xfs_inode.c 135 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667
  1. /*
  2. * Copyright (c) 2000-2006 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include <linux/log2.h>
  19. #include "xfs.h"
  20. #include "xfs_fs.h"
  21. #include "xfs_types.h"
  22. #include "xfs_bit.h"
  23. #include "xfs_log.h"
  24. #include "xfs_inum.h"
  25. #include "xfs_imap.h"
  26. #include "xfs_trans.h"
  27. #include "xfs_trans_priv.h"
  28. #include "xfs_sb.h"
  29. #include "xfs_ag.h"
  30. #include "xfs_dir2.h"
  31. #include "xfs_dmapi.h"
  32. #include "xfs_mount.h"
  33. #include "xfs_bmap_btree.h"
  34. #include "xfs_alloc_btree.h"
  35. #include "xfs_ialloc_btree.h"
  36. #include "xfs_dir2_sf.h"
  37. #include "xfs_attr_sf.h"
  38. #include "xfs_dinode.h"
  39. #include "xfs_inode.h"
  40. #include "xfs_buf_item.h"
  41. #include "xfs_inode_item.h"
  42. #include "xfs_btree.h"
  43. #include "xfs_alloc.h"
  44. #include "xfs_ialloc.h"
  45. #include "xfs_bmap.h"
  46. #include "xfs_rw.h"
  47. #include "xfs_error.h"
  48. #include "xfs_utils.h"
  49. #include "xfs_dir2_trace.h"
  50. #include "xfs_quota.h"
  51. #include "xfs_acl.h"
  52. #include "xfs_filestream.h"
  53. #include "xfs_vnodeops.h"
  54. kmem_zone_t *xfs_ifork_zone;
  55. kmem_zone_t *xfs_inode_zone;
  56. /*
  57. * Used in xfs_itruncate(). This is the maximum number of extents
  58. * freed from a file in a single transaction.
  59. */
  60. #define XFS_ITRUNC_MAX_EXTENTS 2
  61. STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
  62. STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
  63. STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
  64. STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
  65. #ifdef DEBUG
  66. /*
  67. * Make sure that the extents in the given memory buffer
  68. * are valid.
  69. */
  70. STATIC void
  71. xfs_validate_extents(
  72. xfs_ifork_t *ifp,
  73. int nrecs,
  74. xfs_exntfmt_t fmt)
  75. {
  76. xfs_bmbt_irec_t irec;
  77. xfs_bmbt_rec_host_t rec;
  78. int i;
  79. for (i = 0; i < nrecs; i++) {
  80. xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  81. rec.l0 = get_unaligned(&ep->l0);
  82. rec.l1 = get_unaligned(&ep->l1);
  83. xfs_bmbt_get_all(&rec, &irec);
  84. if (fmt == XFS_EXTFMT_NOSTATE)
  85. ASSERT(irec.br_state == XFS_EXT_NORM);
  86. }
  87. }
  88. #else /* DEBUG */
  89. #define xfs_validate_extents(ifp, nrecs, fmt)
  90. #endif /* DEBUG */
  91. /*
  92. * Check that none of the inode's in the buffer have a next
  93. * unlinked field of 0.
  94. */
  95. #if defined(DEBUG)
  96. void
  97. xfs_inobp_check(
  98. xfs_mount_t *mp,
  99. xfs_buf_t *bp)
  100. {
  101. int i;
  102. int j;
  103. xfs_dinode_t *dip;
  104. j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
  105. for (i = 0; i < j; i++) {
  106. dip = (xfs_dinode_t *)xfs_buf_offset(bp,
  107. i * mp->m_sb.sb_inodesize);
  108. if (!dip->di_next_unlinked) {
  109. xfs_fs_cmn_err(CE_ALERT, mp,
  110. "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
  111. bp);
  112. ASSERT(dip->di_next_unlinked);
  113. }
  114. }
  115. }
  116. #endif
  117. /*
  118. * Find the buffer associated with the given inode map
  119. * We do basic validation checks on the buffer once it has been
  120. * retrieved from disk.
  121. */
  122. STATIC int
  123. xfs_imap_to_bp(
  124. xfs_mount_t *mp,
  125. xfs_trans_t *tp,
  126. xfs_imap_t *imap,
  127. xfs_buf_t **bpp,
  128. uint buf_flags,
  129. uint imap_flags)
  130. {
  131. int error;
  132. int i;
  133. int ni;
  134. xfs_buf_t *bp;
  135. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
  136. (int)imap->im_len, buf_flags, &bp);
  137. if (error) {
  138. if (error != EAGAIN) {
  139. cmn_err(CE_WARN,
  140. "xfs_imap_to_bp: xfs_trans_read_buf()returned "
  141. "an error %d on %s. Returning error.",
  142. error, mp->m_fsname);
  143. } else {
  144. ASSERT(buf_flags & XFS_BUF_TRYLOCK);
  145. }
  146. return error;
  147. }
  148. /*
  149. * Validate the magic number and version of every inode in the buffer
  150. * (if DEBUG kernel) or the first inode in the buffer, otherwise.
  151. */
  152. #ifdef DEBUG
  153. ni = BBTOB(imap->im_len) >> mp->m_sb.sb_inodelog;
  154. #else /* usual case */
  155. ni = 1;
  156. #endif
  157. for (i = 0; i < ni; i++) {
  158. int di_ok;
  159. xfs_dinode_t *dip;
  160. dip = (xfs_dinode_t *)xfs_buf_offset(bp,
  161. (i << mp->m_sb.sb_inodelog));
  162. di_ok = be16_to_cpu(dip->di_core.di_magic) == XFS_DINODE_MAGIC &&
  163. XFS_DINODE_GOOD_VERSION(dip->di_core.di_version);
  164. if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
  165. XFS_ERRTAG_ITOBP_INOTOBP,
  166. XFS_RANDOM_ITOBP_INOTOBP))) {
  167. if (imap_flags & XFS_IMAP_BULKSTAT) {
  168. xfs_trans_brelse(tp, bp);
  169. return XFS_ERROR(EINVAL);
  170. }
  171. XFS_CORRUPTION_ERROR("xfs_imap_to_bp",
  172. XFS_ERRLEVEL_HIGH, mp, dip);
  173. #ifdef DEBUG
  174. cmn_err(CE_PANIC,
  175. "Device %s - bad inode magic/vsn "
  176. "daddr %lld #%d (magic=%x)",
  177. XFS_BUFTARG_NAME(mp->m_ddev_targp),
  178. (unsigned long long)imap->im_blkno, i,
  179. be16_to_cpu(dip->di_core.di_magic));
  180. #endif
  181. xfs_trans_brelse(tp, bp);
  182. return XFS_ERROR(EFSCORRUPTED);
  183. }
  184. }
  185. xfs_inobp_check(mp, bp);
  186. /*
  187. * Mark the buffer as an inode buffer now that it looks good
  188. */
  189. XFS_BUF_SET_VTYPE(bp, B_FS_INO);
  190. *bpp = bp;
  191. return 0;
  192. }
  193. /*
  194. * This routine is called to map an inode number within a file
  195. * system to the buffer containing the on-disk version of the
  196. * inode. It returns a pointer to the buffer containing the
  197. * on-disk inode in the bpp parameter, and in the dip parameter
  198. * it returns a pointer to the on-disk inode within that buffer.
  199. *
  200. * If a non-zero error is returned, then the contents of bpp and
  201. * dipp are undefined.
  202. *
  203. * Use xfs_imap() to determine the size and location of the
  204. * buffer to read from disk.
  205. */
  206. STATIC int
  207. xfs_inotobp(
  208. xfs_mount_t *mp,
  209. xfs_trans_t *tp,
  210. xfs_ino_t ino,
  211. xfs_dinode_t **dipp,
  212. xfs_buf_t **bpp,
  213. int *offset)
  214. {
  215. xfs_imap_t imap;
  216. xfs_buf_t *bp;
  217. int error;
  218. imap.im_blkno = 0;
  219. error = xfs_imap(mp, tp, ino, &imap, XFS_IMAP_LOOKUP);
  220. if (error)
  221. return error;
  222. error = xfs_imap_to_bp(mp, tp, &imap, &bp, XFS_BUF_LOCK, 0);
  223. if (error)
  224. return error;
  225. *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
  226. *bpp = bp;
  227. *offset = imap.im_boffset;
  228. return 0;
  229. }
  230. /*
  231. * This routine is called to map an inode to the buffer containing
  232. * the on-disk version of the inode. It returns a pointer to the
  233. * buffer containing the on-disk inode in the bpp parameter, and in
  234. * the dip parameter it returns a pointer to the on-disk inode within
  235. * that buffer.
  236. *
  237. * If a non-zero error is returned, then the contents of bpp and
  238. * dipp are undefined.
  239. *
  240. * If the inode is new and has not yet been initialized, use xfs_imap()
  241. * to determine the size and location of the buffer to read from disk.
  242. * If the inode has already been mapped to its buffer and read in once,
  243. * then use the mapping information stored in the inode rather than
  244. * calling xfs_imap(). This allows us to avoid the overhead of looking
  245. * at the inode btree for small block file systems (see xfs_dilocate()).
  246. * We can tell whether the inode has been mapped in before by comparing
  247. * its disk block address to 0. Only uninitialized inodes will have
  248. * 0 for the disk block address.
  249. */
  250. int
  251. xfs_itobp(
  252. xfs_mount_t *mp,
  253. xfs_trans_t *tp,
  254. xfs_inode_t *ip,
  255. xfs_dinode_t **dipp,
  256. xfs_buf_t **bpp,
  257. xfs_daddr_t bno,
  258. uint imap_flags,
  259. uint buf_flags)
  260. {
  261. xfs_imap_t imap;
  262. xfs_buf_t *bp;
  263. int error;
  264. if (ip->i_blkno == (xfs_daddr_t)0) {
  265. imap.im_blkno = bno;
  266. error = xfs_imap(mp, tp, ip->i_ino, &imap,
  267. XFS_IMAP_LOOKUP | imap_flags);
  268. if (error)
  269. return error;
  270. /*
  271. * Fill in the fields in the inode that will be used to
  272. * map the inode to its buffer from now on.
  273. */
  274. ip->i_blkno = imap.im_blkno;
  275. ip->i_len = imap.im_len;
  276. ip->i_boffset = imap.im_boffset;
  277. } else {
  278. /*
  279. * We've already mapped the inode once, so just use the
  280. * mapping that we saved the first time.
  281. */
  282. imap.im_blkno = ip->i_blkno;
  283. imap.im_len = ip->i_len;
  284. imap.im_boffset = ip->i_boffset;
  285. }
  286. ASSERT(bno == 0 || bno == imap.im_blkno);
  287. error = xfs_imap_to_bp(mp, tp, &imap, &bp, buf_flags, imap_flags);
  288. if (error)
  289. return error;
  290. if (!bp) {
  291. ASSERT(buf_flags & XFS_BUF_TRYLOCK);
  292. ASSERT(tp == NULL);
  293. *bpp = NULL;
  294. return EAGAIN;
  295. }
  296. *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
  297. *bpp = bp;
  298. return 0;
  299. }
  300. /*
  301. * Move inode type and inode format specific information from the
  302. * on-disk inode to the in-core inode. For fifos, devs, and sockets
  303. * this means set if_rdev to the proper value. For files, directories,
  304. * and symlinks this means to bring in the in-line data or extent
  305. * pointers. For a file in B-tree format, only the root is immediately
  306. * brought in-core. The rest will be in-lined in if_extents when it
  307. * is first referenced (see xfs_iread_extents()).
  308. */
  309. STATIC int
  310. xfs_iformat(
  311. xfs_inode_t *ip,
  312. xfs_dinode_t *dip)
  313. {
  314. xfs_attr_shortform_t *atp;
  315. int size;
  316. int error;
  317. xfs_fsize_t di_size;
  318. ip->i_df.if_ext_max =
  319. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  320. error = 0;
  321. if (unlikely(be32_to_cpu(dip->di_core.di_nextents) +
  322. be16_to_cpu(dip->di_core.di_anextents) >
  323. be64_to_cpu(dip->di_core.di_nblocks))) {
  324. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  325. "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
  326. (unsigned long long)ip->i_ino,
  327. (int)(be32_to_cpu(dip->di_core.di_nextents) +
  328. be16_to_cpu(dip->di_core.di_anextents)),
  329. (unsigned long long)
  330. be64_to_cpu(dip->di_core.di_nblocks));
  331. XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
  332. ip->i_mount, dip);
  333. return XFS_ERROR(EFSCORRUPTED);
  334. }
  335. if (unlikely(dip->di_core.di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
  336. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  337. "corrupt dinode %Lu, forkoff = 0x%x.",
  338. (unsigned long long)ip->i_ino,
  339. dip->di_core.di_forkoff);
  340. XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
  341. ip->i_mount, dip);
  342. return XFS_ERROR(EFSCORRUPTED);
  343. }
  344. switch (ip->i_d.di_mode & S_IFMT) {
  345. case S_IFIFO:
  346. case S_IFCHR:
  347. case S_IFBLK:
  348. case S_IFSOCK:
  349. if (unlikely(dip->di_core.di_format != XFS_DINODE_FMT_DEV)) {
  350. XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
  351. ip->i_mount, dip);
  352. return XFS_ERROR(EFSCORRUPTED);
  353. }
  354. ip->i_d.di_size = 0;
  355. ip->i_size = 0;
  356. ip->i_df.if_u2.if_rdev = be32_to_cpu(dip->di_u.di_dev);
  357. break;
  358. case S_IFREG:
  359. case S_IFLNK:
  360. case S_IFDIR:
  361. switch (dip->di_core.di_format) {
  362. case XFS_DINODE_FMT_LOCAL:
  363. /*
  364. * no local regular files yet
  365. */
  366. if (unlikely((be16_to_cpu(dip->di_core.di_mode) & S_IFMT) == S_IFREG)) {
  367. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  368. "corrupt inode %Lu "
  369. "(local format for regular file).",
  370. (unsigned long long) ip->i_ino);
  371. XFS_CORRUPTION_ERROR("xfs_iformat(4)",
  372. XFS_ERRLEVEL_LOW,
  373. ip->i_mount, dip);
  374. return XFS_ERROR(EFSCORRUPTED);
  375. }
  376. di_size = be64_to_cpu(dip->di_core.di_size);
  377. if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
  378. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  379. "corrupt inode %Lu "
  380. "(bad size %Ld for local inode).",
  381. (unsigned long long) ip->i_ino,
  382. (long long) di_size);
  383. XFS_CORRUPTION_ERROR("xfs_iformat(5)",
  384. XFS_ERRLEVEL_LOW,
  385. ip->i_mount, dip);
  386. return XFS_ERROR(EFSCORRUPTED);
  387. }
  388. size = (int)di_size;
  389. error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
  390. break;
  391. case XFS_DINODE_FMT_EXTENTS:
  392. error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
  393. break;
  394. case XFS_DINODE_FMT_BTREE:
  395. error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
  396. break;
  397. default:
  398. XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
  399. ip->i_mount);
  400. return XFS_ERROR(EFSCORRUPTED);
  401. }
  402. break;
  403. default:
  404. XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
  405. return XFS_ERROR(EFSCORRUPTED);
  406. }
  407. if (error) {
  408. return error;
  409. }
  410. if (!XFS_DFORK_Q(dip))
  411. return 0;
  412. ASSERT(ip->i_afp == NULL);
  413. ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
  414. ip->i_afp->if_ext_max =
  415. XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  416. switch (dip->di_core.di_aformat) {
  417. case XFS_DINODE_FMT_LOCAL:
  418. atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
  419. size = be16_to_cpu(atp->hdr.totsize);
  420. error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
  421. break;
  422. case XFS_DINODE_FMT_EXTENTS:
  423. error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
  424. break;
  425. case XFS_DINODE_FMT_BTREE:
  426. error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
  427. break;
  428. default:
  429. error = XFS_ERROR(EFSCORRUPTED);
  430. break;
  431. }
  432. if (error) {
  433. kmem_zone_free(xfs_ifork_zone, ip->i_afp);
  434. ip->i_afp = NULL;
  435. xfs_idestroy_fork(ip, XFS_DATA_FORK);
  436. }
  437. return error;
  438. }
  439. /*
  440. * The file is in-lined in the on-disk inode.
  441. * If it fits into if_inline_data, then copy
  442. * it there, otherwise allocate a buffer for it
  443. * and copy the data there. Either way, set
  444. * if_data to point at the data.
  445. * If we allocate a buffer for the data, make
  446. * sure that its size is a multiple of 4 and
  447. * record the real size in i_real_bytes.
  448. */
  449. STATIC int
  450. xfs_iformat_local(
  451. xfs_inode_t *ip,
  452. xfs_dinode_t *dip,
  453. int whichfork,
  454. int size)
  455. {
  456. xfs_ifork_t *ifp;
  457. int real_size;
  458. /*
  459. * If the size is unreasonable, then something
  460. * is wrong and we just bail out rather than crash in
  461. * kmem_alloc() or memcpy() below.
  462. */
  463. if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
  464. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  465. "corrupt inode %Lu "
  466. "(bad size %d for local fork, size = %d).",
  467. (unsigned long long) ip->i_ino, size,
  468. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
  469. XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
  470. ip->i_mount, dip);
  471. return XFS_ERROR(EFSCORRUPTED);
  472. }
  473. ifp = XFS_IFORK_PTR(ip, whichfork);
  474. real_size = 0;
  475. if (size == 0)
  476. ifp->if_u1.if_data = NULL;
  477. else if (size <= sizeof(ifp->if_u2.if_inline_data))
  478. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  479. else {
  480. real_size = roundup(size, 4);
  481. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
  482. }
  483. ifp->if_bytes = size;
  484. ifp->if_real_bytes = real_size;
  485. if (size)
  486. memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
  487. ifp->if_flags &= ~XFS_IFEXTENTS;
  488. ifp->if_flags |= XFS_IFINLINE;
  489. return 0;
  490. }
  491. /*
  492. * The file consists of a set of extents all
  493. * of which fit into the on-disk inode.
  494. * If there are few enough extents to fit into
  495. * the if_inline_ext, then copy them there.
  496. * Otherwise allocate a buffer for them and copy
  497. * them into it. Either way, set if_extents
  498. * to point at the extents.
  499. */
  500. STATIC int
  501. xfs_iformat_extents(
  502. xfs_inode_t *ip,
  503. xfs_dinode_t *dip,
  504. int whichfork)
  505. {
  506. xfs_bmbt_rec_t *dp;
  507. xfs_ifork_t *ifp;
  508. int nex;
  509. int size;
  510. int i;
  511. ifp = XFS_IFORK_PTR(ip, whichfork);
  512. nex = XFS_DFORK_NEXTENTS(dip, whichfork);
  513. size = nex * (uint)sizeof(xfs_bmbt_rec_t);
  514. /*
  515. * If the number of extents is unreasonable, then something
  516. * is wrong and we just bail out rather than crash in
  517. * kmem_alloc() or memcpy() below.
  518. */
  519. if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
  520. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  521. "corrupt inode %Lu ((a)extents = %d).",
  522. (unsigned long long) ip->i_ino, nex);
  523. XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
  524. ip->i_mount, dip);
  525. return XFS_ERROR(EFSCORRUPTED);
  526. }
  527. ifp->if_real_bytes = 0;
  528. if (nex == 0)
  529. ifp->if_u1.if_extents = NULL;
  530. else if (nex <= XFS_INLINE_EXTS)
  531. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  532. else
  533. xfs_iext_add(ifp, 0, nex);
  534. ifp->if_bytes = size;
  535. if (size) {
  536. dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
  537. xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
  538. for (i = 0; i < nex; i++, dp++) {
  539. xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  540. ep->l0 = be64_to_cpu(get_unaligned(&dp->l0));
  541. ep->l1 = be64_to_cpu(get_unaligned(&dp->l1));
  542. }
  543. XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
  544. if (whichfork != XFS_DATA_FORK ||
  545. XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
  546. if (unlikely(xfs_check_nostate_extents(
  547. ifp, 0, nex))) {
  548. XFS_ERROR_REPORT("xfs_iformat_extents(2)",
  549. XFS_ERRLEVEL_LOW,
  550. ip->i_mount);
  551. return XFS_ERROR(EFSCORRUPTED);
  552. }
  553. }
  554. ifp->if_flags |= XFS_IFEXTENTS;
  555. return 0;
  556. }
  557. /*
  558. * The file has too many extents to fit into
  559. * the inode, so they are in B-tree format.
  560. * Allocate a buffer for the root of the B-tree
  561. * and copy the root into it. The i_extents
  562. * field will remain NULL until all of the
  563. * extents are read in (when they are needed).
