security.c 27 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102
  1. /*
  2. * Security plug functions
  3. *
  4. * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
  5. * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
  6. * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2 of the License, or
  11. * (at your option) any later version.
  12. */
  13. #include <linux/capability.h>
  14. #include <linux/module.h>
  15. #include <linux/init.h>
  16. #include <linux/kernel.h>
  17. #include <linux/security.h>
  18. /* things that live in dummy.c */
  19. extern struct security_operations dummy_security_ops;
  20. extern void security_fixup_ops(struct security_operations *ops);
  21. struct security_operations *security_ops; /* Initialized to NULL */
  22. unsigned long mmap_min_addr; /* 0 means no protection */
  23. static inline int verify(struct security_operations *ops)
  24. {
  25. /* verify the security_operations structure exists */
  26. if (!ops)
  27. return -EINVAL;
  28. security_fixup_ops(ops);
  29. return 0;
  30. }
  31. static void __init do_security_initcalls(void)
  32. {
  33. initcall_t *call;
  34. call = __security_initcall_start;
  35. while (call < __security_initcall_end) {
  36. (*call) ();
  37. call++;
  38. }
  39. }
  40. /**
  41. * security_init - initializes the security framework
  42. *
  43. * This should be called early in the kernel initialization sequence.
  44. */
  45. int __init security_init(void)
  46. {
  47. printk(KERN_INFO "Security Framework initialized\n");
  48. if (verify(&dummy_security_ops)) {
  49. printk(KERN_ERR "%s could not verify "
  50. "dummy_security_ops structure.\n", __FUNCTION__);
  51. return -EIO;
  52. }
  53. security_ops = &dummy_security_ops;
  54. do_security_initcalls();
  55. return 0;
  56. }
  57. /**
  58. * register_security - registers a security framework with the kernel
  59. * @ops: a pointer to the struct security_options that is to be registered
  60. *
  61. * This function is to allow a security module to register itself with the
  62. * kernel security subsystem. Some rudimentary checking is done on the @ops
  63. * value passed to this function.
  64. *
  65. * If there is already a security module registered with the kernel,
  66. * an error will be returned. Otherwise 0 is returned on success.
  67. */
  68. int register_security(struct security_operations *ops)
  69. {
  70. if (verify(ops)) {
  71. printk(KERN_DEBUG "%s could not verify "
  72. "security_operations structure.\n", __FUNCTION__);
  73. return -EINVAL;
  74. }
  75. if (security_ops != &dummy_security_ops)
  76. return -EAGAIN;
  77. security_ops = ops;
  78. return 0;
  79. }
  80. /**
  81. * mod_reg_security - allows security modules to be "stacked"
  82. * @name: a pointer to a string with the name of the security_options to be registered
  83. * @ops: a pointer to the struct security_options that is to be registered
  84. *
  85. * This function allows security modules to be stacked if the currently loaded
  86. * security module allows this to happen. It passes the @name and @ops to the
  87. * register_security function of the currently loaded security module.
  88. *
  89. * The return value depends on the currently loaded security module, with 0 as
  90. * success.
