kvm_main.c 68 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "kvm.h"
  18. #include <linux/kvm.h>
  19. #include <linux/module.h>
  20. #include <linux/errno.h>
  21. #include <linux/magic.h>
  22. #include <asm/processor.h>
  23. #include <linux/percpu.h>
  24. #include <linux/gfp.h>
  25. #include <asm/msr.h>
  26. #include <linux/mm.h>
  27. #include <linux/miscdevice.h>
  28. #include <linux/vmalloc.h>
  29. #include <asm/uaccess.h>
  30. #include <linux/reboot.h>
  31. #include <asm/io.h>
  32. #include <linux/debugfs.h>
  33. #include <linux/highmem.h>
  34. #include <linux/file.h>
  35. #include <asm/desc.h>
  36. #include <linux/sysdev.h>
  37. #include <linux/cpu.h>
  38. #include <linux/file.h>
  39. #include <linux/fs.h>
  40. #include <linux/mount.h>
  41. #include "x86_emulate.h"
  42. #include "segment_descriptor.h"
  43. MODULE_AUTHOR("Qumranet");
  44. MODULE_LICENSE("GPL");
  45. static DEFINE_SPINLOCK(kvm_lock);
  46. static LIST_HEAD(vm_list);
  47. struct kvm_arch_ops *kvm_arch_ops;
  48. struct kvm_stat kvm_stat;
  49. EXPORT_SYMBOL_GPL(kvm_stat);
  50. static struct kvm_stats_debugfs_item {
  51. const char *name;
  52. u32 *data;
  53. struct dentry *dentry;
  54. } debugfs_entries[] = {
  55. { "pf_fixed", &kvm_stat.pf_fixed },
  56. { "pf_guest", &kvm_stat.pf_guest },
  57. { "tlb_flush", &kvm_stat.tlb_flush },
  58. { "invlpg", &kvm_stat.invlpg },
  59. { "exits", &kvm_stat.exits },
  60. { "io_exits", &kvm_stat.io_exits },
  61. { "mmio_exits", &kvm_stat.mmio_exits },
  62. { "signal_exits", &kvm_stat.signal_exits },
  63. { "irq_window", &kvm_stat.irq_window_exits },
  64. { "halt_exits", &kvm_stat.halt_exits },
  65. { "request_irq", &kvm_stat.request_irq_exits },
  66. { "irq_exits", &kvm_stat.irq_exits },
  67. { NULL, NULL }
  68. };
  69. static struct dentry *debugfs_dir;
  70. struct vfsmount *kvmfs_mnt;
  71. #define MAX_IO_MSRS 256
  72. #define CR0_RESEVED_BITS 0xffffffff1ffaffc0ULL
  73. #define LMSW_GUEST_MASK 0x0eULL
  74. #define CR4_RESEVED_BITS (~((1ULL << 11) - 1))
  75. #define CR8_RESEVED_BITS (~0x0fULL)
  76. #define EFER_RESERVED_BITS 0xfffffffffffff2fe
  77. #ifdef CONFIG_X86_64
  78. // LDT or TSS descriptor in the GDT. 16 bytes.
  79. struct segment_descriptor_64 {
  80. struct segment_descriptor s;
  81. u32 base_higher;
  82. u32 pad_zero;
  83. };
  84. #endif
  85. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  86. unsigned long arg);
  87. static struct inode *kvmfs_inode(struct file_operations *fops)
  88. {
  89. int error = -ENOMEM;
  90. struct inode *inode = new_inode(kvmfs_mnt->mnt_sb);
  91. if (!inode)
  92. goto eexit_1;
  93. inode->i_fop = fops;
  94. /*
  95. * Mark the inode dirty from the very beginning,
  96. * that way it will never be moved to the dirty
  97. * list because mark_inode_dirty() will think
  98. * that it already _is_ on the dirty list.
  99. */
  100. inode->i_state = I_DIRTY;
  101. inode->i_mode = S_IRUSR | S_IWUSR;
  102. inode->i_uid = current->fsuid;
  103. inode->i_gid = current->fsgid;
  104. inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
  105. return inode;
  106. eexit_1:
  107. return ERR_PTR(error);
  108. }
  109. static struct file *kvmfs_file(struct inode *inode, void *private_data)
  110. {
  111. struct file *file = get_empty_filp();
  112. if (!file)
  113. return ERR_PTR(-ENFILE);
  114. file->f_path.mnt = mntget(kvmfs_mnt);
  115. file->f_path.dentry = d_alloc_anon(inode);
  116. if (!file->f_path.dentry)
  117. return ERR_PTR(-ENOMEM);
  118. file->f_mapping = inode->i_mapping;
  119. file->f_pos = 0;
  120. file->f_flags = O_RDWR;
  121. file->f_op = inode->i_fop;
  122. file->f_mode = FMODE_READ | FMODE_WRITE;
  123. file->f_version = 0;
  124. file->private_data = private_data;
  125. return file;
  126. }
  127. unsigned long segment_base(u16 selector)
  128. {
  129. struct descriptor_table gdt;
  130. struct segment_descriptor *d;
  131. unsigned long table_base;
  132. typedef unsigned long ul;
  133. unsigned long v;
  134. if (selector == 0)
  135. return 0;
  136. asm ("sgdt %0" : "=m"(gdt));
  137. table_base = gdt.base;
  138. if (selector & 4) { /* from ldt */
  139. u16 ldt_selector;
  140. asm ("sldt %0" : "=g"(ldt_selector));
  141. table_base = segment_base(ldt_selector);
  142. }
  143. d = (struct segment_descriptor *)(table_base + (selector & ~7));
  144. v = d->base_low | ((ul)d->base_mid << 16) | ((ul)d->base_high << 24);
  145. #ifdef CONFIG_X86_64
  146. if (d->system == 0
  147. && (d->type == 2 || d->type == 9 || d->type == 11))
  148. v |= ((ul)((struct segment_descriptor_64 *)d)->base_higher) << 32;
  149. #endif
  150. return v;
  151. }
  152. EXPORT_SYMBOL_GPL(segment_base);
  153. static inline int valid_vcpu(int n)
  154. {
  155. return likely(n >= 0 && n < KVM_MAX_VCPUS);
  156. }
  157. int kvm_read_guest(struct kvm_vcpu *vcpu, gva_t addr, unsigned long size,
  158. void *dest)
  159. {
  160. unsigned char *host_buf = dest;
  161. unsigned long req_size = size;
  162. while (size) {
  163. hpa_t paddr;
  164. unsigned now;
  165. unsigned offset;
  166. hva_t guest_buf;
  167. paddr = gva_to_hpa(vcpu, addr);
  168. if (is_error_hpa(paddr))
  169. break;
  170. guest_buf = (hva_t)kmap_atomic(
  171. pfn_to_page(paddr >> PAGE_SHIFT),
  172. KM_USER0);
  173. offset = addr & ~PAGE_MASK;
  174. guest_buf |= offset;
  175. now = min(size, PAGE_SIZE - offset);
  176. memcpy(host_buf, (void*)guest_buf, now);
  177. host_buf += now;
  178. addr += now;
  179. size -= now;
  180. kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
  181. }
  182. return req_size - size;
  183. }
  184. EXPORT_SYMBOL_GPL(kvm_read_guest);
  185. int kvm_write_guest(struct kvm_vcpu *vcpu, gva_t addr, unsigned long size,
  186. void *data)
  187. {
  188. unsigned char *host_buf = data;
  189. unsigned long req_size = size;
  190. while (size) {
  191. hpa_t paddr;
  192. unsigned now;
  193. unsigned offset;
  194. hva_t guest_buf;
  195. gfn_t gfn;
  196. paddr = gva_to_hpa(vcpu, addr);
  197. if (is_error_hpa(paddr))
  198. break;
  199. gfn = vcpu->mmu.gva_to_gpa(vcpu, addr) >> PAGE_SHIFT;
  200. mark_page_dirty(vcpu->kvm, gfn);
  201. guest_buf = (hva_t)kmap_atomic(
  202. pfn_to_page(paddr >> PAGE_SHIFT), KM_USER0);
  203. offset = addr & ~PAGE_MASK;
  204. guest_buf |= offset;
  205. now = min(size, PAGE_SIZE - offset);
  206. memcpy((void*)guest_buf, host_buf, now);
  207. host_buf += now;
  208. addr += now;
  209. size -= now;
  210. kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
  211. }
  212. return req_size - size;
  213. }
  214. EXPORT_SYMBOL_GPL(kvm_write_guest);
  215. /*
  216. * Switches to specified vcpu, until a matching vcpu_put()
  217. */
  218. static void vcpu_load(struct kvm_vcpu *vcpu)
  219. {
  220. mutex_lock(&vcpu->mutex);
  221. kvm_arch_ops->vcpu_load(vcpu);
  222. }
  223. /*
  224. * Switches to specified vcpu, until a matching vcpu_put(). Will return NULL
  225. * if the slot is not populated.
  226. */
  227. static struct kvm_vcpu *vcpu_load_slot(struct kvm *kvm, int slot)
  228. {
  229. struct kvm_vcpu *vcpu = &kvm->vcpus[slot];
  230. mutex_lock(&vcpu->mutex);
  231. if (!vcpu->vmcs) {
  232. mutex_unlock(&vcpu->mutex);
  233. return NULL;
  234. }
  235. kvm_arch_ops->vcpu_load(vcpu);
  236. return vcpu;
  237. }
  238. static void vcpu_put(struct kvm_vcpu *vcpu)
  239. {
  240. kvm_arch_ops->vcpu_put(vcpu);
  241. mutex_unlock(&vcpu->mutex);
  242. }
  243. static struct kvm *kvm_create_vm(void)
  244. {
  245. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  246. int i;
  247. if (!kvm)
  248. return ERR_PTR(-ENOMEM);
  249. spin_lock_init(&kvm->lock);
  250. INIT_LIST_HEAD(&kvm->active_mmu_pages);
  251. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  252. struct kvm_vcpu *vcpu = &kvm->vcpus[i];
  253. mutex_init(&vcpu->mutex);
  254. vcpu->cpu = -1;
  255. vcpu->kvm = kvm;
  256. vcpu->mmu.root_hpa = INVALID_PAGE;
  257. INIT_LIST_HEAD(&vcpu->free_pages);
  258. spin_lock(&kvm_lock);
  259. list_add(&kvm->vm_list, &vm_list);
  260. spin_unlock(&kvm_lock);
  261. }
  262. return kvm;
  263. }
  264. static int kvm_dev_open(struct inode *inode, struct file *filp)
  265. {
  266. return 0;
  267. }
  268. /*
  269. * Free any memory in @free but not in @dont.
  270. */
  271. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  272. struct kvm_memory_slot *dont)
  273. {
  274. int i;
  275. if (!dont || free->phys_mem != dont->phys_mem)
  276. if (free->phys_mem) {
  277. for (i = 0; i < free->npages; ++i)
  278. if (free->phys_mem[i])
  279. __free_page(free->phys_mem[i]);
  280. vfree(free->phys_mem);
  281. }
  282. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  283. vfree(free->dirty_bitmap);
  284. free->phys_mem = NULL;
  285. free->npages = 0;
  286. free->dirty_bitmap = NULL;
  287. }
  288. static void kvm_free_physmem(struct kvm *kvm)
  289. {
  290. int i;
  291. for (i = 0; i < kvm->nmemslots; ++i)
  292. kvm_free_physmem_slot(&kvm->memslots[i], NULL);
  293. }
  294. static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
  295. {
  296. int i;
  297. for (i = 0; i < 2; ++i)
  298. if (vcpu->pio.guest_pages[i]) {
  299. __free_page(vcpu->pio.guest_pages[i]);
  300. vcpu->pio.guest_pages[i] = NULL;
  301. }
  302. }
  303. static void kvm_free_vcpu(struct kvm_vcpu *vcpu)
  304. {
  305. if (!vcpu->vmcs)
  306. return;
  307. vcpu_load(vcpu);
  308. kvm_mmu_destroy(vcpu);
  309. vcpu_put(vcpu);
  310. kvm_arch_ops->vcpu_free(vcpu);
  311. free_page((unsigned long)vcpu->run);
  312. vcpu->run = NULL;
  313. free_page((unsigned long)vcpu->pio_data);
  314. vcpu->pio_data = NULL;
  315. free_pio_guest_pages(vcpu);
  316. }
  317. static void kvm_free_vcpus(struct kvm *kvm)
  318. {
  319. unsigned int i;
  320. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  321. kvm_free_vcpu(&kvm->vcpus[i]);
  322. }
  323. static int kvm_dev_release(struct inode *inode, struct file *filp)
  324. {
  325. return 0;
  326. }
  327. static void kvm_destroy_vm(struct kvm *kvm)
  328. {
  329. spin_lock(&kvm_lock);
  330. list_del(&kvm->vm_list);
  331. spin_unlock(&kvm_lock);
  332. kvm_free_vcpus(kvm);
  333. kvm_free_physmem(kvm);
  334. kfree(kvm);
  335. }
  336. static int kvm_vm_release(struct inode *inode, struct file *filp)
  337. {
  338. struct kvm *kvm = filp->private_data;
  339. kvm_destroy_vm(kvm);
  340. return 0;
  341. }
  342. static void inject_gp(struct kvm_vcpu *vcpu)
  343. {
  344. kvm_arch_ops->inject_gp(vcpu, 0);
  345. }
  346. /*
  347. * Load the pae pdptrs. Return true is they are all valid.