  564. */
  565. STATIC int
  566. xfs_iformat_btree(
  567. xfs_inode_t *ip,
  568. xfs_dinode_t *dip,
  569. int whichfork)
  570. {
  571. xfs_bmdr_block_t *dfp;
  572. xfs_ifork_t *ifp;
  573. /* REFERENCED */
  574. int nrecs;
  575. int size;
  576. ifp = XFS_IFORK_PTR(ip, whichfork);
  577. dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
  578. size = XFS_BMAP_BROOT_SPACE(dfp);
  579. nrecs = XFS_BMAP_BROOT_NUMRECS(dfp);
  580. /*
  581. * blow out if -- fork has less extents than can fit in
  582. * fork (fork shouldn't be a btree format), root btree
  583. * block has more records than can fit into the fork,
  584. * or the number of extents is greater than the number of
  585. * blocks.
  586. */
  587. if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
  588. || XFS_BMDR_SPACE_CALC(nrecs) >
  589. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
  590. || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
  591. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  592. "corrupt inode %Lu (btree).",
  593. (unsigned long long) ip->i_ino);
  594. XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
  595. ip->i_mount);
  596. return XFS_ERROR(EFSCORRUPTED);
  597. }
  598. ifp->if_broot_bytes = size;
  599. ifp->if_broot = kmem_alloc(size, KM_SLEEP);
  600. ASSERT(ifp->if_broot != NULL);
  601. /*
  602. * Copy and convert from the on-disk structure
  603. * to the in-memory structure.
  604. */
  605. xfs_bmdr_to_bmbt(dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
  606. ifp->if_broot, size);
  607. ifp->if_flags &= ~XFS_IFEXTENTS;
  608. ifp->if_flags |= XFS_IFBROOT;
  609. return 0;
  610. }
  611. void
  612. xfs_dinode_from_disk(
  613. xfs_icdinode_t *to,
  614. xfs_dinode_core_t *from)
  615. {
  616. to->di_magic = be16_to_cpu(from->di_magic);
  617. to->di_mode = be16_to_cpu(from->di_mode);
  618. to->di_version = from ->di_version;
  619. to->di_format = from->di_format;
  620. to->di_onlink = be16_to_cpu(from->di_onlink);
  621. to->di_uid = be32_to_cpu(from->di_uid);
  622. to->di_gid = be32_to_cpu(from->di_gid);
  623. to->di_nlink = be32_to_cpu(from->di_nlink);
  624. to->di_projid = be16_to_cpu(from->di_projid);
  625. memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
  626. to->di_flushiter = be16_to_cpu(from->di_flushiter);
  627. to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
  628. to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
  629. to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
  630. to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
  631. to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
  632. to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
  633. to->di_size = be64_to_cpu(from->di_size);
  634. to->di_nblocks = be64_to_cpu(from->di_nblocks);
  635. to->di_extsize = be32_to_cpu(from->di_extsize);
  636. to->di_nextents = be32_to_cpu(from->di_nextents);
  637. to->di_anextents = be16_to_cpu(from->di_anextents);
  638. to->di_forkoff = from->di_forkoff;
  639. to->di_aformat = from->di_aformat;
  640. to->di_dmevmask = be32_to_cpu(from->di_dmevmask);
  641. to->di_dmstate = be16_to_cpu(from->di_dmstate);
  642. to->di_flags = be16_to_cpu(from->di_flags);
  643. to->di_gen = be32_to_cpu(from->di_gen);
  644. }
  645. void
  646. xfs_dinode_to_disk(
  647. xfs_dinode_core_t *to,
  648. xfs_icdinode_t *from)
  649. {
  650. to->di_magic = cpu_to_be16(from->di_magic);
  651. to->di_mode = cpu_to_be16(from->di_mode);
  652. to->di_version = from ->di_version;
  653. to->di_format = from->di_format;
  654. to->di_onlink = cpu_to_be16(from->di_onlink);
  655. to->di_uid = cpu_to_be32(from->di_uid);
  656. to->di_gid = cpu_to_be32(from->di_gid);
  657. to->di_nlink = cpu_to_be32(from->di_nlink);
  658. to->di_projid = cpu_to_be16(from->di_projid);
  659. memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
  660. to->di_flushiter = cpu_to_be16(from->di_flushiter);
  661. to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
  662. to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
  663. to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
  664. to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
  665. to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
  666. to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
  667. to->di_size = cpu_to_be64(from->di_size);
  668. to->di_nblocks = cpu_to_be64(from->di_nblocks);
  669. to->di_extsize = cpu_to_be32(from->di_extsize);
  670. to->di_nextents = cpu_to_be32(from->di_nextents);
  671. to->di_anextents = cpu_to_be16(from->di_anextents);
  672. to->di_forkoff = from->di_forkoff;
  673. to->di_aformat = from->di_aformat;
  674. to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
  675. to->di_dmstate = cpu_to_be16(from->di_dmstate);
  676. to->di_flags = cpu_to_be16(from->di_flags);
  677. to->di_gen = cpu_to_be32(from->di_gen);
  678. }
  679. STATIC uint
  680. _xfs_dic2xflags(
  681. __uint16_t di_flags)
  682. {
  683. uint flags = 0;
  684. if (di_flags & XFS_DIFLAG_ANY) {
  685. if (di_flags & XFS_DIFLAG_REALTIME)
  686. flags |= XFS_XFLAG_REALTIME;
  687. if (di_flags & XFS_DIFLAG_PREALLOC)
  688. flags |= XFS_XFLAG_PREALLOC;
  689. if (di_flags & XFS_DIFLAG_IMMUTABLE)
  690. flags |= XFS_XFLAG_IMMUTABLE;
  691. if (di_flags & XFS_DIFLAG_APPEND)
  692. flags |= XFS_XFLAG_APPEND;
  693. if (di_flags & XFS_DIFLAG_SYNC)
  694. flags |= XFS_XFLAG_SYNC;
  695. if (di_flags & XFS_DIFLAG_NOATIME)
  696. flags |= XFS_XFLAG_NOATIME;
  697. if (di_flags & XFS_DIFLAG_NODUMP)
  698. flags |= XFS_XFLAG_NODUMP;
  699. if (di_flags & XFS_DIFLAG_RTINHERIT)
  700. flags |= XFS_XFLAG_RTINHERIT;
  701. if (di_flags & XFS_DIFLAG_PROJINHERIT)
  702. flags |= XFS_XFLAG_PROJINHERIT;
  703. if (di_flags & XFS_DIFLAG_NOSYMLINKS)
  704. flags |= XFS_XFLAG_NOSYMLINKS;
  705. if (di_flags & XFS_DIFLAG_EXTSIZE)
  706. flags |= XFS_XFLAG_EXTSIZE;
  707. if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
  708. flags |= XFS_XFLAG_EXTSZINHERIT;
  709. if (di_flags & XFS_DIFLAG_NODEFRAG)
  710. flags |= XFS_XFLAG_NODEFRAG;
  711. if (di_flags & XFS_DIFLAG_FILESTREAM)
  712. flags |= XFS_XFLAG_FILESTREAM;
  713. }
  714. return flags;
  715. }
  716. uint
  717. xfs_ip2xflags(
  718. xfs_inode_t *ip)
  719. {
  720. xfs_icdinode_t *dic = &ip->i_d;
  721. return _xfs_dic2xflags(dic->di_flags) |
  722. (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
  723. }
  724. uint
  725. xfs_dic2xflags(
  726. xfs_dinode_t *dip)
  727. {
  728. xfs_dinode_core_t *dic = &dip->di_core;
  729. return _xfs_dic2xflags(be16_to_cpu(dic->di_flags)) |
  730. (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
  731. }
  732. /*
  733. * Given a mount structure and an inode number, return a pointer
  734. * to a newly allocated in-core inode corresponding to the given
  735. * inode number.
  736. *
  737. * Initialize the inode's attributes and extent pointers if it
  738. * already has them (it will not if the inode has no links).
  739. */
  740. int
  741. xfs_iread(
  742. xfs_mount_t *mp,
  743. xfs_trans_t *tp,
  744. xfs_ino_t ino,
  745. xfs_inode_t **ipp,
  746. xfs_daddr_t bno,
  747. uint imap_flags)
  748. {
  749. xfs_buf_t *bp;
  750. xfs_dinode_t *dip;
  751. xfs_inode_t *ip;
  752. int error;
  753. ASSERT(xfs_inode_zone != NULL);
  754. ip = kmem_zone_zalloc(xfs_inode_zone, KM_SLEEP);
  755. ip->i_ino = ino;
  756. ip->i_mount = mp;
  757. atomic_set(&ip->i_iocount, 0);
  758. spin_lock_init(&ip->i_flags_lock);
  759. /*
  760. * Get pointer's to the on-disk inode and the buffer containing it.
  761. * If the inode number refers to a block outside the file system
  762. * then xfs_itobp() will return NULL. In this case we should
  763. * return NULL as well. Set i_blkno to 0 so that xfs_itobp() will
  764. * know that this is a new incore inode.
  765. */
  766. error = xfs_itobp(mp, tp, ip, &dip, &bp, bno, imap_flags, XFS_BUF_LOCK);
  767. if (error) {
  768. kmem_zone_free(xfs_inode_zone, ip);
  769. return error;
  770. }
  771. /*
  772. * Initialize inode's trace buffers.
  773. * Do this before xfs_iformat in case it adds entries.
  774. */
  775. #ifdef XFS_INODE_TRACE
  776. ip->i_trace = ktrace_alloc(INODE_TRACE_SIZE, KM_SLEEP);
  777. #endif
  778. #ifdef XFS_BMAP_TRACE
  779. ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_SLEEP);
  780. #endif
  781. #ifdef XFS_BMBT_TRACE
  782. ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_SLEEP);
  783. #endif
  784. #ifdef XFS_RW_TRACE
  785. ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_SLEEP);
  786. #endif
  787. #ifdef XFS_ILOCK_TRACE
  788. ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_SLEEP);
  789. #endif
  790. #ifdef XFS_DIR2_TRACE
  791. ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_SLEEP);
  792. #endif
  793. /*
  794. * If we got something that isn't an inode it means someone
  795. * (nfs or dmi) has a stale handle.
  796. */
  797. if (be16_to_cpu(dip->di_core.di_magic) != XFS_DINODE_MAGIC) {
  798. kmem_zone_free(xfs_inode_zone, ip);
  799. xfs_trans_brelse(tp, bp);
  800. #ifdef DEBUG
  801. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
  802. "dip->di_core.di_magic (0x%x) != "
  803. "XFS_DINODE_MAGIC (0x%x)",
  804. be16_to_cpu(dip->di_core.di_magic),
  805. XFS_DINODE_MAGIC);
  806. #endif /* DEBUG */
  807. return XFS_ERROR(EINVAL);
  808. }
  809. /*
  810. * If the on-disk inode is already linked to a directory
  811. * entry, copy all of the inode into the in-core inode.
  812. * xfs_iformat() handles copying in the inode format
  813. * specific information.
  814. * Otherwise, just get the truly permanent information.
  815. */
  816. if (dip->di_core.di_mode) {
  817. xfs_dinode_from_disk(&ip->i_d, &dip->di_core);
  818. error = xfs_iformat(ip, dip);
  819. if (error) {
  820. kmem_zone_free(xfs_inode_zone, ip);
  821. xfs_trans_brelse(tp, bp);
  822. #ifdef DEBUG
  823. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
  824. "xfs_iformat() returned error %d",
  825. error);
  826. #endif /* DEBUG */
  827. return error;
  828. }
  829. } else {
  830. ip->i_d.di_magic = be16_to_cpu(dip->di_core.di_magic);
  831. ip->i_d.di_version = dip->di_core.di_version;
  832. ip->i_d.di_gen = be32_to_cpu(dip->di_core.di_gen);
  833. ip->i_d.di_flushiter = be16_to_cpu(dip->di_core.di_flushiter);
  834. /*
  835. * Make sure to pull in the mode here as well in
  836. * case the inode is released without being used.
  837. * This ensures that xfs_inactive() will see that
  838. * the inode is already free and not try to mess
  839. * with the uninitialized part of it.
  840. */
  841. ip->i_d.di_mode = 0;
  842. /*
  843. * Initialize the per-fork minima and maxima for a new
  844. * inode here. xfs_iformat will do it for old inodes.
  845. */
  846. ip->i_df.if_ext_max =
  847. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  848. }
  849. INIT_LIST_HEAD(&ip->i_reclaim);
  850. /*
  851. * The inode format changed when we moved the link count and
  852. * made it 32 bits long. If this is an old format inode,
  853. * convert it in memory to look like a new one. If it gets
  854. * flushed to disk we will convert back before flushing or
  855. * logging it. We zero out the new projid field and the old link
  856. * count field. We'll handle clearing the pad field (the remains
  857. * of the old uuid field) when we actually convert the inode to
  858. * the new format. We don't change the version number so that we
  859. * can distinguish this from a real new format inode.
  860. */
  861. if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
  862. ip->i_d.di_nlink = ip->i_d.di_onlink;
  863. ip->i_d.di_onlink = 0;
  864. ip->i_d.di_projid = 0;
  865. }
  866. ip->i_delayed_blks = 0;
  867. ip->i_size = ip->i_d.di_size;
  868. /*
  869. * Mark the buffer containing the inode as something to keep
  870. * around for a while. This helps to keep recently accessed
  871. * meta-data in-core longer.
  872. */
  873. XFS_BUF_SET_REF(bp, XFS_INO_REF);
  874. /*
  875. * Use xfs_trans_brelse() to release the buffer containing the
  876. * on-disk inode, because it was acquired with xfs_trans_read_buf()
  877. * in xfs_itobp() above. If tp is NULL, this is just a normal
  878. * brelse(). If we're within a transaction, then xfs_trans_brelse()
  879. * will only release the buffer if it is not dirty within the
  880. * transaction. It will be OK to release the buffer in this case,
  881. * because inodes on disk are never destroyed and we will be
  882. * locking the new in-core inode before putting it in the hash
  883. * table where other processes can find it. Thus we don't have
  884. * to worry about the inode being changed just because we released
  885. * the buffer.
  886. */
  887. xfs_trans_brelse(tp, bp);
  888. *ipp = ip;
  889. return 0;
  890. }
  891. /*
  892. * Read in extents from a btree-format inode.
  893. * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
  894. */
  895. int
  896. xfs_iread_extents(
  897. xfs_trans_t *tp,
  898. xfs_inode_t *ip,
  899. int whichfork)
  900. {
  901. int error;
  902. xfs_ifork_t *ifp;
  903. xfs_extnum_t nextents;
  904. size_t size;
  905. if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
  906. XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
  907. ip->i_mount);
  908. return XFS_ERROR(EFSCORRUPTED);
  909. }
  910. nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
  911. size = nextents * sizeof(xfs_bmbt_rec_t);
  912. ifp = XFS_IFORK_PTR(ip, whichfork);
  913. /*
  914. * We know that the size is valid (it's checked in iformat_btree)
  915. */
  916. ifp->if_lastex = NULLEXTNUM;
  917. ifp->if_bytes = ifp->if_real_bytes = 0;
  918. ifp->if_flags |= XFS_IFEXTENTS;
  919. xfs_iext_add(ifp, 0, nextents);
  920. error = xfs_bmap_read_extents(tp, ip, whichfork);
  921. if (error) {
  922. xfs_iext_destroy(ifp);
  923. ifp->if_flags &= ~XFS_IFEXTENTS;
  924. return error;
  925. }
  926. xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
  927. return 0;
  928. }
  929. /*
  930. * Allocate an inode on disk and return a copy of its in-core version.
  931. * The in-core inode is locked exclusively. Set mode, nlink, and rdev
  932. * appropriately within the inode. The uid and gid for the inode are
  933. * set according to the contents of the given cred structure.
  934. *
  935. * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
  936. * has a free inode available, call xfs_iget()
  937. * to obtain the in-core version of the allocated inode. Finally,
  938. * fill in the inode and log its initial contents. In this case,
  939. * ialloc_context would be set to NULL and call_again set to false.
  940. *
  941. * If xfs_dialloc() does not have an available inode,
  942. * it will replenish its supply by doing an allocation. Since we can
  943. * only do one allocation within a transaction without deadlocks, we
  944. * must commit the current transaction before returning the inode itself.
  945. * In this case, therefore, we will set call_again to true and return.
  946. * The caller should then commit the current transaction, start a new
  947. * transaction, and call xfs_ialloc() again to actually get the inode.
  948. *
  949. * To ensure that some other process does not grab the inode that
  950. * was allocated during the first call to xfs_ialloc(), this routine
  951. * also returns the [locked] bp pointing to the head of the freelist
  952. * as ialloc_context. The caller should hold this buffer across
  953. * the commit and pass it back into this routine on the second call.
  954. *
  955. * If we are allocating quota inodes, we do not have a parent inode
  956. * to attach to or associate with (i.e. pip == NULL) because they
  957. * are not linked into the directory structure - they are attached
  958. * directly to the superblock - and so have no parent.
  959. */
  960. int
  961. xfs_ialloc(
  962. xfs_trans_t *tp,
  963. xfs_inode_t *pip,
  964. mode_t mode,
  965. xfs_nlink_t nlink,
  966. xfs_dev_t rdev,
  967. cred_t *cr,
  968. xfs_prid_t prid,
  969. int okalloc,
  970. xfs_buf_t **ialloc_context,
  971. boolean_t *call_again,
  972. xfs_inode_t **ipp)
  973. {
  974. xfs_ino_t ino;
  975. xfs_inode_t *ip;
  976. bhv_vnode_t *vp;
  977. uint flags;
  978. int error;
  979. /*
  980. * Call the space management code to pick
  981. * the on-disk inode to be allocated.
  982. */
  983. error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
  984. ialloc_context, call_again, &ino);
  985. if (error != 0) {
  986. return error;
  987. }
  988. if (*call_again || ino == NULLFSINO) {
  989. *ipp = NULL;
  990. return 0;
  991. }
  992. ASSERT(*ialloc_context == NULL);
  993. /*
  994. * Get the in-core inode with the lock held exclusively.
  995. * This is because we're setting fields here we need
  996. * to prevent others from looking at until we're done.
  997. */
  998. error = xfs_trans_iget(tp->t_mountp, tp, ino,
  999. XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
  1000. if (error != 0) {
  1001. return error;
  1002. }
  1003. ASSERT(ip != NULL);
  1004. vp = XFS_ITOV(ip);
  1005. ip->i_d.di_mode = (__uint16_t)mode;
  1006. ip->i_d.di_onlink = 0;
  1007. ip->i_d.di_nlink = nlink;
  1008. ASSERT(ip->i_d.di_nlink == nlink);
  1009. ip->i_d.di_uid = current_fsuid(cr);
  1010. ip->i_d.di_gid = current_fsgid(cr);
  1011. ip->i_d.di_projid = prid;
  1012. memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
  1013. /*
  1014. * If the superblock version is up to where we support new format
  1015. * inodes and this is currently an old format inode, then change
  1016. * the inode version number now. This way we only do the conversion
  1017. * here rather than here and in the flush/logging code.
  1018. */
  1019. if (xfs_sb_version_hasnlink(&tp->t_mountp->m_sb) &&
  1020. ip->i_d.di_version == XFS_DINODE_VERSION_1) {
  1021. ip->i_d.di_version = XFS_DINODE_VERSION_2;
  1022. /*
  1023. * We've already zeroed the old link count, the projid field,
  1024. * and the pad field.
  1025. */
  1026. }
  1027. /*
  1028. * Project ids won't be stored on disk if we are using a version 1 inode.
  1029. */
  1030. if ((prid != 0) && (ip->i_d.di_version == XFS_DINODE_VERSION_1))
  1031. xfs_bump_ino_vers2(tp, ip);
  1032. if (pip && XFS_INHERIT_GID(pip)) {
  1033. ip->i_d.di_gid = pip->i_d.di_gid;
  1034. if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
  1035. ip->i_d.di_mode |= S_ISGID;
  1036. }
  1037. }
  1038. /*
  1039. * If the group ID of the new file does not match the effective group
  1040. * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
  1041. * (and only if the irix_sgid_inherit compatibility variable is set).
  1042. */
  1043. if ((irix_sgid_inherit) &&
  1044. (ip->i_d.di_mode & S_ISGID) &&
  1045. (!in_group_p((gid_t)ip->i_d.di_gid))) {
  1046. ip->i_d.di_mode &= ~S_ISGID;
  1047. }
  1048. ip->i_d.di_size = 0;
  1049. ip->i_size = 0;
  1050. ip->i_d.di_nextents = 0;
  1051. ASSERT(ip->i_d.di_nblocks == 0);
  1052. xfs_ichgtime(ip, XFS_ICHGTIME_CHG|XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD);
  1053. /*
  1054. * di_gen will have been taken care of in xfs_iread.