  91. */
  92. int mod_reg_security(const char *name, struct security_operations *ops)
  93. {
  94. if (verify(ops)) {
  95. printk(KERN_INFO "%s could not verify "
  96. "security operations.\n", __FUNCTION__);
  97. return -EINVAL;
  98. }
  99. if (ops == security_ops) {
  100. printk(KERN_INFO "%s security operations "
  101. "already registered.\n", __FUNCTION__);
  102. return -EINVAL;
  103. }
  104. return security_ops->register_security(name, ops);
  105. }
  106. /* Security operations */
  107. int security_ptrace(struct task_struct *parent, struct task_struct *child)
  108. {
  109. return security_ops->ptrace(parent, child);
  110. }
  111. int security_capget(struct task_struct *target,
  112. kernel_cap_t *effective,
  113. kernel_cap_t *inheritable,
  114. kernel_cap_t *permitted)
  115. {
  116. return security_ops->capget(target, effective, inheritable, permitted);
  117. }
  118. int security_capset_check(struct task_struct *target,
  119. kernel_cap_t *effective,
  120. kernel_cap_t *inheritable,
  121. kernel_cap_t *permitted)
  122. {
  123. return security_ops->capset_check(target, effective, inheritable, permitted);
  124. }
  125. void security_capset_set(struct task_struct *target,
  126. kernel_cap_t *effective,
  127. kernel_cap_t *inheritable,
  128. kernel_cap_t *permitted)
  129. {
  130. security_ops->capset_set(target, effective, inheritable, permitted);
  131. }
  132. int security_capable(struct task_struct *tsk, int cap)
  133. {
  134. return security_ops->capable(tsk, cap);
  135. }
  136. int security_acct(struct file *file)
  137. {
  138. return security_ops->acct(file);
  139. }
  140. int security_sysctl(struct ctl_table *table, int op)
  141. {
  142. return security_ops->sysctl(table, op);
  143. }
  144. int security_quotactl(int cmds, int type, int id, struct super_block *sb)
  145. {
  146. return security_ops->quotactl(cmds, type, id, sb);
  147. }
  148. int security_quota_on(struct dentry *dentry)
  149. {
  150. return security_ops->quota_on(dentry);
  151. }
  152. int security_syslog(int type)
  153. {
  154. return security_ops->syslog(type);
  155. }
  156. int security_settime(struct timespec *ts, struct timezone *tz)
  157. {
  158. return security_ops->settime(ts, tz);
  159. }
  160. int security_vm_enough_memory(long pages)
  161. {
  162. return security_ops->vm_enough_memory(current->mm, pages);
  163. }
  164. int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
  165. {
  166. return security_ops->vm_enough_memory(mm, pages);
  167. }
  168. int security_bprm_alloc(struct linux_binprm *bprm)
  169. {
  170. return security_ops->bprm_alloc_security(bprm);
  171. }
  172. void security_bprm_free(struct linux_binprm *bprm)
  173. {
  174. security_ops->bprm_free_security(bprm);
  175. }
  176. void security_bprm_apply_creds(struct linux_binprm *bprm, int unsafe)
  177. {
  178. security_ops->bprm_apply_creds(bprm, unsafe);
  179. }
  180. void security_bprm_post_apply_creds(struct linux_binprm *bprm)
  181. {
  182. security_ops->bprm_post_apply_creds(bprm);
  183. }
  184. int security_bprm_set(struct linux_binprm *bprm)
  185. {
  186. return security_ops->bprm_set_security(bprm);
  187. }
  188. int security_bprm_check(struct linux_binprm *bprm)
  189. {
  190. return security_ops->bprm_check_security(bprm);
  191. }
  192. int security_bprm_secureexec(struct linux_binprm *bprm)
  193. {
  194. return security_ops->bprm_secureexec(bprm);
  195. }
  196. int security_sb_alloc(struct super_block *sb)
  197. {
  198. return security_ops->sb_alloc_security(sb);
  199. }
  200. void security_sb_free(struct super_block *sb)
  201. {
  202. security_ops->sb_free_security(sb);
  203. }
  204. int security_sb_copy_data(struct file_system_type *type, void *orig, void *copy)
  205. {
  206. return security_ops->sb_copy_data(type, orig, copy);
  207. }
  208. int security_sb_kern_mount(struct super_block *sb, void *data)
  209. {
  210. return security_ops->sb_kern_mount(sb, data);
  211. }
  212. int security_sb_statfs(struct dentry *dentry)
  213. {
  214. return security_ops->sb_statfs(dentry);
  215. }
