mm.h 40 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166
  1. #ifndef _LINUX_MM_H
  2. #define _LINUX_MM_H
  3. #include <linux/errno.h>
  4. #ifdef __KERNEL__
  5. #include <linux/gfp.h>
  6. #include <linux/list.h>
  7. #include <linux/mmzone.h>
  8. #include <linux/rbtree.h>
  9. #include <linux/prio_tree.h>
  10. #include <linux/mutex.h>
  11. #include <linux/debug_locks.h>
  12. #include <linux/backing-dev.h>
  13. #include <linux/mm_types.h>
  14. struct mempolicy;
  15. struct anon_vma;
  16. struct file_ra_state;
  17. struct user_struct;
  18. struct writeback_control;
  19. #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
  20. extern unsigned long max_mapnr;
  21. #endif
  22. extern unsigned long num_physpages;
  23. extern void * high_memory;
  24. extern int page_cluster;
  25. #ifdef CONFIG_SYSCTL
  26. extern int sysctl_legacy_va_layout;
  27. #else
  28. #define sysctl_legacy_va_layout 0
  29. #endif
  30. #include <asm/page.h>
  31. #include <asm/pgtable.h>
  32. #include <asm/processor.h>
  33. #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
  34. /*
  35. * Linux kernel virtual memory manager primitives.
  36. * The idea being to have a "virtual" mm in the same way
  37. * we have a virtual fs - giving a cleaner interface to the
  38. * mm details, and allowing different kinds of memory mappings
  39. * (from shared memory to executable loading to arbitrary
  40. * mmap() functions).
  41. */
  42. extern struct kmem_cache *vm_area_cachep;
  43. /*
  44. * This struct defines the per-mm list of VMAs for uClinux. If CONFIG_MMU is
  45. * disabled, then there's a single shared list of VMAs maintained by the
  46. * system, and mm's subscribe to these individually
  47. */
  48. struct vm_list_struct {
  49. struct vm_list_struct *next;
  50. struct vm_area_struct *vma;
  51. };
  52. #ifndef CONFIG_MMU
  53. extern struct rb_root nommu_vma_tree;
  54. extern struct rw_semaphore nommu_vma_sem;
  55. extern unsigned int kobjsize(const void *objp);
  56. #endif
  57. /*
  58. * vm_flags..
  59. */
  60. #define VM_READ 0x00000001 /* currently active flags */
  61. #define VM_WRITE 0x00000002
  62. #define VM_EXEC 0x00000004
  63. #define VM_SHARED 0x00000008
  64. /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
  65. #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
  66. #define VM_MAYWRITE 0x00000020
  67. #define VM_MAYEXEC 0x00000040
  68. #define VM_MAYSHARE 0x00000080
  69. #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
  70. #define VM_GROWSUP 0x00000200
  71. #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
  72. #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
  73. #define VM_EXECUTABLE 0x00001000
  74. #define VM_LOCKED 0x00002000
  75. #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
  76. /* Used by sys_madvise() */
  77. #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
  78. #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
  79. #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
  80. #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
  81. #define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */
  82. #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
  83. #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
  84. #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
  85. #define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */
  86. #define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */
  87. #define VM_ALWAYSDUMP 0x04000000 /* Always include in core dumps */
  88. #define VM_CAN_NONLINEAR 0x08000000 /* Has ->fault & does nonlinear pages */
  89. #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
  90. #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
  91. #endif
  92. #ifdef CONFIG_STACK_GROWSUP
  93. #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
  94. #else
  95. #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
  96. #endif
  97. #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
  98. #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
  99. #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
  100. #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
  101. #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
  102. /*
  103. * mapping from the currently active vm_flags protection bits (the
  104. * low four bits) to a page protection mask..
  105. */
  106. extern pgprot_t protection_map[16];
  107. #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
  108. #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
  109. /*
  110. * vm_fault is filled by the the pagefault handler and passed to the vma's
  111. * ->fault function. The vma's ->fault is responsible for returning a bitmask
  112. * of VM_FAULT_xxx flags that give details about how the fault was handled.
  113. *
  114. * pgoff should be used in favour of virtual_address, if possible. If pgoff
  115. * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear
  116. * mapping support.
  117. */
  118. struct vm_fault {
  119. unsigned int flags; /* FAULT_FLAG_xxx flags */
  120. pgoff_t pgoff; /* Logical page offset based on vma */
  121. void __user *virtual_address; /* Faulting virtual address */
  122. struct page *page; /* ->fault handlers should return a
  123. * page here, unless VM_FAULT_NOPAGE
  124. * is set (which is also implied by
  125. * VM_FAULT_ERROR).
  126. */
  127. };
  128. /*
  129. * These are the virtual MM functions - opening of an area, closing and
  130. * unmapping it (needed to keep files on disk up-to-date etc), pointer
  131. * to the functions called when a no-page or a wp-page exception occurs.
