ar9003_mci.c 38 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463
  1. /*
  2. * Copyright (c) 2008-2011 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/export.h>
  17. #include "hw.h"
  18. #include "ar9003_phy.h"
  19. #include "ar9003_mci.h"
  20. static void ar9003_mci_reset_req_wakeup(struct ath_hw *ah)
  21. {
  22. if (!AR_SREV_9462_20(ah))
  23. return;
  24. REG_RMW_FIELD(ah, AR_MCI_COMMAND2,
  25. AR_MCI_COMMAND2_RESET_REQ_WAKEUP, 1);
  26. udelay(1);
  27. REG_RMW_FIELD(ah, AR_MCI_COMMAND2,
  28. AR_MCI_COMMAND2_RESET_REQ_WAKEUP, 0);
  29. }
  30. static int ar9003_mci_wait_for_interrupt(struct ath_hw *ah, u32 address,
  31. u32 bit_position, int time_out)
  32. {
  33. struct ath_common *common = ath9k_hw_common(ah);
  34. while (time_out) {
  35. if (REG_READ(ah, address) & bit_position) {
  36. REG_WRITE(ah, address, bit_position);
  37. if (address == AR_MCI_INTERRUPT_RX_MSG_RAW) {
  38. if (bit_position &
  39. AR_MCI_INTERRUPT_RX_MSG_REQ_WAKE)
  40. ar9003_mci_reset_req_wakeup(ah);
  41. if (bit_position &
  42. (AR_MCI_INTERRUPT_RX_MSG_SYS_SLEEPING |
  43. AR_MCI_INTERRUPT_RX_MSG_SYS_WAKING))
  44. REG_WRITE(ah, AR_MCI_INTERRUPT_RAW,
  45. AR_MCI_INTERRUPT_REMOTE_SLEEP_UPDATE);
  46. REG_WRITE(ah, AR_MCI_INTERRUPT_RAW,
  47. AR_MCI_INTERRUPT_RX_MSG);
  48. }
  49. break;
  50. }
  51. udelay(10);
  52. time_out -= 10;
  53. if (time_out < 0)
  54. break;
  55. }
  56. if (time_out <= 0) {
  57. ath_dbg(common, MCI,
  58. "MCI Wait for Reg 0x%08x = 0x%08x timeout\n",
  59. address, bit_position);
  60. ath_dbg(common, MCI,
  61. "MCI INT_RAW = 0x%08x, RX_MSG_RAW = 0x%08x\n",
  62. REG_READ(ah, AR_MCI_INTERRUPT_RAW),
  63. REG_READ(ah, AR_MCI_INTERRUPT_RX_MSG_RAW));
  64. time_out = 0;
  65. }
  66. return time_out;
  67. }
  68. void ar9003_mci_remote_reset(struct ath_hw *ah, bool wait_done)
  69. {
  70. u32 payload[4] = { 0xffffffff, 0xffffffff, 0xffffffff, 0xffffff00};
  71. if (!ATH9K_HW_CAP_MCI)
  72. return;
  73. ar9003_mci_send_message(ah, MCI_REMOTE_RESET, 0, payload, 16,
  74. wait_done, false);
  75. udelay(5);
  76. }
  77. void ar9003_mci_send_lna_transfer(struct ath_hw *ah, bool wait_done)
  78. {
  79. u32 payload = 0x00000000;
  80. if (!ATH9K_HW_CAP_MCI)
  81. return;
  82. ar9003_mci_send_message(ah, MCI_LNA_TRANS, 0, &payload, 1,
  83. wait_done, false);
  84. }
  85. static void ar9003_mci_send_req_wake(struct ath_hw *ah, bool wait_done)
  86. {
  87. ar9003_mci_send_message(ah, MCI_REQ_WAKE, MCI_FLAG_DISABLE_TIMESTAMP,
  88. NULL, 0, wait_done, false);
  89. udelay(5);
  90. }
  91. void ar9003_mci_send_sys_waking(struct ath_hw *ah, bool wait_done)
  92. {
  93. if (!ATH9K_HW_CAP_MCI)
  94. return;
  95. ar9003_mci_send_message(ah, MCI_SYS_WAKING, MCI_FLAG_DISABLE_TIMESTAMP,
  96. NULL, 0, wait_done, false);
  97. }
  98. static void ar9003_mci_send_lna_take(struct ath_hw *ah, bool wait_done)
  99. {
  100. u32 payload = 0x70000000;
  101. ar9003_mci_send_message(ah, MCI_LNA_TAKE, 0, &payload, 1,
  102. wait_done, false);
  103. }
  104. static void ar9003_mci_send_sys_sleeping(struct ath_hw *ah, bool wait_done)
  105. {
  106. ar9003_mci_send_message(ah, MCI_SYS_SLEEPING,
  107. MCI_FLAG_DISABLE_TIMESTAMP,
  108. NULL, 0, wait_done, false);
  109. }
  110. static void ar9003_mci_send_coex_version_query(struct ath_hw *ah,
  111. bool wait_done)
  112. {
  113. struct ath_common *common = ath9k_hw_common(ah);
  114. struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
  115. u32 payload[4] = {0, 0, 0, 0};
  116. if (!mci->bt_version_known &&
  117. (mci->bt_state != MCI_BT_SLEEP)) {
  118. ath_dbg(common, MCI, "MCI Send Coex version query\n");
  119. MCI_GPM_SET_TYPE_OPCODE(payload,
  120. MCI_GPM_COEX_AGENT, MCI_GPM_COEX_VERSION_QUERY);
  121. ar9003_mci_send_message(ah, MCI_GPM, 0, payload, 16,
  122. wait_done, true);
  123. }
  124. }
  125. static void ar9003_mci_send_coex_version_response(struct ath_hw *ah,
  126. bool wait_done)
  127. {
  128. struct ath_common *common = ath9k_hw_common(ah);
  129. struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
  130. u32 payload[4] = {0, 0, 0, 0};
  131. ath_dbg(common, MCI, "MCI Send Coex version response\n");
  132. MCI_GPM_SET_TYPE_OPCODE(payload, MCI_GPM_COEX_AGENT,
  133. MCI_GPM_COEX_VERSION_RESPONSE);
  134. *(((u8 *)payload) + MCI_GPM_COEX_B_MAJOR_VERSION) =
  135. mci->wlan_ver_major;
  136. *(((u8 *)payload) + MCI_GPM_COEX_B_MINOR_VERSION) =
  137. mci->wlan_ver_minor;
  138. ar9003_mci_send_message(ah, MCI_GPM, 0, payload, 16, wait_done, true);
  139. }
  140. static void ar9003_mci_send_coex_wlan_channels(struct ath_hw *ah,
  141. bool wait_done)
  142. {
  143. struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
  144. u32 *payload = &mci->wlan_channels[0];
  145. if ((mci->wlan_channels_update == true) &&
  146. (mci->bt_state != MCI_BT_SLEEP)) {
  147. MCI_GPM_SET_TYPE_OPCODE(payload,
  148. MCI_GPM_COEX_AGENT, MCI_GPM_COEX_WLAN_CHANNELS);
  149. ar9003_mci_send_message(ah, MCI_GPM, 0, payload, 16,
  150. wait_done, true);
  151. MCI_GPM_SET_TYPE_OPCODE(payload, 0xff, 0xff);
  152. }
  153. }
  154. static void ar9003_mci_send_coex_bt_status_query(struct ath_hw *ah,
  155. bool wait_done, u8 query_type)
  156. {
  157. struct ath_common *common = ath9k_hw_common(ah);
  158. struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
  159. u32 payload[4] = {0, 0, 0, 0};
  160. bool query_btinfo = !!(query_type & (MCI_GPM_COEX_QUERY_BT_ALL_INFO |
  161. MCI_GPM_COEX_QUERY_BT_TOPOLOGY));
  162. if (mci->bt_state != MCI_BT_SLEEP) {
  163. ath_dbg(common, MCI, "MCI Send Coex BT Status Query 0x%02X\n",
  164. query_type);
  165. MCI_GPM_SET_TYPE_OPCODE(payload,
  166. MCI_GPM_COEX_AGENT, MCI_GPM_COEX_STATUS_QUERY);
  167. *(((u8 *)payload) + MCI_GPM_COEX_B_BT_BITMAP) = query_type;
  168. /*
  169. * If bt_status_query message is not sent successfully,
  170. * then need_flush_btinfo should be set again.