  1055. */
  1056. ip->i_d.di_extsize = 0;
  1057. ip->i_d.di_dmevmask = 0;
  1058. ip->i_d.di_dmstate = 0;
  1059. ip->i_d.di_flags = 0;
  1060. flags = XFS_ILOG_CORE;
  1061. switch (mode & S_IFMT) {
  1062. case S_IFIFO:
  1063. case S_IFCHR:
  1064. case S_IFBLK:
  1065. case S_IFSOCK:
  1066. ip->i_d.di_format = XFS_DINODE_FMT_DEV;
  1067. ip->i_df.if_u2.if_rdev = rdev;
  1068. ip->i_df.if_flags = 0;
  1069. flags |= XFS_ILOG_DEV;
  1070. break;
  1071. case S_IFREG:
  1072. if (pip && xfs_inode_is_filestream(pip)) {
  1073. error = xfs_filestream_associate(pip, ip);
  1074. if (error < 0)
  1075. return -error;
  1076. if (!error)
  1077. xfs_iflags_set(ip, XFS_IFILESTREAM);
  1078. }
  1079. /* fall through */
  1080. case S_IFDIR:
  1081. if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
  1082. uint di_flags = 0;
  1083. if ((mode & S_IFMT) == S_IFDIR) {
  1084. if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
  1085. di_flags |= XFS_DIFLAG_RTINHERIT;
  1086. if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
  1087. di_flags |= XFS_DIFLAG_EXTSZINHERIT;
  1088. ip->i_d.di_extsize = pip->i_d.di_extsize;
  1089. }
  1090. } else if ((mode & S_IFMT) == S_IFREG) {
  1091. if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
  1092. di_flags |= XFS_DIFLAG_REALTIME;
  1093. if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
  1094. di_flags |= XFS_DIFLAG_EXTSIZE;
  1095. ip->i_d.di_extsize = pip->i_d.di_extsize;
  1096. }
  1097. }
  1098. if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
  1099. xfs_inherit_noatime)
  1100. di_flags |= XFS_DIFLAG_NOATIME;
  1101. if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
  1102. xfs_inherit_nodump)
  1103. di_flags |= XFS_DIFLAG_NODUMP;
  1104. if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
  1105. xfs_inherit_sync)
  1106. di_flags |= XFS_DIFLAG_SYNC;
  1107. if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
  1108. xfs_inherit_nosymlinks)
  1109. di_flags |= XFS_DIFLAG_NOSYMLINKS;
  1110. if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
  1111. di_flags |= XFS_DIFLAG_PROJINHERIT;
  1112. if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
  1113. xfs_inherit_nodefrag)
  1114. di_flags |= XFS_DIFLAG_NODEFRAG;
  1115. if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
  1116. di_flags |= XFS_DIFLAG_FILESTREAM;
  1117. ip->i_d.di_flags |= di_flags;
  1118. }
  1119. /* FALLTHROUGH */
  1120. case S_IFLNK:
  1121. ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
  1122. ip->i_df.if_flags = XFS_IFEXTENTS;
  1123. ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
  1124. ip->i_df.if_u1.if_extents = NULL;
  1125. break;
  1126. default:
  1127. ASSERT(0);
  1128. }
  1129. /*
  1130. * Attribute fork settings for new inode.
  1131. */
  1132. ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
  1133. ip->i_d.di_anextents = 0;
  1134. /*
  1135. * Log the new values stuffed into the inode.
  1136. */
  1137. xfs_trans_log_inode(tp, ip, flags);
  1138. /* now that we have an i_mode we can setup inode ops and unlock */
  1139. xfs_initialize_vnode(tp->t_mountp, vp, ip);
  1140. *ipp = ip;
  1141. return 0;
  1142. }
  1143. /*
  1144. * Check to make sure that there are no blocks allocated to the
  1145. * file beyond the size of the file. We don't check this for
  1146. * files with fixed size extents or real time extents, but we
  1147. * at least do it for regular files.
  1148. */
  1149. #ifdef DEBUG
  1150. void
  1151. xfs_isize_check(
  1152. xfs_mount_t *mp,
  1153. xfs_inode_t *ip,
  1154. xfs_fsize_t isize)
  1155. {
  1156. xfs_fileoff_t map_first;
  1157. int nimaps;
  1158. xfs_bmbt_irec_t imaps[2];
  1159. if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
  1160. return;
  1161. if (XFS_IS_REALTIME_INODE(ip))
  1162. return;
  1163. if (ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE)
  1164. return;
  1165. nimaps = 2;
  1166. map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
  1167. /*
  1168. * The filesystem could be shutting down, so bmapi may return
  1169. * an error.
  1170. */
  1171. if (xfs_bmapi(NULL, ip, map_first,
  1172. (XFS_B_TO_FSB(mp,
  1173. (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
  1174. map_first),
  1175. XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
  1176. NULL, NULL))
  1177. return;
  1178. ASSERT(nimaps == 1);
  1179. ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
  1180. }
  1181. #endif /* DEBUG */
  1182. /*
  1183. * Calculate the last possible buffered byte in a file. This must
  1184. * include data that was buffered beyond the EOF by the write code.
  1185. * This also needs to deal with overflowing the xfs_fsize_t type
  1186. * which can happen for sizes near the limit.
  1187. *
  1188. * We also need to take into account any blocks beyond the EOF. It
  1189. * may be the case that they were buffered by a write which failed.
  1190. * In that case the pages will still be in memory, but the inode size
  1191. * will never have been updated.
  1192. */
  1193. xfs_fsize_t
  1194. xfs_file_last_byte(
  1195. xfs_inode_t *ip)
  1196. {
  1197. xfs_mount_t *mp;
  1198. xfs_fsize_t last_byte;
  1199. xfs_fileoff_t last_block;
  1200. xfs_fileoff_t size_last_block;
  1201. int error;
  1202. ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED));
  1203. mp = ip->i_mount;
  1204. /*
  1205. * Only check for blocks beyond the EOF if the extents have
  1206. * been read in. This eliminates the need for the inode lock,
  1207. * and it also saves us from looking when it really isn't
  1208. * necessary.
  1209. */
  1210. if (ip->i_df.if_flags & XFS_IFEXTENTS) {
  1211. error = xfs_bmap_last_offset(NULL, ip, &last_block,
  1212. XFS_DATA_FORK);
  1213. if (error) {
  1214. last_block = 0;
  1215. }
  1216. } else {
  1217. last_block = 0;
  1218. }
  1219. size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_size);
  1220. last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
  1221. last_byte = XFS_FSB_TO_B(mp, last_block);
  1222. if (last_byte < 0) {
  1223. return XFS_MAXIOFFSET(mp);
  1224. }
  1225. last_byte += (1 << mp->m_writeio_log);
  1226. if (last_byte < 0) {
  1227. return XFS_MAXIOFFSET(mp);
  1228. }
  1229. return last_byte;
  1230. }
  1231. #if defined(XFS_RW_TRACE)
  1232. STATIC void
  1233. xfs_itrunc_trace(
  1234. int tag,
  1235. xfs_inode_t *ip,
  1236. int flag,
  1237. xfs_fsize_t new_size,
  1238. xfs_off_t toss_start,
  1239. xfs_off_t toss_finish)
  1240. {
  1241. if (ip->i_rwtrace == NULL) {
  1242. return;
  1243. }
  1244. ktrace_enter(ip->i_rwtrace,
  1245. (void*)((long)tag),
  1246. (void*)ip,
  1247. (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff),
  1248. (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff),
  1249. (void*)((long)flag),
  1250. (void*)(unsigned long)((new_size >> 32) & 0xffffffff),
  1251. (void*)(unsigned long)(new_size & 0xffffffff),
  1252. (void*)(unsigned long)((toss_start >> 32) & 0xffffffff),
  1253. (void*)(unsigned long)(toss_start & 0xffffffff),
  1254. (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff),
  1255. (void*)(unsigned long)(toss_finish & 0xffffffff),
  1256. (void*)(unsigned long)current_cpu(),
  1257. (void*)(unsigned long)current_pid(),
  1258. (void*)NULL,
  1259. (void*)NULL,
  1260. (void*)NULL);
  1261. }
  1262. #else
  1263. #define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
  1264. #endif
  1265. /*
  1266. * Start the truncation of the file to new_size. The new size
  1267. * must be smaller than the current size. This routine will
  1268. * clear the buffer and page caches of file data in the removed
  1269. * range, and xfs_itruncate_finish() will remove the underlying
  1270. * disk blocks.
  1271. *
  1272. * The inode must have its I/O lock locked EXCLUSIVELY, and it
  1273. * must NOT have the inode lock held at all. This is because we're
  1274. * calling into the buffer/page cache code and we can't hold the
  1275. * inode lock when we do so.
  1276. *
  1277. * We need to wait for any direct I/Os in flight to complete before we
  1278. * proceed with the truncate. This is needed to prevent the extents
  1279. * being read or written by the direct I/Os from being removed while the
  1280. * I/O is in flight as there is no other method of synchronising
  1281. * direct I/O with the truncate operation. Also, because we hold
  1282. * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
  1283. * started until the truncate completes and drops the lock. Essentially,
  1284. * the vn_iowait() call forms an I/O barrier that provides strict ordering
  1285. * between direct I/Os and the truncate operation.
  1286. *
  1287. * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
  1288. * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
  1289. * in the case that the caller is locking things out of order and
  1290. * may not be able to call xfs_itruncate_finish() with the inode lock
  1291. * held without dropping the I/O lock. If the caller must drop the
  1292. * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
  1293. * must be called again with all the same restrictions as the initial
  1294. * call.
  1295. */
  1296. int
  1297. xfs_itruncate_start(
  1298. xfs_inode_t *ip,
  1299. uint flags,
  1300. xfs_fsize_t new_size)
  1301. {
  1302. xfs_fsize_t last_byte;
  1303. xfs_off_t toss_start;
  1304. xfs_mount_t *mp;
  1305. bhv_vnode_t *vp;
  1306. int error = 0;
  1307. ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
  1308. ASSERT((new_size == 0) || (new_size <= ip->i_size));
  1309. ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
  1310. (flags == XFS_ITRUNC_MAYBE));
  1311. mp = ip->i_mount;
  1312. vp = XFS_ITOV(ip);
  1313. /* wait for the completion of any pending DIOs */
  1314. if (new_size < ip->i_size)
  1315. vn_iowait(ip);
  1316. /*
  1317. * Call toss_pages or flushinval_pages to get rid of pages
  1318. * overlapping the region being removed. We have to use
  1319. * the less efficient flushinval_pages in the case that the
  1320. * caller may not be able to finish the truncate without
  1321. * dropping the inode's I/O lock. Make sure
  1322. * to catch any pages brought in by buffers overlapping
  1323. * the EOF by searching out beyond the isize by our
  1324. * block size. We round new_size up to a block boundary
  1325. * so that we don't toss things on the same block as
  1326. * new_size but before it.
  1327. *
  1328. * Before calling toss_page or flushinval_pages, make sure to
  1329. * call remapf() over the same region if the file is mapped.
  1330. * This frees up mapped file references to the pages in the
  1331. * given range and for the flushinval_pages case it ensures
  1332. * that we get the latest mapped changes flushed out.
  1333. */
  1334. toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
  1335. toss_start = XFS_FSB_TO_B(mp, toss_start);
  1336. if (toss_start < 0) {
  1337. /*
  1338. * The place to start tossing is beyond our maximum
  1339. * file size, so there is no way that the data extended
  1340. * out there.
  1341. */
  1342. return 0;
  1343. }
  1344. last_byte = xfs_file_last_byte(ip);
  1345. xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start,
  1346. last_byte);
  1347. if (last_byte > toss_start) {
  1348. if (flags & XFS_ITRUNC_DEFINITE) {
  1349. xfs_tosspages(ip, toss_start,
  1350. -1, FI_REMAPF_LOCKED);
  1351. } else {
  1352. error = xfs_flushinval_pages(ip, toss_start,
  1353. -1, FI_REMAPF_LOCKED);
  1354. }
  1355. }
  1356. #ifdef DEBUG
  1357. if (new_size == 0) {
  1358. ASSERT(VN_CACHED(vp) == 0);
  1359. }
  1360. #endif
  1361. return error;
  1362. }
  1363. /*
  1364. * Shrink the file to the given new_size. The new size must be smaller than
  1365. * the current size. This will free up the underlying blocks in the removed
  1366. * range after a call to xfs_itruncate_start() or xfs_atruncate_start().
  1367. *
  1368. * The transaction passed to this routine must have made a permanent log
  1369. * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
  1370. * given transaction and start new ones, so make sure everything involved in
  1371. * the transaction is tidy before calling here. Some transaction will be
  1372. * returned to the caller to be committed. The incoming transaction must
  1373. * already include the inode, and both inode locks must be held exclusively.
  1374. * The inode must also be "held" within the transaction. On return the inode
  1375. * will be "held" within the returned transaction. This routine does NOT
  1376. * require any disk space to be reserved for it within the transaction.
  1377. *
  1378. * The fork parameter must be either xfs_attr_fork or xfs_data_fork, and it
  1379. * indicates the fork which is to be truncated. For the attribute fork we only
  1380. * support truncation to size 0.
  1381. *
  1382. * We use the sync parameter to indicate whether or not the first transaction
  1383. * we perform might have to be synchronous. For the attr fork, it needs to be
  1384. * so if the unlink of the inode is not yet known to be permanent in the log.
  1385. * This keeps us from freeing and reusing the blocks of the attribute fork
  1386. * before the unlink of the inode becomes permanent.
  1387. *
  1388. * For the data fork, we normally have to run synchronously if we're being
  1389. * called out of the inactive path or we're being called out of the create path
  1390. * where we're truncating an existing file. Either way, the truncate needs to
  1391. * be sync so blocks don't reappear in the file with altered data in case of a
  1392. * crash. wsync filesystems can run the first case async because anything that
  1393. * shrinks the inode has to run sync so by the time we're called here from
  1394. * inactive, the inode size is permanently set to 0.
  1395. *
  1396. * Calls from the truncate path always need to be sync unless we're in a wsync
  1397. * filesystem and the file has already been unlinked.
  1398. *
  1399. * The caller is responsible for correctly setting the sync parameter. It gets
  1400. * too hard for us to guess here which path we're being called out of just
  1401. * based on inode state.
  1402. *
  1403. * If we get an error, we must return with the inode locked and linked into the
  1404. * current transaction. This keeps things simple for the higher level code,
  1405. * because it always knows that the inode is locked and held in the transaction
  1406. * that returns to it whether errors occur or not. We don't mark the inode
  1407. * dirty on error so that transactions can be easily aborted if possible.
  1408. */
  1409. int
  1410. xfs_itruncate_finish(
  1411. xfs_trans_t **tp,
  1412. xfs_inode_t *ip,
  1413. xfs_fsize_t new_size,
  1414. int fork,
  1415. int sync)
  1416. {
  1417. xfs_fsblock_t first_block;
  1418. xfs_fileoff_t first_unmap_block;
  1419. xfs_fileoff_t last_block;
  1420. xfs_filblks_t unmap_len=0;
  1421. xfs_mount_t *mp;
  1422. xfs_trans_t *ntp;
  1423. int done;
  1424. int committed;
  1425. xfs_bmap_free_t free_list;
  1426. int error;
  1427. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
  1428. ASSERT((new_size == 0) || (new_size <= ip->i_size));
  1429. ASSERT(*tp != NULL);
  1430. ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
  1431. ASSERT(ip->i_transp == *tp);
  1432. ASSERT(ip->i_itemp != NULL);
  1433. ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
  1434. ntp = *tp;
  1435. mp = (ntp)->t_mountp;
  1436. ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
  1437. /*
  1438. * We only support truncating the entire attribute fork.
  1439. */
  1440. if (fork == XFS_ATTR_FORK) {
  1441. new_size = 0LL;
  1442. }
  1443. first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
  1444. xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0);
  1445. /*
  1446. * The first thing we do is set the size to new_size permanently
  1447. * on disk. This way we don't have to worry about anyone ever
  1448. * being able to look at the data being freed even in the face
  1449. * of a crash. What we're getting around here is the case where
  1450. * we free a block, it is allocated to another file, it is written
  1451. * to, and then we crash. If the new data gets written to the
  1452. * file but the log buffers containing the free and reallocation
  1453. * don't, then we'd end up with garbage in the blocks being freed.
  1454. * As long as we make the new_size permanent before actually
  1455. * freeing any blocks it doesn't matter if they get writtten to.
  1456. *
  1457. * The callers must signal into us whether or not the size
  1458. * setting here must be synchronous. There are a few cases
  1459. * where it doesn't have to be synchronous. Those cases
  1460. * occur if the file is unlinked and we know the unlink is
  1461. * permanent or if the blocks being truncated are guaranteed
  1462. * to be beyond the inode eof (regardless of the link count)
  1463. * and the eof value is permanent. Both of these cases occur
  1464. * only on wsync-mounted filesystems. In those cases, we're
  1465. * guaranteed that no user will ever see the data in the blocks
  1466. * that are being truncated so the truncate can run async.
  1467. * In the free beyond eof case, the file may wind up with
  1468. * more blocks allocated to it than it needs if we crash
  1469. * and that won't get fixed until the next time the file
  1470. * is re-opened and closed but that's ok as that shouldn't
  1471. * be too many blocks.
  1472. *
  1473. * However, we can't just make all wsync xactions run async
  1474. * because there's one call out of the create path that needs
  1475. * to run sync where it's truncating an existing file to size
  1476. * 0 whose size is > 0.
  1477. *
  1478. * It's probably possible to come up with a test in this
  1479. * routine that would correctly distinguish all the above
  1480. * cases from the values of the function parameters and the
  1481. * inode state but for sanity's sake, I've decided to let the
  1482. * layers above just tell us. It's simpler to correctly figure
  1483. * out in the layer above exactly under what conditions we
  1484. * can run async and I think it's easier for others read and
  1485. * follow the logic in case something has to be changed.
  1486. * cscope is your friend -- rcc.
  1487. *
  1488. * The attribute fork is much simpler.
  1489. *
  1490. * For the attribute fork we allow the caller to tell us whether
  1491. * the unlink of the inode that led to this call is yet permanent
  1492. * in the on disk log. If it is not and we will be freeing extents
  1493. * in this inode then we make the first transaction synchronous
  1494. * to make sure that the unlink is permanent by the time we free
  1495. * the blocks.
  1496. */
  1497. if (fork == XFS_DATA_FORK) {
  1498. if (ip->i_d.di_nextents > 0) {
  1499. /*
  1500. * If we are not changing the file size then do
  1501. * not update the on-disk file size - we may be
  1502. * called from xfs_inactive_free_eofblocks(). If we
  1503. * update the on-disk file size and then the system
  1504. * crashes before the contents of the file are
  1505. * flushed to disk then the files may be full of
  1506. * holes (ie NULL files bug).
  1507. */
  1508. if (ip->i_size != new_size) {
  1509. ip->i_d.di_size = new_size;
  1510. ip->i_size = new_size;
  1511. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1512. }
  1513. }
  1514. } else if (sync) {
  1515. ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
  1516. if (ip->i_d.di_anextents > 0)
  1517. xfs_trans_set_sync(ntp);
  1518. }
  1519. ASSERT(fork == XFS_DATA_FORK ||
  1520. (fork == XFS_ATTR_FORK &&
  1521. ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
  1522. (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
  1523. /*
  1524. * Since it is possible for space to become allocated beyond
  1525. * the end of the file (in a crash where the space is allocated
  1526. * but the inode size is not yet updated), simply remove any
  1527. * blocks which show up between the new EOF and the maximum
  1528. * possible file size. If the first block to be removed is
  1529. * beyond the maximum file size (ie it is the same as last_block),
  1530. * then there is nothing to do.
  1531. */
  1532. last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
  1533. ASSERT(first_unmap_block <= last_block);
  1534. done = 0;
  1535. if (last_block == first_unmap_block) {
  1536. done = 1;
  1537. } else {
  1538. unmap_len = last_block - first_unmap_block + 1;
  1539. }
  1540. while (!done) {
  1541. /*
  1542. * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
  1543. * will tell us whether it freed the entire range or
  1544. * not. If this is a synchronous mount (wsync),
  1545. * then we can tell bunmapi to keep all the
  1546. * transactions asynchronous since the unlink
  1547. * transaction that made this inode inactive has
  1548. * already hit the disk. There's no danger of
  1549. * the freed blocks being reused, there being a
  1550. * crash, and the reused blocks suddenly reappearing
  1551. * in this file with garbage in them once recovery
  1552. * runs.
  1553. */
  1554. XFS_BMAP_INIT(&free_list, &first_block);
  1555. error = xfs_bunmapi(ntp, ip,
  1556. first_unmap_block, unmap_len,
  1557. XFS_BMAPI_AFLAG(fork) |
  1558. (sync ? 0 : XFS_BMAPI_ASYNC),
  1559. XFS_ITRUNC_MAX_EXTENTS,
  1560. &first_block, &free_list,
  1561. NULL, &done);
  1562. if (error) {
  1563. /*
  1564. * If the bunmapi call encounters an error,
  1565. * return to the caller where the transaction
  1566. * can be properly aborted. We just need to
  1567. * make sure we're not holding any resources
  1568. * that we were not when we came in.
