svm.c 44 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * AMD SVM support
  5. *
  6. * Copyright (C) 2006 Qumranet, Inc.
  7. *
  8. * Authors:
  9. * Yaniv Kamay <yaniv@qumranet.com>
  10. * Avi Kivity <avi@qumranet.com>
  11. *
  12. * This work is licensed under the terms of the GNU GPL, version 2. See
  13. * the COPYING file in the top-level directory.
  14. *
  15. */
  16. #include <linux/module.h>
  17. #include <linux/kernel.h>
  18. #include <linux/vmalloc.h>
  19. #include <linux/highmem.h>
  20. #include <linux/profile.h>
  21. #include <asm/desc.h>
  22. #include "kvm_svm.h"
  23. #include "x86_emulate.h"
  24. MODULE_AUTHOR("Qumranet");
  25. MODULE_LICENSE("GPL");
  26. #define IOPM_ALLOC_ORDER 2
  27. #define MSRPM_ALLOC_ORDER 1
  28. #define DB_VECTOR 1
  29. #define UD_VECTOR 6
  30. #define GP_VECTOR 13
  31. #define DR7_GD_MASK (1 << 13)
  32. #define DR6_BD_MASK (1 << 13)
  33. #define CR4_DE_MASK (1UL << 3)
  34. #define SEG_TYPE_LDT 2
  35. #define SEG_TYPE_BUSY_TSS16 3
  36. #define KVM_EFER_LMA (1 << 10)
  37. #define KVM_EFER_LME (1 << 8)
  38. #define SVM_FEATURE_NPT (1 << 0)
  39. #define SVM_FEATURE_LBRV (1 << 1)
  40. #define SVM_DEATURE_SVML (1 << 2)
  41. unsigned long iopm_base;
  42. unsigned long msrpm_base;
  43. struct kvm_ldttss_desc {
  44. u16 limit0;
  45. u16 base0;
  46. unsigned base1 : 8, type : 5, dpl : 2, p : 1;
  47. unsigned limit1 : 4, zero0 : 3, g : 1, base2 : 8;
  48. u32 base3;
  49. u32 zero1;
  50. } __attribute__((packed));
  51. struct svm_cpu_data {
  52. int cpu;
  53. u64 asid_generation;
  54. u32 max_asid;
  55. u32 next_asid;
  56. struct kvm_ldttss_desc *tss_desc;
  57. struct page *save_area;
  58. };
  59. static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
  60. static uint32_t svm_features;
  61. struct svm_init_data {
  62. int cpu;
  63. int r;
  64. };
  65. static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
  66. #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
  67. #define MSRS_RANGE_SIZE 2048
  68. #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
  69. #define MAX_INST_SIZE 15
  70. static inline u32 svm_has(u32 feat)
  71. {
  72. return svm_features & feat;
  73. }
  74. static unsigned get_addr_size(struct kvm_vcpu *vcpu)
  75. {
  76. struct vmcb_save_area *sa = &vcpu->svm->vmcb->save;
  77. u16 cs_attrib;
  78. if (!(sa->cr0 & CR0_PE_MASK) || (sa->rflags & X86_EFLAGS_VM))
  79. return 2;
  80. cs_attrib = sa->cs.attrib;
  81. return (cs_attrib & SVM_SELECTOR_L_MASK) ? 8 :
  82. (cs_attrib & SVM_SELECTOR_DB_MASK) ? 4 : 2;
  83. }
  84. static inline u8 pop_irq(struct kvm_vcpu *vcpu)
  85. {
  86. int word_index = __ffs(vcpu->irq_summary);
  87. int bit_index = __ffs(vcpu->irq_pending[word_index]);
  88. int irq = word_index * BITS_PER_LONG + bit_index;
  89. clear_bit(bit_index, &vcpu->irq_pending[word_index]);
  90. if (!vcpu->irq_pending[word_index])
  91. clear_bit(word_index, &vcpu->irq_summary);
  92. return irq;
  93. }
  94. static inline void push_irq(struct kvm_vcpu *vcpu, u8 irq)
  95. {
  96. set_bit(irq, vcpu->irq_pending);
  97. set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
  98. }
  99. static inline void clgi(void)
  100. {
  101. asm volatile (SVM_CLGI);
  102. }
  103. static inline void stgi(void)
  104. {
  105. asm volatile (SVM_STGI);
  106. }
  107. static inline void invlpga(unsigned long addr, u32 asid)
  108. {
  109. asm volatile (SVM_INVLPGA :: "a"(addr), "c"(asid));
  110. }
  111. static inline unsigned long kvm_read_cr2(void)
  112. {
  113. unsigned long cr2;
  114. asm volatile ("mov %%cr2, %0" : "=r" (cr2));
  115. return cr2;
  116. }
  117. static inline void kvm_write_cr2(unsigned long val)
  118. {
  119. asm volatile ("mov %0, %%cr2" :: "r" (val));
  120. }
  121. static inline unsigned long read_dr6(void)
  122. {
  123. unsigned long dr6;
  124. asm volatile ("mov %%dr6, %0" : "=r" (dr6));
  125. return dr6;
  126. }
  127. static inline void write_dr6(unsigned long val)
  128. {
  129. asm volatile ("mov %0, %%dr6" :: "r" (val));
  130. }
  131. static inline unsigned long read_dr7(void)
  132. {
  133. unsigned long dr7;
  134. asm volatile ("mov %%dr7, %0" : "=r" (dr7));
  135. return dr7;
  136. }
  137. static inline void write_dr7(unsigned long val)
  138. {
  139. asm volatile ("mov %0, %%dr7" :: "r" (val));
  140. }
  141. static inline void force_new_asid(struct kvm_vcpu *vcpu)
  142. {
  143. vcpu->svm->asid_generation--;
  144. }
  145. static inline void flush_guest_tlb(struct kvm_vcpu *vcpu)
  146. {
  147. force_new_asid(vcpu);
  148. }
  149. static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  150. {
  151. if (!(efer & KVM_EFER_LMA))
  152. efer &= ~KVM_EFER_LME;
  153. vcpu->svm->vmcb->save.efer = efer | MSR_EFER_SVME_MASK;
  154. vcpu->shadow_efer = efer;
  155. }
  156. static void svm_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
  157. {
  158. vcpu->svm->vmcb->control.event_inj = SVM_EVTINJ_VALID |
  159. SVM_EVTINJ_VALID_ERR |
  160. SVM_EVTINJ_TYPE_EXEPT |
  161. GP_VECTOR;
  162. vcpu->svm->vmcb->control.event_inj_err = error_code;
  163. }
  164. static void inject_ud(struct kvm_vcpu *vcpu)
  165. {
  166. vcpu->svm->vmcb->control.event_inj = SVM_EVTINJ_VALID |
  167. SVM_EVTINJ_TYPE_EXEPT |
  168. UD_VECTOR;
  169. }
  170. static int is_page_fault(uint32_t info)
  171. {
  172. info &= SVM_EVTINJ_VEC_MASK | SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
  173. return info == (PF_VECTOR | SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_EXEPT);
  174. }
  175. static int is_external_interrupt(u32 info)
  176. {
  177. info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
  178. return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
  179. }
  180. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  181. {
  182. if (!vcpu->svm->next_rip) {
  183. printk(KERN_DEBUG "%s: NOP\n", __FUNCTION__);
  184. return;
  185. }
  186. if (vcpu->svm->next_rip - vcpu->svm->vmcb->save.rip > 15) {
  187. printk(KERN_ERR "%s: ip 0x%llx next 0x%llx\n",
  188. __FUNCTION__,
  189. vcpu->svm->vmcb->save.rip,
  190. vcpu->svm->next_rip);
  191. }
  192. vcpu->rip = vcpu->svm->vmcb->save.rip = vcpu->svm->next_rip;
  193. vcpu->svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
  194. vcpu->interrupt_window_open = 1;
  195. }
  196. static int has_svm(void)
  197. {
  198. uint32_t eax, ebx, ecx, edx;
  199. if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD) {
  200. printk(KERN_INFO "has_svm: not amd\n");
  201. return 0;
  202. }
  203. cpuid(0x80000000, &eax, &ebx, &ecx, &edx);
  204. if (eax < SVM_CPUID_FUNC) {
