book3s_64_mmu_host.c 9.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368
  1. /*
  2. * Copyright (C) 2009 SUSE Linux Products GmbH. All rights reserved.
  3. *
  4. * Authors:
  5. * Alexander Graf <agraf@suse.de>
  6. * Kevin Wolf <mail@kevin-wolf.de>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License, version 2, as
  10. * published by the Free Software Foundation.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with this program; if not, write to the Free Software
  19. * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
  20. */
  21. #include <linux/kvm_host.h>
  22. #include <asm/kvm_ppc.h>
  23. #include <asm/kvm_book3s.h>
  24. #include <asm/mmu-hash64.h>
  25. #include <asm/machdep.h>
  26. #include <asm/mmu_context.h>
  27. #include <asm/hw_irq.h>
  28. #include "trace.h"
  29. #define PTE_SIZE 12
  30. void kvmppc_mmu_invalidate_pte(struct kvm_vcpu *vcpu, struct hpte_cache *pte)
  31. {
  32. ppc_md.hpte_invalidate(pte->slot, pte->host_vpn,
  33. pte->pagesize, pte->pagesize, MMU_SEGSIZE_256M,
  34. false);
  35. }
  36. /* We keep 512 gvsid->hvsid entries, mapping the guest ones to the array using
  37. * a hash, so we don't waste cycles on looping */
  38. static u16 kvmppc_sid_hash(struct kvm_vcpu *vcpu, u64 gvsid)
  39. {
  40. return (u16)(((gvsid >> (SID_MAP_BITS * 7)) & SID_MAP_MASK) ^
  41. ((gvsid >> (SID_MAP_BITS * 6)) & SID_MAP_MASK) ^
  42. ((gvsid >> (SID_MAP_BITS * 5)) & SID_MAP_MASK) ^
  43. ((gvsid >> (SID_MAP_BITS * 4)) & SID_MAP_MASK) ^
  44. ((gvsid >> (SID_MAP_BITS * 3)) & SID_MAP_MASK) ^
  45. ((gvsid >> (SID_MAP_BITS * 2)) & SID_MAP_MASK) ^
  46. ((gvsid >> (SID_MAP_BITS * 1)) & SID_MAP_MASK) ^
  47. ((gvsid >> (SID_MAP_BITS * 0)) & SID_MAP_MASK));
  48. }
  49. static struct kvmppc_sid_map *find_sid_vsid(struct kvm_vcpu *vcpu, u64 gvsid)
  50. {
  51. struct kvmppc_sid_map *map;
  52. u16 sid_map_mask;
  53. if (vcpu->arch.shared->msr & MSR_PR)
  54. gvsid |= VSID_PR;
  55. sid_map_mask = kvmppc_sid_hash(vcpu, gvsid);
  56. map = &to_book3s(vcpu)->sid_map[sid_map_mask];
  57. if (map->valid && (map->guest_vsid == gvsid)) {
  58. trace_kvm_book3s_slb_found(gvsid, map->host_vsid);
  59. return map;
  60. }
  61. map = &to_book3s(vcpu)->sid_map[SID_MAP_MASK - sid_map_mask];
  62. if (map->valid && (map->guest_vsid == gvsid)) {
  63. trace_kvm_book3s_slb_found(gvsid, map->host_vsid);
  64. return map;
  65. }
  66. trace_kvm_book3s_slb_fail(sid_map_mask, gvsid);
  67. return NULL;
  68. }
  69. int kvmppc_mmu_map_page(struct kvm_vcpu *vcpu, struct kvmppc_pte *orig_pte)
  70. {
  71. unsigned long vpn;
  72. pfn_t hpaddr;
  73. ulong hash, hpteg;
  74. u64 vsid;
  75. int ret;
  76. int rflags = 0x192;
  77. int vflags = 0;
  78. int attempt = 0;
  79. struct kvmppc_sid_map *map;
  80. int r = 0;
  81. int hpsize = MMU_PAGE_4K;
  82. /* Get host physical address for gpa */
  83. hpaddr = kvmppc_gfn_to_pfn(vcpu, orig_pte->raddr >> PAGE_SHIFT);
  84. if (is_error_noslot_pfn(hpaddr)) {
  85. printk(KERN_INFO "Couldn't get guest page for gfn %lx!\n", orig_pte->eaddr);
  86. r = -EINVAL;
  87. goto out;
  88. }
  89. hpaddr <<= PAGE_SHIFT;
  90. /* and write the mapping ea -> hpa into the pt */
  91. vcpu->arch.mmu.esid_to_vsid(vcpu, orig_pte->eaddr >> SID_SHIFT, &vsid);
  92. map = find_sid_vsid(vcpu, vsid);
  93. if (!map) {
  94. ret = kvmppc_mmu_map_segment(vcpu, orig_pte->eaddr);
  95. WARN_ON(ret < 0);
  96. map = find_sid_vsid(vcpu, vsid);
  97. }
  98. if (!map) {
  99. printk(KERN_ERR "KVM: Segment map for 0x%llx (0x%lx) failed\n",
  100. vsid, orig_pte->eaddr);
  101. WARN_ON(true);
  102. r = -EINVAL;
  103. goto out;
  104. }
  105. vpn = hpt_vpn(orig_pte->eaddr, map->host_vsid, MMU_SEGSIZE_256M);
  106. if (!orig_pte->may_write)
  107. rflags |= HPTE_R_PP;
  108. else
  109. mark_page_dirty(vcpu->kvm, orig_pte->raddr >> PAGE_SHIFT);
  110. if (!orig_pte->may_execute)
  111. rflags |= HPTE_R_N;
  112. else
  113. kvmppc_mmu_flush_icache(hpaddr >> PAGE_SHIFT);
  114. /*
  115. * Use 64K pages if possible; otherwise, on 64K page kernels,
  116. * we need to transfer 4 more bits from guest real to host real addr.