  171. */
  172. if (!ar9003_mci_send_message(ah, MCI_GPM, 0, payload, 16,
  173. wait_done, true)) {
  174. if (query_btinfo) {
  175. mci->need_flush_btinfo = true;
  176. ath_dbg(common, MCI,
  177. "MCI send bt_status_query fail, set flush flag again\n");
  178. }
  179. }
  180. if (query_btinfo)
  181. mci->query_bt = false;
  182. }
  183. }
  184. void ar9003_mci_send_coex_halt_bt_gpm(struct ath_hw *ah, bool halt,
  185. bool wait_done)
  186. {
  187. struct ath_common *common = ath9k_hw_common(ah);
  188. struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
  189. u32 payload[4] = {0, 0, 0, 0};
  190. if (!ATH9K_HW_CAP_MCI)
  191. return;
  192. ath_dbg(common, MCI, "MCI Send Coex %s BT GPM\n",
  193. (halt) ? "halt" : "unhalt");
  194. MCI_GPM_SET_TYPE_OPCODE(payload,
  195. MCI_GPM_COEX_AGENT, MCI_GPM_COEX_HALT_BT_GPM);
  196. if (halt) {
  197. mci->query_bt = true;
  198. /* Send next unhalt no matter halt sent or not */
  199. mci->unhalt_bt_gpm = true;
  200. mci->need_flush_btinfo = true;
  201. *(((u8 *)payload) + MCI_GPM_COEX_B_HALT_STATE) =
  202. MCI_GPM_COEX_BT_GPM_HALT;
  203. } else
  204. *(((u8 *)payload) + MCI_GPM_COEX_B_HALT_STATE) =
  205. MCI_GPM_COEX_BT_GPM_UNHALT;
  206. ar9003_mci_send_message(ah, MCI_GPM, 0, payload, 16, wait_done, true);
  207. }
  208. static void ar9003_mci_prep_interface(struct ath_hw *ah)
  209. {
  210. struct ath_common *common = ath9k_hw_common(ah);
  211. struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
  212. u32 saved_mci_int_en;
  213. u32 mci_timeout = 150;
  214. mci->bt_state = MCI_BT_SLEEP;
  215. saved_mci_int_en = REG_READ(ah, AR_MCI_INTERRUPT_EN);
  216. REG_WRITE(ah, AR_MCI_INTERRUPT_EN, 0);
  217. REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_RAW,
  218. REG_READ(ah, AR_MCI_INTERRUPT_RX_MSG_RAW));
  219. REG_WRITE(ah, AR_MCI_INTERRUPT_RAW,
  220. REG_READ(ah, AR_MCI_INTERRUPT_RAW));
  221. /* Remote Reset */
  222. ath_dbg(common, MCI, "MCI Reset sequence start\n");
  223. ath_dbg(common, MCI, "MCI send REMOTE_RESET\n");
  224. ar9003_mci_remote_reset(ah, true);
  225. ath_dbg(common, MCI, "MCI Send REQ_WAKE to remoter(BT)\n");
  226. ar9003_mci_send_req_wake(ah, true);
  227. if (ar9003_mci_wait_for_interrupt(ah, AR_MCI_INTERRUPT_RX_MSG_RAW,
  228. AR_MCI_INTERRUPT_RX_MSG_SYS_WAKING, 500)) {
  229. ath_dbg(common, MCI, "MCI SYS_WAKING from remote(BT)\n");
  230. mci->bt_state = MCI_BT_AWAKE;
  231. /*
  232. * we don't need to send more remote_reset at this moment.
  233. * If BT receive first remote_reset, then BT HW will
  234. * be cleaned up and will be able to receive req_wake
  235. * and BT HW will respond sys_waking.
  236. * In this case, WLAN will receive BT's HW sys_waking.
  237. * Otherwise, if BT SW missed initial remote_reset,
  238. * that remote_reset will still clean up BT MCI RX,
  239. * and the req_wake will wake BT up,
  240. * and BT SW will respond this req_wake with a remote_reset and
  241. * sys_waking. In this case, WLAN will receive BT's SW
  242. * sys_waking. In either case, BT's RX is cleaned up. So we
  243. * don't need to reply BT's remote_reset now, if any.
  244. * Similarly, if in any case, WLAN can receive BT's sys_waking,
  245. * that means WLAN's RX is also fine.
  246. */
  247. /* Send SYS_WAKING to BT */
  248. ath_dbg(common, MCI, "MCI send SW SYS_WAKING to remote BT\n");
  249. ar9003_mci_send_sys_waking(ah, true);
  250. udelay(10);
  251. /*
  252. * Set BT priority interrupt value to be 0xff to
  253. * avoid having too many BT PRIORITY interrupts.
  254. */
  255. REG_WRITE(ah, AR_MCI_BT_PRI0, 0xFFFFFFFF);
  256. REG_WRITE(ah, AR_MCI_BT_PRI1, 0xFFFFFFFF);
  257. REG_WRITE(ah, AR_MCI_BT_PRI2, 0xFFFFFFFF);
  258. REG_WRITE(ah, AR_MCI_BT_PRI3, 0xFFFFFFFF);
  259. REG_WRITE(ah, AR_MCI_BT_PRI, 0X000000FF);
  260. /*
  261. * A contention reset will be received after send out
  262. * sys_waking. Also BT priority interrupt bits will be set.
  263. * Clear those bits before the next step.
