qlge_main.c 107 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965
  1. /*
  2. * QLogic qlge NIC HBA Driver
  3. * Copyright (c) 2003-2008 QLogic Corporation
  4. * See LICENSE.qlge for copyright and licensing details.
  5. * Author: Linux qlge network device driver by
  6. * Ron Mercer <ron.mercer@qlogic.com>
  7. */
  8. #include <linux/kernel.h>
  9. #include <linux/init.h>
  10. #include <linux/types.h>
  11. #include <linux/module.h>
  12. #include <linux/list.h>
  13. #include <linux/pci.h>
  14. #include <linux/dma-mapping.h>
  15. #include <linux/pagemap.h>
  16. #include <linux/sched.h>
  17. #include <linux/slab.h>
  18. #include <linux/dmapool.h>
  19. #include <linux/mempool.h>
  20. #include <linux/spinlock.h>
  21. #include <linux/kthread.h>
  22. #include <linux/interrupt.h>
  23. #include <linux/errno.h>
  24. #include <linux/ioport.h>
  25. #include <linux/in.h>
  26. #include <linux/ip.h>
  27. #include <linux/ipv6.h>
  28. #include <net/ipv6.h>
  29. #include <linux/tcp.h>
  30. #include <linux/udp.h>
  31. #include <linux/if_arp.h>
  32. #include <linux/if_ether.h>
  33. #include <linux/netdevice.h>
  34. #include <linux/etherdevice.h>
  35. #include <linux/ethtool.h>
  36. #include <linux/skbuff.h>
  37. #include <linux/rtnetlink.h>
  38. #include <linux/if_vlan.h>
  39. #include <linux/delay.h>
  40. #include <linux/mm.h>
  41. #include <linux/vmalloc.h>
  42. #include <net/ip6_checksum.h>
  43. #include "qlge.h"
  44. char qlge_driver_name[] = DRV_NAME;
  45. const char qlge_driver_version[] = DRV_VERSION;
  46. MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
  47. MODULE_DESCRIPTION(DRV_STRING " ");
  48. MODULE_LICENSE("GPL");
  49. MODULE_VERSION(DRV_VERSION);
  50. static const u32 default_msg =
  51. NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
  52. /* NETIF_MSG_TIMER | */
  53. NETIF_MSG_IFDOWN |
  54. NETIF_MSG_IFUP |
  55. NETIF_MSG_RX_ERR |
  56. NETIF_MSG_TX_ERR |
  57. NETIF_MSG_TX_QUEUED |
  58. NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS |
  59. /* NETIF_MSG_PKTDATA | */
  60. NETIF_MSG_HW | NETIF_MSG_WOL | 0;
  61. static int debug = 0x00007fff; /* defaults above */
  62. module_param(debug, int, 0);
  63. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  64. #define MSIX_IRQ 0
  65. #define MSI_IRQ 1
  66. #define LEG_IRQ 2
  67. static int irq_type = MSIX_IRQ;
  68. module_param(irq_type, int, MSIX_IRQ);
  69. MODULE_PARM_DESC(irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
  70. static struct pci_device_id qlge_pci_tbl[] __devinitdata = {
  71. {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID)},
  72. {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID1)},
  73. /* required last entry */
  74. {0,}
  75. };
  76. MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
  77. /* This hardware semaphore causes exclusive access to
  78. * resources shared between the NIC driver, MPI firmware,
  79. * FCOE firmware and the FC driver.
  80. */
  81. static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
  82. {
  83. u32 sem_bits = 0;
  84. switch (sem_mask) {
  85. case SEM_XGMAC0_MASK:
  86. sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
  87. break;
  88. case SEM_XGMAC1_MASK:
  89. sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
  90. break;
  91. case SEM_ICB_MASK:
  92. sem_bits = SEM_SET << SEM_ICB_SHIFT;
  93. break;
  94. case SEM_MAC_ADDR_MASK:
  95. sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
  96. break;
  97. case SEM_FLASH_MASK:
  98. sem_bits = SEM_SET << SEM_FLASH_SHIFT;
  99. break;
  100. case SEM_PROBE_MASK:
  101. sem_bits = SEM_SET << SEM_PROBE_SHIFT;
  102. break;
  103. case SEM_RT_IDX_MASK:
  104. sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
  105. break;
  106. case SEM_PROC_REG_MASK:
  107. sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
  108. break;
  109. default:
  110. QPRINTK(qdev, PROBE, ALERT, "Bad Semaphore mask!.\n");
  111. return -EINVAL;
  112. }
  113. ql_write32(qdev, SEM, sem_bits | sem_mask);
  114. return !(ql_read32(qdev, SEM) & sem_bits);
  115. }
  116. int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
  117. {
  118. unsigned int seconds = 3;
  119. do {
  120. if (!ql_sem_trylock(qdev, sem_mask))
  121. return 0;
  122. ssleep(1);
  123. } while (--seconds);
  124. return -ETIMEDOUT;
  125. }
  126. void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
  127. {
  128. ql_write32(qdev, SEM, sem_mask);
  129. ql_read32(qdev, SEM); /* flush */
  130. }
  131. /* This function waits for a specific bit to come ready
  132. * in a given register. It is used mostly by the initialize
  133. * process, but is also used in kernel thread API such as
  134. * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
  135. */
  136. int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
  137. {
  138. u32 temp;
  139. int count = UDELAY_COUNT;
  140. while (count) {
  141. temp = ql_read32(qdev, reg);
  142. /* check for errors */
  143. if (temp & err_bit) {
  144. QPRINTK(qdev, PROBE, ALERT,
  145. "register 0x%.08x access error, value = 0x%.08x!.\n",
  146. reg, temp);
  147. return -EIO;
  148. } else if (temp & bit)
  149. return 0;
  150. udelay(UDELAY_DELAY);
  151. count--;
  152. }
  153. QPRINTK(qdev, PROBE, ALERT,
  154. "Timed out waiting for reg %x to come ready.\n", reg);
  155. return -ETIMEDOUT;
  156. }
  157. /* The CFG register is used to download TX and RX control blocks
  158. * to the chip. This function waits for an operation to complete.
  159. */
  160. static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
  161. {
  162. int count = UDELAY_COUNT;
  163. u32 temp;
  164. while (count) {
  165. temp = ql_read32(qdev, CFG);
  166. if (temp & CFG_LE)
  167. return -EIO;
  168. if (!(temp & bit))
  169. return 0;
  170. udelay(UDELAY_DELAY);
  171. count--;
  172. }
  173. return -ETIMEDOUT;
  174. }
  175. /* Used to issue init control blocks to hw. Maps control block,
  176. * sets address, triggers download, waits for completion.
  177. */
  178. int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
  179. u16 q_id)
  180. {
  181. u64 map;
  182. int status = 0;
  183. int direction;
  184. u32 mask;
  185. u32 value;
  186. direction =
  187. (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
  188. PCI_DMA_FROMDEVICE;
  189. map = pci_map_single(qdev->pdev, ptr, size, direction);
  190. if (pci_dma_mapping_error(qdev->pdev, map)) {
  191. QPRINTK(qdev, IFUP, ERR, "Couldn't map DMA area.\n");
  192. return -ENOMEM;
  193. }
  194. status = ql_wait_cfg(qdev, bit);
  195. if (status) {
  196. QPRINTK(qdev, IFUP, ERR,
  197. "Timed out waiting for CFG to come ready.\n");
  198. goto exit;
  199. }
  200. status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
  201. if (status)
  202. goto exit;
  203. ql_write32(qdev, ICB_L, (u32) map);
  204. ql_write32(qdev, ICB_H, (u32) (map >> 32));
  205. ql_sem_unlock(qdev, SEM_ICB_MASK); /* does flush too */
  206. mask = CFG_Q_MASK | (bit << 16);
  207. value = bit | (q_id << CFG_Q_SHIFT);
  208. ql_write32(qdev, CFG, (mask | value));
  209. /*
  210. * Wait for the bit to clear after signaling hw.
  211. */
  212. status = ql_wait_cfg(qdev, bit);
  213. exit:
  214. pci_unmap_single(qdev->pdev, map, size, direction);
  215. return status;
  216. }
  217. /* Get a specific MAC address from the CAM. Used for debug and reg dump. */
  218. int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
  219. u32 *value)
  220. {
  221. u32 offset = 0;
  222. int status;
  223. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  224. if (status)
  225. return status;
  226. switch (type) {
  227. case MAC_ADDR_TYPE_MULTI_MAC:
  228. case MAC_ADDR_TYPE_CAM_MAC:
  229. {
  230. status =
  231. ql_wait_reg_rdy(qdev,
  232. MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E);
  233. if (status)
  234. goto exit;
  235. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  236. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  237. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  238. status =
  239. ql_wait_reg_rdy(qdev,
  240. MAC_ADDR_IDX, MAC_ADDR_MR, MAC_ADDR_E);
  241. if (status)
  242. goto exit;
  243. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  244. status =
  245. ql_wait_reg_rdy(qdev,
  246. MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E);
  247. if (status)
  248. goto exit;
  249. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  250. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  251. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  252. status =
  253. ql_wait_reg_rdy(qdev,
  254. MAC_ADDR_IDX, MAC_ADDR_MR, MAC_ADDR_E);
  255. if (status)
  256. goto exit;
  257. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  258. if (type == MAC_ADDR_TYPE_CAM_MAC) {
  259. status =
  260. ql_wait_reg_rdy(qdev,
  261. MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E);
  262. if (status)
  263. goto exit;
  264. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  265. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  266. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  267. status =
  268. ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
  269. MAC_ADDR_MR, MAC_ADDR_E);
  270. if (status)
  271. goto exit;
  272. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  273. }
  274. break;
  275. }
  276. case MAC_ADDR_TYPE_VLAN:
  277. case MAC_ADDR_TYPE_MULTI_FLTR:
  278. default:
  279. QPRINTK(qdev, IFUP, CRIT,
  280. "Address type %d not yet supported.\n", type);
  281. status = -EPERM;
  282. }
  283. exit:
  284. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  285. return status;
  286. }
  287. /* Set up a MAC, multicast or VLAN address for the
  288. * inbound frame matching.
  289. */
  290. static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
  291. u16 index)
  292. {
  293. u32 offset = 0;
  294. int status = 0;
  295. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  296. if (status)
  297. return status;
  298. switch (type) {
  299. case MAC_ADDR_TYPE_MULTI_MAC:
  300. case MAC_ADDR_TYPE_CAM_MAC:
  301. {
  302. u32 cam_output;
  303. u32 upper = (addr[0] << 8) | addr[1];
  304. u32 lower =
  305. (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
  306. (addr[5]);
  307. QPRINTK(qdev, IFUP, INFO,
  308. "Adding %s address %pM"
  309. " at index %d in the CAM.\n",
  310. ((type ==
  311. MAC_ADDR_TYPE_MULTI_MAC) ? "MULTICAST" :
  312. "UNICAST"), addr, index);
  313. status =
  314. ql_wait_reg_rdy(qdev,
  315. MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E);
  316. if (status)
  317. goto exit;
  318. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  319. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  320. type); /* type */
  321. ql_write32(qdev, MAC_ADDR_DATA, lower);
  322. status =
  323. ql_wait_reg_rdy(qdev,
  324. MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E);
  325. if (status)
  326. goto exit;
  327. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  328. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  329. type); /* type */
  330. ql_write32(qdev, MAC_ADDR_DATA, upper);
  331. status =
  332. ql_wait_reg_rdy(qdev,
  333. MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E);
  334. if (status)
  335. goto exit;
  336. ql_write32(qdev, MAC_ADDR_IDX, (offset) | /* offset */
  337. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  338. type); /* type */
  339. /* This field should also include the queue id
  340. and possibly the function id. Right now we hardcode
  341. the route field to NIC core.
  342. */
  343. if (type == MAC_ADDR_TYPE_CAM_MAC) {
  344. cam_output = (CAM_OUT_ROUTE_NIC |
  345. (qdev->
  346. func << CAM_OUT_FUNC_SHIFT) |
  347. (qdev->
  348. rss_ring_first_cq_id <<
  349. CAM_OUT_CQ_ID_SHIFT));
  350. if (qdev->vlgrp)
  351. cam_output |= CAM_OUT_RV;
  352. /* route to NIC core */
  353. ql_write32(qdev, MAC_ADDR_DATA, cam_output);
  354. }
  355. break;
  356. }
  357. case MAC_ADDR_TYPE_VLAN:
  358. {
  359. u32 enable_bit = *((u32 *) &addr[0]);
  360. /* For VLAN, the addr actually holds a bit that
  361. * either enables or disables the vlan id we are
  362. * addressing. It's either MAC_ADDR_E on or off.
  363. * That's bit-27 we're talking about.
  364. */
  365. QPRINTK(qdev, IFUP, INFO, "%s VLAN ID %d %s the CAM.\n",
  366. (enable_bit ? "Adding" : "Removing"),
  367. index, (enable_bit ? "to" : "from"));
  368. status =
  369. ql_wait_reg_rdy(qdev,
  370. MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E);
  371. if (status)
  372. goto exit;
  373. ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
  374. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  375. type | /* type */
  376. enable_bit); /* enable/disable */
  377. break;
  378. }
  379. case MAC_ADDR_TYPE_MULTI_FLTR:
  380. default:
  381. QPRINTK(qdev, IFUP, CRIT,
  382. "Address type %d not yet supported.\n", type);
  383. status = -EPERM;
  384. }
  385. exit:
  386. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  387. return status;
  388. }
  389. /* Get a specific frame routing value from the CAM.
  390. * Used for debug and reg dump.
  391. */
  392. int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
  393. {
  394. int status = 0;
  395. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  396. if (status)
  397. goto exit;
  398. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, RT_IDX_E);
  399. if (status)
  400. goto exit;
  401. ql_write32(qdev, RT_IDX,
  402. RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
  403. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, RT_IDX_E);
  404. if (status)
  405. goto exit;
  406. *value = ql_read32(qdev, RT_DATA);
  407. exit:
  408. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  409. return status;
  410. }
  411. /* The NIC function for this chip has 16 routing indexes. Each one can be used
  412. * to route different frame types to various inbound queues. We send broadcast/
  413. * multicast/error frames to the default queue for slow handling,
  414. * and CAM hit/RSS frames to the fast handling queues.
  415. */
  416. static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
  417. int enable)
  418. {
  419. int status;
  420. u32 value = 0;
  421. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  422. if (status)
  423. return status;
  424. QPRINTK(qdev, IFUP, DEBUG,
  425. "%s %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s mask %s the routing reg.\n",
  426. (enable ? "Adding" : "Removing"),
  427. ((index == RT_IDX_ALL_ERR_SLOT) ? "MAC ERROR/ALL ERROR" : ""),
  428. ((index == RT_IDX_IP_CSUM_ERR_SLOT) ? "IP CSUM ERROR" : ""),
  429. ((index ==
  430. RT_IDX_TCP_UDP_CSUM_ERR_SLOT) ? "TCP/UDP CSUM ERROR" : ""),
  431. ((index == RT_IDX_BCAST_SLOT) ? "BROADCAST" : ""),
  432. ((index == RT_IDX_MCAST_MATCH_SLOT) ? "MULTICAST MATCH" : ""),
  433. ((index == RT_IDX_ALLMULTI_SLOT) ? "ALL MULTICAST MATCH" : ""),
  434. ((index == RT_IDX_UNUSED6_SLOT) ? "UNUSED6" : ""),
  435. ((index == RT_IDX_UNUSED7_SLOT) ? "UNUSED7" : ""),
  436. ((index == RT_IDX_RSS_MATCH_SLOT) ? "RSS ALL/IPV4 MATCH" : ""),
  437. ((index == RT_IDX_RSS_IPV6_SLOT) ? "RSS IPV6" : ""),
  438. ((index == RT_IDX_RSS_TCP4_SLOT) ? "RSS TCP4" : ""),
  439. ((index == RT_IDX_RSS_TCP6_SLOT) ? "RSS TCP6" : ""),
  440. ((index == RT_IDX_CAM_HIT_SLOT) ? "CAM HIT" : ""),
  441. ((index == RT_IDX_UNUSED013) ? "UNUSED13" : ""),
  442. ((index == RT_IDX_UNUSED014) ? "UNUSED14" : ""),
  443. ((index == RT_IDX_PROMISCUOUS_SLOT) ? "PROMISCUOUS" : ""),
  444. (enable ? "to" : "from"));
  445. switch (mask) {
  446. case RT_IDX_CAM_HIT:
  447. {
  448. value = RT_IDX_DST_CAM_Q | /* dest */
  449. RT_IDX_TYPE_NICQ | /* type */
  450. (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
  451. break;
  452. }
  453. case RT_IDX_VALID: /* Promiscuous Mode frames. */
  454. {
  455. value = RT_IDX_DST_DFLT_Q | /* dest */
  456. RT_IDX_TYPE_NICQ | /* type */
  457. (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
  458. break;
  459. }
  460. case RT_IDX_ERR: /* Pass up MAC,IP,TCP/UDP error frames. */
  461. {
  462. value = RT_IDX_DST_DFLT_Q | /* dest */
  463. RT_IDX_TYPE_NICQ | /* type */
  464. (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
  465. break;
  466. }
  467. case RT_IDX_BCAST: /* Pass up Broadcast frames to default Q. */
  468. {
  469. value = RT_IDX_DST_DFLT_Q | /* dest */
  470. RT_IDX_TYPE_NICQ | /* type */
  471. (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
  472. break;
  473. }
  474. case RT_IDX_MCAST: /* Pass up All Multicast frames. */
  475. {
  476. value = RT_IDX_DST_CAM_Q | /* dest */
  477. RT_IDX_TYPE_NICQ | /* type */
  478. (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
  479. break;
  480. }
  481. case RT_IDX_MCAST_MATCH: /* Pass up matched Multicast frames. */
  482. {
  483. value = RT_IDX_DST_CAM_Q | /* dest */
  484. RT_IDX_TYPE_NICQ | /* type */
  485. (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
  486. break;
  487. }
  488. case RT_IDX_RSS_MATCH: /* Pass up matched RSS frames. */
  489. {
  490. value = RT_IDX_DST_RSS | /* dest */
  491. RT_IDX_TYPE_NICQ | /* type */
  492. (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
  493. break;
  494. }
  495. case 0: /* Clear the E-bit on an entry. */
  496. {
  497. value = RT_IDX_DST_DFLT_Q | /* dest */
  498. RT_IDX_TYPE_NICQ | /* type */
  499. (index << RT_IDX_IDX_SHIFT);/* index */
  500. break;
  501. }
  502. default:
  503. QPRINTK(qdev, IFUP, ERR, "Mask type %d not yet supported.\n",
  504. mask);
  505. status = -EPERM;
  506. goto exit;
  507. }
  508. if (value) {
  509. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
  510. if (status)
  511. goto exit;
  512. value |= (enable ? RT_IDX_E : 0);
  513. ql_write32(qdev, RT_IDX, value);
  514. ql_write32(qdev, RT_DATA, enable ? mask : 0);
  515. }
  516. exit:
  517. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  518. return status;
  519. }
  520. static void ql_enable_interrupts(struct ql_adapter *qdev)
  521. {
  522. ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
  523. }
  524. static void ql_disable_interrupts(struct ql_adapter *qdev)
  525. {
  526. ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
  527. }
  528. /* If we're running with multiple MSI-X vectors then we enable on the fly.
