ib_rdma.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790
  1. /*
  2. * Copyright (c) 2006 Oracle. All rights reserved.
  3. *
  4. * This software is available to you under a choice of one of two
  5. * licenses. You may choose to be licensed under the terms of the GNU
  6. * General Public License (GPL) Version 2, available from the file
  7. * COPYING in the main directory of this source tree, or the
  8. * OpenIB.org BSD license below:
  9. *
  10. * Redistribution and use in source and binary forms, with or
  11. * without modification, are permitted provided that the following
  12. * conditions are met:
  13. *
  14. * - Redistributions of source code must retain the above
  15. * copyright notice, this list of conditions and the following
  16. * disclaimer.
  17. *
  18. * - Redistributions in binary form must reproduce the above
  19. * copyright notice, this list of conditions and the following
  20. * disclaimer in the documentation and/or other materials
  21. * provided with the distribution.
  22. *
  23. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  24. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  25. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  26. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  27. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  28. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  29. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  30. * SOFTWARE.
  31. *
  32. */
  33. #include <linux/kernel.h>
  34. #include <linux/slab.h>
  35. #include <linux/rculist.h>
  36. #include "rds.h"
  37. #include "ib.h"
  38. #include "xlist.h"
  39. static DEFINE_PER_CPU(unsigned long, clean_list_grace);
  40. #define CLEAN_LIST_BUSY_BIT 0
  41. /*
  42. * This is stored as mr->r_trans_private.
  43. */
  44. struct rds_ib_mr {
  45. struct rds_ib_device *device;
  46. struct rds_ib_mr_pool *pool;
  47. struct ib_fmr *fmr;
  48. struct xlist_head xlist;
  49. /* unmap_list is for freeing */
  50. struct list_head unmap_list;
  51. unsigned int remap_count;
  52. struct scatterlist *sg;
  53. unsigned int sg_len;
  54. u64 *dma;
  55. int sg_dma_len;
  56. };
  57. /*
  58. * Our own little FMR pool
  59. */
  60. struct rds_ib_mr_pool {
  61. struct mutex flush_lock; /* serialize fmr invalidate */
  62. struct delayed_work flush_worker; /* flush worker */
  63. atomic_t item_count; /* total # of MRs */
  64. atomic_t dirty_count; /* # dirty of MRs */
  65. struct xlist_head drop_list; /* MRs that have reached their max_maps limit */
  66. struct xlist_head free_list; /* unused MRs */
  67. struct xlist_head clean_list; /* global unused & unamapped MRs */
  68. wait_queue_head_t flush_wait;
  69. atomic_t free_pinned; /* memory pinned by free MRs */
  70. unsigned long max_items;
  71. unsigned long max_items_soft;
  72. unsigned long max_free_pinned;
  73. struct ib_fmr_attr fmr_attr;
  74. };
  75. static int rds_ib_flush_mr_pool(struct rds_ib_mr_pool *pool, int free_all, struct rds_ib_mr **);
  76. static void rds_ib_teardown_mr(struct rds_ib_mr *ibmr);
  77. static void rds_ib_mr_pool_flush_worker(struct work_struct *work);
  78. static struct rds_ib_device *rds_ib_get_device(__be32 ipaddr)
  79. {
  80. struct rds_ib_device *rds_ibdev;
  81. struct rds_ib_ipaddr *i_ipaddr;