  205. printk(KERN_INFO "has_svm: can't execute cpuid_8000000a\n");
  206. return 0;
  207. }
  208. cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
  209. if (!(ecx & (1 << SVM_CPUID_FEATURE_SHIFT))) {
  210. printk(KERN_DEBUG "has_svm: svm not available\n");
  211. return 0;
  212. }
  213. return 1;
  214. }
  215. static void svm_hardware_disable(void *garbage)
  216. {
  217. struct svm_cpu_data *svm_data
  218. = per_cpu(svm_data, raw_smp_processor_id());
  219. if (svm_data) {
  220. uint64_t efer;
  221. wrmsrl(MSR_VM_HSAVE_PA, 0);
  222. rdmsrl(MSR_EFER, efer);
  223. wrmsrl(MSR_EFER, efer & ~MSR_EFER_SVME_MASK);
  224. per_cpu(svm_data, raw_smp_processor_id()) = NULL;
  225. __free_page(svm_data->save_area);
  226. kfree(svm_data);
  227. }
  228. }
  229. static void svm_hardware_enable(void *garbage)
  230. {
  231. struct svm_cpu_data *svm_data;
  232. uint64_t efer;
  233. #ifdef CONFIG_X86_64
  234. struct desc_ptr gdt_descr;
  235. #else
  236. struct Xgt_desc_struct gdt_descr;
  237. #endif
  238. struct desc_struct *gdt;
  239. int me = raw_smp_processor_id();
  240. if (!has_svm()) {
  241. printk(KERN_ERR "svm_cpu_init: err EOPNOTSUPP on %d\n", me);
  242. return;
  243. }
  244. svm_data = per_cpu(svm_data, me);
  245. if (!svm_data) {
  246. printk(KERN_ERR "svm_cpu_init: svm_data is NULL on %d\n",
  247. me);
  248. return;
  249. }
  250. svm_data->asid_generation = 1;
  251. svm_data->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
  252. svm_data->next_asid = svm_data->max_asid + 1;
  253. svm_features = cpuid_edx(SVM_CPUID_FUNC);
  254. asm volatile ( "sgdt %0" : "=m"(gdt_descr) );
  255. gdt = (struct desc_struct *)gdt_descr.address;
  256. svm_data->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
  257. rdmsrl(MSR_EFER, efer);
  258. wrmsrl(MSR_EFER, efer | MSR_EFER_SVME_MASK);
  259. wrmsrl(MSR_VM_HSAVE_PA,
  260. page_to_pfn(svm_data->save_area) << PAGE_SHIFT);
  261. }
  262. static int svm_cpu_init(int cpu)
  263. {
  264. struct svm_cpu_data *svm_data;
  265. int r;
  266. svm_data = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
  267. if (!svm_data)
  268. return -ENOMEM;
  269. svm_data->cpu = cpu;
  270. svm_data->save_area = alloc_page(GFP_KERNEL);
  271. r = -ENOMEM;
  272. if (!svm_data->save_area)
  273. goto err_1;
  274. per_cpu(svm_data, cpu) = svm_data;
  275. return 0;
  276. err_1:
  277. kfree(svm_data);
  278. return r;
  279. }
  280. static int set_msr_interception(u32 *msrpm, unsigned msr,
  281. int read, int write)
  282. {
  283. int i;
  284. for (i = 0; i < NUM_MSR_MAPS; i++) {
  285. if (msr >= msrpm_ranges[i] &&
  286. msr < msrpm_ranges[i] + MSRS_IN_RANGE) {
  287. u32 msr_offset = (i * MSRS_IN_RANGE + msr -
  288. msrpm_ranges[i]) * 2;
  289. u32 *base = msrpm + (msr_offset / 32);
  290. u32 msr_shift = msr_offset % 32;
  291. u32 mask = ((write) ? 0 : 2) | ((read) ? 0 : 1);
  292. *base = (*base & ~(0x3 << msr_shift)) |
  293. (mask << msr_shift);
  294. return 1;
  295. }
  296. }
  297. printk(KERN_DEBUG "%s: not found 0x%x\n", __FUNCTION__, msr);
  298. return 0;
  299. }
  300. static __init int svm_hardware_setup(void)
  301. {
  302. int cpu;
  303. struct page *iopm_pages;
  304. struct page *msrpm_pages;
  305. void *msrpm_va;
  306. int r;
  307. kvm_emulator_want_group7_invlpg();
  308. iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
  309. if (!iopm_pages)
  310. return -ENOMEM;
  311. memset(page_address(iopm_pages), 0xff,
  312. PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
  313. iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
  314. msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
  315. r = -ENOMEM;
  316. if (!msrpm_pages)
  317. goto err_1;
  318. msrpm_va = page_address(msrpm_pages);
  319. memset(msrpm_va, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
  320. msrpm_base = page_to_pfn(msrpm_pages) << PAGE_SHIFT;
  321. #ifdef CONFIG_X86_64
  322. set_msr_interception(msrpm_va, MSR_GS_BASE, 1, 1);
  323. set_msr_interception(msrpm_va, MSR_FS_BASE, 1, 1);
  324. set_msr_interception(msrpm_va, MSR_KERNEL_GS_BASE, 1, 1);
  325. set_msr_interception(msrpm_va, MSR_LSTAR, 1, 1);
  326. set_msr_interception(msrpm_va, MSR_CSTAR, 1, 1);
  327. set_msr_interception(msrpm_va, MSR_SYSCALL_MASK, 1, 1);
  328. #endif
  329. set_msr_interception(msrpm_va, MSR_K6_STAR, 1, 1);
  330. set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_CS, 1, 1);
  331. set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_ESP, 1, 1);
  332. set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_EIP, 1, 1);
  333. for_each_online_cpu(cpu) {
  334. r = svm_cpu_init(cpu);
  335. if (r)
  336. goto err_2;
  337. }
  338. return 0;
  339. err_2:
  340. __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
  341. msrpm_base = 0;
  342. err_1:
  343. __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
  344. iopm_base = 0;
  345. return r;
  346. }
  347. static __exit void svm_hardware_unsetup(void)
  348. {
  349. __free_pages(pfn_to_page(msrpm_base >> PAGE_SHIFT), MSRPM_ALLOC_ORDER);
  350. __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
  351. iopm_base = msrpm_base = 0;
  352. }
  353. static void init_seg(struct vmcb_seg *seg)
  354. {
  355. seg->selector = 0;
  356. seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
  357. SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
  358. seg->limit = 0xffff;
  359. seg->base = 0;
  360. }
  361. static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
  362. {
  363. seg->selector = 0;
  364. seg->attrib = SVM_SELECTOR_P_MASK | type;
  365. seg->limit = 0xffff;
  366. seg->base = 0;
  367. }
  368. static int svm_vcpu_setup(struct kvm_vcpu *vcpu)
  369. {
  370. return 0;
  371. }
  372. static void init_vmcb(struct vmcb *vmcb)
  373. {
  374. struct vmcb_control_area *control = &vmcb->control;
  375. struct vmcb_save_area *save = &vmcb->save;
  376. control->intercept_cr_read = INTERCEPT_CR0_MASK |
  377. INTERCEPT_CR3_MASK |
  378. INTERCEPT_CR4_MASK;
  379. control->intercept_cr_write = INTERCEPT_CR0_MASK |
  380. INTERCEPT_CR3_MASK |
  381. INTERCEPT_CR4_MASK;
  382. control->intercept_dr_read = INTERCEPT_DR0_MASK |
  383. INTERCEPT_DR1_MASK |
  384. INTERCEPT_DR2_MASK |
  385. INTERCEPT_DR3_MASK;
  386. control->intercept_dr_write = INTERCEPT_DR0_MASK |
  387. INTERCEPT_DR1_MASK |
  388. INTERCEPT_DR2_MASK |
  389. INTERCEPT_DR3_MASK |
  390. INTERCEPT_DR5_MASK |
  391. INTERCEPT_DR7_MASK;
  392. control->intercept_exceptions = 1 << PF_VECTOR;
  393. control->intercept = (1ULL << INTERCEPT_INTR) |
  394. (1ULL << INTERCEPT_NMI) |
  395. (1ULL << INTERCEPT_SMI) |
  396. /*
  397. * selective cr0 intercept bug?