  216. int security_sb_mount(char *dev_name, struct nameidata *nd,
  217. char *type, unsigned long flags, void *data)
  218. {
  219. return security_ops->sb_mount(dev_name, nd, type, flags, data);
  220. }
  221. int security_sb_check_sb(struct vfsmount *mnt, struct nameidata *nd)
  222. {
  223. return security_ops->sb_check_sb(mnt, nd);
  224. }
  225. int security_sb_umount(struct vfsmount *mnt, int flags)
  226. {
  227. return security_ops->sb_umount(mnt, flags);
  228. }
  229. void security_sb_umount_close(struct vfsmount *mnt)
  230. {
  231. security_ops->sb_umount_close(mnt);
  232. }
  233. void security_sb_umount_busy(struct vfsmount *mnt)
  234. {
  235. security_ops->sb_umount_busy(mnt);
  236. }
  237. void security_sb_post_remount(struct vfsmount *mnt, unsigned long flags, void *data)
  238. {
  239. security_ops->sb_post_remount(mnt, flags, data);
  240. }
  241. void security_sb_post_mountroot(void)
  242. {
  243. security_ops->sb_post_mountroot();
  244. }
  245. void security_sb_post_addmount(struct vfsmount *mnt, struct nameidata *mountpoint_nd)
  246. {
  247. security_ops->sb_post_addmount(mnt, mountpoint_nd);
  248. }
  249. int security_sb_pivotroot(struct nameidata *old_nd, struct nameidata *new_nd)
  250. {
  251. return security_ops->sb_pivotroot(old_nd, new_nd);
  252. }
  253. void security_sb_post_pivotroot(struct nameidata *old_nd, struct nameidata *new_nd)
  254. {
  255. security_ops->sb_post_pivotroot(old_nd, new_nd);
  256. }
  257. int security_sb_get_mnt_opts(const struct super_block *sb,
  258. char ***mount_options,
  259. int **flags, int *num_opts)
  260. {
  261. return security_ops->sb_get_mnt_opts(sb, mount_options, flags, num_opts);
  262. }
  263. int security_sb_set_mnt_opts(struct super_block *sb,
  264. char **mount_options,
  265. int *flags, int num_opts)
  266. {
  267. return security_ops->sb_set_mnt_opts(sb, mount_options, flags, num_opts);
  268. }
  269. void security_sb_clone_mnt_opts(const struct super_block *oldsb,
  270. struct super_block *newsb)
  271. {
  272. security_ops->sb_clone_mnt_opts(oldsb, newsb);
  273. }
  274. int security_inode_alloc(struct inode *inode)
  275. {
  276. inode->i_security = NULL;
  277. return security_ops->inode_alloc_security(inode);
  278. }
  279. void security_inode_free(struct inode *inode)
  280. {
  281. security_ops->inode_free_security(inode);
  282. }
  283. int security_inode_init_security(struct inode *inode, struct inode *dir,
  284. char **name, void **value, size_t *len)
  285. {
  286. if (unlikely(IS_PRIVATE(inode)))
  287. return -EOPNOTSUPP;
  288. return security_ops->inode_init_security(inode, dir, name, value, len);
  289. }
  290. EXPORT_SYMBOL(security_inode_init_security);
  291. int security_inode_create(struct inode *dir, struct dentry *dentry, int mode)
  292. {
  293. if (unlikely(IS_PRIVATE(dir)))
  294. return 0;
  295. return security_ops->inode_create(dir, dentry, mode);
  296. }
  297. int security_inode_link(struct dentry *old_dentry, struct inode *dir,
  298. struct dentry *new_dentry)
  299. {
  300. if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
  301. return 0;
  302. return security_ops->inode_link(old_dentry, dir, new_dentry);
  303. }
  304. int security_inode_unlink(struct inode *dir, struct dentry *dentry)
  305. {
  306. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  307. return 0;
  308. return security_ops->inode_unlink(dir, dentry);
  309. }
  310. int security_inode_symlink(struct inode *dir, struct dentry *dentry,
  311. const char *old_name)
  312. {
  313. if (unlikely(IS_PRIVATE(dir)))
  314. return 0;
  315. return security_ops->inode_symlink(dir, dentry, old_name);
  316. }
  317. int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode)
  318. {
  319. if (unlikely(IS_PRIVATE(dir)))
  320. return 0;
  321. return security_ops->inode_mkdir(dir, dentry, mode);
  322. }
  323. int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
  324. {
  325. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  326. return 0;
  327. return security_ops->inode_rmdir(dir, dentry);
  328. }
  329. int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