  1569. */
  1570. xfs_bmap_cancel(&free_list);
  1571. return error;
  1572. }
  1573. /*
  1574. * Duplicate the transaction that has the permanent
  1575. * reservation and commit the old transaction.
  1576. */
  1577. error = xfs_bmap_finish(tp, &free_list, &committed);
  1578. ntp = *tp;
  1579. if (committed) {
  1580. /* link the inode into the next xact in the chain */
  1581. xfs_trans_ijoin(ntp, ip,
  1582. XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
  1583. xfs_trans_ihold(ntp, ip);
  1584. }
  1585. if (error) {
  1586. /*
  1587. * If the bmap finish call encounters an error, return
  1588. * to the caller where the transaction can be properly
  1589. * aborted. We just need to make sure we're not
  1590. * holding any resources that we were not when we came
  1591. * in.
  1592. *
  1593. * Aborting from this point might lose some blocks in
  1594. * the file system, but oh well.
  1595. */
  1596. xfs_bmap_cancel(&free_list);
  1597. return error;
  1598. }
  1599. if (committed) {
  1600. /*
  1601. * Mark the inode dirty so it will be logged and
  1602. * moved forward in the log as part of every commit.
  1603. */
  1604. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1605. }
  1606. ntp = xfs_trans_dup(ntp);
  1607. error = xfs_trans_commit(*tp, 0);
  1608. *tp = ntp;
  1609. /* link the inode into the next transaction in the chain */
  1610. xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
  1611. xfs_trans_ihold(ntp, ip);
  1612. if (!error)
  1613. error = xfs_trans_reserve(ntp, 0,
  1614. XFS_ITRUNCATE_LOG_RES(mp), 0,
  1615. XFS_TRANS_PERM_LOG_RES,
  1616. XFS_ITRUNCATE_LOG_COUNT);
  1617. if (error)
  1618. return error;
  1619. }
  1620. /*
  1621. * Only update the size in the case of the data fork, but
  1622. * always re-log the inode so that our permanent transaction
  1623. * can keep on rolling it forward in the log.
  1624. */
  1625. if (fork == XFS_DATA_FORK) {
  1626. xfs_isize_check(mp, ip, new_size);
  1627. /*
  1628. * If we are not changing the file size then do
  1629. * not update the on-disk file size - we may be
  1630. * called from xfs_inactive_free_eofblocks(). If we
  1631. * update the on-disk file size and then the system
  1632. * crashes before the contents of the file are
  1633. * flushed to disk then the files may be full of
  1634. * holes (ie NULL files bug).
  1635. */
  1636. if (ip->i_size != new_size) {
  1637. ip->i_d.di_size = new_size;
  1638. ip->i_size = new_size;
  1639. }
  1640. }
  1641. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1642. ASSERT((new_size != 0) ||
  1643. (fork == XFS_ATTR_FORK) ||
  1644. (ip->i_delayed_blks == 0));
  1645. ASSERT((new_size != 0) ||
  1646. (fork == XFS_ATTR_FORK) ||
  1647. (ip->i_d.di_nextents == 0));
  1648. xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0);
  1649. return 0;
  1650. }
  1651. /*
  1652. * xfs_igrow_start
  1653. *
  1654. * Do the first part of growing a file: zero any data in the last
  1655. * block that is beyond the old EOF. We need to do this before
  1656. * the inode is joined to the transaction to modify the i_size.
  1657. * That way we can drop the inode lock and call into the buffer
  1658. * cache to get the buffer mapping the EOF.
  1659. */
  1660. int
  1661. xfs_igrow_start(
  1662. xfs_inode_t *ip,
  1663. xfs_fsize_t new_size,
  1664. cred_t *credp)
  1665. {
  1666. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
  1667. ASSERT(new_size > ip->i_size);
  1668. /*
  1669. * Zero any pages that may have been created by
  1670. * xfs_write_file() beyond the end of the file
  1671. * and any blocks between the old and new file sizes.
  1672. */
  1673. return xfs_zero_eof(ip, new_size, ip->i_size);
  1674. }
  1675. /*
  1676. * xfs_igrow_finish
  1677. *
  1678. * This routine is called to extend the size of a file.
  1679. * The inode must have both the iolock and the ilock locked
  1680. * for update and it must be a part of the current transaction.
  1681. * The xfs_igrow_start() function must have been called previously.
  1682. * If the change_flag is not zero, the inode change timestamp will
  1683. * be updated.
  1684. */
  1685. void
  1686. xfs_igrow_finish(
  1687. xfs_trans_t *tp,
  1688. xfs_inode_t *ip,
  1689. xfs_fsize_t new_size,
  1690. int change_flag)
  1691. {
  1692. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
  1693. ASSERT(ip->i_transp == tp);
  1694. ASSERT(new_size > ip->i_size);
  1695. /*
  1696. * Update the file size. Update the inode change timestamp
  1697. * if change_flag set.
  1698. */
  1699. ip->i_d.di_size = new_size;
  1700. ip->i_size = new_size;
  1701. if (change_flag)
  1702. xfs_ichgtime(ip, XFS_ICHGTIME_CHG);
  1703. xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  1704. }
  1705. /*
  1706. * This is called when the inode's link count goes to 0.
  1707. * We place the on-disk inode on a list in the AGI. It
  1708. * will be pulled from this list when the inode is freed.
  1709. */
  1710. int
  1711. xfs_iunlink(
  1712. xfs_trans_t *tp,
  1713. xfs_inode_t *ip)
  1714. {
  1715. xfs_mount_t *mp;
  1716. xfs_agi_t *agi;
  1717. xfs_dinode_t *dip;
  1718. xfs_buf_t *agibp;
  1719. xfs_buf_t *ibp;
  1720. xfs_agnumber_t agno;
  1721. xfs_daddr_t agdaddr;
  1722. xfs_agino_t agino;
  1723. short bucket_index;
  1724. int offset;
  1725. int error;
  1726. int agi_ok;
  1727. ASSERT(ip->i_d.di_nlink == 0);
  1728. ASSERT(ip->i_d.di_mode != 0);
  1729. ASSERT(ip->i_transp == tp);
  1730. mp = tp->t_mountp;
  1731. agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
  1732. agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
  1733. /*
  1734. * Get the agi buffer first. It ensures lock ordering
  1735. * on the list.
  1736. */
  1737. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
  1738. XFS_FSS_TO_BB(mp, 1), 0, &agibp);
  1739. if (error)
  1740. return error;
  1741. /*
  1742. * Validate the magic number of the agi block.
  1743. */
  1744. agi = XFS_BUF_TO_AGI(agibp);
  1745. agi_ok =
  1746. be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
  1747. XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
  1748. if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK,
  1749. XFS_RANDOM_IUNLINK))) {
  1750. XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW, mp, agi);
  1751. xfs_trans_brelse(tp, agibp);
  1752. return XFS_ERROR(EFSCORRUPTED);
  1753. }
  1754. /*
  1755. * Get the index into the agi hash table for the
  1756. * list this inode will go on.
  1757. */
  1758. agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
  1759. ASSERT(agino != 0);
  1760. bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
  1761. ASSERT(agi->agi_unlinked[bucket_index]);
  1762. ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
  1763. if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
  1764. /*
  1765. * There is already another inode in the bucket we need
  1766. * to add ourselves to. Add us at the front of the list.
  1767. * Here we put the head pointer into our next pointer,
  1768. * and then we fall through to point the head at us.
  1769. */
  1770. error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0, XFS_BUF_LOCK);
  1771. if (error)
  1772. return error;
  1773. ASSERT(be32_to_cpu(dip->di_next_unlinked) == NULLAGINO);
  1774. /* both on-disk, don't endian flip twice */
  1775. dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
  1776. offset = ip->i_boffset +
  1777. offsetof(xfs_dinode_t, di_next_unlinked);
  1778. xfs_trans_inode_buf(tp, ibp);
  1779. xfs_trans_log_buf(tp, ibp, offset,
  1780. (offset + sizeof(xfs_agino_t) - 1));
  1781. xfs_inobp_check(mp, ibp);
  1782. }
  1783. /*
  1784. * Point the bucket head pointer at the inode being inserted.
  1785. */
  1786. ASSERT(agino != 0);
  1787. agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
  1788. offset = offsetof(xfs_agi_t, agi_unlinked) +
  1789. (sizeof(xfs_agino_t) * bucket_index);
  1790. xfs_trans_log_buf(tp, agibp, offset,
  1791. (offset + sizeof(xfs_agino_t) - 1));
  1792. return 0;
  1793. }
  1794. /*
  1795. * Pull the on-disk inode from the AGI unlinked list.
  1796. */
  1797. STATIC int
  1798. xfs_iunlink_remove(
  1799. xfs_trans_t *tp,
  1800. xfs_inode_t *ip)
  1801. {
  1802. xfs_ino_t next_ino;
  1803. xfs_mount_t *mp;
  1804. xfs_agi_t *agi;
  1805. xfs_dinode_t *dip;
  1806. xfs_buf_t *agibp;
  1807. xfs_buf_t *ibp;
  1808. xfs_agnumber_t agno;
  1809. xfs_daddr_t agdaddr;
  1810. xfs_agino_t agino;
  1811. xfs_agino_t next_agino;
  1812. xfs_buf_t *last_ibp;
  1813. xfs_dinode_t *last_dip = NULL;
  1814. short bucket_index;
  1815. int offset, last_offset = 0;
  1816. int error;
  1817. int agi_ok;
  1818. /*
  1819. * First pull the on-disk inode from the AGI unlinked list.
  1820. */
  1821. mp = tp->t_mountp;
  1822. agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
  1823. agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
  1824. /*
  1825. * Get the agi buffer first. It ensures lock ordering
  1826. * on the list.
  1827. */
  1828. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
  1829. XFS_FSS_TO_BB(mp, 1), 0, &agibp);
  1830. if (error) {
  1831. cmn_err(CE_WARN,
  1832. "xfs_iunlink_remove: xfs_trans_read_buf() returned an error %d on %s. Returning error.",
  1833. error, mp->m_fsname);
  1834. return error;
  1835. }
  1836. /*
  1837. * Validate the magic number of the agi block.
  1838. */
  1839. agi = XFS_BUF_TO_AGI(agibp);
  1840. agi_ok =
  1841. be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
  1842. XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
  1843. if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK_REMOVE,
  1844. XFS_RANDOM_IUNLINK_REMOVE))) {
  1845. XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW,
  1846. mp, agi);
  1847. xfs_trans_brelse(tp, agibp);
  1848. cmn_err(CE_WARN,
  1849. "xfs_iunlink_remove: XFS_TEST_ERROR() returned an error on %s. Returning EFSCORRUPTED.",
  1850. mp->m_fsname);
  1851. return XFS_ERROR(EFSCORRUPTED);
  1852. }
  1853. /*
  1854. * Get the index into the agi hash table for the
  1855. * list this inode will go on.
  1856. */
  1857. agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
  1858. ASSERT(agino != 0);
  1859. bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
  1860. ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
  1861. ASSERT(agi->agi_unlinked[bucket_index]);
  1862. if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
  1863. /*
  1864. * We're at the head of the list. Get the inode's
  1865. * on-disk buffer to see if there is anyone after us
  1866. * on the list. Only modify our next pointer if it
  1867. * is not already NULLAGINO. This saves us the overhead
  1868. * of dealing with the buffer when there is no need to
  1869. * change it.
  1870. */
  1871. error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0, XFS_BUF_LOCK);
  1872. if (error) {
  1873. cmn_err(CE_WARN,
  1874. "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
  1875. error, mp->m_fsname);
  1876. return error;
  1877. }
  1878. next_agino = be32_to_cpu(dip->di_next_unlinked);
  1879. ASSERT(next_agino != 0);
  1880. if (next_agino != NULLAGINO) {
  1881. dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
  1882. offset = ip->i_boffset +
  1883. offsetof(xfs_dinode_t, di_next_unlinked);
  1884. xfs_trans_inode_buf(tp, ibp);
  1885. xfs_trans_log_buf(tp, ibp, offset,
  1886. (offset + sizeof(xfs_agino_t) - 1));
  1887. xfs_inobp_check(mp, ibp);
  1888. } else {
  1889. xfs_trans_brelse(tp, ibp);
  1890. }
  1891. /*
  1892. * Point the bucket head pointer at the next inode.
  1893. */
  1894. ASSERT(next_agino != 0);
  1895. ASSERT(next_agino != agino);
  1896. agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
  1897. offset = offsetof(xfs_agi_t, agi_unlinked) +
  1898. (sizeof(xfs_agino_t) * bucket_index);
  1899. xfs_trans_log_buf(tp, agibp, offset,
  1900. (offset + sizeof(xfs_agino_t) - 1));
  1901. } else {
  1902. /*
  1903. * We need to search the list for the inode being freed.
  1904. */
  1905. next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
  1906. last_ibp = NULL;
  1907. while (next_agino != agino) {
  1908. /*
  1909. * If the last inode wasn't the one pointing to
  1910. * us, then release its buffer since we're not
  1911. * going to do anything with it.
  1912. */
  1913. if (last_ibp != NULL) {
  1914. xfs_trans_brelse(tp, last_ibp);
  1915. }
  1916. next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
  1917. error = xfs_inotobp(mp, tp, next_ino, &last_dip,
  1918. &last_ibp, &last_offset);
  1919. if (error) {
  1920. cmn_err(CE_WARN,
  1921. "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
  1922. error, mp->m_fsname);
  1923. return error;
  1924. }
  1925. next_agino = be32_to_cpu(last_dip->di_next_unlinked);
  1926. ASSERT(next_agino != NULLAGINO);
  1927. ASSERT(next_agino != 0);
  1928. }
  1929. /*
  1930. * Now last_ibp points to the buffer previous to us on
  1931. * the unlinked list. Pull us from the list.
  1932. */
  1933. error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0, XFS_BUF_LOCK);
  1934. if (error) {
  1935. cmn_err(CE_WARN,
  1936. "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
  1937. error, mp->m_fsname);
  1938. return error;
  1939. }
  1940. next_agino = be32_to_cpu(dip->di_next_unlinked);
  1941. ASSERT(next_agino != 0);
  1942. ASSERT(next_agino != agino);
  1943. if (next_agino != NULLAGINO) {
  1944. dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
  1945. offset = ip->i_boffset +
  1946. offsetof(xfs_dinode_t, di_next_unlinked);
  1947. xfs_trans_inode_buf(tp, ibp);
  1948. xfs_trans_log_buf(tp, ibp, offset,
  1949. (offset + sizeof(xfs_agino_t) - 1));
  1950. xfs_inobp_check(mp, ibp);
  1951. } else {
  1952. xfs_trans_brelse(tp, ibp);
  1953. }
  1954. /*
  1955. * Point the previous inode on the list to the next inode.
  1956. */
  1957. last_dip->di_next_unlinked = cpu_to_be32(next_agino);
  1958. ASSERT(next_agino != 0);
  1959. offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
  1960. xfs_trans_inode_buf(tp, last_ibp);
  1961. xfs_trans_log_buf(tp, last_ibp, offset,
  1962. (offset + sizeof(xfs_agino_t) - 1));
  1963. xfs_inobp_check(mp, last_ibp);
  1964. }
  1965. return 0;
  1966. }
  1967. STATIC void
  1968. xfs_ifree_cluster(
  1969. xfs_inode_t *free_ip,
  1970. xfs_trans_t *tp,
  1971. xfs_ino_t inum)
  1972. {
  1973. xfs_mount_t *mp = free_ip->i_mount;
  1974. int blks_per_cluster;
  1975. int nbufs;
  1976. int ninodes;
  1977. int i, j, found, pre_flushed;
  1978. xfs_daddr_t blkno;
  1979. xfs_buf_t *bp;
  1980. xfs_inode_t *ip, **ip_found;
  1981. xfs_inode_log_item_t *iip;
  1982. xfs_log_item_t *lip;
  1983. xfs_perag_t *pag = xfs_get_perag(mp, inum);
  1984. if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
  1985. blks_per_cluster = 1;
  1986. ninodes = mp->m_sb.sb_inopblock;
  1987. nbufs = XFS_IALLOC_BLOCKS(mp);
  1988. } else {
  1989. blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
  1990. mp->m_sb.sb_blocksize;
  1991. ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
  1992. nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
  1993. }
  1994. ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);
  1995. for (j = 0; j < nbufs; j++, inum += ninodes) {
  1996. blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
  1997. XFS_INO_TO_AGBNO(mp, inum));
  1998. /*
  1999. * Look for each inode in memory and attempt to lock it,
  2000. * we can be racing with flush and tail pushing here.
  2001. * any inode we get the locks on, add to an array of
  2002. * inode items to process later.
  2003. *
  2004. * The get the buffer lock, we could beat a flush
  2005. * or tail pushing thread to the lock here, in which
  2006. * case they will go looking for the inode buffer
  2007. * and fail, we need some other form of interlock
  2008. * here.
  2009. */
  2010. found = 0;
  2011. for (i = 0; i < ninodes; i++) {
  2012. read_lock(&pag->pag_ici_lock);
  2013. ip = radix_tree_lookup(&pag->pag_ici_root,
  2014. XFS_INO_TO_AGINO(mp, (inum + i)));
  2015. /* Inode not in memory or we found it already,
  2016. * nothing to do
  2017. */
  2018. if (!ip || xfs_iflags_test(ip, XFS_ISTALE)) {
  2019. read_unlock(&pag->pag_ici_lock);
  2020. continue;
  2021. }
  2022. if (xfs_inode_clean(ip)) {
  2023. read_unlock(&pag->pag_ici_lock);
  2024. continue;
  2025. }
  2026. /* If we can get the locks then add it to the
  2027. * list, otherwise by the time we get the bp lock
  2028. * below it will already be attached to the
  2029. * inode buffer.
  2030. */
  2031. /* This inode will already be locked - by us, lets
  2032. * keep it that way.
  2033. */
  2034. if (ip == free_ip) {
  2035. if (xfs_iflock_nowait(ip)) {
  2036. xfs_iflags_set(ip, XFS_ISTALE);
  2037. if (xfs_inode_clean(ip)) {
  2038. xfs_ifunlock(ip);
  2039. } else {
  2040. ip_found[found++] = ip;
  2041. }
  2042. }
  2043. read_unlock(&pag->pag_ici_lock);
  2044. continue;
  2045. }
  2046. if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
  2047. if (xfs_iflock_nowait(ip)) {
  2048. xfs_iflags_set(ip, XFS_ISTALE);
  2049. if (xfs_inode_clean(ip)) {
  2050. xfs_ifunlock(ip);
  2051. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  2052. } else {
  2053. ip_found[found++] = ip;
  2054. }
  2055. } else {
  2056. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  2057. }
  2058. }
  2059. read_unlock(&pag->pag_ici_lock);
  2060. }
  2061. bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
  2062. mp->m_bsize * blks_per_cluster,
  2063. XFS_BUF_LOCK);
  2064. pre_flushed = 0;
  2065. lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
  2066. while (lip) {
  2067. if (lip->li_type == XFS_LI_INODE) {
  2068. iip = (xfs_inode_log_item_t *)lip;
  2069. ASSERT(iip->ili_logged == 1);
  2070. lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
  2071. spin_lock(&mp->m_ail_lock);
  2072. iip->ili_flush_lsn = iip->ili_item.li_lsn;
  2073. spin_unlock(&mp->m_ail_lock);
  2074. xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
  2075. pre_flushed++;
  2076. }
  2077. lip = lip->li_bio_list;
  2078. }
  2079. for (i = 0; i < found; i++) {
  2080. ip = ip_found[i];
  2081. iip = ip->i_itemp;
  2082. if (!iip) {
  2083. ip->i_update_core = 0;
  2084. xfs_ifunlock(ip);
  2085. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  2086. continue;
  2087. }
  2088. iip->ili_last_fields = iip->ili_format.ilf_fields;
  2089. iip->ili_format.ilf_fields = 0;
  2090. iip->ili_logged = 1;
  2091. spin_lock(&mp->m_ail_lock);
  2092. iip->ili_flush_lsn = iip->ili_item.li_lsn;
  2093. spin_unlock(&mp->m_ail_lock);
  2094. xfs_buf_attach_iodone(bp,
  2095. (void(*)(xfs_buf_t*,xfs_log_item_t*))
  2096. xfs_istale_done, (xfs_log_item_t *)iip);
  2097. if (ip != free_ip) {
  2098. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  2099. }
  2100. }
  2101. if (found || pre_flushed)
  2102. xfs_trans_stale_inode_buf(tp, bp);
  2103. xfs_trans_binval(tp, bp);
  2104. }
  2105. kmem_free(ip_found, ninodes * sizeof(xfs_inode_t *));
  2106. xfs_put_perag(mp, pag);
  2107. }
  2108. /*
  2109. * This is called to return an inode to the inode free list.
  2110. * The inode should already be truncated to 0 length and have
  2111. * no pages associated with it. This routine also assumes that
  2112. * the inode is already a part of the transaction.