  132. */
  133. struct vm_operations_struct {
  134. void (*open)(struct vm_area_struct * area);
  135. void (*close)(struct vm_area_struct * area);
  136. int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
  137. struct page *(*nopage)(struct vm_area_struct *area,
  138. unsigned long address, int *type);
  139. unsigned long (*nopfn)(struct vm_area_struct *area,
  140. unsigned long address);
  141. /* notification that a previously read-only page is about to become
  142. * writable, if an error is returned it will cause a SIGBUS */
  143. int (*page_mkwrite)(struct vm_area_struct *vma, struct page *page);
  144. #ifdef CONFIG_NUMA
  145. int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
  146. struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
  147. unsigned long addr);
  148. int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
  149. const nodemask_t *to, unsigned long flags);
  150. #endif
  151. };
  152. struct mmu_gather;
  153. struct inode;
  154. #define page_private(page) ((page)->private)
  155. #define set_page_private(page, v) ((page)->private = (v))
  156. /*
  157. * FIXME: take this include out, include page-flags.h in
  158. * files which need it (119 of them)
  159. */
  160. #include <linux/page-flags.h>
  161. #ifdef CONFIG_DEBUG_VM
  162. #define VM_BUG_ON(cond) BUG_ON(cond)
  163. #else
  164. #define VM_BUG_ON(condition) do { } while(0)
  165. #endif
  166. /*
  167. * Methods to modify the page usage count.
  168. *
  169. * What counts for a page usage:
  170. * - cache mapping (page->mapping)
  171. * - private data (page->private)
  172. * - page mapped in a task's page tables, each mapping
  173. * is counted separately
  174. *
  175. * Also, many kernel routines increase the page count before a critical
  176. * routine so they can be sure the page doesn't go away from under them.
  177. */
  178. /*
  179. * Drop a ref, return true if the refcount fell to zero (the page has no users)
  180. */
  181. static inline int put_page_testzero(struct page *page)
  182. {
  183. VM_BUG_ON(atomic_read(&page->_count) == 0);
  184. return atomic_dec_and_test(&page->_count);
  185. }
  186. /*
  187. * Try to grab a ref unless the page has a refcount of zero, return false if
  188. * that is the case.
  189. */
  190. static inline int get_page_unless_zero(struct page *page)
  191. {
  192. VM_BUG_ON(PageCompound(page));
  193. return atomic_inc_not_zero(&page->_count);
  194. }
  195. static inline struct page *compound_head(struct page *page)
  196. {
  197. if (unlikely(PageTail(page)))
  198. return page->first_page;
  199. return page;
  200. }
  201. static inline int page_count(struct page *page)
  202. {
  203. return atomic_read(&compound_head(page)->_count);
  204. }
  205. static inline void get_page(struct page *page)
  206. {
  207. page = compound_head(page);
  208. VM_BUG_ON(atomic_read(&page->_count) == 0);
  209. atomic_inc(&page->_count);
  210. }
  211. static inline struct page *virt_to_head_page(const void *x)
  212. {
  213. struct page *page = virt_to_page(x);
  214. return compound_head(page);
  215. }
  216. /*
  217. * Setup the page count before being freed into the page allocator for
  218. * the first time (boot or memory hotplug)
  219. */
  220. static inline void init_page_count(struct page *page)
  221. {
  222. atomic_set(&page->_count, 1);
  223. }
  224. void put_page(struct page *page);
  225. void put_pages_list(struct list_head *pages);
  226. void split_page(struct page *page, unsigned int order);
  227. /*
  228. * Compound pages have a destructor function. Provide a
  229. * prototype for that function and accessor functions.
  230. * These are _only_ valid on the head of a PG_compound page.
  231. */
  232. typedef void compound_page_dtor(struct page *);
  233. static inline void set_compound_page_dtor(struct page *page,
  234. compound_page_dtor *dtor)
  235. {
  236. page[1].lru.next = (void *)dtor;
  237. }
  238. static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
  239. {
  240. return (compound_page_dtor *)page[1].lru.next;
  241. }
  242. static inline int compound_order(struct page *page)
  243. {
  244. if (!PageHead(page))
  245. return 0;
  246. return (unsigned long)page[1].lru.prev;
  247. }
  248. static inline void set_compound_order(struct page *page, unsigned long order)
  249. {
  250. page[1].lru.prev = (void *)order;
  251. }
  252. /*
  253. * Multiple processes may "see" the same page. E.g. for untouched
  254. * mappings of /dev/null, all processes see the same page full of
  255. * zeroes, and text pages of executables and shared libraries have
  256. * only one copy in memory, at most, normally.
  257. *
  258. * For the non-reserved pages, page_count(page) denotes a reference count.
  259. * page_count() == 0 means the page is free. page->lru is then used for
  260. * freelist management in the buddy allocator.
  261. * page_count() > 0 means the page has been allocated.
  262. *
  263. * Pages are allocated by the slab allocator in order to provide memory
  264. * to kmalloc and kmem_cache_alloc. In this case, the management of the
  265. * page, and the fields in 'struct page' are the responsibility of mm/slab.c
  266. * unless a particular usage is carefully commented. (the responsibility of
  267. * freeing the kmalloc memory is the caller's, of course).