  348. */
  349. static int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  350. {
  351. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  352. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  353. int i;
  354. u64 pdpte;
  355. u64 *pdpt;
  356. int ret;
  357. struct page *page;
  358. spin_lock(&vcpu->kvm->lock);
  359. page = gfn_to_page(vcpu->kvm, pdpt_gfn);
  360. /* FIXME: !page - emulate? 0xff? */
  361. pdpt = kmap_atomic(page, KM_USER0);
  362. ret = 1;
  363. for (i = 0; i < 4; ++i) {
  364. pdpte = pdpt[offset + i];
  365. if ((pdpte & 1) && (pdpte & 0xfffffff0000001e6ull)) {
  366. ret = 0;
  367. goto out;
  368. }
  369. }
  370. for (i = 0; i < 4; ++i)
  371. vcpu->pdptrs[i] = pdpt[offset + i];
  372. out:
  373. kunmap_atomic(pdpt, KM_USER0);
  374. spin_unlock(&vcpu->kvm->lock);
  375. return ret;
  376. }
  377. void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  378. {
  379. if (cr0 & CR0_RESEVED_BITS) {
  380. printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
  381. cr0, vcpu->cr0);
  382. inject_gp(vcpu);
  383. return;
  384. }
  385. if ((cr0 & CR0_NW_MASK) && !(cr0 & CR0_CD_MASK)) {
  386. printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
  387. inject_gp(vcpu);
  388. return;
  389. }
  390. if ((cr0 & CR0_PG_MASK) && !(cr0 & CR0_PE_MASK)) {
  391. printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
  392. "and a clear PE flag\n");
  393. inject_gp(vcpu);
  394. return;
  395. }
  396. if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK)) {
  397. #ifdef CONFIG_X86_64
  398. if ((vcpu->shadow_efer & EFER_LME)) {
  399. int cs_db, cs_l;
  400. if (!is_pae(vcpu)) {
  401. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  402. "in long mode while PAE is disabled\n");
  403. inject_gp(vcpu);
  404. return;
  405. }
  406. kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  407. if (cs_l) {
  408. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  409. "in long mode while CS.L == 1\n");
  410. inject_gp(vcpu);
  411. return;
  412. }
  413. } else
  414. #endif
  415. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->cr3)) {
  416. printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
  417. "reserved bits\n");
  418. inject_gp(vcpu);
  419. return;
  420. }
  421. }
  422. kvm_arch_ops->set_cr0(vcpu, cr0);
  423. vcpu->cr0 = cr0;
  424. spin_lock(&vcpu->kvm->lock);
  425. kvm_mmu_reset_context(vcpu);
  426. spin_unlock(&vcpu->kvm->lock);
  427. return;
  428. }
  429. EXPORT_SYMBOL_GPL(set_cr0);
  430. void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  431. {
  432. kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
  433. set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
  434. }
  435. EXPORT_SYMBOL_GPL(lmsw);
  436. void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  437. {
  438. if (cr4 & CR4_RESEVED_BITS) {
  439. printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
  440. inject_gp(vcpu);
  441. return;
  442. }
  443. if (is_long_mode(vcpu)) {
  444. if (!(cr4 & CR4_PAE_MASK)) {
  445. printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
  446. "in long mode\n");
  447. inject_gp(vcpu);
  448. return;
  449. }
  450. } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & CR4_PAE_MASK)
  451. && !load_pdptrs(vcpu, vcpu->cr3)) {
  452. printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
  453. inject_gp(vcpu);
  454. }
  455. if (cr4 & CR4_VMXE_MASK) {
  456. printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
  457. inject_gp(vcpu);
  458. return;
  459. }
  460. kvm_arch_ops->set_cr4(vcpu, cr4);
  461. spin_lock(&vcpu->kvm->lock);
  462. kvm_mmu_reset_context(vcpu);
  463. spin_unlock(&vcpu->kvm->lock);
  464. }
  465. EXPORT_SYMBOL_GPL(set_cr4);
  466. void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  467. {
  468. if (is_long_mode(vcpu)) {
  469. if (cr3 & CR3_L_MODE_RESEVED_BITS) {
  470. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  471. inject_gp(vcpu);
  472. return;
  473. }
  474. } else {
  475. if (cr3 & CR3_RESEVED_BITS) {
  476. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  477. inject_gp(vcpu);
  478. return;
  479. }
  480. if (is_paging(vcpu) && is_pae(vcpu) &&
  481. !load_pdptrs(vcpu, cr3)) {
  482. printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
  483. "reserved bits\n");
  484. inject_gp(vcpu);
  485. return;
  486. }
  487. }
  488. vcpu->cr3 = cr3;
  489. spin_lock(&vcpu->kvm->lock);
  490. /*
  491. * Does the new cr3 value map to physical memory? (Note, we
  492. * catch an invalid cr3 even in real-mode, because it would
  493. * cause trouble later on when we turn on paging anyway.)
  494. *
  495. * A real CPU would silently accept an invalid cr3 and would
  496. * attempt to use it - with largely undefined (and often hard
  497. * to debug) behavior on the guest side.
  498. */
  499. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  500. inject_gp(vcpu);
  501. else
  502. vcpu->mmu.new_cr3(vcpu);
  503. spin_unlock(&vcpu->kvm->lock);
  504. }
  505. EXPORT_SYMBOL_GPL(set_cr3);
  506. void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  507. {
  508. if ( cr8 & CR8_RESEVED_BITS) {
  509. printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
  510. inject_gp(vcpu);
  511. return;
  512. }
  513. vcpu->cr8 = cr8;
  514. }
  515. EXPORT_SYMBOL_GPL(set_cr8);
  516. void fx_init(struct kvm_vcpu *vcpu)
  517. {
  518. struct __attribute__ ((__packed__)) fx_image_s {
  519. u16 control; //fcw
  520. u16 status; //fsw
  521. u16 tag; // ftw
  522. u16 opcode; //fop
  523. u64 ip; // fpu ip
  524. u64 operand;// fpu dp
  525. u32 mxcsr;
  526. u32 mxcsr_mask;
  527. } *fx_image;
  528. fx_save(vcpu->host_fx_image);
  529. fpu_init();
  530. fx_save(vcpu->guest_fx_image);
  531. fx_restore(vcpu->host_fx_image);
  532. fx_image = (struct fx_image_s *)vcpu->guest_fx_image;
  533. fx_image->mxcsr = 0x1f80;
  534. memset(vcpu->guest_fx_image + sizeof(struct fx_image_s),
  535. 0, FX_IMAGE_SIZE - sizeof(struct fx_image_s));
  536. }
  537. EXPORT_SYMBOL_GPL(fx_init);
  538. static void do_remove_write_access(struct kvm_vcpu *vcpu, int slot)
  539. {
  540. spin_lock(&vcpu->kvm->lock);
  541. kvm_mmu_slot_remove_write_access(vcpu, slot);
  542. spin_unlock(&vcpu->kvm->lock);
  543. }
  544. /*
  545. * Allocate some memory and give it an address in the guest physical address
  546. * space.
  547. *
  548. * Discontiguous memory is allowed, mostly for framebuffers.
  549. */
  550. static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  551. struct kvm_memory_region *mem)
  552. {
  553. int r;
  554. gfn_t base_gfn;
  555. unsigned long npages;
  556. unsigned long i;
  557. struct kvm_memory_slot *memslot;
  558. struct kvm_memory_slot old, new;
  559. int memory_config_version;
  560. r = -EINVAL;
  561. /* General sanity checks */
  562. if (mem->memory_size & (PAGE_SIZE - 1))
  563. goto out;
  564. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  565. goto out;
  566. if (mem->slot >= KVM_MEMORY_SLOTS)
  567. goto out;
  568. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  569. goto out;
  570. memslot = &kvm->memslots[mem->slot];
  571. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  572. npages = mem->memory_size >> PAGE_SHIFT;
  573. if (!npages)
  574. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  575. raced:
  576. spin_lock(&kvm->lock);
  577. memory_config_version = kvm->memory_config_version;
  578. new = old = *memslot;
  579. new.base_gfn = base_gfn;
  580. new.npages = npages;
  581. new.flags = mem->flags;
  582. /* Disallow changing a memory slot's size. */
  583. r = -EINVAL;
  584. if (npages && old.npages && npages != old.npages)
  585. goto out_unlock;
  586. /* Check for overlaps */
  587. r = -EEXIST;
  588. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  589. struct kvm_memory_slot *s = &kvm->memslots[i];
  590. if (s == memslot)
  591. continue;
  592. if (!((base_gfn + npages <= s->base_gfn) ||
  593. (base_gfn >= s->base_gfn + s->npages)))
  594. goto out_unlock;
  595. }
  596. /*
  597. * Do memory allocations outside lock. memory_config_version will
  598. * detect any races.
  599. */
  600. spin_unlock(&kvm->lock);
  601. /* Deallocate if slot is being removed */
  602. if (!npages)
  603. new.phys_mem = NULL;
  604. /* Free page dirty bitmap if unneeded */
  605. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  606. new.dirty_bitmap = NULL;
  607. r = -ENOMEM;
  608. /* Allocate if a slot is being created */
  609. if (npages && !new.phys_mem) {
  610. new.phys_mem = vmalloc(npages * sizeof(struct page *));
  611. if (!new.phys_mem)
  612. goto out_free;
  613. memset(new.phys_mem, 0, npages * sizeof(struct page *));
  614. for (i = 0; i < npages; ++i) {
  615. new.phys_mem[i] = alloc_page(GFP_HIGHUSER
  616. | __GFP_ZERO);
  617. if (!new.phys_mem[i])
  618. goto out_free;
  619. set_page_private(new.phys_mem[i],0);
  620. }
  621. }
  622. /* Allocate page dirty bitmap if needed */
  623. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  624. unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
  625. new.dirty_bitmap = vmalloc(dirty_bytes);
  626. if (!new.dirty_bitmap)
  627. goto out_free;
  628. memset(new.dirty_bitmap, 0, dirty_bytes);
  629. }
  630. spin_lock(&kvm->lock);
  631. if (memory_config_version != kvm->memory_config_version) {
  632. spin_unlock(&kvm->lock);
  633. kvm_free_physmem_slot(&new, &old);
  634. goto raced;
  635. }
  636. r = -EAGAIN;
  637. if (kvm->busy)
  638. goto out_unlock;
  639. if (mem->slot >= kvm->nmemslots)
  640. kvm->nmemslots = mem->slot + 1;
  641. *memslot = new;
  642. ++kvm->memory_config_version;
  643. spin_unlock(&kvm->lock);
  644. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  645. struct kvm_vcpu *vcpu;
  646. vcpu = vcpu_load_slot(kvm, i);
  647. if (!vcpu)
  648. continue;
  649. if (new.flags & KVM_MEM_LOG_DIRTY_PAGES)
  650. do_remove_write_access(vcpu, mem->slot);
  651. kvm_mmu_reset_context(vcpu);
  652. vcpu_put(vcpu);
  653. }
  654. kvm_free_physmem_slot(&old, &new);
  655. return 0;
  656. out_unlock:
  657. spin_unlock(&kvm->lock);
  658. out_free:
  659. kvm_free_physmem_slot(&new, &old);
  660. out:
  661. return r;
  662. }
  663. /*
  664. * Get (and clear) the dirty memory log for a memory slot.
  665. */
  666. static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  667. struct kvm_dirty_log *log)
  668. {
  669. struct kvm_memory_slot *memslot;
  670. int r, i;
  671. int n;
  672. int cleared;
  673. unsigned long any = 0;
  674. spin_lock(&kvm->lock);
  675. /*
  676. * Prevent changes to guest memory configuration even while the lock
  677. * is not taken.
