERR "bcache: error on %pU: ", c->sb.set_uuid);
  980. va_start(args, fmt);
  981. vprintk(fmt, args);
  982. va_end(args);
  983. printk(", disabling caching\n");
  984. bch_cache_set_unregister(c);
  985. return true;
  986. }
  987. void bch_cache_set_release(struct kobject *kobj)
  988. {
  989. struct cache_set *c = container_of(kobj, struct cache_set, kobj);
  990. kfree(c);
  991. module_put(THIS_MODULE);
  992. }
  993. static void cache_set_free(struct closure *cl)
  994. {
  995. struct cache_set *c = container_of(cl, struct cache_set, cl);
  996. struct cache *ca;
  997. unsigned i;
  998. if (!IS_ERR_OR_NULL(c->debug))
  999. debugfs_remove(c->debug);
  1000. bch_open_buckets_free(c);
  1001. bch_btree_cache_free(c);
  1002. bch_journal_free(c);
  1003. for_each_cache(ca, c, i)
  1004. if (ca)
  1005. kobject_put(&ca->kobj);
  1006. free_pages((unsigned long) c->uuids, ilog2(bucket_pages(c)));
  1007. free_pages((unsigned long) c->sort, ilog2(bucket_pages(c)));
  1008. if (c->bio_split)
  1009. bioset_free(c->bio_split);
  1010. if (c->fill_iter)
  1011. mempool_destroy(c->fill_iter);
  1012. if (c->bio_meta)
  1013. mempool_destroy(c->bio_meta);
  1014. if (c->search)
  1015. mempool_destroy(c->search);
  1016. kfree(c->devices);
  1017. mutex_lock(&bch_register_lock);
  1018. list_del(&c->list);
  1019. mutex_unlock(&bch_register_lock);
  1020. pr_info("Cache set %pU unregistered", c->sb.set_uuid);
  1021. wake_up(&unregister_wait);
  1022. closure_debug_destroy(&c->cl);
  1023. kobject_put(&c->kobj);
  1024. }
  1025. static void cache_set_flush(struct closure *cl)
  1026. {
  1027. struct cache_set *c = container_of(cl, struct cache_set, caching);
  1028. struct btree *b;
  1029. /* Shut down allocator threads */
  1030. set_bit(CACHE_SET_STOPPING_2, &c->flags);
  1031. wake_up_allocators(c);
  1032. bch_cache_accounting_destroy(&c->accounting);
  1033. kobject_put(&c->internal);
  1034. kobject_del(&c->kobj);
  1035. if (!IS_ERR_OR_NULL(c->root))
  1036. list_add(&c->root->list, &c->btree_cache);
  1037. /* Should skip this if we're unregistering because of an error */
  1038. list_for_each_entry(b, &c->btree_cache, list)
  1039. if (btree_node_dirty(b))
  1040. bch_btree_node_write(b, NULL);
  1041. closure_return(cl);
  1042. }
  1043. static void __cache_set_unregister(struct closure *cl)
  1044. {
  1045. struct cache_set *c = container_of(cl, struct cache_set, caching);
  1046. struct cached_dev *dc, *t;
  1047. size_t i;
  1048. mutex_lock(&bch_register_lock);
  1049. if (test_bit(CACHE_SET_UNREGISTERING, &c->flags))
  1050. list_for_each_entry_safe(dc, t, &c->cached_devs, list)
  1051. bch_cached_dev_detach(dc);
  1052. for (i = 0; i < c->nr_uuids; i++)
  1053. if (c->devices[i] && UUID_FLASH_ONLY(&c->uuids[i]))
  1054. bcache_device_stop(c->devices[i]);
  1055. mutex_unlock(&bch_register_lock);
  1056. continue_at(cl, cache_set_flush, system_wq);
  1057. }