  268. *
  269. * A page may be used by anyone else who does a __get_free_page().
  270. * In this case, page_count still tracks the references, and should only
  271. * be used through the normal accessor functions. The top bits of page->flags
  272. * and page->virtual store page management information, but all other fields
  273. * are unused and could be used privately, carefully. The management of this
  274. * page is the responsibility of the one who allocated it, and those who have
  275. * subsequently been given references to it.
  276. *
  277. * The other pages (we may call them "pagecache pages") are completely
  278. * managed by the Linux memory manager: I/O, buffers, swapping etc.
  279. * The following discussion applies only to them.
  280. *
  281. * A pagecache page contains an opaque `private' member, which belongs to the
  282. * page's address_space. Usually, this is the address of a circular list of
  283. * the page's disk buffers. PG_private must be set to tell the VM to call
  284. * into the filesystem to release these pages.
  285. *
  286. * A page may belong to an inode's memory mapping. In this case, page->mapping
  287. * is the pointer to the inode, and page->index is the file offset of the page,
  288. * in units of PAGE_CACHE_SIZE.
  289. *
  290. * If pagecache pages are not associated with an inode, they are said to be
  291. * anonymous pages. These may become associated with the swapcache, and in that
  292. * case PG_swapcache is set, and page->private is an offset into the swapcache.
  293. *
  294. * In either case (swapcache or inode backed), the pagecache itself holds one
  295. * reference to the page. Setting PG_private should also increment the
  296. * refcount. The each user mapping also has a reference to the page.
  297. *
  298. * The pagecache pages are stored in a per-mapping radix tree, which is
  299. * rooted at mapping->page_tree, and indexed by offset.
  300. * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
  301. * lists, we instead now tag pages as dirty/writeback in the radix tree.
  302. *
  303. * All pagecache pages may be subject to I/O:
  304. * - inode pages may need to be read from disk,
  305. * - inode pages which have been modified and are MAP_SHARED may need
  306. * to be written back to the inode on disk,
  307. * - anonymous pages (including MAP_PRIVATE file mappings) which have been
  308. * modified may need to be swapped out to swap space and (later) to be read
  309. * back into memory.
  310. */
  311. /*
  312. * The zone field is never updated after free_area_init_core()
  313. * sets it, so none of the operations on it need to be atomic.
  314. */
  315. /*
  316. * page->flags layout:
  317. *
  318. * There are three possibilities for how page->flags get
  319. * laid out. The first is for the normal case, without
  320. * sparsemem. The second is for sparsemem when there is
  321. * plenty of space for node and section. The last is when
  322. * we have run out of space and have to fall back to an
  323. * alternate (slower) way of determining the node.
  324. *
  325. * No sparsemem: | NODE | ZONE | ... | FLAGS |
  326. * with space for node: | SECTION | NODE | ZONE | ... | FLAGS |
  327. * no space for node: | SECTION | ZONE | ... | FLAGS |
  328. */
  329. #ifdef CONFIG_SPARSEMEM
  330. #define SECTIONS_WIDTH SECTIONS_SHIFT
  331. #else
  332. #define SECTIONS_WIDTH 0
  333. #endif
  334. #define ZONES_WIDTH ZONES_SHIFT
  335. #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= FLAGS_RESERVED
  336. #define NODES_WIDTH NODES_SHIFT
  337. #else
  338. #define NODES_WIDTH 0
  339. #endif
  340. /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
  341. #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
  342. #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
  343. #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
  344. /*
  345. * We are going to use the flags for the page to node mapping if its in
  346. * there. This includes the case where there is no node, so it is implicit.
  347. */
  348. #if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
  349. #define NODE_NOT_IN_PAGE_FLAGS
  350. #endif
  351. #ifndef PFN_SECTION_SHIFT
  352. #define PFN_SECTION_SHIFT 0
  353. #endif
  354. /*
  355. * Define the bit shifts to access each section. For non-existant
  356. * sections we define the shift as 0; that plus a 0 mask ensures
  357. * the compiler will optimise away reference to them.
  358. */
  359. #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
  360. #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
  361. #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
  362. /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allcator */
  363. #ifdef NODE_NOT_IN_PAGEFLAGS
  364. #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
  365. #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
  366. SECTIONS_PGOFF : ZONES_PGOFF)
  367. #else
  368. #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
  369. #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
  370. NODES_PGOFF : ZONES_PGOFF)
  371. #endif
  372. #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
  373. #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED
  374. #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED
  375. #endif
  376. #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
  377. #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
  378. #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
  379. #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
  380. static inline enum zone_type page_zonenum(struct page *page)
  381. {
  382. return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
  383. }
  384. /*
  385. * The identification function is only used by the buddy allocator for
  386. * determining if two pages could be buddies. We are not really
  387. * identifying a zone since we could be using a the section number
  388. * id if we have not node id available in page flags.