  82. list_for_each_entry(rds_ibdev, &rds_ib_devices, list) {
  83. rcu_read_lock();
  84. list_for_each_entry_rcu(i_ipaddr, &rds_ibdev->ipaddr_list, list) {
  85. if (i_ipaddr->ipaddr == ipaddr) {
  86. atomic_inc(&rds_ibdev->refcount);
  87. rcu_read_unlock();
  88. return rds_ibdev;
  89. }
  90. }
  91. rcu_read_unlock();
  92. }
  93. return NULL;
  94. }
  95. static int rds_ib_add_ipaddr(struct rds_ib_device *rds_ibdev, __be32 ipaddr)
  96. {
  97. struct rds_ib_ipaddr *i_ipaddr;
  98. i_ipaddr = kmalloc(sizeof *i_ipaddr, GFP_KERNEL);
  99. if (!i_ipaddr)
  100. return -ENOMEM;
  101. i_ipaddr->ipaddr = ipaddr;
  102. spin_lock_irq(&rds_ibdev->spinlock);
  103. list_add_tail_rcu(&i_ipaddr->list, &rds_ibdev->ipaddr_list);
  104. spin_unlock_irq(&rds_ibdev->spinlock);
  105. return 0;
  106. }
  107. static void rds_ib_remove_ipaddr(struct rds_ib_device *rds_ibdev, __be32 ipaddr)
  108. {
  109. struct rds_ib_ipaddr *i_ipaddr;
  110. struct rds_ib_ipaddr *to_free = NULL;
  111. spin_lock_irq(&rds_ibdev->spinlock);
  112. list_for_each_entry_rcu(i_ipaddr, &rds_ibdev->ipaddr_list, list) {
  113. if (i_ipaddr->ipaddr == ipaddr) {
  114. list_del_rcu(&i_ipaddr->list);
  115. to_free = i_ipaddr;
  116. break;
  117. }
  118. }
  119. spin_unlock_irq(&rds_ibdev->spinlock);
  120. if (to_free) {
  121. synchronize_rcu();
  122. kfree(to_free);
  123. }
  124. }
  125. int rds_ib_update_ipaddr(struct rds_ib_device *rds_ibdev, __be32 ipaddr)
  126. {
  127. struct rds_ib_device *rds_ibdev_old;
  128. rds_ibdev_old = rds_ib_get_device(ipaddr);
  129. if (rds_ibdev_old) {
  130. rds_ib_remove_ipaddr(rds_ibdev_old, ipaddr);
  131. rds_ib_dev_put(rds_ibdev_old);
  132. }
  133. return rds_ib_add_ipaddr(rds_ibdev, ipaddr);
  134. }
  135. void rds_ib_add_conn(struct rds_ib_device *rds_ibdev, struct rds_connection *conn)
  136. {
  137. struct rds_ib_connection *ic = conn->c_transport_data;
  138. /* conn was previously on the nodev_conns_list */
  139. spin_lock_irq(&ib_nodev_conns_lock);
  140. BUG_ON(list_empty(&ib_nodev_conns));
  141. BUG_ON(list_empty(&ic->ib_node));
  142. list_del(&ic->ib_node);
  143. spin_lock_irq(&rds_ibdev->spinlock);
  144. list_add_tail(&ic->ib_node, &rds_ibdev->conn_list);
  145. spin_unlock_irq(&rds_ibdev->spinlock);
  146. spin_unlock_irq(&ib_nodev_conns_lock);
  147. ic->rds_ibdev = rds_ibdev;
  148. atomic_inc(&rds_ibdev->refcount);
  149. }
  150. void rds_ib_remove_conn(struct rds_ib_device *rds_ibdev, struct rds_connection *conn)
  151. {
  152. struct rds_ib_connection *ic = conn->c_transport_data;
  153. /* place conn on nodev_conns_list */
  154. spin_lock(&ib_nodev_conns_lock);
  155. spin_lock_irq(&rds_ibdev->spinlock);
  156. BUG_ON(list_empty(&ic->ib_node));
  157. list_del(&ic->ib_node);
  158. spin_unlock_irq(&rds_ibdev->spinlock);
  159. list_add_tail(&ic->ib_node, &ib_nodev_conns);
  160. spin_unlock(&ib_nodev_conns_lock);
  161. ic->rds_ibdev = NULL;
  162. rds_ib_dev_put(rds_ibdev);
  163. }
  164. void __rds_ib_destroy_conns(struct list_head *list, spinlock_t *list_lock)
  165. {
  166. struct rds_ib_connection *ic, *_ic;
  167. LIST_HEAD(tmp_list);
  168. /* avoid calling conn_destroy with irqs off */
  169. spin_lock_irq(list_lock);
  170. list_splice(list, &tmp_list);
  171. INIT_LIST_HEAD(list);
  172. spin_unlock_irq(list_lock);
  173. list_for_each_entry_safe(ic, _ic, &tmp_list, ib_node)