  2113. *
  2114. * The on-disk copy of the inode will have been added to the list
  2115. * of unlinked inodes in the AGI. We need to remove the inode from
  2116. * that list atomically with respect to freeing it here.
  2117. */
  2118. int
  2119. xfs_ifree(
  2120. xfs_trans_t *tp,
  2121. xfs_inode_t *ip,
  2122. xfs_bmap_free_t *flist)
  2123. {
  2124. int error;
  2125. int delete;
  2126. xfs_ino_t first_ino;
  2127. xfs_dinode_t *dip;
  2128. xfs_buf_t *ibp;
  2129. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
  2130. ASSERT(ip->i_transp == tp);
  2131. ASSERT(ip->i_d.di_nlink == 0);
  2132. ASSERT(ip->i_d.di_nextents == 0);
  2133. ASSERT(ip->i_d.di_anextents == 0);
  2134. ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) ||
  2135. ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
  2136. ASSERT(ip->i_d.di_nblocks == 0);
  2137. /*
  2138. * Pull the on-disk inode from the AGI unlinked list.
  2139. */
  2140. error = xfs_iunlink_remove(tp, ip);
  2141. if (error != 0) {
  2142. return error;
  2143. }
  2144. error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
  2145. if (error != 0) {
  2146. return error;
  2147. }
  2148. ip->i_d.di_mode = 0; /* mark incore inode as free */
  2149. ip->i_d.di_flags = 0;
  2150. ip->i_d.di_dmevmask = 0;
  2151. ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
  2152. ip->i_df.if_ext_max =
  2153. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  2154. ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
  2155. ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
  2156. /*
  2157. * Bump the generation count so no one will be confused
  2158. * by reincarnations of this inode.
  2159. */
  2160. ip->i_d.di_gen++;
  2161. xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  2162. error = xfs_itobp(ip->i_mount, tp, ip, &dip, &ibp, 0, 0, XFS_BUF_LOCK);
  2163. if (error)
  2164. return error;
  2165. /*
  2166. * Clear the on-disk di_mode. This is to prevent xfs_bulkstat
  2167. * from picking up this inode when it is reclaimed (its incore state
  2168. * initialzed but not flushed to disk yet). The in-core di_mode is
  2169. * already cleared and a corresponding transaction logged.
  2170. * The hack here just synchronizes the in-core to on-disk
  2171. * di_mode value in advance before the actual inode sync to disk.
  2172. * This is OK because the inode is already unlinked and would never
  2173. * change its di_mode again for this inode generation.
  2174. * This is a temporary hack that would require a proper fix
  2175. * in the future.
  2176. */
  2177. dip->di_core.di_mode = 0;
  2178. if (delete) {
  2179. xfs_ifree_cluster(ip, tp, first_ino);
  2180. }
  2181. return 0;
  2182. }
  2183. /*
  2184. * Reallocate the space for if_broot based on the number of records
  2185. * being added or deleted as indicated in rec_diff. Move the records
  2186. * and pointers in if_broot to fit the new size. When shrinking this
  2187. * will eliminate holes between the records and pointers created by
  2188. * the caller. When growing this will create holes to be filled in
  2189. * by the caller.
  2190. *
  2191. * The caller must not request to add more records than would fit in
  2192. * the on-disk inode root. If the if_broot is currently NULL, then
  2193. * if we adding records one will be allocated. The caller must also
  2194. * not request that the number of records go below zero, although
  2195. * it can go to zero.
  2196. *
  2197. * ip -- the inode whose if_broot area is changing
  2198. * ext_diff -- the change in the number of records, positive or negative,
  2199. * requested for the if_broot array.
  2200. */
  2201. void
  2202. xfs_iroot_realloc(
  2203. xfs_inode_t *ip,
  2204. int rec_diff,
  2205. int whichfork)
  2206. {
  2207. int cur_max;
  2208. xfs_ifork_t *ifp;
  2209. xfs_bmbt_block_t *new_broot;
  2210. int new_max;
  2211. size_t new_size;
  2212. char *np;
  2213. char *op;
  2214. /*
  2215. * Handle the degenerate case quietly.
  2216. */
  2217. if (rec_diff == 0) {
  2218. return;
  2219. }
  2220. ifp = XFS_IFORK_PTR(ip, whichfork);
  2221. if (rec_diff > 0) {
  2222. /*
  2223. * If there wasn't any memory allocated before, just
  2224. * allocate it now and get out.
  2225. */
  2226. if (ifp->if_broot_bytes == 0) {
  2227. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
  2228. ifp->if_broot = (xfs_bmbt_block_t*)kmem_alloc(new_size,
  2229. KM_SLEEP);
  2230. ifp->if_broot_bytes = (int)new_size;
  2231. return;
  2232. }
  2233. /*
  2234. * If there is already an existing if_broot, then we need
  2235. * to realloc() it and shift the pointers to their new
  2236. * location. The records don't change location because
  2237. * they are kept butted up against the btree block header.
  2238. */
  2239. cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
  2240. new_max = cur_max + rec_diff;
  2241. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
  2242. ifp->if_broot = (xfs_bmbt_block_t *)
  2243. kmem_realloc(ifp->if_broot,
  2244. new_size,
  2245. (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
  2246. KM_SLEEP);
  2247. op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
  2248. ifp->if_broot_bytes);
  2249. np = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
  2250. (int)new_size);
  2251. ifp->if_broot_bytes = (int)new_size;
  2252. ASSERT(ifp->if_broot_bytes <=
  2253. XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
  2254. memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
  2255. return;
  2256. }
  2257. /*
  2258. * rec_diff is less than 0. In this case, we are shrinking the
  2259. * if_broot buffer. It must already exist. If we go to zero
  2260. * records, just get rid of the root and clear the status bit.
  2261. */
  2262. ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
  2263. cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
  2264. new_max = cur_max + rec_diff;
  2265. ASSERT(new_max >= 0);
  2266. if (new_max > 0)
  2267. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
  2268. else
  2269. new_size = 0;
  2270. if (new_size > 0) {
  2271. new_broot = (xfs_bmbt_block_t *)kmem_alloc(new_size, KM_SLEEP);
  2272. /*
  2273. * First copy over the btree block header.
  2274. */
  2275. memcpy(new_broot, ifp->if_broot, sizeof(xfs_bmbt_block_t));
  2276. } else {
  2277. new_broot = NULL;
  2278. ifp->if_flags &= ~XFS_IFBROOT;
  2279. }
  2280. /*
  2281. * Only copy the records and pointers if there are any.
  2282. */
  2283. if (new_max > 0) {
  2284. /*
  2285. * First copy the records.
  2286. */
  2287. op = (char *)XFS_BMAP_BROOT_REC_ADDR(ifp->if_broot, 1,
  2288. ifp->if_broot_bytes);
  2289. np = (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot, 1,
  2290. (int)new_size);
  2291. memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
  2292. /*
  2293. * Then copy the pointers.
  2294. */
  2295. op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
  2296. ifp->if_broot_bytes);
  2297. np = (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot, 1,
  2298. (int)new_size);
  2299. memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
  2300. }
  2301. kmem_free(ifp->if_broot, ifp->if_broot_bytes);
  2302. ifp->if_broot = new_broot;
  2303. ifp->if_broot_bytes = (int)new_size;
  2304. ASSERT(ifp->if_broot_bytes <=
  2305. XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
  2306. return;
  2307. }
  2308. /*
  2309. * This is called when the amount of space needed for if_data
  2310. * is increased or decreased. The change in size is indicated by
  2311. * the number of bytes that need to be added or deleted in the
  2312. * byte_diff parameter.
  2313. *
  2314. * If the amount of space needed has decreased below the size of the
  2315. * inline buffer, then switch to using the inline buffer. Otherwise,
  2316. * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
  2317. * to what is needed.
  2318. *
  2319. * ip -- the inode whose if_data area is changing
  2320. * byte_diff -- the change in the number of bytes, positive or negative,
  2321. * requested for the if_data array.
  2322. */
  2323. void
  2324. xfs_idata_realloc(
  2325. xfs_inode_t *ip,
  2326. int byte_diff,
  2327. int whichfork)
  2328. {
  2329. xfs_ifork_t *ifp;
  2330. int new_size;
  2331. int real_size;
  2332. if (byte_diff == 0) {
  2333. return;
  2334. }
  2335. ifp = XFS_IFORK_PTR(ip, whichfork);
  2336. new_size = (int)ifp->if_bytes + byte_diff;
  2337. ASSERT(new_size >= 0);
  2338. if (new_size == 0) {
  2339. if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2340. kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
  2341. }
  2342. ifp->if_u1.if_data = NULL;
  2343. real_size = 0;
  2344. } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
  2345. /*
  2346. * If the valid extents/data can fit in if_inline_ext/data,
  2347. * copy them from the malloc'd vector and free it.
  2348. */
  2349. if (ifp->if_u1.if_data == NULL) {
  2350. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  2351. } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2352. ASSERT(ifp->if_real_bytes != 0);
  2353. memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
  2354. new_size);
  2355. kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
  2356. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  2357. }
  2358. real_size = 0;
  2359. } else {
  2360. /*
  2361. * Stuck with malloc/realloc.
  2362. * For inline data, the underlying buffer must be
  2363. * a multiple of 4 bytes in size so that it can be
  2364. * logged and stay on word boundaries. We enforce
  2365. * that here.
  2366. */
  2367. real_size = roundup(new_size, 4);
  2368. if (ifp->if_u1.if_data == NULL) {
  2369. ASSERT(ifp->if_real_bytes == 0);
  2370. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
  2371. } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2372. /*
  2373. * Only do the realloc if the underlying size
  2374. * is really changing.
  2375. */
  2376. if (ifp->if_real_bytes != real_size) {
  2377. ifp->if_u1.if_data =
  2378. kmem_realloc(ifp->if_u1.if_data,
  2379. real_size,
  2380. ifp->if_real_bytes,
  2381. KM_SLEEP);
  2382. }
  2383. } else {
  2384. ASSERT(ifp->if_real_bytes == 0);
  2385. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
  2386. memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
  2387. ifp->if_bytes);
  2388. }
  2389. }
  2390. ifp->if_real_bytes = real_size;
  2391. ifp->if_bytes = new_size;
  2392. ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
  2393. }
  2394. /*
  2395. * Map inode to disk block and offset.
  2396. *
  2397. * mp -- the mount point structure for the current file system
  2398. * tp -- the current transaction
  2399. * ino -- the inode number of the inode to be located
  2400. * imap -- this structure is filled in with the information necessary
  2401. * to retrieve the given inode from disk
  2402. * flags -- flags to pass to xfs_dilocate indicating whether or not
  2403. * lookups in the inode btree were OK or not
  2404. */
  2405. int
  2406. xfs_imap(
  2407. xfs_mount_t *mp,
  2408. xfs_trans_t *tp,
  2409. xfs_ino_t ino,
  2410. xfs_imap_t *imap,
  2411. uint flags)
  2412. {
  2413. xfs_fsblock_t fsbno;
  2414. int len;
  2415. int off;
  2416. int error;
  2417. fsbno = imap->im_blkno ?
  2418. XFS_DADDR_TO_FSB(mp, imap->im_blkno) : NULLFSBLOCK;
  2419. error = xfs_dilocate(mp, tp, ino, &fsbno, &len, &off, flags);
  2420. if (error)
  2421. return error;
  2422. imap->im_blkno = XFS_FSB_TO_DADDR(mp, fsbno);
  2423. imap->im_len = XFS_FSB_TO_BB(mp, len);
  2424. imap->im_agblkno = XFS_FSB_TO_AGBNO(mp, fsbno);
  2425. imap->im_ioffset = (ushort)off;
  2426. imap->im_boffset = (ushort)(off << mp->m_sb.sb_inodelog);
  2427. /*
  2428. * If the inode number maps to a block outside the bounds
  2429. * of the file system then return NULL rather than calling
  2430. * read_buf and panicing when we get an error from the
  2431. * driver.
  2432. */
  2433. if ((imap->im_blkno + imap->im_len) >
  2434. XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
  2435. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_imap: "
  2436. "(imap->im_blkno (0x%llx) + imap->im_len (0x%llx)) > "
  2437. " XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks) (0x%llx)",
  2438. (unsigned long long) imap->im_blkno,
  2439. (unsigned long long) imap->im_len,
  2440. XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
  2441. return EINVAL;
  2442. }
  2443. return 0;
  2444. }
  2445. void
  2446. xfs_idestroy_fork(
  2447. xfs_inode_t *ip,
  2448. int whichfork)
  2449. {
  2450. xfs_ifork_t *ifp;
  2451. ifp = XFS_IFORK_PTR(ip, whichfork);
  2452. if (ifp->if_broot != NULL) {
  2453. kmem_free(ifp->if_broot, ifp->if_broot_bytes);
  2454. ifp->if_broot = NULL;
  2455. }
  2456. /*
  2457. * If the format is local, then we can't have an extents
  2458. * array so just look for an inline data array. If we're
  2459. * not local then we may or may not have an extents list,
  2460. * so check and free it up if we do.
  2461. */
  2462. if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
  2463. if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
  2464. (ifp->if_u1.if_data != NULL)) {
  2465. ASSERT(ifp->if_real_bytes != 0);
  2466. kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
  2467. ifp->if_u1.if_data = NULL;
  2468. ifp->if_real_bytes = 0;
  2469. }
  2470. } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
  2471. ((ifp->if_flags & XFS_IFEXTIREC) ||
  2472. ((ifp->if_u1.if_extents != NULL) &&
  2473. (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
  2474. ASSERT(ifp->if_real_bytes != 0);
  2475. xfs_iext_destroy(ifp);
  2476. }
  2477. ASSERT(ifp->if_u1.if_extents == NULL ||
  2478. ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
  2479. ASSERT(ifp->if_real_bytes == 0);
  2480. if (whichfork == XFS_ATTR_FORK) {
  2481. kmem_zone_free(xfs_ifork_zone, ip->i_afp);
  2482. ip->i_afp = NULL;
  2483. }
  2484. }
  2485. /*
  2486. * This is called free all the memory associated with an inode.
  2487. * It must free the inode itself and any buffers allocated for
  2488. * if_extents/if_data and if_broot. It must also free the lock
  2489. * associated with the inode.
  2490. */
  2491. void
  2492. xfs_idestroy(
  2493. xfs_inode_t *ip)
  2494. {
  2495. switch (ip->i_d.di_mode & S_IFMT) {
  2496. case S_IFREG:
  2497. case S_IFDIR:
  2498. case S_IFLNK:
  2499. xfs_idestroy_fork(ip, XFS_DATA_FORK);
  2500. break;
  2501. }
  2502. if (ip->i_afp)
  2503. xfs_idestroy_fork(ip, XFS_ATTR_FORK);
  2504. mrfree(&ip->i_lock);
  2505. mrfree(&ip->i_iolock);
  2506. freesema(&ip->i_flock);
  2507. #ifdef XFS_INODE_TRACE
  2508. ktrace_free(ip->i_trace);
  2509. #endif
  2510. #ifdef XFS_BMAP_TRACE
  2511. ktrace_free(ip->i_xtrace);
  2512. #endif
  2513. #ifdef XFS_BMBT_TRACE
  2514. ktrace_free(ip->i_btrace);
  2515. #endif
  2516. #ifdef XFS_RW_TRACE
  2517. ktrace_free(ip->i_rwtrace);
  2518. #endif
  2519. #ifdef XFS_ILOCK_TRACE
  2520. ktrace_free(ip->i_lock_trace);
  2521. #endif
  2522. #ifdef XFS_DIR2_TRACE
  2523. ktrace_free(ip->i_dir_trace);
  2524. #endif
  2525. if (ip->i_itemp) {
  2526. /*
  2527. * Only if we are shutting down the fs will we see an
  2528. * inode still in the AIL. If it is there, we should remove
  2529. * it to prevent a use-after-free from occurring.
  2530. */
  2531. xfs_mount_t *mp = ip->i_mount;
  2532. xfs_log_item_t *lip = &ip->i_itemp->ili_item;
  2533. ASSERT(((lip->li_flags & XFS_LI_IN_AIL) == 0) ||
  2534. XFS_FORCED_SHUTDOWN(ip->i_mount));
  2535. if (lip->li_flags & XFS_LI_IN_AIL) {
  2536. spin_lock(&mp->m_ail_lock);
  2537. if (lip->li_flags & XFS_LI_IN_AIL)
  2538. xfs_trans_delete_ail(mp, lip);
  2539. else
  2540. spin_unlock(&mp->m_ail_lock);
  2541. }
  2542. xfs_inode_item_destroy(ip);
  2543. }
  2544. kmem_zone_free(xfs_inode_zone, ip);
  2545. }
  2546. /*
  2547. * Increment the pin count of the given buffer.
  2548. * This value is protected by ipinlock spinlock in the mount structure.
  2549. */
  2550. void
  2551. xfs_ipin(
  2552. xfs_inode_t *ip)
  2553. {
  2554. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
  2555. atomic_inc(&ip->i_pincount);
  2556. }
  2557. /*
  2558. * Decrement the pin count of the given inode, and wake up
  2559. * anyone in xfs_iwait_unpin() if the count goes to 0. The
  2560. * inode must have been previously pinned with a call to xfs_ipin().
  2561. */
  2562. void
  2563. xfs_iunpin(
  2564. xfs_inode_t *ip)
  2565. {
  2566. ASSERT(atomic_read(&ip->i_pincount) > 0);
  2567. if (atomic_dec_and_test(&ip->i_pincount))
  2568. wake_up(&ip->i_ipin_wait);
  2569. }
  2570. /*
  2571. * This is called to unpin an inode. It can be directed to wait or to return
  2572. * immediately without waiting for the inode to be unpinned. The caller must
  2573. * have the inode locked in at least shared mode so that the buffer cannot be
  2574. * subsequently pinned once someone is waiting for it to be unpinned.
  2575. */
  2576. STATIC void
  2577. __xfs_iunpin_wait(
  2578. xfs_inode_t *ip,
  2579. int wait)
  2580. {
  2581. xfs_inode_log_item_t *iip = ip->i_itemp;
  2582. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  2583. if (atomic_read(&ip->i_pincount) == 0)
  2584. return;
  2585. /* Give the log a push to start the unpinning I/O */
  2586. xfs_log_force(ip->i_mount, (iip && iip->ili_last_lsn) ?
  2587. iip->ili_last_lsn : 0, XFS_LOG_FORCE);
  2588. if (wait)
  2589. wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0));
  2590. }
  2591. static inline void
  2592. xfs_iunpin_wait(
  2593. xfs_inode_t *ip)
  2594. {
  2595. __xfs_iunpin_wait(ip, 1);
  2596. }
  2597. static inline void
  2598. xfs_iunpin_nowait(
  2599. xfs_inode_t *ip)
  2600. {
  2601. __xfs_iunpin_wait(ip, 0);
  2602. }
  2603. /*
  2604. * xfs_iextents_copy()
  2605. *
  2606. * This is called to copy the REAL extents (as opposed to the delayed
  2607. * allocation extents) from the inode into the given buffer. It
  2608. * returns the number of bytes copied into the buffer.
  2609. *
  2610. * If there are no delayed allocation extents, then we can just
  2611. * memcpy() the extents into the buffer. Otherwise, we need to
  2612. * examine each extent in turn and skip those which are delayed.
  2613. */
  2614. int
  2615. xfs_iextents_copy(
  2616. xfs_inode_t *ip,
  2617. xfs_bmbt_rec_t *dp,
  2618. int whichfork)
  2619. {
  2620. int copied;
  2621. int i;
  2622. xfs_ifork_t *ifp;
  2623. int nrecs;
  2624. xfs_fsblock_t start_block;
  2625. ifp = XFS_IFORK_PTR(ip, whichfork);
  2626. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  2627. ASSERT(ifp->if_bytes > 0);
  2628. nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  2629. XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
  2630. ASSERT(nrecs > 0);
  2631. /*
  2632. * There are some delayed allocation extents in the
  2633. * inode, so copy the extents one at a time and skip
  2634. * the delayed ones. There must be at least one
  2635. * non-delayed extent.
  2636. */
  2637. copied = 0;
  2638. for (i = 0; i < nrecs; i++) {
  2639. xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  2640. start_block = xfs_bmbt_get_startblock(ep);
  2641. if (ISNULLSTARTBLOCK(start_block)) {
  2642. /*
  2643. * It's a delayed allocation extent, so skip it.
  2644. */
  2645. continue;
  2646. }
  2647. /* Translate to on disk format */
  2648. put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
  2649. put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
  2650. dp++;
  2651. copied++;
  2652. }
  2653. ASSERT(copied != 0);
  2654. xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
  2655. return (copied * (uint)sizeof(xfs_bmbt_rec_t));
  2656. }
  2657. /*
  2658. * Each of the following cases stores data into the same region
  2659. * of the on-disk inode, so only one of them can be valid at
  2660. * any given time. While it is possible to have conflicting formats
  2661. * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
  2662. * in EXTENTS format, this can only happen when the fork has
  2663. * changed formats after being modified but before being flushed.