  398. * 0: 0f 22 d8 mov %eax,%cr3
  399. * 3: 0f 20 c0 mov %cr0,%eax
  400. * 6: 0d 00 00 00 80 or $0x80000000,%eax
  401. * b: 0f 22 c0 mov %eax,%cr0
  402. * set cr3 ->interception
  403. * get cr0 ->interception
  404. * set cr0 -> no interception
  405. */
  406. /* (1ULL << INTERCEPT_SELECTIVE_CR0) | */
  407. (1ULL << INTERCEPT_CPUID) |
  408. (1ULL << INTERCEPT_HLT) |
  409. (1ULL << INTERCEPT_INVLPGA) |
  410. (1ULL << INTERCEPT_IOIO_PROT) |
  411. (1ULL << INTERCEPT_MSR_PROT) |
  412. (1ULL << INTERCEPT_TASK_SWITCH) |
  413. (1ULL << INTERCEPT_SHUTDOWN) |
  414. (1ULL << INTERCEPT_VMRUN) |
  415. (1ULL << INTERCEPT_VMMCALL) |
  416. (1ULL << INTERCEPT_VMLOAD) |
  417. (1ULL << INTERCEPT_VMSAVE) |
  418. (1ULL << INTERCEPT_STGI) |
  419. (1ULL << INTERCEPT_CLGI) |
  420. (1ULL << INTERCEPT_SKINIT) |
  421. (1ULL << INTERCEPT_MONITOR) |
  422. (1ULL << INTERCEPT_MWAIT);
  423. control->iopm_base_pa = iopm_base;
  424. control->msrpm_base_pa = msrpm_base;
  425. control->tsc_offset = 0;
  426. control->int_ctl = V_INTR_MASKING_MASK;
  427. if (svm_has(SVM_FEATURE_LBRV))
  428. control->lbr_ctl = 1ULL;
  429. init_seg(&save->es);
  430. init_seg(&save->ss);
  431. init_seg(&save->ds);
  432. init_seg(&save->fs);
  433. init_seg(&save->gs);
  434. save->cs.selector = 0xf000;
  435. /* Executable/Readable Code Segment */
  436. save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
  437. SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
  438. save->cs.limit = 0xffff;
  439. /*
  440. * cs.base should really be 0xffff0000, but vmx can't handle that, so
  441. * be consistent with it.
  442. *
  443. * Replace when we have real mode working for vmx.
  444. */
  445. save->cs.base = 0xf0000;
  446. save->gdtr.limit = 0xffff;
  447. save->idtr.limit = 0xffff;
  448. init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
  449. init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
  450. save->efer = MSR_EFER_SVME_MASK;
  451. save->dr6 = 0xffff0ff0;
  452. save->dr7 = 0x400;
  453. save->rflags = 2;
  454. save->rip = 0x0000fff0;
  455. /*
  456. * cr0 val on cpu init should be 0x60000010, we enable cpu
  457. * cache by default. the orderly way is to enable cache in bios.
  458. */
  459. save->cr0 = 0x00000010 | CR0_PG_MASK | CR0_WP_MASK;
  460. save->cr4 = CR4_PAE_MASK;
  461. /* rdx = ?? */
  462. }
  463. static int svm_create_vcpu(struct kvm_vcpu *vcpu)
  464. {
  465. struct page *page;
  466. int r;
  467. r = -ENOMEM;
  468. vcpu->svm = kzalloc(sizeof *vcpu->svm, GFP_KERNEL);
  469. if (!vcpu->svm)
  470. goto out1;
  471. page = alloc_page(GFP_KERNEL);
  472. if (!page)
  473. goto out2;
  474. vcpu->svm->vmcb = page_address(page);
  475. memset(vcpu->svm->vmcb, 0, PAGE_SIZE);
  476. vcpu->svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
  477. vcpu->svm->asid_generation = 0;
  478. memset(vcpu->svm->db_regs, 0, sizeof(vcpu->svm->db_regs));
  479. init_vmcb(vcpu->svm->vmcb);
  480. fx_init(vcpu);
  481. vcpu->apic_base = 0xfee00000 |
  482. /*for vcpu 0*/ MSR_IA32_APICBASE_BSP |
  483. MSR_IA32_APICBASE_ENABLE;
  484. return 0;
  485. out2:
  486. kfree(vcpu->svm);
  487. out1:
  488. return r;
  489. }
  490. static void svm_free_vcpu(struct kvm_vcpu *vcpu)
  491. {
  492. if (!vcpu->svm)
  493. return;
  494. if (vcpu->svm->vmcb)
  495. __free_page(pfn_to_page(vcpu->svm->vmcb_pa >> PAGE_SHIFT));
  496. kfree(vcpu->svm);
  497. }
  498. static void svm_vcpu_load(struct kvm_vcpu *vcpu)
  499. {
  500. int cpu;
  501. cpu = get_cpu();
  502. if (unlikely(cpu != vcpu->cpu)) {
  503. u64 tsc_this, delta;
  504. /*
  505. * Make sure that the guest sees a monotonically
  506. * increasing TSC.
  507. */
  508. rdtscll(tsc_this);
  509. delta = vcpu->host_tsc - tsc_this;
  510. vcpu->svm->vmcb->control.tsc_offset += delta;
  511. vcpu->cpu = cpu;
  512. }
  513. }
  514. static void svm_vcpu_put(struct kvm_vcpu *vcpu)
  515. {
  516. rdtscll(vcpu->host_tsc);
  517. put_cpu();
  518. }
  519. static void svm_vcpu_decache(struct kvm_vcpu *vcpu)
  520. {
  521. }
  522. static void svm_cache_regs(struct kvm_vcpu *vcpu)
  523. {
  524. vcpu->regs[VCPU_REGS_RAX] = vcpu->svm->vmcb->save.rax;
  525. vcpu->regs[VCPU_REGS_RSP] = vcpu->svm->vmcb->save.rsp;
  526. vcpu->rip = vcpu->svm->vmcb->save.rip;
  527. }
  528. static void svm_decache_regs(struct kvm_vcpu *vcpu)
  529. {
  530. vcpu->svm->vmcb->save.rax = vcpu->regs[VCPU_REGS_RAX];
  531. vcpu->svm->vmcb->save.rsp = vcpu->regs[VCPU_REGS_RSP];
  532. vcpu->svm->vmcb->save.rip = vcpu->rip;
  533. }
  534. static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
  535. {
  536. return vcpu->svm->vmcb->save.rflags;
  537. }
  538. static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  539. {
  540. vcpu->svm->vmcb->save.rflags = rflags;
  541. }
  542. static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
  543. {
  544. struct vmcb_save_area *save = &vcpu->svm->vmcb->save;
  545. switch (seg) {
  546. case VCPU_SREG_CS: return &save->cs;
  547. case VCPU_SREG_DS: return &save->ds;
  548. case VCPU_SREG_ES: return &save->es;
  549. case VCPU_SREG_FS: return &save->fs;
  550. case VCPU_SREG_GS: return &save->gs;
  551. case VCPU_SREG_SS: return &save->ss;
  552. case VCPU_SREG_TR: return &save->tr;
  553. case VCPU_SREG_LDTR: return &save->ldtr;
  554. }
  555. BUG();
  556. return NULL;
  557. }
  558. static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  559. {
  560. struct vmcb_seg *s = svm_seg(vcpu, seg);
  561. return s->base;
  562. }
  563. static void svm_get_segment(struct kvm_vcpu *vcpu,
  564. struct kvm_segment *var, int seg)
  565. {
  566. struct vmcb_seg *s = svm_seg(vcpu, seg);
  567. var->base = s->base;
  568. var->limit = s->limit;
  569. var->selector = s->selector;
  570. var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
  571. var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
  572. var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
  573. var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
  574. var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
  575. var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
  576. var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
  577. var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
  578. var->unusable = !var->present;
  579. }
  580. static void svm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  581. {
  582. struct vmcb_seg *s = svm_seg(vcpu, VCPU_SREG_CS);
  583. *db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