  174. rds_conn_destroy(ic->conn);
  175. }
  176. struct rds_ib_mr_pool *rds_ib_create_mr_pool(struct rds_ib_device *rds_ibdev)
  177. {
  178. struct rds_ib_mr_pool *pool;
  179. pool = kzalloc(sizeof(*pool), GFP_KERNEL);
  180. if (!pool)
  181. return ERR_PTR(-ENOMEM);
  182. INIT_XLIST_HEAD(&pool->free_list);
  183. INIT_XLIST_HEAD(&pool->drop_list);
  184. INIT_XLIST_HEAD(&pool->clean_list);
  185. mutex_init(&pool->flush_lock);
  186. init_waitqueue_head(&pool->flush_wait);
  187. INIT_DELAYED_WORK(&pool->flush_worker, rds_ib_mr_pool_flush_worker);
  188. pool->fmr_attr.max_pages = fmr_message_size;
  189. pool->fmr_attr.max_maps = rds_ibdev->fmr_max_remaps;
  190. pool->fmr_attr.page_shift = PAGE_SHIFT;
  191. pool->max_free_pinned = rds_ibdev->max_fmrs * fmr_message_size / 4;
  192. /* We never allow more than max_items MRs to be allocated.
  193. * When we exceed more than max_items_soft, we start freeing
  194. * items more aggressively.
  195. * Make sure that max_items > max_items_soft > max_items / 2
  196. */
  197. pool->max_items_soft = rds_ibdev->max_fmrs * 3 / 4;
  198. pool->max_items = rds_ibdev->max_fmrs;
  199. return pool;
  200. }
  201. void rds_ib_get_mr_info(struct rds_ib_device *rds_ibdev, struct rds_info_rdma_connection *iinfo)
  202. {
  203. struct rds_ib_mr_pool *pool = rds_ibdev->mr_pool;
  204. iinfo->rdma_mr_max = pool->max_items;
  205. iinfo->rdma_mr_size = pool->fmr_attr.max_pages;
  206. }
  207. void rds_ib_destroy_mr_pool(struct rds_ib_mr_pool *pool)
  208. {
  209. cancel_delayed_work_sync(&pool->flush_worker);
  210. rds_ib_flush_mr_pool(pool, 1, NULL);
  211. WARN_ON(atomic_read(&pool->item_count));
  212. WARN_ON(atomic_read(&pool->free_pinned));
  213. kfree(pool);
  214. }
  215. static void refill_local(struct rds_ib_mr_pool *pool, struct xlist_head *xl,
  216. struct rds_ib_mr **ibmr_ret)
  217. {
  218. struct xlist_head *ibmr_xl;
  219. ibmr_xl = xlist_del_head_fast(xl);
  220. *ibmr_ret = list_entry(ibmr_xl, struct rds_ib_mr, xlist);
  221. }
  222. static inline struct rds_ib_mr *rds_ib_reuse_fmr(struct rds_ib_mr_pool *pool)
  223. {
  224. struct rds_ib_mr *ibmr = NULL;
  225. struct xlist_head *ret;
  226. unsigned long *flag;
  227. preempt_disable();
  228. flag = &__get_cpu_var(clean_list_grace);
  229. set_bit(CLEAN_LIST_BUSY_BIT, flag);
  230. ret = xlist_del_head(&pool->clean_list);
  231. if (ret)
  232. ibmr = list_entry(ret, struct rds_ib_mr, xlist);
  233. clear_bit(CLEAN_LIST_BUSY_BIT, flag);
  234. preempt_enable();
  235. return ibmr;
  236. }
  237. static inline void wait_clean_list_grace(void)
  238. {
  239. int cpu;
  240. unsigned long *flag;
  241. for_each_online_cpu(cpu) {
  242. flag = &per_cpu(clean_list_grace, cpu);
  243. while (test_bit(CLEAN_LIST_BUSY_BIT, flag))
  244. cpu_relax();
  245. }
  246. }
  247. static struct rds_ib_mr *rds_ib_alloc_fmr(struct rds_ib_device *rds_ibdev)
  248. {
  249. struct rds_ib_mr_pool *pool = rds_ibdev->mr_pool;
  250. struct rds_ib_mr *ibmr = NULL;
  251. int err = 0, iter = 0;
  252. while (1) {
  253. ibmr = rds_ib_reuse_fmr(pool);
  254. if (ibmr)
  255. return ibmr;
  256. /* No clean MRs - now we have the choice of either
  257. * allocating a fresh MR up to the limit imposed by the
  258. * driver, or flush any dirty unused MRs.