  2664. * In these cases, the format always takes precedence, because the
  2665. * format indicates the current state of the fork.
  2666. */
  2667. /*ARGSUSED*/
  2668. STATIC void
  2669. xfs_iflush_fork(
  2670. xfs_inode_t *ip,
  2671. xfs_dinode_t *dip,
  2672. xfs_inode_log_item_t *iip,
  2673. int whichfork,
  2674. xfs_buf_t *bp)
  2675. {
  2676. char *cp;
  2677. xfs_ifork_t *ifp;
  2678. xfs_mount_t *mp;
  2679. #ifdef XFS_TRANS_DEBUG
  2680. int first;
  2681. #endif
  2682. static const short brootflag[2] =
  2683. { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
  2684. static const short dataflag[2] =
  2685. { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
  2686. static const short extflag[2] =
  2687. { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
  2688. if (!iip)
  2689. return;
  2690. ifp = XFS_IFORK_PTR(ip, whichfork);
  2691. /*
  2692. * This can happen if we gave up in iformat in an error path,
  2693. * for the attribute fork.
  2694. */
  2695. if (!ifp) {
  2696. ASSERT(whichfork == XFS_ATTR_FORK);
  2697. return;
  2698. }
  2699. cp = XFS_DFORK_PTR(dip, whichfork);
  2700. mp = ip->i_mount;
  2701. switch (XFS_IFORK_FORMAT(ip, whichfork)) {
  2702. case XFS_DINODE_FMT_LOCAL:
  2703. if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
  2704. (ifp->if_bytes > 0)) {
  2705. ASSERT(ifp->if_u1.if_data != NULL);
  2706. ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
  2707. memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
  2708. }
  2709. break;
  2710. case XFS_DINODE_FMT_EXTENTS:
  2711. ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
  2712. !(iip->ili_format.ilf_fields & extflag[whichfork]));
  2713. ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
  2714. (ifp->if_bytes == 0));
  2715. ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
  2716. (ifp->if_bytes > 0));
  2717. if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
  2718. (ifp->if_bytes > 0)) {
  2719. ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
  2720. (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
  2721. whichfork);
  2722. }
  2723. break;
  2724. case XFS_DINODE_FMT_BTREE:
  2725. if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
  2726. (ifp->if_broot_bytes > 0)) {
  2727. ASSERT(ifp->if_broot != NULL);
  2728. ASSERT(ifp->if_broot_bytes <=
  2729. (XFS_IFORK_SIZE(ip, whichfork) +
  2730. XFS_BROOT_SIZE_ADJ));
  2731. xfs_bmbt_to_bmdr(ifp->if_broot, ifp->if_broot_bytes,
  2732. (xfs_bmdr_block_t *)cp,
  2733. XFS_DFORK_SIZE(dip, mp, whichfork));
  2734. }
  2735. break;
  2736. case XFS_DINODE_FMT_DEV:
  2737. if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
  2738. ASSERT(whichfork == XFS_DATA_FORK);
  2739. dip->di_u.di_dev = cpu_to_be32(ip->i_df.if_u2.if_rdev);
  2740. }
  2741. break;
  2742. case XFS_DINODE_FMT_UUID:
  2743. if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
  2744. ASSERT(whichfork == XFS_DATA_FORK);
  2745. memcpy(&dip->di_u.di_muuid, &ip->i_df.if_u2.if_uuid,
  2746. sizeof(uuid_t));
  2747. }
  2748. break;
  2749. default:
  2750. ASSERT(0);
  2751. break;
  2752. }
  2753. }
  2754. STATIC int
  2755. xfs_iflush_cluster(
  2756. xfs_inode_t *ip,
  2757. xfs_buf_t *bp)
  2758. {
  2759. xfs_mount_t *mp = ip->i_mount;
  2760. xfs_perag_t *pag = xfs_get_perag(mp, ip->i_ino);
  2761. unsigned long first_index, mask;
  2762. unsigned long inodes_per_cluster;
  2763. int ilist_size;
  2764. xfs_inode_t **ilist;
  2765. xfs_inode_t *iq;
  2766. int nr_found;
  2767. int clcount = 0;
  2768. int bufwasdelwri;
  2769. int i;
  2770. ASSERT(pag->pagi_inodeok);
  2771. ASSERT(pag->pag_ici_init);
  2772. inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog;
  2773. ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
  2774. ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
  2775. if (!ilist)
  2776. return 0;
  2777. mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
  2778. first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
  2779. read_lock(&pag->pag_ici_lock);
  2780. /* really need a gang lookup range call here */
  2781. nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
  2782. first_index, inodes_per_cluster);
  2783. if (nr_found == 0)
  2784. goto out_free;
  2785. for (i = 0; i < nr_found; i++) {
  2786. iq = ilist[i];
  2787. if (iq == ip)
  2788. continue;
  2789. /* if the inode lies outside this cluster, we're done. */
  2790. if ((XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index)
  2791. break;
  2792. /*
  2793. * Do an un-protected check to see if the inode is dirty and
  2794. * is a candidate for flushing. These checks will be repeated
  2795. * later after the appropriate locks are acquired.
  2796. */
  2797. if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
  2798. continue;
  2799. /*
  2800. * Try to get locks. If any are unavailable or it is pinned,
  2801. * then this inode cannot be flushed and is skipped.
  2802. */
  2803. if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
  2804. continue;
  2805. if (!xfs_iflock_nowait(iq)) {
  2806. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2807. continue;
  2808. }
  2809. if (xfs_ipincount(iq)) {
  2810. xfs_ifunlock(iq);
  2811. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2812. continue;
  2813. }
  2814. /*
  2815. * arriving here means that this inode can be flushed. First
  2816. * re-check that it's dirty before flushing.
  2817. */
  2818. if (!xfs_inode_clean(iq)) {
  2819. int error;
  2820. error = xfs_iflush_int(iq, bp);
  2821. if (error) {
  2822. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2823. goto cluster_corrupt_out;
  2824. }
  2825. clcount++;
  2826. } else {
  2827. xfs_ifunlock(iq);
  2828. }
  2829. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2830. }
  2831. if (clcount) {
  2832. XFS_STATS_INC(xs_icluster_flushcnt);
  2833. XFS_STATS_ADD(xs_icluster_flushinode, clcount);
  2834. }
  2835. out_free:
  2836. read_unlock(&pag->pag_ici_lock);
  2837. kmem_free(ilist, ilist_size);
  2838. return 0;
  2839. cluster_corrupt_out:
  2840. /*
  2841. * Corruption detected in the clustering loop. Invalidate the
  2842. * inode buffer and shut down the filesystem.
  2843. */
  2844. read_unlock(&pag->pag_ici_lock);
  2845. /*
  2846. * Clean up the buffer. If it was B_DELWRI, just release it --
  2847. * brelse can handle it with no problems. If not, shut down the
  2848. * filesystem before releasing the buffer.
  2849. */
  2850. bufwasdelwri = XFS_BUF_ISDELAYWRITE(bp);
  2851. if (bufwasdelwri)
  2852. xfs_buf_relse(bp);
  2853. xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
  2854. if (!bufwasdelwri) {
  2855. /*
  2856. * Just like incore_relse: if we have b_iodone functions,
  2857. * mark the buffer as an error and call them. Otherwise
  2858. * mark it as stale and brelse.
  2859. */
  2860. if (XFS_BUF_IODONE_FUNC(bp)) {
  2861. XFS_BUF_CLR_BDSTRAT_FUNC(bp);
  2862. XFS_BUF_UNDONE(bp);
  2863. XFS_BUF_STALE(bp);
  2864. XFS_BUF_SHUT(bp);
  2865. XFS_BUF_ERROR(bp,EIO);
  2866. xfs_biodone(bp);
  2867. } else {
  2868. XFS_BUF_STALE(bp);
  2869. xfs_buf_relse(bp);
  2870. }
  2871. }
  2872. /*
  2873. * Unlocks the flush lock
  2874. */
  2875. xfs_iflush_abort(iq);
  2876. kmem_free(ilist, ilist_size);
  2877. return XFS_ERROR(EFSCORRUPTED);
  2878. }
  2879. /*
  2880. * xfs_iflush() will write a modified inode's changes out to the
  2881. * inode's on disk home. The caller must have the inode lock held
  2882. * in at least shared mode and the inode flush semaphore must be
  2883. * held as well. The inode lock will still be held upon return from
  2884. * the call and the caller is free to unlock it.
  2885. * The inode flush lock will be unlocked when the inode reaches the disk.
  2886. * The flags indicate how the inode's buffer should be written out.
  2887. */
  2888. int
  2889. xfs_iflush(
  2890. xfs_inode_t *ip,
  2891. uint flags)
  2892. {
  2893. xfs_inode_log_item_t *iip;
  2894. xfs_buf_t *bp;
  2895. xfs_dinode_t *dip;
  2896. xfs_mount_t *mp;
  2897. int error;
  2898. int noblock = (flags == XFS_IFLUSH_ASYNC_NOBLOCK);
  2899. enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) };
  2900. XFS_STATS_INC(xs_iflush_count);
  2901. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  2902. ASSERT(issemalocked(&(ip->i_flock)));
  2903. ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
  2904. ip->i_d.di_nextents > ip->i_df.if_ext_max);
  2905. iip = ip->i_itemp;
  2906. mp = ip->i_mount;
  2907. /*
  2908. * If the inode isn't dirty, then just release the inode
  2909. * flush lock and do nothing.
  2910. */
  2911. if (xfs_inode_clean(ip)) {
  2912. ASSERT((iip != NULL) ?
  2913. !(iip->ili_item.li_flags & XFS_LI_IN_AIL) : 1);
  2914. xfs_ifunlock(ip);
  2915. return 0;
  2916. }
  2917. /*
  2918. * We can't flush the inode until it is unpinned, so wait for it if we
  2919. * are allowed to block. We know noone new can pin it, because we are
  2920. * holding the inode lock shared and you need to hold it exclusively to
  2921. * pin the inode.
  2922. *
  2923. * If we are not allowed to block, force the log out asynchronously so
  2924. * that when we come back the inode will be unpinned. If other inodes
  2925. * in the same cluster are dirty, they will probably write the inode
  2926. * out for us if they occur after the log force completes.
  2927. */
  2928. if (noblock && xfs_ipincount(ip)) {
  2929. xfs_iunpin_nowait(ip);
  2930. xfs_ifunlock(ip);
  2931. return EAGAIN;
  2932. }
  2933. xfs_iunpin_wait(ip);
  2934. /*
  2935. * This may have been unpinned because the filesystem is shutting
  2936. * down forcibly. If that's the case we must not write this inode
  2937. * to disk, because the log record didn't make it to disk!
  2938. */
  2939. if (XFS_FORCED_SHUTDOWN(mp)) {
  2940. ip->i_update_core = 0;
  2941. if (iip)
  2942. iip->ili_format.ilf_fields = 0;
  2943. xfs_ifunlock(ip);
  2944. return XFS_ERROR(EIO);
  2945. }
  2946. /*
  2947. * Decide how buffer will be flushed out. This is done before
  2948. * the call to xfs_iflush_int because this field is zeroed by it.
  2949. */
  2950. if (iip != NULL && iip->ili_format.ilf_fields != 0) {
  2951. /*
  2952. * Flush out the inode buffer according to the directions
  2953. * of the caller. In the cases where the caller has given
  2954. * us a choice choose the non-delwri case. This is because
  2955. * the inode is in the AIL and we need to get it out soon.
  2956. */
  2957. switch (flags) {
  2958. case XFS_IFLUSH_SYNC:
  2959. case XFS_IFLUSH_DELWRI_ELSE_SYNC:
  2960. flags = 0;
  2961. break;
  2962. case XFS_IFLUSH_ASYNC_NOBLOCK:
  2963. case XFS_IFLUSH_ASYNC:
  2964. case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
  2965. flags = INT_ASYNC;
  2966. break;
  2967. case XFS_IFLUSH_DELWRI:
  2968. flags = INT_DELWRI;
  2969. break;
  2970. default:
  2971. ASSERT(0);
  2972. flags = 0;
  2973. break;
  2974. }
  2975. } else {
  2976. switch (flags) {
  2977. case XFS_IFLUSH_DELWRI_ELSE_SYNC:
  2978. case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
  2979. case XFS_IFLUSH_DELWRI:
  2980. flags = INT_DELWRI;
  2981. break;
  2982. case XFS_IFLUSH_ASYNC_NOBLOCK:
  2983. case XFS_IFLUSH_ASYNC:
  2984. flags = INT_ASYNC;
  2985. break;
  2986. case XFS_IFLUSH_SYNC:
  2987. flags = 0;
  2988. break;
  2989. default:
  2990. ASSERT(0);
  2991. flags = 0;
  2992. break;
  2993. }
  2994. }
  2995. /*
  2996. * Get the buffer containing the on-disk inode.
  2997. */
  2998. error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0, 0,
  2999. noblock ? XFS_BUF_TRYLOCK : XFS_BUF_LOCK);
  3000. if (error || !bp) {
  3001. xfs_ifunlock(ip);
  3002. return error;
  3003. }
  3004. /*
  3005. * First flush out the inode that xfs_iflush was called with.
  3006. */
  3007. error = xfs_iflush_int(ip, bp);
  3008. if (error)
  3009. goto corrupt_out;
  3010. /*
  3011. * If the buffer is pinned then push on the log now so we won't
  3012. * get stuck waiting in the write for too long.
  3013. */
  3014. if (XFS_BUF_ISPINNED(bp))
  3015. xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
  3016. /*
  3017. * inode clustering:
  3018. * see if other inodes can be gathered into this write
  3019. */
  3020. error = xfs_iflush_cluster(ip, bp);
  3021. if (error)
  3022. goto cluster_corrupt_out;
  3023. if (flags & INT_DELWRI) {
  3024. xfs_bdwrite(mp, bp);
  3025. } else if (flags & INT_ASYNC) {
  3026. error = xfs_bawrite(mp, bp);
  3027. } else {
  3028. error = xfs_bwrite(mp, bp);
  3029. }
  3030. return error;
  3031. corrupt_out:
  3032. xfs_buf_relse(bp);
  3033. xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
  3034. cluster_corrupt_out:
  3035. /*
  3036. * Unlocks the flush lock
  3037. */
  3038. xfs_iflush_abort(ip);
  3039. return XFS_ERROR(EFSCORRUPTED);
  3040. }
  3041. STATIC int
  3042. xfs_iflush_int(
  3043. xfs_inode_t *ip,
  3044. xfs_buf_t *bp)
  3045. {
  3046. xfs_inode_log_item_t *iip;
  3047. xfs_dinode_t *dip;
  3048. xfs_mount_t *mp;
  3049. #ifdef XFS_TRANS_DEBUG
  3050. int first;
  3051. #endif
  3052. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  3053. ASSERT(issemalocked(&(ip->i_flock)));
  3054. ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
  3055. ip->i_d.di_nextents > ip->i_df.if_ext_max);
  3056. iip = ip->i_itemp;
  3057. mp = ip->i_mount;
  3058. /*
  3059. * If the inode isn't dirty, then just release the inode
  3060. * flush lock and do nothing.
  3061. */
  3062. if (xfs_inode_clean(ip)) {
  3063. xfs_ifunlock(ip);
  3064. return 0;
  3065. }
  3066. /* set *dip = inode's place in the buffer */
  3067. dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset);
  3068. /*
  3069. * Clear i_update_core before copying out the data.
  3070. * This is for coordination with our timestamp updates
  3071. * that don't hold the inode lock. They will always
  3072. * update the timestamps BEFORE setting i_update_core,
  3073. * so if we clear i_update_core after they set it we
  3074. * are guaranteed to see their updates to the timestamps.
  3075. * I believe that this depends on strongly ordered memory
  3076. * semantics, but we have that. We use the SYNCHRONIZE
  3077. * macro to make sure that the compiler does not reorder
  3078. * the i_update_core access below the data copy below.
  3079. */
  3080. ip->i_update_core = 0;
  3081. SYNCHRONIZE();
  3082. /*
  3083. * Make sure to get the latest atime from the Linux inode.
  3084. */
  3085. xfs_synchronize_atime(ip);
  3086. if (XFS_TEST_ERROR(be16_to_cpu(dip->di_core.di_magic) != XFS_DINODE_MAGIC,
  3087. mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
  3088. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3089. "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
  3090. ip->i_ino, be16_to_cpu(dip->di_core.di_magic), dip);
  3091. goto corrupt_out;
  3092. }
  3093. if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
  3094. mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
  3095. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3096. "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
  3097. ip->i_ino, ip, ip->i_d.di_magic);
  3098. goto corrupt_out;
  3099. }
  3100. if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
  3101. if (XFS_TEST_ERROR(
  3102. (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
  3103. (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
  3104. mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
  3105. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3106. "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
  3107. ip->i_ino, ip);
  3108. goto corrupt_out;
  3109. }
  3110. } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
  3111. if (XFS_TEST_ERROR(
  3112. (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
  3113. (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
  3114. (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
  3115. mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
  3116. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3117. "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
  3118. ip->i_ino, ip);
  3119. goto corrupt_out;
  3120. }
  3121. }
  3122. if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
  3123. ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
  3124. XFS_RANDOM_IFLUSH_5)) {
  3125. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3126. "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
  3127. ip->i_ino,
  3128. ip->i_d.di_nextents + ip->i_d.di_anextents,
  3129. ip->i_d.di_nblocks,
  3130. ip);
  3131. goto corrupt_out;
  3132. }
  3133. if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
  3134. mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
  3135. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3136. "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
  3137. ip->i_ino, ip->i_d.di_forkoff, ip);
  3138. goto corrupt_out;
  3139. }
  3140. /*
  3141. * bump the flush iteration count, used to detect flushes which
  3142. * postdate a log record during recovery.
  3143. */
  3144. ip->i_d.di_flushiter++;
  3145. /*
  3146. * Copy the dirty parts of the inode into the on-disk
  3147. * inode. We always copy out the core of the inode,
  3148. * because if the inode is dirty at all the core must
  3149. * be.
  3150. */
  3151. xfs_dinode_to_disk(&dip->di_core, &ip->i_d);
  3152. /* Wrap, we never let the log put out DI_MAX_FLUSH */
  3153. if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
  3154. ip->i_d.di_flushiter = 0;
  3155. /*
  3156. * If this is really an old format inode and the superblock version
  3157. * has not been updated to support only new format inodes, then
  3158. * convert back to the old inode format. If the superblock version
  3159. * has been updated, then make the conversion permanent.
  3160. */
  3161. ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 ||
  3162. xfs_sb_version_hasnlink(&mp->m_sb));
  3163. if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
  3164. if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
  3165. /*
  3166. * Convert it back.
  3167. */
  3168. ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
  3169. dip->di_core.di_onlink = cpu_to_be16(ip->i_d.di_nlink);
  3170. } else {
  3171. /*
  3172. * The superblock version has already been bumped,
  3173. * so just make the conversion to the new inode
  3174. * format permanent.
  3175. */
  3176. ip->i_d.di_version = XFS_DINODE_VERSION_2;
  3177. dip->di_core.di_version = XFS_DINODE_VERSION_2;
  3178. ip->i_d.di_onlink = 0;
  3179. dip->di_core.di_onlink = 0;
  3180. memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
  3181. memset(&(dip->di_core.di_pad[0]), 0,
  3182. sizeof(dip->di_core.di_pad));
  3183. ASSERT(ip->i_d.di_projid == 0);
  3184. }
  3185. }
  3186. xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
  3187. if (XFS_IFORK_Q(ip))
  3188. xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
  3189. xfs_inobp_check(mp, bp);
  3190. /*
  3191. * We've recorded everything logged in the inode, so we'd
  3192. * like to clear the ilf_fields bits so we don't log and
  3193. * flush things unnecessarily. However, we can't stop
  3194. * logging all this information until the data we've copied
  3195. * into the disk buffer is written to disk. If we did we might
  3196. * overwrite the copy of the inode in the log with all the
  3197. * data after re-logging only part of it, and in the face of
  3198. * a crash we wouldn't have all the data we need to recover.
  3199. *
  3200. * What we do is move the bits to the ili_last_fields field.
  3201. * When logging the inode, these bits are moved back to the
  3202. * ilf_fields field. In the xfs_iflush_done() routine we
  3203. * clear ili_last_fields, since we know that the information
  3204. * those bits represent is permanently on disk. As long as
  3205. * the flush completes before the inode is logged again, then
  3206. * both ilf_fields and ili_last_fields will be cleared.
  3207. *
  3208. * We can play with the ilf_fields bits here, because the inode
  3209. * lock must be held exclusively in order to set bits there
  3210. * and the flush lock protects the ili_last_fields bits.
  3211. * Set ili_logged so the flush done
  3212. * routine can tell whether or not to look in the AIL.