  389. * We guarantee only that it will return the same value for two
  390. * combinable pages in a zone.
  391. */
  392. static inline int page_zone_id(struct page *page)
  393. {
  394. return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
  395. }
  396. static inline int zone_to_nid(struct zone *zone)
  397. {
  398. #ifdef CONFIG_NUMA
  399. return zone->node;
  400. #else
  401. return 0;
  402. #endif
  403. }
  404. #ifdef NODE_NOT_IN_PAGE_FLAGS
  405. extern int page_to_nid(struct page *page);
  406. #else
  407. static inline int page_to_nid(struct page *page)
  408. {
  409. return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
  410. }
  411. #endif
  412. static inline struct zone *page_zone(struct page *page)
  413. {
  414. return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
  415. }
  416. static inline unsigned long page_to_section(struct page *page)
  417. {
  418. return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
  419. }
  420. static inline void set_page_zone(struct page *page, enum zone_type zone)
  421. {
  422. page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
  423. page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
  424. }
  425. static inline void set_page_node(struct page *page, unsigned long node)
  426. {
  427. page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
  428. page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
  429. }
  430. static inline void set_page_section(struct page *page, unsigned long section)
  431. {
  432. page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
  433. page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
  434. }
  435. static inline void set_page_links(struct page *page, enum zone_type zone,
  436. unsigned long node, unsigned long pfn)
  437. {
  438. set_page_zone(page, zone);
  439. set_page_node(page, node);
  440. set_page_section(page, pfn_to_section_nr(pfn));
  441. }
  442. /*
  443. * Some inline functions in vmstat.h depend on page_zone()
  444. */
  445. #include <linux/vmstat.h>
  446. static __always_inline void *lowmem_page_address(struct page *page)
  447. {
  448. return __va(page_to_pfn(page) << PAGE_SHIFT);
  449. }
  450. #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
  451. #define HASHED_PAGE_VIRTUAL
  452. #endif
  453. #if defined(WANT_PAGE_VIRTUAL)
  454. #define page_address(page) ((page)->virtual)
  455. #define set_page_address(page, address) \
  456. do { \
  457. (page)->virtual = (address); \
  458. } while(0)
  459. #define page_address_init() do { } while(0)
  460. #endif
  461. #if defined(HASHED_PAGE_VIRTUAL)
  462. void *page_address(struct page *page);
  463. void set_page_address(struct page *page, void *virtual);
  464. void page_address_init(void);
  465. #endif
  466. #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
  467. #define page_address(page) lowmem_page_address(page)
  468. #define set_page_address(page, address) do { } while(0)
  469. #define page_address_init() do { } while(0)
  470. #endif
  471. /*
  472. * On an anonymous page mapped into a user virtual memory area,
  473. * page->mapping points to its anon_vma, not to a struct address_space;
  474. * with the PAGE_MAPPING_ANON bit set to distinguish it.
  475. *
  476. * Please note that, confusingly, "page_mapping" refers to the inode
  477. * address_space which maps the page from disk; whereas "page_mapped"
  478. * refers to user virtual address space into which the page is mapped.
  479. */
  480. #define PAGE_MAPPING_ANON 1
  481. extern struct address_space swapper_space;
  482. static inline struct address_space *page_mapping(struct page *page)
  483. {
  484. struct address_space *mapping = page->mapping;
  485. VM_BUG_ON(PageSlab(page));
  486. if (unlikely(PageSwapCache(page)))
  487. mapping = &swapper_space;
  488. #ifdef CONFIG_SLUB
  489. else if (unlikely(PageSlab(page)))
  490. mapping = NULL;
  491. #endif
  492. else if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON))
  493. mapping = NULL;
  494. return mapping;
  495. }
  496. static inline int PageAnon(struct page *page)
  497. {
  498. return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
  499. }
  500. /*
  501. * Return the pagecache index of the passed page. Regular pagecache pages
  502. * use ->index whereas swapcache pages use ->private
  503. */
  504. static inline pgoff_t page_index(struct page *page)
  505. {
  506. if (unlikely(PageSwapCache(page)))
  507. return page_private(page);
  508. return page->index;
  509. }
  510. /*
  511. * The atomic page->_mapcount, like _count, starts from -1:
  512. * so that transitions both from it and to it can be tracked,
  513. * using atomic_inc_and_test and atomic_add_negative(-1).
  514. */
  515. static inline void reset_page_mapcount(struct page *page)
  516. {
  517. atomic_set(&(page)->_mapcount, -1);
  518. }
  519. static inline int page_mapcount(struct page *page)
  520. {
  521. return atomic_read(&(page)->_mapcount) + 1;
  522. }
  523. /*
  524. * Return true if this page is mapped into pagetables.