  330. {
  331. if (unlikely(IS_PRIVATE(dir)))
  332. return 0;
  333. return security_ops->inode_mknod(dir, dentry, mode, dev);
  334. }
  335. int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
  336. struct inode *new_dir, struct dentry *new_dentry)
  337. {
  338. if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
  339. (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
  340. return 0;
  341. return security_ops->inode_rename(old_dir, old_dentry,
  342. new_dir, new_dentry);
  343. }
  344. int security_inode_readlink(struct dentry *dentry)
  345. {
  346. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  347. return 0;
  348. return security_ops->inode_readlink(dentry);
  349. }
  350. int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
  351. {
  352. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  353. return 0;
  354. return security_ops->inode_follow_link(dentry, nd);
  355. }
  356. int security_inode_permission(struct inode *inode, int mask, struct nameidata *nd)
  357. {
  358. if (unlikely(IS_PRIVATE(inode)))
  359. return 0;
  360. return security_ops->inode_permission(inode, mask, nd);
  361. }
  362. int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
  363. {
  364. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  365. return 0;
  366. return security_ops->inode_setattr(dentry, attr);
  367. }
  368. int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
  369. {
  370. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  371. return 0;
  372. return security_ops->inode_getattr(mnt, dentry);
  373. }
  374. void security_inode_delete(struct inode *inode)
  375. {
  376. if (unlikely(IS_PRIVATE(inode)))
  377. return;
  378. security_ops->inode_delete(inode);
  379. }
  380. int security_inode_setxattr(struct dentry *dentry, char *name,
  381. void *value, size_t size, int flags)
  382. {
  383. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  384. return 0;
  385. return security_ops->inode_setxattr(dentry, name, value, size, flags);
  386. }
  387. void security_inode_post_setxattr(struct dentry *dentry, char *name,
  388. void *value, size_t size, int flags)
  389. {
  390. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  391. return;
  392. security_ops->inode_post_setxattr(dentry, name, value, size, flags);
  393. }
  394. int security_inode_getxattr(struct dentry *dentry, char *name)
  395. {
  396. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  397. return 0;
  398. return security_ops->inode_getxattr(dentry, name);
  399. }
  400. int security_inode_listxattr(struct dentry *dentry)
  401. {
  402. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  403. return 0;
  404. return security_ops->inode_listxattr(dentry);
  405. }
  406. int security_inode_removexattr(struct dentry *dentry, char *name)
  407. {
  408. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  409. return 0;
  410. return security_ops->inode_removexattr(dentry, name);
  411. }
  412. int security_inode_need_killpriv(struct dentry *dentry)
  413. {
  414. return security_ops->inode_need_killpriv(dentry);
  415. }
  416. int security_inode_killpriv(struct dentry *dentry)
  417. {
  418. return security_ops->inode_killpriv(dentry);
  419. }
  420. int security_inode_getsecurity(const struct inode *inode, const char *name, void *buffer, size_t size, int err)
  421. {
  422. if (unlikely(IS_PRIVATE(inode)))
  423. return 0;
  424. return security_ops->inode_getsecurity(inode, name, buffer, size, err);
  425. }
  426. int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
  427. {
  428. if (unlikely(IS_PRIVATE(inode)))
  429. return 0;
  430. return security_ops->inode_setsecurity(inode, name, value, size, flags);
  431. }
  432. int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
  433. {
  434. if (unlikely(IS_PRIVATE(inode)))
  435. return 0;
  436. return security_ops->inode_listsecurity(inode, buffer, buffer_size);
  437. }
  438. int security_file_permission(struct file *file, int mask)
  439. {
  440. return security_ops->file_permission(file, mask);
  441. }
  442. int security_file_alloc(struct file *file)
  443. {