  264. */
  265. REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_RAW,
  266. AR_MCI_INTERRUPT_RX_MSG_CONT_RST);
  267. REG_WRITE(ah, AR_MCI_INTERRUPT_RAW,
  268. AR_MCI_INTERRUPT_BT_PRI);
  269. if (mci->is_2g) {
  270. /* Send LNA_TRANS */
  271. ath_dbg(common, MCI, "MCI send LNA_TRANS to BT\n");
  272. ar9003_mci_send_lna_transfer(ah, true);
  273. udelay(5);
  274. }
  275. if ((mci->is_2g && !mci->update_2g5g)) {
  276. if (ar9003_mci_wait_for_interrupt(ah,
  277. AR_MCI_INTERRUPT_RX_MSG_RAW,
  278. AR_MCI_INTERRUPT_RX_MSG_LNA_INFO,
  279. mci_timeout))
  280. ath_dbg(common, MCI,
  281. "MCI WLAN has control over the LNA & BT obeys it\n");
  282. else
  283. ath_dbg(common, MCI,
  284. "MCI BT didn't respond to LNA_TRANS\n");
  285. }
  286. }
  287. /* Clear the extra redundant SYS_WAKING from BT */
  288. if ((mci->bt_state == MCI_BT_AWAKE) &&
  289. (REG_READ_FIELD(ah, AR_MCI_INTERRUPT_RX_MSG_RAW,
  290. AR_MCI_INTERRUPT_RX_MSG_SYS_WAKING)) &&
  291. (REG_READ_FIELD(ah, AR_MCI_INTERRUPT_RX_MSG_RAW,
  292. AR_MCI_INTERRUPT_RX_MSG_SYS_SLEEPING) == 0)) {
  293. REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_RAW,
  294. AR_MCI_INTERRUPT_RX_MSG_SYS_WAKING);
  295. REG_WRITE(ah, AR_MCI_INTERRUPT_RAW,
  296. AR_MCI_INTERRUPT_REMOTE_SLEEP_UPDATE);
  297. }
  298. REG_WRITE(ah, AR_MCI_INTERRUPT_EN, saved_mci_int_en);
  299. }
  300. void ar9003_mci_disable_interrupt(struct ath_hw *ah)
  301. {
  302. if (!ATH9K_HW_CAP_MCI)
  303. return;
  304. REG_WRITE(ah, AR_MCI_INTERRUPT_EN, 0);
  305. REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, 0);
  306. }
  307. void ar9003_mci_enable_interrupt(struct ath_hw *ah)
  308. {
  309. if (!ATH9K_HW_CAP_MCI)
  310. return;
  311. REG_WRITE(ah, AR_MCI_INTERRUPT_EN, AR_MCI_INTERRUPT_DEFAULT);
  312. REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN,
  313. AR_MCI_INTERRUPT_RX_MSG_DEFAULT);
  314. }
  315. bool ar9003_mci_check_int(struct ath_hw *ah, u32 ints)
  316. {
  317. u32 intr;
  318. if (!ATH9K_HW_CAP_MCI)
  319. return false;
  320. intr = REG_READ(ah, AR_MCI_INTERRUPT_RX_MSG_RAW);
  321. return ((intr & ints) == ints);
  322. }
  323. void ar9003_mci_get_interrupt(struct ath_hw *ah, u32 *raw_intr,
  324. u32 *rx_msg_intr)
  325. {
  326. struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
  327. if (!ATH9K_HW_CAP_MCI)
  328. return;
  329. *raw_intr = mci->raw_intr;
  330. *rx_msg_intr = mci->rx_msg_intr;
  331. /* Clean int bits after the values are read. */
  332. mci->raw_intr = 0;
  333. mci->rx_msg_intr = 0;
  334. }
  335. EXPORT_SYMBOL(ar9003_mci_get_interrupt);
  336. void ar9003_mci_2g5g_changed(struct ath_hw *ah, bool is_2g)
  337. {
  338. struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
  339. if (!ATH9K_HW_CAP_MCI)
  340. return;
  341. if (!mci->update_2g5g &&
  342. (mci->is_2g != is_2g))
  343. mci->update_2g5g = true;
  344. mci->is_2g = is_2g;
  345. }
  346. static bool ar9003_mci_is_gpm_valid(struct ath_hw *ah, u32 msg_index)
  347. {
  348. struct ath_common *common = ath9k_hw_common(ah);
  349. struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
  350. u32 *payload;
  351. u32 recv_type, offset;
  352. if (msg_index == MCI_GPM_INVALID)
  353. return false;
  354. offset = msg_index << 4;
  355. payload = (u32 *)(mci->gpm_buf + offset);
  356. recv_type = MCI_GPM_TYPE(payload);
  357. if (recv_type == MCI_GPM_RSVD_PATTERN) {
  358. ath_dbg(common, MCI, "MCI Skip RSVD GPM\n");
  359. return false;
  360. }
  361. return true;
  362. }
  363. static void ar9003_mci_observation_set_up(struct ath_hw *ah)
  364. {
  365. struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
  366. if (mci->config & ATH_MCI_CONFIG_MCI_OBS_MCI) {
  367. ath9k_hw_cfg_output(ah, 3,
  368. AR_GPIO_OUTPUT_MUX_AS_MCI_WLAN_DATA);
  369. ath9k_hw_cfg_output(ah, 2, AR_GPIO_OUTPUT_MUX_AS_MCI_WLAN_CLK);
  370. ath9k_hw_cfg_output(ah, 1, AR_GPIO_OUTPUT_MUX_AS_MCI_BT_DATA);
  371. ath9k_hw_cfg_output(ah, 0, AR_GPIO_OUTPUT_MUX_AS_MCI_BT_CLK);
  372. } else if (mci->config & ATH_MCI_CONFIG_MCI_OBS_TXRX) {
  373. ath9k_hw_cfg_output(ah, 3, AR_GPIO_OUTPUT_MUX_AS_WL_IN_TX);
  374. ath9k_hw_cfg_output(ah, 2, AR_GPIO_OUTPUT_MUX_AS_WL_IN_RX);
  375. ath9k_hw_cfg_output(ah, 1, AR_GPIO_OUTPUT_MUX_AS_BT_IN_TX);
  376. ath9k_hw_cfg_output(ah, 0, AR_GPIO_OUTPUT_MUX_AS_BT_IN_RX);
  377. ath9k_hw_cfg_output(ah, 5, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
  378. } else if (mci->config & ATH_MCI_CONFIG_MCI_OBS_BT) {
  379. ath9k_hw_cfg_output(ah, 3, AR_GPIO_OUTPUT_MUX_AS_BT_IN_TX);
  380. ath9k_hw_cfg_output(ah, 2, AR_GPIO_OUTPUT_MUX_AS_BT_IN_RX);
  381. ath9k_hw_cfg_output(ah, 1, AR_GPIO_OUTPUT_MUX_AS_MCI_BT_DATA);
  382. ath9k_hw_cfg_output(ah, 0, AR_GPIO_OUTPUT_MUX_AS_MCI_BT_CLK);
  383. } else
  384. return;
  385. REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
  386. if (AR_SREV_9462_20_OR_LATER(ah)) {
  387. REG_RMW_FIELD(ah, AR_PHY_GLB_CONTROL,
  388. AR_GLB_DS_JTAG_DISABLE, 1);
  389. REG_RMW_FIELD(ah, AR_PHY_GLB_CONTROL,
  390. AR_GLB_WLAN_UART_INTF_EN, 0);
  391. REG_SET_BIT(ah, AR_GLB_GPIO_CONTROL,
  392. ATH_MCI_CONFIG_MCI_OBS_GPIO);
  393. }
  394. REG_RMW_FIELD(ah, AR_BTCOEX_CTRL2, AR_BTCOEX_CTRL2_GPIO_OBS_SEL, 0);
  395. REG_RMW_FIELD(ah, AR_BTCOEX_CTRL2, AR_BTCOEX_CTRL2_MAC_BB_OBS_SEL, 1);
  396. REG_WRITE(ah, AR_OBS, 0x4b);
  397. REG_RMW_FIELD(ah, AR_DIAG_SW, AR_DIAG_OBS_PT_SEL1, 0x03);
  398. REG_RMW_FIELD(ah, AR_DIAG_SW, AR_DIAG_OBS_PT_SEL2, 0x01);
  399. REG_RMW_FIELD(ah, AR_MACMISC, AR_MACMISC_MISC_OBS_BUS_LSB, 0x02);
  400. REG_RMW_FIELD(ah, AR_MACMISC, AR_MACMISC_MISC_OBS_BUS_MSB, 0x03);
  401. REG_RMW_FIELD(ah, AR_PHY_TEST_CTL_STATUS,
  402. AR_PHY_TEST_CTL_DEBUGPORT_SEL, 0x07);
  403. }
  404. static bool ar9003_mci_send_coex_bt_flags(struct ath_hw *ah, bool wait_done,
  405. u8 opcode, u32 bt_flags)
  406. {
  407. struct ath_common *common = ath9k_hw_common(ah);
  408. u32 pld[4] = {0, 0, 0, 0};
  409. MCI_GPM_SET_TYPE_OPCODE(pld,
  410. MCI_GPM_COEX_AGENT, MCI_GPM_COEX_BT_UPDATE_FLAGS);
  411. *(((u8 *)pld) + MCI_GPM_COEX_B_BT_FLAGS_OP) = opcode;
  412. *(((u8 *)pld) + MCI_GPM_COEX_W_BT_FLAGS + 0) = bt_flags & 0xFF;
  413. *(((u8 *)pld) + MCI_GPM_COEX_W_BT_FLAGS + 1) = (bt_flags >> 8) & 0xFF;
  414. *(((u8 *)pld) + MCI_GPM_COEX_W_BT_FLAGS + 2) = (bt_flags >> 16) & 0xFF;
  415. *(((u8 *)pld) + MCI_GPM_COEX_W_BT_FLAGS + 3) = (bt_flags >> 24) & 0xFF;
  416. ath_dbg(common, MCI,
  417. "MCI BT_MCI_FLAGS: Send Coex BT Update Flags %s 0x%08x\n",
  418. opcode == MCI_GPM_COEX_BT_FLAGS_READ ? "READ" :
  419. opcode == MCI_GPM_COEX_BT_FLAGS_SET ? "SET" : "CLEAR",
  420. bt_flags);
  421. return ar9003_mci_send_message(ah, MCI_GPM, 0, pld, 16,
  422. wait_done, true);
  423. }
  424. void ar9003_mci_reset(struct ath_hw *ah, bool en_int, bool is_2g,
  425. bool is_full_sleep)
  426. {
  427. struct ath_common *common = ath9k_hw_common(ah);
  428. struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
  429. u32 regval, thresh;
  430. if (!ATH9K_HW_CAP_MCI)
  431. return;
  432. ath_dbg(common, MCI, "MCI full_sleep = %d, is_2g = %d\n",
  433. is_full_sleep, is_2g);
  434. /*
  435. * GPM buffer and scheduling message buffer are not allocated
  436. */
  437. if (!mci->gpm_addr && !mci->sched_addr) {
  438. ath_dbg(common, MCI,
  439. "MCI GPM and schedule buffers are not allocated\n");
  440. return;
  441. }
  442. if (REG_READ(ah, AR_BTCOEX_CTRL) == 0xdeadbeef) {
  443. ath_dbg(common, MCI, "MCI it's deadbeef, quit mci_reset\n");
  444. return;
  445. }
  446. /* Program MCI DMA related registers */
  447. REG_WRITE(ah, AR_MCI_GPM_0, mci->gpm_addr);
  448. REG_WRITE(ah, AR_MCI_GPM_1, mci->gpm_len);
  449. REG_WRITE(ah, AR_MCI_SCHD_TABLE_0, mci->sched_addr);
  450. /*
  451. * To avoid MCI state machine be affected by incoming remote MCI msgs,
  452. * MCI mode will be enabled later, right before reset the MCI TX and RX.