  525. */
  526. static inline int page_mapped(struct page *page)
  527. {
  528. return atomic_read(&(page)->_mapcount) >= 0;
  529. }
  530. /*
  531. * Error return values for the *_nopage functions
  532. */
  533. #define NOPAGE_SIGBUS (NULL)
  534. #define NOPAGE_OOM ((struct page *) (-1))
  535. /*
  536. * Error return values for the *_nopfn functions
  537. */
  538. #define NOPFN_SIGBUS ((unsigned long) -1)
  539. #define NOPFN_OOM ((unsigned long) -2)
  540. #define NOPFN_REFAULT ((unsigned long) -3)
  541. /*
  542. * Different kinds of faults, as returned by handle_mm_fault().
  543. * Used to decide whether a process gets delivered SIGBUS or
  544. * just gets major/minor fault counters bumped up.
  545. */
  546. #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
  547. #define VM_FAULT_OOM 0x0001
  548. #define VM_FAULT_SIGBUS 0x0002
  549. #define VM_FAULT_MAJOR 0x0004
  550. #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
  551. #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
  552. #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
  553. #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS)
  554. #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
  555. extern void show_free_areas(void);
  556. #ifdef CONFIG_SHMEM
  557. int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new);
  558. struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
  559. unsigned long addr);
  560. int shmem_lock(struct file *file, int lock, struct user_struct *user);
  561. #else
  562. static inline int shmem_lock(struct file *file, int lock,
  563. struct user_struct *user)
  564. {
  565. return 0;
  566. }
  567. static inline int shmem_set_policy(struct vm_area_struct *vma,
  568. struct mempolicy *new)
  569. {
  570. return 0;
  571. }
  572. static inline struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
  573. unsigned long addr)
  574. {
  575. return NULL;
  576. }
  577. #endif
  578. struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags);
  579. int shmem_zero_setup(struct vm_area_struct *);
  580. #ifndef CONFIG_MMU
  581. extern unsigned long shmem_get_unmapped_area(struct file *file,
  582. unsigned long addr,
  583. unsigned long len,
  584. unsigned long pgoff,
  585. unsigned long flags);
  586. #endif
  587. extern int can_do_mlock(void);
  588. extern int user_shm_lock(size_t, struct user_struct *);
  589. extern void user_shm_unlock(size_t, struct user_struct *);
  590. /*
  591. * Parameter block passed down to zap_pte_range in exceptional cases.
  592. */
  593. struct zap_details {
  594. struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
  595. struct address_space *check_mapping; /* Check page->mapping if set */
  596. pgoff_t first_index; /* Lowest page->index to unmap */
  597. pgoff_t last_index; /* Highest page->index to unmap */
  598. spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */
  599. unsigned long truncate_count; /* Compare vm_truncate_count */
  600. };
  601. struct page *vm_normal_page(struct vm_area_struct *, unsigned long, pte_t);
  602. unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
  603. unsigned long size, struct zap_details *);
  604. unsigned long unmap_vmas(struct mmu_gather **tlb,
  605. struct vm_area_struct *start_vma, unsigned long start_addr,
  606. unsigned long end_addr, unsigned long *nr_accounted,
  607. struct zap_details *);
  608. void free_pgd_range(struct mmu_gather **tlb, unsigned long addr,
  609. unsigned long end, unsigned long floor, unsigned long ceiling);
  610. void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *start_vma,
  611. unsigned long floor, unsigned long ceiling);
  612. int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
  613. struct vm_area_struct *vma);
  614. void unmap_mapping_range(struct address_space *mapping,
  615. loff_t const holebegin, loff_t const holelen, int even_cows);
  616. static inline void unmap_shared_mapping_range(struct address_space *mapping,
  617. loff_t const holebegin, loff_t const holelen)
  618. {
  619. unmap_mapping_range(mapping, holebegin, holelen, 0);
  620. }
  621. extern int vmtruncate(struct inode * inode, loff_t offset);
  622. extern int vmtruncate_range(struct inode * inode, loff_t offset, loff_t end);
  623. #ifdef CONFIG_MMU
  624. extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  625. unsigned long address, int write_access);
  626. #else
  627. static inline int handle_mm_fault(struct mm_struct *mm,
  628. struct vm_area_struct *vma, unsigned long address,
  629. int write_access)
  630. {
  631. /* should never happen if there's no MMU */
  632. BUG();
  633. return VM_FAULT_SIGBUS;
  634. }
  635. #endif
  636. extern int make_pages_present(unsigned long addr, unsigned long end);
  637. extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
  638. int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start,
  639. int len, int write, int force, struct page **pages, struct vm_area_struct **vmas);
  640. void print_bad_pte(struct vm_area_struct *, pte_t, unsigned long);
  641. extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
  642. extern void do_invalidatepage(struct page *page, unsigned long offset);
  643. int __set_page_dirty_nobuffers(struct page *page);
  644. int __set_page_dirty_no_writeback(struct page *page);
  645. int redirty_page_for_writepage(struct writeback_control *wbc,
  646. struct page *page);
  647. int FASTCALL(set_page_dirty(struct page *page));
  648. int set_page_dirty_lock(struct page *page);
  649. int clear_page_dirty_for_io(struct page *page);
  650. extern unsigned long move_page_tables(struct vm_area_struct *vma,
  651. unsigned long old_addr, struct vm_area_struct *new_vma,
  652. unsigned long new_addr, unsigned long len);
  653. extern unsigned long do_mremap(unsigned long addr,
  654. unsigned long old_len, unsigned long new_len,
  655. unsigned long flags, unsigned long new_addr);
  656. extern int mprotect_fixup(struct vm_area_struct *vma,
  657. struct vm_area_struct **pprev, unsigned long start,
  658. unsigned long end, unsigned long newflags);
  659. /*
  660. * A callback you can register to apply pressure to ageable caches.