  444. return security_ops->file_alloc_security(file);
  445. }
  446. void security_file_free(struct file *file)
  447. {
  448. security_ops->file_free_security(file);
  449. }
  450. int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
  451. {
  452. return security_ops->file_ioctl(file, cmd, arg);
  453. }
  454. int security_file_mmap(struct file *file, unsigned long reqprot,
  455. unsigned long prot, unsigned long flags,
  456. unsigned long addr, unsigned long addr_only)
  457. {
  458. return security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
  459. }
  460. int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
  461. unsigned long prot)
  462. {
  463. return security_ops->file_mprotect(vma, reqprot, prot);
  464. }
  465. int security_file_lock(struct file *file, unsigned int cmd)
  466. {
  467. return security_ops->file_lock(file, cmd);
  468. }
  469. int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
  470. {
  471. return security_ops->file_fcntl(file, cmd, arg);
  472. }
  473. int security_file_set_fowner(struct file *file)
  474. {
  475. return security_ops->file_set_fowner(file);
  476. }
  477. int security_file_send_sigiotask(struct task_struct *tsk,
  478. struct fown_struct *fown, int sig)
  479. {
  480. return security_ops->file_send_sigiotask(tsk, fown, sig);
  481. }
  482. int security_file_receive(struct file *file)
  483. {
  484. return security_ops->file_receive(file);
  485. }
  486. int security_dentry_open(struct file *file)
  487. {
  488. return security_ops->dentry_open(file);
  489. }
  490. int security_task_create(unsigned long clone_flags)
  491. {
  492. return security_ops->task_create(clone_flags);
  493. }
  494. int security_task_alloc(struct task_struct *p)
  495. {
  496. return security_ops->task_alloc_security(p);
  497. }
  498. void security_task_free(struct task_struct *p)
  499. {
  500. security_ops->task_free_security(p);
  501. }
  502. int security_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
  503. {
  504. return security_ops->task_setuid(id0, id1, id2, flags);
  505. }
  506. int security_task_post_setuid(uid_t old_ruid, uid_t old_euid,
  507. uid_t old_suid, int flags)
  508. {
  509. return security_ops->task_post_setuid(old_ruid, old_euid, old_suid, flags);
  510. }
  511. int security_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
  512. {
  513. return security_ops->task_setgid(id0, id1, id2, flags);
  514. }
  515. int security_task_setpgid(struct task_struct *p, pid_t pgid)
  516. {
  517. return security_ops->task_setpgid(p, pgid);
  518. }
  519. int security_task_getpgid(struct task_struct *p)
  520. {
  521. return security_ops->task_getpgid(p);
  522. }
  523. int security_task_getsid(struct task_struct *p)
  524. {
  525. return security_ops->task_getsid(p);
  526. }
  527. void security_task_getsecid(struct task_struct *p, u32 *secid)
  528. {
  529. security_ops->task_getsecid(p, secid);
  530. }
  531. EXPORT_SYMBOL(security_task_getsecid);
  532. int security_task_setgroups(struct group_info *group_info)
  533. {
  534. return security_ops->task_setgroups(group_info);
  535. }
  536. int security_task_setnice(struct task_struct *p, int nice)
  537. {
  538. return security_ops->task_setnice(p, nice);
  539. }
  540. int security_task_setioprio(struct task_struct *p, int ioprio)
  541. {
  542. return security_ops->task_setioprio(p, ioprio);
  543. }
  544. int security_task_getioprio(struct task_struct *p)
  545. {
  546. return security_ops->task_getioprio(p);
  547. }
  548. int security_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
  549. {
  550. return security_ops->task_setrlimit(resource, new_rlim);
  551. }
  552. int security_task_setscheduler(struct task_struct *p,
  553. int policy, struct sched_param *lp)
  554. {
  555. return security_ops->task_setscheduler(p, policy, lp);
  556. }
  557. int security_task_getscheduler(struct task_struct *p)
  558. {
  559. return security_ops->task_getscheduler(p);
  560. }
  561. int security_task_movememory(struct task_struct *p)
  562. {
  563. return security_ops->task_movememory(p);
  564. }