  1058. void bch_cache_set_stop(struct cache_set *c)
  1059. {
  1060. if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags))
  1061. closure_queue(&c->caching);
  1062. }
  1063. void bch_cache_set_unregister(struct cache_set *c)
  1064. {
  1065. set_bit(CACHE_SET_UNREGISTERING, &c->flags);
  1066. bch_cache_set_stop(c);
  1067. }
  1068. #define alloc_bucket_pages(gfp, c) \
  1069. ((void *) __get_free_pages(__GFP_ZERO|gfp, ilog2(bucket_pages(c))))
  1070. struct cache_set *bch_cache_set_alloc(struct cache_sb *sb)
  1071. {
  1072. int iter_size;
  1073. struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL);
  1074. if (!c)
  1075. return NULL;
  1076. __module_get(THIS_MODULE);
  1077. closure_init(&c->cl, NULL);
  1078. set_closure_fn(&c->cl, cache_set_free, system_wq);
  1079. closure_init(&c->caching, &c->cl);
  1080. set_closure_fn(&c->caching, __cache_set_unregister, system_wq);
  1081. /* Maybe create continue_at_noreturn() and use it here? */
  1082. closure_set_stopped(&c->cl);
  1083. closure_put(&c->cl);
  1084. kobject_init(&c->kobj, &bch_cache_set_ktype);
  1085. kobject_init(&c->internal, &bch_cache_set_internal_ktype);
  1086. bch_cache_accounting_init(&c->accounting, &c->cl);
  1087. memcpy(c->sb.set_uuid, sb->set_uuid, 16);
  1088. c->sb.block_size = sb->block_size;
  1089. c->sb.bucket_size = sb->bucket_size;
  1090. c->sb.nr_in_set = sb->nr_in_set;
  1091. c->sb.last_mount = sb->last_mount;
  1092. c->bucket_bits = ilog2(sb->bucket_size);
  1093. c->block_bits = ilog2(sb->block_size);
  1094. c->nr_uuids = bucket_bytes(c) / sizeof(struct uuid_entry);
  1095. c->btree_pages = c->sb.bucket_size / PAGE_SECTORS;
  1096. if (c->btree_pages > BTREE_MAX_PAGES)
  1097. c->btree_pages = max_t(int, c->btree_pages / 4,
  1098. BTREE_MAX_PAGES);
  1099. c->sort_crit_factor = int_sqrt(c->btree_pages);
  1100. mutex_init(&c->bucket_lock);
  1101. mutex_init(&c->sort_lock);
  1102. spin_lock_init(&c->sort_time_lock);
  1103. closure_init_unlocked(&c->sb_write);
  1104. closure_init_unlocked(&c->uuid_write);
  1105. spin_lock_init(&c->btree_read_time_lock);
  1106. bch_moving_init_cache_set(c);
  1107. INIT_LIST_HEAD(&c->list);
  1108. INIT_LIST_HEAD(&c->cached_devs);
  1109. INIT_LIST_HEAD(&c->btree_cache);
  1110. INIT_LIST_HEAD(&c->btree_cache_freeable);
  1111. INIT_LIST_HEAD(&c->btree_cache_freed);
  1112. INIT_LIST_HEAD(&c->data_buckets);
  1113. c->search = mempool_create_slab_pool(32, bch_search_cache);
  1114. if (!c->search)
  1115. goto err;
  1116. iter_size = (sb->bucket_size / sb->block_size + 1) *
  1117. sizeof(struct btree_iter_set);
  1118. if (!(c->devices = kzalloc(c->nr_uuids * sizeof(void *), GFP_KERNEL)) ||
  1119. !(c->bio_meta = mempool_create_kmalloc_pool(2,
  1120. sizeof(struct bbio) + sizeof(struct bio_vec) *
  1121. bucket_pages(c))) ||
  1122. !(c->fill_iter = mempool_create_kmalloc_pool(1, iter_size)) ||
  1123. !(c->bio_split = bioset_create(4, offsetof(struct bbio, bio))) ||