  453. */
  454. regval = SM(1, AR_BTCOEX_CTRL_AR9462_MODE) |
  455. SM(1, AR_BTCOEX_CTRL_WBTIMER_EN) |
  456. SM(1, AR_BTCOEX_CTRL_PA_SHARED) |
  457. SM(1, AR_BTCOEX_CTRL_LNA_SHARED) |
  458. SM(2, AR_BTCOEX_CTRL_NUM_ANTENNAS) |
  459. SM(3, AR_BTCOEX_CTRL_RX_CHAIN_MASK) |
  460. SM(0, AR_BTCOEX_CTRL_1_CHAIN_ACK) |
  461. SM(0, AR_BTCOEX_CTRL_1_CHAIN_BCN) |
  462. SM(0, AR_BTCOEX_CTRL_ONE_STEP_LOOK_AHEAD_EN);
  463. if (is_2g && (AR_SREV_9462_20(ah)) &&
  464. !(mci->config & ATH_MCI_CONFIG_DISABLE_OSLA)) {
  465. regval |= SM(1, AR_BTCOEX_CTRL_ONE_STEP_LOOK_AHEAD_EN);
  466. ath_dbg(common, MCI, "MCI sched one step look ahead\n");
  467. if (!(mci->config &
  468. ATH_MCI_CONFIG_DISABLE_AGGR_THRESH)) {
  469. thresh = MS(mci->config,
  470. ATH_MCI_CONFIG_AGGR_THRESH);
  471. thresh &= 7;
  472. regval |= SM(1,
  473. AR_BTCOEX_CTRL_TIME_TO_NEXT_BT_THRESH_EN);
  474. regval |= SM(thresh, AR_BTCOEX_CTRL_AGGR_THRESH);
  475. REG_RMW_FIELD(ah, AR_MCI_SCHD_TABLE_2,
  476. AR_MCI_SCHD_TABLE_2_HW_BASED, 1);
  477. REG_RMW_FIELD(ah, AR_MCI_SCHD_TABLE_2,
  478. AR_MCI_SCHD_TABLE_2_MEM_BASED, 1);
  479. } else
  480. ath_dbg(common, MCI, "MCI sched aggr thresh: off\n");
  481. } else
  482. ath_dbg(common, MCI, "MCI SCHED one step look ahead off\n");
  483. REG_WRITE(ah, AR_BTCOEX_CTRL, regval);
  484. if (AR_SREV_9462_20(ah)) {
  485. REG_SET_BIT(ah, AR_PHY_GLB_CONTROL,
  486. AR_BTCOEX_CTRL_SPDT_ENABLE);
  487. REG_RMW_FIELD(ah, AR_BTCOEX_CTRL3,
  488. AR_BTCOEX_CTRL3_CONT_INFO_TIMEOUT, 20);
  489. }
  490. REG_RMW_FIELD(ah, AR_BTCOEX_CTRL2, AR_BTCOEX_CTRL2_RX_DEWEIGHT, 1);
  491. REG_RMW_FIELD(ah, AR_PCU_MISC, AR_PCU_BT_ANT_PREVENT_RX, 0);
  492. thresh = MS(mci->config, ATH_MCI_CONFIG_CLK_DIV);
  493. REG_RMW_FIELD(ah, AR_MCI_TX_CTRL, AR_MCI_TX_CTRL_CLK_DIV, thresh);
  494. REG_SET_BIT(ah, AR_BTCOEX_CTRL, AR_BTCOEX_CTRL_MCI_MODE_EN);
  495. /* Resetting the Rx and Tx paths of MCI */
  496. regval = REG_READ(ah, AR_MCI_COMMAND2);
  497. regval |= SM(1, AR_MCI_COMMAND2_RESET_TX);
  498. REG_WRITE(ah, AR_MCI_COMMAND2, regval);
  499. udelay(1);
  500. regval &= ~SM(1, AR_MCI_COMMAND2_RESET_TX);
  501. REG_WRITE(ah, AR_MCI_COMMAND2, regval);
  502. if (is_full_sleep) {
  503. ar9003_mci_mute_bt(ah);
  504. udelay(100);
  505. }
  506. regval |= SM(1, AR_MCI_COMMAND2_RESET_RX);
  507. REG_WRITE(ah, AR_MCI_COMMAND2, regval);
  508. udelay(1);
  509. regval &= ~SM(1, AR_MCI_COMMAND2_RESET_RX);
  510. REG_WRITE(ah, AR_MCI_COMMAND2, regval);
  511. ar9003_mci_state(ah, MCI_STATE_INIT_GPM_OFFSET, NULL);
  512. REG_WRITE(ah, AR_MCI_MSG_ATTRIBUTES_TABLE,
  513. (SM(0xe801, AR_MCI_MSG_ATTRIBUTES_TABLE_INVALID_HDR) |
  514. SM(0x0000, AR_MCI_MSG_ATTRIBUTES_TABLE_CHECKSUM)));
  515. REG_CLR_BIT(ah, AR_MCI_TX_CTRL,
  516. AR_MCI_TX_CTRL_DISABLE_LNA_UPDATE);
  517. if (AR_SREV_9462_20_OR_LATER(ah))
  518. ar9003_mci_observation_set_up(ah);
  519. mci->ready = true;
  520. ar9003_mci_prep_interface(ah);
  521. if (en_int)
  522. ar9003_mci_enable_interrupt(ah);
  523. }
  524. void ar9003_mci_mute_bt(struct ath_hw *ah)
  525. {
  526. struct ath_common *common = ath9k_hw_common(ah);
  527. if (!ATH9K_HW_CAP_MCI)
  528. return;
  529. /* disable all MCI messages */
  530. REG_WRITE(ah, AR_MCI_MSG_ATTRIBUTES_TABLE, 0xffff0000);
  531. REG_WRITE(ah, AR_BTCOEX_WL_WEIGHTS0, 0xffffffff);
  532. REG_WRITE(ah, AR_BTCOEX_WL_WEIGHTS1, 0xffffffff);
  533. REG_WRITE(ah, AR_BTCOEX_WL_WEIGHTS2, 0xffffffff);
  534. REG_WRITE(ah, AR_BTCOEX_WL_WEIGHTS3, 0xffffffff);
  535. REG_SET_BIT(ah, AR_MCI_TX_CTRL, AR_MCI_TX_CTRL_DISABLE_LNA_UPDATE);
  536. /* wait pending HW messages to flush out */
  537. udelay(10);
  538. /*
  539. * Send LNA_TAKE and SYS_SLEEPING when
  540. * 1. reset not after resuming from full sleep
  541. * 2. before reset MCI RX, to quiet BT and avoid MCI RX misalignment
  542. */
  543. ath_dbg(common, MCI, "MCI Send LNA take\n");
  544. ar9003_mci_send_lna_take(ah, true);
  545. udelay(5);
  546. ath_dbg(common, MCI, "MCI Send sys sleeping\n");
  547. ar9003_mci_send_sys_sleeping(ah, true);
  548. }
  549. void ar9003_mci_sync_bt_state(struct ath_hw *ah)
  550. {
  551. struct ath_common *common = ath9k_hw_common(ah);
  552. struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
  553. u32 cur_bt_state;
  554. if (!ATH9K_HW_CAP_MCI)
  555. return;
  556. cur_bt_state = ar9003_mci_state(ah, MCI_STATE_REMOTE_SLEEP, NULL);
  557. if (mci->bt_state != cur_bt_state) {
  558. ath_dbg(common, MCI,
  559. "MCI BT state mismatches. old: %d, new: %d\n",
  560. mci->bt_state, cur_bt_state);
  561. mci->bt_state = cur_bt_state;
  562. }
  563. if (mci->bt_state != MCI_BT_SLEEP) {
  564. ar9003_mci_send_coex_version_query(ah, true);
  565. ar9003_mci_send_coex_wlan_channels(ah, true);
  566. if (mci->unhalt_bt_gpm == true) {
  567. ath_dbg(common, MCI, "MCI unhalt BT GPM\n");
  568. ar9003_mci_send_coex_halt_bt_gpm(ah, false, true);
  569. }
  570. }
  571. }
  572. static void ar9003_mci_send_2g5g_status(struct ath_hw *ah, bool wait_done)
  573. {
  574. struct ath_common *common = ath9k_hw_common(ah);
  575. struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
  576. u32 new_flags, to_set, to_clear;
  577. if (AR_SREV_9462_20(ah) &&
  578. mci->update_2g5g &&
  579. (mci->bt_state != MCI_BT_SLEEP)) {
  580. if (mci->is_2g) {
  581. new_flags = MCI_2G_FLAGS;
  582. to_clear = MCI_2G_FLAGS_CLEAR_MASK;
  583. to_set = MCI_2G_FLAGS_SET_MASK;
  584. } else {