  678. */
  679. ++kvm->busy;
  680. spin_unlock(&kvm->lock);
  681. r = -EINVAL;
  682. if (log->slot >= KVM_MEMORY_SLOTS)
  683. goto out;
  684. memslot = &kvm->memslots[log->slot];
  685. r = -ENOENT;
  686. if (!memslot->dirty_bitmap)
  687. goto out;
  688. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  689. for (i = 0; !any && i < n/sizeof(long); ++i)
  690. any = memslot->dirty_bitmap[i];
  691. r = -EFAULT;
  692. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  693. goto out;
  694. if (any) {
  695. cleared = 0;
  696. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  697. struct kvm_vcpu *vcpu;
  698. vcpu = vcpu_load_slot(kvm, i);
  699. if (!vcpu)
  700. continue;
  701. if (!cleared) {
  702. do_remove_write_access(vcpu, log->slot);
  703. memset(memslot->dirty_bitmap, 0, n);
  704. cleared = 1;
  705. }
  706. kvm_arch_ops->tlb_flush(vcpu);
  707. vcpu_put(vcpu);
  708. }
  709. }
  710. r = 0;
  711. out:
  712. spin_lock(&kvm->lock);
  713. --kvm->busy;
  714. spin_unlock(&kvm->lock);
  715. return r;
  716. }
  717. /*
  718. * Set a new alias region. Aliases map a portion of physical memory into
  719. * another portion. This is useful for memory windows, for example the PC
  720. * VGA region.
  721. */
  722. static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
  723. struct kvm_memory_alias *alias)
  724. {
  725. int r, n;
  726. struct kvm_mem_alias *p;
  727. r = -EINVAL;
  728. /* General sanity checks */
  729. if (alias->memory_size & (PAGE_SIZE - 1))
  730. goto out;
  731. if (alias->guest_phys_addr & (PAGE_SIZE - 1))
  732. goto out;
  733. if (alias->slot >= KVM_ALIAS_SLOTS)
  734. goto out;
  735. if (alias->guest_phys_addr + alias->memory_size
  736. < alias->guest_phys_addr)
  737. goto out;
  738. if (alias->target_phys_addr + alias->memory_size
  739. < alias->target_phys_addr)
  740. goto out;
  741. spin_lock(&kvm->lock);
  742. p = &kvm->aliases[alias->slot];
  743. p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
  744. p->npages = alias->memory_size >> PAGE_SHIFT;
  745. p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
  746. for (n = KVM_ALIAS_SLOTS; n > 0; --n)
  747. if (kvm->aliases[n - 1].npages)
  748. break;
  749. kvm->naliases = n;
  750. spin_unlock(&kvm->lock);
  751. vcpu_load(&kvm->vcpus[0]);
  752. spin_lock(&kvm->lock);
  753. kvm_mmu_zap_all(&kvm->vcpus[0]);
  754. spin_unlock(&kvm->lock);
  755. vcpu_put(&kvm->vcpus[0]);
  756. return 0;
  757. out:
  758. return r;
  759. }
  760. static gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  761. {
  762. int i;
  763. struct kvm_mem_alias *alias;
  764. for (i = 0; i < kvm->naliases; ++i) {
  765. alias = &kvm->aliases[i];
  766. if (gfn >= alias->base_gfn
  767. && gfn < alias->base_gfn + alias->npages)
  768. return alias->target_gfn + gfn - alias->base_gfn;
  769. }
  770. return gfn;
  771. }
  772. static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  773. {
  774. int i;
  775. for (i = 0; i < kvm->nmemslots; ++i) {
  776. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  777. if (gfn >= memslot->base_gfn
  778. && gfn < memslot->base_gfn + memslot->npages)
  779. return memslot;
  780. }
  781. return NULL;
  782. }
  783. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  784. {
  785. gfn = unalias_gfn(kvm, gfn);
  786. return __gfn_to_memslot(kvm, gfn);
  787. }
  788. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  789. {
  790. struct kvm_memory_slot *slot;
  791. gfn = unalias_gfn(kvm, gfn);
  792. slot = __gfn_to_memslot(kvm, gfn);
  793. if (!slot)
  794. return NULL;
  795. return slot->phys_mem[gfn - slot->base_gfn];
  796. }
  797. EXPORT_SYMBOL_GPL(gfn_to_page);
  798. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  799. {
  800. int i;
  801. struct kvm_memory_slot *memslot = NULL;
  802. unsigned long rel_gfn;
  803. for (i = 0; i < kvm->nmemslots; ++i) {
  804. memslot = &kvm->memslots[i];
  805. if (gfn >= memslot->base_gfn
  806. && gfn < memslot->base_gfn + memslot->npages) {
  807. if (!memslot || !memslot->dirty_bitmap)
  808. return;
  809. rel_gfn = gfn - memslot->base_gfn;
  810. /* avoid RMW */
  811. if (!test_bit(rel_gfn, memslot->dirty_bitmap))
  812. set_bit(rel_gfn, memslot->dirty_bitmap);
  813. return;
  814. }
  815. }
  816. }
  817. static int emulator_read_std(unsigned long addr,
  818. unsigned long *val,
  819. unsigned int bytes,
  820. struct x86_emulate_ctxt *ctxt)
  821. {
  822. struct kvm_vcpu *vcpu = ctxt->vcpu;
  823. void *data = val;
  824. while (bytes) {
  825. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  826. unsigned offset = addr & (PAGE_SIZE-1);
  827. unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
  828. unsigned long pfn;
  829. struct page *page;
  830. void *page_virt;
  831. if (gpa == UNMAPPED_GVA)
  832. return X86EMUL_PROPAGATE_FAULT;
  833. pfn = gpa >> PAGE_SHIFT;
  834. page = gfn_to_page(vcpu->kvm, pfn);
  835. if (!page)
  836. return X86EMUL_UNHANDLEABLE;
  837. page_virt = kmap_atomic(page, KM_USER0);
  838. memcpy(data, page_virt + offset, tocopy);
  839. kunmap_atomic(page_virt, KM_USER0);
  840. bytes -= tocopy;
  841. data += tocopy;
  842. addr += tocopy;
  843. }
  844. return X86EMUL_CONTINUE;
  845. }
  846. static int emulator_write_std(unsigned long addr,
  847. unsigned long val,
  848. unsigned int bytes,
  849. struct x86_emulate_ctxt *ctxt)
  850. {
  851. printk(KERN_ERR "emulator_write_std: addr %lx n %d\n",
  852. addr, bytes);
  853. return X86EMUL_UNHANDLEABLE;
  854. }
  855. static int emulator_read_emulated(unsigned long addr,
  856. unsigned long *val,
  857. unsigned int bytes,
  858. struct x86_emulate_ctxt *ctxt)
  859. {
  860. struct kvm_vcpu *vcpu = ctxt->vcpu;
  861. if (vcpu->mmio_read_completed) {
  862. memcpy(val, vcpu->mmio_data, bytes);
  863. vcpu->mmio_read_completed = 0;
  864. return X86EMUL_CONTINUE;
  865. } else if (emulator_read_std(addr, val, bytes, ctxt)
  866. == X86EMUL_CONTINUE)
  867. return X86EMUL_CONTINUE;
  868. else {
  869. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  870. if (gpa == UNMAPPED_GVA)
  871. return X86EMUL_PROPAGATE_FAULT;
  872. vcpu->mmio_needed = 1;
  873. vcpu->mmio_phys_addr = gpa;
  874. vcpu->mmio_size = bytes;
  875. vcpu->mmio_is_write = 0;
  876. return X86EMUL_UNHANDLEABLE;
  877. }
  878. }
  879. static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  880. unsigned long val, int bytes)
  881. {
  882. struct page *page;
  883. void *virt;
  884. if (((gpa + bytes - 1) >> PAGE_SHIFT) != (gpa >> PAGE_SHIFT))
  885. return 0;
  886. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  887. if (!page)
  888. return 0;
  889. kvm_mmu_pre_write(vcpu, gpa, bytes);
  890. mark_page_dirty(vcpu->kvm, gpa >> PAGE_SHIFT);
  891. virt = kmap_atomic(page, KM_USER0);
  892. memcpy(virt + offset_in_page(gpa), &val, bytes);
  893. kunmap_atomic(virt, KM_USER0);
  894. kvm_mmu_post_write(vcpu, gpa, bytes);
  895. return 1;
  896. }
  897. static int emulator_write_emulated(unsigned long addr,
  898. unsigned long val,
  899. unsigned int bytes,
  900. struct x86_emulate_ctxt *ctxt)
  901. {
  902. struct kvm_vcpu *vcpu = ctxt->vcpu;
  903. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  904. if (gpa == UNMAPPED_GVA) {
  905. kvm_arch_ops->inject_page_fault(vcpu, addr, 2);
  906. return X86EMUL_PROPAGATE_FAULT;
  907. }
  908. if (emulator_write_phys(vcpu, gpa, val, bytes))
  909. return X86EMUL_CONTINUE;
  910. vcpu->mmio_needed = 1;
  911. vcpu->mmio_phys_addr = gpa;
  912. vcpu->mmio_size = bytes;
  913. vcpu->mmio_is_write = 1;
  914. memcpy(vcpu->mmio_data, &val, bytes);
  915. return X86EMUL_CONTINUE;
  916. }
  917. static int emulator_cmpxchg_emulated(unsigned long addr,
  918. unsigned long old,
  919. unsigned long new,
  920. unsigned int bytes,
  921. struct x86_emulate_ctxt *ctxt)
  922. {
  923. static int reported;
  924. if (!reported) {
  925. reported = 1;
  926. printk(KERN_WARNING "kvm: emulating exchange as write\n");
  927. }
  928. return emulator_write_emulated(addr, new, bytes, ctxt);
  929. }
  930. #ifdef CONFIG_X86_32
  931. static int emulator_cmpxchg8b_emulated(unsigned long addr,
  932. unsigned long old_lo,
  933. unsigned long old_hi,
  934. unsigned long new_lo,
  935. unsigned long new_hi,
  936. struct x86_emulate_ctxt *ctxt)
  937. {
  938. static int reported;
  939. int r;
  940. if (!reported) {
  941. reported = 1;
  942. printk(KERN_WARNING "kvm: emulating exchange8b as write\n");
  943. }
  944. r = emulator_write_emulated(addr, new_lo, 4, ctxt);
  945. if (r != X86EMUL_CONTINUE)
  946. return r;
  947. return emulator_write_emulated(addr+4, new_hi, 4, ctxt);
  948. }
  949. #endif
  950. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  951. {
  952. return kvm_arch_ops->get_segment_base(vcpu, seg);
  953. }
  954. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  955. {
  956. return X86EMUL_CONTINUE;
  957. }
  958. int emulate_clts(struct kvm_vcpu *vcpu)
  959. {
  960. unsigned long cr0;
  961. kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
  962. cr0 = vcpu->cr0 & ~CR0_TS_MASK;
  963. kvm_arch_ops->set_cr0(vcpu, cr0);
  964. return X86EMUL_CONTINUE;
  965. }
  966. int emulator_get_dr(struct x86_emulate_ctxt* ctxt, int dr, unsigned long *dest)
  967. {
  968. struct kvm_vcpu *vcpu = ctxt->vcpu;
  969. switch (dr) {
  970. case 0 ... 3:
  971. *dest = kvm_arch_ops->get_dr(vcpu, dr);
  972. return X86EMUL_CONTINUE;
  973. default:
  974. printk(KERN_DEBUG "%s: unexpected dr %u\n",
  975. __FUNCTION__, dr);
  976. return X86EMUL_UNHANDLEABLE;
  977. }
  978. }
  979. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  980. {
  981. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  982. int exception;
  983. kvm_arch_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
  984. if (exception) {
  985. /* FIXME: better handling */
  986. return X86EMUL_UNHANDLEABLE;
  987. }
  988. return X86EMUL_CONTINUE;
  989. }
  990. static void report_emulation_failure(struct x86_emulate_ctxt *ctxt)
  991. {
  992. static int reported;
  993. u8 opcodes[4];
  994. unsigned long rip = ctxt->vcpu->rip;
  995. unsigned long rip_linear;
  996. rip_linear = rip + get_segment_base(ctxt->vcpu, VCPU_SREG_CS);
  997. if (reported)
  998. return;
  999. emulator_read_std(rip_linear, (void *)opcodes, 4, ctxt);
  1000. printk(KERN_ERR "emulation failed but !mmio_needed?"