  661. *
  662. * 'shrink' is passed a count 'nr_to_scan' and a 'gfpmask'. It should
  663. * look through the least-recently-used 'nr_to_scan' entries and
  664. * attempt to free them up. It should return the number of objects
  665. * which remain in the cache. If it returns -1, it means it cannot do
  666. * any scanning at this time (eg. there is a risk of deadlock).
  667. *
  668. * The 'gfpmask' refers to the allocation we are currently trying to
  669. * fulfil.
  670. *
  671. * Note that 'shrink' will be passed nr_to_scan == 0 when the VM is
  672. * querying the cache size, so a fastpath for that case is appropriate.
  673. */
  674. struct shrinker {
  675. int (*shrink)(int nr_to_scan, gfp_t gfp_mask);
  676. int seeks; /* seeks to recreate an obj */
  677. /* These are for internal use */
  678. struct list_head list;
  679. long nr; /* objs pending delete */
  680. };
  681. #define DEFAULT_SEEKS 2 /* A good number if you don't know better. */
  682. extern void register_shrinker(struct shrinker *);
  683. extern void unregister_shrinker(struct shrinker *);
  684. int vma_wants_writenotify(struct vm_area_struct *vma);
  685. extern pte_t *FASTCALL(get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl));
  686. #ifdef __PAGETABLE_PUD_FOLDED
  687. static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
  688. unsigned long address)
  689. {
  690. return 0;
  691. }
  692. #else
  693. int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
  694. #endif
  695. #ifdef __PAGETABLE_PMD_FOLDED
  696. static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
  697. unsigned long address)
  698. {
  699. return 0;
  700. }
  701. #else
  702. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
  703. #endif
  704. int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
  705. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
  706. /*
  707. * The following ifdef needed to get the 4level-fixup.h header to work.
  708. * Remove it when 4level-fixup.h has been removed.
  709. */
  710. #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
  711. static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
  712. {
  713. return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
  714. NULL: pud_offset(pgd, address);
  715. }
  716. static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  717. {
  718. return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
  719. NULL: pmd_offset(pud, address);
  720. }
  721. #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
  722. #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
  723. /*
  724. * We tuck a spinlock to guard each pagetable page into its struct page,
  725. * at page->private, with BUILD_BUG_ON to make sure that this will not
  726. * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
  727. * When freeing, reset page->mapping so free_pages_check won't complain.
  728. */
  729. #define __pte_lockptr(page) &((page)->ptl)
  730. #define pte_lock_init(_page) do { \
  731. spin_lock_init(__pte_lockptr(_page)); \
  732. } while (0)
  733. #define pte_lock_deinit(page) ((page)->mapping = NULL)
  734. #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
  735. #else
  736. /*
  737. * We use mm->page_table_lock to guard all pagetable pages of the mm.
  738. */
  739. #define pte_lock_init(page) do {} while (0)
  740. #define pte_lock_deinit(page) do {} while (0)
  741. #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
  742. #endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
  743. #define pte_offset_map_lock(mm, pmd, address, ptlp) \
  744. ({ \
  745. spinlock_t *__ptl = pte_lockptr(mm, pmd); \
  746. pte_t *__pte = pte_offset_map(pmd, address); \
  747. *(ptlp) = __ptl; \
  748. spin_lock(__ptl); \
  749. __pte; \
  750. })
  751. #define pte_unmap_unlock(pte, ptl) do { \
  752. spin_unlock(ptl); \
  753. pte_unmap(pte); \
  754. } while (0)
  755. #define pte_alloc_map(mm, pmd, address) \
  756. ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
  757. NULL: pte_offset_map(pmd, address))
  758. #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
  759. ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
  760. NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
  761. #define pte_alloc_kernel(pmd, address) \
  762. ((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
  763. NULL: pte_offset_kernel(pmd, address))
  764. extern void free_area_init(unsigned long * zones_size);
  765. extern void free_area_init_node(int nid, pg_data_t *pgdat,
  766. unsigned long * zones_size, unsigned long zone_start_pfn,
  767. unsigned long *zholes_size);
  768. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  769. /*
  770. * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its
  771. * zones, allocate the backing mem_map and account for memory holes in a more
  772. * architecture independent manner. This is a substitute for creating the
  773. * zone_sizes[] and zholes_size[] arrays and passing them to
  774. * free_area_init_node()
  775. *
  776. * An architecture is expected to register range of page frames backed by
  777. * physical memory with add_active_range() before calling
  778. * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
  779. * usage, an architecture is expected to do something like
  780. *
  781. * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
  782. * max_highmem_pfn};
  783. * for_each_valid_physical_page_range()
  784. * add_active_range(node_id, start_pfn, end_pfn)
  785. * free_area_init_nodes(max_zone_pfns);
  786. *
  787. * If the architecture guarantees that there are no holes in the ranges
  788. * registered with add_active_range(), free_bootmem_active_regions()
  789. * will call free_bootmem_node() for each registered physical page range.