  259. * We try to avoid stalling in the send path if possible,
  260. * so we allocate as long as we're allowed to.
  261. *
  262. * We're fussy with enforcing the FMR limit, though. If the driver
  263. * tells us we can't use more than N fmrs, we shouldn't start
  264. * arguing with it */
  265. if (atomic_inc_return(&pool->item_count) <= pool->max_items)
  266. break;
  267. atomic_dec(&pool->item_count);
  268. if (++iter > 2) {
  269. rds_ib_stats_inc(s_ib_rdma_mr_pool_depleted);
  270. return ERR_PTR(-EAGAIN);
  271. }
  272. /* We do have some empty MRs. Flush them out. */
  273. rds_ib_stats_inc(s_ib_rdma_mr_pool_wait);
  274. rds_ib_flush_mr_pool(pool, 0, &ibmr);
  275. if (ibmr)
  276. return ibmr;
  277. }
  278. ibmr = kzalloc_node(sizeof(*ibmr), GFP_KERNEL, rdsibdev_to_node(rds_ibdev));
  279. if (!ibmr) {
  280. err = -ENOMEM;
  281. goto out_no_cigar;
  282. }
  283. memset(ibmr, 0, sizeof(*ibmr));
  284. ibmr->fmr = ib_alloc_fmr(rds_ibdev->pd,
  285. (IB_ACCESS_LOCAL_WRITE |
  286. IB_ACCESS_REMOTE_READ |
  287. IB_ACCESS_REMOTE_WRITE|
  288. IB_ACCESS_REMOTE_ATOMIC),
  289. &pool->fmr_attr);
  290. if (IS_ERR(ibmr->fmr)) {
  291. err = PTR_ERR(ibmr->fmr);
  292. ibmr->fmr = NULL;
  293. printk(KERN_WARNING "RDS/IB: ib_alloc_fmr failed (err=%d)\n", err);
  294. goto out_no_cigar;
  295. }
  296. rds_ib_stats_inc(s_ib_rdma_mr_alloc);
  297. return ibmr;
  298. out_no_cigar:
  299. if (ibmr) {
  300. if (ibmr->fmr)
  301. ib_dealloc_fmr(ibmr->fmr);
  302. kfree(ibmr);
  303. }
  304. atomic_dec(&pool->item_count);
  305. return ERR_PTR(err);
  306. }
  307. static int rds_ib_map_fmr(struct rds_ib_device *rds_ibdev, struct rds_ib_mr *ibmr,
  308. struct scatterlist *sg, unsigned int nents)
  309. {
  310. struct ib_device *dev = rds_ibdev->dev;
  311. struct scatterlist *scat = sg;
  312. u64 io_addr = 0;
  313. u64 *dma_pages;
  314. u32 len;
  315. int page_cnt, sg_dma_len;
  316. int i, j;
  317. int ret;
  318. sg_dma_len = ib_dma_map_sg(dev, sg, nents,
  319. DMA_BIDIRECTIONAL);
  320. if (unlikely(!sg_dma_len)) {
  321. printk(KERN_WARNING "RDS/IB: dma_map_sg failed!\n");
  322. return -EBUSY;
  323. }
  324. len = 0;
  325. page_cnt = 0;
  326. for (i = 0; i < sg_dma_len; ++i) {
  327. unsigned int dma_len = ib_sg_dma_len(dev, &scat[i]);
  328. u64 dma_addr = ib_sg_dma_address(dev, &scat[i]);