  1124. !(c->sort = alloc_bucket_pages(GFP_KERNEL, c)) ||
  1125. !(c->uuids = alloc_bucket_pages(GFP_KERNEL, c)) ||
  1126. bch_journal_alloc(c) ||
  1127. bch_btree_cache_alloc(c) ||
  1128. bch_open_buckets_alloc(c))
  1129. goto err;
  1130. c->congested_read_threshold_us = 2000;
  1131. c->congested_write_threshold_us = 20000;
  1132. c->error_limit = 8 << IO_ERROR_SHIFT;
  1133. return c;
  1134. err:
  1135. bch_cache_set_unregister(c);
  1136. return NULL;
  1137. }
  1138. static void run_cache_set(struct cache_set *c)
  1139. {
  1140. const char *err = "cannot allocate memory";
  1141. struct cached_dev *dc, *t;
  1142. struct cache *ca;
  1143. unsigned i;
  1144. struct btree_op op;
  1145. bch_btree_op_init_stack(&op);
  1146. op.lock = SHRT_MAX;
  1147. for_each_cache(ca, c, i)
  1148. c->nbuckets += ca->sb.nbuckets;
  1149. if (CACHE_SYNC(&c->sb)) {
  1150. LIST_HEAD(journal);
  1151. struct bkey *k;
  1152. struct jset *j;
  1153. err = "cannot allocate memory for journal";
  1154. if (bch_journal_read(c, &journal, &op))
  1155. goto err;
  1156. pr_debug("btree_journal_read() done");
  1157. err = "no journal entries found";
  1158. if (list_empty(&journal))
  1159. goto err;
  1160. j = &list_entry(journal.prev, struct journal_replay, list)->j;
  1161. err = "IO error reading priorities";
  1162. for_each_cache(ca, c, i)
  1163. prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev]);
  1164. /*
  1165. * If prio_read() fails it'll call cache_set_error and we'll
  1166. * tear everything down right away, but if we perhaps checked
  1167. * sooner we could avoid journal replay.
  1168. */
  1169. k = &j->btree_root;
  1170. err = "bad btree root";
  1171. if (__bch_ptr_invalid(c, j->btree_level + 1, k))
  1172. goto err;
  1173. err = "error reading btree root";
  1174. c->root = bch_btree_node_get(c, k, j->btree_level, &op);
  1175. if (IS_ERR_OR_NULL(c->root))
  1176. goto err;
  1177. list_del_init(&c->root->list);
  1178. rw_unlock(true, c->root);
  1179. err = uuid_read(c, j, &op.cl);
  1180. if (err)
  1181. goto err;
  1182. err = "error in recovery";
  1183. if (bch_btree_check(c, &op))
  1184. goto err;
  1185. bch_journal_mark(c, &journal);
  1186. bch_btree_gc_finish(c);
  1187. pr_debug("btree_check() done");
  1188. /*
  1189. * bcache_journal_next() can't happen sooner, or
  1190. * btree_gc_finish() will give spurious errors about last_gc >
  1191. * gc_gen - this is a hack but oh well.
  1192. */
  1193. bch_journal_next(&c->journal);
  1194. err = "error starting allocator thread";
  1195. for_each_cache(ca, c, i)
  1196. if (bch_cache_allocator_start(ca))
  1197. goto err;
  1198. /*
  1199. * First place it's safe to allocate: btree_check() and
  1200. * btree_gc_finish() have to run before we have buckets to
  1201. * allocate, and bch_bucket_alloc_set() might cause a journal
  1202. * entry to be written so bcache_journal_next() has to be called
  1203. * first.