  3213. * Also, store the current LSN of the inode so that we can tell
  3214. * whether the item has moved in the AIL from xfs_iflush_done().
  3215. * In order to read the lsn we need the AIL lock, because
  3216. * it is a 64 bit value that cannot be read atomically.
  3217. */
  3218. if (iip != NULL && iip->ili_format.ilf_fields != 0) {
  3219. iip->ili_last_fields = iip->ili_format.ilf_fields;
  3220. iip->ili_format.ilf_fields = 0;
  3221. iip->ili_logged = 1;
  3222. ASSERT(sizeof(xfs_lsn_t) == 8); /* don't lock if it shrinks */
  3223. spin_lock(&mp->m_ail_lock);
  3224. iip->ili_flush_lsn = iip->ili_item.li_lsn;
  3225. spin_unlock(&mp->m_ail_lock);
  3226. /*
  3227. * Attach the function xfs_iflush_done to the inode's
  3228. * buffer. This will remove the inode from the AIL
  3229. * and unlock the inode's flush lock when the inode is
  3230. * completely written to disk.
  3231. */
  3232. xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
  3233. xfs_iflush_done, (xfs_log_item_t *)iip);
  3234. ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
  3235. ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
  3236. } else {
  3237. /*
  3238. * We're flushing an inode which is not in the AIL and has
  3239. * not been logged but has i_update_core set. For this
  3240. * case we can use a B_DELWRI flush and immediately drop
  3241. * the inode flush lock because we can avoid the whole
  3242. * AIL state thing. It's OK to drop the flush lock now,
  3243. * because we've already locked the buffer and to do anything
  3244. * you really need both.
  3245. */
  3246. if (iip != NULL) {
  3247. ASSERT(iip->ili_logged == 0);
  3248. ASSERT(iip->ili_last_fields == 0);
  3249. ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
  3250. }
  3251. xfs_ifunlock(ip);
  3252. }
  3253. return 0;
  3254. corrupt_out:
  3255. return XFS_ERROR(EFSCORRUPTED);
  3256. }
  3257. /*
  3258. * Flush all inactive inodes in mp.
  3259. */
  3260. void
  3261. xfs_iflush_all(
  3262. xfs_mount_t *mp)
  3263. {
  3264. xfs_inode_t *ip;
  3265. bhv_vnode_t *vp;
  3266. again:
  3267. XFS_MOUNT_ILOCK(mp);
  3268. ip = mp->m_inodes;
  3269. if (ip == NULL)
  3270. goto out;
  3271. do {
  3272. /* Make sure we skip markers inserted by sync */
  3273. if (ip->i_mount == NULL) {
  3274. ip = ip->i_mnext;
  3275. continue;
  3276. }
  3277. vp = XFS_ITOV_NULL(ip);
  3278. if (!vp) {
  3279. XFS_MOUNT_IUNLOCK(mp);
  3280. xfs_finish_reclaim(ip, 0, XFS_IFLUSH_ASYNC);
  3281. goto again;
  3282. }
  3283. ASSERT(vn_count(vp) == 0);
  3284. ip = ip->i_mnext;
  3285. } while (ip != mp->m_inodes);
  3286. out:
  3287. XFS_MOUNT_IUNLOCK(mp);
  3288. }
  3289. #ifdef XFS_ILOCK_TRACE
  3290. ktrace_t *xfs_ilock_trace_buf;
  3291. void
  3292. xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra)
  3293. {
  3294. ktrace_enter(ip->i_lock_trace,
  3295. (void *)ip,
  3296. (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */
  3297. (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */
  3298. (void *)ra, /* caller of ilock */
  3299. (void *)(unsigned long)current_cpu(),
  3300. (void *)(unsigned long)current_pid(),
  3301. NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);
  3302. }
  3303. #endif
  3304. /*
  3305. * Return a pointer to the extent record at file index idx.
  3306. */
  3307. xfs_bmbt_rec_host_t *
  3308. xfs_iext_get_ext(
  3309. xfs_ifork_t *ifp, /* inode fork pointer */
  3310. xfs_extnum_t idx) /* index of target extent */
  3311. {
  3312. ASSERT(idx >= 0);
  3313. if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
  3314. return ifp->if_u1.if_ext_irec->er_extbuf;
  3315. } else if (ifp->if_flags & XFS_IFEXTIREC) {
  3316. xfs_ext_irec_t *erp; /* irec pointer */
  3317. int erp_idx = 0; /* irec index */
  3318. xfs_extnum_t page_idx = idx; /* ext index in target list */
  3319. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
  3320. return &erp->er_extbuf[page_idx];
  3321. } else if (ifp->if_bytes) {
  3322. return &ifp->if_u1.if_extents[idx];
  3323. } else {
  3324. return NULL;
  3325. }
  3326. }
  3327. /*
  3328. * Insert new item(s) into the extent records for incore inode
  3329. * fork 'ifp'. 'count' new items are inserted at index 'idx'.
  3330. */
  3331. void
  3332. xfs_iext_insert(
  3333. xfs_ifork_t *ifp, /* inode fork pointer */
  3334. xfs_extnum_t idx, /* starting index of new items */
  3335. xfs_extnum_t count, /* number of inserted items */
  3336. xfs_bmbt_irec_t *new) /* items to insert */
  3337. {
  3338. xfs_extnum_t i; /* extent record index */
  3339. ASSERT(ifp->if_flags & XFS_IFEXTENTS);
  3340. xfs_iext_add(ifp, idx, count);
  3341. for (i = idx; i < idx + count; i++, new++)
  3342. xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
  3343. }
  3344. /*
  3345. * This is called when the amount of space required for incore file
  3346. * extents needs to be increased. The ext_diff parameter stores the
  3347. * number of new extents being added and the idx parameter contains
  3348. * the extent index where the new extents will be added. If the new
  3349. * extents are being appended, then we just need to (re)allocate and
  3350. * initialize the space. Otherwise, if the new extents are being
  3351. * inserted into the middle of the existing entries, a bit more work
  3352. * is required to make room for the new extents to be inserted. The
  3353. * caller is responsible for filling in the new extent entries upon
  3354. * return.
  3355. */
  3356. void
  3357. xfs_iext_add(
  3358. xfs_ifork_t *ifp, /* inode fork pointer */
  3359. xfs_extnum_t idx, /* index to begin adding exts */
  3360. int ext_diff) /* number of extents to add */
  3361. {
  3362. int byte_diff; /* new bytes being added */
  3363. int new_size; /* size of extents after adding */
  3364. xfs_extnum_t nextents; /* number of extents in file */
  3365. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3366. ASSERT((idx >= 0) && (idx <= nextents));
  3367. byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
  3368. new_size = ifp->if_bytes + byte_diff;
  3369. /*
  3370. * If the new number of extents (nextents + ext_diff)
  3371. * fits inside the inode, then continue to use the inline
  3372. * extent buffer.
  3373. */
  3374. if (nextents + ext_diff <= XFS_INLINE_EXTS) {
  3375. if (idx < nextents) {
  3376. memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
  3377. &ifp->if_u2.if_inline_ext[idx],
  3378. (nextents - idx) * sizeof(xfs_bmbt_rec_t));
  3379. memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
  3380. }
  3381. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  3382. ifp->if_real_bytes = 0;
  3383. ifp->if_lastex = nextents + ext_diff;
  3384. }
  3385. /*
  3386. * Otherwise use a linear (direct) extent list.
  3387. * If the extents are currently inside the inode,
  3388. * xfs_iext_realloc_direct will switch us from
  3389. * inline to direct extent allocation mode.
  3390. */
  3391. else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
  3392. xfs_iext_realloc_direct(ifp, new_size);
  3393. if (idx < nextents) {
  3394. memmove(&ifp->if_u1.if_extents[idx + ext_diff],
  3395. &ifp->if_u1.if_extents[idx],
  3396. (nextents - idx) * sizeof(xfs_bmbt_rec_t));
  3397. memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
  3398. }
  3399. }
  3400. /* Indirection array */
  3401. else {
  3402. xfs_ext_irec_t *erp;
  3403. int erp_idx = 0;
  3404. int page_idx = idx;
  3405. ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
  3406. if (ifp->if_flags & XFS_IFEXTIREC) {
  3407. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
  3408. } else {
  3409. xfs_iext_irec_init(ifp);
  3410. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3411. erp = ifp->if_u1.if_ext_irec;
  3412. }
  3413. /* Extents fit in target extent page */
  3414. if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
  3415. if (page_idx < erp->er_extcount) {
  3416. memmove(&erp->er_extbuf[page_idx + ext_diff],
  3417. &erp->er_extbuf[page_idx],
  3418. (erp->er_extcount - page_idx) *
  3419. sizeof(xfs_bmbt_rec_t));
  3420. memset(&erp->er_extbuf[page_idx], 0, byte_diff);
  3421. }
  3422. erp->er_extcount += ext_diff;
  3423. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  3424. }
  3425. /* Insert a new extent page */
  3426. else if (erp) {
  3427. xfs_iext_add_indirect_multi(ifp,
  3428. erp_idx, page_idx, ext_diff);
  3429. }
  3430. /*
  3431. * If extent(s) are being appended to the last page in
  3432. * the indirection array and the new extent(s) don't fit
  3433. * in the page, then erp is NULL and erp_idx is set to
  3434. * the next index needed in the indirection array.
  3435. */
  3436. else {
  3437. int count = ext_diff;
  3438. while (count) {
  3439. erp = xfs_iext_irec_new(ifp, erp_idx);
  3440. erp->er_extcount = count;
  3441. count -= MIN(count, (int)XFS_LINEAR_EXTS);
  3442. if (count) {
  3443. erp_idx++;
  3444. }
  3445. }
  3446. }
  3447. }
  3448. ifp->if_bytes = new_size;
  3449. }
  3450. /*
  3451. * This is called when incore extents are being added to the indirection
  3452. * array and the new extents do not fit in the target extent list. The
  3453. * erp_idx parameter contains the irec index for the target extent list
  3454. * in the indirection array, and the idx parameter contains the extent
  3455. * index within the list. The number of extents being added is stored
  3456. * in the count parameter.
  3457. *
  3458. * |-------| |-------|
  3459. * | | | | idx - number of extents before idx
  3460. * | idx | | count |
  3461. * | | | | count - number of extents being inserted at idx
  3462. * |-------| |-------|
  3463. * | count | | nex2 | nex2 - number of extents after idx + count
  3464. * |-------| |-------|
  3465. */
  3466. void
  3467. xfs_iext_add_indirect_multi(
  3468. xfs_ifork_t *ifp, /* inode fork pointer */
  3469. int erp_idx, /* target extent irec index */
  3470. xfs_extnum_t idx, /* index within target list */
  3471. int count) /* new extents being added */
  3472. {
  3473. int byte_diff; /* new bytes being added */
  3474. xfs_ext_irec_t *erp; /* pointer to irec entry */
  3475. xfs_extnum_t ext_diff; /* number of extents to add */
  3476. xfs_extnum_t ext_cnt; /* new extents still needed */
  3477. xfs_extnum_t nex2; /* extents after idx + count */
  3478. xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
  3479. int nlists; /* number of irec's (lists) */
  3480. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3481. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3482. nex2 = erp->er_extcount - idx;
  3483. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3484. /*
  3485. * Save second part of target extent list
  3486. * (all extents past */
  3487. if (nex2) {
  3488. byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
  3489. nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_SLEEP);
  3490. memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
  3491. erp->er_extcount -= nex2;
  3492. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
  3493. memset(&erp->er_extbuf[idx], 0, byte_diff);
  3494. }
  3495. /*
  3496. * Add the new extents to the end of the target
  3497. * list, then allocate new irec record(s) and
  3498. * extent buffer(s) as needed to store the rest
  3499. * of the new extents.
  3500. */
  3501. ext_cnt = count;
  3502. ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
  3503. if (ext_diff) {
  3504. erp->er_extcount += ext_diff;
  3505. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  3506. ext_cnt -= ext_diff;
  3507. }
  3508. while (ext_cnt) {
  3509. erp_idx++;
  3510. erp = xfs_iext_irec_new(ifp, erp_idx);
  3511. ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
  3512. erp->er_extcount = ext_diff;
  3513. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  3514. ext_cnt -= ext_diff;
  3515. }
  3516. /* Add nex2 extents back to indirection array */
  3517. if (nex2) {
  3518. xfs_extnum_t ext_avail;
  3519. int i;
  3520. byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
  3521. ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
  3522. i = 0;
  3523. /*
  3524. * If nex2 extents fit in the current page, append
  3525. * nex2_ep after the new extents.
  3526. */
  3527. if (nex2 <= ext_avail) {
  3528. i = erp->er_extcount;
  3529. }
  3530. /*
  3531. * Otherwise, check if space is available in the
  3532. * next page.
  3533. */
  3534. else if ((erp_idx < nlists - 1) &&
  3535. (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
  3536. ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
  3537. erp_idx++;
  3538. erp++;
  3539. /* Create a hole for nex2 extents */
  3540. memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
  3541. erp->er_extcount * sizeof(xfs_bmbt_rec_t));
  3542. }
  3543. /*
  3544. * Final choice, create a new extent page for
  3545. * nex2 extents.
  3546. */
  3547. else {
  3548. erp_idx++;
  3549. erp = xfs_iext_irec_new(ifp, erp_idx);
  3550. }
  3551. memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
  3552. kmem_free(nex2_ep, byte_diff);
  3553. erp->er_extcount += nex2;
  3554. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
  3555. }
  3556. }
  3557. /*
  3558. * This is called when the amount of space required for incore file
  3559. * extents needs to be decreased. The ext_diff parameter stores the
  3560. * number of extents to be removed and the idx parameter contains
  3561. * the extent index where the extents will be removed from.
  3562. *
  3563. * If the amount of space needed has decreased below the linear
  3564. * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
  3565. * extent array. Otherwise, use kmem_realloc() to adjust the
  3566. * size to what is needed.
  3567. */
  3568. void
  3569. xfs_iext_remove(
  3570. xfs_ifork_t *ifp, /* inode fork pointer */
  3571. xfs_extnum_t idx, /* index to begin removing exts */
  3572. int ext_diff) /* number of extents to remove */
  3573. {
  3574. xfs_extnum_t nextents; /* number of extents in file */
  3575. int new_size; /* size of extents after removal */
  3576. ASSERT(ext_diff > 0);
  3577. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3578. new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
  3579. if (new_size == 0) {
  3580. xfs_iext_destroy(ifp);
  3581. } else if (ifp->if_flags & XFS_IFEXTIREC) {
  3582. xfs_iext_remove_indirect(ifp, idx, ext_diff);
  3583. } else if (ifp->if_real_bytes) {
  3584. xfs_iext_remove_direct(ifp, idx, ext_diff);
  3585. } else {
  3586. xfs_iext_remove_inline(ifp, idx, ext_diff);
  3587. }
  3588. ifp->if_bytes = new_size;
  3589. }
  3590. /*
  3591. * This removes ext_diff extents from the inline buffer, beginning
  3592. * at extent index idx.
  3593. */
  3594. void
  3595. xfs_iext_remove_inline(
  3596. xfs_ifork_t *ifp, /* inode fork pointer */
  3597. xfs_extnum_t idx, /* index to begin removing exts */
  3598. int ext_diff) /* number of extents to remove */
  3599. {
  3600. int nextents; /* number of extents in file */
  3601. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  3602. ASSERT(idx < XFS_INLINE_EXTS);
  3603. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3604. ASSERT(((nextents - ext_diff) > 0) &&
  3605. (nextents - ext_diff) < XFS_INLINE_EXTS);
  3606. if (idx + ext_diff < nextents) {
  3607. memmove(&ifp->if_u2.if_inline_ext[idx],
  3608. &ifp->if_u2.if_inline_ext[idx + ext_diff],
  3609. (nextents - (idx + ext_diff)) *
  3610. sizeof(xfs_bmbt_rec_t));
  3611. memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
  3612. 0, ext_diff * sizeof(xfs_bmbt_rec_t));
  3613. } else {
  3614. memset(&ifp->if_u2.if_inline_ext[idx], 0,
  3615. ext_diff * sizeof(xfs_bmbt_rec_t));
  3616. }
  3617. }
  3618. /*
  3619. * This removes ext_diff extents from a linear (direct) extent list,
  3620. * beginning at extent index idx. If the extents are being removed
  3621. * from the end of the list (ie. truncate) then we just need to re-
  3622. * allocate the list to remove the extra space. Otherwise, if the
  3623. * extents are being removed from the middle of the existing extent
  3624. * entries, then we first need to move the extent records beginning
  3625. * at idx + ext_diff up in the list to overwrite the records being
  3626. * removed, then remove the extra space via kmem_realloc.
  3627. */
  3628. void
  3629. xfs_iext_remove_direct(
  3630. xfs_ifork_t *ifp, /* inode fork pointer */
  3631. xfs_extnum_t idx, /* index to begin removing exts */
  3632. int ext_diff) /* number of extents to remove */
  3633. {
  3634. xfs_extnum_t nextents; /* number of extents in file */
  3635. int new_size; /* size of extents after removal */
  3636. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  3637. new_size = ifp->if_bytes -
  3638. (ext_diff * sizeof(xfs_bmbt_rec_t));
  3639. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3640. if (new_size == 0) {
  3641. xfs_iext_destroy(ifp);
  3642. return;
  3643. }
  3644. /* Move extents up in the list (if needed) */
  3645. if (idx + ext_diff < nextents) {
  3646. memmove(&ifp->if_u1.if_extents[idx],
  3647. &ifp->if_u1.if_extents[idx + ext_diff],
  3648. (nextents - (idx + ext_diff)) *
  3649. sizeof(xfs_bmbt_rec_t));
  3650. }
  3651. memset(&ifp->if_u1.if_extents[nextents - ext_diff],
  3652. 0, ext_diff * sizeof(xfs_bmbt_rec_t));
  3653. /*
  3654. * Reallocate the direct extent list. If the extents
  3655. * will fit inside the inode then xfs_iext_realloc_direct
  3656. * will switch from direct to inline extent allocation
  3657. * mode for us.
  3658. */
  3659. xfs_iext_realloc_direct(ifp, new_size);
  3660. ifp->if_bytes = new_size;
  3661. }
  3662. /*
  3663. * This is called when incore extents are being removed from the
  3664. * indirection array and the extents being removed span multiple extent
  3665. * buffers. The idx parameter contains the file extent index where we
  3666. * want to begin removing extents, and the count parameter contains
  3667. * how many extents need to be removed.
  3668. *
  3669. * |-------| |-------|
  3670. * | nex1 | | | nex1 - number of extents before idx
  3671. * |-------| | count |
  3672. * | | | | count - number of extents being removed at idx
  3673. * | count | |-------|
  3674. * | | | nex2 | nex2 - number of extents after idx + count
  3675. * |-------| |-------|
  3676. */
  3677. void
  3678. xfs_iext_remove_indirect(
  3679. xfs_ifork_t *ifp, /* inode fork pointer */
  3680. xfs_extnum_t idx, /* index to begin removing extents */
  3681. int count) /* number of extents to remove */
  3682. {
  3683. xfs_ext_irec_t *erp; /* indirection array pointer */
  3684. int erp_idx = 0; /* indirection array index */
  3685. xfs_extnum_t ext_cnt; /* extents left to remove */
  3686. xfs_extnum_t ext_diff; /* extents to remove in current list */
  3687. xfs_extnum_t nex1; /* number of extents before idx */
  3688. xfs_extnum_t nex2; /* extents after idx + count */
  3689. int nlists; /* entries in indirection array */
  3690. int page_idx = idx; /* index in target extent list */
  3691. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3692. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
  3693. ASSERT(erp != NULL);
  3694. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3695. nex1 = page_idx;
  3696. ext_cnt = count;
  3697. while (ext_cnt) {
  3698. nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
  3699. ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
  3700. /*
  3701. * Check for deletion of entire list;
  3702. * xfs_iext_irec_remove() updates extent offsets.
  3703. */
  3704. if (ext_diff == erp->er_extcount) {
  3705. xfs_iext_irec_remove(ifp, erp_idx);
  3706. ext_cnt -= ext_diff;
  3707. nex1 = 0;
  3708. if (ext_cnt) {
  3709. ASSERT(erp_idx < ifp->if_real_bytes /
  3710. XFS_IEXT_BUFSZ);
  3711. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3712. nex1 = 0;
  3713. continue;
  3714. } else {
  3715. break;
  3716. }
  3717. }
  3718. /* Move extents up (if needed) */
  3719. if (nex2) {
  3720. memmove(&erp->er_extbuf[nex1],
  3721. &erp->er_extbuf[nex1 + ext_diff],
  3722. nex2 * sizeof(xfs_bmbt_rec_t));
  3723. }
  3724. /* Zero out rest of page */
  3725. memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
  3726. ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
  3727. /* Update remaining counters */
  3728. erp->er_extcount -= ext_diff;
  3729. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
  3730. ext_cnt -= ext_diff;
  3731. nex1 = 0;
  3732. erp_idx++;
  3733. erp++;
  3734. }
  3735. ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
  3736. xfs_iext_irec_compact(ifp);
  3737. }
  3738. /*
  3739. * Create, destroy, or resize a linear (direct) block of extents.