  1001. " rip %lx %02x %02x %02x %02x\n",
  1002. rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  1003. reported = 1;
  1004. }
  1005. struct x86_emulate_ops emulate_ops = {
  1006. .read_std = emulator_read_std,
  1007. .write_std = emulator_write_std,
  1008. .read_emulated = emulator_read_emulated,
  1009. .write_emulated = emulator_write_emulated,
  1010. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  1011. #ifdef CONFIG_X86_32
  1012. .cmpxchg8b_emulated = emulator_cmpxchg8b_emulated,
  1013. #endif
  1014. };
  1015. int emulate_instruction(struct kvm_vcpu *vcpu,
  1016. struct kvm_run *run,
  1017. unsigned long cr2,
  1018. u16 error_code)
  1019. {
  1020. struct x86_emulate_ctxt emulate_ctxt;
  1021. int r;
  1022. int cs_db, cs_l;
  1023. kvm_arch_ops->cache_regs(vcpu);
  1024. kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  1025. emulate_ctxt.vcpu = vcpu;
  1026. emulate_ctxt.eflags = kvm_arch_ops->get_rflags(vcpu);
  1027. emulate_ctxt.cr2 = cr2;
  1028. emulate_ctxt.mode = (emulate_ctxt.eflags & X86_EFLAGS_VM)
  1029. ? X86EMUL_MODE_REAL : cs_l
  1030. ? X86EMUL_MODE_PROT64 : cs_db
  1031. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  1032. if (emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
  1033. emulate_ctxt.cs_base = 0;
  1034. emulate_ctxt.ds_base = 0;
  1035. emulate_ctxt.es_base = 0;
  1036. emulate_ctxt.ss_base = 0;
  1037. } else {
  1038. emulate_ctxt.cs_base = get_segment_base(vcpu, VCPU_SREG_CS);
  1039. emulate_ctxt.ds_base = get_segment_base(vcpu, VCPU_SREG_DS);
  1040. emulate_ctxt.es_base = get_segment_base(vcpu, VCPU_SREG_ES);
  1041. emulate_ctxt.ss_base = get_segment_base(vcpu, VCPU_SREG_SS);
  1042. }
  1043. emulate_ctxt.gs_base = get_segment_base(vcpu, VCPU_SREG_GS);
  1044. emulate_ctxt.fs_base = get_segment_base(vcpu, VCPU_SREG_FS);
  1045. vcpu->mmio_is_write = 0;
  1046. r = x86_emulate_memop(&emulate_ctxt, &emulate_ops);
  1047. if ((r || vcpu->mmio_is_write) && run) {
  1048. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  1049. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  1050. run->mmio.len = vcpu->mmio_size;
  1051. run->mmio.is_write = vcpu->mmio_is_write;
  1052. }
  1053. if (r) {
  1054. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  1055. return EMULATE_DONE;
  1056. if (!vcpu->mmio_needed) {
  1057. report_emulation_failure(&emulate_ctxt);
  1058. return EMULATE_FAIL;
  1059. }
  1060. return EMULATE_DO_MMIO;
  1061. }
  1062. kvm_arch_ops->decache_regs(vcpu);
  1063. kvm_arch_ops->set_rflags(vcpu, emulate_ctxt.eflags);
  1064. if (vcpu->mmio_is_write)
  1065. return EMULATE_DO_MMIO;
  1066. return EMULATE_DONE;
  1067. }
  1068. EXPORT_SYMBOL_GPL(emulate_instruction);
  1069. int kvm_hypercall(struct kvm_vcpu *vcpu, struct kvm_run *run)
  1070. {
  1071. unsigned long nr, a0, a1, a2, a3, a4, a5, ret;
  1072. kvm_arch_ops->cache_regs(vcpu);
  1073. ret = -KVM_EINVAL;
  1074. #ifdef CONFIG_X86_64
  1075. if (is_long_mode(vcpu)) {
  1076. nr = vcpu->regs[VCPU_REGS_RAX];
  1077. a0 = vcpu->regs[VCPU_REGS_RDI];
  1078. a1 = vcpu->regs[VCPU_REGS_RSI];
  1079. a2 = vcpu->regs[VCPU_REGS_RDX];
  1080. a3 = vcpu->regs[VCPU_REGS_RCX];
  1081. a4 = vcpu->regs[VCPU_REGS_R8];
  1082. a5 = vcpu->regs[VCPU_REGS_R9];
  1083. } else
  1084. #endif
  1085. {
  1086. nr = vcpu->regs[VCPU_REGS_RBX] & -1u;
  1087. a0 = vcpu->regs[VCPU_REGS_RAX] & -1u;
  1088. a1 = vcpu->regs[VCPU_REGS_RCX] & -1u;
  1089. a2 = vcpu->regs[VCPU_REGS_RDX] & -1u;
  1090. a3 = vcpu->regs[VCPU_REGS_RSI] & -1u;
  1091. a4 = vcpu->regs[VCPU_REGS_RDI] & -1u;
  1092. a5 = vcpu->regs[VCPU_REGS_RBP] & -1u;
  1093. }
  1094. switch (nr) {
  1095. default:
  1096. run->hypercall.args[0] = a0;
  1097. run->hypercall.args[1] = a1;
  1098. run->hypercall.args[2] = a2;
  1099. run->hypercall.args[3] = a3;
  1100. run->hypercall.args[4] = a4;
  1101. run->hypercall.args[5] = a5;
  1102. run->hypercall.ret = ret;
  1103. run->hypercall.longmode = is_long_mode(vcpu);
  1104. kvm_arch_ops->decache_regs(vcpu);
  1105. return 0;
  1106. }
  1107. vcpu->regs[VCPU_REGS_RAX] = ret;
  1108. kvm_arch_ops->decache_regs(vcpu);
  1109. return 1;
  1110. }
  1111. EXPORT_SYMBOL_GPL(kvm_hypercall);
  1112. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  1113. {
  1114. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  1115. }
  1116. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  1117. {
  1118. struct descriptor_table dt = { limit, base };
  1119. kvm_arch_ops->set_gdt(vcpu, &dt);
  1120. }
  1121. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  1122. {
  1123. struct descriptor_table dt = { limit, base };
  1124. kvm_arch_ops->set_idt(vcpu, &dt);
  1125. }
  1126. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  1127. unsigned long *rflags)
  1128. {
  1129. lmsw(vcpu, msw);
  1130. *rflags = kvm_arch_ops->get_rflags(vcpu);
  1131. }
  1132. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  1133. {
  1134. kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
  1135. switch (cr) {
  1136. case 0:
  1137. return vcpu->cr0;
  1138. case 2:
  1139. return vcpu->cr2;
  1140. case 3:
  1141. return vcpu->cr3;
  1142. case 4:
  1143. return vcpu->cr4;
  1144. default:
  1145. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  1146. return 0;
  1147. }
  1148. }
  1149. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  1150. unsigned long *rflags)
  1151. {
  1152. switch (cr) {
  1153. case 0:
  1154. set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
  1155. *rflags = kvm_arch_ops->get_rflags(vcpu);
  1156. break;
  1157. case 2:
  1158. vcpu->cr2 = val;
  1159. break;
  1160. case 3:
  1161. set_cr3(vcpu, val);
  1162. break;
  1163. case 4:
  1164. set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
  1165. break;
  1166. default:
  1167. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  1168. }
  1169. }
  1170. /*
  1171. * Register the para guest with the host:
  1172. */
  1173. static int vcpu_register_para(struct kvm_vcpu *vcpu, gpa_t para_state_gpa)
  1174. {
  1175. struct kvm_vcpu_para_state *para_state;
  1176. hpa_t para_state_hpa, hypercall_hpa;
  1177. struct page *para_state_page;
  1178. unsigned char *hypercall;
  1179. gpa_t hypercall_gpa;
  1180. printk(KERN_DEBUG "kvm: guest trying to enter paravirtual mode\n");
  1181. printk(KERN_DEBUG ".... para_state_gpa: %08Lx\n", para_state_gpa);
  1182. /*
  1183. * Needs to be page aligned:
  1184. */
  1185. if (para_state_gpa != PAGE_ALIGN(para_state_gpa))
  1186. goto err_gp;
  1187. para_state_hpa = gpa_to_hpa(vcpu, para_state_gpa);
  1188. printk(KERN_DEBUG ".... para_state_hpa: %08Lx\n", para_state_hpa);
  1189. if (is_error_hpa(para_state_hpa))
  1190. goto err_gp;
  1191. mark_page_dirty(vcpu->kvm, para_state_gpa >> PAGE_SHIFT);
  1192. para_state_page = pfn_to_page(para_state_hpa >> PAGE_SHIFT);
  1193. para_state = kmap_atomic(para_state_page, KM_USER0);
  1194. printk(KERN_DEBUG ".... guest version: %d\n", para_state->guest_version);
  1195. printk(KERN_DEBUG ".... size: %d\n", para_state->size);
  1196. para_state->host_version = KVM_PARA_API_VERSION;
  1197. /*
  1198. * We cannot support guests that try to register themselves
  1199. * with a newer API version than the host supports:
  1200. */
  1201. if (para_state->guest_version > KVM_PARA_API_VERSION) {
  1202. para_state->ret = -KVM_EINVAL;
  1203. goto err_kunmap_skip;
  1204. }
  1205. hypercall_gpa = para_state->hypercall_gpa;
  1206. hypercall_hpa = gpa_to_hpa(vcpu, hypercall_gpa);
  1207. printk(KERN_DEBUG ".... hypercall_hpa: %08Lx\n", hypercall_hpa);
  1208. if (is_error_hpa(hypercall_hpa)) {
  1209. para_state->ret = -KVM_EINVAL;
  1210. goto err_kunmap_skip;
  1211. }
  1212. printk(KERN_DEBUG "kvm: para guest successfully registered.\n");
  1213. vcpu->para_state_page = para_state_page;
  1214. vcpu->para_state_gpa = para_state_gpa;
  1215. vcpu->hypercall_gpa = hypercall_gpa;
  1216. mark_page_dirty(vcpu->kvm, hypercall_gpa >> PAGE_SHIFT);
  1217. hypercall = kmap_atomic(pfn_to_page(hypercall_hpa >> PAGE_SHIFT),
  1218. KM_USER1) + (hypercall_hpa & ~PAGE_MASK);
  1219. kvm_arch_ops->patch_hypercall(vcpu, hypercall);
  1220. kunmap_atomic(hypercall, KM_USER1);
  1221. para_state->ret = 0;
  1222. err_kunmap_skip:
  1223. kunmap_atomic(para_state, KM_USER0);
  1224. return 0;
  1225. err_gp:
  1226. return 1;
  1227. }
  1228. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1229. {
  1230. u64 data;
  1231. switch (msr) {
  1232. case 0xc0010010: /* SYSCFG */
  1233. case 0xc0010015: /* HWCR */
  1234. case MSR_IA32_PLATFORM_ID:
  1235. case MSR_IA32_P5_MC_ADDR:
  1236. case MSR_IA32_P5_MC_TYPE:
  1237. case MSR_IA32_MC0_CTL:
  1238. case MSR_IA32_MCG_STATUS:
  1239. case MSR_IA32_MCG_CAP:
  1240. case MSR_IA32_MC0_MISC:
  1241. case MSR_IA32_MC0_MISC+4:
  1242. case MSR_IA32_MC0_MISC+8:
  1243. case MSR_IA32_MC0_MISC+12:
  1244. case MSR_IA32_MC0_MISC+16:
  1245. case MSR_IA32_UCODE_REV:
  1246. case MSR_IA32_PERF_STATUS:
  1247. /* MTRR registers */
  1248. case 0xfe:
  1249. case 0x200 ... 0x2ff:
  1250. data = 0;
  1251. break;
  1252. case 0xcd: /* fsb frequency */
  1253. data = 3;
  1254. break;
  1255. case MSR_IA32_APICBASE:
  1256. data = vcpu->apic_base;
  1257. break;
  1258. case MSR_IA32_MISC_ENABLE:
  1259. data = vcpu->ia32_misc_enable_msr;
  1260. break;
  1261. #ifdef CONFIG_X86_64
  1262. case MSR_EFER:
  1263. data = vcpu->shadow_efer;
  1264. break;
  1265. #endif
  1266. default:
  1267. printk(KERN_ERR "kvm: unhandled rdmsr: 0x%x\n", msr);
  1268. return 1;
  1269. }
  1270. *pdata = data;
  1271. return 0;
  1272. }
  1273. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  1274. /*
  1275. * Reads an msr value (of 'msr_index') into 'pdata'.
  1276. * Returns 0 on success, non-0 otherwise.
  1277. * Assumes vcpu_load() was already called.