  1204. *
  1205. * If the uuids were in the old format we have to rewrite them
  1206. * before the next journal entry is written:
  1207. */
  1208. if (j->version < BCACHE_JSET_VERSION_UUID)
  1209. __uuid_write(c);
  1210. bch_journal_replay(c, &journal, &op);
  1211. } else {
  1212. pr_notice("invalidating existing data");
  1213. /* Don't want invalidate_buckets() to queue a gc yet */
  1214. closure_lock(&c->gc, NULL);
  1215. for_each_cache(ca, c, i) {
  1216. unsigned j;
  1217. ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7,
  1218. 2, SB_JOURNAL_BUCKETS);
  1219. for (j = 0; j < ca->sb.keys; j++)
  1220. ca->sb.d[j] = ca->sb.first_bucket + j;
  1221. }
  1222. bch_btree_gc_finish(c);
  1223. err = "error starting allocator thread";
  1224. for_each_cache(ca, c, i)
  1225. if (bch_cache_allocator_start(ca))
  1226. goto err;
  1227. mutex_lock(&c->bucket_lock);
  1228. for_each_cache(ca, c, i)
  1229. bch_prio_write(ca);
  1230. mutex_unlock(&c->bucket_lock);
  1231. err = "cannot allocate new UUID bucket";
  1232. if (__uuid_write(c))
  1233. goto err_unlock_gc;
  1234. err = "cannot allocate new btree root";
  1235. c->root = bch_btree_node_alloc(c, 0, &op.cl);
  1236. if (IS_ERR_OR_NULL(c->root))
  1237. goto err_unlock_gc;
  1238. bkey_copy_key(&c->root->key, &MAX_KEY);
  1239. bch_btree_node_write(c->root, &op.cl);
  1240. bch_btree_set_root(c->root);
  1241. rw_unlock(true, c->root);
  1242. /*
  1243. * We don't want to write the first journal entry until
  1244. * everything is set up - fortunately journal entries won't be
  1245. * written until the SET_CACHE_SYNC() here:
  1246. */
  1247. SET_CACHE_SYNC(&c->sb, true);
  1248. bch_journal_next(&c->journal);
  1249. bch_journal_meta(c, &op.cl);
  1250. /* Unlock */
  1251. closure_set_stopped(&c->gc.cl);
  1252. closure_put(&c->gc.cl);
  1253. }
  1254. closure_sync(&op.cl);
  1255. c->sb.last_mount = get_seconds();
  1256. bcache_write_super(c);
  1257. list_for_each_entry_safe(dc, t, &uncached_devices, list)
  1258. bch_cached_dev_attach(dc, c);
  1259. flash_devs_run(c);
  1260. return;
  1261. err_unlock_gc:
  1262. closure_set_stopped(&c->gc.cl);
  1263. closure_put(&c->gc.cl);
  1264. err:
  1265. closure_sync(&op.cl);
  1266. /* XXX: test this, it's broken */
  1267. bch_cache_set_error(c, err);
  1268. }
  1269. static bool can_attach_cache(struct cache *ca, struct cache_set *c)
  1270. {
  1271. return ca->sb.block_size == c->sb.block_size &&
  1272. ca->sb.bucket_size == c->sb.block_size &&
  1273. ca->sb.nr_in_set == c->sb.nr_in_set;
  1274. }
  1275. static const char *register_cache_set(struct cache *ca)
  1276. {
  1277. char buf[12];
  1278. const char *err = "cannot allocate memory";
  1279. struct cache_set *c;
  1280. list_for_each_entry(c, &bch_cache_sets, list)
  1281. if (!memcmp(c->sb.set_uuid, ca->sb.set_uuid, 16)) {
  1282. if (c->cache[ca->sb.nr_this_dev])
  1283. return "duplicate cache set member";
  1284. if (!can_attach_cache(ca, c))
  1285. return "cache sb does not match set";
  1286. if (!CACHE_SYNC(&ca->sb))
  1287. SET_CACHE_SYNC(&c->sb, false);
  1288. goto found;
  1289. }
  1290. c = bch_cache_set_alloc(&ca->sb);
  1291. if (!c)
  1292. return err;
  1293. err = "error creating kobject";
  1294. if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->sb.set_uuid) ||
  1295. kobject_add(&c->internal, &c->kobj, "internal"))
  1296. goto err;
  1297. if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj))