  585. new_flags = MCI_5G_FLAGS;
  586. to_clear = MCI_5G_FLAGS_CLEAR_MASK;
  587. to_set = MCI_5G_FLAGS_SET_MASK;
  588. }
  589. ath_dbg(common, MCI,
  590. "MCI BT_MCI_FLAGS: %s 0x%08x clr=0x%08x, set=0x%08x\n",
  591. mci->is_2g ? "2G" : "5G", new_flags, to_clear, to_set);
  592. if (to_clear)
  593. ar9003_mci_send_coex_bt_flags(ah, wait_done,
  594. MCI_GPM_COEX_BT_FLAGS_CLEAR, to_clear);
  595. if (to_set)
  596. ar9003_mci_send_coex_bt_flags(ah, wait_done,
  597. MCI_GPM_COEX_BT_FLAGS_SET, to_set);
  598. }
  599. }
  600. static void ar9003_mci_queue_unsent_gpm(struct ath_hw *ah, u8 header,
  601. u32 *payload, bool queue)
  602. {
  603. struct ath_common *common = ath9k_hw_common(ah);
  604. struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
  605. u8 type, opcode;
  606. if (queue) {
  607. if (payload)
  608. ath_dbg(common, MCI,
  609. "MCI ERROR: Send fail: %02x: %02x %02x %02x\n",
  610. header,
  611. *(((u8 *)payload) + 4),
  612. *(((u8 *)payload) + 5),
  613. *(((u8 *)payload) + 6));
  614. else
  615. ath_dbg(common, MCI, "MCI ERROR: Send fail: %02x\n",
  616. header);
  617. }
  618. /* check if the message is to be queued */
  619. if (header != MCI_GPM)
  620. return;
  621. type = MCI_GPM_TYPE(payload);
  622. opcode = MCI_GPM_OPCODE(payload);
  623. if (type != MCI_GPM_COEX_AGENT)
  624. return;
  625. switch (opcode) {
  626. case MCI_GPM_COEX_BT_UPDATE_FLAGS:
  627. if (*(((u8 *)payload) + MCI_GPM_COEX_B_BT_FLAGS_OP) ==
  628. MCI_GPM_COEX_BT_FLAGS_READ)
  629. break;
  630. mci->update_2g5g = queue;
  631. if (queue)
  632. ath_dbg(common, MCI,
  633. "MCI BT_MCI_FLAGS: 2G5G status <queued> %s\n",
  634. mci->is_2g ? "2G" : "5G");
  635. else
  636. ath_dbg(common, MCI,
  637. "MCI BT_MCI_FLAGS: 2G5G status <sent> %s\n",
  638. mci->is_2g ? "2G" : "5G");
  639. break;
  640. case MCI_GPM_COEX_WLAN_CHANNELS:
  641. mci->wlan_channels_update = queue;
  642. if (queue)
  643. ath_dbg(common, MCI, "MCI WLAN channel map <queued>\n");
  644. else
  645. ath_dbg(common, MCI, "MCI WLAN channel map <sent>\n");
  646. break;
  647. case MCI_GPM_COEX_HALT_BT_GPM:
  648. if (*(((u8 *)payload) + MCI_GPM_COEX_B_HALT_STATE) ==
  649. MCI_GPM_COEX_BT_GPM_UNHALT) {
  650. mci->unhalt_bt_gpm = queue;
  651. if (queue)
  652. ath_dbg(common, MCI,
  653. "MCI UNHALT BT GPM <queued>\n");
  654. else {
  655. mci->halted_bt_gpm = false;
  656. ath_dbg(common, MCI,
  657. "MCI UNHALT BT GPM <sent>\n");
  658. }
  659. }
  660. if (*(((u8 *)payload) + MCI_GPM_COEX_B_HALT_STATE) ==
  661. MCI_GPM_COEX_BT_GPM_HALT) {
  662. mci->halted_bt_gpm = !queue;
  663. if (queue)
  664. ath_dbg(common, MCI,
  665. "MCI HALT BT GPM <not sent>\n");
  666. else
  667. ath_dbg(common, MCI,
  668. "MCI UNHALT BT GPM <sent>\n");
  669. }
  670. break;
  671. default:
  672. break;
  673. }
  674. }
  675. void ar9003_mci_2g5g_switch(struct ath_hw *ah, bool wait_done)
  676. {
  677. struct ath_common *common = ath9k_hw_common(ah);
  678. struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
  679. if (!ATH9K_HW_CAP_MCI)
  680. return;
  681. if (mci->update_2g5g) {
  682. if (mci->is_2g) {
  683. ar9003_mci_send_2g5g_status(ah, true);
  684. ath_dbg(common, MCI, "MCI Send LNA trans\n");
  685. ar9003_mci_send_lna_transfer(ah, true);
  686. udelay(5);
  687. REG_CLR_BIT(ah, AR_MCI_TX_CTRL,
  688. AR_MCI_TX_CTRL_DISABLE_LNA_UPDATE);
  689. if (AR_SREV_9462_20(ah)) {
  690. REG_CLR_BIT(ah, AR_PHY_GLB_CONTROL,
  691. AR_BTCOEX_CTRL_BT_OWN_SPDT_CTRL);
  692. if (!(mci->config &
  693. ATH_MCI_CONFIG_DISABLE_OSLA)) {
  694. REG_SET_BIT(ah, AR_BTCOEX_CTRL,
  695. AR_BTCOEX_CTRL_ONE_STEP_LOOK_AHEAD_EN);
  696. }
  697. }
  698. } else {
  699. ath_dbg(common, MCI, "MCI Send LNA take\n");
  700. ar9003_mci_send_lna_take(ah, true);
  701. udelay(5);
  702. REG_SET_BIT(ah, AR_MCI_TX_CTRL,
  703. AR_MCI_TX_CTRL_DISABLE_LNA_UPDATE);
  704. if (AR_SREV_9462_20(ah)) {
  705. REG_SET_BIT(ah, AR_PHY_GLB_CONTROL,
  706. AR_BTCOEX_CTRL_BT_OWN_SPDT_CTRL);
  707. REG_CLR_BIT(ah, AR_BTCOEX_CTRL,
  708. AR_BTCOEX_CTRL_ONE_STEP_LOOK_AHEAD_EN);
  709. }
  710. ar9003_mci_send_2g5g_status(ah, true);
  711. }
  712. }
  713. }
  714. bool ar9003_mci_send_message(struct ath_hw *ah, u8 header, u32 flag,
  715. u32 *payload, u8 len, bool wait_done,
  716. bool check_bt)
  717. {
  718. struct ath_common *common = ath9k_hw_common(ah);
  719. struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
  720. bool msg_sent = false;
  721. u32 regval;
  722. u32 saved_mci_int_en;
  723. int i;
  724. if (!ATH9K_HW_CAP_MCI)
  725. return false;
  726. saved_mci_int_en = REG_READ(ah, AR_MCI_INTERRUPT_EN);
  727. regval = REG_READ(ah, AR_BTCOEX_CTRL);
  728. if ((regval == 0xdeadbeef) || !(regval & AR_BTCOEX_CTRL_MCI_MODE_EN)) {
  729. ath_dbg(common, MCI,
  730. "MCI Not sending 0x%x. MCI is not enabled. full_sleep = %d\n",
  731. header,
  732. (ah->power_mode == ATH9K_PM_FULL_SLEEP) ? 1 : 0);
  733. ar9003_mci_queue_unsent_gpm(ah, header, payload, true);
  734. return false;
  735. } else if (check_bt && (mci->bt_state == MCI_BT_SLEEP)) {
  736. ath_dbg(common, MCI,
  737. "MCI Don't send message 0x%x. BT is in sleep state\n",
  738. header);
  739. ar9003_mci_queue_unsent_gpm(ah, header, payload, true);
  740. return false;
  741. }
  742. if (wait_done)
  743. REG_WRITE(ah, AR_MCI_INTERRUPT_EN, 0);
  744. /* Need to clear SW_MSG_DONE raw bit before wait */
  745. REG_WRITE(ah, AR_MCI_INTERRUPT_RAW,