  529. * Otherwise, we may have multiple outstanding workers and don't want to
  530. * enable until the last one finishes. In this case, the irq_cnt gets
  531. * incremented everytime we queue a worker and decremented everytime
  532. * a worker finishes. Once it hits zero we enable the interrupt.
  533. */
  534. u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
  535. {
  536. u32 var = 0;
  537. unsigned long hw_flags = 0;
  538. struct intr_context *ctx = qdev->intr_context + intr;
  539. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
  540. /* Always enable if we're MSIX multi interrupts and
  541. * it's not the default (zeroeth) interrupt.
  542. */
  543. ql_write32(qdev, INTR_EN,
  544. ctx->intr_en_mask);
  545. var = ql_read32(qdev, STS);
  546. return var;
  547. }
  548. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  549. if (atomic_dec_and_test(&ctx->irq_cnt)) {
  550. ql_write32(qdev, INTR_EN,
  551. ctx->intr_en_mask);
  552. var = ql_read32(qdev, STS);
  553. }
  554. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  555. return var;
  556. }
  557. static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
  558. {
  559. u32 var = 0;
  560. unsigned long hw_flags;
  561. struct intr_context *ctx;
  562. /* HW disables for us if we're MSIX multi interrupts and
  563. * it's not the default (zeroeth) interrupt.
  564. */
  565. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
  566. return 0;
  567. ctx = qdev->intr_context + intr;
  568. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  569. if (!atomic_read(&ctx->irq_cnt)) {
  570. ql_write32(qdev, INTR_EN,
  571. ctx->intr_dis_mask);
  572. var = ql_read32(qdev, STS);
  573. }
  574. atomic_inc(&ctx->irq_cnt);
  575. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  576. return var;
  577. }
  578. static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
  579. {
  580. int i;
  581. for (i = 0; i < qdev->intr_count; i++) {
  582. /* The enable call does a atomic_dec_and_test
  583. * and enables only if the result is zero.
  584. * So we precharge it here.
  585. */
  586. if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
  587. i == 0))
  588. atomic_set(&qdev->intr_context[i].irq_cnt, 1);
  589. ql_enable_completion_interrupt(qdev, i);
  590. }
  591. }
  592. static int ql_read_flash_word(struct ql_adapter *qdev, int offset, u32 *data)
  593. {
  594. int status = 0;
  595. /* wait for reg to come ready */
  596. status = ql_wait_reg_rdy(qdev,
  597. FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
  598. if (status)
  599. goto exit;
  600. /* set up for reg read */
  601. ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
  602. /* wait for reg to come ready */
  603. status = ql_wait_reg_rdy(qdev,
  604. FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
  605. if (status)
  606. goto exit;
  607. /* get the data */
  608. *data = ql_read32(qdev, FLASH_DATA);
  609. exit:
  610. return status;
  611. }
  612. static int ql_get_flash_params(struct ql_adapter *qdev)
  613. {
  614. int i;
  615. int status;
  616. u32 *p = (u32 *)&qdev->flash;
  617. if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
  618. return -ETIMEDOUT;
  619. for (i = 0; i < sizeof(qdev->flash) / sizeof(u32); i++, p++) {
  620. status = ql_read_flash_word(qdev, i, p);
  621. if (status) {
  622. QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
  623. goto exit;
  624. }
  625. }
  626. exit:
  627. ql_sem_unlock(qdev, SEM_FLASH_MASK);
  628. return status;
  629. }
  630. /* xgmac register are located behind the xgmac_addr and xgmac_data
  631. * register pair. Each read/write requires us to wait for the ready
  632. * bit before reading/writing the data.
  633. */
  634. static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
  635. {
  636. int status;
  637. /* wait for reg to come ready */
  638. status = ql_wait_reg_rdy(qdev,
  639. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  640. if (status)
  641. return status;
  642. /* write the data to the data reg */
  643. ql_write32(qdev, XGMAC_DATA, data);
  644. /* trigger the write */
  645. ql_write32(qdev, XGMAC_ADDR, reg);
  646. return status;
  647. }
  648. /* xgmac register are located behind the xgmac_addr and xgmac_data
  649. * register pair. Each read/write requires us to wait for the ready
  650. * bit before reading/writing the data.
  651. */
  652. int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
  653. {
  654. int status = 0;
  655. /* wait for reg to come ready */
  656. status = ql_wait_reg_rdy(qdev,
  657. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  658. if (status)
  659. goto exit;
  660. /* set up for reg read */
  661. ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
  662. /* wait for reg to come ready */
  663. status = ql_wait_reg_rdy(qdev,
  664. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  665. if (status)
  666. goto exit;
  667. /* get the data */
  668. *data = ql_read32(qdev, XGMAC_DATA);
  669. exit:
  670. return status;
  671. }
  672. /* This is used for reading the 64-bit statistics regs. */
  673. int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
  674. {
  675. int status = 0;
  676. u32 hi = 0;
  677. u32 lo = 0;
  678. status = ql_read_xgmac_reg(qdev, reg, &lo);
  679. if (status)
  680. goto exit;
  681. status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
  682. if (status)
  683. goto exit;
  684. *data = (u64) lo | ((u64) hi << 32);
  685. exit:
  686. return status;
  687. }
  688. /* Take the MAC Core out of reset.
  689. * Enable statistics counting.
  690. * Take the transmitter/receiver out of reset.
  691. * This functionality may be done in the MPI firmware at a
  692. * later date.
  693. */
  694. static int ql_port_initialize(struct ql_adapter *qdev)
  695. {
  696. int status = 0;
  697. u32 data;
  698. if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
  699. /* Another function has the semaphore, so
  700. * wait for the port init bit to come ready.
  701. */
  702. QPRINTK(qdev, LINK, INFO,
  703. "Another function has the semaphore, so wait for the port init bit to come ready.\n");
  704. status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
  705. if (status) {
  706. QPRINTK(qdev, LINK, CRIT,
  707. "Port initialize timed out.\n");
  708. }
  709. return status;
  710. }
  711. QPRINTK(qdev, LINK, INFO, "Got xgmac semaphore!.\n");
  712. /* Set the core reset. */
  713. status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
  714. if (status)
  715. goto end;
  716. data |= GLOBAL_CFG_RESET;
  717. status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
  718. if (status)
  719. goto end;
  720. /* Clear the core reset and turn on jumbo for receiver. */
  721. data &= ~GLOBAL_CFG_RESET; /* Clear core reset. */
  722. data |= GLOBAL_CFG_JUMBO; /* Turn on jumbo. */
  723. data |= GLOBAL_CFG_TX_STAT_EN;
  724. data |= GLOBAL_CFG_RX_STAT_EN;
  725. status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
  726. if (status)
  727. goto end;
  728. /* Enable transmitter, and clear it's reset. */
  729. status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
  730. if (status)
  731. goto end;
  732. data &= ~TX_CFG_RESET; /* Clear the TX MAC reset. */
  733. data |= TX_CFG_EN; /* Enable the transmitter. */
  734. status = ql_write_xgmac_reg(qdev, TX_CFG, data);
  735. if (status)
  736. goto end;
  737. /* Enable receiver and clear it's reset. */
  738. status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
  739. if (status)
  740. goto end;
  741. data &= ~RX_CFG_RESET; /* Clear the RX MAC reset. */
  742. data |= RX_CFG_EN; /* Enable the receiver. */
  743. status = ql_write_xgmac_reg(qdev, RX_CFG, data);
  744. if (status)
  745. goto end;
  746. /* Turn on jumbo. */
  747. status =
  748. ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
  749. if (status)
  750. goto end;
  751. status =
  752. ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
  753. if (status)
  754. goto end;
  755. /* Signal to the world that the port is enabled. */
  756. ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
  757. end:
  758. ql_sem_unlock(qdev, qdev->xg_sem_mask);
  759. return status;
  760. }
  761. /* Get the next large buffer. */
  762. static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
  763. {
  764. struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
  765. rx_ring->lbq_curr_idx++;
  766. if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
  767. rx_ring->lbq_curr_idx = 0;
  768. rx_ring->lbq_free_cnt++;
  769. return lbq_desc;
  770. }
  771. /* Get the next small buffer. */
  772. static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
  773. {
  774. struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
  775. rx_ring->sbq_curr_idx++;
  776. if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
  777. rx_ring->sbq_curr_idx = 0;
  778. rx_ring->sbq_free_cnt++;
  779. return sbq_desc;
  780. }
  781. /* Update an rx ring index. */
  782. static void ql_update_cq(struct rx_ring *rx_ring)
  783. {
  784. rx_ring->cnsmr_idx++;
  785. rx_ring->curr_entry++;
  786. if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
  787. rx_ring->cnsmr_idx = 0;
  788. rx_ring->curr_entry = rx_ring->cq_base;
  789. }
  790. }
  791. static void ql_write_cq_idx(struct rx_ring *rx_ring)
  792. {
  793. ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
  794. }
  795. /* Process (refill) a large buffer queue. */
  796. static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  797. {
  798. int clean_idx = rx_ring->lbq_clean_idx;
  799. struct bq_desc *lbq_desc;
  800. struct bq_element *bq;
  801. u64 map;
  802. int i;
  803. while (rx_ring->lbq_free_cnt > 16) {
  804. for (i = 0; i < 16; i++) {
  805. QPRINTK(qdev, RX_STATUS, DEBUG,
  806. "lbq: try cleaning clean_idx = %d.\n",
  807. clean_idx);
  808. lbq_desc = &rx_ring->lbq[clean_idx];
  809. bq = lbq_desc->bq;
  810. if (lbq_desc->p.lbq_page == NULL) {
  811. QPRINTK(qdev, RX_STATUS, DEBUG,
  812. "lbq: getting new page for index %d.\n",
  813. lbq_desc->index);
  814. lbq_desc->p.lbq_page = alloc_page(GFP_ATOMIC);
  815. if (lbq_desc->p.lbq_page == NULL) {
  816. QPRINTK(qdev, RX_STATUS, ERR,
  817. "Couldn't get a page.\n");
  818. return;
  819. }
  820. map = pci_map_page(qdev->pdev,
  821. lbq_desc->p.lbq_page,
  822. 0, PAGE_SIZE,
  823. PCI_DMA_FROMDEVICE);
  824. if (pci_dma_mapping_error(qdev->pdev, map)) {
  825. QPRINTK(qdev, RX_STATUS, ERR,
  826. "PCI mapping failed.\n");
  827. return;
  828. }
  829. pci_unmap_addr_set(lbq_desc, mapaddr, map);
  830. pci_unmap_len_set(lbq_desc, maplen, PAGE_SIZE);
  831. bq->addr_lo = /*lbq_desc->addr_lo = */
  832. cpu_to_le32(map);
  833. bq->addr_hi = /*lbq_desc->addr_hi = */
  834. cpu_to_le32(map >> 32);
  835. }
  836. clean_idx++;
  837. if (clean_idx == rx_ring->lbq_len)
  838. clean_idx = 0;
  839. }
  840. rx_ring->lbq_clean_idx = clean_idx;
  841. rx_ring->lbq_prod_idx += 16;
  842. if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
  843. rx_ring->lbq_prod_idx = 0;
  844. QPRINTK(qdev, RX_STATUS, DEBUG,
  845. "lbq: updating prod idx = %d.\n",
  846. rx_ring->lbq_prod_idx);
  847. ql_write_db_reg(rx_ring->lbq_prod_idx,
  848. rx_ring->lbq_prod_idx_db_reg);
  849. rx_ring->lbq_free_cnt -= 16;
  850. }
  851. }
  852. /* Process (refill) a small buffer queue. */
  853. static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  854. {
  855. int clean_idx = rx_ring->sbq_clean_idx;
  856. struct bq_desc *sbq_desc;
  857. struct bq_element *bq;
  858. u64 map;
  859. int i;
  860. while (rx_ring->sbq_free_cnt > 16) {
  861. for (i = 0; i < 16; i++) {
  862. sbq_desc = &rx_ring->sbq[clean_idx];
  863. QPRINTK(qdev, RX_STATUS, DEBUG,
  864. "sbq: try cleaning clean_idx = %d.\n",
  865. clean_idx);
  866. bq = sbq_desc->bq;
  867. if (sbq_desc->p.skb == NULL) {
  868. QPRINTK(qdev, RX_STATUS, DEBUG,
  869. "sbq: getting new skb for index %d.\n",
  870. sbq_desc->index);
  871. sbq_desc->p.skb =
  872. netdev_alloc_skb(qdev->ndev,
  873. rx_ring->sbq_buf_size);
  874. if (sbq_desc->p.skb == NULL) {
  875. QPRINTK(qdev, PROBE, ERR,
  876. "Couldn't get an skb.\n");
  877. rx_ring->sbq_clean_idx = clean_idx;
  878. return;
  879. }
  880. skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
  881. map = pci_map_single(qdev->pdev,
  882. sbq_desc->p.skb->data,
  883. rx_ring->sbq_buf_size /
  884. 2, PCI_DMA_FROMDEVICE);
  885. if (pci_dma_mapping_error(qdev->pdev, map)) {
  886. QPRINTK(qdev, IFUP, ERR, "PCI mapping failed.\n");
  887. rx_ring->sbq_clean_idx = clean_idx;
  888. return;
  889. }
  890. pci_unmap_addr_set(sbq_desc, mapaddr, map);
  891. pci_unmap_len_set(sbq_desc, maplen,
  892. rx_ring->sbq_buf_size / 2);
  893. bq->addr_lo = cpu_to_le32(map);
  894. bq->addr_hi = cpu_to_le32(map >> 32);
  895. }
  896. clean_idx++;
  897. if (clean_idx == rx_ring->sbq_len)
  898. clean_idx = 0;
  899. }
  900. rx_ring->sbq_clean_idx = clean_idx;
  901. rx_ring->sbq_prod_idx += 16;
  902. if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
  903. rx_ring->sbq_prod_idx = 0;
  904. QPRINTK(qdev, RX_STATUS, DEBUG,
  905. "sbq: updating prod idx = %d.\n",
  906. rx_ring->sbq_prod_idx);
  907. ql_write_db_reg(rx_ring->sbq_prod_idx,
  908. rx_ring->sbq_prod_idx_db_reg);
  909. rx_ring->sbq_free_cnt -= 16;
  910. }
  911. }
  912. static void ql_update_buffer_queues(struct ql_adapter *qdev,
  913. struct rx_ring *rx_ring)
  914. {
  915. ql_update_sbq(qdev, rx_ring);
  916. ql_update_lbq(qdev, rx_ring);
  917. }
  918. /* Unmaps tx buffers. Can be called from send() if a pci mapping
  919. * fails at some stage, or from the interrupt when a tx completes.
  920. */
  921. static void ql_unmap_send(struct ql_adapter *qdev,
  922. struct tx_ring_desc *tx_ring_desc, int mapped)
  923. {
  924. int i;
  925. for (i = 0; i < mapped; i++) {
  926. if (i == 0 || (i == 7 && mapped > 7)) {
  927. /*
  928. * Unmap the skb->data area, or the
  929. * external sglist (AKA the Outbound
  930. * Address List (OAL)).
  931. * If its the zeroeth element, then it's
  932. * the skb->data area. If it's the 7th
  933. * element and there is more than 6 frags,
  934. * then its an OAL.
  935. */
  936. if (i == 7) {
  937. QPRINTK(qdev, TX_DONE, DEBUG,
  938. "unmapping OAL area.\n");
  939. }
  940. pci_unmap_single(qdev->pdev,
  941. pci_unmap_addr(&tx_ring_desc->map[i],
  942. mapaddr),
  943. pci_unmap_len(&tx_ring_desc->map[i],
  944. maplen),
  945. PCI_DMA_TODEVICE);
  946. } else {
  947. QPRINTK(qdev, TX_DONE, DEBUG, "unmapping frag %d.\n",
  948. i);
  949. pci_unmap_page(qdev->pdev,
  950. pci_unmap_addr(&tx_ring_desc->map[i],
  951. mapaddr),
  952. pci_unmap_len(&tx_ring_desc->map[i],
  953. maplen), PCI_DMA_TODEVICE);
  954. }
  955. }
  956. }
  957. /* Map the buffers for this transmit. This will return
  958. * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
  959. */
  960. static int ql_map_send(struct ql_adapter *qdev,
  961. struct ob_mac_iocb_req *mac_iocb_ptr,
  962. struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
  963. {
  964. int len = skb_headlen(skb);
  965. dma_addr_t map;
  966. int frag_idx, err, map_idx = 0;
  967. struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
  968. int frag_cnt = skb_shinfo(skb)->nr_frags;
  969. if (frag_cnt) {
  970. QPRINTK(qdev, TX_QUEUED, DEBUG, "frag_cnt = %d.\n", frag_cnt);
  971. }
  972. /*
  973. * Map the skb buffer first.
  974. */
  975. map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
  976. err = pci_dma_mapping_error(qdev->pdev, map);
  977. if (err) {
  978. QPRINTK(qdev, TX_QUEUED, ERR,
  979. "PCI mapping failed with error: %d\n", err);
  980. return NETDEV_TX_BUSY;
  981. }
  982. tbd->len = cpu_to_le32(len);
  983. tbd->addr = cpu_to_le64(map);
  984. pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
  985. pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
  986. map_idx++;
  987. /*
  988. * This loop fills the remainder of the 8 address descriptors
  989. * in the IOCB. If there are more than 7 fragments, then the
  990. * eighth address desc will point to an external list (OAL).
  991. * When this happens, the remainder of the frags will be stored
  992. * in this list.
  993. */
  994. for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
  995. skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
  996. tbd++;
  997. if (frag_idx == 6 && frag_cnt > 7) {
  998. /* Let's tack on an sglist.