  1298. goto err;
  1299. bch_debug_init_cache_set(c);
  1300. list_add(&c->list, &bch_cache_sets);
  1301. found:
  1302. sprintf(buf, "cache%i", ca->sb.nr_this_dev);
  1303. if (sysfs_create_link(&ca->kobj, &c->kobj, "set") ||
  1304. sysfs_create_link(&c->kobj, &ca->kobj, buf))
  1305. goto err;
  1306. if (ca->sb.seq > c->sb.seq) {
  1307. c->sb.version = ca->sb.version;
  1308. memcpy(c->sb.set_uuid, ca->sb.set_uuid, 16);
  1309. c->sb.flags = ca->sb.flags;
  1310. c->sb.seq = ca->sb.seq;
  1311. pr_debug("set version = %llu", c->sb.version);
  1312. }
  1313. ca->set = c;
  1314. ca->set->cache[ca->sb.nr_this_dev] = ca;
  1315. c->cache_by_alloc[c->caches_loaded++] = ca;
  1316. if (c->caches_loaded == c->sb.nr_in_set)
  1317. run_cache_set(c);
  1318. return NULL;
  1319. err:
  1320. bch_cache_set_unregister(c);
  1321. return err;
  1322. }
  1323. /* Cache device */
  1324. void bch_cache_release(struct kobject *kobj)
  1325. {
  1326. struct cache *ca = container_of(kobj, struct cache, kobj);
  1327. if (ca->set)
  1328. ca->set->cache[ca->sb.nr_this_dev] = NULL;
  1329. bch_cache_allocator_exit(ca);
  1330. bio_split_pool_free(&ca->bio_split_hook);
  1331. free_pages((unsigned long) ca->disk_buckets, ilog2(bucket_pages(ca)));
  1332. kfree(ca->prio_buckets);
  1333. vfree(ca->buckets);
  1334. free_heap(&ca->heap);
  1335. free_fifo(&ca->unused);
  1336. free_fifo(&ca->free_inc);
  1337. free_fifo(&ca->free);
  1338. if (ca->sb_bio.bi_inline_vecs[0].bv_page)
  1339. put_page(ca->sb_bio.bi_io_vec[0].bv_page);
  1340. if (!IS_ERR_OR_NULL(ca->bdev)) {
  1341. blk_sync_queue(bdev_get_queue(ca->bdev));
  1342. blkdev_put(ca->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
  1343. }
  1344. kfree(ca);
  1345. module_put(THIS_MODULE);
  1346. }
  1347. static int cache_alloc(struct cache_sb *sb, struct cache *ca)
  1348. {
  1349. size_t free;
  1350. struct bucket *b;
  1351. __module_get(THIS_MODULE);
  1352. kobject_init(&ca->kobj, &bch_cache_ktype);
  1353. INIT_LIST_HEAD(&ca->discards);
  1354. bio_init(&ca->journal.bio);
  1355. ca->journal.bio.bi_max_vecs = 8;
  1356. ca->journal.bio.bi_io_vec = ca->journal.bio.bi_inline_vecs;
  1357. free = roundup_pow_of_two(ca->sb.nbuckets) >> 9;
  1358. free = max_t(size_t, free, (prio_buckets(ca) + 8) * 2);
  1359. if (!init_fifo(&ca->free, free, GFP_KERNEL) ||
  1360. !init_fifo(&ca->free_inc, free << 2, GFP_KERNEL) ||
  1361. !init_fifo(&ca->unused, free << 2, GFP_KERNEL) ||
  1362. !init_heap(&ca->heap, free << 3, GFP_KERNEL) ||
  1363. !(ca->buckets = vzalloc(sizeof(struct bucket) *
  1364. ca->sb.nbuckets)) ||
  1365. !(ca->prio_buckets = kzalloc(sizeof(uint64_t) * prio_buckets(ca) *
  1366. 2, GFP_KERNEL)) ||
  1367. !(ca->disk_buckets = alloc_bucket_pages(GFP_KERNEL, ca)) ||
  1368. bio_split_pool_init(&ca->bio_split_hook))
  1369. return -ENOMEM;
  1370. ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca);
  1371. for_each_bucket(b, ca)
  1372. atomic_set(&b->pin, 0);
  1373. if (bch_cache_allocator_init(ca))
  1374. goto err;
  1375. return 0;
  1376. err:
  1377. kobject_put(&ca->kobj);
  1378. return -ENOMEM;
  1379. }
  1380. static void register_cache(struct cache_sb *sb, struct page *sb_page,
  1381. struct block_device *bdev, struct cache *ca)
  1382. {
  1383. char name[BDEVNAME_SIZE];
  1384. const char *err = "cannot allocate memory";
  1385. memcpy(&ca->sb, sb, sizeof(struct cache_sb));
  1386. ca->bdev = bdev;
  1387. ca->bdev->bd_holder = ca;