  329. if (dma_addr & ~PAGE_MASK) {
  330. if (i > 0)
  331. return -EINVAL;
  332. else
  333. ++page_cnt;
  334. }
  335. if ((dma_addr + dma_len) & ~PAGE_MASK) {
  336. if (i < sg_dma_len - 1)
  337. return -EINVAL;
  338. else
  339. ++page_cnt;
  340. }
  341. len += dma_len;
  342. }
  343. page_cnt += len >> PAGE_SHIFT;
  344. if (page_cnt > fmr_message_size)
  345. return -EINVAL;
  346. dma_pages = kmalloc_node(sizeof(u64) * page_cnt, GFP_ATOMIC,
  347. rdsibdev_to_node(rds_ibdev));
  348. if (!dma_pages)
  349. return -ENOMEM;
  350. page_cnt = 0;
  351. for (i = 0; i < sg_dma_len; ++i) {
  352. unsigned int dma_len = ib_sg_dma_len(dev, &scat[i]);
  353. u64 dma_addr = ib_sg_dma_address(dev, &scat[i]);
  354. for (j = 0; j < dma_len; j += PAGE_SIZE)
  355. dma_pages[page_cnt++] =
  356. (dma_addr & PAGE_MASK) + j;
  357. }
  358. ret = ib_map_phys_fmr(ibmr->fmr,
  359. dma_pages, page_cnt, io_addr);
  360. if (ret)
  361. goto out;
  362. /* Success - we successfully remapped the MR, so we can
  363. * safely tear down the old mapping. */
  364. rds_ib_teardown_mr(ibmr);
  365. ibmr->sg = scat;
  366. ibmr->sg_len = nents;
  367. ibmr->sg_dma_len = sg_dma_len;
  368. ibmr->remap_count++;
  369. rds_ib_stats_inc(s_ib_rdma_mr_used);
  370. ret = 0;
  371. out:
  372. kfree(dma_pages);
  373. return ret;
  374. }
  375. void rds_ib_sync_mr(void *trans_private, int direction)
  376. {
  377. struct rds_ib_mr *ibmr = trans_private;
  378. struct rds_ib_device *rds_ibdev = ibmr->device;
  379. switch (direction) {
  380. case DMA_FROM_DEVICE:
  381. ib_dma_sync_sg_for_cpu(rds_ibdev->dev, ibmr->sg,
  382. ibmr->sg_dma_len, DMA_BIDIRECTIONAL);
  383. break;
  384. case DMA_TO_DEVICE:
  385. ib_dma_sync_sg_for_device(rds_ibdev->dev, ibmr->sg,
  386. ibmr->sg_dma_len, DMA_BIDIRECTIONAL);
  387. break;
  388. }
  389. }
  390. static void __rds_ib_teardown_mr(struct rds_ib_mr *ibmr)
  391. {
  392. struct rds_ib_device *rds_ibdev = ibmr->device;
  393. if (ibmr->sg_dma_len) {
  394. ib_dma_unmap_sg(rds_ibdev->dev,
  395. ibmr->sg, ibmr->sg_len,
  396. DMA_BIDIRECTIONAL);
  397. ibmr->sg_dma_len = 0;
  398. }
  399. /* Release the s/g list */
  400. if (ibmr->sg_len) {
  401. unsigned int i;
  402. for (i = 0; i < ibmr->sg_len; ++i) {
  403. struct page *page = sg_page(&ibmr->sg[i]);
  404. /* FIXME we need a way to tell a r/w MR