  999. * Our control block will now
  1000. * look like this:
  1001. * iocb->seg[0] = skb->data
  1002. * iocb->seg[1] = frag[0]
  1003. * iocb->seg[2] = frag[1]
  1004. * iocb->seg[3] = frag[2]
  1005. * iocb->seg[4] = frag[3]
  1006. * iocb->seg[5] = frag[4]
  1007. * iocb->seg[6] = frag[5]
  1008. * iocb->seg[7] = ptr to OAL (external sglist)
  1009. * oal->seg[0] = frag[6]
  1010. * oal->seg[1] = frag[7]
  1011. * oal->seg[2] = frag[8]
  1012. * oal->seg[3] = frag[9]
  1013. * oal->seg[4] = frag[10]
  1014. * etc...
  1015. */
  1016. /* Tack on the OAL in the eighth segment of IOCB. */
  1017. map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
  1018. sizeof(struct oal),
  1019. PCI_DMA_TODEVICE);
  1020. err = pci_dma_mapping_error(qdev->pdev, map);
  1021. if (err) {
  1022. QPRINTK(qdev, TX_QUEUED, ERR,
  1023. "PCI mapping outbound address list with error: %d\n",
  1024. err);
  1025. goto map_error;
  1026. }
  1027. tbd->addr = cpu_to_le64(map);
  1028. /*
  1029. * The length is the number of fragments
  1030. * that remain to be mapped times the length
  1031. * of our sglist (OAL).
  1032. */
  1033. tbd->len =
  1034. cpu_to_le32((sizeof(struct tx_buf_desc) *
  1035. (frag_cnt - frag_idx)) | TX_DESC_C);
  1036. pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
  1037. map);
  1038. pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
  1039. sizeof(struct oal));
  1040. tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
  1041. map_idx++;
  1042. }
  1043. map =
  1044. pci_map_page(qdev->pdev, frag->page,
  1045. frag->page_offset, frag->size,
  1046. PCI_DMA_TODEVICE);
  1047. err = pci_dma_mapping_error(qdev->pdev, map);
  1048. if (err) {
  1049. QPRINTK(qdev, TX_QUEUED, ERR,
  1050. "PCI mapping frags failed with error: %d.\n",
  1051. err);
  1052. goto map_error;
  1053. }
  1054. tbd->addr = cpu_to_le64(map);
  1055. tbd->len = cpu_to_le32(frag->size);
  1056. pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
  1057. pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
  1058. frag->size);
  1059. }
  1060. /* Save the number of segments we've mapped. */
  1061. tx_ring_desc->map_cnt = map_idx;
  1062. /* Terminate the last segment. */
  1063. tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
  1064. return NETDEV_TX_OK;
  1065. map_error:
  1066. /*
  1067. * If the first frag mapping failed, then i will be zero.
  1068. * This causes the unmap of the skb->data area. Otherwise
  1069. * we pass in the number of frags that mapped successfully
  1070. * so they can be umapped.
  1071. */
  1072. ql_unmap_send(qdev, tx_ring_desc, map_idx);
  1073. return NETDEV_TX_BUSY;
  1074. }
  1075. static void ql_realign_skb(struct sk_buff *skb, int len)
  1076. {
  1077. void *temp_addr = skb->data;
  1078. /* Undo the skb_reserve(skb,32) we did before
  1079. * giving to hardware, and realign data on
  1080. * a 2-byte boundary.
  1081. */
  1082. skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
  1083. skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
  1084. skb_copy_to_linear_data(skb, temp_addr,
  1085. (unsigned int)len);
  1086. }
  1087. /*
  1088. * This function builds an skb for the given inbound
  1089. * completion. It will be rewritten for readability in the near
  1090. * future, but for not it works well.
  1091. */
  1092. static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
  1093. struct rx_ring *rx_ring,
  1094. struct ib_mac_iocb_rsp *ib_mac_rsp)
  1095. {
  1096. struct bq_desc *lbq_desc;
  1097. struct bq_desc *sbq_desc;
  1098. struct sk_buff *skb = NULL;
  1099. u32 length = le32_to_cpu(ib_mac_rsp->data_len);
  1100. u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
  1101. /*
  1102. * Handle the header buffer if present.
  1103. */
  1104. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
  1105. ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1106. QPRINTK(qdev, RX_STATUS, DEBUG, "Header of %d bytes in small buffer.\n", hdr_len);
  1107. /*
  1108. * Headers fit nicely into a small buffer.
  1109. */
  1110. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1111. pci_unmap_single(qdev->pdev,
  1112. pci_unmap_addr(sbq_desc, mapaddr),
  1113. pci_unmap_len(sbq_desc, maplen),
  1114. PCI_DMA_FROMDEVICE);
  1115. skb = sbq_desc->p.skb;
  1116. ql_realign_skb(skb, hdr_len);
  1117. skb_put(skb, hdr_len);
  1118. sbq_desc->p.skb = NULL;
  1119. }
  1120. /*
  1121. * Handle the data buffer(s).
  1122. */
  1123. if (unlikely(!length)) { /* Is there data too? */
  1124. QPRINTK(qdev, RX_STATUS, DEBUG,
  1125. "No Data buffer in this packet.\n");
  1126. return skb;
  1127. }
  1128. if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
  1129. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1130. QPRINTK(qdev, RX_STATUS, DEBUG,
  1131. "Headers in small, data of %d bytes in small, combine them.\n", length);
  1132. /*
  1133. * Data is less than small buffer size so it's
  1134. * stuffed in a small buffer.
  1135. * For this case we append the data
  1136. * from the "data" small buffer to the "header" small
  1137. * buffer.
  1138. */
  1139. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1140. pci_dma_sync_single_for_cpu(qdev->pdev,
  1141. pci_unmap_addr
  1142. (sbq_desc, mapaddr),
  1143. pci_unmap_len
  1144. (sbq_desc, maplen),
  1145. PCI_DMA_FROMDEVICE);
  1146. memcpy(skb_put(skb, length),
  1147. sbq_desc->p.skb->data, length);
  1148. pci_dma_sync_single_for_device(qdev->pdev,
  1149. pci_unmap_addr
  1150. (sbq_desc,
  1151. mapaddr),
  1152. pci_unmap_len
  1153. (sbq_desc,
  1154. maplen),
  1155. PCI_DMA_FROMDEVICE);
  1156. } else {
  1157. QPRINTK(qdev, RX_STATUS, DEBUG,
  1158. "%d bytes in a single small buffer.\n", length);
  1159. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1160. skb = sbq_desc->p.skb;
  1161. ql_realign_skb(skb, length);
  1162. skb_put(skb, length);
  1163. pci_unmap_single(qdev->pdev,
  1164. pci_unmap_addr(sbq_desc,
  1165. mapaddr),
  1166. pci_unmap_len(sbq_desc,
  1167. maplen),
  1168. PCI_DMA_FROMDEVICE);
  1169. sbq_desc->p.skb = NULL;
  1170. }
  1171. } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
  1172. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1173. QPRINTK(qdev, RX_STATUS, DEBUG,
  1174. "Header in small, %d bytes in large. Chain large to small!\n", length);
  1175. /*
  1176. * The data is in a single large buffer. We
  1177. * chain it to the header buffer's skb and let
  1178. * it rip.
  1179. */
  1180. lbq_desc = ql_get_curr_lbuf(rx_ring);
  1181. pci_unmap_page(qdev->pdev,
  1182. pci_unmap_addr(lbq_desc,
  1183. mapaddr),
  1184. pci_unmap_len(lbq_desc, maplen),
  1185. PCI_DMA_FROMDEVICE);
  1186. QPRINTK(qdev, RX_STATUS, DEBUG,
  1187. "Chaining page to skb.\n");
  1188. skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
  1189. 0, length);
  1190. skb->len += length;
  1191. skb->data_len += length;
  1192. skb->truesize += length;
  1193. lbq_desc->p.lbq_page = NULL;
  1194. } else {
  1195. /*
  1196. * The headers and data are in a single large buffer. We
  1197. * copy it to a new skb and let it go. This can happen with
  1198. * jumbo mtu on a non-TCP/UDP frame.
  1199. */
  1200. lbq_desc = ql_get_curr_lbuf(rx_ring);
  1201. skb = netdev_alloc_skb(qdev->ndev, length);
  1202. if (skb == NULL) {
  1203. QPRINTK(qdev, PROBE, DEBUG,
  1204. "No skb available, drop the packet.\n");
  1205. return NULL;
  1206. }
  1207. skb_reserve(skb, NET_IP_ALIGN);
  1208. QPRINTK(qdev, RX_STATUS, DEBUG,
  1209. "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n", length);
  1210. skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
  1211. 0, length);
  1212. skb->len += length;
  1213. skb->data_len += length;
  1214. skb->truesize += length;
  1215. length -= length;
  1216. lbq_desc->p.lbq_page = NULL;
  1217. __pskb_pull_tail(skb,
  1218. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
  1219. VLAN_ETH_HLEN : ETH_HLEN);
  1220. }
  1221. } else {
  1222. /*
  1223. * The data is in a chain of large buffers
  1224. * pointed to by a small buffer. We loop
  1225. * thru and chain them to the our small header
  1226. * buffer's skb.
  1227. * frags: There are 18 max frags and our small
  1228. * buffer will hold 32 of them. The thing is,
  1229. * we'll use 3 max for our 9000 byte jumbo
  1230. * frames. If the MTU goes up we could
  1231. * eventually be in trouble.
  1232. */
  1233. int size, offset, i = 0;
  1234. struct bq_element *bq, bq_array[8];
  1235. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1236. pci_unmap_single(qdev->pdev,
  1237. pci_unmap_addr(sbq_desc, mapaddr),
  1238. pci_unmap_len(sbq_desc, maplen),
  1239. PCI_DMA_FROMDEVICE);
  1240. if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
  1241. /*
  1242. * This is an non TCP/UDP IP frame, so
  1243. * the headers aren't split into a small
  1244. * buffer. We have to use the small buffer
  1245. * that contains our sg list as our skb to
  1246. * send upstairs. Copy the sg list here to
  1247. * a local buffer and use it to find the
  1248. * pages to chain.
  1249. */
  1250. QPRINTK(qdev, RX_STATUS, DEBUG,
  1251. "%d bytes of headers & data in chain of large.\n", length);
  1252. skb = sbq_desc->p.skb;
  1253. bq = &bq_array[0];
  1254. memcpy(bq, skb->data, sizeof(bq_array));
  1255. sbq_desc->p.skb = NULL;
  1256. skb_reserve(skb, NET_IP_ALIGN);
  1257. } else {
  1258. QPRINTK(qdev, RX_STATUS, DEBUG,
  1259. "Headers in small, %d bytes of data in chain of large.\n", length);
  1260. bq = (struct bq_element *)sbq_desc->p.skb->data;
  1261. }
  1262. while (length > 0) {
  1263. lbq_desc = ql_get_curr_lbuf(rx_ring);
  1264. if ((bq->addr_lo & ~BQ_MASK) != lbq_desc->bq->addr_lo) {
  1265. QPRINTK(qdev, RX_STATUS, ERR,
  1266. "Panic!!! bad large buffer address, expected 0x%.08x, got 0x%.08x.\n",
  1267. lbq_desc->bq->addr_lo, bq->addr_lo);
  1268. return NULL;
  1269. }
  1270. pci_unmap_page(qdev->pdev,
  1271. pci_unmap_addr(lbq_desc,
  1272. mapaddr),
  1273. pci_unmap_len(lbq_desc,
  1274. maplen),
  1275. PCI_DMA_FROMDEVICE);
  1276. size = (length < PAGE_SIZE) ? length : PAGE_SIZE;
  1277. offset = 0;
  1278. QPRINTK(qdev, RX_STATUS, DEBUG,
  1279. "Adding page %d to skb for %d bytes.\n",
  1280. i, size);
  1281. skb_fill_page_desc(skb, i, lbq_desc->p.lbq_page,
  1282. offset, size);
  1283. skb->len += size;
  1284. skb->data_len += size;
  1285. skb->truesize += size;
  1286. length -= size;
  1287. lbq_desc->p.lbq_page = NULL;
  1288. bq++;
  1289. i++;
  1290. }
  1291. __pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
  1292. VLAN_ETH_HLEN : ETH_HLEN);
  1293. }
  1294. return skb;
  1295. }
  1296. /* Process an inbound completion from an rx ring. */
  1297. static void ql_process_mac_rx_intr(struct ql_adapter *qdev,
  1298. struct rx_ring *rx_ring,
  1299. struct ib_mac_iocb_rsp *ib_mac_rsp)
  1300. {
  1301. struct net_device *ndev = qdev->ndev;
  1302. struct sk_buff *skb = NULL;
  1303. QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
  1304. skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
  1305. if (unlikely(!skb)) {
  1306. QPRINTK(qdev, RX_STATUS, DEBUG,
  1307. "No skb available, drop packet.\n");
  1308. return;
  1309. }
  1310. prefetch(skb->data);
  1311. skb->dev = ndev;
  1312. if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
  1313. QPRINTK(qdev, RX_STATUS, DEBUG, "%s%s%s Multicast.\n",
  1314. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1315. IB_MAC_IOCB_RSP_M_HASH ? "Hash" : "",
  1316. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1317. IB_MAC_IOCB_RSP_M_REG ? "Registered" : "",
  1318. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1319. IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
  1320. }
  1321. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
  1322. QPRINTK(qdev, RX_STATUS, DEBUG, "Promiscuous Packet.\n");
  1323. }
  1324. if (ib_mac_rsp->flags1 & (IB_MAC_IOCB_RSP_IE | IB_MAC_IOCB_RSP_TE)) {
  1325. QPRINTK(qdev, RX_STATUS, ERR,
  1326. "Bad checksum for this %s packet.\n",
  1327. ((ib_mac_rsp->
  1328. flags2 & IB_MAC_IOCB_RSP_T) ? "TCP" : "UDP"));
  1329. skb->ip_summed = CHECKSUM_NONE;
  1330. } else if (qdev->rx_csum &&
  1331. ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) ||
  1332. ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
  1333. !(ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_NU)))) {
  1334. QPRINTK(qdev, RX_STATUS, DEBUG, "RX checksum done!\n");
  1335. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1336. }
  1337. qdev->stats.rx_packets++;
  1338. qdev->stats.rx_bytes += skb->len;
  1339. skb->protocol = eth_type_trans(skb, ndev);
  1340. if (qdev->vlgrp && (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V)) {
  1341. QPRINTK(qdev, RX_STATUS, DEBUG,
  1342. "Passing a VLAN packet upstream.\n");
  1343. vlan_hwaccel_rx(skb, qdev->vlgrp,
  1344. le16_to_cpu(ib_mac_rsp->vlan_id));
  1345. } else {
  1346. QPRINTK(qdev, RX_STATUS, DEBUG,
  1347. "Passing a normal packet upstream.\n");
  1348. netif_rx(skb);
  1349. }
  1350. }
  1351. /* Process an outbound completion from an rx ring. */
  1352. static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
  1353. struct ob_mac_iocb_rsp *mac_rsp)
  1354. {
  1355. struct tx_ring *tx_ring;
  1356. struct tx_ring_desc *tx_ring_desc;
  1357. QL_DUMP_OB_MAC_RSP(mac_rsp);
  1358. tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
  1359. tx_ring_desc = &tx_ring->q[mac_rsp->tid];
  1360. ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
  1361. qdev->stats.tx_bytes += tx_ring_desc->map_cnt;
  1362. qdev->stats.tx_packets++;
  1363. dev_kfree_skb(tx_ring_desc->skb);
  1364. tx_ring_desc->skb = NULL;
  1365. if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
  1366. OB_MAC_IOCB_RSP_S |
  1367. OB_MAC_IOCB_RSP_L |
  1368. OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
  1369. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
  1370. QPRINTK(qdev, TX_DONE, WARNING,
  1371. "Total descriptor length did not match transfer length.\n");
  1372. }
  1373. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
  1374. QPRINTK(qdev, TX_DONE, WARNING,
  1375. "Frame too short to be legal, not sent.\n");
  1376. }
  1377. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
  1378. QPRINTK(qdev, TX_DONE, WARNING,
  1379. "Frame too long, but sent anyway.\n");
  1380. }
  1381. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
  1382. QPRINTK(qdev, TX_DONE, WARNING,
  1383. "PCI backplane error. Frame not sent.\n");
  1384. }
  1385. }
  1386. atomic_inc(&tx_ring->tx_count);
  1387. }
  1388. /* Fire up a handler to reset the MPI processor. */
  1389. void ql_queue_fw_error(struct ql_adapter *qdev)
  1390. {
  1391. netif_stop_queue(qdev->ndev);
  1392. netif_carrier_off(qdev->ndev);
  1393. queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
  1394. }
  1395. void ql_queue_asic_error(struct ql_adapter *qdev)
  1396. {
  1397. netif_stop_queue(qdev->ndev);
  1398. netif_carrier_off(qdev->ndev);
  1399. ql_disable_interrupts(qdev);
  1400. queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
  1401. }
  1402. static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
  1403. struct ib_ae_iocb_rsp *ib_ae_rsp)
  1404. {
  1405. switch (ib_ae_rsp->event) {
  1406. case MGMT_ERR_EVENT:
  1407. QPRINTK(qdev, RX_ERR, ERR,
  1408. "Management Processor Fatal Error.\n");
  1409. ql_queue_fw_error(qdev);
  1410. return;
  1411. case CAM_LOOKUP_ERR_EVENT:
  1412. QPRINTK(qdev, LINK, ERR,
  1413. "Multiple CAM hits lookup occurred.\n");
  1414. QPRINTK(qdev, DRV, ERR, "This event shouldn't occur.\n");
  1415. ql_queue_asic_error(qdev);
  1416. return;
  1417. case SOFT_ECC_ERROR_EVENT:
  1418. QPRINTK(qdev, RX_ERR, ERR, "Soft ECC error detected.\n");
  1419. ql_queue_asic_error(qdev);
  1420. break;
  1421. case PCI_ERR_ANON_BUF_RD:
  1422. QPRINTK(qdev, RX_ERR, ERR,
  1423. "PCI error occurred when reading anonymous buffers from rx_ring %d.\n",
  1424. ib_ae_rsp->q_id);
  1425. ql_queue_asic_error(qdev);
  1426. break;
  1427. default:
  1428. QPRINTK(qdev, DRV, ERR, "Unexpected event %d.\n",
  1429. ib_ae_rsp->event);
  1430. ql_queue_asic_error(qdev);
  1431. break;
  1432. }
  1433. }
  1434. static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
  1435. {
  1436. struct ql_adapter *qdev = rx_ring->qdev;
  1437. u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  1438. struct ob_mac_iocb_rsp *net_rsp = NULL;
  1439. int count = 0;
  1440. /* While there are entries in the completion queue. */
  1441. while (prod != rx_ring->cnsmr_idx) {
  1442. QPRINTK(qdev, RX_STATUS, DEBUG,
  1443. "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
  1444. prod, rx_ring->cnsmr_idx);
  1445. net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
  1446. rmb();
  1447. switch (net_rsp->opcode) {
  1448. case OPCODE_OB_MAC_TSO_IOCB:
  1449. case OPCODE_OB_MAC_IOCB:
  1450. ql_process_mac_tx_intr(qdev, net_rsp);
  1451. break;
  1452. default:
  1453. QPRINTK(qdev, RX_STATUS, DEBUG,
  1454. "Hit default case, not handled! dropping the packet, opcode = %x.\n",
  1455. net_rsp->opcode);
  1456. }
  1457. count++;
  1458. ql_update_cq(rx_ring);
  1459. prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  1460. }
  1461. ql_write_cq_idx(rx_ring);
  1462. if (netif_queue_stopped(qdev->ndev) && net_rsp != NULL) {
  1463. struct tx_ring *tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
  1464. if (atomic_read(&tx_ring->queue_stopped) &&
  1465. (atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
  1466. /*
  1467. * The queue got stopped because the tx_ring was full.