  565. int security_task_kill(struct task_struct *p, struct siginfo *info,
  566. int sig, u32 secid)
  567. {
  568. return security_ops->task_kill(p, info, sig, secid);
  569. }
  570. int security_task_wait(struct task_struct *p)
  571. {
  572. return security_ops->task_wait(p);
  573. }
  574. int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
  575. unsigned long arg4, unsigned long arg5)
  576. {
  577. return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
  578. }
  579. void security_task_reparent_to_init(struct task_struct *p)
  580. {
  581. security_ops->task_reparent_to_init(p);
  582. }
  583. void security_task_to_inode(struct task_struct *p, struct inode *inode)
  584. {
  585. security_ops->task_to_inode(p, inode);
  586. }
  587. int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
  588. {
  589. return security_ops->ipc_permission(ipcp, flag);
  590. }
  591. int security_msg_msg_alloc(struct msg_msg *msg)
  592. {
  593. return security_ops->msg_msg_alloc_security(msg);
  594. }
  595. void security_msg_msg_free(struct msg_msg *msg)
  596. {
  597. security_ops->msg_msg_free_security(msg);
  598. }
  599. int security_msg_queue_alloc(struct msg_queue *msq)
  600. {
  601. return security_ops->msg_queue_alloc_security(msq);
  602. }
  603. void security_msg_queue_free(struct msg_queue *msq)
  604. {
  605. security_ops->msg_queue_free_security(msq);
  606. }
  607. int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
  608. {
  609. return security_ops->msg_queue_associate(msq, msqflg);
  610. }
  611. int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
  612. {
  613. return security_ops->msg_queue_msgctl(msq, cmd);
  614. }
  615. int security_msg_queue_msgsnd(struct msg_queue *msq,
  616. struct msg_msg *msg, int msqflg)
  617. {
  618. return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
  619. }
  620. int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
  621. struct task_struct *target, long type, int mode)
  622. {
  623. return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
  624. }
  625. int security_shm_alloc(struct shmid_kernel *shp)
  626. {
  627. return security_ops->shm_alloc_security(shp);
  628. }
  629. void security_shm_free(struct shmid_kernel *shp)
  630. {
  631. security_ops->shm_free_security(shp);
  632. }
  633. int security_shm_associate(struct shmid_kernel *shp, int shmflg)
  634. {
  635. return security_ops->shm_associate(shp, shmflg);
  636. }
  637. int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
  638. {
  639. return security_ops->shm_shmctl(shp, cmd);
  640. }
  641. int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
  642. {
  643. return security_ops->shm_shmat(shp, shmaddr, shmflg);
  644. }
  645. int security_sem_alloc(struct sem_array *sma)
  646. {
  647. return security_ops->sem_alloc_security(sma);
  648. }
  649. void security_sem_free(struct sem_array *sma)
  650. {
  651. security_ops->sem_free_security(sma);
  652. }
  653. int security_sem_associate(struct sem_array *sma, int semflg)
  654. {
  655. return security_ops->sem_associate(sma, semflg);
  656. }
  657. int security_sem_semctl(struct sem_array *sma, int cmd)
  658. {
  659. return security_ops->sem_semctl(sma, cmd);
  660. }
  661. int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
  662. unsigned nsops, int alter)
  663. {
  664. return security_ops->sem_semop(sma, sops, nsops, alter);
  665. }
  666. void security_d_instantiate(struct dentry *dentry, struct inode *inode)
  667. {
  668. if (unlikely(inode && IS_PRIVATE(inode)))
  669. return;
  670. security_ops->d_instantiate(dentry, inode);
  671. }
  672. EXPORT_SYMBOL(security_d_instantiate);
  673. int security_getprocattr(struct task_struct *p, char *name, char **value)
  674. {
  675. return security_ops->getprocattr(p, name, value);
  676. }
  677. int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
  678. {
  679. return security_ops->setprocattr(p, name, value, size);
  680. }
  681. int security_netlink_send(struct sock *sk, struct sk_buff *skb)
  682. {
  683. return security_ops->netlink_send(sk, skb);
  684. }