  584. *l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
  585. }
  586. static void svm_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  587. {
  588. dt->limit = vcpu->svm->vmcb->save.idtr.limit;
  589. dt->base = vcpu->svm->vmcb->save.idtr.base;
  590. }
  591. static void svm_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  592. {
  593. vcpu->svm->vmcb->save.idtr.limit = dt->limit;
  594. vcpu->svm->vmcb->save.idtr.base = dt->base ;
  595. }
  596. static void svm_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  597. {
  598. dt->limit = vcpu->svm->vmcb->save.gdtr.limit;
  599. dt->base = vcpu->svm->vmcb->save.gdtr.base;
  600. }
  601. static void svm_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  602. {
  603. vcpu->svm->vmcb->save.gdtr.limit = dt->limit;
  604. vcpu->svm->vmcb->save.gdtr.base = dt->base ;
  605. }
  606. static void svm_decache_cr0_cr4_guest_bits(struct kvm_vcpu *vcpu)
  607. {
  608. }
  609. static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  610. {
  611. #ifdef CONFIG_X86_64
  612. if (vcpu->shadow_efer & KVM_EFER_LME) {
  613. if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK)) {
  614. vcpu->shadow_efer |= KVM_EFER_LMA;
  615. vcpu->svm->vmcb->save.efer |= KVM_EFER_LMA | KVM_EFER_LME;
  616. }
  617. if (is_paging(vcpu) && !(cr0 & CR0_PG_MASK) ) {
  618. vcpu->shadow_efer &= ~KVM_EFER_LMA;
  619. vcpu->svm->vmcb->save.efer &= ~(KVM_EFER_LMA | KVM_EFER_LME);
  620. }
  621. }
  622. #endif
  623. vcpu->cr0 = cr0;
  624. cr0 |= CR0_PG_MASK | CR0_WP_MASK;
  625. cr0 &= ~(CR0_CD_MASK | CR0_NW_MASK);
  626. vcpu->svm->vmcb->save.cr0 = cr0;
  627. }
  628. static void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  629. {
  630. vcpu->cr4 = cr4;
  631. vcpu->svm->vmcb->save.cr4 = cr4 | CR4_PAE_MASK;
  632. }
  633. static void svm_set_segment(struct kvm_vcpu *vcpu,
  634. struct kvm_segment *var, int seg)
  635. {
  636. struct vmcb_seg *s = svm_seg(vcpu, seg);
  637. s->base = var->base;
  638. s->limit = var->limit;
  639. s->selector = var->selector;
  640. if (var->unusable)
  641. s->attrib = 0;
  642. else {
  643. s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
  644. s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
  645. s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
  646. s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
  647. s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
  648. s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
  649. s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
  650. s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
  651. }
  652. if (seg == VCPU_SREG_CS)
  653. vcpu->svm->vmcb->save.cpl
  654. = (vcpu->svm->vmcb->save.cs.attrib
  655. >> SVM_SELECTOR_DPL_SHIFT) & 3;
  656. }
  657. /* FIXME:
  658. vcpu->svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
  659. vcpu->svm->vmcb->control.int_ctl |= (sregs->cr8 & V_TPR_MASK);
  660. */
  661. static int svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
  662. {
  663. return -EOPNOTSUPP;
  664. }
  665. static void load_host_msrs(struct kvm_vcpu *vcpu)
  666. {
  667. int i;
  668. for ( i = 0; i < NR_HOST_SAVE_MSRS; i++)
  669. wrmsrl(host_save_msrs[i], vcpu->svm->host_msrs[i]);
  670. }
  671. static void save_host_msrs(struct kvm_vcpu *vcpu)
  672. {
  673. int i;
  674. for ( i = 0; i < NR_HOST_SAVE_MSRS; i++)
  675. rdmsrl(host_save_msrs[i], vcpu->svm->host_msrs[i]);
  676. }
  677. static void new_asid(struct kvm_vcpu *vcpu, struct svm_cpu_data *svm_data)
  678. {
  679. if (svm_data->next_asid > svm_data->max_asid) {
  680. ++svm_data->asid_generation;
  681. svm_data->next_asid = 1;
  682. vcpu->svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
  683. }
  684. vcpu->cpu = svm_data->cpu;
  685. vcpu->svm->asid_generation = svm_data->asid_generation;
  686. vcpu->svm->vmcb->control.asid = svm_data->next_asid++;
  687. }
  688. static void svm_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  689. {
  690. invlpga(address, vcpu->svm->vmcb->control.asid); // is needed?
  691. }
  692. static unsigned long svm_get_dr(struct kvm_vcpu *vcpu, int dr)
  693. {
  694. return vcpu->svm->db_regs[dr];
  695. }
  696. static void svm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long value,
  697. int *exception)
  698. {
  699. *exception = 0;
  700. if (vcpu->svm->vmcb->save.dr7 & DR7_GD_MASK) {
  701. vcpu->svm->vmcb->save.dr7 &= ~DR7_GD_MASK;
  702. vcpu->svm->vmcb->save.dr6 |= DR6_BD_MASK;
  703. *exception = DB_VECTOR;
  704. return;
  705. }
  706. switch (dr) {
  707. case 0 ... 3:
  708. vcpu->svm->db_regs[dr] = value;
  709. return;
  710. case 4 ... 5:
  711. if (vcpu->cr4 & CR4_DE_MASK) {
  712. *exception = UD_VECTOR;
  713. return;
  714. }
  715. case 7: {
  716. if (value & ~((1ULL << 32) - 1)) {
  717. *exception = GP_VECTOR;
  718. return;
  719. }
  720. vcpu->svm->vmcb->save.dr7 = value;
  721. return;
  722. }
  723. default:
  724. printk(KERN_DEBUG "%s: unexpected dr %u\n",
  725. __FUNCTION__, dr);
  726. *exception = UD_VECTOR;
  727. return;
  728. }
  729. }
  730. static int pf_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  731. {
  732. u32 exit_int_info = vcpu->svm->vmcb->control.exit_int_info;
  733. u64 fault_address;
  734. u32 error_code;
  735. enum emulation_result er;
  736. int r;
  737. if (is_external_interrupt(exit_int_info))
  738. push_irq(vcpu, exit_int_info & SVM_EVTINJ_VEC_MASK);
  739. spin_lock(&vcpu->kvm->lock);
  740. fault_address = vcpu->svm->vmcb->control.exit_info_2;
  741. error_code = vcpu->svm->vmcb->control.exit_info_1;
  742. r = kvm_mmu_page_fault(vcpu, fault_address, error_code);
  743. if (r < 0) {
  744. spin_unlock(&vcpu->kvm->lock);
  745. return r;
  746. }
  747. if (!r) {
  748. spin_unlock(&vcpu->kvm->lock);
  749. return 1;
  750. }
  751. er = emulate_instruction(vcpu, kvm_run, fault_address, error_code);
  752. spin_unlock(&vcpu->kvm->lock);
  753. switch (er) {
  754. case EMULATE_DONE:
  755. return 1;
  756. case EMULATE_DO_MMIO:
  757. ++kvm_stat.mmio_exits;
  758. kvm_run->exit_reason = KVM_EXIT_MMIO;
  759. return 0;
  760. case EMULATE_FAIL:
  761. vcpu_printf(vcpu, "%s: emulate fail\n", __FUNCTION__);
  762. break;
  763. default:
  764. BUG();
  765. }
  766. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  767. return 0;
  768. }
  769. static int shutdown_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  770. {
  771. /*
  772. * VMCB is undefined after a SHUTDOWN intercept
  773. * so reinitialize it.
