fsi.c 26 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220
  1. /*
  2. * Fifo-attached Serial Interface (FSI) support for SH7724
  3. *
  4. * Copyright (C) 2009 Renesas Solutions Corp.
  5. * Kuninori Morimoto <morimoto.kuninori@renesas.com>
  6. *
  7. * Based on ssi.c
  8. * Copyright (c) 2007 Manuel Lauss <mano@roarinelk.homelinux.net>
  9. *
  10. * This program is free software; you can redistribute it and/or modify
  11. * it under the terms of the GNU General Public License version 2 as
  12. * published by the Free Software Foundation.
  13. */
  14. #include <linux/delay.h>
  15. #include <linux/pm_runtime.h>
  16. #include <linux/io.h>
  17. #include <linux/slab.h>
  18. #include <sound/soc.h>
  19. #include <sound/sh_fsi.h>
  20. #define DO_FMT 0x0000
  21. #define DOFF_CTL 0x0004
  22. #define DOFF_ST 0x0008
  23. #define DI_FMT 0x000C
  24. #define DIFF_CTL 0x0010
  25. #define DIFF_ST 0x0014
  26. #define CKG1 0x0018
  27. #define CKG2 0x001C
  28. #define DIDT 0x0020
  29. #define DODT 0x0024
  30. #define MUTE_ST 0x0028
  31. #define OUT_SEL 0x0030
  32. #define REG_END OUT_SEL
  33. #define A_MST_CTLR 0x0180
  34. #define B_MST_CTLR 0x01A0
  35. #define CPU_INT_ST 0x01F4
  36. #define CPU_IEMSK 0x01F8
  37. #define CPU_IMSK 0x01FC
  38. #define INT_ST 0x0200
  39. #define IEMSK 0x0204
  40. #define IMSK 0x0208
  41. #define MUTE 0x020C
  42. #define CLK_RST 0x0210
  43. #define SOFT_RST 0x0214
  44. #define FIFO_SZ 0x0218
  45. #define MREG_START A_MST_CTLR
  46. #define MREG_END FIFO_SZ
  47. /* DO_FMT */
  48. /* DI_FMT */
  49. #define CR_MONO (0x0 << 4)
  50. #define CR_MONO_D (0x1 << 4)
  51. #define CR_PCM (0x2 << 4)
  52. #define CR_I2S (0x3 << 4)
  53. #define CR_TDM (0x4 << 4)
  54. #define CR_TDM_D (0x5 << 4)
  55. #define CR_SPDIF 0x00100120
  56. /* DOFF_CTL */
  57. /* DIFF_CTL */
  58. #define IRQ_HALF 0x00100000
  59. #define FIFO_CLR 0x00000001
  60. /* DOFF_ST */
  61. #define ERR_OVER 0x00000010
  62. #define ERR_UNDER 0x00000001
  63. #define ST_ERR (ERR_OVER | ERR_UNDER)
  64. /* CKG1 */
  65. #define ACKMD_MASK 0x00007000
  66. #define BPFMD_MASK 0x00000700
  67. /* A/B MST_CTLR */
  68. #define BP (1 << 4) /* Fix the signal of Biphase output */
  69. #define SE (1 << 0) /* Fix the master clock */
  70. /* CLK_RST */
  71. #define B_CLK 0x00000010
  72. #define A_CLK 0x00000001
  73. /* INT_ST */
  74. #define INT_B_IN (1 << 12)
  75. #define INT_B_OUT (1 << 8)
  76. #define INT_A_IN (1 << 4)
  77. #define INT_A_OUT (1 << 0)
  78. /* SOFT_RST */
  79. #define PBSR (1 << 12) /* Port B Software Reset */
  80. #define PASR (1 << 8) /* Port A Software Reset */
  81. #define IR (1 << 4) /* Interrupt Reset */
  82. #define FSISR (1 << 0) /* Software Reset */
  83. /* FIFO_SZ */
  84. #define OUT_SZ_MASK 0x7
  85. #define BO_SZ_SHIFT 8
  86. #define AO_SZ_SHIFT 0
  87. #define FSI_RATES SNDRV_PCM_RATE_8000_96000
  88. #define FSI_FMTS (SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S16_LE)
  89. /*
  90. * struct
  91. */
  92. struct fsi_priv {
  93. void __iomem *base;
  94. struct snd_pcm_substream *substream;
  95. struct fsi_master *master;
  96. int fifo_max;
  97. int chan;
  98. int byte_offset;
  99. int period_len;
  100. int buffer_len;
  101. int periods;
  102. u32 mst_ctrl;
  103. };
  104. struct fsi_core {
  105. int ver;
  106. u32 int_st;
  107. u32 iemsk;
  108. u32 imsk;
  109. };
  110. struct fsi_master {
  111. void __iomem *base;
  112. int irq;
  113. struct fsi_priv fsia;
  114. struct fsi_priv fsib;
  115. struct fsi_core *core;
  116. struct sh_fsi_platform_info *info;
  117. spinlock_t lock;
  118. };
  119. /*
  120. * basic read write function
  121. */
  122. static void __fsi_reg_write(u32 reg, u32 data)
  123. {
  124. /* valid data area is 24bit */
  125. data &= 0x00ffffff;
  126. __raw_writel(data, reg);
  127. }
  128. static u32 __fsi_reg_read(u32 reg)
  129. {
  130. return __raw_readl(reg);
  131. }
  132. static void __fsi_reg_mask_set(u32 reg, u32 mask, u32 data)