  1388. bio_init(&ca->sb_bio);
  1389. ca->sb_bio.bi_max_vecs = 1;
  1390. ca->sb_bio.bi_io_vec = ca->sb_bio.bi_inline_vecs;
  1391. ca->sb_bio.bi_io_vec[0].bv_page = sb_page;
  1392. get_page(sb_page);
  1393. if (blk_queue_discard(bdev_get_queue(ca->bdev)))
  1394. ca->discard = CACHE_DISCARD(&ca->sb);
  1395. if (cache_alloc(sb, ca) != 0)
  1396. goto err;
  1397. err = "error creating kobject";
  1398. if (kobject_add(&ca->kobj, &part_to_dev(bdev->bd_part)->kobj, "bcache"))
  1399. goto err;
  1400. err = register_cache_set(ca);
  1401. if (err)
  1402. goto err;
  1403. pr_info("registered cache device %s", bdevname(bdev, name));
  1404. return;
  1405. err:
  1406. pr_notice("error opening %s: %s", bdevname(bdev, name), err);
  1407. kobject_put(&ca->kobj);
  1408. }
  1409. /* Global interfaces/init */
  1410. static ssize_t register_bcache(struct kobject *, struct kobj_attribute *,
  1411. const char *, size_t);
  1412. kobj_attribute_write(register, register_bcache);
  1413. kobj_attribute_write(register_quiet, register_bcache);
  1414. static bool bch_is_open_backing(struct block_device *bdev) {
  1415. struct cache_set *c, *tc;
  1416. struct cached_dev *dc, *t;
  1417. list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
  1418. list_for_each_entry_safe(dc, t, &c->cached_devs, list)
  1419. if (dc->bdev == bdev)
  1420. return true;
  1421. list_for_each_entry_safe(dc, t, &uncached_devices, list)
  1422. if (dc->bdev == bdev)
  1423. return true;
  1424. return false;
  1425. }
  1426. static bool bch_is_open_cache(struct block_device *bdev) {
  1427. struct cache_set *c, *tc;
  1428. struct cache *ca;
  1429. unsigned i;
  1430. list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
  1431. for_each_cache(ca, c, i)
  1432. if (ca->bdev == bdev)
  1433. return true;
  1434. return false;
  1435. }
  1436. static bool bch_is_open(struct block_device *bdev) {
  1437. return bch_is_open_cache(bdev) || bch_is_open_backing(bdev);
  1438. }
  1439. static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
  1440. const char *buffer, size_t size)
  1441. {
  1442. ssize_t ret = size;
  1443. const char *err = "cannot allocate memory";
  1444. char *path = NULL;
  1445. struct cache_sb *sb = NULL;
  1446. struct block_device *bdev = NULL;
  1447. struct page *sb_page = NULL;
  1448. if (!try_module_get(THIS_MODULE))
  1449. return -EBUSY;
  1450. mutex_lock(&bch_register_lock);
  1451. if (!(path = kstrndup(buffer, size, GFP_KERNEL)) ||
  1452. !(sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL)))
  1453. goto err;
  1454. err = "failed to open device";
  1455. bdev = blkdev_get_by_path(strim(path),
  1456. FMODE_READ|FMODE_WRITE|FMODE_EXCL,
  1457. sb);
  1458. if (IS_ERR(bdev)) {
  1459. if (bdev == ERR_PTR(-EBUSY)) {
  1460. bdev = lookup_bdev(strim(path));
  1461. if (!IS_ERR(bdev) && bch_is_open(bdev))
  1462. err = "device already registered";
  1463. else
  1464. err = "device busy";
  1465. }
  1466. goto err;
  1467. }
  1468. err = "failed to set blocksize";
  1469. if (set_blocksize(bdev, 4096))
  1470. goto err_close;
  1471. err = read_super(sb, bdev, &sb_page);
  1472. if (err)
  1473. goto err_close;
  1474. if (SB_IS_BDEV(sb)) {
  1475. struct cached_dev *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
  1476. if (!dc)
  1477. goto err_close;
  1478. register_bdev(sb, sb_page, bdev, dc);
  1479. } else {
  1480. struct cache *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  1481. if (!ca)