  774. */
  775. memset(vcpu->svm->vmcb, 0, PAGE_SIZE);
  776. init_vmcb(vcpu->svm->vmcb);
  777. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  778. return 0;
  779. }
  780. static int io_get_override(struct kvm_vcpu *vcpu,
  781. struct vmcb_seg **seg,
  782. int *addr_override)
  783. {
  784. u8 inst[MAX_INST_SIZE];
  785. unsigned ins_length;
  786. gva_t rip;
  787. int i;
  788. rip = vcpu->svm->vmcb->save.rip;
  789. ins_length = vcpu->svm->next_rip - rip;
  790. rip += vcpu->svm->vmcb->save.cs.base;
  791. if (ins_length > MAX_INST_SIZE)
  792. printk(KERN_DEBUG
  793. "%s: inst length err, cs base 0x%llx rip 0x%llx "
  794. "next rip 0x%llx ins_length %u\n",
  795. __FUNCTION__,
  796. vcpu->svm->vmcb->save.cs.base,
  797. vcpu->svm->vmcb->save.rip,
  798. vcpu->svm->vmcb->control.exit_info_2,
  799. ins_length);
  800. if (kvm_read_guest(vcpu, rip, ins_length, inst) != ins_length)
  801. /* #PF */
  802. return 0;
  803. *addr_override = 0;
  804. *seg = NULL;
  805. for (i = 0; i < ins_length; i++)
  806. switch (inst[i]) {
  807. case 0xf0:
  808. case 0xf2:
  809. case 0xf3:
  810. case 0x66:
  811. continue;
  812. case 0x67:
  813. *addr_override = 1;
  814. continue;
  815. case 0x2e:
  816. *seg = &vcpu->svm->vmcb->save.cs;
  817. continue;
  818. case 0x36:
  819. *seg = &vcpu->svm->vmcb->save.ss;
  820. continue;
  821. case 0x3e:
  822. *seg = &vcpu->svm->vmcb->save.ds;
  823. continue;
  824. case 0x26:
  825. *seg = &vcpu->svm->vmcb->save.es;
  826. continue;
  827. case 0x64:
  828. *seg = &vcpu->svm->vmcb->save.fs;
  829. continue;
  830. case 0x65:
  831. *seg = &vcpu->svm->vmcb->save.gs;
  832. continue;
  833. default:
  834. return 1;
  835. }
  836. printk(KERN_DEBUG "%s: unexpected\n", __FUNCTION__);
  837. return 0;
  838. }
  839. static unsigned long io_adress(struct kvm_vcpu *vcpu, int ins, gva_t *address)
  840. {
  841. unsigned long addr_mask;
  842. unsigned long *reg;
  843. struct vmcb_seg *seg;
  844. int addr_override;
  845. struct vmcb_save_area *save_area = &vcpu->svm->vmcb->save;
  846. u16 cs_attrib = save_area->cs.attrib;
  847. unsigned addr_size = get_addr_size(vcpu);
  848. if (!io_get_override(vcpu, &seg, &addr_override))
  849. return 0;
  850. if (addr_override)
  851. addr_size = (addr_size == 2) ? 4: (addr_size >> 1);
  852. if (ins) {
  853. reg = &vcpu->regs[VCPU_REGS_RDI];
  854. seg = &vcpu->svm->vmcb->save.es;
  855. } else {
  856. reg = &vcpu->regs[VCPU_REGS_RSI];
  857. seg = (seg) ? seg : &vcpu->svm->vmcb->save.ds;
  858. }
  859. addr_mask = ~0ULL >> (64 - (addr_size * 8));
  860. if ((cs_attrib & SVM_SELECTOR_L_MASK) &&
  861. !(vcpu->svm->vmcb->save.rflags & X86_EFLAGS_VM)) {
  862. *address = (*reg & addr_mask);
  863. return addr_mask;
  864. }
  865. if (!(seg->attrib & SVM_SELECTOR_P_SHIFT)) {
  866. svm_inject_gp(vcpu, 0);
  867. return 0;
  868. }
  869. *address = (*reg & addr_mask) + seg->base;
  870. return addr_mask;
  871. }
  872. static int io_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  873. {
  874. u32 io_info = vcpu->svm->vmcb->control.exit_info_1; //address size bug?
  875. int size, down, in, string, rep;
  876. unsigned port;
  877. unsigned long count;
  878. gva_t address = 0;
  879. ++kvm_stat.io_exits;
  880. vcpu->svm->next_rip = vcpu->svm->vmcb->control.exit_info_2;
  881. in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
  882. port = io_info >> 16;
  883. size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
  884. string = (io_info & SVM_IOIO_STR_MASK) != 0;
  885. rep = (io_info & SVM_IOIO_REP_MASK) != 0;
  886. count = 1;
  887. down = (vcpu->svm->vmcb->save.rflags & X86_EFLAGS_DF) != 0;
  888. if (string) {
  889. unsigned addr_mask;
  890. addr_mask = io_adress(vcpu, in, &address);
  891. if (!addr_mask) {
  892. printk(KERN_DEBUG "%s: get io address failed\n",
  893. __FUNCTION__);
  894. return 1;
  895. }
  896. if (rep)
  897. count = vcpu->regs[VCPU_REGS_RCX] & addr_mask;
  898. }
  899. return kvm_setup_pio(vcpu, kvm_run, in, size, count, string, down,
  900. address, rep, port);
  901. }
  902. static int nop_on_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  903. {
  904. return 1;
  905. }
  906. static int halt_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  907. {
  908. vcpu->svm->next_rip = vcpu->svm->vmcb->save.rip + 1;
  909. skip_emulated_instruction(vcpu);
  910. if (vcpu->irq_summary)
  911. return 1;
  912. kvm_run->exit_reason = KVM_EXIT_HLT;
  913. ++kvm_stat.halt_exits;
  914. return 0;
  915. }
  916. static int vmmcall_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  917. {
  918. vcpu->svm->next_rip = vcpu->svm->vmcb->save.rip + 3;
  919. skip_emulated_instruction(vcpu);
  920. return kvm_hypercall(vcpu, kvm_run);
  921. }
  922. static int invalid_op_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  923. {
  924. inject_ud(vcpu);
  925. return 1;
  926. }
  927. static int task_switch_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  928. {
  929. printk(KERN_DEBUG "%s: task swiche is unsupported\n", __FUNCTION__);
  930. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  931. return 0;
  932. }
  933. static int cpuid_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  934. {
  935. vcpu->svm->next_rip = vcpu->svm->vmcb->save.rip + 2;
  936. kvm_emulate_cpuid(vcpu);
  937. return 1;
  938. }
  939. static int emulate_on_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  940. {
  941. if (emulate_instruction(vcpu, NULL, 0, 0) != EMULATE_DONE)
  942. printk(KERN_ERR "%s: failed\n", __FUNCTION__);
  943. return 1;
  944. }
  945. static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
  946. {
  947. switch (ecx) {
  948. case MSR_IA32_TIME_STAMP_COUNTER: {
  949. u64 tsc;
  950. rdtscll(tsc);
  951. *data = vcpu->svm->vmcb->control.tsc_offset + tsc;
  952. break;
  953. }
  954. case MSR_K6_STAR:
  955. *data = vcpu->svm->vmcb->save.star;
  956. break;
  957. #ifdef CONFIG_X86_64
  958. case MSR_LSTAR:
  959. *data = vcpu->svm->vmcb->save.lstar;
  960. break;
  961. case MSR_CSTAR:
  962. *data = vcpu->svm->vmcb->save.cstar;
  963. break;
  964. case MSR_KERNEL_GS_BASE:
  965. *data = vcpu->svm->vmcb->save.kernel_gs_base;
  966. break;
  967. case MSR_SYSCALL_MASK:
  968. *data = vcpu->svm->vmcb->save.sfmask;
  969. break;
  970. #endif
  971. case MSR_IA32_SYSENTER_CS:
  972. *data = vcpu->svm->vmcb->save.sysenter_cs;
  973. break;
  974. case MSR_IA32_SYSENTER_EIP:
  975. *data = vcpu->svm->vmcb->save.sysenter_eip;
  976. break;
  977. case MSR_IA32_SYSENTER_ESP:
  978. *data = vcpu->svm->vmcb->save.sysenter_esp;
  979. break;
  980. default:
  981. return kvm_get_msr_common(vcpu, ecx, data);
  982. }
  983. return 0;
  984. }
  985. static int rdmsr_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  986. {
  987. u32 ecx = vcpu->regs[VCPU_REGS_RCX];
  988. u64 data;
  989. if (svm_get_msr(vcpu, ecx, &data))
  990. svm_inject_gp(vcpu, 0);
  991. else {
  992. vcpu->svm->vmcb->save.rax = data & 0xffffffff;
  993. vcpu->regs[VCPU_REGS_RDX] = data >> 32;
  994. vcpu->svm->next_rip = vcpu->svm->vmcb->save.rip + 2;
  995. skip_emulated_instruction(vcpu);
  996. }
  997. return 1;
  998. }
  999. static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
  1000. {
  1001. switch (ecx) {