  685. int security_netlink_recv(struct sk_buff *skb, int cap)
  686. {
  687. return security_ops->netlink_recv(skb, cap);
  688. }
  689. EXPORT_SYMBOL(security_netlink_recv);
  690. int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
  691. {
  692. return security_ops->secid_to_secctx(secid, secdata, seclen);
  693. }
  694. EXPORT_SYMBOL(security_secid_to_secctx);
  695. void security_release_secctx(char *secdata, u32 seclen)
  696. {
  697. return security_ops->release_secctx(secdata, seclen);
  698. }
  699. EXPORT_SYMBOL(security_release_secctx);
  700. #ifdef CONFIG_SECURITY_NETWORK
  701. int security_unix_stream_connect(struct socket *sock, struct socket *other,
  702. struct sock *newsk)
  703. {
  704. return security_ops->unix_stream_connect(sock, other, newsk);
  705. }
  706. EXPORT_SYMBOL(security_unix_stream_connect);
  707. int security_unix_may_send(struct socket *sock, struct socket *other)
  708. {
  709. return security_ops->unix_may_send(sock, other);
  710. }
  711. EXPORT_SYMBOL(security_unix_may_send);
  712. int security_socket_create(int family, int type, int protocol, int kern)
  713. {
  714. return security_ops->socket_create(family, type, protocol, kern);
  715. }
  716. int security_socket_post_create(struct socket *sock, int family,
  717. int type, int protocol, int kern)
  718. {
  719. return security_ops->socket_post_create(sock, family, type,
  720. protocol, kern);
  721. }
  722. int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
  723. {
  724. return security_ops->socket_bind(sock, address, addrlen);
  725. }
  726. int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
  727. {
  728. return security_ops->socket_connect(sock, address, addrlen);
  729. }
  730. int security_socket_listen(struct socket *sock, int backlog)
  731. {
  732. return security_ops->socket_listen(sock, backlog);
  733. }
  734. int security_socket_accept(struct socket *sock, struct socket *newsock)
  735. {
  736. return security_ops->socket_accept(sock, newsock);
  737. }
  738. void security_socket_post_accept(struct socket *sock, struct socket *newsock)
  739. {
  740. security_ops->socket_post_accept(sock, newsock);
  741. }
  742. int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
  743. {
  744. return security_ops->socket_sendmsg(sock, msg, size);
  745. }
  746. int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
  747. int size, int flags)
  748. {
  749. return security_ops->socket_recvmsg(sock, msg, size, flags);
  750. }
  751. int security_socket_getsockname(struct socket *sock)
  752. {
  753. return security_ops->socket_getsockname(sock);
  754. }
  755. int security_socket_getpeername(struct socket *sock)
  756. {
  757. return security_ops->socket_getpeername(sock);
  758. }
  759. int security_socket_getsockopt(struct socket *sock, int level, int optname)
  760. {
  761. return security_ops->socket_getsockopt(sock, level, optname);
  762. }
  763. int security_socket_setsockopt(struct socket *sock, int level, int optname)
  764. {
  765. return security_ops->socket_setsockopt(sock, level, optname);
  766. }
  767. int security_socket_shutdown(struct socket *sock, int how)
  768. {
  769. return security_ops->socket_shutdown(sock, how);
  770. }
  771. int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
  772. {
  773. return security_ops->socket_sock_rcv_skb(sk, skb);
  774. }
  775. EXPORT_SYMBOL(security_sock_rcv_skb);
  776. int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
  777. int __user *optlen, unsigned len)
  778. {
  779. return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
  780. }
  781. int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
  782. {
  783. return security_ops->socket_getpeersec_dgram(sock, skb, secid);
  784. }
  785. EXPORT_SYMBOL(security_socket_getpeersec_dgram);
  786. int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
  787. {
  788. return security_ops->sk_alloc_security(sk, family, priority);
  789. }
  790. void security_sk_free(struct sock *sk)
  791. {
  792. return security_ops->sk_free_security(sk);
  793. }
  794. void security_sk_clone(const struct sock *sk, struct sock *newsk)