  405. * from a r/o MR */
  406. BUG_ON(irqs_disabled());
  407. set_page_dirty(page);
  408. put_page(page);
  409. }
  410. kfree(ibmr->sg);
  411. ibmr->sg = NULL;
  412. ibmr->sg_len = 0;
  413. }
  414. }
  415. static void rds_ib_teardown_mr(struct rds_ib_mr *ibmr)
  416. {
  417. unsigned int pinned = ibmr->sg_len;
  418. __rds_ib_teardown_mr(ibmr);
  419. if (pinned) {
  420. struct rds_ib_device *rds_ibdev = ibmr->device;
  421. struct rds_ib_mr_pool *pool = rds_ibdev->mr_pool;
  422. atomic_sub(pinned, &pool->free_pinned);
  423. }
  424. }
  425. static inline unsigned int rds_ib_flush_goal(struct rds_ib_mr_pool *pool, int free_all)
  426. {
  427. unsigned int item_count;
  428. item_count = atomic_read(&pool->item_count);
  429. if (free_all)
  430. return item_count;
  431. return 0;
  432. }
  433. /*
  434. * given an xlist of mrs, put them all into the list_head for more processing
  435. */
  436. static void xlist_append_to_list(struct xlist_head *xlist, struct list_head *list)
  437. {
  438. struct rds_ib_mr *ibmr;
  439. struct xlist_head splice;
  440. struct xlist_head *cur;
  441. struct xlist_head *next;
  442. splice.next = NULL;
  443. xlist_splice(xlist, &splice);
  444. cur = splice.next;
  445. while (cur) {
  446. next = cur->next;
  447. ibmr = list_entry(cur, struct rds_ib_mr, xlist);
  448. list_add_tail(&ibmr->unmap_list, list);
  449. cur = next;
  450. }
  451. }
  452. /*
  453. * this takes a list head of mrs and turns it into an xlist of clusters.
  454. * each cluster has an xlist of MR_CLUSTER_SIZE mrs that are ready for
  455. * reuse.
  456. */
  457. static void list_append_to_xlist(struct rds_ib_mr_pool *pool,
  458. struct list_head *list, struct xlist_head *xlist,
  459. struct xlist_head **tail_ret)
  460. {
  461. struct rds_ib_mr *ibmr;
  462. struct xlist_head *cur_mr = xlist;
  463. struct xlist_head *tail_mr = NULL;
  464. list_for_each_entry(ibmr, list, unmap_list) {
  465. tail_mr = &ibmr->xlist;
  466. tail_mr->next = NULL;
  467. cur_mr->next = tail_mr;
  468. cur_mr = tail_mr;
  469. }
  470. *tail_ret = tail_mr;
  471. }
  472. /*
  473. * Flush our pool of MRs.
  474. * At a minimum, all currently unused MRs are unmapped.
  475. * If the number of MRs allocated exceeds the limit, we also try
  476. * to free as many MRs as needed to get back to this limit.