  1002. case MSR_IA32_TIME_STAMP_COUNTER: {
  1003. u64 tsc;
  1004. rdtscll(tsc);
  1005. vcpu->svm->vmcb->control.tsc_offset = data - tsc;
  1006. break;
  1007. }
  1008. case MSR_K6_STAR:
  1009. vcpu->svm->vmcb->save.star = data;
  1010. break;
  1011. #ifdef CONFIG_X86_64
  1012. case MSR_LSTAR:
  1013. vcpu->svm->vmcb->save.lstar = data;
  1014. break;
  1015. case MSR_CSTAR:
  1016. vcpu->svm->vmcb->save.cstar = data;
  1017. break;
  1018. case MSR_KERNEL_GS_BASE:
  1019. vcpu->svm->vmcb->save.kernel_gs_base = data;
  1020. break;
  1021. case MSR_SYSCALL_MASK:
  1022. vcpu->svm->vmcb->save.sfmask = data;
  1023. break;
  1024. #endif
  1025. case MSR_IA32_SYSENTER_CS:
  1026. vcpu->svm->vmcb->save.sysenter_cs = data;
  1027. break;
  1028. case MSR_IA32_SYSENTER_EIP:
  1029. vcpu->svm->vmcb->save.sysenter_eip = data;
  1030. break;
  1031. case MSR_IA32_SYSENTER_ESP:
  1032. vcpu->svm->vmcb->save.sysenter_esp = data;
  1033. break;
  1034. default:
  1035. return kvm_set_msr_common(vcpu, ecx, data);
  1036. }
  1037. return 0;
  1038. }
  1039. static int wrmsr_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1040. {
  1041. u32 ecx = vcpu->regs[VCPU_REGS_RCX];
  1042. u64 data = (vcpu->svm->vmcb->save.rax & -1u)
  1043. | ((u64)(vcpu->regs[VCPU_REGS_RDX] & -1u) << 32);
  1044. vcpu->svm->next_rip = vcpu->svm->vmcb->save.rip + 2;
  1045. if (svm_set_msr(vcpu, ecx, data))
  1046. svm_inject_gp(vcpu, 0);
  1047. else
  1048. skip_emulated_instruction(vcpu);
  1049. return 1;
  1050. }
  1051. static int msr_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1052. {
  1053. if (vcpu->svm->vmcb->control.exit_info_1)
  1054. return wrmsr_interception(vcpu, kvm_run);
  1055. else
  1056. return rdmsr_interception(vcpu, kvm_run);
  1057. }
  1058. static int interrupt_window_interception(struct kvm_vcpu *vcpu,
  1059. struct kvm_run *kvm_run)
  1060. {
  1061. /*
  1062. * If the user space waits to inject interrupts, exit as soon as
  1063. * possible
  1064. */
  1065. if (kvm_run->request_interrupt_window &&
  1066. !vcpu->irq_summary) {
  1067. ++kvm_stat.irq_window_exits;
  1068. kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  1069. return 0;
  1070. }
  1071. return 1;
  1072. }
  1073. static int (*svm_exit_handlers[])(struct kvm_vcpu *vcpu,
  1074. struct kvm_run *kvm_run) = {
  1075. [SVM_EXIT_READ_CR0] = emulate_on_interception,
  1076. [SVM_EXIT_READ_CR3] = emulate_on_interception,
  1077. [SVM_EXIT_READ_CR4] = emulate_on_interception,
  1078. /* for now: */
  1079. [SVM_EXIT_WRITE_CR0] = emulate_on_interception,
  1080. [SVM_EXIT_WRITE_CR3] = emulate_on_interception,
  1081. [SVM_EXIT_WRITE_CR4] = emulate_on_interception,
  1082. [SVM_EXIT_READ_DR0] = emulate_on_interception,
  1083. [SVM_EXIT_READ_DR1] = emulate_on_interception,
  1084. [SVM_EXIT_READ_DR2] = emulate_on_interception,
  1085. [SVM_EXIT_READ_DR3] = emulate_on_interception,
  1086. [SVM_EXIT_WRITE_DR0] = emulate_on_interception,
  1087. [SVM_EXIT_WRITE_DR1] = emulate_on_interception,
  1088. [SVM_EXIT_WRITE_DR2] = emulate_on_interception,
  1089. [SVM_EXIT_WRITE_DR3] = emulate_on_interception,
  1090. [SVM_EXIT_WRITE_DR5] = emulate_on_interception,
  1091. [SVM_EXIT_WRITE_DR7] = emulate_on_interception,
  1092. [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
  1093. [SVM_EXIT_INTR] = nop_on_interception,
  1094. [SVM_EXIT_NMI] = nop_on_interception,
  1095. [SVM_EXIT_SMI] = nop_on_interception,
  1096. [SVM_EXIT_INIT] = nop_on_interception,
  1097. [SVM_EXIT_VINTR] = interrupt_window_interception,
  1098. /* [SVM_EXIT_CR0_SEL_WRITE] = emulate_on_interception, */
  1099. [SVM_EXIT_CPUID] = cpuid_interception,
  1100. [SVM_EXIT_HLT] = halt_interception,
  1101. [SVM_EXIT_INVLPG] = emulate_on_interception,
  1102. [SVM_EXIT_INVLPGA] = invalid_op_interception,
  1103. [SVM_EXIT_IOIO] = io_interception,
  1104. [SVM_EXIT_MSR] = msr_interception,
  1105. [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
  1106. [SVM_EXIT_SHUTDOWN] = shutdown_interception,
  1107. [SVM_EXIT_VMRUN] = invalid_op_interception,
  1108. [SVM_EXIT_VMMCALL] = vmmcall_interception,
  1109. [SVM_EXIT_VMLOAD] = invalid_op_interception,
  1110. [SVM_EXIT_VMSAVE] = invalid_op_interception,
  1111. [SVM_EXIT_STGI] = invalid_op_interception,
  1112. [SVM_EXIT_CLGI] = invalid_op_interception,
  1113. [SVM_EXIT_SKINIT] = invalid_op_interception,
  1114. [SVM_EXIT_MONITOR] = invalid_op_interception,
  1115. [SVM_EXIT_MWAIT] = invalid_op_interception,
  1116. };
  1117. static int handle_exit(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1118. {
  1119. u32 exit_code = vcpu->svm->vmcb->control.exit_code;
  1120. if (is_external_interrupt(vcpu->svm->vmcb->control.exit_int_info) &&
  1121. exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR)
  1122. printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
  1123. "exit_code 0x%x\n",
  1124. __FUNCTION__, vcpu->svm->vmcb->control.exit_int_info,
  1125. exit_code);
  1126. if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
  1127. || svm_exit_handlers[exit_code] == 0) {
  1128. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  1129. kvm_run->hw.hardware_exit_reason = exit_code;
  1130. return 0;
  1131. }
  1132. return svm_exit_handlers[exit_code](vcpu, kvm_run);
  1133. }
  1134. static void reload_tss(struct kvm_vcpu *vcpu)
  1135. {
  1136. int cpu = raw_smp_processor_id();
  1137. struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
  1138. svm_data->tss_desc->type = 9; //available 32/64-bit TSS
  1139. load_TR_desc();
  1140. }
  1141. static void pre_svm_run(struct kvm_vcpu *vcpu)
  1142. {
  1143. int cpu = raw_smp_processor_id();
  1144. struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
  1145. vcpu->svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
  1146. if (vcpu->cpu != cpu ||
  1147. vcpu->svm->asid_generation != svm_data->asid_generation)
  1148. new_asid(vcpu, svm_data);
  1149. }
  1150. static inline void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
  1151. {
  1152. struct vmcb_control_area *control;
  1153. control = &vcpu->svm->vmcb->control;
  1154. control->int_vector = pop_irq(vcpu);
  1155. control->int_ctl &= ~V_INTR_PRIO_MASK;
  1156. control->int_ctl |= V_IRQ_MASK |
  1157. ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
  1158. }
  1159. static void kvm_reput_irq(struct kvm_vcpu *vcpu)
  1160. {
  1161. struct vmcb_control_area *control = &vcpu->svm->vmcb->control;
  1162. if (control->int_ctl & V_IRQ_MASK) {
  1163. control->int_ctl &= ~V_IRQ_MASK;
  1164. push_irq(vcpu, control->int_vector);
  1165. }
  1166. vcpu->interrupt_window_open =
  1167. !(control->int_state & SVM_INTERRUPT_SHADOW_MASK);
  1168. }
  1169. static void do_interrupt_requests(struct kvm_vcpu *vcpu,
  1170. struct kvm_run *kvm_run)
  1171. {
  1172. struct vmcb_control_area *control = &vcpu->svm->vmcb->control;
  1173. vcpu->interrupt_window_open =
  1174. (!(control->int_state & SVM_INTERRUPT_SHADOW_MASK) &&
  1175. (vcpu->svm->vmcb->save.rflags & X86_EFLAGS_IF));
  1176. if (vcpu->interrupt_window_open && vcpu->irq_summary)
  1177. /*
  1178. * If interrupts enabled, and not blocked by sti or mov ss. Good.
  1179. */
  1180. kvm_do_inject_irq(vcpu);
  1181. /*
  1182. * Interrupts blocked. Wait for unblock.