  1278. */
  1279. static int get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1280. {
  1281. return kvm_arch_ops->get_msr(vcpu, msr_index, pdata);
  1282. }
  1283. #ifdef CONFIG_X86_64
  1284. static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1285. {
  1286. if (efer & EFER_RESERVED_BITS) {
  1287. printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
  1288. efer);
  1289. inject_gp(vcpu);
  1290. return;
  1291. }
  1292. if (is_paging(vcpu)
  1293. && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
  1294. printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
  1295. inject_gp(vcpu);
  1296. return;
  1297. }
  1298. kvm_arch_ops->set_efer(vcpu, efer);
  1299. efer &= ~EFER_LMA;
  1300. efer |= vcpu->shadow_efer & EFER_LMA;
  1301. vcpu->shadow_efer = efer;
  1302. }
  1303. #endif
  1304. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1305. {
  1306. switch (msr) {
  1307. #ifdef CONFIG_X86_64
  1308. case MSR_EFER:
  1309. set_efer(vcpu, data);
  1310. break;
  1311. #endif
  1312. case MSR_IA32_MC0_STATUS:
  1313. printk(KERN_WARNING "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
  1314. __FUNCTION__, data);
  1315. break;
  1316. case MSR_IA32_MCG_STATUS:
  1317. printk(KERN_WARNING "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
  1318. __FUNCTION__, data);
  1319. break;
  1320. case MSR_IA32_UCODE_REV:
  1321. case MSR_IA32_UCODE_WRITE:
  1322. case 0x200 ... 0x2ff: /* MTRRs */
  1323. break;
  1324. case MSR_IA32_APICBASE:
  1325. vcpu->apic_base = data;
  1326. break;
  1327. case MSR_IA32_MISC_ENABLE:
  1328. vcpu->ia32_misc_enable_msr = data;
  1329. break;
  1330. /*
  1331. * This is the 'probe whether the host is KVM' logic:
  1332. */
  1333. case MSR_KVM_API_MAGIC:
  1334. return vcpu_register_para(vcpu, data);
  1335. default:
  1336. printk(KERN_ERR "kvm: unhandled wrmsr: 0x%x\n", msr);
  1337. return 1;
  1338. }
  1339. return 0;
  1340. }
  1341. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  1342. /*
  1343. * Writes msr value into into the appropriate "register".
  1344. * Returns 0 on success, non-0 otherwise.
  1345. * Assumes vcpu_load() was already called.
  1346. */
  1347. static int set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  1348. {
  1349. return kvm_arch_ops->set_msr(vcpu, msr_index, data);
  1350. }
  1351. void kvm_resched(struct kvm_vcpu *vcpu)
  1352. {
  1353. vcpu_put(vcpu);
  1354. cond_resched();
  1355. vcpu_load(vcpu);
  1356. }
  1357. EXPORT_SYMBOL_GPL(kvm_resched);
  1358. void load_msrs(struct vmx_msr_entry *e, int n)
  1359. {
  1360. int i;
  1361. for (i = 0; i < n; ++i)
  1362. wrmsrl(e[i].index, e[i].data);
  1363. }
  1364. EXPORT_SYMBOL_GPL(load_msrs);
  1365. void save_msrs(struct vmx_msr_entry *e, int n)
  1366. {
  1367. int i;
  1368. for (i = 0; i < n; ++i)
  1369. rdmsrl(e[i].index, e[i].data);
  1370. }
  1371. EXPORT_SYMBOL_GPL(save_msrs);
  1372. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  1373. {
  1374. int i;
  1375. u32 function;
  1376. struct kvm_cpuid_entry *e, *best;
  1377. kvm_arch_ops->cache_regs(vcpu);
  1378. function = vcpu->regs[VCPU_REGS_RAX];
  1379. vcpu->regs[VCPU_REGS_RAX] = 0;
  1380. vcpu->regs[VCPU_REGS_RBX] = 0;
  1381. vcpu->regs[VCPU_REGS_RCX] = 0;
  1382. vcpu->regs[VCPU_REGS_RDX] = 0;
  1383. best = NULL;
  1384. for (i = 0; i < vcpu->cpuid_nent; ++i) {
  1385. e = &vcpu->cpuid_entries[i];
  1386. if (e->function == function) {
  1387. best = e;
  1388. break;
  1389. }
  1390. /*
  1391. * Both basic or both extended?
  1392. */
  1393. if (((e->function ^ function) & 0x80000000) == 0)
  1394. if (!best || e->function > best->function)
  1395. best = e;
  1396. }
  1397. if (best) {
  1398. vcpu->regs[VCPU_REGS_RAX] = best->eax;
  1399. vcpu->regs[VCPU_REGS_RBX] = best->ebx;
  1400. vcpu->regs[VCPU_REGS_RCX] = best->ecx;
  1401. vcpu->regs[VCPU_REGS_RDX] = best->edx;
  1402. }
  1403. kvm_arch_ops->decache_regs(vcpu);
  1404. kvm_arch_ops->skip_emulated_instruction(vcpu);
  1405. }
  1406. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  1407. static int pio_copy_data(struct kvm_vcpu *vcpu)
  1408. {
  1409. void *p = vcpu->pio_data;
  1410. void *q;
  1411. unsigned bytes;
  1412. int nr_pages = vcpu->pio.guest_pages[1] ? 2 : 1;
  1413. kvm_arch_ops->vcpu_put(vcpu);
  1414. q = vmap(vcpu->pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
  1415. PAGE_KERNEL);
  1416. if (!q) {
  1417. kvm_arch_ops->vcpu_load(vcpu);
  1418. free_pio_guest_pages(vcpu);
  1419. return -ENOMEM;
  1420. }
  1421. q += vcpu->pio.guest_page_offset;
  1422. bytes = vcpu->pio.size * vcpu->pio.cur_count;
  1423. if (vcpu->pio.in)
  1424. memcpy(q, p, bytes);
  1425. else
  1426. memcpy(p, q, bytes);
  1427. q -= vcpu->pio.guest_page_offset;
  1428. vunmap(q);
  1429. kvm_arch_ops->vcpu_load(vcpu);
  1430. free_pio_guest_pages(vcpu);
  1431. return 0;
  1432. }
  1433. static int complete_pio(struct kvm_vcpu *vcpu)
  1434. {
  1435. struct kvm_pio_request *io = &vcpu->pio;
  1436. long delta;
  1437. int r;
  1438. kvm_arch_ops->cache_regs(vcpu);
  1439. if (!io->string) {
  1440. if (io->in)
  1441. memcpy(&vcpu->regs[VCPU_REGS_RAX], vcpu->pio_data,
  1442. io->size);
  1443. } else {
  1444. if (io->in) {
  1445. r = pio_copy_data(vcpu);
  1446. if (r) {
  1447. kvm_arch_ops->cache_regs(vcpu);
  1448. return r;
  1449. }
  1450. }
  1451. delta = 1;
  1452. if (io->rep) {
  1453. delta *= io->cur_count;
  1454. /*
  1455. * The size of the register should really depend on
  1456. * current address size.
  1457. */
  1458. vcpu->regs[VCPU_REGS_RCX] -= delta;
  1459. }
  1460. if (io->down)
  1461. delta = -delta;
  1462. delta *= io->size;
  1463. if (io->in)
  1464. vcpu->regs[VCPU_REGS_RDI] += delta;
  1465. else
  1466. vcpu->regs[VCPU_REGS_RSI] += delta;
  1467. }
  1468. vcpu->run->io_completed = 0;
  1469. kvm_arch_ops->decache_regs(vcpu);
  1470. io->count -= io->cur_count;
  1471. io->cur_count = 0;
  1472. if (!io->count)
  1473. kvm_arch_ops->skip_emulated_instruction(vcpu);
  1474. return 0;
  1475. }
  1476. int kvm_setup_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  1477. int size, unsigned long count, int string, int down,
  1478. gva_t address, int rep, unsigned port)
  1479. {
  1480. unsigned now, in_page;
  1481. int i;
  1482. int nr_pages = 1;
  1483. struct page *page;
  1484. vcpu->run->exit_reason = KVM_EXIT_IO;
  1485. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  1486. vcpu->run->io.size = size;
  1487. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  1488. vcpu->run->io.count = count;
  1489. vcpu->run->io.port = port;
  1490. vcpu->pio.count = count;
  1491. vcpu->pio.cur_count = count;
  1492. vcpu->pio.size = size;
  1493. vcpu->pio.in = in;
  1494. vcpu->pio.string = string;
  1495. vcpu->pio.down = down;
  1496. vcpu->pio.guest_page_offset = offset_in_page(address);
  1497. vcpu->pio.rep = rep;
  1498. if (!string) {
  1499. kvm_arch_ops->cache_regs(vcpu);
  1500. memcpy(vcpu->pio_data, &vcpu->regs[VCPU_REGS_RAX], 4);
  1501. kvm_arch_ops->decache_regs(vcpu);
  1502. return 0;
  1503. }
  1504. if (!count) {
  1505. kvm_arch_ops->skip_emulated_instruction(vcpu);
  1506. return 1;
  1507. }
  1508. now = min(count, PAGE_SIZE / size);
  1509. if (!down)
  1510. in_page = PAGE_SIZE - offset_in_page(address);
  1511. else
  1512. in_page = offset_in_page(address) + size;
  1513. now = min(count, (unsigned long)in_page / size);
  1514. if (!now) {
  1515. /*
  1516. * String I/O straddles page boundary. Pin two guest pages
  1517. * so that we satisfy atomicity constraints. Do just one
  1518. * transaction to avoid complexity.
  1519. */
  1520. nr_pages = 2;
  1521. now = 1;
  1522. }
  1523. if (down) {
  1524. /*
  1525. * String I/O in reverse. Yuck. Kill the guest, fix later.