  477. */
  478. static int rds_ib_flush_mr_pool(struct rds_ib_mr_pool *pool,
  479. int free_all, struct rds_ib_mr **ibmr_ret)
  480. {
  481. struct rds_ib_mr *ibmr, *next;
  482. struct xlist_head clean_xlist;
  483. struct xlist_head *clean_tail;
  484. LIST_HEAD(unmap_list);
  485. LIST_HEAD(fmr_list);
  486. unsigned long unpinned = 0;
  487. unsigned int nfreed = 0, ncleaned = 0, free_goal;
  488. int ret = 0;
  489. rds_ib_stats_inc(s_ib_rdma_mr_pool_flush);
  490. if (ibmr_ret) {
  491. DEFINE_WAIT(wait);
  492. while(!mutex_trylock(&pool->flush_lock)) {
  493. ibmr = rds_ib_reuse_fmr(pool);
  494. if (ibmr) {
  495. *ibmr_ret = ibmr;
  496. finish_wait(&pool->flush_wait, &wait);
  497. goto out_nolock;
  498. }
  499. prepare_to_wait(&pool->flush_wait, &wait,
  500. TASK_UNINTERRUPTIBLE);
  501. if (xlist_empty(&pool->clean_list))
  502. schedule();
  503. ibmr = rds_ib_reuse_fmr(pool);
  504. if (ibmr) {
  505. *ibmr_ret = ibmr;
  506. finish_wait(&pool->flush_wait, &wait);
  507. goto out_nolock;
  508. }
  509. }
  510. finish_wait(&pool->flush_wait, &wait);
  511. } else
  512. mutex_lock(&pool->flush_lock);
  513. if (ibmr_ret) {
  514. ibmr = rds_ib_reuse_fmr(pool);
  515. if (ibmr) {
  516. *ibmr_ret = ibmr;
  517. goto out;
  518. }
  519. }
  520. /* Get the list of all MRs to be dropped. Ordering matters -
  521. * we want to put drop_list ahead of free_list.
  522. */
  523. xlist_append_to_list(&pool->drop_list, &unmap_list);
  524. xlist_append_to_list(&pool->free_list, &unmap_list);
  525. if (free_all)
  526. xlist_append_to_list(&pool->clean_list, &unmap_list);
  527. free_goal = rds_ib_flush_goal(pool, free_all);
  528. if (list_empty(&unmap_list))
  529. goto out;
  530. /* String all ib_mr's onto one list and hand them to ib_unmap_fmr */
  531. list_for_each_entry(ibmr, &unmap_list, unmap_list)
  532. list_add(&ibmr->fmr->list, &fmr_list);
  533. ret = ib_unmap_fmr(&fmr_list);
  534. if (ret)
  535. printk(KERN_WARNING "RDS/IB: ib_unmap_fmr failed (err=%d)\n", ret);
  536. /* Now we can destroy the DMA mapping and unpin any pages */
  537. list_for_each_entry_safe(ibmr, next, &unmap_list, unmap_list) {
  538. unpinned += ibmr->sg_len;
  539. __rds_ib_teardown_mr(ibmr);
  540. if (nfreed < free_goal || ibmr->remap_count >= pool->fmr_attr.max_maps) {
  541. rds_ib_stats_inc(s_ib_rdma_mr_free);
  542. list_del(&ibmr->unmap_list);
  543. ib_dealloc_fmr(ibmr->fmr);
  544. kfree(ibmr);
  545. nfreed++;
  546. }
  547. ncleaned++;
  548. }
  549. if (!list_empty(&unmap_list)) {
  550. /* we have to make sure that none of the things we're about
  551. * to put on the clean list would race with other cpus trying
  552. * to pull items off. The xlist would explode if we managed to
  553. * remove something from the clean list and then add it back again
  554. * while another CPU was spinning on that same item in xlist_del_head.
  555. *
  556. * This is pretty unlikely, but just in case wait for an xlist grace period
  557. * here before adding anything back into the clean list.