  117. */
  118. if (vsid & VSID_64K)
  119. hpsize = MMU_PAGE_64K;
  120. else
  121. hpaddr |= orig_pte->raddr & (~0xfffULL & ~PAGE_MASK);
  122. hash = hpt_hash(vpn, mmu_psize_defs[hpsize].shift, MMU_SEGSIZE_256M);
  123. map_again:
  124. hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
  125. /* In case we tried normal mapping already, let's nuke old entries */
  126. if (attempt > 1)
  127. if (ppc_md.hpte_remove(hpteg) < 0) {
  128. r = -1;
  129. goto out;
  130. }
  131. ret = ppc_md.hpte_insert(hpteg, vpn, hpaddr, rflags, vflags,
  132. hpsize, hpsize, MMU_SEGSIZE_256M);
  133. if (ret < 0) {
  134. /* If we couldn't map a primary PTE, try a secondary */
  135. hash = ~hash;
  136. vflags ^= HPTE_V_SECONDARY;
  137. attempt++;
  138. goto map_again;
  139. } else {
  140. struct hpte_cache *pte = kvmppc_mmu_hpte_cache_next(vcpu);
  141. trace_kvm_book3s_64_mmu_map(rflags, hpteg,
  142. vpn, hpaddr, orig_pte);
  143. /* The ppc_md code may give us a secondary entry even though we
  144. asked for a primary. Fix up. */
  145. if ((ret & _PTEIDX_SECONDARY) && !(vflags & HPTE_V_SECONDARY)) {
  146. hash = ~hash;
  147. hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
  148. }
  149. pte->slot = hpteg + (ret & 7);
  150. pte->host_vpn = vpn;
  151. pte->pte = *orig_pte;
  152. pte->pfn = hpaddr >> PAGE_SHIFT;
  153. pte->pagesize = hpsize;
  154. kvmppc_mmu_hpte_cache_map(vcpu, pte);
  155. }
  156. kvm_release_pfn_clean(hpaddr >> PAGE_SHIFT);
  157. out:
  158. return r;
  159. }
  160. static struct kvmppc_sid_map *create_sid_map(struct kvm_vcpu *vcpu, u64 gvsid)
  161. {
  162. struct kvmppc_sid_map *map;
  163. struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu);
  164. u16 sid_map_mask;
  165. static int backwards_map = 0;
  166. if (vcpu->arch.shared->msr & MSR_PR)
  167. gvsid |= VSID_PR;
  168. /* We might get collisions that trap in preceding order, so let's
  169. map them differently */
  170. sid_map_mask = kvmppc_sid_hash(vcpu, gvsid);
  171. if (backwards_map)
  172. sid_map_mask = SID_MAP_MASK - sid_map_mask;
  173. map = &to_book3s(vcpu)->sid_map[sid_map_mask];
  174. /* Make sure we're taking the other map next time */
  175. backwards_map = !backwards_map;
  176. /* Uh-oh ... out of mappings. Let's flush! */
  177. if (vcpu_book3s->proto_vsid_next == vcpu_book3s->proto_vsid_max) {
  178. vcpu_book3s->proto_vsid_next = vcpu_book3s->proto_vsid_first;
  179. memset(vcpu_book3s->sid_map, 0,
  180. sizeof(struct kvmppc_sid_map) * SID_MAP_NUM);
  181. kvmppc_mmu_pte_flush(vcpu, 0, 0);
  182. kvmppc_mmu_flush_segments(vcpu);
  183. }
  184. map->host_vsid = vsid_scramble(vcpu_book3s->proto_vsid_next++, 256M);
  185. map->guest_vsid = gvsid;
  186. map->valid = true;
  187. trace_kvm_book3s_slb_map(sid_map_mask, gvsid, map->host_vsid);
  188. return map;
  189. }
  190. static int kvmppc_mmu_next_segment(struct kvm_vcpu *vcpu, ulong esid)
  191. {
  192. struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
  193. int i;
  194. int max_slb_size = 64;
  195. int found_inval = -1;
  196. int r;
  197. if (!svcpu->slb_max)
  198. svcpu->slb_max = 1;
  199. /* Are we overwriting? */
  200. for (i = 1; i < svcpu->slb_max; i++) {
  201. if (!(svcpu->slb[i].esid & SLB_ESID_V))