  133. {
  134. u32 val = __fsi_reg_read(reg);
  135. val &= ~mask;
  136. val |= data & mask;
  137. __fsi_reg_write(reg, val);
  138. }
  139. static void fsi_reg_write(struct fsi_priv *fsi, u32 reg, u32 data)
  140. {
  141. if (reg > REG_END) {
  142. pr_err("fsi: register access err (%s)\n", __func__);
  143. return;
  144. }
  145. __fsi_reg_write((u32)(fsi->base + reg), data);
  146. }
  147. static u32 fsi_reg_read(struct fsi_priv *fsi, u32 reg)
  148. {
  149. if (reg > REG_END) {
  150. pr_err("fsi: register access err (%s)\n", __func__);
  151. return 0;
  152. }
  153. return __fsi_reg_read((u32)(fsi->base + reg));
  154. }
  155. static void fsi_reg_mask_set(struct fsi_priv *fsi, u32 reg, u32 mask, u32 data)
  156. {
  157. if (reg > REG_END) {
  158. pr_err("fsi: register access err (%s)\n", __func__);
  159. return;
  160. }
  161. __fsi_reg_mask_set((u32)(fsi->base + reg), mask, data);
  162. }
  163. static void fsi_master_write(struct fsi_master *master, u32 reg, u32 data)
  164. {
  165. unsigned long flags;
  166. if ((reg < MREG_START) ||
  167. (reg > MREG_END)) {
  168. pr_err("fsi: register access err (%s)\n", __func__);
  169. return;
  170. }
  171. spin_lock_irqsave(&master->lock, flags);
  172. __fsi_reg_write((u32)(master->base + reg), data);
  173. spin_unlock_irqrestore(&master->lock, flags);
  174. }
  175. static u32 fsi_master_read(struct fsi_master *master, u32 reg)
  176. {
  177. u32 ret;
  178. unsigned long flags;
  179. if ((reg < MREG_START) ||
  180. (reg > MREG_END)) {
  181. pr_err("fsi: register access err (%s)\n", __func__);
  182. return 0;
  183. }
  184. spin_lock_irqsave(&master->lock, flags);
  185. ret = __fsi_reg_read((u32)(master->base + reg));
  186. spin_unlock_irqrestore(&master->lock, flags);
  187. return ret;
  188. }
  189. static void fsi_master_mask_set(struct fsi_master *master,
  190. u32 reg, u32 mask, u32 data)
  191. {
  192. unsigned long flags;
  193. if ((reg < MREG_START) ||
  194. (reg > MREG_END)) {
  195. pr_err("fsi: register access err (%s)\n", __func__);
  196. return;
  197. }
  198. spin_lock_irqsave(&master->lock, flags);
  199. __fsi_reg_mask_set((u32)(master->base + reg), mask, data);
  200. spin_unlock_irqrestore(&master->lock, flags);
  201. }
  202. /*
  203. * basic function
  204. */
  205. static struct fsi_master *fsi_get_master(struct fsi_priv *fsi)
  206. {
  207. return fsi->master;
  208. }
  209. static int fsi_is_port_a(struct fsi_priv *fsi)
  210. {
  211. return fsi->master->base == fsi->base;
  212. }
  213. static struct snd_soc_dai *fsi_get_dai(struct snd_pcm_substream *substream)
  214. {
  215. struct snd_soc_pcm_runtime *rtd = substream->private_data;
  216. return rtd->cpu_dai;
  217. }
  218. static struct fsi_priv *fsi_get_priv(struct snd_pcm_substream *substream)
  219. {
  220. struct snd_soc_dai *dai = fsi_get_dai(substream);
  221. struct fsi_master *master = snd_soc_dai_get_drvdata(dai);
  222. if (dai->id == 0)
  223. return &master->fsia;
  224. else
  225. return &master->fsib;
  226. }
  227. static u32 fsi_get_info_flags(struct fsi_priv *fsi)
  228. {
  229. int is_porta = fsi_is_port_a(fsi);
  230. struct fsi_master *master = fsi_get_master(fsi);
  231. return is_porta ? master->info->porta_flags :
  232. master->info->portb_flags;
  233. }
  234. static int fsi_is_master_mode(struct fsi_priv *fsi, int is_play)
  235. {
  236. u32 mode;
  237. u32 flags = fsi_get_info_flags(fsi);
  238. mode = is_play ? SH_FSI_OUT_SLAVE_MODE : SH_FSI_IN_SLAVE_MODE;
  239. /* return
  240. * 1 : master mode
  241. * 0 : slave mode
  242. */
  243. return (mode & flags) != mode;
  244. }
  245. static u32 fsi_port_ab_io_bit(struct fsi_priv *fsi, int is_play)
  246. {
  247. int is_porta = fsi_is_port_a(fsi);
  248. u32 data;
  249. if (is_porta)
  250. data = is_play ? (1 << 0) : (1 << 4);
  251. else
  252. data = is_play ? (1 << 8) : (1 << 12);
  253. return data;
  254. }
  255. static void fsi_stream_push(struct fsi_priv *fsi,