  1468. * Wake it up, because it's now at least 25% empty.
  1469. */
  1470. netif_wake_queue(qdev->ndev);
  1471. }
  1472. return count;
  1473. }
  1474. static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
  1475. {
  1476. struct ql_adapter *qdev = rx_ring->qdev;
  1477. u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  1478. struct ql_net_rsp_iocb *net_rsp;
  1479. int count = 0;
  1480. /* While there are entries in the completion queue. */
  1481. while (prod != rx_ring->cnsmr_idx) {
  1482. QPRINTK(qdev, RX_STATUS, DEBUG,
  1483. "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
  1484. prod, rx_ring->cnsmr_idx);
  1485. net_rsp = rx_ring->curr_entry;
  1486. rmb();
  1487. switch (net_rsp->opcode) {
  1488. case OPCODE_IB_MAC_IOCB:
  1489. ql_process_mac_rx_intr(qdev, rx_ring,
  1490. (struct ib_mac_iocb_rsp *)
  1491. net_rsp);
  1492. break;
  1493. case OPCODE_IB_AE_IOCB:
  1494. ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
  1495. net_rsp);
  1496. break;
  1497. default:
  1498. {
  1499. QPRINTK(qdev, RX_STATUS, DEBUG,
  1500. "Hit default case, not handled! dropping the packet, opcode = %x.\n",
  1501. net_rsp->opcode);
  1502. }
  1503. }
  1504. count++;
  1505. ql_update_cq(rx_ring);
  1506. prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  1507. if (count == budget)
  1508. break;
  1509. }
  1510. ql_update_buffer_queues(qdev, rx_ring);
  1511. ql_write_cq_idx(rx_ring);
  1512. return count;
  1513. }
  1514. static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
  1515. {
  1516. struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
  1517. struct ql_adapter *qdev = rx_ring->qdev;
  1518. int work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
  1519. QPRINTK(qdev, RX_STATUS, DEBUG, "Enter, NAPI POLL cq_id = %d.\n",
  1520. rx_ring->cq_id);
  1521. if (work_done < budget) {
  1522. __netif_rx_complete(napi);
  1523. ql_enable_completion_interrupt(qdev, rx_ring->irq);
  1524. }
  1525. return work_done;
  1526. }
  1527. static void ql_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
  1528. {
  1529. struct ql_adapter *qdev = netdev_priv(ndev);
  1530. qdev->vlgrp = grp;
  1531. if (grp) {
  1532. QPRINTK(qdev, IFUP, DEBUG, "Turning on VLAN in NIC_RCV_CFG.\n");
  1533. ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
  1534. NIC_RCV_CFG_VLAN_MATCH_AND_NON);
  1535. } else {
  1536. QPRINTK(qdev, IFUP, DEBUG,
  1537. "Turning off VLAN in NIC_RCV_CFG.\n");
  1538. ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
  1539. }
  1540. }
  1541. static void ql_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
  1542. {
  1543. struct ql_adapter *qdev = netdev_priv(ndev);
  1544. u32 enable_bit = MAC_ADDR_E;
  1545. spin_lock(&qdev->hw_lock);
  1546. if (ql_set_mac_addr_reg
  1547. (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
  1548. QPRINTK(qdev, IFUP, ERR, "Failed to init vlan address.\n");
  1549. }
  1550. spin_unlock(&qdev->hw_lock);
  1551. }
  1552. static void ql_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
  1553. {
  1554. struct ql_adapter *qdev = netdev_priv(ndev);
  1555. u32 enable_bit = 0;
  1556. spin_lock(&qdev->hw_lock);
  1557. if (ql_set_mac_addr_reg
  1558. (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
  1559. QPRINTK(qdev, IFUP, ERR, "Failed to clear vlan address.\n");
  1560. }
  1561. spin_unlock(&qdev->hw_lock);
  1562. }
  1563. /* Worker thread to process a given rx_ring that is dedicated
  1564. * to outbound completions.
  1565. */
  1566. static void ql_tx_clean(struct work_struct *work)
  1567. {
  1568. struct rx_ring *rx_ring =
  1569. container_of(work, struct rx_ring, rx_work.work);
  1570. ql_clean_outbound_rx_ring(rx_ring);
  1571. ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
  1572. }
  1573. /* Worker thread to process a given rx_ring that is dedicated
  1574. * to inbound completions.
  1575. */
  1576. static void ql_rx_clean(struct work_struct *work)
  1577. {
  1578. struct rx_ring *rx_ring =
  1579. container_of(work, struct rx_ring, rx_work.work);
  1580. ql_clean_inbound_rx_ring(rx_ring, 64);
  1581. ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
  1582. }
  1583. /* MSI-X Multiple Vector Interrupt Handler for outbound completions. */
  1584. static irqreturn_t qlge_msix_tx_isr(int irq, void *dev_id)
  1585. {
  1586. struct rx_ring *rx_ring = dev_id;
  1587. queue_delayed_work_on(rx_ring->cpu, rx_ring->qdev->q_workqueue,
  1588. &rx_ring->rx_work, 0);
  1589. return IRQ_HANDLED;
  1590. }
  1591. /* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
  1592. static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
  1593. {
  1594. struct rx_ring *rx_ring = dev_id;
  1595. netif_rx_schedule(&rx_ring->napi);
  1596. return IRQ_HANDLED;
  1597. }
  1598. /* This handles a fatal error, MPI activity, and the default
  1599. * rx_ring in an MSI-X multiple vector environment.
  1600. * In MSI/Legacy environment it also process the rest of
  1601. * the rx_rings.
  1602. */
  1603. static irqreturn_t qlge_isr(int irq, void *dev_id)
  1604. {
  1605. struct rx_ring *rx_ring = dev_id;
  1606. struct ql_adapter *qdev = rx_ring->qdev;
  1607. struct intr_context *intr_context = &qdev->intr_context[0];
  1608. u32 var;
  1609. int i;
  1610. int work_done = 0;
  1611. spin_lock(&qdev->hw_lock);
  1612. if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
  1613. QPRINTK(qdev, INTR, DEBUG, "Shared Interrupt, Not ours!\n");
  1614. spin_unlock(&qdev->hw_lock);
  1615. return IRQ_NONE;
  1616. }
  1617. spin_unlock(&qdev->hw_lock);
  1618. var = ql_disable_completion_interrupt(qdev, intr_context->intr);
  1619. /*
  1620. * Check for fatal error.
  1621. */
  1622. if (var & STS_FE) {
  1623. ql_queue_asic_error(qdev);
  1624. QPRINTK(qdev, INTR, ERR, "Got fatal error, STS = %x.\n", var);
  1625. var = ql_read32(qdev, ERR_STS);
  1626. QPRINTK(qdev, INTR, ERR,
  1627. "Resetting chip. Error Status Register = 0x%x\n", var);
  1628. return IRQ_HANDLED;
  1629. }
  1630. /*
  1631. * Check MPI processor activity.
  1632. */
  1633. if (var & STS_PI) {
  1634. /*
  1635. * We've got an async event or mailbox completion.
  1636. * Handle it and clear the source of the interrupt.
  1637. */
  1638. QPRINTK(qdev, INTR, ERR, "Got MPI processor interrupt.\n");
  1639. ql_disable_completion_interrupt(qdev, intr_context->intr);
  1640. queue_delayed_work_on(smp_processor_id(), qdev->workqueue,
  1641. &qdev->mpi_work, 0);
  1642. work_done++;
  1643. }
  1644. /*
  1645. * Check the default queue and wake handler if active.
  1646. */
  1647. rx_ring = &qdev->rx_ring[0];
  1648. if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) != rx_ring->cnsmr_idx) {
  1649. QPRINTK(qdev, INTR, INFO, "Waking handler for rx_ring[0].\n");
  1650. ql_disable_completion_interrupt(qdev, intr_context->intr);
  1651. queue_delayed_work_on(smp_processor_id(), qdev->q_workqueue,
  1652. &rx_ring->rx_work, 0);
  1653. work_done++;
  1654. }
  1655. if (!test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  1656. /*
  1657. * Start the DPC for each active queue.
  1658. */
  1659. for (i = 1; i < qdev->rx_ring_count; i++) {
  1660. rx_ring = &qdev->rx_ring[i];
  1661. if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
  1662. rx_ring->cnsmr_idx) {
  1663. QPRINTK(qdev, INTR, INFO,
  1664. "Waking handler for rx_ring[%d].\n", i);
  1665. ql_disable_completion_interrupt(qdev,
  1666. intr_context->
  1667. intr);
  1668. if (i < qdev->rss_ring_first_cq_id)
  1669. queue_delayed_work_on(rx_ring->cpu,
  1670. qdev->q_workqueue,
  1671. &rx_ring->rx_work,
  1672. 0);
  1673. else
  1674. netif_rx_schedule(&rx_ring->napi);
  1675. work_done++;
  1676. }
  1677. }
  1678. }
  1679. ql_enable_completion_interrupt(qdev, intr_context->intr);
  1680. return work_done ? IRQ_HANDLED : IRQ_NONE;
  1681. }
  1682. static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
  1683. {
  1684. if (skb_is_gso(skb)) {
  1685. int err;
  1686. if (skb_header_cloned(skb)) {
  1687. err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
  1688. if (err)
  1689. return err;
  1690. }
  1691. mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
  1692. mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
  1693. mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
  1694. mac_iocb_ptr->total_hdrs_len =
  1695. cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
  1696. mac_iocb_ptr->net_trans_offset =
  1697. cpu_to_le16(skb_network_offset(skb) |
  1698. skb_transport_offset(skb)
  1699. << OB_MAC_TRANSPORT_HDR_SHIFT);
  1700. mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
  1701. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
  1702. if (likely(skb->protocol == htons(ETH_P_IP))) {
  1703. struct iphdr *iph = ip_hdr(skb);
  1704. iph->check = 0;
  1705. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
  1706. tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
  1707. iph->daddr, 0,
  1708. IPPROTO_TCP,
  1709. 0);
  1710. } else if (skb->protocol == htons(ETH_P_IPV6)) {
  1711. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
  1712. tcp_hdr(skb)->check =
  1713. ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
  1714. &ipv6_hdr(skb)->daddr,
  1715. 0, IPPROTO_TCP, 0);
  1716. }
  1717. return 1;
  1718. }
  1719. return 0;
  1720. }
  1721. static void ql_hw_csum_setup(struct sk_buff *skb,
  1722. struct ob_mac_tso_iocb_req *mac_iocb_ptr)
  1723. {
  1724. int len;
  1725. struct iphdr *iph = ip_hdr(skb);
  1726. u16 *check;
  1727. mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
  1728. mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
  1729. mac_iocb_ptr->net_trans_offset =
  1730. cpu_to_le16(skb_network_offset(skb) |
  1731. skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
  1732. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
  1733. len = (ntohs(iph->tot_len) - (iph->ihl << 2));
  1734. if (likely(iph->protocol == IPPROTO_TCP)) {
  1735. check = &(tcp_hdr(skb)->check);
  1736. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
  1737. mac_iocb_ptr->total_hdrs_len =
  1738. cpu_to_le16(skb_transport_offset(skb) +
  1739. (tcp_hdr(skb)->doff << 2));
  1740. } else {
  1741. check = &(udp_hdr(skb)->check);
  1742. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
  1743. mac_iocb_ptr->total_hdrs_len =
  1744. cpu_to_le16(skb_transport_offset(skb) +
  1745. sizeof(struct udphdr));
  1746. }
  1747. *check = ~csum_tcpudp_magic(iph->saddr,
  1748. iph->daddr, len, iph->protocol, 0);
  1749. }
  1750. static int qlge_send(struct sk_buff *skb, struct net_device *ndev)
  1751. {
  1752. struct tx_ring_desc *tx_ring_desc;
  1753. struct ob_mac_iocb_req *mac_iocb_ptr;
  1754. struct ql_adapter *qdev = netdev_priv(ndev);
  1755. int tso;
  1756. struct tx_ring *tx_ring;
  1757. u32 tx_ring_idx = (u32) QL_TXQ_IDX(qdev, skb);
  1758. tx_ring = &qdev->tx_ring[tx_ring_idx];
  1759. if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
  1760. QPRINTK(qdev, TX_QUEUED, INFO,
  1761. "%s: shutting down tx queue %d du to lack of resources.\n",
  1762. __func__, tx_ring_idx);
  1763. netif_stop_queue(ndev);
  1764. atomic_inc(&tx_ring->queue_stopped);
  1765. return NETDEV_TX_BUSY;
  1766. }
  1767. tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
  1768. mac_iocb_ptr = tx_ring_desc->queue_entry;
  1769. memset((void *)mac_iocb_ptr, 0, sizeof(mac_iocb_ptr));
  1770. if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) != NETDEV_TX_OK) {
  1771. QPRINTK(qdev, TX_QUEUED, ERR, "Could not map the segments.\n");
  1772. return NETDEV_TX_BUSY;
  1773. }
  1774. mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
  1775. mac_iocb_ptr->tid = tx_ring_desc->index;
  1776. /* We use the upper 32-bits to store the tx queue for this IO.
  1777. * When we get the completion we can use it to establish the context.
  1778. */
  1779. mac_iocb_ptr->txq_idx = tx_ring_idx;
  1780. tx_ring_desc->skb = skb;
  1781. mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
  1782. if (qdev->vlgrp && vlan_tx_tag_present(skb)) {
  1783. QPRINTK(qdev, TX_QUEUED, DEBUG, "Adding a vlan tag %d.\n",
  1784. vlan_tx_tag_get(skb));
  1785. mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
  1786. mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
  1787. }
  1788. tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
  1789. if (tso < 0) {
  1790. dev_kfree_skb_any(skb);
  1791. return NETDEV_TX_OK;
  1792. } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
  1793. ql_hw_csum_setup(skb,
  1794. (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
  1795. }
  1796. QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
  1797. tx_ring->prod_idx++;
  1798. if (tx_ring->prod_idx == tx_ring->wq_len)
  1799. tx_ring->prod_idx = 0;
  1800. wmb();
  1801. ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
  1802. ndev->trans_start = jiffies;
  1803. QPRINTK(qdev, TX_QUEUED, DEBUG, "tx queued, slot %d, len %d\n",
  1804. tx_ring->prod_idx, skb->len);
  1805. atomic_dec(&tx_ring->tx_count);
  1806. return NETDEV_TX_OK;
  1807. }
  1808. static void ql_free_shadow_space(struct ql_adapter *qdev)
  1809. {
  1810. if (qdev->rx_ring_shadow_reg_area) {
  1811. pci_free_consistent(qdev->pdev,
  1812. PAGE_SIZE,
  1813. qdev->rx_ring_shadow_reg_area,
  1814. qdev->rx_ring_shadow_reg_dma);
  1815. qdev->rx_ring_shadow_reg_area = NULL;
  1816. }
  1817. if (qdev->tx_ring_shadow_reg_area) {
  1818. pci_free_consistent(qdev->pdev,
  1819. PAGE_SIZE,
  1820. qdev->tx_ring_shadow_reg_area,
  1821. qdev->tx_ring_shadow_reg_dma);
  1822. qdev->tx_ring_shadow_reg_area = NULL;
  1823. }
  1824. }
  1825. static int ql_alloc_shadow_space(struct ql_adapter *qdev)
  1826. {
  1827. qdev->rx_ring_shadow_reg_area =
  1828. pci_alloc_consistent(qdev->pdev,
  1829. PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
  1830. if (qdev->rx_ring_shadow_reg_area == NULL) {
  1831. QPRINTK(qdev, IFUP, ERR,
  1832. "Allocation of RX shadow space failed.\n");
  1833. return -ENOMEM;
  1834. }
  1835. qdev->tx_ring_shadow_reg_area =
  1836. pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
  1837. &qdev->tx_ring_shadow_reg_dma);
  1838. if (qdev->tx_ring_shadow_reg_area == NULL) {
  1839. QPRINTK(qdev, IFUP, ERR,
  1840. "Allocation of TX shadow space failed.\n");
  1841. goto err_wqp_sh_area;
  1842. }
  1843. return 0;
  1844. err_wqp_sh_area:
  1845. pci_free_consistent(qdev->pdev,
  1846. PAGE_SIZE,
  1847. qdev->rx_ring_shadow_reg_area,
  1848. qdev->rx_ring_shadow_reg_dma);
  1849. return -ENOMEM;
  1850. }
  1851. static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
  1852. {
  1853. struct tx_ring_desc *tx_ring_desc;
  1854. int i;
  1855. struct ob_mac_iocb_req *mac_iocb_ptr;
  1856. mac_iocb_ptr = tx_ring->wq_base;
  1857. tx_ring_desc = tx_ring->q;
  1858. for (i = 0; i < tx_ring->wq_len; i++) {
  1859. tx_ring_desc->index = i;
  1860. tx_ring_desc->skb = NULL;
  1861. tx_ring_desc->queue_entry = mac_iocb_ptr;
  1862. mac_iocb_ptr++;
  1863. tx_ring_desc++;
  1864. }
  1865. atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
  1866. atomic_set(&tx_ring->queue_stopped, 0);
  1867. }
  1868. static void ql_free_tx_resources(struct ql_adapter *qdev,
  1869. struct tx_ring *tx_ring)
  1870. {
  1871. if (tx_ring->wq_base) {
  1872. pci_free_consistent(qdev->pdev, tx_ring->wq_size,
  1873. tx_ring->wq_base, tx_ring->wq_base_dma);
  1874. tx_ring->wq_base = NULL;
  1875. }
  1876. kfree(tx_ring->q);
  1877. tx_ring->q = NULL;
  1878. }
  1879. static int ql_alloc_tx_resources(struct ql_adapter *qdev,
  1880. struct tx_ring *tx_ring)
  1881. {
  1882. tx_ring->wq_base =
  1883. pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
  1884. &tx_ring->wq_base_dma);
  1885. if ((tx_ring->wq_base == NULL)
  1886. || tx_ring->wq_base_dma & (tx_ring->wq_size - 1)) {
  1887. QPRINTK(qdev, IFUP, ERR, "tx_ring alloc failed.\n");
  1888. return -ENOMEM;
  1889. }
  1890. tx_ring->q =
  1891. kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
  1892. if (tx_ring->q == NULL)
  1893. goto err;
  1894. return 0;
  1895. err:
  1896. pci_free_consistent(qdev->pdev, tx_ring->wq_size,
  1897. tx_ring->wq_base, tx_ring->wq_base_dma);
  1898. return -ENOMEM;
  1899. }
  1900. static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  1901. {
  1902. int i;
  1903. struct bq_desc *lbq_desc;
  1904. for (i = 0; i < rx_ring->lbq_len; i++) {
  1905. lbq_desc = &rx_ring->lbq[i];
  1906. if (lbq_desc->p.lbq_page) {
  1907. pci_unmap_page(qdev->pdev,
  1908. pci_unmap_addr(lbq_desc, mapaddr),
  1909. pci_unmap_len(lbq_desc, maplen),
  1910. PCI_DMA_FROMDEVICE);
  1911. put_page(lbq_desc->p.lbq_page);
  1912. lbq_desc->p.lbq_page = NULL;
  1913. }
  1914. lbq_desc->bq->addr_lo = 0;
  1915. lbq_desc->bq->addr_hi = 0;
  1916. }
  1917. }
  1918. /*
  1919. * Allocate and map a page for each element of the lbq.