  202. found_inval = i;
  203. else if ((svcpu->slb[i].esid & ESID_MASK) == esid) {
  204. r = i;
  205. goto out;
  206. }
  207. }
  208. /* Found a spare entry that was invalidated before */
  209. if (found_inval > 0) {
  210. r = found_inval;
  211. goto out;
  212. }
  213. /* No spare invalid entry, so create one */
  214. if (mmu_slb_size < 64)
  215. max_slb_size = mmu_slb_size;
  216. /* Overflowing -> purge */
  217. if ((svcpu->slb_max) == max_slb_size)
  218. kvmppc_mmu_flush_segments(vcpu);
  219. r = svcpu->slb_max;
  220. svcpu->slb_max++;
  221. out:
  222. svcpu_put(svcpu);
  223. return r;
  224. }
  225. int kvmppc_mmu_map_segment(struct kvm_vcpu *vcpu, ulong eaddr)
  226. {
  227. struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
  228. u64 esid = eaddr >> SID_SHIFT;
  229. u64 slb_esid = (eaddr & ESID_MASK) | SLB_ESID_V;
  230. u64 slb_vsid = SLB_VSID_USER;
  231. u64 gvsid;
  232. int slb_index;
  233. struct kvmppc_sid_map *map;
  234. int r = 0;
  235. slb_index = kvmppc_mmu_next_segment(vcpu, eaddr & ESID_MASK);
  236. if (vcpu->arch.mmu.esid_to_vsid(vcpu, esid, &gvsid)) {
  237. /* Invalidate an entry */
  238. svcpu->slb[slb_index].esid = 0;
  239. r = -ENOENT;
  240. goto out;
  241. }
  242. map = find_sid_vsid(vcpu, gvsid);
  243. if (!map)
  244. map = create_sid_map(vcpu, gvsid);
  245. map->guest_esid = esid;
  246. slb_vsid |= (map->host_vsid << 12);
  247. slb_vsid &= ~SLB_VSID_KP;
  248. slb_esid |= slb_index;
  249. #ifdef CONFIG_PPC_64K_PAGES
  250. /* Set host segment base page size to 64K if possible */
  251. if (gvsid & VSID_64K)
  252. slb_vsid |= mmu_psize_defs[MMU_PAGE_64K].sllp;
  253. #endif
  254. svcpu->slb[slb_index].esid = slb_esid;
  255. svcpu->slb[slb_index].vsid = slb_vsid;
  256. trace_kvm_book3s_slbmte(slb_vsid, slb_esid);
  257. out:
  258. svcpu_put(svcpu);
  259. return r;
  260. }
  261. void kvmppc_mmu_flush_segment(struct kvm_vcpu *vcpu, ulong ea, ulong seg_size)
  262. {
  263. struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
  264. ulong seg_mask = -seg_size;
  265. int i;
  266. for (i = 1; i < svcpu->slb_max; i++) {
  267. if ((svcpu->slb[i].esid & SLB_ESID_V) &&
  268. (svcpu->slb[i].esid & seg_mask) == ea) {
  269. /* Invalidate this entry */
  270. svcpu->slb[i].esid = 0;
  271. }
  272. }
  273. svcpu_put(svcpu);
  274. }
  275. void kvmppc_mmu_flush_segments(struct kvm_vcpu *vcpu)
  276. {
  277. struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
  278. svcpu->slb_max = 1;
  279. svcpu->slb[0].esid = 0;
  280. svcpu_put(svcpu);
  281. }
  282. void kvmppc_mmu_destroy(struct kvm_vcpu *vcpu)
  283. {
  284. kvmppc_mmu_hpte_destroy(vcpu);
  285. __destroy_context(to_book3s(vcpu)->context_id[0]);
  286. }
  287. int kvmppc_mmu_init(struct kvm_vcpu *vcpu)
  288. {
  289. struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
  290. int err;
  291. err = __init_new_context();
  292. if (err < 0)
  293. return -1;
  294. vcpu3s->context_id[0] = err;
  295. vcpu3s->proto_vsid_max = ((u64)(vcpu3s->context_id[0] + 1)
  296. << ESID_BITS) - 1;
  297. vcpu3s->proto_vsid_first = (u64)vcpu3s->context_id[0] << ESID_BITS;
  298. vcpu3s->proto_vsid_next = vcpu3s->proto_vsid_first;
  299. kvmppc_mmu_hpte_init(vcpu);
  300. return 0;
  301. }