  256. struct snd_pcm_substream *substream,
  257. u32 buffer_len,
  258. u32 period_len)
  259. {
  260. fsi->substream = substream;
  261. fsi->buffer_len = buffer_len;
  262. fsi->period_len = period_len;
  263. fsi->byte_offset = 0;
  264. fsi->periods = 0;
  265. }
  266. static void fsi_stream_pop(struct fsi_priv *fsi)
  267. {
  268. fsi->substream = NULL;
  269. fsi->buffer_len = 0;
  270. fsi->period_len = 0;
  271. fsi->byte_offset = 0;
  272. fsi->periods = 0;
  273. }
  274. static int fsi_get_fifo_residue(struct fsi_priv *fsi, int is_play)
  275. {
  276. u32 status;
  277. u32 reg = is_play ? DOFF_ST : DIFF_ST;
  278. int residue;
  279. status = fsi_reg_read(fsi, reg);
  280. residue = 0x1ff & (status >> 8);
  281. residue *= fsi->chan;
  282. return residue;
  283. }
  284. static u8 *fsi_dma_get_area(struct fsi_priv *fsi)
  285. {
  286. return fsi->substream->runtime->dma_area + fsi->byte_offset;
  287. }
  288. /*
  289. * irq function
  290. */
  291. static void fsi_irq_enable(struct fsi_priv *fsi, int is_play)
  292. {
  293. u32 data = fsi_port_ab_io_bit(fsi, is_play);
  294. struct fsi_master *master = fsi_get_master(fsi);
  295. fsi_master_mask_set(master, master->core->imsk, data, data);
  296. fsi_master_mask_set(master, master->core->iemsk, data, data);
  297. }
  298. static void fsi_irq_disable(struct fsi_priv *fsi, int is_play)
  299. {
  300. u32 data = fsi_port_ab_io_bit(fsi, is_play);
  301. struct fsi_master *master = fsi_get_master(fsi);
  302. fsi_master_mask_set(master, master->core->imsk, data, 0);
  303. fsi_master_mask_set(master, master->core->iemsk, data, 0);
  304. }
  305. static u32 fsi_irq_get_status(struct fsi_master *master)
  306. {
  307. return fsi_master_read(master, master->core->int_st);
  308. }
  309. static void fsi_irq_clear_all_status(struct fsi_master *master)
  310. {
  311. fsi_master_write(master, master->core->int_st, 0);
  312. }
  313. static void fsi_irq_clear_status(struct fsi_priv *fsi)
  314. {
  315. u32 data = 0;
  316. struct fsi_master *master = fsi_get_master(fsi);
  317. data |= fsi_port_ab_io_bit(fsi, 0);
  318. data |= fsi_port_ab_io_bit(fsi, 1);
  319. /* clear interrupt factor */
  320. fsi_master_mask_set(master, master->core->int_st, data, 0);
  321. }
  322. /*
  323. * SPDIF master clock function
  324. *
  325. * These functions are used later FSI2
  326. */
  327. static void fsi_spdif_clk_ctrl(struct fsi_priv *fsi, int enable)
  328. {
  329. struct fsi_master *master = fsi_get_master(fsi);
  330. u32 val = BP | SE;
  331. if (master->core->ver < 2) {
  332. pr_err("fsi: register access err (%s)\n", __func__);
  333. return;
  334. }
  335. if (enable)
  336. fsi_master_mask_set(master, fsi->mst_ctrl, val, val);
  337. else
  338. fsi_master_mask_set(master, fsi->mst_ctrl, val, 0);
  339. }
  340. /*
  341. * ctrl function
  342. */
  343. static void fsi_clk_ctrl(struct fsi_priv *fsi, int enable)
  344. {
  345. u32 val = fsi_is_port_a(fsi) ? (1 << 0) : (1 << 4);
  346. struct fsi_master *master = fsi_get_master(fsi);
  347. if (enable)
  348. fsi_master_mask_set(master, CLK_RST, val, val);
  349. else
  350. fsi_master_mask_set(master, CLK_RST, val, 0);
  351. }
  352. static void fsi_fifo_init(struct fsi_priv *fsi,
  353. int is_play,
  354. struct snd_soc_dai *dai)
  355. {
  356. struct fsi_master *master = fsi_get_master(fsi);
  357. u32 ctrl, shift, i;
  358. /* get on-chip RAM capacity */
  359. shift = fsi_master_read(master, FIFO_SZ);
  360. shift >>= fsi_is_port_a(fsi) ? AO_SZ_SHIFT : BO_SZ_SHIFT;
  361. shift &= OUT_SZ_MASK;
  362. fsi->fifo_max = 256 << shift;
  363. dev_dbg(dai->dev, "fifo = %d words\n", fsi->fifo_max);
  364. /*
  365. * The maximum number of sample data varies depending
  366. * on the number of channels selected for the format.
  367. *
  368. * FIFOs are used in 4-channel units in 3-channel mode
  369. * and in 8-channel units in 5- to 7-channel mode
  370. * meaning that more FIFOs than the required size of DPRAM
  371. * are used.