  1920. */
  1921. static int ql_alloc_lbq_buffers(struct ql_adapter *qdev,
  1922. struct rx_ring *rx_ring)
  1923. {
  1924. int i;
  1925. struct bq_desc *lbq_desc;
  1926. u64 map;
  1927. struct bq_element *bq = rx_ring->lbq_base;
  1928. for (i = 0; i < rx_ring->lbq_len; i++) {
  1929. lbq_desc = &rx_ring->lbq[i];
  1930. memset(lbq_desc, 0, sizeof(lbq_desc));
  1931. lbq_desc->bq = bq;
  1932. lbq_desc->index = i;
  1933. lbq_desc->p.lbq_page = alloc_page(GFP_ATOMIC);
  1934. if (unlikely(!lbq_desc->p.lbq_page)) {
  1935. QPRINTK(qdev, IFUP, ERR, "failed alloc_page().\n");
  1936. goto mem_error;
  1937. } else {
  1938. map = pci_map_page(qdev->pdev,
  1939. lbq_desc->p.lbq_page,
  1940. 0, PAGE_SIZE, PCI_DMA_FROMDEVICE);
  1941. if (pci_dma_mapping_error(qdev->pdev, map)) {
  1942. QPRINTK(qdev, IFUP, ERR,
  1943. "PCI mapping failed.\n");
  1944. goto mem_error;
  1945. }
  1946. pci_unmap_addr_set(lbq_desc, mapaddr, map);
  1947. pci_unmap_len_set(lbq_desc, maplen, PAGE_SIZE);
  1948. bq->addr_lo = cpu_to_le32(map);
  1949. bq->addr_hi = cpu_to_le32(map >> 32);
  1950. }
  1951. bq++;
  1952. }
  1953. return 0;
  1954. mem_error:
  1955. ql_free_lbq_buffers(qdev, rx_ring);
  1956. return -ENOMEM;
  1957. }
  1958. static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  1959. {
  1960. int i;
  1961. struct bq_desc *sbq_desc;
  1962. for (i = 0; i < rx_ring->sbq_len; i++) {
  1963. sbq_desc = &rx_ring->sbq[i];
  1964. if (sbq_desc == NULL) {
  1965. QPRINTK(qdev, IFUP, ERR, "sbq_desc %d is NULL.\n", i);
  1966. return;
  1967. }
  1968. if (sbq_desc->p.skb) {
  1969. pci_unmap_single(qdev->pdev,
  1970. pci_unmap_addr(sbq_desc, mapaddr),
  1971. pci_unmap_len(sbq_desc, maplen),
  1972. PCI_DMA_FROMDEVICE);
  1973. dev_kfree_skb(sbq_desc->p.skb);
  1974. sbq_desc->p.skb = NULL;
  1975. }
  1976. if (sbq_desc->bq == NULL) {
  1977. QPRINTK(qdev, IFUP, ERR, "sbq_desc->bq %d is NULL.\n",
  1978. i);
  1979. return;
  1980. }
  1981. sbq_desc->bq->addr_lo = 0;
  1982. sbq_desc->bq->addr_hi = 0;
  1983. }
  1984. }
  1985. /* Allocate and map an skb for each element of the sbq. */
  1986. static int ql_alloc_sbq_buffers(struct ql_adapter *qdev,
  1987. struct rx_ring *rx_ring)
  1988. {
  1989. int i;
  1990. struct bq_desc *sbq_desc;
  1991. struct sk_buff *skb;
  1992. u64 map;
  1993. struct bq_element *bq = rx_ring->sbq_base;
  1994. for (i = 0; i < rx_ring->sbq_len; i++) {
  1995. sbq_desc = &rx_ring->sbq[i];
  1996. memset(sbq_desc, 0, sizeof(sbq_desc));
  1997. sbq_desc->index = i;
  1998. sbq_desc->bq = bq;
  1999. skb = netdev_alloc_skb(qdev->ndev, rx_ring->sbq_buf_size);
  2000. if (unlikely(!skb)) {
  2001. /* Better luck next round */
  2002. QPRINTK(qdev, IFUP, ERR,
  2003. "small buff alloc failed for %d bytes at index %d.\n",
  2004. rx_ring->sbq_buf_size, i);
  2005. goto mem_err;
  2006. }
  2007. skb_reserve(skb, QLGE_SB_PAD);
  2008. sbq_desc->p.skb = skb;
  2009. /*
  2010. * Map only half the buffer. Because the
  2011. * other half may get some data copied to it
  2012. * when the completion arrives.
  2013. */
  2014. map = pci_map_single(qdev->pdev,
  2015. skb->data,
  2016. rx_ring->sbq_buf_size / 2,
  2017. PCI_DMA_FROMDEVICE);
  2018. if (pci_dma_mapping_error(qdev->pdev, map)) {
  2019. QPRINTK(qdev, IFUP, ERR, "PCI mapping failed.\n");
  2020. goto mem_err;
  2021. }
  2022. pci_unmap_addr_set(sbq_desc, mapaddr, map);
  2023. pci_unmap_len_set(sbq_desc, maplen, rx_ring->sbq_buf_size / 2);
  2024. bq->addr_lo = /*sbq_desc->addr_lo = */
  2025. cpu_to_le32(map);
  2026. bq->addr_hi = /*sbq_desc->addr_hi = */
  2027. cpu_to_le32(map >> 32);
  2028. bq++;
  2029. }
  2030. return 0;
  2031. mem_err:
  2032. ql_free_sbq_buffers(qdev, rx_ring);
  2033. return -ENOMEM;
  2034. }
  2035. static void ql_free_rx_resources(struct ql_adapter *qdev,
  2036. struct rx_ring *rx_ring)
  2037. {
  2038. if (rx_ring->sbq_len)
  2039. ql_free_sbq_buffers(qdev, rx_ring);
  2040. if (rx_ring->lbq_len)
  2041. ql_free_lbq_buffers(qdev, rx_ring);
  2042. /* Free the small buffer queue. */
  2043. if (rx_ring->sbq_base) {
  2044. pci_free_consistent(qdev->pdev,
  2045. rx_ring->sbq_size,
  2046. rx_ring->sbq_base, rx_ring->sbq_base_dma);
  2047. rx_ring->sbq_base = NULL;
  2048. }
  2049. /* Free the small buffer queue control blocks. */
  2050. kfree(rx_ring->sbq);
  2051. rx_ring->sbq = NULL;
  2052. /* Free the large buffer queue. */
  2053. if (rx_ring->lbq_base) {
  2054. pci_free_consistent(qdev->pdev,
  2055. rx_ring->lbq_size,
  2056. rx_ring->lbq_base, rx_ring->lbq_base_dma);
  2057. rx_ring->lbq_base = NULL;
  2058. }
  2059. /* Free the large buffer queue control blocks. */
  2060. kfree(rx_ring->lbq);
  2061. rx_ring->lbq = NULL;
  2062. /* Free the rx queue. */
  2063. if (rx_ring->cq_base) {
  2064. pci_free_consistent(qdev->pdev,
  2065. rx_ring->cq_size,
  2066. rx_ring->cq_base, rx_ring->cq_base_dma);
  2067. rx_ring->cq_base = NULL;
  2068. }
  2069. }
  2070. /* Allocate queues and buffers for this completions queue based
  2071. * on the values in the parameter structure. */
  2072. static int ql_alloc_rx_resources(struct ql_adapter *qdev,
  2073. struct rx_ring *rx_ring)
  2074. {
  2075. /*
  2076. * Allocate the completion queue for this rx_ring.
  2077. */
  2078. rx_ring->cq_base =
  2079. pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
  2080. &rx_ring->cq_base_dma);
  2081. if (rx_ring->cq_base == NULL) {
  2082. QPRINTK(qdev, IFUP, ERR, "rx_ring alloc failed.\n");
  2083. return -ENOMEM;
  2084. }
  2085. if (rx_ring->sbq_len) {
  2086. /*
  2087. * Allocate small buffer queue.
  2088. */
  2089. rx_ring->sbq_base =
  2090. pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
  2091. &rx_ring->sbq_base_dma);
  2092. if (rx_ring->sbq_base == NULL) {
  2093. QPRINTK(qdev, IFUP, ERR,
  2094. "Small buffer queue allocation failed.\n");
  2095. goto err_mem;
  2096. }
  2097. /*
  2098. * Allocate small buffer queue control blocks.
  2099. */
  2100. rx_ring->sbq =
  2101. kmalloc(rx_ring->sbq_len * sizeof(struct bq_desc),
  2102. GFP_KERNEL);
  2103. if (rx_ring->sbq == NULL) {
  2104. QPRINTK(qdev, IFUP, ERR,
  2105. "Small buffer queue control block allocation failed.\n");
  2106. goto err_mem;
  2107. }
  2108. if (ql_alloc_sbq_buffers(qdev, rx_ring)) {
  2109. QPRINTK(qdev, IFUP, ERR,
  2110. "Small buffer allocation failed.\n");
  2111. goto err_mem;
  2112. }
  2113. }
  2114. if (rx_ring->lbq_len) {
  2115. /*
  2116. * Allocate large buffer queue.
  2117. */
  2118. rx_ring->lbq_base =
  2119. pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
  2120. &rx_ring->lbq_base_dma);
  2121. if (rx_ring->lbq_base == NULL) {
  2122. QPRINTK(qdev, IFUP, ERR,
  2123. "Large buffer queue allocation failed.\n");
  2124. goto err_mem;
  2125. }
  2126. /*
  2127. * Allocate large buffer queue control blocks.
  2128. */
  2129. rx_ring->lbq =
  2130. kmalloc(rx_ring->lbq_len * sizeof(struct bq_desc),
  2131. GFP_KERNEL);
  2132. if (rx_ring->lbq == NULL) {
  2133. QPRINTK(qdev, IFUP, ERR,
  2134. "Large buffer queue control block allocation failed.\n");
  2135. goto err_mem;
  2136. }
  2137. /*
  2138. * Allocate the buffers.
  2139. */
  2140. if (ql_alloc_lbq_buffers(qdev, rx_ring)) {
  2141. QPRINTK(qdev, IFUP, ERR,
  2142. "Large buffer allocation failed.\n");
  2143. goto err_mem;
  2144. }
  2145. }
  2146. return 0;
  2147. err_mem:
  2148. ql_free_rx_resources(qdev, rx_ring);
  2149. return -ENOMEM;
  2150. }
  2151. static void ql_tx_ring_clean(struct ql_adapter *qdev)
  2152. {
  2153. struct tx_ring *tx_ring;
  2154. struct tx_ring_desc *tx_ring_desc;
  2155. int i, j;
  2156. /*
  2157. * Loop through all queues and free
  2158. * any resources.
  2159. */
  2160. for (j = 0; j < qdev->tx_ring_count; j++) {
  2161. tx_ring = &qdev->tx_ring[j];
  2162. for (i = 0; i < tx_ring->wq_len; i++) {
  2163. tx_ring_desc = &tx_ring->q[i];
  2164. if (tx_ring_desc && tx_ring_desc->skb) {
  2165. QPRINTK(qdev, IFDOWN, ERR,
  2166. "Freeing lost SKB %p, from queue %d, index %d.\n",
  2167. tx_ring_desc->skb, j,
  2168. tx_ring_desc->index);
  2169. ql_unmap_send(qdev, tx_ring_desc,
  2170. tx_ring_desc->map_cnt);
  2171. dev_kfree_skb(tx_ring_desc->skb);
  2172. tx_ring_desc->skb = NULL;
  2173. }
  2174. }
  2175. }
  2176. }
  2177. static void ql_free_ring_cb(struct ql_adapter *qdev)
  2178. {
  2179. kfree(qdev->ring_mem);
  2180. }
  2181. static int ql_alloc_ring_cb(struct ql_adapter *qdev)
  2182. {
  2183. /* Allocate space for tx/rx ring control blocks. */
  2184. qdev->ring_mem_size =
  2185. (qdev->tx_ring_count * sizeof(struct tx_ring)) +
  2186. (qdev->rx_ring_count * sizeof(struct rx_ring));
  2187. qdev->ring_mem = kmalloc(qdev->ring_mem_size, GFP_KERNEL);
  2188. if (qdev->ring_mem == NULL) {
  2189. return -ENOMEM;
  2190. } else {
  2191. qdev->rx_ring = qdev->ring_mem;
  2192. qdev->tx_ring = qdev->ring_mem +
  2193. (qdev->rx_ring_count * sizeof(struct rx_ring));
  2194. }
  2195. return 0;
  2196. }
  2197. static void ql_free_mem_resources(struct ql_adapter *qdev)
  2198. {
  2199. int i;
  2200. for (i = 0; i < qdev->tx_ring_count; i++)
  2201. ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
  2202. for (i = 0; i < qdev->rx_ring_count; i++)
  2203. ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
  2204. ql_free_shadow_space(qdev);
  2205. }
  2206. static int ql_alloc_mem_resources(struct ql_adapter *qdev)
  2207. {
  2208. int i;
  2209. /* Allocate space for our shadow registers and such. */
  2210. if (ql_alloc_shadow_space(qdev))
  2211. return -ENOMEM;
  2212. for (i = 0; i < qdev->rx_ring_count; i++) {
  2213. if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
  2214. QPRINTK(qdev, IFUP, ERR,
  2215. "RX resource allocation failed.\n");
  2216. goto err_mem;
  2217. }
  2218. }
  2219. /* Allocate tx queue resources */
  2220. for (i = 0; i < qdev->tx_ring_count; i++) {
  2221. if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
  2222. QPRINTK(qdev, IFUP, ERR,
  2223. "TX resource allocation failed.\n");
  2224. goto err_mem;
  2225. }
  2226. }
  2227. return 0;
  2228. err_mem:
  2229. ql_free_mem_resources(qdev);
  2230. return -ENOMEM;
  2231. }
  2232. /* Set up the rx ring control block and pass it to the chip.
  2233. * The control block is defined as
  2234. * "Completion Queue Initialization Control Block", or cqicb.
  2235. */
  2236. static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  2237. {
  2238. struct cqicb *cqicb = &rx_ring->cqicb;
  2239. void *shadow_reg = qdev->rx_ring_shadow_reg_area +
  2240. (rx_ring->cq_id * sizeof(u64) * 4);
  2241. u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
  2242. (rx_ring->cq_id * sizeof(u64) * 4);
  2243. void __iomem *doorbell_area =
  2244. qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
  2245. int err = 0;
  2246. u16 bq_len;
  2247. /* Set up the shadow registers for this ring. */
  2248. rx_ring->prod_idx_sh_reg = shadow_reg;
  2249. rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
  2250. shadow_reg += sizeof(u64);
  2251. shadow_reg_dma += sizeof(u64);
  2252. rx_ring->lbq_base_indirect = shadow_reg;
  2253. rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
  2254. shadow_reg += sizeof(u64);
  2255. shadow_reg_dma += sizeof(u64);
  2256. rx_ring->sbq_base_indirect = shadow_reg;
  2257. rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
  2258. /* PCI doorbell mem area + 0x00 for consumer index register */
  2259. rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
  2260. rx_ring->cnsmr_idx = 0;
  2261. rx_ring->curr_entry = rx_ring->cq_base;
  2262. /* PCI doorbell mem area + 0x04 for valid register */
  2263. rx_ring->valid_db_reg = doorbell_area + 0x04;
  2264. /* PCI doorbell mem area + 0x18 for large buffer consumer */
  2265. rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
  2266. /* PCI doorbell mem area + 0x1c */
  2267. rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
  2268. memset((void *)cqicb, 0, sizeof(struct cqicb));
  2269. cqicb->msix_vect = rx_ring->irq;
  2270. cqicb->len = cpu_to_le16(rx_ring->cq_len | LEN_V | LEN_CPP_CONT);
  2271. cqicb->addr_lo = cpu_to_le32(rx_ring->cq_base_dma);
  2272. cqicb->addr_hi = cpu_to_le32((u64) rx_ring->cq_base_dma >> 32);
  2273. cqicb->prod_idx_addr_lo = cpu_to_le32(rx_ring->prod_idx_sh_reg_dma);
  2274. cqicb->prod_idx_addr_hi =
  2275. cpu_to_le32((u64) rx_ring->prod_idx_sh_reg_dma >> 32);
  2276. /*
  2277. * Set up the control block load flags.