  790. * Similarly sparse_memory_present_with_active_regions() calls
  791. * memory_present() for each range when SPARSEMEM is enabled.
  792. *
  793. * See mm/page_alloc.c for more information on each function exposed by
  794. * CONFIG_ARCH_POPULATES_NODE_MAP
  795. */
  796. extern void free_area_init_nodes(unsigned long *max_zone_pfn);
  797. extern void add_active_range(unsigned int nid, unsigned long start_pfn,
  798. unsigned long end_pfn);
  799. extern void shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
  800. unsigned long new_end_pfn);
  801. extern void push_node_boundaries(unsigned int nid, unsigned long start_pfn,
  802. unsigned long end_pfn);
  803. extern void remove_all_active_ranges(void);
  804. extern unsigned long absent_pages_in_range(unsigned long start_pfn,
  805. unsigned long end_pfn);
  806. extern void get_pfn_range_for_nid(unsigned int nid,
  807. unsigned long *start_pfn, unsigned long *end_pfn);
  808. extern unsigned long find_min_pfn_with_active_regions(void);
  809. extern unsigned long find_max_pfn_with_active_regions(void);
  810. extern void free_bootmem_with_active_regions(int nid,
  811. unsigned long max_low_pfn);
  812. extern void sparse_memory_present_with_active_regions(int nid);
  813. #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  814. extern int early_pfn_to_nid(unsigned long pfn);
  815. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  816. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  817. extern void set_dma_reserve(unsigned long new_dma_reserve);
  818. extern void memmap_init_zone(unsigned long, int, unsigned long,
  819. unsigned long, enum memmap_context);
  820. extern void setup_per_zone_pages_min(void);
  821. extern void mem_init(void);
  822. extern void show_mem(void);
  823. extern void si_meminfo(struct sysinfo * val);
  824. extern void si_meminfo_node(struct sysinfo *val, int nid);
  825. #ifdef CONFIG_NUMA
  826. extern void setup_per_cpu_pageset(void);
  827. #else
  828. static inline void setup_per_cpu_pageset(void) {}
  829. #endif
  830. /* prio_tree.c */
  831. void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
  832. void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
  833. void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
  834. struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
  835. struct prio_tree_iter *iter);
  836. #define vma_prio_tree_foreach(vma, iter, root, begin, end) \
  837. for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \
  838. (vma = vma_prio_tree_next(vma, iter)); )
  839. static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
  840. struct list_head *list)
  841. {
  842. vma->shared.vm_set.parent = NULL;
  843. list_add_tail(&vma->shared.vm_set.list, list);
  844. }
  845. /* mmap.c */
  846. extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
  847. extern void vma_adjust(struct vm_area_struct *vma, unsigned long start,
  848. unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
  849. extern struct vm_area_struct *vma_merge(struct mm_struct *,
  850. struct vm_area_struct *prev, unsigned long addr, unsigned long end,
  851. unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
  852. struct mempolicy *);
  853. extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
  854. extern int split_vma(struct mm_struct *,
  855. struct vm_area_struct *, unsigned long addr, int new_below);
  856. extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
  857. extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
  858. struct rb_node **, struct rb_node *);
  859. extern void unlink_file_vma(struct vm_area_struct *);
  860. extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
  861. unsigned long addr, unsigned long len, pgoff_t pgoff);
  862. extern void exit_mmap(struct mm_struct *);
  863. extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
  864. extern int install_special_mapping(struct mm_struct *mm,
  865. unsigned long addr, unsigned long len,
  866. unsigned long flags, struct page **pages);
  867. extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
  868. extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
  869. unsigned long len, unsigned long prot,
  870. unsigned long flag, unsigned long pgoff);
  871. extern unsigned long mmap_region(struct file *file, unsigned long addr,
  872. unsigned long len, unsigned long flags,
  873. unsigned int vm_flags, unsigned long pgoff,
  874. int accountable);
  875. static inline unsigned long do_mmap(struct file *file, unsigned long addr,
  876. unsigned long len, unsigned long prot,
  877. unsigned long flag, unsigned long offset)
  878. {
  879. unsigned long ret = -EINVAL;
  880. if ((offset + PAGE_ALIGN(len)) < offset)
  881. goto out;
  882. if (!(offset & ~PAGE_MASK))
  883. ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
  884. out:
  885. return ret;
  886. }
  887. extern int do_munmap(struct mm_struct *, unsigned long, size_t);
  888. extern unsigned long do_brk(unsigned long, unsigned long);
  889. /* filemap.c */
  890. extern unsigned long page_unuse(struct page *);
  891. extern void truncate_inode_pages(struct address_space *, loff_t);