  1183. */
  1184. if (!vcpu->interrupt_window_open &&
  1185. (vcpu->irq_summary || kvm_run->request_interrupt_window)) {
  1186. control->intercept |= 1ULL << INTERCEPT_VINTR;
  1187. } else
  1188. control->intercept &= ~(1ULL << INTERCEPT_VINTR);
  1189. }
  1190. static void post_kvm_run_save(struct kvm_vcpu *vcpu,
  1191. struct kvm_run *kvm_run)
  1192. {
  1193. kvm_run->ready_for_interrupt_injection = (vcpu->interrupt_window_open &&
  1194. vcpu->irq_summary == 0);
  1195. kvm_run->if_flag = (vcpu->svm->vmcb->save.rflags & X86_EFLAGS_IF) != 0;
  1196. kvm_run->cr8 = vcpu->cr8;
  1197. kvm_run->apic_base = vcpu->apic_base;
  1198. }
  1199. /*
  1200. * Check if userspace requested an interrupt window, and that the
  1201. * interrupt window is open.
  1202. *
  1203. * No need to exit to userspace if we already have an interrupt queued.
  1204. */
  1205. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
  1206. struct kvm_run *kvm_run)
  1207. {
  1208. return (!vcpu->irq_summary &&
  1209. kvm_run->request_interrupt_window &&
  1210. vcpu->interrupt_window_open &&
  1211. (vcpu->svm->vmcb->save.rflags & X86_EFLAGS_IF));
  1212. }
  1213. static void save_db_regs(unsigned long *db_regs)
  1214. {
  1215. asm volatile ("mov %%dr0, %0" : "=r"(db_regs[0]));
  1216. asm volatile ("mov %%dr1, %0" : "=r"(db_regs[1]));
  1217. asm volatile ("mov %%dr2, %0" : "=r"(db_regs[2]));
  1218. asm volatile ("mov %%dr3, %0" : "=r"(db_regs[3]));
  1219. }
  1220. static void load_db_regs(unsigned long *db_regs)
  1221. {
  1222. asm volatile ("mov %0, %%dr0" : : "r"(db_regs[0]));
  1223. asm volatile ("mov %0, %%dr1" : : "r"(db_regs[1]));
  1224. asm volatile ("mov %0, %%dr2" : : "r"(db_regs[2]));
  1225. asm volatile ("mov %0, %%dr3" : : "r"(db_regs[3]));
  1226. }
  1227. static int svm_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1228. {
  1229. u16 fs_selector;
  1230. u16 gs_selector;
  1231. u16 ldt_selector;
  1232. int r;
  1233. again:
  1234. if (!vcpu->mmio_read_completed)
  1235. do_interrupt_requests(vcpu, kvm_run);
  1236. clgi();
  1237. pre_svm_run(vcpu);
  1238. save_host_msrs(vcpu);
  1239. fs_selector = read_fs();
  1240. gs_selector = read_gs();
  1241. ldt_selector = read_ldt();
  1242. vcpu->svm->host_cr2 = kvm_read_cr2();
  1243. vcpu->svm->host_dr6 = read_dr6();
  1244. vcpu->svm->host_dr7 = read_dr7();
  1245. vcpu->svm->vmcb->save.cr2 = vcpu->cr2;
  1246. if (vcpu->svm->vmcb->save.dr7 & 0xff) {
  1247. write_dr7(0);
  1248. save_db_regs(vcpu->svm->host_db_regs);
  1249. load_db_regs(vcpu->svm->db_regs);
  1250. }
  1251. fx_save(vcpu->host_fx_image);
  1252. fx_restore(vcpu->guest_fx_image);
  1253. asm volatile (
  1254. #ifdef CONFIG_X86_64
  1255. "push %%rbx; push %%rcx; push %%rdx;"
  1256. "push %%rsi; push %%rdi; push %%rbp;"
  1257. "push %%r8; push %%r9; push %%r10; push %%r11;"
  1258. "push %%r12; push %%r13; push %%r14; push %%r15;"
  1259. #else
  1260. "push %%ebx; push %%ecx; push %%edx;"
  1261. "push %%esi; push %%edi; push %%ebp;"
  1262. #endif
  1263. #ifdef CONFIG_X86_64
  1264. "mov %c[rbx](%[vcpu]), %%rbx \n\t"
  1265. "mov %c[rcx](%[vcpu]), %%rcx \n\t"
  1266. "mov %c[rdx](%[vcpu]), %%rdx \n\t"
  1267. "mov %c[rsi](%[vcpu]), %%rsi \n\t"
  1268. "mov %c[rdi](%[vcpu]), %%rdi \n\t"
  1269. "mov %c[rbp](%[vcpu]), %%rbp \n\t"
  1270. "mov %c[r8](%[vcpu]), %%r8 \n\t"
  1271. "mov %c[r9](%[vcpu]), %%r9 \n\t"
  1272. "mov %c[r10](%[vcpu]), %%r10 \n\t"
  1273. "mov %c[r11](%[vcpu]), %%r11 \n\t"
  1274. "mov %c[r12](%[vcpu]), %%r12 \n\t"
  1275. "mov %c[r13](%[vcpu]), %%r13 \n\t"
  1276. "mov %c[r14](%[vcpu]), %%r14 \n\t"
  1277. "mov %c[r15](%[vcpu]), %%r15 \n\t"
  1278. #else
  1279. "mov %c[rbx](%[vcpu]), %%ebx \n\t"
  1280. "mov %c[rcx](%[vcpu]), %%ecx \n\t"
  1281. "mov %c[rdx](%[vcpu]), %%edx \n\t"
  1282. "mov %c[rsi](%[vcpu]), %%esi \n\t"
  1283. "mov %c[rdi](%[vcpu]), %%edi \n\t"
  1284. "mov %c[rbp](%[vcpu]), %%ebp \n\t"
  1285. #endif
  1286. #ifdef CONFIG_X86_64
  1287. /* Enter guest mode */
  1288. "push %%rax \n\t"
  1289. "mov %c[svm](%[vcpu]), %%rax \n\t"
  1290. "mov %c[vmcb](%%rax), %%rax \n\t"
  1291. SVM_VMLOAD "\n\t"
  1292. SVM_VMRUN "\n\t"
  1293. SVM_VMSAVE "\n\t"
  1294. "pop %%rax \n\t"
  1295. #else
  1296. /* Enter guest mode */
  1297. "push %%eax \n\t"
  1298. "mov %c[svm](%[vcpu]), %%eax \n\t"
  1299. "mov %c[vmcb](%%eax), %%eax \n\t"
  1300. SVM_VMLOAD "\n\t"
  1301. SVM_VMRUN "\n\t"
  1302. SVM_VMSAVE "\n\t"
  1303. "pop %%eax \n\t"
  1304. #endif
  1305. /* Save guest registers, load host registers */
  1306. #ifdef CONFIG_X86_64
  1307. "mov %%rbx, %c[rbx](%[vcpu]) \n\t"
  1308. "mov %%rcx, %c[rcx](%[vcpu]) \n\t"
  1309. "mov %%rdx, %c[rdx](%[vcpu]) \n\t"
  1310. "mov %%rsi, %c[rsi](%[vcpu]) \n\t"
  1311. "mov %%rdi, %c[rdi](%[vcpu]) \n\t"
  1312. "mov %%rbp, %c[rbp](%[vcpu]) \n\t"
  1313. "mov %%r8, %c[r8](%[vcpu]) \n\t"
  1314. "mov %%r9, %c[r9](%[vcpu]) \n\t"
  1315. "mov %%r10, %c[r10](%[vcpu]) \n\t"
  1316. "mov %%r11, %c[r11](%[vcpu]) \n\t"
  1317. "mov %%r12, %c[r12](%[vcpu]) \n\t"
  1318. "mov %%r13, %c[r13](%[vcpu]) \n\t"
  1319. "mov %%r14, %c[r14](%[vcpu]) \n\t"
  1320. "mov %%r15, %c[r15](%[vcpu]) \n\t"
  1321. "pop %%r15; pop %%r14; pop %%r13; pop %%r12;"
  1322. "pop %%r11; pop %%r10; pop %%r9; pop %%r8;"
  1323. "pop %%rbp; pop %%rdi; pop %%rsi;"
  1324. "pop %%rdx; pop %%rcx; pop %%rbx; \n\t"
  1325. #else
  1326. "mov %%ebx, %c[rbx](%[vcpu]) \n\t"
  1327. "mov %%ecx, %c[rcx](%[vcpu]) \n\t"
  1328. "mov %%edx, %c[rdx](%[vcpu]) \n\t"
  1329. "mov %%esi, %c[rsi](%[vcpu]) \n\t"
  1330. "mov %%edi, %c[rdi](%[vcpu]) \n\t"
  1331. "mov %%ebp, %c[rbp](%[vcpu]) \n\t"
  1332. "pop %%ebp; pop %%edi; pop %%esi;"
  1333. "pop %%edx; pop %%ecx; pop %%ebx; \n\t"
  1334. #endif
  1335. :
  1336. : [vcpu]"a"(vcpu),
  1337. [svm]"i"(offsetof(struct kvm_vcpu, svm)),
  1338. [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
  1339. [rbx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBX])),
  1340. [rcx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RCX])),