  372. *
  373. * ex) if 256 words of DP-RAM is connected
  374. * 1 channel: 256 (256 x 1 = 256)
  375. * 2 channels: 128 (128 x 2 = 256)
  376. * 3 channels: 64 ( 64 x 3 = 192)
  377. * 4 channels: 64 ( 64 x 4 = 256)
  378. * 5 channels: 32 ( 32 x 5 = 160)
  379. * 6 channels: 32 ( 32 x 6 = 192)
  380. * 7 channels: 32 ( 32 x 7 = 224)
  381. * 8 channels: 32 ( 32 x 8 = 256)
  382. */
  383. for (i = 1; i < fsi->chan; i <<= 1)
  384. fsi->fifo_max >>= 1;
  385. dev_dbg(dai->dev, "%d channel %d store\n", fsi->chan, fsi->fifo_max);
  386. ctrl = is_play ? DOFF_CTL : DIFF_CTL;
  387. /* set interrupt generation factor */
  388. fsi_reg_write(fsi, ctrl, IRQ_HALF);
  389. /* clear FIFO */
  390. fsi_reg_mask_set(fsi, ctrl, FIFO_CLR, FIFO_CLR);
  391. }
  392. static void fsi_soft_all_reset(struct fsi_master *master)
  393. {
  394. /* port AB reset */
  395. fsi_master_mask_set(master, SOFT_RST, PASR | PBSR, 0);
  396. mdelay(10);
  397. /* soft reset */
  398. fsi_master_mask_set(master, SOFT_RST, FSISR, 0);
  399. fsi_master_mask_set(master, SOFT_RST, FSISR, FSISR);
  400. mdelay(10);
  401. }
  402. /* playback interrupt */
  403. static int fsi_data_push(struct fsi_priv *fsi, int startup)
  404. {
  405. struct snd_pcm_runtime *runtime;
  406. struct snd_pcm_substream *substream = NULL;
  407. u32 status;
  408. int send;
  409. int fifo_free;
  410. int width;
  411. u8 *start;
  412. int i, over_period;
  413. if (!fsi ||
  414. !fsi->substream ||
  415. !fsi->substream->runtime)
  416. return -EINVAL;
  417. over_period = 0;
  418. substream = fsi->substream;
  419. runtime = substream->runtime;
  420. /* FSI FIFO has limit.
  421. * So, this driver can not send periods data at a time
  422. */
  423. if (fsi->byte_offset >=
  424. fsi->period_len * (fsi->periods + 1)) {
  425. over_period = 1;
  426. fsi->periods = (fsi->periods + 1) % runtime->periods;
  427. if (0 == fsi->periods)
  428. fsi->byte_offset = 0;
  429. }
  430. /* get 1 channel data width */
  431. width = frames_to_bytes(runtime, 1) / fsi->chan;
  432. /* get send size for alsa */
  433. send = (fsi->buffer_len - fsi->byte_offset) / width;
  434. /* get FIFO free size */
  435. fifo_free = (fsi->fifo_max * fsi->chan) - fsi_get_fifo_residue(fsi, 1);
  436. /* size check */
  437. if (fifo_free < send)
  438. send = fifo_free;
  439. start = fsi_dma_get_area(fsi);
  440. switch (width) {
  441. case 2:
  442. for (i = 0; i < send; i++)
  443. fsi_reg_write(fsi, DODT,
  444. ((u32)*((u16 *)start + i) << 8));
  445. break;
  446. case 4:
  447. for (i = 0; i < send; i++)
  448. fsi_reg_write(fsi, DODT, *((u32 *)start + i));
  449. break;
  450. default:
  451. return -EINVAL;
  452. }
  453. fsi->byte_offset += send * width;
  454. status = fsi_reg_read(fsi, DOFF_ST);
  455. if (!startup) {
  456. struct snd_soc_dai *dai = fsi_get_dai(substream);
  457. if (status & ERR_OVER)
  458. dev_err(dai->dev, "over run\n");
  459. if (status & ERR_UNDER)
  460. dev_err(dai->dev, "under run\n");
  461. }
  462. fsi_reg_write(fsi, DOFF_ST, 0);
  463. fsi_irq_enable(fsi, 1);
  464. if (over_period)
  465. snd_pcm_period_elapsed(substream);
  466. return 0;
  467. }
  468. static int fsi_data_pop(struct fsi_priv *fsi, int startup)
  469. {
  470. struct snd_pcm_runtime *runtime;
  471. struct snd_pcm_substream *substream = NULL;
  472. u32 status;
  473. int free;
  474. int fifo_fill;
  475. int width;
  476. u8 *start;
  477. int i, over_period;
  478. if (!fsi ||
  479. !fsi->substream ||
  480. !fsi->substream->runtime)
  481. return -EINVAL;
  482. over_period = 0;
  483. substream = fsi->substream;
  484. runtime = substream->runtime;
  485. /* FSI FIFO has limit.