  892. extern void truncate_inode_pages_range(struct address_space *,
  893. loff_t lstart, loff_t lend);
  894. /* generic vm_area_ops exported for stackable file systems */
  895. extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
  896. /* mm/page-writeback.c */
  897. int write_one_page(struct page *page, int wait);
  898. /* readahead.c */
  899. #define VM_MAX_READAHEAD 128 /* kbytes */
  900. #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
  901. int do_page_cache_readahead(struct address_space *mapping, struct file *filp,
  902. pgoff_t offset, unsigned long nr_to_read);
  903. int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
  904. pgoff_t offset, unsigned long nr_to_read);
  905. void page_cache_sync_readahead(struct address_space *mapping,
  906. struct file_ra_state *ra,
  907. struct file *filp,
  908. pgoff_t offset,
  909. unsigned long size);
  910. void page_cache_async_readahead(struct address_space *mapping,
  911. struct file_ra_state *ra,
  912. struct file *filp,
  913. struct page *pg,
  914. pgoff_t offset,
  915. unsigned long size);
  916. unsigned long max_sane_readahead(unsigned long nr);
  917. /* Do stack extension */
  918. extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
  919. #ifdef CONFIG_IA64
  920. extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
  921. #endif
  922. extern int expand_stack_downwards(struct vm_area_struct *vma,
  923. unsigned long address);
  924. /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
  925. extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
  926. extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
  927. struct vm_area_struct **pprev);
  928. /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
  929. NULL if none. Assume start_addr < end_addr. */
  930. static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
  931. {
  932. struct vm_area_struct * vma = find_vma(mm,start_addr);
  933. if (vma && end_addr <= vma->vm_start)
  934. vma = NULL;
  935. return vma;
  936. }
  937. static inline unsigned long vma_pages(struct vm_area_struct *vma)
  938. {
  939. return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
  940. }
  941. pgprot_t vm_get_page_prot(unsigned long vm_flags);
  942. struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
  943. struct page *vmalloc_to_page(void *addr);
  944. unsigned long vmalloc_to_pfn(void *addr);
  945. int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
  946. unsigned long pfn, unsigned long size, pgprot_t);
  947. int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
  948. int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  949. unsigned long pfn);
  950. struct page *follow_page(struct vm_area_struct *, unsigned long address,
  951. unsigned int foll_flags);
  952. #define FOLL_WRITE 0x01 /* check pte is writable */
  953. #define FOLL_TOUCH 0x02 /* mark page accessed */
  954. #define FOLL_GET 0x04 /* do get_page on page */
  955. #define FOLL_ANON 0x08 /* give ZERO_PAGE if no pgtable */
  956. typedef int (*pte_fn_t)(pte_t *pte, struct page *pmd_page, unsigned long addr,
  957. void *data);
  958. extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
  959. unsigned long size, pte_fn_t fn, void *data);
  960. #ifdef CONFIG_PROC_FS
  961. void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
  962. #else
  963. static inline void vm_stat_account(struct mm_struct *mm,
  964. unsigned long flags, struct file *file, long pages)
  965. {
  966. }
  967. #endif /* CONFIG_PROC_FS */
  968. #ifndef CONFIG_DEBUG_PAGEALLOC
  969. static inline void
  970. kernel_map_pages(struct page *page, int numpages, int enable) {}
  971. #endif
  972. extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk);
  973. #ifdef __HAVE_ARCH_GATE_AREA
  974. int in_gate_area_no_task(unsigned long addr);
  975. int in_gate_area(struct task_struct *task, unsigned long addr);
  976. #else
  977. int in_gate_area_no_task(unsigned long addr);
  978. #define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);})
  979. #endif /* __HAVE_ARCH_GATE_AREA */
  980. int drop_caches_sysctl_handler(struct ctl_table *, int, struct file *,
  981. void __user *, size_t *, loff_t *);
  982. unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
  983. unsigned long lru_pages);
  984. void drop_pagecache(void);
  985. void drop_slab(void);
  986. #ifndef CONFIG_MMU
  987. #define randomize_va_space 0
  988. #else
  989. extern int randomize_va_space;
  990. #endif
  991. const char * arch_vma_name(struct vm_area_struct *vma);
  992. struct page *sparse_early_mem_map_populate(unsigned long pnum, int nid);
  993. pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
  994. pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
  995. pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
  996. pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
  997. void *vmemmap_alloc_block(unsigned long size, int node);
  998. void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
  999. int vmemmap_populate_basepages(struct page *start_page,
  1000. unsigned long pages, int node);
  1001. int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
  1002. #endif /* __KERNEL__ */
  1003. #endif /* _LINUX_MM_H */