  1526. */
  1527. printk(KERN_ERR "kvm: guest string pio down\n");
  1528. inject_gp(vcpu);
  1529. return 1;
  1530. }
  1531. vcpu->run->io.count = now;
  1532. vcpu->pio.cur_count = now;
  1533. for (i = 0; i < nr_pages; ++i) {
  1534. spin_lock(&vcpu->kvm->lock);
  1535. page = gva_to_page(vcpu, address + i * PAGE_SIZE);
  1536. if (page)
  1537. get_page(page);
  1538. vcpu->pio.guest_pages[i] = page;
  1539. spin_unlock(&vcpu->kvm->lock);
  1540. if (!page) {
  1541. inject_gp(vcpu);
  1542. free_pio_guest_pages(vcpu);
  1543. return 1;
  1544. }
  1545. }
  1546. if (!vcpu->pio.in)
  1547. return pio_copy_data(vcpu);
  1548. return 0;
  1549. }
  1550. EXPORT_SYMBOL_GPL(kvm_setup_pio);
  1551. static int kvm_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1552. {
  1553. int r;
  1554. sigset_t sigsaved;
  1555. vcpu_load(vcpu);
  1556. if (vcpu->sigset_active)
  1557. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  1558. /* re-sync apic's tpr */
  1559. vcpu->cr8 = kvm_run->cr8;
  1560. if (kvm_run->io_completed) {
  1561. if (vcpu->pio.cur_count) {
  1562. r = complete_pio(vcpu);
  1563. if (r)
  1564. goto out;
  1565. } else {
  1566. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  1567. vcpu->mmio_read_completed = 1;
  1568. }
  1569. }
  1570. vcpu->mmio_needed = 0;
  1571. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
  1572. kvm_arch_ops->cache_regs(vcpu);
  1573. vcpu->regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
  1574. kvm_arch_ops->decache_regs(vcpu);
  1575. }
  1576. r = kvm_arch_ops->run(vcpu, kvm_run);
  1577. out:
  1578. if (vcpu->sigset_active)
  1579. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  1580. vcpu_put(vcpu);
  1581. return r;
  1582. }
  1583. static int kvm_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu,
  1584. struct kvm_regs *regs)
  1585. {
  1586. vcpu_load(vcpu);
  1587. kvm_arch_ops->cache_regs(vcpu);
  1588. regs->rax = vcpu->regs[VCPU_REGS_RAX];
  1589. regs->rbx = vcpu->regs[VCPU_REGS_RBX];
  1590. regs->rcx = vcpu->regs[VCPU_REGS_RCX];
  1591. regs->rdx = vcpu->regs[VCPU_REGS_RDX];
  1592. regs->rsi = vcpu->regs[VCPU_REGS_RSI];
  1593. regs->rdi = vcpu->regs[VCPU_REGS_RDI];
  1594. regs->rsp = vcpu->regs[VCPU_REGS_RSP];
  1595. regs->rbp = vcpu->regs[VCPU_REGS_RBP];
  1596. #ifdef CONFIG_X86_64
  1597. regs->r8 = vcpu->regs[VCPU_REGS_R8];
  1598. regs->r9 = vcpu->regs[VCPU_REGS_R9];
  1599. regs->r10 = vcpu->regs[VCPU_REGS_R10];
  1600. regs->r11 = vcpu->regs[VCPU_REGS_R11];
  1601. regs->r12 = vcpu->regs[VCPU_REGS_R12];
  1602. regs->r13 = vcpu->regs[VCPU_REGS_R13];
  1603. regs->r14 = vcpu->regs[VCPU_REGS_R14];
  1604. regs->r15 = vcpu->regs[VCPU_REGS_R15];
  1605. #endif
  1606. regs->rip = vcpu->rip;
  1607. regs->rflags = kvm_arch_ops->get_rflags(vcpu);
  1608. /*
  1609. * Don't leak debug flags in case they were set for guest debugging
  1610. */
  1611. if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
  1612. regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  1613. vcpu_put(vcpu);
  1614. return 0;
  1615. }
  1616. static int kvm_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu,
  1617. struct kvm_regs *regs)
  1618. {
  1619. vcpu_load(vcpu);
  1620. vcpu->regs[VCPU_REGS_RAX] = regs->rax;
  1621. vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
  1622. vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
  1623. vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
  1624. vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
  1625. vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
  1626. vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
  1627. vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
  1628. #ifdef CONFIG_X86_64
  1629. vcpu->regs[VCPU_REGS_R8] = regs->r8;
  1630. vcpu->regs[VCPU_REGS_R9] = regs->r9;
  1631. vcpu->regs[VCPU_REGS_R10] = regs->r10;
  1632. vcpu->regs[VCPU_REGS_R11] = regs->r11;
  1633. vcpu->regs[VCPU_REGS_R12] = regs->r12;
  1634. vcpu->regs[VCPU_REGS_R13] = regs->r13;
  1635. vcpu->regs[VCPU_REGS_R14] = regs->r14;
  1636. vcpu->regs[VCPU_REGS_R15] = regs->r15;
  1637. #endif
  1638. vcpu->rip = regs->rip;
  1639. kvm_arch_ops->set_rflags(vcpu, regs->rflags);
  1640. kvm_arch_ops->decache_regs(vcpu);
  1641. vcpu_put(vcpu);
  1642. return 0;
  1643. }
  1644. static void get_segment(struct kvm_vcpu *vcpu,
  1645. struct kvm_segment *var, int seg)
  1646. {
  1647. return kvm_arch_ops->get_segment(vcpu, var, seg);
  1648. }
  1649. static int kvm_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  1650. struct kvm_sregs *sregs)
  1651. {
  1652. struct descriptor_table dt;
  1653. vcpu_load(vcpu);
  1654. get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  1655. get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  1656. get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  1657. get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  1658. get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  1659. get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  1660. get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  1661. get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  1662. kvm_arch_ops->get_idt(vcpu, &dt);
  1663. sregs->idt.limit = dt.limit;
  1664. sregs->idt.base = dt.base;
  1665. kvm_arch_ops->get_gdt(vcpu, &dt);
  1666. sregs->gdt.limit = dt.limit;
  1667. sregs->gdt.base = dt.base;
  1668. kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
  1669. sregs->cr0 = vcpu->cr0;
  1670. sregs->cr2 = vcpu->cr2;
  1671. sregs->cr3 = vcpu->cr3;
  1672. sregs->cr4 = vcpu->cr4;
  1673. sregs->cr8 = vcpu->cr8;
  1674. sregs->efer = vcpu->shadow_efer;
  1675. sregs->apic_base = vcpu->apic_base;
  1676. memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
  1677. sizeof sregs->interrupt_bitmap);
  1678. vcpu_put(vcpu);
  1679. return 0;
  1680. }
  1681. static void set_segment(struct kvm_vcpu *vcpu,
  1682. struct kvm_segment *var, int seg)
  1683. {
  1684. return kvm_arch_ops->set_segment(vcpu, var, seg);
  1685. }
  1686. static int kvm_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  1687. struct kvm_sregs *sregs)
  1688. {
  1689. int mmu_reset_needed = 0;
  1690. int i;
  1691. struct descriptor_table dt;
  1692. vcpu_load(vcpu);
  1693. dt.limit = sregs->idt.limit;
  1694. dt.base = sregs->idt.base;
  1695. kvm_arch_ops->set_idt(vcpu, &dt);
  1696. dt.limit = sregs->gdt.limit;
  1697. dt.base = sregs->gdt.base;
  1698. kvm_arch_ops->set_gdt(vcpu, &dt);
  1699. vcpu->cr2 = sregs->cr2;
  1700. mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
  1701. vcpu->cr3 = sregs->cr3;
  1702. vcpu->cr8 = sregs->cr8;
  1703. mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
  1704. #ifdef CONFIG_X86_64
  1705. kvm_arch_ops->set_efer(vcpu, sregs->efer);
  1706. #endif
  1707. vcpu->apic_base = sregs->apic_base;
  1708. kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
  1709. mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
  1710. kvm_arch_ops->set_cr0(vcpu, sregs->cr0);
  1711. mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
  1712. kvm_arch_ops->set_cr4(vcpu, sregs->cr4);
  1713. if (!is_long_mode(vcpu) && is_pae(vcpu))
  1714. load_pdptrs(vcpu, vcpu->cr3);
  1715. if (mmu_reset_needed)
  1716. kvm_mmu_reset_context(vcpu);
  1717. memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
  1718. sizeof vcpu->irq_pending);
  1719. vcpu->irq_summary = 0;
  1720. for (i = 0; i < NR_IRQ_WORDS; ++i)
  1721. if (vcpu->irq_pending[i])
  1722. __set_bit(i, &vcpu->irq_summary);
  1723. set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  1724. set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  1725. set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  1726. set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  1727. set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  1728. set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  1729. set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  1730. set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  1731. vcpu_put(vcpu);
  1732. return 0;
  1733. }
  1734. /*
  1735. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  1736. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  1737. *
  1738. * This list is modified at module load time to reflect the
  1739. * capabilities of the host cpu.
  1740. */
  1741. static u32 msrs_to_save[] = {
  1742. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  1743. MSR_K6_STAR,
  1744. #ifdef CONFIG_X86_64
  1745. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  1746. #endif
  1747. MSR_IA32_TIME_STAMP_COUNTER,
  1748. };
  1749. static unsigned num_msrs_to_save;
  1750. static u32 emulated_msrs[] = {
  1751. MSR_IA32_MISC_ENABLE,
  1752. };
  1753. static __init void kvm_init_msr_list(void)
  1754. {
  1755. u32 dummy[2];
  1756. unsigned i, j;
  1757. for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
  1758. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  1759. continue;
  1760. if (j < i)
  1761. msrs_to_save[j] = msrs_to_save[i];
  1762. j++;
  1763. }
  1764. num_msrs_to_save = j;
  1765. }
  1766. /*
  1767. * Adapt set_msr() to msr_io()'s calling convention
  1768. */
  1769. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  1770. {
  1771. return set_msr(vcpu, index, *data);
  1772. }
  1773. /*
  1774. * Read or write a bunch of msrs. All parameters are kernel addresses.
  1775. *
  1776. * @return number of msrs set successfully.
  1777. */
  1778. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  1779. struct kvm_msr_entry *entries,
  1780. int (*do_msr)(struct kvm_vcpu *vcpu,
  1781. unsigned index, u64 *data))
  1782. {
  1783. int i;
  1784. vcpu_load(vcpu);
  1785. for (i = 0; i < msrs->nmsrs; ++i)
  1786. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  1787. break;
  1788. vcpu_put(vcpu);
  1789. return i;
  1790. }
  1791. /*
  1792. * Read or write a bunch of msrs. Parameters are user addresses.
  1793. *
  1794. * @return number of msrs set successfully.
  1795. */
  1796. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  1797. int (*do_msr)(struct kvm_vcpu *vcpu,
  1798. unsigned index, u64 *data),
  1799. int writeback)
  1800. {
  1801. struct kvm_msrs msrs;
  1802. struct kvm_msr_entry *entries;
  1803. int r, n;
  1804. unsigned size;
  1805. r = -EFAULT;
  1806. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  1807. goto out;
  1808. r = -E2BIG;
  1809. if (msrs.nmsrs >= MAX_IO_MSRS)
  1810. goto out;
  1811. r = -ENOMEM;
  1812. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  1813. entries = vmalloc(size);
  1814. if (!entries)
  1815. goto out;
  1816. r = -EFAULT;
  1817. if (copy_from_user(entries, user_msrs->entries, size))
  1818. goto out_free;
  1819. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  1820. if (r < 0)
  1821. goto out_free;
  1822. r = -EFAULT;
  1823. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  1824. goto out_free;
  1825. r = n;
  1826. out_free:
  1827. vfree(entries);
  1828. out:
  1829. return r;
  1830. }
  1831. /*
  1832. * Translate a guest virtual address to a guest physical address.
  1833. */
  1834. static int kvm_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  1835. struct kvm_translation *tr)
  1836. {
  1837. unsigned long vaddr = tr->linear_address;
  1838. gpa_t gpa;
  1839. vcpu_load(vcpu);
  1840. spin_lock(&vcpu->kvm->lock);
  1841. gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
  1842. tr->physical_address = gpa;
  1843. tr->valid = gpa != UNMAPPED_GVA;
  1844. tr->writeable = 1;
  1845. tr->usermode = 0;
  1846. spin_unlock(&vcpu->kvm->lock);
  1847. vcpu_put(vcpu);
  1848. return 0;
  1849. }
  1850. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  1851. struct kvm_interrupt *irq)
  1852. {
  1853. if (irq->irq < 0 || irq->irq >= 256)
  1854. return -EINVAL;
  1855. vcpu_load(vcpu);
  1856. set_bit(irq->irq, vcpu->irq_pending);
  1857. set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
  1858. vcpu_put(vcpu);
  1859. return 0;
  1860. }
  1861. static int kvm_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
  1862. struct kvm_debug_guest *dbg)
  1863. {
  1864. int r;
  1865. vcpu_load(vcpu);
  1866. r = kvm_arch_ops->set_guest_debug(vcpu, dbg);
  1867. vcpu_put(vcpu);
  1868. return r;
  1869. }
  1870. static struct page *kvm_vcpu_nopage(struct vm_area_struct *vma,
  1871. unsigned long address,
  1872. int *type)
  1873. {
  1874. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  1875. unsigned long pgoff;
  1876. struct page *page;
  1877. *type = VM_FAULT_MINOR;
  1878. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  1879. if (pgoff == 0)
  1880. page = virt_to_page(vcpu->run);
  1881. else if (pgoff == KVM_PIO_PAGE_OFFSET)
  1882. page = virt_to_page(vcpu->pio_data);
  1883. else
  1884. return NOPAGE_SIGBUS;
  1885. get_page(page);
  1886. return page;
  1887. }
  1888. static struct vm_operations_struct kvm_vcpu_vm_ops = {
  1889. .nopage = kvm_vcpu_nopage,
  1890. };
  1891. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  1892. {
  1893. vma->vm_ops = &kvm_vcpu_vm_ops;
  1894. return 0;
  1895. }
  1896. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  1897. {
  1898. struct kvm_vcpu *vcpu = filp->private_data;
  1899. fput(vcpu->kvm->filp);
  1900. return 0;
  1901. }
  1902. static struct file_operations kvm_vcpu_fops = {
  1903. .release = kvm_vcpu_release,
  1904. .unlocked_ioctl = kvm_vcpu_ioctl,
  1905. .compat_ioctl = kvm_vcpu_ioctl,
  1906. .mmap = kvm_vcpu_mmap,
  1907. };
  1908. /*
  1909. * Allocates an inode for the vcpu.
  1910. */
  1911. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  1912. {
  1913. int fd, r;
  1914. struct inode *inode;
  1915. struct file *file;
  1916. atomic_inc(&vcpu->kvm->filp->f_count);
  1917. inode = kvmfs_inode(&kvm_vcpu_fops);
  1918. if (IS_ERR(inode)) {
  1919. r = PTR_ERR(inode);
  1920. goto out1;
  1921. }
  1922. file = kvmfs_file(inode, vcpu);
  1923. if (IS_ERR(file)) {
  1924. r = PTR_ERR(file);
  1925. goto out2;
  1926. }
  1927. r = get_unused_fd();
  1928. if (r < 0)
  1929. goto out3;
  1930. fd = r;
  1931. fd_install(fd, file);
  1932. return fd;
  1933. out3:
  1934. fput(file);
  1935. out2:
  1936. iput(inode);
  1937. out1:
  1938. fput(vcpu->kvm->filp);
  1939. return r;
  1940. }
  1941. /*
  1942. * Creates some virtual cpus. Good luck creating more than one.