  486. * So, this driver can not send periods data at a time
  487. */
  488. if (fsi->byte_offset >=
  489. fsi->period_len * (fsi->periods + 1)) {
  490. over_period = 1;
  491. fsi->periods = (fsi->periods + 1) % runtime->periods;
  492. if (0 == fsi->periods)
  493. fsi->byte_offset = 0;
  494. }
  495. /* get 1 channel data width */
  496. width = frames_to_bytes(runtime, 1) / fsi->chan;
  497. /* get free space for alsa */
  498. free = (fsi->buffer_len - fsi->byte_offset) / width;
  499. /* get recv size */
  500. fifo_fill = fsi_get_fifo_residue(fsi, 0);
  501. if (free < fifo_fill)
  502. fifo_fill = free;
  503. start = fsi_dma_get_area(fsi);
  504. switch (width) {
  505. case 2:
  506. for (i = 0; i < fifo_fill; i++)
  507. *((u16 *)start + i) =
  508. (u16)(fsi_reg_read(fsi, DIDT) >> 8);
  509. break;
  510. case 4:
  511. for (i = 0; i < fifo_fill; i++)
  512. *((u32 *)start + i) = fsi_reg_read(fsi, DIDT);
  513. break;
  514. default:
  515. return -EINVAL;
  516. }
  517. fsi->byte_offset += fifo_fill * width;
  518. status = fsi_reg_read(fsi, DIFF_ST);
  519. if (!startup) {
  520. struct snd_soc_dai *dai = fsi_get_dai(substream);
  521. if (status & ERR_OVER)
  522. dev_err(dai->dev, "over run\n");
  523. if (status & ERR_UNDER)
  524. dev_err(dai->dev, "under run\n");
  525. }
  526. fsi_reg_write(fsi, DIFF_ST, 0);
  527. fsi_irq_enable(fsi, 0);
  528. if (over_period)
  529. snd_pcm_period_elapsed(substream);
  530. return 0;
  531. }
  532. static irqreturn_t fsi_interrupt(int irq, void *data)
  533. {
  534. struct fsi_master *master = data;
  535. u32 int_st = fsi_irq_get_status(master);
  536. /* clear irq status */
  537. fsi_master_mask_set(master, SOFT_RST, IR, 0);
  538. fsi_master_mask_set(master, SOFT_RST, IR, IR);
  539. if (int_st & INT_A_OUT)
  540. fsi_data_push(&master->fsia, 0);
  541. if (int_st & INT_B_OUT)
  542. fsi_data_push(&master->fsib, 0);
  543. if (int_st & INT_A_IN)
  544. fsi_data_pop(&master->fsia, 0);
  545. if (int_st & INT_B_IN)
  546. fsi_data_pop(&master->fsib, 0);
  547. fsi_irq_clear_all_status(master);
  548. return IRQ_HANDLED;
  549. }
  550. /*
  551. * dai ops
  552. */
  553. static int fsi_dai_startup(struct snd_pcm_substream *substream,
  554. struct snd_soc_dai *dai)
  555. {
  556. struct fsi_priv *fsi = fsi_get_priv(substream);
  557. u32 flags = fsi_get_info_flags(fsi);
  558. struct fsi_master *master = fsi_get_master(fsi);
  559. u32 fmt;
  560. u32 reg;
  561. u32 data;
  562. int is_play = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK);
  563. int is_master;
  564. int ret = 0;
  565. pm_runtime_get_sync(dai->dev);
  566. /* CKG1 */
  567. data = is_play ? (1 << 0) : (1 << 4);
  568. is_master = fsi_is_master_mode(fsi, is_play);
  569. if (is_master)
  570. fsi_reg_mask_set(fsi, CKG1, data, data);
  571. else
  572. fsi_reg_mask_set(fsi, CKG1, data, 0);
  573. /* clock inversion (CKG2) */
  574. data = 0;
  575. if (SH_FSI_LRM_INV & flags)
  576. data |= 1 << 12;
  577. if (SH_FSI_BRM_INV & flags)
  578. data |= 1 << 8;
  579. if (SH_FSI_LRS_INV & flags)
  580. data |= 1 << 4;
  581. if (SH_FSI_BRS_INV & flags)
  582. data |= 1 << 0;
  583. fsi_reg_write(fsi, CKG2, data);
  584. /* do fmt, di fmt */
  585. data = 0;
  586. reg = is_play ? DO_FMT : DI_FMT;
  587. fmt = is_play ? SH_FSI_GET_OFMT(flags) : SH_FSI_GET_IFMT(flags);
  588. switch (fmt) {
  589. case SH_FSI_FMT_MONO:
  590. data = CR_MONO;
  591. fsi->chan = 1;
  592. break;
  593. case SH_FSI_FMT_MONO_DELAY:
  594. data = CR_MONO_D;
  595. fsi->chan = 1;
  596. break;
  597. case SH_FSI_FMT_PCM:
  598. data = CR_PCM;
  599. fsi->chan = 2;
  600. break;
  601. case SH_FSI_FMT_I2S:
  602. data = CR_I2S;
  603. fsi->chan = 2;
  604. break;
  605. case SH_FSI_FMT_TDM:
  606. fsi->chan = is_play ?
  607. SH_FSI_GET_CH_O(flags) : SH_FSI_GET_CH_I(flags);
  608. data = CR_TDM | (fsi->chan - 1);
  609. break;
  610. case SH_FSI_FMT_TDM_DELAY:
  611. fsi->chan = is_play ?