  1482. goto err_close;
  1483. register_cache(sb, sb_page, bdev, ca);
  1484. }
  1485. out:
  1486. if (sb_page)
  1487. put_page(sb_page);
  1488. kfree(sb);
  1489. kfree(path);
  1490. mutex_unlock(&bch_register_lock);
  1491. module_put(THIS_MODULE);
  1492. return ret;
  1493. err_close:
  1494. blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
  1495. err:
  1496. if (attr != &ksysfs_register_quiet)
  1497. pr_info("error opening %s: %s", path, err);
  1498. ret = -EINVAL;
  1499. goto out;
  1500. }
  1501. static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x)
  1502. {
  1503. if (code == SYS_DOWN ||
  1504. code == SYS_HALT ||
  1505. code == SYS_POWER_OFF) {
  1506. DEFINE_WAIT(wait);
  1507. unsigned long start = jiffies;
  1508. bool stopped = false;
  1509. struct cache_set *c, *tc;
  1510. struct cached_dev *dc, *tdc;
  1511. mutex_lock(&bch_register_lock);
  1512. if (list_empty(&bch_cache_sets) &&
  1513. list_empty(&uncached_devices))
  1514. goto out;
  1515. pr_info("Stopping all devices:");
  1516. list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
  1517. bch_cache_set_stop(c);
  1518. list_for_each_entry_safe(dc, tdc, &uncached_devices, list)
  1519. bcache_device_stop(&dc->disk);
  1520. /* What's a condition variable? */
  1521. while (1) {
  1522. long timeout = start + 2 * HZ - jiffies;
  1523. stopped = list_empty(&bch_cache_sets) &&
  1524. list_empty(&uncached_devices);
  1525. if (timeout < 0 || stopped)
  1526. break;
  1527. prepare_to_wait(&unregister_wait, &wait,
  1528. TASK_UNINTERRUPTIBLE);
  1529. mutex_unlock(&bch_register_lock);
  1530. schedule_timeout(timeout);
  1531. mutex_lock(&bch_register_lock);
  1532. }
  1533. finish_wait(&unregister_wait, &wait);
  1534. if (stopped)
  1535. pr_info("All devices stopped");
  1536. else
  1537. pr_notice("Timeout waiting for devices to be closed");
  1538. out:
  1539. mutex_unlock(&bch_register_lock);
  1540. }
  1541. return NOTIFY_DONE;
  1542. }
  1543. static struct notifier_block reboot = {
  1544. .notifier_call = bcache_reboot,
  1545. .priority = INT_MAX, /* before any real devices */
  1546. };
  1547. static void bcache_exit(void)
  1548. {
  1549. bch_debug_exit();
  1550. bch_writeback_exit();
  1551. bch_request_exit();
  1552. bch_btree_exit();
  1553. if (bcache_kobj)
  1554. kobject_put(bcache_kobj);
  1555. if (bcache_wq)
  1556. destroy_workqueue(bcache_wq);
  1557. unregister_blkdev(bcache_major, "bcache");
  1558. unregister_reboot_notifier(&reboot);
  1559. }
  1560. static int __init bcache_init(void)
  1561. {
  1562. static const struct attribute *files[] = {
  1563. &ksysfs_register.attr,
  1564. &ksysfs_register_quiet.attr,
  1565. NULL
  1566. };
  1567. mutex_init(&bch_register_lock);
  1568. init_waitqueue_head(&unregister_wait);
  1569. register_reboot_notifier(&reboot);
  1570. closure_debug_init();
  1571. bcache_major = register_blkdev(0, "bcache");
  1572. if (bcache_major < 0)
  1573. return bcache_major;
  1574. if (!(bcache_wq = create_workqueue("bcache")) ||
  1575. !(bcache_kobj = kobject_create_and_add("bcache", fs_kobj)) ||
  1576. sysfs_create_files(bcache_kobj, files) ||
  1577. bch_btree_init() ||
  1578. bch_request_init() ||
  1579. bch_writeback_init() ||
  1580. bch_debug_init(bcache_kobj))
  1581. goto err;
  1582. return 0;
  1583. err:
  1584. bcache_exit();
  1585. return -ENOMEM;
  1586. }
  1587. module_exit(bcache_exit);
  1588. module_init(bcache_init);