  558. */
  559. wait_clean_list_grace();
  560. list_append_to_xlist(pool, &unmap_list, &clean_xlist, &clean_tail);
  561. if (ibmr_ret)
  562. refill_local(pool, &clean_xlist, ibmr_ret);
  563. /* refill_local may have emptied our list */
  564. if (!xlist_empty(&clean_xlist))
  565. xlist_add(clean_xlist.next, clean_tail, &pool->clean_list);
  566. }
  567. atomic_sub(unpinned, &pool->free_pinned);
  568. atomic_sub(ncleaned, &pool->dirty_count);
  569. atomic_sub(nfreed, &pool->item_count);
  570. out:
  571. mutex_unlock(&pool->flush_lock);
  572. if (waitqueue_active(&pool->flush_wait))
  573. wake_up(&pool->flush_wait);
  574. out_nolock:
  575. return ret;
  576. }
  577. static void rds_ib_mr_pool_flush_worker(struct work_struct *work)
  578. {
  579. struct rds_ib_mr_pool *pool = container_of(work, struct rds_ib_mr_pool, flush_worker.work);
  580. rds_ib_flush_mr_pool(pool, 0, NULL);
  581. }
  582. void rds_ib_free_mr(void *trans_private, int invalidate)
  583. {
  584. struct rds_ib_mr *ibmr = trans_private;
  585. struct rds_ib_device *rds_ibdev = ibmr->device;
  586. struct rds_ib_mr_pool *pool = rds_ibdev->mr_pool;
  587. rdsdebug("RDS/IB: free_mr nents %u\n", ibmr->sg_len);
  588. /* Return it to the pool's free list */
  589. if (ibmr->remap_count >= pool->fmr_attr.max_maps)
  590. xlist_add(&ibmr->xlist, &ibmr->xlist, &pool->drop_list);
  591. else
  592. xlist_add(&ibmr->xlist, &ibmr->xlist, &pool->free_list);
  593. atomic_add(ibmr->sg_len, &pool->free_pinned);
  594. atomic_inc(&pool->dirty_count);
  595. /* If we've pinned too many pages, request a flush */
  596. if (atomic_read(&pool->free_pinned) >= pool->max_free_pinned ||
  597. atomic_read(&pool->dirty_count) >= pool->max_items / 10)
  598. queue_delayed_work(rds_wq, &pool->flush_worker, 10);
  599. if (invalidate) {
  600. if (likely(!in_interrupt())) {
  601. rds_ib_flush_mr_pool(pool, 0, NULL);
  602. } else {
  603. /* We get here if the user created a MR marked
  604. * as use_once and invalidate at the same time. */
  605. queue_delayed_work(rds_wq, &pool->flush_worker, 10);
  606. }
  607. }
  608. rds_ib_dev_put(rds_ibdev);
  609. }
  610. void rds_ib_flush_mrs(void)
  611. {
  612. struct rds_ib_device *rds_ibdev;
  613. list_for_each_entry(rds_ibdev, &rds_ib_devices, list) {
  614. struct rds_ib_mr_pool *pool = rds_ibdev->mr_pool;
  615. if (pool)
  616. rds_ib_flush_mr_pool(pool, 0, NULL);
  617. }
  618. }
  619. void *rds_ib_get_mr(struct scatterlist *sg, unsigned long nents,
  620. struct rds_sock *rs, u32 *key_ret)
  621. {
  622. struct rds_ib_device *rds_ibdev;
  623. struct rds_ib_mr *ibmr = NULL;
  624. int ret;
  625. rds_ibdev = rds_ib_get_device(rs->rs_bound_addr);
  626. if (!rds_ibdev) {
  627. ret = -ENODEV;
  628. goto out;
  629. }
  630. if (!rds_ibdev->mr_pool) {
  631. ret = -ENODEV;
  632. goto out;
  633. }
  634. ibmr = rds_ib_alloc_fmr(rds_ibdev);
  635. if (IS_ERR(ibmr))
  636. return ibmr;
  637. ret = rds_ib_map_fmr(rds_ibdev, ibmr, sg, nents);
  638. if (ret == 0)
  639. *key_ret = ibmr->fmr->rkey;
  640. else
  641. printk(KERN_WARNING "RDS/IB: map_fmr failed (errno=%d)\n", ret);
  642. ibmr->device = rds_ibdev;
  643. rds_ibdev = NULL;
  644. out:
  645. if (ret) {
  646. if (ibmr)
  647. rds_ib_free_mr(ibmr, 0);
  648. ibmr = ERR_PTR(ret);
  649. }
  650. if (rds_ibdev)
  651. rds_ib_dev_put(rds_ibdev);
  652. return ibmr;
  653. }