  746. (AR_MCI_INTERRUPT_SW_MSG_DONE |
  747. AR_MCI_INTERRUPT_MSG_FAIL_MASK));
  748. if (payload) {
  749. for (i = 0; (i * 4) < len; i++)
  750. REG_WRITE(ah, (AR_MCI_TX_PAYLOAD0 + i * 4),
  751. *(payload + i));
  752. }
  753. REG_WRITE(ah, AR_MCI_COMMAND0,
  754. (SM((flag & MCI_FLAG_DISABLE_TIMESTAMP),
  755. AR_MCI_COMMAND0_DISABLE_TIMESTAMP) |
  756. SM(len, AR_MCI_COMMAND0_LEN) |
  757. SM(header, AR_MCI_COMMAND0_HEADER)));
  758. if (wait_done &&
  759. !(ar9003_mci_wait_for_interrupt(ah, AR_MCI_INTERRUPT_RAW,
  760. AR_MCI_INTERRUPT_SW_MSG_DONE, 500)))
  761. ar9003_mci_queue_unsent_gpm(ah, header, payload, true);
  762. else {
  763. ar9003_mci_queue_unsent_gpm(ah, header, payload, false);
  764. msg_sent = true;
  765. }
  766. if (wait_done)
  767. REG_WRITE(ah, AR_MCI_INTERRUPT_EN, saved_mci_int_en);
  768. return msg_sent;
  769. }
  770. EXPORT_SYMBOL(ar9003_mci_send_message);
  771. void ar9003_mci_setup(struct ath_hw *ah, u32 gpm_addr, void *gpm_buf,
  772. u16 len, u32 sched_addr)
  773. {
  774. struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
  775. void *sched_buf = (void *)((char *) gpm_buf + (sched_addr - gpm_addr));
  776. if (!ATH9K_HW_CAP_MCI)
  777. return;
  778. mci->gpm_addr = gpm_addr;
  779. mci->gpm_buf = gpm_buf;
  780. mci->gpm_len = len;
  781. mci->sched_addr = sched_addr;
  782. mci->sched_buf = sched_buf;
  783. ar9003_mci_reset(ah, true, true, true);
  784. }
  785. EXPORT_SYMBOL(ar9003_mci_setup);
  786. void ar9003_mci_cleanup(struct ath_hw *ah)
  787. {
  788. struct ath_common *common = ath9k_hw_common(ah);
  789. if (!ATH9K_HW_CAP_MCI)
  790. return;
  791. /* Turn off MCI and Jupiter mode. */
  792. REG_WRITE(ah, AR_BTCOEX_CTRL, 0x00);
  793. ath_dbg(common, MCI, "MCI ar9003_mci_cleanup\n");
  794. ar9003_mci_disable_interrupt(ah);
  795. }
  796. EXPORT_SYMBOL(ar9003_mci_cleanup);
  797. static void ar9003_mci_process_gpm_extra(struct ath_hw *ah, u8 gpm_type,
  798. u8 gpm_opcode, u32 *p_gpm)
  799. {
  800. struct ath_common *common = ath9k_hw_common(ah);
  801. struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
  802. u8 *p_data = (u8 *) p_gpm;
  803. if (gpm_type != MCI_GPM_COEX_AGENT)
  804. return;
  805. switch (gpm_opcode) {
  806. case MCI_GPM_COEX_VERSION_QUERY:
  807. ath_dbg(common, MCI, "MCI Recv GPM COEX Version Query\n");
  808. ar9003_mci_send_coex_version_response(ah, true);
  809. break;
  810. case MCI_GPM_COEX_VERSION_RESPONSE:
  811. ath_dbg(common, MCI, "MCI Recv GPM COEX Version Response\n");
  812. mci->bt_ver_major =
  813. *(p_data + MCI_GPM_COEX_B_MAJOR_VERSION);
  814. mci->bt_ver_minor =
  815. *(p_data + MCI_GPM_COEX_B_MINOR_VERSION);
  816. mci->bt_version_known = true;
  817. ath_dbg(common, MCI, "MCI BT Coex version: %d.%d\n",
  818. mci->bt_ver_major, mci->bt_ver_minor);
  819. break;
  820. case MCI_GPM_COEX_STATUS_QUERY:
  821. ath_dbg(common, MCI,
  822. "MCI Recv GPM COEX Status Query = 0x%02X\n",
  823. *(p_data + MCI_GPM_COEX_B_WLAN_BITMAP));
  824. mci->wlan_channels_update = true;
  825. ar9003_mci_send_coex_wlan_channels(ah, true);
  826. break;
  827. case MCI_GPM_COEX_BT_PROFILE_INFO:
  828. mci->query_bt = true;
  829. ath_dbg(common, MCI, "MCI Recv GPM COEX BT_Profile_Info\n");
  830. break;
  831. case MCI_GPM_COEX_BT_STATUS_UPDATE:
  832. mci->query_bt = true;
  833. ath_dbg(common, MCI,
  834. "MCI Recv GPM COEX BT_Status_Update SEQ=%d (drop&query)\n",
  835. *(p_gpm + 3));
  836. break;
  837. default:
  838. break;
  839. }
  840. }
  841. u32 ar9003_mci_wait_for_gpm(struct ath_hw *ah, u8 gpm_type,
  842. u8 gpm_opcode, int time_out)
  843. {
  844. struct ath_common *common = ath9k_hw_common(ah);
  845. struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
  846. u32 *p_gpm = NULL, mismatch = 0, more_data;
  847. u32 offset;
  848. u8 recv_type = 0, recv_opcode = 0;
  849. bool b_is_bt_cal_done = (gpm_type == MCI_GPM_BT_CAL_DONE);
  850. if (!ATH9K_HW_CAP_MCI)
  851. return 0;
  852. more_data = time_out ? MCI_GPM_NOMORE : MCI_GPM_MORE;
  853. while (time_out > 0) {
  854. if (p_gpm) {
  855. MCI_GPM_RECYCLE(p_gpm);
  856. p_gpm = NULL;
  857. }
  858. if (more_data != MCI_GPM_MORE)
  859. time_out = ar9003_mci_wait_for_interrupt(ah,
  860. AR_MCI_INTERRUPT_RX_MSG_RAW,
  861. AR_MCI_INTERRUPT_RX_MSG_GPM,
  862. time_out);
  863. if (!time_out)
  864. break;
  865. offset = ar9003_mci_state(ah,
  866. MCI_STATE_NEXT_GPM_OFFSET, &more_data);
  867. if (offset == MCI_GPM_INVALID)
  868. continue;
  869. p_gpm = (u32 *) (mci->gpm_buf + offset);
  870. recv_type = MCI_GPM_TYPE(p_gpm);
  871. recv_opcode = MCI_GPM_OPCODE(p_gpm);
  872. if (MCI_GPM_IS_CAL_TYPE(recv_type)) {
  873. if (recv_type == gpm_type) {
  874. if ((gpm_type == MCI_GPM_BT_CAL_DONE) &&
  875. !b_is_bt_cal_done) {
  876. gpm_type = MCI_GPM_BT_CAL_GRANT;
  877. ath_dbg(common, MCI,
  878. "MCI Recv BT_CAL_DONE wait BT_CAL_GRANT\n");
  879. continue;
  880. }
  881. break;
  882. }
  883. } else if ((recv_type == gpm_type) &&
  884. (recv_opcode == gpm_opcode))
  885. break;
  886. /* not expected message */
  887. /*
  888. * check if it's cal_grant
  889. *
  890. * When we're waiting for cal_grant in reset routine,
  891. * it's possible that BT sends out cal_request at the
  892. * same time. Since BT's calibration doesn't happen
  893. * that often, we'll let BT completes calibration then
  894. * we continue to wait for cal_grant from BT.