  795. {
  796. return security_ops->sk_clone_security(sk, newsk);
  797. }
  798. void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
  799. {
  800. security_ops->sk_getsecid(sk, &fl->secid);
  801. }
  802. EXPORT_SYMBOL(security_sk_classify_flow);
  803. void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
  804. {
  805. security_ops->req_classify_flow(req, fl);
  806. }
  807. EXPORT_SYMBOL(security_req_classify_flow);
  808. void security_sock_graft(struct sock *sk, struct socket *parent)
  809. {
  810. security_ops->sock_graft(sk, parent);
  811. }
  812. EXPORT_SYMBOL(security_sock_graft);
  813. int security_inet_conn_request(struct sock *sk,
  814. struct sk_buff *skb, struct request_sock *req)
  815. {
  816. return security_ops->inet_conn_request(sk, skb, req);
  817. }
  818. EXPORT_SYMBOL(security_inet_conn_request);
  819. void security_inet_csk_clone(struct sock *newsk,
  820. const struct request_sock *req)
  821. {
  822. security_ops->inet_csk_clone(newsk, req);
  823. }
  824. void security_inet_conn_established(struct sock *sk,
  825. struct sk_buff *skb)
  826. {
  827. security_ops->inet_conn_established(sk, skb);
  828. }
  829. #endif /* CONFIG_SECURITY_NETWORK */
  830. #ifdef CONFIG_SECURITY_NETWORK_XFRM
  831. int security_xfrm_policy_alloc(struct xfrm_policy *xp, struct xfrm_user_sec_ctx *sec_ctx)
  832. {
  833. return security_ops->xfrm_policy_alloc_security(xp, sec_ctx);
  834. }
  835. EXPORT_SYMBOL(security_xfrm_policy_alloc);
  836. int security_xfrm_policy_clone(struct xfrm_policy *old, struct xfrm_policy *new)
  837. {
  838. return security_ops->xfrm_policy_clone_security(old, new);
  839. }
  840. void security_xfrm_policy_free(struct xfrm_policy *xp)
  841. {
  842. security_ops->xfrm_policy_free_security(xp);
  843. }
  844. EXPORT_SYMBOL(security_xfrm_policy_free);
  845. int security_xfrm_policy_delete(struct xfrm_policy *xp)
  846. {
  847. return security_ops->xfrm_policy_delete_security(xp);
  848. }
  849. int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
  850. {
  851. return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
  852. }
  853. EXPORT_SYMBOL(security_xfrm_state_alloc);
  854. int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
  855. struct xfrm_sec_ctx *polsec, u32 secid)
  856. {
  857. if (!polsec)
  858. return 0;
  859. /*
  860. * We want the context to be taken from secid which is usually
  861. * from the sock.
  862. */
  863. return security_ops->xfrm_state_alloc_security(x, NULL, secid);
  864. }
  865. int security_xfrm_state_delete(struct xfrm_state *x)
  866. {
  867. return security_ops->xfrm_state_delete_security(x);
  868. }
  869. EXPORT_SYMBOL(security_xfrm_state_delete);
  870. void security_xfrm_state_free(struct xfrm_state *x)
  871. {
  872. security_ops->xfrm_state_free_security(x);
  873. }
  874. int security_xfrm_policy_lookup(struct xfrm_policy *xp, u32 fl_secid, u8 dir)
  875. {
  876. return security_ops->xfrm_policy_lookup(xp, fl_secid, dir);
  877. }
  878. int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
  879. struct xfrm_policy *xp, struct flowi *fl)
  880. {
  881. return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
  882. }
  883. int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
  884. {
  885. return security_ops->xfrm_decode_session(skb, secid, 1);
  886. }
  887. void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
  888. {
  889. int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0);
  890. BUG_ON(rc);
  891. }
  892. EXPORT_SYMBOL(security_skb_classify_flow);
  893. #endif /* CONFIG_SECURITY_NETWORK_XFRM */
  894. #ifdef CONFIG_KEYS
  895. int security_key_alloc(struct key *key, struct task_struct *tsk, unsigned long flags)
  896. {
  897. return security_ops->key_alloc(key, tsk, flags);
  898. }
  899. void security_key_free(struct key *key)
  900. {
  901. security_ops->key_free(key);
  902. }
  903. int security_key_permission(key_ref_t key_ref,
  904. struct task_struct *context, key_perm_t perm)
  905. {
  906. return security_ops->key_permission(key_ref, context, perm);
  907. }
  908. #endif /* CONFIG_KEYS */