  612. SH_FSI_GET_CH_O(flags) : SH_FSI_GET_CH_I(flags);
  613. data = CR_TDM_D | (fsi->chan - 1);
  614. break;
  615. case SH_FSI_FMT_SPDIF:
  616. if (master->core->ver < 2) {
  617. dev_err(dai->dev, "This FSI can not use SPDIF\n");
  618. return -EINVAL;
  619. }
  620. data = CR_SPDIF;
  621. fsi->chan = 2;
  622. fsi_spdif_clk_ctrl(fsi, 1);
  623. fsi_reg_mask_set(fsi, OUT_SEL, 0x0010, 0x0010);
  624. break;
  625. default:
  626. dev_err(dai->dev, "unknown format.\n");
  627. return -EINVAL;
  628. }
  629. fsi_reg_write(fsi, reg, data);
  630. /* irq clear */
  631. fsi_irq_disable(fsi, is_play);
  632. fsi_irq_clear_status(fsi);
  633. /* fifo init */
  634. fsi_fifo_init(fsi, is_play, dai);
  635. return ret;
  636. }
  637. static void fsi_dai_shutdown(struct snd_pcm_substream *substream,
  638. struct snd_soc_dai *dai)
  639. {
  640. struct fsi_priv *fsi = fsi_get_priv(substream);
  641. int is_play = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
  642. fsi_irq_disable(fsi, is_play);
  643. fsi_clk_ctrl(fsi, 0);
  644. pm_runtime_put_sync(dai->dev);
  645. }
  646. static int fsi_dai_trigger(struct snd_pcm_substream *substream, int cmd,
  647. struct snd_soc_dai *dai)
  648. {
  649. struct fsi_priv *fsi = fsi_get_priv(substream);
  650. struct snd_pcm_runtime *runtime = substream->runtime;
  651. int is_play = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
  652. int ret = 0;
  653. switch (cmd) {
  654. case SNDRV_PCM_TRIGGER_START:
  655. fsi_stream_push(fsi, substream,
  656. frames_to_bytes(runtime, runtime->buffer_size),
  657. frames_to_bytes(runtime, runtime->period_size));
  658. ret = is_play ? fsi_data_push(fsi, 1) : fsi_data_pop(fsi, 1);
  659. break;
  660. case SNDRV_PCM_TRIGGER_STOP:
  661. fsi_irq_disable(fsi, is_play);
  662. fsi_stream_pop(fsi);
  663. break;
  664. }
  665. return ret;
  666. }
  667. static int fsi_dai_hw_params(struct snd_pcm_substream *substream,
  668. struct snd_pcm_hw_params *params,
  669. struct snd_soc_dai *dai)
  670. {
  671. struct fsi_priv *fsi = fsi_get_priv(substream);
  672. struct fsi_master *master = fsi_get_master(fsi);
  673. int (*set_rate)(int is_porta, int rate) = master->info->set_rate;
  674. int fsi_ver = master->core->ver;
  675. int is_play = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK);
  676. int ret;
  677. /* if slave mode, set_rate is not needed */
  678. if (!fsi_is_master_mode(fsi, is_play))
  679. return 0;
  680. /* it is error if no set_rate */
  681. if (!set_rate)
  682. return -EIO;
  683. ret = set_rate(fsi_is_port_a(fsi), params_rate(params));
  684. if (ret > 0) {
  685. u32 data = 0;
  686. switch (ret & SH_FSI_ACKMD_MASK) {
  687. default:
  688. /* FALL THROUGH */
  689. case SH_FSI_ACKMD_512:
  690. data |= (0x0 << 12);
  691. break;
  692. case SH_FSI_ACKMD_256:
  693. data |= (0x1 << 12);
  694. break;
  695. case SH_FSI_ACKMD_128:
  696. data |= (0x2 << 12);
  697. break;
  698. case SH_FSI_ACKMD_64:
  699. data |= (0x3 << 12);
  700. break;
  701. case SH_FSI_ACKMD_32:
  702. if (fsi_ver < 2)
  703. dev_err(dai->dev, "unsupported ACKMD\n");
  704. else
  705. data |= (0x4 << 12);
  706. break;
  707. }
  708. switch (ret & SH_FSI_BPFMD_MASK) {
  709. default:
  710. /* FALL THROUGH */
  711. case SH_FSI_BPFMD_32:
  712. data |= (0x0 << 8);
  713. break;
  714. case SH_FSI_BPFMD_64:
  715. data |= (0x1 << 8);
  716. break;
  717. case SH_FSI_BPFMD_128:
  718. data |= (0x2 << 8);
  719. break;
  720. case SH_FSI_BPFMD_256:
  721. data |= (0x3 << 8);
  722. break;
  723. case SH_FSI_BPFMD_512:
  724. data |= (0x4 << 8);
  725. break;
  726. case SH_FSI_BPFMD_16:
  727. if (fsi_ver < 2)
  728. dev_err(dai->dev, "unsupported ACKMD\n");
  729. else
  730. data |= (0x7 << 8);
  731. break;
  732. }
  733. fsi_reg_mask_set(fsi, CKG1, (ACKMD_MASK | BPFMD_MASK) , data);
  734. udelay(10);
  735. fsi_clk_ctrl(fsi, 1);
  736. ret = 0;
  737. }
  738. return ret;
  739. }
  740. static struct snd_soc_dai_ops fsi_dai_ops = {
  741. .startup = fsi_dai_startup,
  742. .shutdown = fsi_dai_shutdown,
  743. .trigger = fsi_dai_trigger,