  2278. */
  2279. cqicb->flags = FLAGS_LC | /* Load queue base address */
  2280. FLAGS_LV | /* Load MSI-X vector */
  2281. FLAGS_LI; /* Load irq delay values */
  2282. if (rx_ring->lbq_len) {
  2283. cqicb->flags |= FLAGS_LL; /* Load lbq values */
  2284. *((u64 *) rx_ring->lbq_base_indirect) = rx_ring->lbq_base_dma;
  2285. cqicb->lbq_addr_lo =
  2286. cpu_to_le32(rx_ring->lbq_base_indirect_dma);
  2287. cqicb->lbq_addr_hi =
  2288. cpu_to_le32((u64) rx_ring->lbq_base_indirect_dma >> 32);
  2289. cqicb->lbq_buf_size = cpu_to_le32(rx_ring->lbq_buf_size);
  2290. bq_len = (u16) rx_ring->lbq_len;
  2291. cqicb->lbq_len = cpu_to_le16(bq_len);
  2292. rx_ring->lbq_prod_idx = rx_ring->lbq_len - 16;
  2293. rx_ring->lbq_curr_idx = 0;
  2294. rx_ring->lbq_clean_idx = rx_ring->lbq_prod_idx;
  2295. rx_ring->lbq_free_cnt = 16;
  2296. }
  2297. if (rx_ring->sbq_len) {
  2298. cqicb->flags |= FLAGS_LS; /* Load sbq values */
  2299. *((u64 *) rx_ring->sbq_base_indirect) = rx_ring->sbq_base_dma;
  2300. cqicb->sbq_addr_lo =
  2301. cpu_to_le32(rx_ring->sbq_base_indirect_dma);
  2302. cqicb->sbq_addr_hi =
  2303. cpu_to_le32((u64) rx_ring->sbq_base_indirect_dma >> 32);
  2304. cqicb->sbq_buf_size =
  2305. cpu_to_le16(((rx_ring->sbq_buf_size / 2) + 8) & 0xfffffff8);
  2306. bq_len = (u16) rx_ring->sbq_len;
  2307. cqicb->sbq_len = cpu_to_le16(bq_len);
  2308. rx_ring->sbq_prod_idx = rx_ring->sbq_len - 16;
  2309. rx_ring->sbq_curr_idx = 0;
  2310. rx_ring->sbq_clean_idx = rx_ring->sbq_prod_idx;
  2311. rx_ring->sbq_free_cnt = 16;
  2312. }
  2313. switch (rx_ring->type) {
  2314. case TX_Q:
  2315. /* If there's only one interrupt, then we use
  2316. * worker threads to process the outbound
  2317. * completion handling rx_rings. We do this so
  2318. * they can be run on multiple CPUs. There is
  2319. * room to play with this more where we would only
  2320. * run in a worker if there are more than x number
  2321. * of outbound completions on the queue and more
  2322. * than one queue active. Some threshold that
  2323. * would indicate a benefit in spite of the cost
  2324. * of a context switch.
  2325. * If there's more than one interrupt, then the
  2326. * outbound completions are processed in the ISR.
  2327. */
  2328. if (!test_bit(QL_MSIX_ENABLED, &qdev->flags))
  2329. INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
  2330. else {
  2331. /* With all debug warnings on we see a WARN_ON message
  2332. * when we free the skb in the interrupt context.
  2333. */
  2334. INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
  2335. }
  2336. cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
  2337. cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
  2338. break;
  2339. case DEFAULT_Q:
  2340. INIT_DELAYED_WORK(&rx_ring->rx_work, ql_rx_clean);
  2341. cqicb->irq_delay = 0;
  2342. cqicb->pkt_delay = 0;
  2343. break;
  2344. case RX_Q:
  2345. /* Inbound completion handling rx_rings run in
  2346. * separate NAPI contexts.
  2347. */
  2348. netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
  2349. 64);
  2350. cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
  2351. cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
  2352. break;
  2353. default:
  2354. QPRINTK(qdev, IFUP, DEBUG, "Invalid rx_ring->type = %d.\n",
  2355. rx_ring->type);
  2356. }
  2357. QPRINTK(qdev, IFUP, INFO, "Initializing rx work queue.\n");
  2358. err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
  2359. CFG_LCQ, rx_ring->cq_id);
  2360. if (err) {
  2361. QPRINTK(qdev, IFUP, ERR, "Failed to load CQICB.\n");
  2362. return err;
  2363. }
  2364. QPRINTK(qdev, IFUP, INFO, "Successfully loaded CQICB.\n");
  2365. /*
  2366. * Advance the producer index for the buffer queues.
  2367. */
  2368. wmb();
  2369. if (rx_ring->lbq_len)
  2370. ql_write_db_reg(rx_ring->lbq_prod_idx,
  2371. rx_ring->lbq_prod_idx_db_reg);
  2372. if (rx_ring->sbq_len)
  2373. ql_write_db_reg(rx_ring->sbq_prod_idx,
  2374. rx_ring->sbq_prod_idx_db_reg);
  2375. return err;
  2376. }
  2377. static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
  2378. {
  2379. struct wqicb *wqicb = (struct wqicb *)tx_ring;
  2380. void __iomem *doorbell_area =
  2381. qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
  2382. void *shadow_reg = qdev->tx_ring_shadow_reg_area +
  2383. (tx_ring->wq_id * sizeof(u64));
  2384. u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
  2385. (tx_ring->wq_id * sizeof(u64));
  2386. int err = 0;
  2387. /*
  2388. * Assign doorbell registers for this tx_ring.
  2389. */
  2390. /* TX PCI doorbell mem area for tx producer index */
  2391. tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
  2392. tx_ring->prod_idx = 0;
  2393. /* TX PCI doorbell mem area + 0x04 */
  2394. tx_ring->valid_db_reg = doorbell_area + 0x04;
  2395. /*
  2396. * Assign shadow registers for this tx_ring.
  2397. */
  2398. tx_ring->cnsmr_idx_sh_reg = shadow_reg;
  2399. tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
  2400. wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
  2401. wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
  2402. Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
  2403. wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
  2404. wqicb->rid = 0;
  2405. wqicb->addr_lo = cpu_to_le32(tx_ring->wq_base_dma);
  2406. wqicb->addr_hi = cpu_to_le32((u64) tx_ring->wq_base_dma >> 32);
  2407. wqicb->cnsmr_idx_addr_lo = cpu_to_le32(tx_ring->cnsmr_idx_sh_reg_dma);
  2408. wqicb->cnsmr_idx_addr_hi =
  2409. cpu_to_le32((u64) tx_ring->cnsmr_idx_sh_reg_dma >> 32);
  2410. ql_init_tx_ring(qdev, tx_ring);
  2411. err = ql_write_cfg(qdev, wqicb, sizeof(wqicb), CFG_LRQ,
  2412. (u16) tx_ring->wq_id);
  2413. if (err) {
  2414. QPRINTK(qdev, IFUP, ERR, "Failed to load tx_ring.\n");
  2415. return err;
  2416. }
  2417. QPRINTK(qdev, IFUP, INFO, "Successfully loaded WQICB.\n");
  2418. return err;
  2419. }
  2420. static void ql_disable_msix(struct ql_adapter *qdev)
  2421. {
  2422. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  2423. pci_disable_msix(qdev->pdev);
  2424. clear_bit(QL_MSIX_ENABLED, &qdev->flags);
  2425. kfree(qdev->msi_x_entry);
  2426. qdev->msi_x_entry = NULL;
  2427. } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
  2428. pci_disable_msi(qdev->pdev);
  2429. clear_bit(QL_MSI_ENABLED, &qdev->flags);
  2430. }
  2431. }
  2432. static void ql_enable_msix(struct ql_adapter *qdev)
  2433. {
  2434. int i;
  2435. qdev->intr_count = 1;
  2436. /* Get the MSIX vectors. */
  2437. if (irq_type == MSIX_IRQ) {
  2438. /* Try to alloc space for the msix struct,
  2439. * if it fails then go to MSI/legacy.
  2440. */
  2441. qdev->msi_x_entry = kcalloc(qdev->rx_ring_count,
  2442. sizeof(struct msix_entry),
  2443. GFP_KERNEL);
  2444. if (!qdev->msi_x_entry) {
  2445. irq_type = MSI_IRQ;
  2446. goto msi;
  2447. }
  2448. for (i = 0; i < qdev->rx_ring_count; i++)
  2449. qdev->msi_x_entry[i].entry = i;
  2450. if (!pci_enable_msix
  2451. (qdev->pdev, qdev->msi_x_entry, qdev->rx_ring_count)) {
  2452. set_bit(QL_MSIX_ENABLED, &qdev->flags);
  2453. qdev->intr_count = qdev->rx_ring_count;
  2454. QPRINTK(qdev, IFUP, INFO,
  2455. "MSI-X Enabled, got %d vectors.\n",
  2456. qdev->intr_count);
  2457. return;
  2458. } else {
  2459. kfree(qdev->msi_x_entry);
  2460. qdev->msi_x_entry = NULL;
  2461. QPRINTK(qdev, IFUP, WARNING,
  2462. "MSI-X Enable failed, trying MSI.\n");
  2463. irq_type = MSI_IRQ;
  2464. }
  2465. }
  2466. msi:
  2467. if (irq_type == MSI_IRQ) {
  2468. if (!pci_enable_msi(qdev->pdev)) {
  2469. set_bit(QL_MSI_ENABLED, &qdev->flags);
  2470. QPRINTK(qdev, IFUP, INFO,
  2471. "Running with MSI interrupts.\n");
  2472. return;
  2473. }
  2474. }
  2475. irq_type = LEG_IRQ;
  2476. QPRINTK(qdev, IFUP, DEBUG, "Running with legacy interrupts.\n");
  2477. }
  2478. /*
  2479. * Here we build the intr_context structures based on
  2480. * our rx_ring count and intr vector count.
  2481. * The intr_context structure is used to hook each vector
  2482. * to possibly different handlers.
  2483. */
  2484. static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
  2485. {
  2486. int i = 0;
  2487. struct intr_context *intr_context = &qdev->intr_context[0];
  2488. ql_enable_msix(qdev);
  2489. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
  2490. /* Each rx_ring has it's
  2491. * own intr_context since we have separate
  2492. * vectors for each queue.
  2493. * This only true when MSI-X is enabled.
  2494. */
  2495. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  2496. qdev->rx_ring[i].irq = i;
  2497. intr_context->intr = i;
  2498. intr_context->qdev = qdev;
  2499. /*
  2500. * We set up each vectors enable/disable/read bits so
  2501. * there's no bit/mask calculations in the critical path.
  2502. */
  2503. intr_context->intr_en_mask =
  2504. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  2505. INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
  2506. | i;
  2507. intr_context->intr_dis_mask =
  2508. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  2509. INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
  2510. INTR_EN_IHD | i;
  2511. intr_context->intr_read_mask =
  2512. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  2513. INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
  2514. i;
  2515. if (i == 0) {
  2516. /*
  2517. * Default queue handles bcast/mcast plus
  2518. * async events. Needs buffers.
  2519. */
  2520. intr_context->handler = qlge_isr;
  2521. sprintf(intr_context->name, "%s-default-queue",
  2522. qdev->ndev->name);
  2523. } else if (i < qdev->rss_ring_first_cq_id) {
  2524. /*
  2525. * Outbound queue is for outbound completions only.
  2526. */
  2527. intr_context->handler = qlge_msix_tx_isr;
  2528. sprintf(intr_context->name, "%s-txq-%d",
  2529. qdev->ndev->name, i);
  2530. } else {
  2531. /*
  2532. * Inbound queues handle unicast frames only.
  2533. */
  2534. intr_context->handler = qlge_msix_rx_isr;
  2535. sprintf(intr_context->name, "%s-rxq-%d",
  2536. qdev->ndev->name, i);
  2537. }
  2538. }
  2539. } else {
  2540. /*
  2541. * All rx_rings use the same intr_context since
  2542. * there is only one vector.
  2543. */
  2544. intr_context->intr = 0;
  2545. intr_context->qdev = qdev;
  2546. /*
  2547. * We set up each vectors enable/disable/read bits so
  2548. * there's no bit/mask calculations in the critical path.
  2549. */
  2550. intr_context->intr_en_mask =
  2551. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
  2552. intr_context->intr_dis_mask =
  2553. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  2554. INTR_EN_TYPE_DISABLE;
  2555. intr_context->intr_read_mask =
  2556. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
  2557. /*
  2558. * Single interrupt means one handler for all rings.
  2559. */
  2560. intr_context->handler = qlge_isr;
  2561. sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
  2562. for (i = 0; i < qdev->rx_ring_count; i++)
  2563. qdev->rx_ring[i].irq = 0;
  2564. }
  2565. }
  2566. static void ql_free_irq(struct ql_adapter *qdev)
  2567. {
  2568. int i;
  2569. struct intr_context *intr_context = &qdev->intr_context[0];
  2570. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  2571. if (intr_context->hooked) {
  2572. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  2573. free_irq(qdev->msi_x_entry[i].vector,
  2574. &qdev->rx_ring[i]);
  2575. QPRINTK(qdev, IFDOWN, ERR,
  2576. "freeing msix interrupt %d.\n", i);
  2577. } else {
  2578. free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
  2579. QPRINTK(qdev, IFDOWN, ERR,
  2580. "freeing msi interrupt %d.\n", i);
  2581. }
  2582. }
  2583. }
  2584. ql_disable_msix(qdev);
  2585. }
  2586. static int ql_request_irq(struct ql_adapter *qdev)
  2587. {
  2588. int i;
  2589. int status = 0;
  2590. struct pci_dev *pdev = qdev->pdev;
  2591. struct intr_context *intr_context = &qdev->intr_context[0];
  2592. ql_resolve_queues_to_irqs(qdev);
  2593. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  2594. atomic_set(&intr_context->irq_cnt, 0);
  2595. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  2596. status = request_irq(qdev->msi_x_entry[i].vector,
  2597. intr_context->handler,
  2598. 0,
  2599. intr_context->name,
  2600. &qdev->rx_ring[i]);
  2601. if (status) {
  2602. QPRINTK(qdev, IFUP, ERR,
  2603. "Failed request for MSIX interrupt %d.\n",
  2604. i);
  2605. goto err_irq;
  2606. } else {
  2607. QPRINTK(qdev, IFUP, INFO,
  2608. "Hooked intr %d, queue type %s%s%s, with name %s.\n",
  2609. i,
  2610. qdev->rx_ring[i].type ==
  2611. DEFAULT_Q ? "DEFAULT_Q" : "",
  2612. qdev->rx_ring[i].type ==
  2613. TX_Q ? "TX_Q" : "",
  2614. qdev->rx_ring[i].type ==
  2615. RX_Q ? "RX_Q" : "", intr_context->name);
  2616. }
  2617. } else {
  2618. QPRINTK(qdev, IFUP, DEBUG,
  2619. "trying msi or legacy interrupts.\n");
  2620. QPRINTK(qdev, IFUP, DEBUG,
  2621. "%s: irq = %d.\n", __func__, pdev->irq);
  2622. QPRINTK(qdev, IFUP, DEBUG,
  2623. "%s: context->name = %s.\n", __func__,
  2624. intr_context->name);
  2625. QPRINTK(qdev, IFUP, DEBUG,
  2626. "%s: dev_id = 0x%p.\n", __func__,
  2627. &qdev->rx_ring[0]);
  2628. status =
  2629. request_irq(pdev->irq, qlge_isr,
  2630. test_bit(QL_MSI_ENABLED,
  2631. &qdev->
  2632. flags) ? 0 : IRQF_SHARED,
  2633. intr_context->name, &qdev->rx_ring[0]);
  2634. if (status)
  2635. goto err_irq;
  2636. QPRINTK(qdev, IFUP, ERR,
  2637. "Hooked intr %d, queue type %s%s%s, with name %s.\n",
  2638. i,
  2639. qdev->rx_ring[0].type ==
  2640. DEFAULT_Q ? "DEFAULT_Q" : "",
  2641. qdev->rx_ring[0].type == TX_Q ? "TX_Q" : "",
  2642. qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
  2643. intr_context->name);
  2644. }
  2645. intr_context->hooked = 1;
  2646. }
  2647. return status;
  2648. err_irq:
  2649. QPRINTK(qdev, IFUP, ERR, "Failed to get the interrupts!!!/n");
  2650. ql_free_irq(qdev);
  2651. return status;
  2652. }
  2653. static int ql_start_rss(struct ql_adapter *qdev)
  2654. {
  2655. struct ricb *ricb = &qdev->ricb;
  2656. int status = 0;
  2657. int i;
  2658. u8 *hash_id = (u8 *) ricb->hash_cq_id;
  2659. memset((void *)ricb, 0, sizeof(ricb));
  2660. ricb->base_cq = qdev->rss_ring_first_cq_id | RSS_L4K;
  2661. ricb->flags =
  2662. (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RI4 | RSS_RI6 | RSS_RT4 |
  2663. RSS_RT6);
  2664. ricb->mask = cpu_to_le16(qdev->rss_ring_count - 1);
  2665. /*
  2666. * Fill out the Indirection Table.
  2667. */
  2668. for (i = 0; i < 32; i++)
  2669. hash_id[i] = i & 1;
  2670. /*
  2671. * Random values for the IPv6 and IPv4 Hash Keys.
  2672. */
  2673. get_random_bytes((void *)&ricb->ipv6_hash_key[0], 40);
  2674. get_random_bytes((void *)&ricb->ipv4_hash_key[0], 16);
  2675. QPRINTK(qdev, IFUP, INFO, "Initializing RSS.\n");
  2676. status = ql_write_cfg(qdev, ricb, sizeof(ricb), CFG_LR, 0);
  2677. if (status) {
  2678. QPRINTK(qdev, IFUP, ERR, "Failed to load RICB.\n");
  2679. return status;
  2680. }
  2681. QPRINTK(qdev, IFUP, INFO, "Successfully loaded RICB.\n");
  2682. return status;
  2683. }
  2684. /* Initialize the frame-to-queue routing. */
  2685. static int ql_route_initialize(struct ql_adapter *qdev)
  2686. {
  2687. int status = 0;
  2688. int i;
  2689. /* Clear all the entries in the routing table. */
  2690. for (i = 0; i < 16; i++) {
  2691. status = ql_set_routing_reg(qdev, i, 0, 0);
  2692. if (status) {
  2693. QPRINTK(qdev, IFUP, ERR,
  2694. "Failed to init routing register for CAM packets.\n");
  2695. return status;
  2696. }
  2697. }
  2698. status = ql_set_routing_reg(qdev, RT_IDX_ALL_ERR_SLOT, RT_IDX_ERR, 1);
  2699. if (status) {
  2700. QPRINTK(qdev, IFUP, ERR,
  2701. "Failed to init routing register for error packets.\n");
  2702. return status;
  2703. }
  2704. status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
  2705. if (status) {
  2706. QPRINTK(qdev, IFUP, ERR,
  2707. "Failed to init routing register for broadcast packets.\n");
  2708. return status;
  2709. }
  2710. /* If we have more than one inbound queue, then turn on RSS in the
  2711. * routing block.