  1943. */
  1944. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
  1945. {
  1946. int r;
  1947. struct kvm_vcpu *vcpu;
  1948. struct page *page;
  1949. r = -EINVAL;
  1950. if (!valid_vcpu(n))
  1951. goto out;
  1952. vcpu = &kvm->vcpus[n];
  1953. mutex_lock(&vcpu->mutex);
  1954. if (vcpu->vmcs) {
  1955. mutex_unlock(&vcpu->mutex);
  1956. return -EEXIST;
  1957. }
  1958. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  1959. r = -ENOMEM;
  1960. if (!page)
  1961. goto out_unlock;
  1962. vcpu->run = page_address(page);
  1963. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  1964. r = -ENOMEM;
  1965. if (!page)
  1966. goto out_free_run;
  1967. vcpu->pio_data = page_address(page);
  1968. vcpu->host_fx_image = (char*)ALIGN((hva_t)vcpu->fx_buf,
  1969. FX_IMAGE_ALIGN);
  1970. vcpu->guest_fx_image = vcpu->host_fx_image + FX_IMAGE_SIZE;
  1971. vcpu->cr0 = 0x10;
  1972. r = kvm_arch_ops->vcpu_create(vcpu);
  1973. if (r < 0)
  1974. goto out_free_vcpus;
  1975. r = kvm_mmu_create(vcpu);
  1976. if (r < 0)
  1977. goto out_free_vcpus;
  1978. kvm_arch_ops->vcpu_load(vcpu);
  1979. r = kvm_mmu_setup(vcpu);
  1980. if (r >= 0)
  1981. r = kvm_arch_ops->vcpu_setup(vcpu);
  1982. vcpu_put(vcpu);
  1983. if (r < 0)
  1984. goto out_free_vcpus;
  1985. r = create_vcpu_fd(vcpu);
  1986. if (r < 0)
  1987. goto out_free_vcpus;
  1988. return r;
  1989. out_free_vcpus:
  1990. kvm_free_vcpu(vcpu);
  1991. out_free_run:
  1992. free_page((unsigned long)vcpu->run);
  1993. vcpu->run = NULL;
  1994. out_unlock:
  1995. mutex_unlock(&vcpu->mutex);
  1996. out:
  1997. return r;
  1998. }
  1999. static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  2000. struct kvm_cpuid *cpuid,
  2001. struct kvm_cpuid_entry __user *entries)
  2002. {
  2003. int r;
  2004. r = -E2BIG;
  2005. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  2006. goto out;
  2007. r = -EFAULT;
  2008. if (copy_from_user(&vcpu->cpuid_entries, entries,
  2009. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  2010. goto out;
  2011. vcpu->cpuid_nent = cpuid->nent;
  2012. return 0;
  2013. out:
  2014. return r;
  2015. }
  2016. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  2017. {
  2018. if (sigset) {
  2019. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  2020. vcpu->sigset_active = 1;
  2021. vcpu->sigset = *sigset;
  2022. } else
  2023. vcpu->sigset_active = 0;
  2024. return 0;
  2025. }
  2026. /*
  2027. * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
  2028. * we have asm/x86/processor.h
  2029. */
  2030. struct fxsave {
  2031. u16 cwd;
  2032. u16 swd;
  2033. u16 twd;
  2034. u16 fop;
  2035. u64 rip;
  2036. u64 rdp;
  2037. u32 mxcsr;
  2038. u32 mxcsr_mask;
  2039. u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
  2040. #ifdef CONFIG_X86_64
  2041. u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
  2042. #else
  2043. u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
  2044. #endif
  2045. };
  2046. static int kvm_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  2047. {
  2048. struct fxsave *fxsave = (struct fxsave *)vcpu->guest_fx_image;
  2049. vcpu_load(vcpu);
  2050. memcpy(fpu->fpr, fxsave->st_space, 128);
  2051. fpu->fcw = fxsave->cwd;
  2052. fpu->fsw = fxsave->swd;
  2053. fpu->ftwx = fxsave->twd;
  2054. fpu->last_opcode = fxsave->fop;
  2055. fpu->last_ip = fxsave->rip;
  2056. fpu->last_dp = fxsave->rdp;
  2057. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  2058. vcpu_put(vcpu);
  2059. return 0;
  2060. }
  2061. static int kvm_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  2062. {
  2063. struct fxsave *fxsave = (struct fxsave *)vcpu->guest_fx_image;
  2064. vcpu_load(vcpu);
  2065. memcpy(fxsave->st_space, fpu->fpr, 128);
  2066. fxsave->cwd = fpu->fcw;
  2067. fxsave->swd = fpu->fsw;
  2068. fxsave->twd = fpu->ftwx;
  2069. fxsave->fop = fpu->last_opcode;
  2070. fxsave->rip = fpu->last_ip;
  2071. fxsave->rdp = fpu->last_dp;
  2072. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  2073. vcpu_put(vcpu);
  2074. return 0;
  2075. }
  2076. static long kvm_vcpu_ioctl(struct file *filp,
  2077. unsigned int ioctl, unsigned long arg)
  2078. {
  2079. struct kvm_vcpu *vcpu = filp->private_data;
  2080. void __user *argp = (void __user *)arg;
  2081. int r = -EINVAL;
  2082. switch (ioctl) {
  2083. case KVM_RUN:
  2084. r = -EINVAL;
  2085. if (arg)
  2086. goto out;
  2087. r = kvm_vcpu_ioctl_run(vcpu, vcpu->run);
  2088. break;
  2089. case KVM_GET_REGS: {
  2090. struct kvm_regs kvm_regs;
  2091. memset(&kvm_regs, 0, sizeof kvm_regs);
  2092. r = kvm_vcpu_ioctl_get_regs(vcpu, &kvm_regs);
  2093. if (r)
  2094. goto out;
  2095. r = -EFAULT;
  2096. if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
  2097. goto out;
  2098. r = 0;
  2099. break;
  2100. }
  2101. case KVM_SET_REGS: {
  2102. struct kvm_regs kvm_regs;
  2103. r = -EFAULT;
  2104. if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
  2105. goto out;
  2106. r = kvm_vcpu_ioctl_set_regs(vcpu, &kvm_regs);
  2107. if (r)
  2108. goto out;
  2109. r = 0;
  2110. break;
  2111. }
  2112. case KVM_GET_SREGS: {
  2113. struct kvm_sregs kvm_sregs;
  2114. memset(&kvm_sregs, 0, sizeof kvm_sregs);
  2115. r = kvm_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
  2116. if (r)
  2117. goto out;
  2118. r = -EFAULT;
  2119. if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
  2120. goto out;
  2121. r = 0;
  2122. break;
  2123. }
  2124. case KVM_SET_SREGS: {
  2125. struct kvm_sregs kvm_sregs;
  2126. r = -EFAULT;
  2127. if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
  2128. goto out;
  2129. r = kvm_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
  2130. if (r)
  2131. goto out;
  2132. r = 0;
  2133. break;
  2134. }
  2135. case KVM_TRANSLATE: {
  2136. struct kvm_translation tr;
  2137. r = -EFAULT;
  2138. if (copy_from_user(&tr, argp, sizeof tr))
  2139. goto out;
  2140. r = kvm_vcpu_ioctl_translate(vcpu, &tr);
  2141. if (r)
  2142. goto out;
  2143. r = -EFAULT;
  2144. if (copy_to_user(argp, &tr, sizeof tr))
  2145. goto out;
  2146. r = 0;
  2147. break;
  2148. }
  2149. case KVM_INTERRUPT: {
  2150. struct kvm_interrupt irq;
  2151. r = -EFAULT;
  2152. if (copy_from_user(&irq, argp, sizeof irq))
  2153. goto out;
  2154. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  2155. if (r)
  2156. goto out;
  2157. r = 0;
  2158. break;
  2159. }
  2160. case KVM_DEBUG_GUEST: {
  2161. struct kvm_debug_guest dbg;
  2162. r = -EFAULT;
  2163. if (copy_from_user(&dbg, argp, sizeof dbg))
  2164. goto out;
  2165. r = kvm_vcpu_ioctl_debug_guest(vcpu, &dbg);
  2166. if (r)
  2167. goto out;
  2168. r = 0;
  2169. break;
  2170. }
  2171. case KVM_GET_MSRS:
  2172. r = msr_io(vcpu, argp, get_msr, 1);
  2173. break;
  2174. case KVM_SET_MSRS:
  2175. r = msr_io(vcpu, argp, do_set_msr, 0);
  2176. break;
  2177. case KVM_SET_CPUID: {
  2178. struct kvm_cpuid __user *cpuid_arg = argp;
  2179. struct kvm_cpuid cpuid;
  2180. r = -EFAULT;
  2181. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2182. goto out;
  2183. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  2184. if (r)
  2185. goto out;
  2186. break;
  2187. }
  2188. case KVM_SET_SIGNAL_MASK: {
  2189. struct kvm_signal_mask __user *sigmask_arg = argp;
  2190. struct kvm_signal_mask kvm_sigmask;
  2191. sigset_t sigset, *p;
  2192. p = NULL;
  2193. if (argp) {
  2194. r = -EFAULT;
  2195. if (copy_from_user(&kvm_sigmask, argp,
  2196. sizeof kvm_sigmask))
  2197. goto out;
  2198. r = -EINVAL;
  2199. if (kvm_sigmask.len != sizeof sigset)
  2200. goto out;
  2201. r = -EFAULT;
  2202. if (copy_from_user(&sigset, sigmask_arg->sigset,
  2203. sizeof sigset))
  2204. goto out;
  2205. p = &sigset;
  2206. }
  2207. r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
  2208. break;
  2209. }
  2210. case KVM_GET_FPU: {
  2211. struct kvm_fpu fpu;
  2212. memset(&fpu, 0, sizeof fpu);
  2213. r = kvm_vcpu_ioctl_get_fpu(vcpu, &fpu);
  2214. if (r)
  2215. goto out;
  2216. r = -EFAULT;
  2217. if (copy_to_user(argp, &fpu, sizeof fpu))
  2218. goto out;
  2219. r = 0;
  2220. break;
  2221. }
  2222. case KVM_SET_FPU: {
  2223. struct kvm_fpu fpu;
  2224. r = -EFAULT;
  2225. if (copy_from_user(&fpu, argp, sizeof fpu))
  2226. goto out;
  2227. r = kvm_vcpu_ioctl_set_fpu(vcpu, &fpu);
  2228. if (r)
  2229. goto out;
  2230. r = 0;
  2231. break;
  2232. }
  2233. default:
  2234. ;
  2235. }
  2236. out:
  2237. return r;
  2238. }
  2239. static long kvm_vm_ioctl(struct file *filp,
  2240. unsigned int ioctl, unsigned long arg)
  2241. {
  2242. struct kvm *kvm = filp->private_data;
  2243. void __user *argp = (void __user *)arg;
  2244. int r = -EINVAL;
  2245. switch (ioctl) {
  2246. case KVM_CREATE_VCPU:
  2247. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  2248. if (r < 0)
  2249. goto out;
  2250. break;
  2251. case KVM_SET_MEMORY_REGION: {
  2252. struct kvm_memory_region kvm_mem;
  2253. r = -EFAULT;
  2254. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  2255. goto out;
  2256. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_mem);
  2257. if (r)
  2258. goto out;
  2259. break;
  2260. }
  2261. case KVM_GET_DIRTY_LOG: {
  2262. struct kvm_dirty_log log;
  2263. r = -EFAULT;
  2264. if (copy_from_user(&log, argp, sizeof log))
  2265. goto out;
  2266. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  2267. if (r)
  2268. goto out;
  2269. break;
  2270. }
  2271. case KVM_SET_MEMORY_ALIAS: {
  2272. struct kvm_memory_alias alias;
  2273. r = -EFAULT;
  2274. if (copy_from_user(&alias, argp, sizeof alias))
  2275. goto out;
  2276. r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
  2277. if (r)
  2278. goto out;
  2279. break;
  2280. }
  2281. default:
  2282. ;
  2283. }
  2284. out:
  2285. return r;
  2286. }
  2287. static struct page *kvm_vm_nopage(struct vm_area_struct *vma,
  2288. unsigned long address,
  2289. int *type)
  2290. {
  2291. struct kvm *kvm = vma->vm_file->private_data;
  2292. unsigned long pgoff;
  2293. struct page *page;
  2294. *type = VM_FAULT_MINOR;
  2295. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  2296. page = gfn_to_page(kvm, pgoff);
  2297. if (!page)
  2298. return NOPAGE_SIGBUS;
  2299. get_page(page);
  2300. return page;
  2301. }
  2302. static struct vm_operations_struct kvm_vm_vm_ops = {
  2303. .nopage = kvm_vm_nopage,
  2304. };
  2305. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  2306. {
  2307. vma->vm_ops = &kvm_vm_vm_ops;
  2308. return 0;
  2309. }
  2310. static struct file_operations kvm_vm_fops = {
  2311. .release = kvm_vm_release,
  2312. .unlocked_ioctl = kvm_vm_ioctl,
  2313. .compat_ioctl = kvm_vm_ioctl,
  2314. .mmap = kvm_vm_mmap,
  2315. };
  2316. static int kvm_dev_ioctl_create_vm(void)
  2317. {
  2318. int fd, r;
  2319. struct inode *inode;
  2320. struct file *file;
  2321. struct kvm *kvm;
  2322. inode = kvmfs_inode(&kvm_vm_fops);
  2323. if (IS_ERR(inode)) {
  2324. r = PTR_ERR(inode);
  2325. goto out1;
  2326. }
  2327. kvm = kvm_create_vm();
  2328. if (IS_ERR(kvm)) {
  2329. r = PTR_ERR(kvm);
  2330. goto out2;
  2331. }
  2332. file = kvmfs_file(inode, kvm);
  2333. if (IS_ERR(file)) {
  2334. r = PTR_ERR(file);
  2335. goto out3;
  2336. }
  2337. kvm->filp = file;
  2338. r = get_unused_fd();
  2339. if (r < 0)
  2340. goto out4;
  2341. fd = r;
  2342. fd_install(fd, file);
  2343. return fd;
  2344. out4:
  2345. fput(file);
  2346. out3:
  2347. kvm_destroy_vm(kvm);
  2348. out2:
  2349. iput(inode);
  2350. out1:
  2351. return r;
  2352. }
  2353. static long kvm_dev_ioctl(struct file *filp,
  2354. unsigned int ioctl, unsigned long arg)
  2355. {
  2356. void __user *argp = (void __user *)arg;
  2357. long r = -EINVAL;
  2358. switch (ioctl) {
  2359. case KVM_GET_API_VERSION:
  2360. r = -EINVAL;
  2361. if (arg)
  2362. goto out;
  2363. r = KVM_API_VERSION;
  2364. break;
  2365. case KVM_CREATE_VM:
  2366. r = -EINVAL;
  2367. if (arg)
  2368. goto out;
  2369. r = kvm_dev_ioctl_create_vm();
  2370. break;
  2371. case KVM_GET_MSR_INDEX_LIST: {
  2372. struct kvm_msr_list __user *user_msr_list = argp;
  2373. struct kvm_msr_list msr_list;
  2374. unsigned n;
  2375. r = -EFAULT;
  2376. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  2377. goto out;
  2378. n = msr_list.nmsrs;
  2379. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  2380. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  2381. goto out;
  2382. r = -E2BIG;
  2383. if (n < num_msrs_to_save)
  2384. goto out;
  2385. r = -EFAULT;
  2386. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  2387. num_msrs_to_save * sizeof(u32)))
  2388. goto out;
  2389. if (copy_to_user(user_msr_list->indices
  2390. + num_msrs_to_save * sizeof(u32),
  2391. &emulated_msrs,
  2392. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  2393. goto out;
  2394. r = 0;
  2395. break;
  2396. }
  2397. case KVM_CHECK_EXTENSION:
  2398. /*
  2399. * No extensions defined at present.