  744. .hw_params = fsi_dai_hw_params,
  745. };
  746. /*
  747. * pcm ops
  748. */
  749. static struct snd_pcm_hardware fsi_pcm_hardware = {
  750. .info = SNDRV_PCM_INFO_INTERLEAVED |
  751. SNDRV_PCM_INFO_MMAP |
  752. SNDRV_PCM_INFO_MMAP_VALID |
  753. SNDRV_PCM_INFO_PAUSE,
  754. .formats = FSI_FMTS,
  755. .rates = FSI_RATES,
  756. .rate_min = 8000,
  757. .rate_max = 192000,
  758. .channels_min = 1,
  759. .channels_max = 2,
  760. .buffer_bytes_max = 64 * 1024,
  761. .period_bytes_min = 32,
  762. .period_bytes_max = 8192,
  763. .periods_min = 1,
  764. .periods_max = 32,
  765. .fifo_size = 256,
  766. };
  767. static int fsi_pcm_open(struct snd_pcm_substream *substream)
  768. {
  769. struct snd_pcm_runtime *runtime = substream->runtime;
  770. int ret = 0;
  771. snd_soc_set_runtime_hwparams(substream, &fsi_pcm_hardware);
  772. ret = snd_pcm_hw_constraint_integer(runtime,
  773. SNDRV_PCM_HW_PARAM_PERIODS);
  774. return ret;
  775. }
  776. static int fsi_hw_params(struct snd_pcm_substream *substream,
  777. struct snd_pcm_hw_params *hw_params)
  778. {
  779. return snd_pcm_lib_malloc_pages(substream,
  780. params_buffer_bytes(hw_params));
  781. }
  782. static int fsi_hw_free(struct snd_pcm_substream *substream)
  783. {
  784. return snd_pcm_lib_free_pages(substream);
  785. }
  786. static snd_pcm_uframes_t fsi_pointer(struct snd_pcm_substream *substream)
  787. {
  788. struct snd_pcm_runtime *runtime = substream->runtime;
  789. struct fsi_priv *fsi = fsi_get_priv(substream);
  790. long location;
  791. location = (fsi->byte_offset - 1);
  792. if (location < 0)
  793. location = 0;
  794. return bytes_to_frames(runtime, location);
  795. }
  796. static struct snd_pcm_ops fsi_pcm_ops = {
  797. .open = fsi_pcm_open,
  798. .ioctl = snd_pcm_lib_ioctl,
  799. .hw_params = fsi_hw_params,
  800. .hw_free = fsi_hw_free,
  801. .pointer = fsi_pointer,
  802. };
  803. /*
  804. * snd_soc_platform
  805. */
  806. #define PREALLOC_BUFFER (32 * 1024)
  807. #define PREALLOC_BUFFER_MAX (32 * 1024)
  808. static void fsi_pcm_free(struct snd_pcm *pcm)
  809. {
  810. snd_pcm_lib_preallocate_free_for_all(pcm);
  811. }
  812. static int fsi_pcm_new(struct snd_card *card,
  813. struct snd_soc_dai *dai,
  814. struct snd_pcm *pcm)
  815. {
  816. /*
  817. * dont use SNDRV_DMA_TYPE_DEV, since it will oops the SH kernel
  818. * in MMAP mode (i.e. aplay -M)
  819. */
  820. return snd_pcm_lib_preallocate_pages_for_all(
  821. pcm,
  822. SNDRV_DMA_TYPE_CONTINUOUS,
  823. snd_dma_continuous_data(GFP_KERNEL),
  824. PREALLOC_BUFFER, PREALLOC_BUFFER_MAX);
  825. }
  826. /*
  827. * alsa struct
  828. */
  829. static struct snd_soc_dai_driver fsi_soc_dai[] = {
  830. {
  831. .name = "fsia-dai",
  832. .playback = {
  833. .rates = FSI_RATES,
  834. .formats = FSI_FMTS,
  835. .channels_min = 1,
  836. .channels_max = 8,
  837. },
  838. .capture = {
  839. .rates = FSI_RATES,
  840. .formats = FSI_FMTS,
  841. .channels_min = 1,
  842. .channels_max = 8,
  843. },
  844. .ops = &fsi_dai_ops,
  845. },
  846. {
  847. .name = "fsib-dai",
  848. .playback = {
  849. .rates = FSI_RATES,
  850. .formats = FSI_FMTS,
  851. .channels_min = 1,
  852. .channels_max = 8,
  853. },
  854. .capture = {
  855. .rates = FSI_RATES,
  856. .formats = FSI_FMTS,
  857. .channels_min = 1,
  858. .channels_max = 8,
  859. },
  860. .ops = &fsi_dai_ops,
  861. },
  862. };
  863. static struct snd_soc_platform_driver fsi_soc_platform = {
  864. .ops = &fsi_pcm_ops,
  865. .pcm_new = fsi_pcm_new,
  866. .pcm_free = fsi_pcm_free,
  867. };
  868. /*
  869. * platform function
  870. */
  871. static int fsi_probe(struct platform_device *pdev)
  872. {
  873. struct fsi_master *master;
  874. const struct platform_device_id *id_entry;
  875. struct resource *res;
  876. unsigned int irq;
  877. int ret;
  878. id_entry = pdev->id_entry;
  879. if (!id_entry) {
  880. dev_err(&pdev->dev, "unknown fsi device\n");
  881. return -ENODEV;
  882. }
  883. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  884. irq = platform_get_irq(pdev, 0);
  885. if (!res || (int)irq <= 0) {