  2712. */
  2713. if (qdev->rss_ring_count > 1) {
  2714. status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
  2715. RT_IDX_RSS_MATCH, 1);
  2716. if (status) {
  2717. QPRINTK(qdev, IFUP, ERR,
  2718. "Failed to init routing register for MATCH RSS packets.\n");
  2719. return status;
  2720. }
  2721. }
  2722. status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
  2723. RT_IDX_CAM_HIT, 1);
  2724. if (status) {
  2725. QPRINTK(qdev, IFUP, ERR,
  2726. "Failed to init routing register for CAM packets.\n");
  2727. return status;
  2728. }
  2729. return status;
  2730. }
  2731. static int ql_adapter_initialize(struct ql_adapter *qdev)
  2732. {
  2733. u32 value, mask;
  2734. int i;
  2735. int status = 0;
  2736. /*
  2737. * Set up the System register to halt on errors.
  2738. */
  2739. value = SYS_EFE | SYS_FAE;
  2740. mask = value << 16;
  2741. ql_write32(qdev, SYS, mask | value);
  2742. /* Set the default queue. */
  2743. value = NIC_RCV_CFG_DFQ;
  2744. mask = NIC_RCV_CFG_DFQ_MASK;
  2745. ql_write32(qdev, NIC_RCV_CFG, (mask | value));
  2746. /* Set the MPI interrupt to enabled. */
  2747. ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
  2748. /* Enable the function, set pagesize, enable error checking. */
  2749. value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
  2750. FSC_EC | FSC_VM_PAGE_4K | FSC_SH;
  2751. /* Set/clear header splitting. */
  2752. mask = FSC_VM_PAGESIZE_MASK |
  2753. FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
  2754. ql_write32(qdev, FSC, mask | value);
  2755. ql_write32(qdev, SPLT_HDR, SPLT_HDR_EP |
  2756. min(SMALL_BUFFER_SIZE, MAX_SPLIT_SIZE));
  2757. /* Start up the rx queues. */
  2758. for (i = 0; i < qdev->rx_ring_count; i++) {
  2759. status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
  2760. if (status) {
  2761. QPRINTK(qdev, IFUP, ERR,
  2762. "Failed to start rx ring[%d].\n", i);
  2763. return status;
  2764. }
  2765. }
  2766. /* If there is more than one inbound completion queue
  2767. * then download a RICB to configure RSS.
  2768. */
  2769. if (qdev->rss_ring_count > 1) {
  2770. status = ql_start_rss(qdev);
  2771. if (status) {
  2772. QPRINTK(qdev, IFUP, ERR, "Failed to start RSS.\n");
  2773. return status;
  2774. }
  2775. }
  2776. /* Start up the tx queues. */
  2777. for (i = 0; i < qdev->tx_ring_count; i++) {
  2778. status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
  2779. if (status) {
  2780. QPRINTK(qdev, IFUP, ERR,
  2781. "Failed to start tx ring[%d].\n", i);
  2782. return status;
  2783. }
  2784. }
  2785. status = ql_port_initialize(qdev);
  2786. if (status) {
  2787. QPRINTK(qdev, IFUP, ERR, "Failed to start port.\n");
  2788. return status;
  2789. }
  2790. status = ql_set_mac_addr_reg(qdev, (u8 *) qdev->ndev->perm_addr,
  2791. MAC_ADDR_TYPE_CAM_MAC, qdev->func);
  2792. if (status) {
  2793. QPRINTK(qdev, IFUP, ERR, "Failed to init mac address.\n");
  2794. return status;
  2795. }
  2796. status = ql_route_initialize(qdev);
  2797. if (status) {
  2798. QPRINTK(qdev, IFUP, ERR, "Failed to init routing table.\n");
  2799. return status;
  2800. }
  2801. /* Start NAPI for the RSS queues. */
  2802. for (i = qdev->rss_ring_first_cq_id; i < qdev->rx_ring_count; i++) {
  2803. QPRINTK(qdev, IFUP, INFO, "Enabling NAPI for rx_ring[%d].\n",
  2804. i);
  2805. napi_enable(&qdev->rx_ring[i].napi);
  2806. }
  2807. return status;
  2808. }
  2809. /* Issue soft reset to chip. */
  2810. static int ql_adapter_reset(struct ql_adapter *qdev)
  2811. {
  2812. u32 value;
  2813. int max_wait_time;
  2814. int status = 0;
  2815. int resetCnt = 0;
  2816. #define MAX_RESET_CNT 1
  2817. issueReset:
  2818. resetCnt++;
  2819. QPRINTK(qdev, IFDOWN, DEBUG, "Issue soft reset to chip.\n");
  2820. ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
  2821. /* Wait for reset to complete. */
  2822. max_wait_time = 3;
  2823. QPRINTK(qdev, IFDOWN, DEBUG, "Wait %d seconds for reset to complete.\n",
  2824. max_wait_time);
  2825. do {
  2826. value = ql_read32(qdev, RST_FO);
  2827. if ((value & RST_FO_FR) == 0)
  2828. break;
  2829. ssleep(1);
  2830. } while ((--max_wait_time));
  2831. if (value & RST_FO_FR) {
  2832. QPRINTK(qdev, IFDOWN, ERR,
  2833. "Stuck in SoftReset: FSC_SR:0x%08x\n", value);
  2834. if (resetCnt < MAX_RESET_CNT)
  2835. goto issueReset;
  2836. }
  2837. if (max_wait_time == 0) {
  2838. status = -ETIMEDOUT;
  2839. QPRINTK(qdev, IFDOWN, ERR,
  2840. "ETIMEOUT!!! errored out of resetting the chip!\n");
  2841. }
  2842. return status;
  2843. }
  2844. static void ql_display_dev_info(struct net_device *ndev)
  2845. {
  2846. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  2847. QPRINTK(qdev, PROBE, INFO,
  2848. "Function #%d, NIC Roll %d, NIC Rev = %d, "
  2849. "XG Roll = %d, XG Rev = %d.\n",
  2850. qdev->func,
  2851. qdev->chip_rev_id & 0x0000000f,
  2852. qdev->chip_rev_id >> 4 & 0x0000000f,
  2853. qdev->chip_rev_id >> 8 & 0x0000000f,
  2854. qdev->chip_rev_id >> 12 & 0x0000000f);
  2855. QPRINTK(qdev, PROBE, INFO, "MAC address %pM\n", ndev->dev_addr);
  2856. }
  2857. static int ql_adapter_down(struct ql_adapter *qdev)
  2858. {
  2859. struct net_device *ndev = qdev->ndev;
  2860. int i, status = 0;
  2861. struct rx_ring *rx_ring;
  2862. netif_stop_queue(ndev);
  2863. netif_carrier_off(ndev);
  2864. cancel_delayed_work_sync(&qdev->asic_reset_work);
  2865. cancel_delayed_work_sync(&qdev->mpi_reset_work);
  2866. cancel_delayed_work_sync(&qdev->mpi_work);
  2867. /* The default queue at index 0 is always processed in
  2868. * a workqueue.
  2869. */
  2870. cancel_delayed_work_sync(&qdev->rx_ring[0].rx_work);
  2871. /* The rest of the rx_rings are processed in
  2872. * a workqueue only if it's a single interrupt
  2873. * environment (MSI/Legacy).
  2874. */
  2875. for (i = 1; i < qdev->rx_ring_count; i++) {
  2876. rx_ring = &qdev->rx_ring[i];
  2877. /* Only the RSS rings use NAPI on multi irq
  2878. * environment. Outbound completion processing
  2879. * is done in interrupt context.
  2880. */
  2881. if (i >= qdev->rss_ring_first_cq_id) {
  2882. napi_disable(&rx_ring->napi);
  2883. } else {
  2884. cancel_delayed_work_sync(&rx_ring->rx_work);
  2885. }
  2886. }
  2887. clear_bit(QL_ADAPTER_UP, &qdev->flags);
  2888. ql_disable_interrupts(qdev);
  2889. ql_tx_ring_clean(qdev);
  2890. spin_lock(&qdev->hw_lock);
  2891. status = ql_adapter_reset(qdev);
  2892. if (status)
  2893. QPRINTK(qdev, IFDOWN, ERR, "reset(func #%d) FAILED!\n",
  2894. qdev->func);
  2895. spin_unlock(&qdev->hw_lock);
  2896. return status;
  2897. }
  2898. static int ql_adapter_up(struct ql_adapter *qdev)
  2899. {
  2900. int err = 0;
  2901. spin_lock(&qdev->hw_lock);
  2902. err = ql_adapter_initialize(qdev);
  2903. if (err) {
  2904. QPRINTK(qdev, IFUP, INFO, "Unable to initialize adapter.\n");
  2905. spin_unlock(&qdev->hw_lock);
  2906. goto err_init;
  2907. }
  2908. spin_unlock(&qdev->hw_lock);
  2909. set_bit(QL_ADAPTER_UP, &qdev->flags);
  2910. ql_enable_interrupts(qdev);
  2911. ql_enable_all_completion_interrupts(qdev);
  2912. if ((ql_read32(qdev, STS) & qdev->port_init)) {
  2913. netif_carrier_on(qdev->ndev);
  2914. netif_start_queue(qdev->ndev);
  2915. }
  2916. return 0;
  2917. err_init:
  2918. ql_adapter_reset(qdev);
  2919. return err;
  2920. }
  2921. static int ql_cycle_adapter(struct ql_adapter *qdev)
  2922. {
  2923. int status;
  2924. status = ql_adapter_down(qdev);
  2925. if (status)
  2926. goto error;
  2927. status = ql_adapter_up(qdev);
  2928. if (status)
  2929. goto error;
  2930. return status;
  2931. error:
  2932. QPRINTK(qdev, IFUP, ALERT,
  2933. "Driver up/down cycle failed, closing device\n");
  2934. rtnl_lock();
  2935. dev_close(qdev->ndev);
  2936. rtnl_unlock();
  2937. return status;
  2938. }
  2939. static void ql_release_adapter_resources(struct ql_adapter *qdev)
  2940. {
  2941. ql_free_mem_resources(qdev);
  2942. ql_free_irq(qdev);
  2943. }
  2944. static int ql_get_adapter_resources(struct ql_adapter *qdev)
  2945. {
  2946. int status = 0;
  2947. if (ql_alloc_mem_resources(qdev)) {
  2948. QPRINTK(qdev, IFUP, ERR, "Unable to allocate memory.\n");
  2949. return -ENOMEM;
  2950. }
  2951. status = ql_request_irq(qdev);
  2952. if (status)
  2953. goto err_irq;
  2954. return status;
  2955. err_irq:
  2956. ql_free_mem_resources(qdev);
  2957. return status;
  2958. }
  2959. static int qlge_close(struct net_device *ndev)
  2960. {
  2961. struct ql_adapter *qdev = netdev_priv(ndev);
  2962. /*
  2963. * Wait for device to recover from a reset.
  2964. * (Rarely happens, but possible.)
  2965. */
  2966. while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
  2967. msleep(1);
  2968. ql_adapter_down(qdev);
  2969. ql_release_adapter_resources(qdev);
  2970. ql_free_ring_cb(qdev);
  2971. return 0;
  2972. }
  2973. static int ql_configure_rings(struct ql_adapter *qdev)
  2974. {
  2975. int i;
  2976. struct rx_ring *rx_ring;
  2977. struct tx_ring *tx_ring;
  2978. int cpu_cnt = num_online_cpus();
  2979. /*
  2980. * For each processor present we allocate one
  2981. * rx_ring for outbound completions, and one
  2982. * rx_ring for inbound completions. Plus there is
  2983. * always the one default queue. For the CPU
  2984. * counts we end up with the following rx_rings:
  2985. * rx_ring count =
  2986. * one default queue +
  2987. * (CPU count * outbound completion rx_ring) +
  2988. * (CPU count * inbound (RSS) completion rx_ring)
  2989. * To keep it simple we limit the total number of
  2990. * queues to < 32, so we truncate CPU to 8.
  2991. * This limitation can be removed when requested.
  2992. */
  2993. if (cpu_cnt > 8)
  2994. cpu_cnt = 8;
  2995. /*
  2996. * rx_ring[0] is always the default queue.
  2997. */
  2998. /* Allocate outbound completion ring for each CPU. */
  2999. qdev->tx_ring_count = cpu_cnt;
  3000. /* Allocate inbound completion (RSS) ring for each CPU. */
  3001. qdev->rss_ring_count = cpu_cnt;
  3002. /* cq_id for the first inbound ring handler. */
  3003. qdev->rss_ring_first_cq_id = cpu_cnt + 1;
  3004. /*
  3005. * qdev->rx_ring_count:
  3006. * Total number of rx_rings. This includes the one
  3007. * default queue, a number of outbound completion
  3008. * handler rx_rings, and the number of inbound
  3009. * completion handler rx_rings.
  3010. */
  3011. qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count + 1;
  3012. if (ql_alloc_ring_cb(qdev))
  3013. return -ENOMEM;
  3014. for (i = 0; i < qdev->tx_ring_count; i++) {
  3015. tx_ring = &qdev->tx_ring[i];
  3016. memset((void *)tx_ring, 0, sizeof(tx_ring));
  3017. tx_ring->qdev = qdev;
  3018. tx_ring->wq_id = i;
  3019. tx_ring->wq_len = qdev->tx_ring_size;
  3020. tx_ring->wq_size =
  3021. tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
  3022. /*
  3023. * The completion queue ID for the tx rings start
  3024. * immediately after the default Q ID, which is zero.
  3025. */
  3026. tx_ring->cq_id = i + 1;
  3027. }
  3028. for (i = 0; i < qdev->rx_ring_count; i++) {
  3029. rx_ring = &qdev->rx_ring[i];
  3030. memset((void *)rx_ring, 0, sizeof(rx_ring));
  3031. rx_ring->qdev = qdev;
  3032. rx_ring->cq_id = i;
  3033. rx_ring->cpu = i % cpu_cnt; /* CPU to run handler on. */
  3034. if (i == 0) { /* Default queue at index 0. */
  3035. /*
  3036. * Default queue handles bcast/mcast plus
  3037. * async events. Needs buffers.
  3038. */
  3039. rx_ring->cq_len = qdev->rx_ring_size;
  3040. rx_ring->cq_size =
  3041. rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
  3042. rx_ring->lbq_len = NUM_LARGE_BUFFERS;
  3043. rx_ring->lbq_size =
  3044. rx_ring->lbq_len * sizeof(struct bq_element);
  3045. rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
  3046. rx_ring->sbq_len = NUM_SMALL_BUFFERS;
  3047. rx_ring->sbq_size =
  3048. rx_ring->sbq_len * sizeof(struct bq_element);
  3049. rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
  3050. rx_ring->type = DEFAULT_Q;
  3051. } else if (i < qdev->rss_ring_first_cq_id) {
  3052. /*
  3053. * Outbound queue handles outbound completions only.
  3054. */
  3055. /* outbound cq is same size as tx_ring it services. */
  3056. rx_ring->cq_len = qdev->tx_ring_size;
  3057. rx_ring->cq_size =
  3058. rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
  3059. rx_ring->lbq_len = 0;
  3060. rx_ring->lbq_size = 0;
  3061. rx_ring->lbq_buf_size = 0;
  3062. rx_ring->sbq_len = 0;
  3063. rx_ring->sbq_size = 0;
  3064. rx_ring->sbq_buf_size = 0;
  3065. rx_ring->type = TX_Q;
  3066. } else { /* Inbound completions (RSS) queues */
  3067. /*
  3068. * Inbound queues handle unicast frames only.
  3069. */
  3070. rx_ring->cq_len = qdev->rx_ring_size;
  3071. rx_ring->cq_size =
  3072. rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
  3073. rx_ring->lbq_len = NUM_LARGE_BUFFERS;
  3074. rx_ring->lbq_size =
  3075. rx_ring->lbq_len * sizeof(struct bq_element);
  3076. rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
  3077. rx_ring->sbq_len = NUM_SMALL_BUFFERS;
  3078. rx_ring->sbq_size =
  3079. rx_ring->sbq_len * sizeof(struct bq_element);
  3080. rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
  3081. rx_ring->type = RX_Q;
  3082. }
  3083. }
  3084. return 0;
  3085. }
  3086. static int qlge_open(struct net_device *ndev)
  3087. {
  3088. int err = 0;
  3089. struct ql_adapter *qdev = netdev_priv(ndev);
  3090. err = ql_configure_rings(qdev);
  3091. if (err)
  3092. return err;
  3093. err = ql_get_adapter_resources(qdev);
  3094. if (err)
  3095. goto error_up;
  3096. err = ql_adapter_up(qdev);
  3097. if (err)
  3098. goto error_up;
  3099. return err;
  3100. error_up:
  3101. ql_release_adapter_resources(qdev);
  3102. ql_free_ring_cb(qdev);
  3103. return err;
  3104. }
  3105. static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
  3106. {
  3107. struct ql_adapter *qdev = netdev_priv(ndev);
  3108. if (ndev->mtu == 1500 && new_mtu == 9000) {
  3109. QPRINTK(qdev, IFUP, ERR, "Changing to jumbo MTU.\n");
  3110. } else if (ndev->mtu == 9000 && new_mtu == 1500) {
  3111. QPRINTK(qdev, IFUP, ERR, "Changing to normal MTU.\n");
  3112. } else if ((ndev->mtu == 1500 && new_mtu == 1500) ||
  3113. (ndev->mtu == 9000 && new_mtu == 9000)) {
  3114. return 0;
  3115. } else
  3116. return -EINVAL;
  3117. ndev->mtu = new_mtu;
  3118. return 0;
  3119. }
  3120. static struct net_device_stats *qlge_get_stats(struct net_device
  3121. *ndev)
  3122. {
  3123. struct ql_adapter *qdev = netdev_priv(ndev);
  3124. return &qdev->stats;
  3125. }
  3126. static void qlge_set_multicast_list(struct net_device *ndev)
  3127. {
  3128. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  3129. struct dev_mc_list *mc_ptr;
  3130. int i;
  3131. spin_lock(&qdev->hw_lock);
  3132. /*
  3133. * Set or clear promiscuous mode if a
  3134. * transition is taking place.