  895. * Orginal: Wait BT_CAL_GRANT.
  896. * New: Receive BT_CAL_REQ -> send WLAN_CAL_GRANT->wait
  897. * BT_CAL_DONE -> Wait BT_CAL_GRANT.
  898. */
  899. if ((gpm_type == MCI_GPM_BT_CAL_GRANT) &&
  900. (recv_type == MCI_GPM_BT_CAL_REQ)) {
  901. u32 payload[4] = {0, 0, 0, 0};
  902. gpm_type = MCI_GPM_BT_CAL_DONE;
  903. ath_dbg(common, MCI,
  904. "MCI Rcv BT_CAL_REQ, send WLAN_CAL_GRANT\n");
  905. MCI_GPM_SET_CAL_TYPE(payload,
  906. MCI_GPM_WLAN_CAL_GRANT);
  907. ar9003_mci_send_message(ah, MCI_GPM, 0, payload, 16,
  908. false, false);
  909. ath_dbg(common, MCI, "MCI now wait for BT_CAL_DONE\n");
  910. continue;
  911. } else {
  912. ath_dbg(common, MCI, "MCI GPM subtype not match 0x%x\n",
  913. *(p_gpm + 1));
  914. mismatch++;
  915. ar9003_mci_process_gpm_extra(ah, recv_type,
  916. recv_opcode, p_gpm);
  917. }
  918. }
  919. if (p_gpm) {
  920. MCI_GPM_RECYCLE(p_gpm);
  921. p_gpm = NULL;
  922. }
  923. if (time_out <= 0) {
  924. time_out = 0;
  925. ath_dbg(common, MCI,
  926. "MCI GPM received timeout, mismatch = %d\n", mismatch);
  927. } else
  928. ath_dbg(common, MCI, "MCI Receive GPM type=0x%x, code=0x%x\n",
  929. gpm_type, gpm_opcode);
  930. while (more_data == MCI_GPM_MORE) {
  931. ath_dbg(common, MCI, "MCI discard remaining GPM\n");
  932. offset = ar9003_mci_state(ah, MCI_STATE_NEXT_GPM_OFFSET,
  933. &more_data);
  934. if (offset == MCI_GPM_INVALID)
  935. break;
  936. p_gpm = (u32 *) (mci->gpm_buf + offset);
  937. recv_type = MCI_GPM_TYPE(p_gpm);
  938. recv_opcode = MCI_GPM_OPCODE(p_gpm);
  939. if (!MCI_GPM_IS_CAL_TYPE(recv_type))
  940. ar9003_mci_process_gpm_extra(ah, recv_type,
  941. recv_opcode, p_gpm);
  942. MCI_GPM_RECYCLE(p_gpm);
  943. }
  944. return time_out;
  945. }
  946. u32 ar9003_mci_state(struct ath_hw *ah, u32 state_type, u32 *p_data)
  947. {
  948. struct ath_common *common = ath9k_hw_common(ah);
  949. struct ath9k_hw_mci *mci = &ah->btcoex_hw.mci;
  950. u32 value = 0, more_gpm = 0, gpm_ptr;
  951. u8 query_type;
  952. if (!ATH9K_HW_CAP_MCI)
  953. return 0;
  954. switch (state_type) {
  955. case MCI_STATE_ENABLE:
  956. if (mci->ready) {
  957. value = REG_READ(ah, AR_BTCOEX_CTRL);
  958. if ((value == 0xdeadbeef) || (value == 0xffffffff))
  959. value = 0;
  960. }
  961. value &= AR_BTCOEX_CTRL_MCI_MODE_EN;
  962. break;
  963. case MCI_STATE_INIT_GPM_OFFSET:
  964. value = MS(REG_READ(ah, AR_MCI_GPM_1), AR_MCI_GPM_WRITE_PTR);
  965. ath_dbg(common, MCI, "MCI GPM initial WRITE_PTR=%d\n", value);
  966. mci->gpm_idx = value;
  967. break;
  968. case MCI_STATE_NEXT_GPM_OFFSET:
  969. case MCI_STATE_LAST_GPM_OFFSET:
  970. /*
  971. * This could be useful to avoid new GPM message interrupt which
  972. * may lead to spurious interrupt after power sleep, or multiple
  973. * entry of ath_mci_intr().
  974. * Adding empty GPM check by returning HAL_MCI_GPM_INVALID can
  975. * alleviate this effect, but clearing GPM RX interrupt bit is
  976. * safe, because whether this is called from hw or driver code
  977. * there must be an interrupt bit set/triggered initially
  978. */
  979. REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_RAW,
  980. AR_MCI_INTERRUPT_RX_MSG_GPM);
  981. gpm_ptr = MS(REG_READ(ah, AR_MCI_GPM_1), AR_MCI_GPM_WRITE_PTR);
  982. value = gpm_ptr;
  983. if (value == 0)
  984. value = mci->gpm_len - 1;
  985. else if (value >= mci->gpm_len) {
  986. if (value != 0xFFFF) {
  987. value = 0;
  988. ath_dbg(common, MCI,
  989. "MCI GPM offset out of range\n");
  990. }
  991. } else
  992. value--;
  993. if (value == 0xFFFF) {
  994. value = MCI_GPM_INVALID;
  995. more_gpm = MCI_GPM_NOMORE;
  996. ath_dbg(common, MCI,
  997. "MCI GPM ptr invalid @ptr=%d, offset=%d, more=GPM_NOMORE\n",
  998. gpm_ptr, value);
  999. } else if (state_type == MCI_STATE_NEXT_GPM_OFFSET) {
  1000. if (gpm_ptr == mci->gpm_idx) {
  1001. value = MCI_GPM_INVALID;
  1002. more_gpm = MCI_GPM_NOMORE;
  1003. ath_dbg(common, MCI,
  1004. "MCI GPM message not available @ptr=%d, @offset=%d, more=GPM_NOMORE\n",
  1005. gpm_ptr, value);
  1006. } else {
  1007. for (;;) {
  1008. u32 temp_index;
  1009. /* skip reserved GPM if any */
  1010. if (value != mci->gpm_idx)
  1011. more_gpm = MCI_GPM_MORE;
  1012. else
  1013. more_gpm = MCI_GPM_NOMORE;
  1014. temp_index = mci->gpm_idx;
  1015. mci->gpm_idx++;
  1016. if (mci->gpm_idx >=
  1017. mci->gpm_len)
  1018. mci->gpm_idx = 0;
  1019. ath_dbg(common, MCI,
  1020. "MCI GPM message got ptr=%d, @offset=%d, more=%d\n",
  1021. gpm_ptr, temp_index,
  1022. (more_gpm == MCI_GPM_MORE));
  1023. if (ar9003_mci_is_gpm_valid(ah,
  1024. temp_index)) {
  1025. value = temp_index;
  1026. break;
  1027. }
  1028. if (more_gpm == MCI_GPM_NOMORE) {
  1029. value = MCI_GPM_INVALID;
  1030. break;
  1031. }
  1032. }
  1033. }
  1034. if (p_data)
  1035. *p_data = more_gpm;
  1036. }
  1037. if (value != MCI_GPM_INVALID)
  1038. value <<= 4;
  1039. break;
  1040. case MCI_STATE_LAST_SCHD_MSG_OFFSET:
  1041. value = MS(REG_READ(ah, AR_MCI_RX_STATUS),
  1042. AR_MCI_RX_LAST_SCHD_MSG_INDEX);
  1043. /* Make it in bytes */
  1044. value <<= 4;
  1045. break;
  1046. case MCI_STATE_REMOTE_SLEEP:
  1047. value = MS(REG_READ(ah, AR_MCI_RX_STATUS),
  1048. AR_MCI_RX_REMOTE_SLEEP) ?
  1049. MCI_BT_SLEEP : MCI_BT_AWAKE;
  1050. break;
  1051. case MCI_STATE_CONT_RSSI_POWER:
  1052. value = MS(mci->cont_status, AR_MCI_CONT_RSSI_POWER);
  1053. break;
  1054. case MCI_STATE_CONT_PRIORITY:
  1055. value = MS(mci->cont_status, AR_MCI_CONT_RRIORITY);
  1056. break;
  1057. case MCI_STATE_CONT_TXRX:
  1058. value = MS(mci->cont_status, AR_MCI_CONT_TXRX);
  1059. break;
  1060. case MCI_STATE_BT:
  1061. value = mci->bt_state;
  1062. break;
  1063. case MCI_STATE_SET_BT_SLEEP:
  1064. mci->bt_state = MCI_BT_SLEEP;
  1065. break;
  1066. case MCI_STATE_SET_BT_AWAKE:
  1067. mci->bt_state = MCI_BT_AWAKE;
  1068. ar9003_mci_send_coex_version_query(ah, true);
  1069. ar9003_mci_send_coex_wlan_channels(ah, true);
  1070. if (mci->unhalt_bt_gpm) {
  1071. ath_dbg(common, MCI, "MCI unhalt BT GPM\n");
  1072. ar9003_mci_send_coex_halt_bt_gpm(ah, false, true);
  1073. }
  1074. ar9003_mci_2g5g_switch(ah, true);
  1075. break;
  1076. case MCI_STATE_SET_BT_CAL_START:
  1077. mci->bt_state = MCI_BT_CAL_START;
  1078. break;
  1079. case MCI_STATE_SET_BT_CAL:
  1080. mci->bt_state = MCI_BT_CAL;
  1081. break;
  1082. case MCI_STATE_RESET_REQ_WAKE:
  1083. ar9003_mci_reset_req_wakeup(ah);
  1084. mci->update_2g5g = true;
  1085. if ((AR_SREV_9462_20_OR_LATER(ah)) &&
  1086. (mci->config & ATH_MCI_CONFIG_MCI_OBS_MASK)) {
  1087. /* Check if we still have control of the GPIOs */
  1088. if ((REG_READ(ah, AR_GLB_GPIO_CONTROL) &
  1089. ATH_MCI_CONFIG_MCI_OBS_GPIO) !=
  1090. ATH_MCI_CONFIG_MCI_OBS_GPIO) {
  1091. ath_dbg(common, MCI,
  1092. "MCI reconfigure observation\n");
  1093. ar9003_mci_observation_set_up(ah);
  1094. }
  1095. }
  1096. break;
  1097. case MCI_STATE_SEND_WLAN_COEX_VERSION:
  1098. ar9003_mci_send_coex_version_response(ah, true);
  1099. break;
  1100. case MCI_STATE_SET_BT_COEX_VERSION:
  1101. if (!p_data)
  1102. ath_dbg(common, MCI,
  1103. "MCI Set BT Coex version with NULL data!!\n");
  1104. else {
  1105. mci->bt_ver_major = (*p_data >> 8) & 0xff;
  1106. mci->bt_ver_minor = (*p_data) & 0xff;
  1107. mci->bt_version_known = true;
  1108. ath_dbg(common, MCI, "MCI BT version set: %d.%d\n",
  1109. mci->bt_ver_major, mci->bt_ver_minor);
  1110. }
  1111. break;
  1112. case MCI_STATE_SEND_WLAN_CHANNELS:
  1113. if (p_data) {
  1114. if (((mci->wlan_channels[1] & 0xffff0000) ==
  1115. (*(p_data + 1) & 0xffff0000)) &&
  1116. (mci->wlan_channels[2] == *(p_data + 2)) &&
  1117. (mci->wlan_channels[3] == *(p_data + 3)))
  1118. break;
  1119. mci->wlan_channels[0] = *p_data++;
  1120. mci->wlan_channels[1] = *p_data++;
  1121. mci->wlan_channels[2] = *p_data++;
  1122. mci->wlan_channels[3] = *p_data++;
  1123. }
  1124. mci->wlan_channels_update = true;
  1125. ar9003_mci_send_coex_wlan_channels(ah, true);
  1126. break;
  1127. case MCI_STATE_SEND_VERSION_QUERY:
  1128. ar9003_mci_send_coex_version_query(ah, true);
  1129. break;
  1130. case MCI_STATE_SEND_STATUS_QUERY:
  1131. query_type = MCI_GPM_COEX_QUERY_BT_TOPOLOGY;
  1132. ar9003_mci_send_coex_bt_status_query(ah, true, query_type);
  1133. break;
  1134. case MCI_STATE_NEED_FLUSH_BT_INFO:
  1135. /*
  1136. * btcoex_hw.mci.unhalt_bt_gpm means whether it's
  1137. * needed to send UNHALT message. It's set whenever
  1138. * there's a request to send HALT message.
  1139. * mci_halted_bt_gpm means whether HALT message is sent
  1140. * out successfully.
  1141. *
  1142. * Checking (mci_unhalt_bt_gpm == false) instead of
  1143. * checking (ah->mci_halted_bt_gpm == false) will make
  1144. * sure currently is in UNHALT-ed mode and BT can
  1145. * respond to status query.
  1146. */
  1147. value = (!mci->unhalt_bt_gpm &&
  1148. mci->need_flush_btinfo) ? 1 : 0;
  1149. if (p_data)
  1150. mci->need_flush_btinfo =
  1151. (*p_data != 0) ? true : false;
  1152. break;
  1153. case MCI_STATE_RECOVER_RX:
  1154. ath_dbg(common, MCI, "MCI hw RECOVER_RX\n");
  1155. ar9003_mci_prep_interface(ah);
  1156. mci->query_bt = true;
  1157. mci->need_flush_btinfo = true;
  1158. ar9003_mci_send_coex_wlan_channels(ah, true);
  1159. ar9003_mci_2g5g_switch(ah, true);
  1160. break;
  1161. case MCI_STATE_NEED_FTP_STOMP:
  1162. value = !(mci->config & ATH_MCI_CONFIG_DISABLE_FTP_STOMP);
  1163. break;
  1164. case MCI_STATE_NEED_TUNING:
  1165. value = !(mci->config & ATH_MCI_CONFIG_DISABLE_TUNING);
  1166. break;
  1167. default:
  1168. break;
  1169. }
  1170. return value;
  1171. }
  1172. EXPORT_SYMBOL(ar9003_mci_state);