  886. dev_err(&pdev->dev, "Not enough FSI platform resources.\n");
  887. ret = -ENODEV;
  888. goto exit;
  889. }
  890. master = kzalloc(sizeof(*master), GFP_KERNEL);
  891. if (!master) {
  892. dev_err(&pdev->dev, "Could not allocate master\n");
  893. ret = -ENOMEM;
  894. goto exit;
  895. }
  896. master->base = ioremap_nocache(res->start, resource_size(res));
  897. if (!master->base) {
  898. ret = -ENXIO;
  899. dev_err(&pdev->dev, "Unable to ioremap FSI registers.\n");
  900. goto exit_kfree;
  901. }
  902. /* master setting */
  903. master->irq = irq;
  904. master->info = pdev->dev.platform_data;
  905. master->core = (struct fsi_core *)id_entry->driver_data;
  906. spin_lock_init(&master->lock);
  907. /* FSI A setting */
  908. master->fsia.base = master->base;
  909. master->fsia.master = master;
  910. master->fsia.mst_ctrl = A_MST_CTLR;
  911. /* FSI B setting */
  912. master->fsib.base = master->base + 0x40;
  913. master->fsib.master = master;
  914. master->fsib.mst_ctrl = B_MST_CTLR;
  915. pm_runtime_enable(&pdev->dev);
  916. pm_runtime_resume(&pdev->dev);
  917. dev_set_drvdata(&pdev->dev, master);
  918. fsi_soft_all_reset(master);
  919. ret = request_irq(irq, &fsi_interrupt, IRQF_DISABLED,
  920. id_entry->name, master);
  921. if (ret) {
  922. dev_err(&pdev->dev, "irq request err\n");
  923. goto exit_iounmap;
  924. }
  925. ret = snd_soc_register_platform(&pdev->dev, &fsi_soc_platform);
  926. if (ret < 0) {
  927. dev_err(&pdev->dev, "cannot snd soc register\n");
  928. goto exit_free_irq;
  929. }
  930. return snd_soc_register_dais(&pdev->dev, fsi_soc_dai, ARRAY_SIZE(fsi_soc_dai));
  931. exit_free_irq:
  932. free_irq(irq, master);
  933. exit_iounmap:
  934. iounmap(master->base);
  935. pm_runtime_disable(&pdev->dev);
  936. exit_kfree:
  937. kfree(master);
  938. master = NULL;
  939. exit:
  940. return ret;
  941. }
  942. static int fsi_remove(struct platform_device *pdev)
  943. {
  944. struct fsi_master *master;
  945. master = dev_get_drvdata(&pdev->dev);
  946. snd_soc_unregister_dais(&pdev->dev, ARRAY_SIZE(fsi_soc_dai));
  947. snd_soc_unregister_platform(&pdev->dev);
  948. pm_runtime_disable(&pdev->dev);
  949. free_irq(master->irq, master);
  950. iounmap(master->base);
  951. kfree(master);
  952. return 0;
  953. }
  954. static int fsi_runtime_nop(struct device *dev)
  955. {
  956. /* Runtime PM callback shared between ->runtime_suspend()
  957. * and ->runtime_resume(). Simply returns success.
  958. *
  959. * This driver re-initializes all registers after
  960. * pm_runtime_get_sync() anyway so there is no need
  961. * to save and restore registers here.
  962. */
  963. return 0;
  964. }
  965. static struct dev_pm_ops fsi_pm_ops = {
  966. .runtime_suspend = fsi_runtime_nop,
  967. .runtime_resume = fsi_runtime_nop,
  968. };
  969. static struct fsi_core fsi1_core = {
  970. .ver = 1,
  971. /* Interrupt */
  972. .int_st = INT_ST,
  973. .iemsk = IEMSK,
  974. .imsk = IMSK,
  975. };
  976. static struct fsi_core fsi2_core = {
  977. .ver = 2,
  978. /* Interrupt */
  979. .int_st = CPU_INT_ST,
  980. .iemsk = CPU_IEMSK,
  981. .imsk = CPU_IMSK,
  982. };
  983. static struct platform_device_id fsi_id_table[] = {
  984. { "sh_fsi", (kernel_ulong_t)&fsi1_core },
  985. { "sh_fsi2", (kernel_ulong_t)&fsi2_core },
  986. };
  987. MODULE_DEVICE_TABLE(platform, fsi_id_table);
  988. static struct platform_driver fsi_driver = {
  989. .driver = {
  990. .name = "fsi-pcm-audio",
  991. .pm = &fsi_pm_ops,
  992. },
  993. .probe = fsi_probe,
  994. .remove = fsi_remove,
  995. .id_table = fsi_id_table,
  996. };
  997. static int __init fsi_mobile_init(void)
  998. {
  999. return platform_driver_register(&fsi_driver);
  1000. }
  1001. static void __exit fsi_mobile_exit(void)
  1002. {
  1003. platform_driver_unregister(&fsi_driver);
  1004. }
  1005. module_init(fsi_mobile_init);
  1006. module_exit(fsi_mobile_exit);
  1007. MODULE_LICENSE("GPL");
  1008. MODULE_DESCRIPTION("SuperH onchip FSI audio driver");
  1009. MODULE_AUTHOR("Kuninori Morimoto <morimoto.kuninori@renesas.com>");