  3135. */
  3136. if (ndev->flags & IFF_PROMISC) {
  3137. if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
  3138. if (ql_set_routing_reg
  3139. (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
  3140. QPRINTK(qdev, HW, ERR,
  3141. "Failed to set promiscous mode.\n");
  3142. } else {
  3143. set_bit(QL_PROMISCUOUS, &qdev->flags);
  3144. }
  3145. }
  3146. } else {
  3147. if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
  3148. if (ql_set_routing_reg
  3149. (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
  3150. QPRINTK(qdev, HW, ERR,
  3151. "Failed to clear promiscous mode.\n");
  3152. } else {
  3153. clear_bit(QL_PROMISCUOUS, &qdev->flags);
  3154. }
  3155. }
  3156. }
  3157. /*
  3158. * Set or clear all multicast mode if a
  3159. * transition is taking place.
  3160. */
  3161. if ((ndev->flags & IFF_ALLMULTI) ||
  3162. (ndev->mc_count > MAX_MULTICAST_ENTRIES)) {
  3163. if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
  3164. if (ql_set_routing_reg
  3165. (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
  3166. QPRINTK(qdev, HW, ERR,
  3167. "Failed to set all-multi mode.\n");
  3168. } else {
  3169. set_bit(QL_ALLMULTI, &qdev->flags);
  3170. }
  3171. }
  3172. } else {
  3173. if (test_bit(QL_ALLMULTI, &qdev->flags)) {
  3174. if (ql_set_routing_reg
  3175. (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
  3176. QPRINTK(qdev, HW, ERR,
  3177. "Failed to clear all-multi mode.\n");
  3178. } else {
  3179. clear_bit(QL_ALLMULTI, &qdev->flags);
  3180. }
  3181. }
  3182. }
  3183. if (ndev->mc_count) {
  3184. for (i = 0, mc_ptr = ndev->mc_list; mc_ptr;
  3185. i++, mc_ptr = mc_ptr->next)
  3186. if (ql_set_mac_addr_reg(qdev, (u8 *) mc_ptr->dmi_addr,
  3187. MAC_ADDR_TYPE_MULTI_MAC, i)) {
  3188. QPRINTK(qdev, HW, ERR,
  3189. "Failed to loadmulticast address.\n");
  3190. goto exit;
  3191. }
  3192. if (ql_set_routing_reg
  3193. (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
  3194. QPRINTK(qdev, HW, ERR,
  3195. "Failed to set multicast match mode.\n");
  3196. } else {
  3197. set_bit(QL_ALLMULTI, &qdev->flags);
  3198. }
  3199. }
  3200. exit:
  3201. spin_unlock(&qdev->hw_lock);
  3202. }
  3203. static int qlge_set_mac_address(struct net_device *ndev, void *p)
  3204. {
  3205. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  3206. struct sockaddr *addr = p;
  3207. int ret = 0;
  3208. if (netif_running(ndev))
  3209. return -EBUSY;
  3210. if (!is_valid_ether_addr(addr->sa_data))
  3211. return -EADDRNOTAVAIL;
  3212. memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
  3213. spin_lock(&qdev->hw_lock);
  3214. if (ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
  3215. MAC_ADDR_TYPE_CAM_MAC, qdev->func)) {/* Unicast */
  3216. QPRINTK(qdev, HW, ERR, "Failed to load MAC address.\n");
  3217. ret = -1;
  3218. }
  3219. spin_unlock(&qdev->hw_lock);
  3220. return ret;
  3221. }
  3222. static void qlge_tx_timeout(struct net_device *ndev)
  3223. {
  3224. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  3225. queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
  3226. }
  3227. static void ql_asic_reset_work(struct work_struct *work)
  3228. {
  3229. struct ql_adapter *qdev =
  3230. container_of(work, struct ql_adapter, asic_reset_work.work);
  3231. ql_cycle_adapter(qdev);
  3232. }
  3233. static void ql_get_board_info(struct ql_adapter *qdev)
  3234. {
  3235. qdev->func =
  3236. (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
  3237. if (qdev->func) {
  3238. qdev->xg_sem_mask = SEM_XGMAC1_MASK;
  3239. qdev->port_link_up = STS_PL1;
  3240. qdev->port_init = STS_PI1;
  3241. qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
  3242. qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
  3243. } else {
  3244. qdev->xg_sem_mask = SEM_XGMAC0_MASK;
  3245. qdev->port_link_up = STS_PL0;
  3246. qdev->port_init = STS_PI0;
  3247. qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
  3248. qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
  3249. }
  3250. qdev->chip_rev_id = ql_read32(qdev, REV_ID);
  3251. }
  3252. static void ql_release_all(struct pci_dev *pdev)
  3253. {
  3254. struct net_device *ndev = pci_get_drvdata(pdev);
  3255. struct ql_adapter *qdev = netdev_priv(ndev);
  3256. if (qdev->workqueue) {
  3257. destroy_workqueue(qdev->workqueue);
  3258. qdev->workqueue = NULL;
  3259. }
  3260. if (qdev->q_workqueue) {
  3261. destroy_workqueue(qdev->q_workqueue);
  3262. qdev->q_workqueue = NULL;
  3263. }
  3264. if (qdev->reg_base)
  3265. iounmap(qdev->reg_base);
  3266. if (qdev->doorbell_area)
  3267. iounmap(qdev->doorbell_area);
  3268. pci_release_regions(pdev);
  3269. pci_set_drvdata(pdev, NULL);
  3270. }
  3271. static int __devinit ql_init_device(struct pci_dev *pdev,
  3272. struct net_device *ndev, int cards_found)
  3273. {
  3274. struct ql_adapter *qdev = netdev_priv(ndev);
  3275. int pos, err = 0;
  3276. u16 val16;
  3277. memset((void *)qdev, 0, sizeof(qdev));
  3278. err = pci_enable_device(pdev);
  3279. if (err) {
  3280. dev_err(&pdev->dev, "PCI device enable failed.\n");
  3281. return err;
  3282. }
  3283. pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
  3284. if (pos <= 0) {
  3285. dev_err(&pdev->dev, PFX "Cannot find PCI Express capability, "
  3286. "aborting.\n");
  3287. goto err_out;
  3288. } else {
  3289. pci_read_config_word(pdev, pos + PCI_EXP_DEVCTL, &val16);
  3290. val16 &= ~PCI_EXP_DEVCTL_NOSNOOP_EN;
  3291. val16 |= (PCI_EXP_DEVCTL_CERE |
  3292. PCI_EXP_DEVCTL_NFERE |
  3293. PCI_EXP_DEVCTL_FERE | PCI_EXP_DEVCTL_URRE);
  3294. pci_write_config_word(pdev, pos + PCI_EXP_DEVCTL, val16);
  3295. }
  3296. err = pci_request_regions(pdev, DRV_NAME);
  3297. if (err) {
  3298. dev_err(&pdev->dev, "PCI region request failed.\n");
  3299. goto err_out;
  3300. }
  3301. pci_set_master(pdev);
  3302. if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
  3303. set_bit(QL_DMA64, &qdev->flags);
  3304. err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
  3305. } else {
  3306. err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
  3307. if (!err)
  3308. err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
  3309. }
  3310. if (err) {
  3311. dev_err(&pdev->dev, "No usable DMA configuration.\n");
  3312. goto err_out;
  3313. }
  3314. pci_set_drvdata(pdev, ndev);
  3315. qdev->reg_base =
  3316. ioremap_nocache(pci_resource_start(pdev, 1),
  3317. pci_resource_len(pdev, 1));
  3318. if (!qdev->reg_base) {
  3319. dev_err(&pdev->dev, "Register mapping failed.\n");
  3320. err = -ENOMEM;
  3321. goto err_out;
  3322. }
  3323. qdev->doorbell_area_size = pci_resource_len(pdev, 3);
  3324. qdev->doorbell_area =
  3325. ioremap_nocache(pci_resource_start(pdev, 3),
  3326. pci_resource_len(pdev, 3));
  3327. if (!qdev->doorbell_area) {
  3328. dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
  3329. err = -ENOMEM;
  3330. goto err_out;
  3331. }
  3332. ql_get_board_info(qdev);
  3333. qdev->ndev = ndev;
  3334. qdev->pdev = pdev;
  3335. qdev->msg_enable = netif_msg_init(debug, default_msg);
  3336. spin_lock_init(&qdev->hw_lock);
  3337. spin_lock_init(&qdev->stats_lock);
  3338. /* make sure the EEPROM is good */
  3339. err = ql_get_flash_params(qdev);
  3340. if (err) {
  3341. dev_err(&pdev->dev, "Invalid FLASH.\n");
  3342. goto err_out;
  3343. }
  3344. if (!is_valid_ether_addr(qdev->flash.mac_addr))
  3345. goto err_out;
  3346. memcpy(ndev->dev_addr, qdev->flash.mac_addr, ndev->addr_len);
  3347. memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
  3348. /* Set up the default ring sizes. */
  3349. qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
  3350. qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
  3351. /* Set up the coalescing parameters. */
  3352. qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
  3353. qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
  3354. qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
  3355. qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
  3356. /*
  3357. * Set up the operating parameters.
  3358. */
  3359. qdev->rx_csum = 1;
  3360. qdev->q_workqueue = create_workqueue(ndev->name);
  3361. qdev->workqueue = create_singlethread_workqueue(ndev->name);
  3362. INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
  3363. INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
  3364. INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
  3365. if (!cards_found) {
  3366. dev_info(&pdev->dev, "%s\n", DRV_STRING);
  3367. dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
  3368. DRV_NAME, DRV_VERSION);
  3369. }
  3370. return 0;
  3371. err_out:
  3372. ql_release_all(pdev);
  3373. pci_disable_device(pdev);
  3374. return err;
  3375. }
  3376. static const struct net_device_ops qlge_netdev_ops = {
  3377. .ndo_open = qlge_open,
  3378. .ndo_stop = qlge_close,
  3379. .ndo_start_xmit = qlge_send,
  3380. .ndo_change_mtu = qlge_change_mtu,
  3381. .ndo_get_stats = qlge_get_stats,
  3382. .ndo_set_multicast_list = qlge_set_multicast_list,
  3383. .ndo_set_mac_address = qlge_set_mac_address,
  3384. .ndo_validate_addr = eth_validate_addr,
  3385. .ndo_tx_timeout = qlge_tx_timeout,
  3386. .ndo_vlan_rx_register = ql_vlan_rx_register,
  3387. .ndo_vlan_rx_add_vid = ql_vlan_rx_add_vid,
  3388. .ndo_vlan_rx_kill_vid = ql_vlan_rx_kill_vid,
  3389. };
  3390. static int __devinit qlge_probe(struct pci_dev *pdev,
  3391. const struct pci_device_id *pci_entry)
  3392. {
  3393. struct net_device *ndev = NULL;
  3394. struct ql_adapter *qdev = NULL;
  3395. static int cards_found = 0;
  3396. int err = 0;
  3397. ndev = alloc_etherdev(sizeof(struct ql_adapter));
  3398. if (!ndev)
  3399. return -ENOMEM;
  3400. err = ql_init_device(pdev, ndev, cards_found);
  3401. if (err < 0) {
  3402. free_netdev(ndev);
  3403. return err;
  3404. }
  3405. qdev = netdev_priv(ndev);
  3406. SET_NETDEV_DEV(ndev, &pdev->dev);
  3407. ndev->features = (0
  3408. | NETIF_F_IP_CSUM
  3409. | NETIF_F_SG
  3410. | NETIF_F_TSO
  3411. | NETIF_F_TSO6
  3412. | NETIF_F_TSO_ECN
  3413. | NETIF_F_HW_VLAN_TX
  3414. | NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER);
  3415. if (test_bit(QL_DMA64, &qdev->flags))
  3416. ndev->features |= NETIF_F_HIGHDMA;
  3417. /*
  3418. * Set up net_device structure.
  3419. */
  3420. ndev->tx_queue_len = qdev->tx_ring_size;
  3421. ndev->irq = pdev->irq;
  3422. ndev->netdev_ops = &qlge_netdev_ops;
  3423. SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
  3424. ndev->watchdog_timeo = 10 * HZ;
  3425. err = register_netdev(ndev);
  3426. if (err) {
  3427. dev_err(&pdev->dev, "net device registration failed.\n");
  3428. ql_release_all(pdev);
  3429. pci_disable_device(pdev);
  3430. return err;
  3431. }
  3432. netif_carrier_off(ndev);
  3433. netif_stop_queue(ndev);
  3434. ql_display_dev_info(ndev);
  3435. cards_found++;
  3436. return 0;
  3437. }
  3438. static void __devexit qlge_remove(struct pci_dev *pdev)
  3439. {
  3440. struct net_device *ndev = pci_get_drvdata(pdev);
  3441. unregister_netdev(ndev);
  3442. ql_release_all(pdev);
  3443. pci_disable_device(pdev);
  3444. free_netdev(ndev);
  3445. }
  3446. /*
  3447. * This callback is called by the PCI subsystem whenever
  3448. * a PCI bus error is detected.
  3449. */
  3450. static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
  3451. enum pci_channel_state state)
  3452. {
  3453. struct net_device *ndev = pci_get_drvdata(pdev);
  3454. struct ql_adapter *qdev = netdev_priv(ndev);
  3455. if (netif_running(ndev))
  3456. ql_adapter_down(qdev);
  3457. pci_disable_device(pdev);
  3458. /* Request a slot reset. */
  3459. return PCI_ERS_RESULT_NEED_RESET;
  3460. }
  3461. /*
  3462. * This callback is called after the PCI buss has been reset.
  3463. * Basically, this tries to restart the card from scratch.
  3464. * This is a shortened version of the device probe/discovery code,
  3465. * it resembles the first-half of the () routine.
  3466. */
  3467. static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
  3468. {
  3469. struct net_device *ndev = pci_get_drvdata(pdev);
  3470. struct ql_adapter *qdev = netdev_priv(ndev);
  3471. if (pci_enable_device(pdev)) {
  3472. QPRINTK(qdev, IFUP, ERR,
  3473. "Cannot re-enable PCI device after reset.\n");
  3474. return PCI_ERS_RESULT_DISCONNECT;
  3475. }
  3476. pci_set_master(pdev);
  3477. netif_carrier_off(ndev);
  3478. netif_stop_queue(ndev);
  3479. ql_adapter_reset(qdev);
  3480. /* Make sure the EEPROM is good */
  3481. memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
  3482. if (!is_valid_ether_addr(ndev->perm_addr)) {
  3483. QPRINTK(qdev, IFUP, ERR, "After reset, invalid MAC address.\n");
  3484. return PCI_ERS_RESULT_DISCONNECT;
  3485. }
  3486. return PCI_ERS_RESULT_RECOVERED;
  3487. }
  3488. static void qlge_io_resume(struct pci_dev *pdev)
  3489. {
  3490. struct net_device *ndev = pci_get_drvdata(pdev);
  3491. struct ql_adapter *qdev = netdev_priv(ndev);
  3492. pci_set_master(pdev);
  3493. if (netif_running(ndev)) {
  3494. if (ql_adapter_up(qdev)) {
  3495. QPRINTK(qdev, IFUP, ERR,
  3496. "Device initialization failed after reset.\n");
  3497. return;
  3498. }
  3499. }
  3500. netif_device_attach(ndev);
  3501. }
  3502. static struct pci_error_handlers qlge_err_handler = {
  3503. .error_detected = qlge_io_error_detected,
  3504. .slot_reset = qlge_io_slot_reset,
  3505. .resume = qlge_io_resume,
  3506. };
  3507. static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
  3508. {
  3509. struct net_device *ndev = pci_get_drvdata(pdev);
  3510. struct ql_adapter *qdev = netdev_priv(ndev);
  3511. int err;
  3512. netif_device_detach(ndev);
  3513. if (netif_running(ndev)) {
  3514. err = ql_adapter_down(qdev);
  3515. if (!err)
  3516. return err;
  3517. }
  3518. err = pci_save_state(pdev);
  3519. if (err)
  3520. return err;
  3521. pci_disable_device(pdev);
  3522. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  3523. return 0;
  3524. }
  3525. #ifdef CONFIG_PM
  3526. static int qlge_resume(struct pci_dev *pdev)
  3527. {
  3528. struct net_device *ndev = pci_get_drvdata(pdev);
  3529. struct ql_adapter *qdev = netdev_priv(ndev);
  3530. int err;
  3531. pci_set_power_state(pdev, PCI_D0);
  3532. pci_restore_state(pdev);
  3533. err = pci_enable_device(pdev);
  3534. if (err) {
  3535. QPRINTK(qdev, IFUP, ERR, "Cannot enable PCI device from suspend\n");
  3536. return err;
  3537. }
  3538. pci_set_master(pdev);
  3539. pci_enable_wake(pdev, PCI_D3hot, 0);
  3540. pci_enable_wake(pdev, PCI_D3cold, 0);
  3541. if (netif_running(ndev)) {
  3542. err = ql_adapter_up(qdev);
  3543. if (err)
  3544. return err;
  3545. }
  3546. netif_device_attach(ndev);
  3547. return 0;
  3548. }
  3549. #endif /* CONFIG_PM */
  3550. static void qlge_shutdown(struct pci_dev *pdev)
  3551. {
  3552. qlge_suspend(pdev, PMSG_SUSPEND);
  3553. }
  3554. static struct pci_driver qlge_driver = {
  3555. .name = DRV_NAME,
  3556. .id_table = qlge_pci_tbl,
  3557. .probe = qlge_probe,
  3558. .remove = __devexit_p(qlge_remove),
  3559. #ifdef CONFIG_PM
  3560. .suspend = qlge_suspend,
  3561. .resume = qlge_resume,
  3562. #endif
  3563. .shutdown = qlge_shutdown,
  3564. .err_handler = &qlge_err_handler
  3565. };
  3566. static int __init qlge_init_module(void)
  3567. {
  3568. return pci_register_driver(&qlge_driver);
  3569. }
  3570. static void __exit qlge_exit(void)
  3571. {
  3572. pci_unregister_driver(&qlge_driver);
  3573. }
  3574. module_init(qlge_init_module);
  3575. module_exit(qlge_exit);