  2400. */
  2401. r = 0;
  2402. break;
  2403. case KVM_GET_VCPU_MMAP_SIZE:
  2404. r = -EINVAL;
  2405. if (arg)
  2406. goto out;
  2407. r = 2 * PAGE_SIZE;
  2408. break;
  2409. default:
  2410. ;
  2411. }
  2412. out:
  2413. return r;
  2414. }
  2415. static struct file_operations kvm_chardev_ops = {
  2416. .open = kvm_dev_open,
  2417. .release = kvm_dev_release,
  2418. .unlocked_ioctl = kvm_dev_ioctl,
  2419. .compat_ioctl = kvm_dev_ioctl,
  2420. };
  2421. static struct miscdevice kvm_dev = {
  2422. KVM_MINOR,
  2423. "kvm",
  2424. &kvm_chardev_ops,
  2425. };
  2426. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  2427. void *v)
  2428. {
  2429. if (val == SYS_RESTART) {
  2430. /*
  2431. * Some (well, at least mine) BIOSes hang on reboot if
  2432. * in vmx root mode.
  2433. */
  2434. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  2435. on_each_cpu(kvm_arch_ops->hardware_disable, NULL, 0, 1);
  2436. }
  2437. return NOTIFY_OK;
  2438. }
  2439. static struct notifier_block kvm_reboot_notifier = {
  2440. .notifier_call = kvm_reboot,
  2441. .priority = 0,
  2442. };
  2443. /*
  2444. * Make sure that a cpu that is being hot-unplugged does not have any vcpus
  2445. * cached on it.
  2446. */
  2447. static void decache_vcpus_on_cpu(int cpu)
  2448. {
  2449. struct kvm *vm;
  2450. struct kvm_vcpu *vcpu;
  2451. int i;
  2452. spin_lock(&kvm_lock);
  2453. list_for_each_entry(vm, &vm_list, vm_list)
  2454. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  2455. vcpu = &vm->vcpus[i];
  2456. /*
  2457. * If the vcpu is locked, then it is running on some
  2458. * other cpu and therefore it is not cached on the
  2459. * cpu in question.
  2460. *
  2461. * If it's not locked, check the last cpu it executed
  2462. * on.
  2463. */
  2464. if (mutex_trylock(&vcpu->mutex)) {
  2465. if (vcpu->cpu == cpu) {
  2466. kvm_arch_ops->vcpu_decache(vcpu);
  2467. vcpu->cpu = -1;
  2468. }
  2469. mutex_unlock(&vcpu->mutex);
  2470. }
  2471. }
  2472. spin_unlock(&kvm_lock);
  2473. }
  2474. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  2475. void *v)
  2476. {
  2477. int cpu = (long)v;
  2478. switch (val) {
  2479. case CPU_DOWN_PREPARE:
  2480. case CPU_UP_CANCELED:
  2481. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  2482. cpu);
  2483. decache_vcpus_on_cpu(cpu);
  2484. smp_call_function_single(cpu, kvm_arch_ops->hardware_disable,
  2485. NULL, 0, 1);
  2486. break;
  2487. case CPU_ONLINE:
  2488. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  2489. cpu);
  2490. smp_call_function_single(cpu, kvm_arch_ops->hardware_enable,
  2491. NULL, 0, 1);
  2492. break;
  2493. }
  2494. return NOTIFY_OK;
  2495. }
  2496. static struct notifier_block kvm_cpu_notifier = {
  2497. .notifier_call = kvm_cpu_hotplug,
  2498. .priority = 20, /* must be > scheduler priority */
  2499. };
  2500. static __init void kvm_init_debug(void)
  2501. {
  2502. struct kvm_stats_debugfs_item *p;
  2503. debugfs_dir = debugfs_create_dir("kvm", NULL);
  2504. for (p = debugfs_entries; p->name; ++p)
  2505. p->dentry = debugfs_create_u32(p->name, 0444, debugfs_dir,
  2506. p->data);
  2507. }
  2508. static void kvm_exit_debug(void)
  2509. {
  2510. struct kvm_stats_debugfs_item *p;
  2511. for (p = debugfs_entries; p->name; ++p)
  2512. debugfs_remove(p->dentry);
  2513. debugfs_remove(debugfs_dir);
  2514. }
  2515. static int kvm_suspend(struct sys_device *dev, pm_message_t state)
  2516. {
  2517. decache_vcpus_on_cpu(raw_smp_processor_id());
  2518. on_each_cpu(kvm_arch_ops->hardware_disable, NULL, 0, 1);
  2519. return 0;
  2520. }
  2521. static int kvm_resume(struct sys_device *dev)
  2522. {
  2523. on_each_cpu(kvm_arch_ops->hardware_enable, NULL, 0, 1);
  2524. return 0;
  2525. }
  2526. static struct sysdev_class kvm_sysdev_class = {
  2527. set_kset_name("kvm"),
  2528. .suspend = kvm_suspend,
  2529. .resume = kvm_resume,
  2530. };
  2531. static struct sys_device kvm_sysdev = {
  2532. .id = 0,
  2533. .cls = &kvm_sysdev_class,
  2534. };
  2535. hpa_t bad_page_address;
  2536. static int kvmfs_get_sb(struct file_system_type *fs_type, int flags,
  2537. const char *dev_name, void *data, struct vfsmount *mnt)
  2538. {
  2539. return get_sb_pseudo(fs_type, "kvm:", NULL, KVMFS_SUPER_MAGIC, mnt);
  2540. }
  2541. static struct file_system_type kvm_fs_type = {
  2542. .name = "kvmfs",
  2543. .get_sb = kvmfs_get_sb,
  2544. .kill_sb = kill_anon_super,
  2545. };
  2546. int kvm_init_arch(struct kvm_arch_ops *ops, struct module *module)
  2547. {
  2548. int r;
  2549. if (kvm_arch_ops) {
  2550. printk(KERN_ERR "kvm: already loaded the other module\n");
  2551. return -EEXIST;
  2552. }
  2553. if (!ops->cpu_has_kvm_support()) {
  2554. printk(KERN_ERR "kvm: no hardware support\n");
  2555. return -EOPNOTSUPP;
  2556. }
  2557. if (ops->disabled_by_bios()) {
  2558. printk(KERN_ERR "kvm: disabled by bios\n");
  2559. return -EOPNOTSUPP;
  2560. }
  2561. kvm_arch_ops = ops;
  2562. r = kvm_arch_ops->hardware_setup();
  2563. if (r < 0)
  2564. goto out;
  2565. on_each_cpu(kvm_arch_ops->hardware_enable, NULL, 0, 1);
  2566. r = register_cpu_notifier(&kvm_cpu_notifier);
  2567. if (r)
  2568. goto out_free_1;
  2569. register_reboot_notifier(&kvm_reboot_notifier);
  2570. r = sysdev_class_register(&kvm_sysdev_class);
  2571. if (r)
  2572. goto out_free_2;
  2573. r = sysdev_register(&kvm_sysdev);
  2574. if (r)
  2575. goto out_free_3;
  2576. kvm_chardev_ops.owner = module;
  2577. r = misc_register(&kvm_dev);
  2578. if (r) {
  2579. printk (KERN_ERR "kvm: misc device register failed\n");
  2580. goto out_free;
  2581. }
  2582. return r;
  2583. out_free:
  2584. sysdev_unregister(&kvm_sysdev);
  2585. out_free_3:
  2586. sysdev_class_unregister(&kvm_sysdev_class);
  2587. out_free_2:
  2588. unregister_reboot_notifier(&kvm_reboot_notifier);
  2589. unregister_cpu_notifier(&kvm_cpu_notifier);
  2590. out_free_1:
  2591. on_each_cpu(kvm_arch_ops->hardware_disable, NULL, 0, 1);
  2592. kvm_arch_ops->hardware_unsetup();
  2593. out:
  2594. kvm_arch_ops = NULL;
  2595. return r;
  2596. }
  2597. void kvm_exit_arch(void)
  2598. {
  2599. misc_deregister(&kvm_dev);
  2600. sysdev_unregister(&kvm_sysdev);
  2601. sysdev_class_unregister(&kvm_sysdev_class);
  2602. unregister_reboot_notifier(&kvm_reboot_notifier);
  2603. unregister_cpu_notifier(&kvm_cpu_notifier);
  2604. on_each_cpu(kvm_arch_ops->hardware_disable, NULL, 0, 1);
  2605. kvm_arch_ops->hardware_unsetup();
  2606. kvm_arch_ops = NULL;
  2607. }
  2608. static __init int kvm_init(void)
  2609. {
  2610. static struct page *bad_page;
  2611. int r;
  2612. r = kvm_mmu_module_init();
  2613. if (r)
  2614. goto out4;
  2615. r = register_filesystem(&kvm_fs_type);
  2616. if (r)
  2617. goto out3;
  2618. kvmfs_mnt = kern_mount(&kvm_fs_type);
  2619. r = PTR_ERR(kvmfs_mnt);
  2620. if (IS_ERR(kvmfs_mnt))
  2621. goto out2;
  2622. kvm_init_debug();
  2623. kvm_init_msr_list();
  2624. if ((bad_page = alloc_page(GFP_KERNEL)) == NULL) {
  2625. r = -ENOMEM;
  2626. goto out;
  2627. }
  2628. bad_page_address = page_to_pfn(bad_page) << PAGE_SHIFT;
  2629. memset(__va(bad_page_address), 0, PAGE_SIZE);
  2630. return 0;
  2631. out:
  2632. kvm_exit_debug();
  2633. mntput(kvmfs_mnt);
  2634. out2:
  2635. unregister_filesystem(&kvm_fs_type);
  2636. out3:
  2637. kvm_mmu_module_exit();
  2638. out4:
  2639. return r;
  2640. }
  2641. static __exit void kvm_exit(void)
  2642. {
  2643. kvm_exit_debug();
  2644. __free_page(pfn_to_page(bad_page_address >> PAGE_SHIFT));
  2645. mntput(kvmfs_mnt);
  2646. unregister_filesystem(&kvm_fs_type);
  2647. kvm_mmu_module_exit();
  2648. }
  2649. module_init(kvm_init)
  2650. module_exit(kvm_exit)
  2651. EXPORT_SYMBOL_GPL(kvm_init_arch);
  2652. EXPORT_SYMBOL_GPL(kvm_exit_arch);