  1341. [rdx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDX])),
  1342. [rsi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RSI])),
  1343. [rdi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDI])),
  1344. [rbp]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBP]))
  1345. #ifdef CONFIG_X86_64
  1346. ,[r8 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R8 ])),
  1347. [r9 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R9 ])),
  1348. [r10]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R10])),
  1349. [r11]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R11])),
  1350. [r12]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R12])),
  1351. [r13]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R13])),
  1352. [r14]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R14])),
  1353. [r15]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R15]))
  1354. #endif
  1355. : "cc", "memory" );
  1356. fx_save(vcpu->guest_fx_image);
  1357. fx_restore(vcpu->host_fx_image);
  1358. if ((vcpu->svm->vmcb->save.dr7 & 0xff))
  1359. load_db_regs(vcpu->svm->host_db_regs);
  1360. vcpu->cr2 = vcpu->svm->vmcb->save.cr2;
  1361. write_dr6(vcpu->svm->host_dr6);
  1362. write_dr7(vcpu->svm->host_dr7);
  1363. kvm_write_cr2(vcpu->svm->host_cr2);
  1364. load_fs(fs_selector);
  1365. load_gs(gs_selector);
  1366. load_ldt(ldt_selector);
  1367. load_host_msrs(vcpu);
  1368. reload_tss(vcpu);
  1369. /*
  1370. * Profile KVM exit RIPs:
  1371. */
  1372. if (unlikely(prof_on == KVM_PROFILING))
  1373. profile_hit(KVM_PROFILING,
  1374. (void *)(unsigned long)vcpu->svm->vmcb->save.rip);
  1375. stgi();
  1376. kvm_reput_irq(vcpu);
  1377. vcpu->svm->next_rip = 0;
  1378. if (vcpu->svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
  1379. kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  1380. kvm_run->fail_entry.hardware_entry_failure_reason
  1381. = vcpu->svm->vmcb->control.exit_code;
  1382. post_kvm_run_save(vcpu, kvm_run);
  1383. return 0;
  1384. }
  1385. r = handle_exit(vcpu, kvm_run);
  1386. if (r > 0) {
  1387. if (signal_pending(current)) {
  1388. ++kvm_stat.signal_exits;
  1389. post_kvm_run_save(vcpu, kvm_run);
  1390. kvm_run->exit_reason = KVM_EXIT_INTR;
  1391. return -EINTR;
  1392. }
  1393. if (dm_request_for_irq_injection(vcpu, kvm_run)) {
  1394. ++kvm_stat.request_irq_exits;
  1395. post_kvm_run_save(vcpu, kvm_run);
  1396. kvm_run->exit_reason = KVM_EXIT_INTR;
  1397. return -EINTR;
  1398. }
  1399. kvm_resched(vcpu);
  1400. goto again;
  1401. }
  1402. post_kvm_run_save(vcpu, kvm_run);
  1403. return r;
  1404. }
  1405. static void svm_flush_tlb(struct kvm_vcpu *vcpu)
  1406. {
  1407. force_new_asid(vcpu);
  1408. }
  1409. static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
  1410. {
  1411. vcpu->svm->vmcb->save.cr3 = root;
  1412. force_new_asid(vcpu);
  1413. }
  1414. static void svm_inject_page_fault(struct kvm_vcpu *vcpu,
  1415. unsigned long addr,
  1416. uint32_t err_code)
  1417. {
  1418. uint32_t exit_int_info = vcpu->svm->vmcb->control.exit_int_info;
  1419. ++kvm_stat.pf_guest;
  1420. if (is_page_fault(exit_int_info)) {
  1421. vcpu->svm->vmcb->control.event_inj_err = 0;
  1422. vcpu->svm->vmcb->control.event_inj = SVM_EVTINJ_VALID |
  1423. SVM_EVTINJ_VALID_ERR |
  1424. SVM_EVTINJ_TYPE_EXEPT |
  1425. DF_VECTOR;
  1426. return;
  1427. }
  1428. vcpu->cr2 = addr;
  1429. vcpu->svm->vmcb->save.cr2 = addr;
  1430. vcpu->svm->vmcb->control.event_inj = SVM_EVTINJ_VALID |
  1431. SVM_EVTINJ_VALID_ERR |
  1432. SVM_EVTINJ_TYPE_EXEPT |
  1433. PF_VECTOR;
  1434. vcpu->svm->vmcb->control.event_inj_err = err_code;
  1435. }
  1436. static int is_disabled(void)
  1437. {
  1438. return 0;
  1439. }
  1440. static void
  1441. svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  1442. {
  1443. /*
  1444. * Patch in the VMMCALL instruction:
  1445. */
  1446. hypercall[0] = 0x0f;
  1447. hypercall[1] = 0x01;
  1448. hypercall[2] = 0xd9;
  1449. hypercall[3] = 0xc3;
  1450. }
  1451. static struct kvm_arch_ops svm_arch_ops = {
  1452. .cpu_has_kvm_support = has_svm,
  1453. .disabled_by_bios = is_disabled,
  1454. .hardware_setup = svm_hardware_setup,
  1455. .hardware_unsetup = svm_hardware_unsetup,
  1456. .hardware_enable = svm_hardware_enable,
  1457. .hardware_disable = svm_hardware_disable,
  1458. .vcpu_create = svm_create_vcpu,
  1459. .vcpu_free = svm_free_vcpu,
  1460. .vcpu_load = svm_vcpu_load,
  1461. .vcpu_put = svm_vcpu_put,
  1462. .vcpu_decache = svm_vcpu_decache,
  1463. .set_guest_debug = svm_guest_debug,
  1464. .get_msr = svm_get_msr,
  1465. .set_msr = svm_set_msr,
  1466. .get_segment_base = svm_get_segment_base,
  1467. .get_segment = svm_get_segment,
  1468. .set_segment = svm_set_segment,
  1469. .get_cs_db_l_bits = svm_get_cs_db_l_bits,
  1470. .decache_cr0_cr4_guest_bits = svm_decache_cr0_cr4_guest_bits,
  1471. .set_cr0 = svm_set_cr0,
  1472. .set_cr3 = svm_set_cr3,
  1473. .set_cr4 = svm_set_cr4,
  1474. .set_efer = svm_set_efer,
  1475. .get_idt = svm_get_idt,
  1476. .set_idt = svm_set_idt,
  1477. .get_gdt = svm_get_gdt,
  1478. .set_gdt = svm_set_gdt,
  1479. .get_dr = svm_get_dr,
  1480. .set_dr = svm_set_dr,
  1481. .cache_regs = svm_cache_regs,
  1482. .decache_regs = svm_decache_regs,
  1483. .get_rflags = svm_get_rflags,
  1484. .set_rflags = svm_set_rflags,
  1485. .invlpg = svm_invlpg,
  1486. .tlb_flush = svm_flush_tlb,
  1487. .inject_page_fault = svm_inject_page_fault,
  1488. .inject_gp = svm_inject_gp,
  1489. .run = svm_vcpu_run,
  1490. .skip_emulated_instruction = skip_emulated_instruction,
  1491. .vcpu_setup = svm_vcpu_setup,
  1492. .patch_hypercall = svm_patch_hypercall,
  1493. };
  1494. static int __init svm_init(void)
  1495. {
  1496. return kvm_init_arch(&svm_arch_ops, THIS_MODULE);
  1497. }
  1498. static void __exit svm_exit(void)
  1499. {
  1500. kvm_exit_arch();
  1501. }
  1502. module_init(svm_init)
  1503. module_exit(svm_exit)