  3740. */
  3741. void
  3742. xfs_iext_realloc_direct(
  3743. xfs_ifork_t *ifp, /* inode fork pointer */
  3744. int new_size) /* new size of extents */
  3745. {
  3746. int rnew_size; /* real new size of extents */
  3747. rnew_size = new_size;
  3748. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
  3749. ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
  3750. (new_size != ifp->if_real_bytes)));
  3751. /* Free extent records */
  3752. if (new_size == 0) {
  3753. xfs_iext_destroy(ifp);
  3754. }
  3755. /* Resize direct extent list and zero any new bytes */
  3756. else if (ifp->if_real_bytes) {
  3757. /* Check if extents will fit inside the inode */
  3758. if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
  3759. xfs_iext_direct_to_inline(ifp, new_size /
  3760. (uint)sizeof(xfs_bmbt_rec_t));
  3761. ifp->if_bytes = new_size;
  3762. return;
  3763. }
  3764. if (!is_power_of_2(new_size)){
  3765. rnew_size = roundup_pow_of_two(new_size);
  3766. }
  3767. if (rnew_size != ifp->if_real_bytes) {
  3768. ifp->if_u1.if_extents =
  3769. kmem_realloc(ifp->if_u1.if_extents,
  3770. rnew_size,
  3771. ifp->if_real_bytes,
  3772. KM_SLEEP);
  3773. }
  3774. if (rnew_size > ifp->if_real_bytes) {
  3775. memset(&ifp->if_u1.if_extents[ifp->if_bytes /
  3776. (uint)sizeof(xfs_bmbt_rec_t)], 0,
  3777. rnew_size - ifp->if_real_bytes);
  3778. }
  3779. }
  3780. /*
  3781. * Switch from the inline extent buffer to a direct
  3782. * extent list. Be sure to include the inline extent
  3783. * bytes in new_size.
  3784. */
  3785. else {
  3786. new_size += ifp->if_bytes;
  3787. if (!is_power_of_2(new_size)) {
  3788. rnew_size = roundup_pow_of_two(new_size);
  3789. }
  3790. xfs_iext_inline_to_direct(ifp, rnew_size);
  3791. }
  3792. ifp->if_real_bytes = rnew_size;
  3793. ifp->if_bytes = new_size;
  3794. }
  3795. /*
  3796. * Switch from linear (direct) extent records to inline buffer.
  3797. */
  3798. void
  3799. xfs_iext_direct_to_inline(
  3800. xfs_ifork_t *ifp, /* inode fork pointer */
  3801. xfs_extnum_t nextents) /* number of extents in file */
  3802. {
  3803. ASSERT(ifp->if_flags & XFS_IFEXTENTS);
  3804. ASSERT(nextents <= XFS_INLINE_EXTS);
  3805. /*
  3806. * The inline buffer was zeroed when we switched
  3807. * from inline to direct extent allocation mode,
  3808. * so we don't need to clear it here.
  3809. */
  3810. memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
  3811. nextents * sizeof(xfs_bmbt_rec_t));
  3812. kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
  3813. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  3814. ifp->if_real_bytes = 0;
  3815. }
  3816. /*
  3817. * Switch from inline buffer to linear (direct) extent records.
  3818. * new_size should already be rounded up to the next power of 2
  3819. * by the caller (when appropriate), so use new_size as it is.
  3820. * However, since new_size may be rounded up, we can't update
  3821. * if_bytes here. It is the caller's responsibility to update
  3822. * if_bytes upon return.
  3823. */
  3824. void
  3825. xfs_iext_inline_to_direct(
  3826. xfs_ifork_t *ifp, /* inode fork pointer */
  3827. int new_size) /* number of extents in file */
  3828. {
  3829. ifp->if_u1.if_extents = kmem_alloc(new_size, KM_SLEEP);
  3830. memset(ifp->if_u1.if_extents, 0, new_size);
  3831. if (ifp->if_bytes) {
  3832. memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
  3833. ifp->if_bytes);
  3834. memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
  3835. sizeof(xfs_bmbt_rec_t));
  3836. }
  3837. ifp->if_real_bytes = new_size;
  3838. }
  3839. /*
  3840. * Resize an extent indirection array to new_size bytes.
  3841. */
  3842. void
  3843. xfs_iext_realloc_indirect(
  3844. xfs_ifork_t *ifp, /* inode fork pointer */
  3845. int new_size) /* new indirection array size */
  3846. {
  3847. int nlists; /* number of irec's (ex lists) */
  3848. int size; /* current indirection array size */
  3849. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3850. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3851. size = nlists * sizeof(xfs_ext_irec_t);
  3852. ASSERT(ifp->if_real_bytes);
  3853. ASSERT((new_size >= 0) && (new_size != size));
  3854. if (new_size == 0) {
  3855. xfs_iext_destroy(ifp);
  3856. } else {
  3857. ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
  3858. kmem_realloc(ifp->if_u1.if_ext_irec,
  3859. new_size, size, KM_SLEEP);
  3860. }
  3861. }
  3862. /*
  3863. * Switch from indirection array to linear (direct) extent allocations.
  3864. */
  3865. void
  3866. xfs_iext_indirect_to_direct(
  3867. xfs_ifork_t *ifp) /* inode fork pointer */
  3868. {
  3869. xfs_bmbt_rec_host_t *ep; /* extent record pointer */
  3870. xfs_extnum_t nextents; /* number of extents in file */
  3871. int size; /* size of file extents */
  3872. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3873. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3874. ASSERT(nextents <= XFS_LINEAR_EXTS);
  3875. size = nextents * sizeof(xfs_bmbt_rec_t);
  3876. xfs_iext_irec_compact_full(ifp);
  3877. ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
  3878. ep = ifp->if_u1.if_ext_irec->er_extbuf;
  3879. kmem_free(ifp->if_u1.if_ext_irec, sizeof(xfs_ext_irec_t));
  3880. ifp->if_flags &= ~XFS_IFEXTIREC;
  3881. ifp->if_u1.if_extents = ep;
  3882. ifp->if_bytes = size;
  3883. if (nextents < XFS_LINEAR_EXTS) {
  3884. xfs_iext_realloc_direct(ifp, size);
  3885. }
  3886. }
  3887. /*
  3888. * Free incore file extents.
  3889. */
  3890. void
  3891. xfs_iext_destroy(
  3892. xfs_ifork_t *ifp) /* inode fork pointer */
  3893. {
  3894. if (ifp->if_flags & XFS_IFEXTIREC) {
  3895. int erp_idx;
  3896. int nlists;
  3897. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3898. for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
  3899. xfs_iext_irec_remove(ifp, erp_idx);
  3900. }
  3901. ifp->if_flags &= ~XFS_IFEXTIREC;
  3902. } else if (ifp->if_real_bytes) {
  3903. kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
  3904. } else if (ifp->if_bytes) {
  3905. memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
  3906. sizeof(xfs_bmbt_rec_t));
  3907. }
  3908. ifp->if_u1.if_extents = NULL;
  3909. ifp->if_real_bytes = 0;
  3910. ifp->if_bytes = 0;
  3911. }
  3912. /*
  3913. * Return a pointer to the extent record for file system block bno.
  3914. */
  3915. xfs_bmbt_rec_host_t * /* pointer to found extent record */
  3916. xfs_iext_bno_to_ext(
  3917. xfs_ifork_t *ifp, /* inode fork pointer */
  3918. xfs_fileoff_t bno, /* block number to search for */
  3919. xfs_extnum_t *idxp) /* index of target extent */
  3920. {
  3921. xfs_bmbt_rec_host_t *base; /* pointer to first extent */
  3922. xfs_filblks_t blockcount = 0; /* number of blocks in extent */
  3923. xfs_bmbt_rec_host_t *ep = NULL; /* pointer to target extent */
  3924. xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
  3925. int high; /* upper boundary in search */
  3926. xfs_extnum_t idx = 0; /* index of target extent */
  3927. int low; /* lower boundary in search */
  3928. xfs_extnum_t nextents; /* number of file extents */
  3929. xfs_fileoff_t startoff = 0; /* start offset of extent */
  3930. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3931. if (nextents == 0) {
  3932. *idxp = 0;
  3933. return NULL;
  3934. }
  3935. low = 0;
  3936. if (ifp->if_flags & XFS_IFEXTIREC) {
  3937. /* Find target extent list */
  3938. int erp_idx = 0;
  3939. erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
  3940. base = erp->er_extbuf;
  3941. high = erp->er_extcount - 1;
  3942. } else {
  3943. base = ifp->if_u1.if_extents;
  3944. high = nextents - 1;
  3945. }
  3946. /* Binary search extent records */
  3947. while (low <= high) {
  3948. idx = (low + high) >> 1;
  3949. ep = base + idx;
  3950. startoff = xfs_bmbt_get_startoff(ep);
  3951. blockcount = xfs_bmbt_get_blockcount(ep);
  3952. if (bno < startoff) {
  3953. high = idx - 1;
  3954. } else if (bno >= startoff + blockcount) {
  3955. low = idx + 1;
  3956. } else {
  3957. /* Convert back to file-based extent index */
  3958. if (ifp->if_flags & XFS_IFEXTIREC) {
  3959. idx += erp->er_extoff;
  3960. }
  3961. *idxp = idx;
  3962. return ep;
  3963. }
  3964. }
  3965. /* Convert back to file-based extent index */
  3966. if (ifp->if_flags & XFS_IFEXTIREC) {
  3967. idx += erp->er_extoff;
  3968. }
  3969. if (bno >= startoff + blockcount) {
  3970. if (++idx == nextents) {
  3971. ep = NULL;
  3972. } else {
  3973. ep = xfs_iext_get_ext(ifp, idx);
  3974. }
  3975. }
  3976. *idxp = idx;
  3977. return ep;
  3978. }
  3979. /*
  3980. * Return a pointer to the indirection array entry containing the
  3981. * extent record for filesystem block bno. Store the index of the
  3982. * target irec in *erp_idxp.
  3983. */
  3984. xfs_ext_irec_t * /* pointer to found extent record */
  3985. xfs_iext_bno_to_irec(
  3986. xfs_ifork_t *ifp, /* inode fork pointer */
  3987. xfs_fileoff_t bno, /* block number to search for */
  3988. int *erp_idxp) /* irec index of target ext list */
  3989. {
  3990. xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
  3991. xfs_ext_irec_t *erp_next; /* next indirection array entry */
  3992. int erp_idx; /* indirection array index */
  3993. int nlists; /* number of extent irec's (lists) */
  3994. int high; /* binary search upper limit */
  3995. int low; /* binary search lower limit */
  3996. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3997. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3998. erp_idx = 0;
  3999. low = 0;
  4000. high = nlists - 1;
  4001. while (low <= high) {
  4002. erp_idx = (low + high) >> 1;
  4003. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4004. erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
  4005. if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
  4006. high = erp_idx - 1;
  4007. } else if (erp_next && bno >=
  4008. xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
  4009. low = erp_idx + 1;
  4010. } else {
  4011. break;
  4012. }
  4013. }
  4014. *erp_idxp = erp_idx;
  4015. return erp;
  4016. }
  4017. /*
  4018. * Return a pointer to the indirection array entry containing the
  4019. * extent record at file extent index *idxp. Store the index of the
  4020. * target irec in *erp_idxp and store the page index of the target
  4021. * extent record in *idxp.
  4022. */
  4023. xfs_ext_irec_t *
  4024. xfs_iext_idx_to_irec(
  4025. xfs_ifork_t *ifp, /* inode fork pointer */
  4026. xfs_extnum_t *idxp, /* extent index (file -> page) */
  4027. int *erp_idxp, /* pointer to target irec */
  4028. int realloc) /* new bytes were just added */
  4029. {
  4030. xfs_ext_irec_t *prev; /* pointer to previous irec */
  4031. xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
  4032. int erp_idx; /* indirection array index */
  4033. int nlists; /* number of irec's (ex lists) */
  4034. int high; /* binary search upper limit */
  4035. int low; /* binary search lower limit */
  4036. xfs_extnum_t page_idx = *idxp; /* extent index in target list */
  4037. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4038. ASSERT(page_idx >= 0 && page_idx <=
  4039. ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
  4040. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4041. erp_idx = 0;
  4042. low = 0;
  4043. high = nlists - 1;
  4044. /* Binary search extent irec's */
  4045. while (low <= high) {
  4046. erp_idx = (low + high) >> 1;
  4047. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4048. prev = erp_idx > 0 ? erp - 1 : NULL;
  4049. if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
  4050. realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
  4051. high = erp_idx - 1;
  4052. } else if (page_idx > erp->er_extoff + erp->er_extcount ||
  4053. (page_idx == erp->er_extoff + erp->er_extcount &&
  4054. !realloc)) {
  4055. low = erp_idx + 1;
  4056. } else if (page_idx == erp->er_extoff + erp->er_extcount &&
  4057. erp->er_extcount == XFS_LINEAR_EXTS) {
  4058. ASSERT(realloc);
  4059. page_idx = 0;
  4060. erp_idx++;
  4061. erp = erp_idx < nlists ? erp + 1 : NULL;
  4062. break;
  4063. } else {
  4064. page_idx -= erp->er_extoff;
  4065. break;
  4066. }
  4067. }
  4068. *idxp = page_idx;
  4069. *erp_idxp = erp_idx;
  4070. return(erp);
  4071. }
  4072. /*
  4073. * Allocate and initialize an indirection array once the space needed
  4074. * for incore extents increases above XFS_IEXT_BUFSZ.
  4075. */
  4076. void
  4077. xfs_iext_irec_init(
  4078. xfs_ifork_t *ifp) /* inode fork pointer */
  4079. {
  4080. xfs_ext_irec_t *erp; /* indirection array pointer */
  4081. xfs_extnum_t nextents; /* number of extents in file */
  4082. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  4083. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  4084. ASSERT(nextents <= XFS_LINEAR_EXTS);
  4085. erp = (xfs_ext_irec_t *)
  4086. kmem_alloc(sizeof(xfs_ext_irec_t), KM_SLEEP);
  4087. if (nextents == 0) {
  4088. ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
  4089. } else if (!ifp->if_real_bytes) {
  4090. xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
  4091. } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
  4092. xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
  4093. }
  4094. erp->er_extbuf = ifp->if_u1.if_extents;
  4095. erp->er_extcount = nextents;
  4096. erp->er_extoff = 0;
  4097. ifp->if_flags |= XFS_IFEXTIREC;
  4098. ifp->if_real_bytes = XFS_IEXT_BUFSZ;
  4099. ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
  4100. ifp->if_u1.if_ext_irec = erp;
  4101. return;
  4102. }
  4103. /*
  4104. * Allocate and initialize a new entry in the indirection array.
  4105. */
  4106. xfs_ext_irec_t *
  4107. xfs_iext_irec_new(
  4108. xfs_ifork_t *ifp, /* inode fork pointer */
  4109. int erp_idx) /* index for new irec */
  4110. {
  4111. xfs_ext_irec_t *erp; /* indirection array pointer */
  4112. int i; /* loop counter */
  4113. int nlists; /* number of irec's (ex lists) */
  4114. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4115. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4116. /* Resize indirection array */
  4117. xfs_iext_realloc_indirect(ifp, ++nlists *
  4118. sizeof(xfs_ext_irec_t));
  4119. /*
  4120. * Move records down in the array so the
  4121. * new page can use erp_idx.
  4122. */
  4123. erp = ifp->if_u1.if_ext_irec;
  4124. for (i = nlists - 1; i > erp_idx; i--) {
  4125. memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
  4126. }
  4127. ASSERT(i == erp_idx);
  4128. /* Initialize new extent record */
  4129. erp = ifp->if_u1.if_ext_irec;
  4130. erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
  4131. ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
  4132. memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
  4133. erp[erp_idx].er_extcount = 0;
  4134. erp[erp_idx].er_extoff = erp_idx > 0 ?
  4135. erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
  4136. return (&erp[erp_idx]);
  4137. }
  4138. /*
  4139. * Remove a record from the indirection array.
  4140. */
  4141. void
  4142. xfs_iext_irec_remove(
  4143. xfs_ifork_t *ifp, /* inode fork pointer */
  4144. int erp_idx) /* irec index to remove */
  4145. {
  4146. xfs_ext_irec_t *erp; /* indirection array pointer */
  4147. int i; /* loop counter */
  4148. int nlists; /* number of irec's (ex lists) */
  4149. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4150. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4151. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4152. if (erp->er_extbuf) {
  4153. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
  4154. -erp->er_extcount);
  4155. kmem_free(erp->er_extbuf, XFS_IEXT_BUFSZ);
  4156. }
  4157. /* Compact extent records */
  4158. erp = ifp->if_u1.if_ext_irec;
  4159. for (i = erp_idx; i < nlists - 1; i++) {
  4160. memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
  4161. }
  4162. /*
  4163. * Manually free the last extent record from the indirection
  4164. * array. A call to xfs_iext_realloc_indirect() with a size
  4165. * of zero would result in a call to xfs_iext_destroy() which
  4166. * would in turn call this function again, creating a nasty
  4167. * infinite loop.
  4168. */
  4169. if (--nlists) {
  4170. xfs_iext_realloc_indirect(ifp,
  4171. nlists * sizeof(xfs_ext_irec_t));
  4172. } else {
  4173. kmem_free(ifp->if_u1.if_ext_irec,
  4174. sizeof(xfs_ext_irec_t));
  4175. }
  4176. ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
  4177. }
  4178. /*
  4179. * This is called to clean up large amounts of unused memory allocated
  4180. * by the indirection array. Before compacting anything though, verify
  4181. * that the indirection array is still needed and switch back to the
  4182. * linear extent list (or even the inline buffer) if possible. The
  4183. * compaction policy is as follows:
  4184. *
  4185. * Full Compaction: Extents fit into a single page (or inline buffer)
  4186. * Full Compaction: Extents occupy less than 10% of allocated space
  4187. * Partial Compaction: Extents occupy > 10% and < 50% of allocated space
  4188. * No Compaction: Extents occupy at least 50% of allocated space
  4189. */
  4190. void
  4191. xfs_iext_irec_compact(
  4192. xfs_ifork_t *ifp) /* inode fork pointer */
  4193. {
  4194. xfs_extnum_t nextents; /* number of extents in file */
  4195. int nlists; /* number of irec's (ex lists) */
  4196. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4197. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4198. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  4199. if (nextents == 0) {
  4200. xfs_iext_destroy(ifp);
  4201. } else if (nextents <= XFS_INLINE_EXTS) {
  4202. xfs_iext_indirect_to_direct(ifp);
  4203. xfs_iext_direct_to_inline(ifp, nextents);
  4204. } else if (nextents <= XFS_LINEAR_EXTS) {
  4205. xfs_iext_indirect_to_direct(ifp);
  4206. } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 3) {
  4207. xfs_iext_irec_compact_full(ifp);
  4208. } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
  4209. xfs_iext_irec_compact_pages(ifp);
  4210. }
  4211. }
  4212. /*
  4213. * Combine extents from neighboring extent pages.
  4214. */
  4215. void
  4216. xfs_iext_irec_compact_pages(
  4217. xfs_ifork_t *ifp) /* inode fork pointer */
  4218. {
  4219. xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
  4220. int erp_idx = 0; /* indirection array index */
  4221. int nlists; /* number of irec's (ex lists) */
  4222. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4223. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4224. while (erp_idx < nlists - 1) {
  4225. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4226. erp_next = erp + 1;
  4227. if (erp_next->er_extcount <=
  4228. (XFS_LINEAR_EXTS - erp->er_extcount)) {
  4229. memmove(&erp->er_extbuf[erp->er_extcount],
  4230. erp_next->er_extbuf, erp_next->er_extcount *
  4231. sizeof(xfs_bmbt_rec_t));
  4232. erp->er_extcount += erp_next->er_extcount;
  4233. /*
  4234. * Free page before removing extent record
  4235. * so er_extoffs don't get modified in
  4236. * xfs_iext_irec_remove.
  4237. */
  4238. kmem_free(erp_next->er_extbuf, XFS_IEXT_BUFSZ);
  4239. erp_next->er_extbuf = NULL;
  4240. xfs_iext_irec_remove(ifp, erp_idx + 1);
  4241. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4242. } else {
  4243. erp_idx++;
  4244. }
  4245. }
  4246. }
  4247. /*
  4248. * Fully compact the extent records managed by the indirection array.
  4249. */
  4250. void
  4251. xfs_iext_irec_compact_full(
  4252. xfs_ifork_t *ifp) /* inode fork pointer */
  4253. {
  4254. xfs_bmbt_rec_host_t *ep, *ep_next; /* extent record pointers */
  4255. xfs_ext_irec_t *erp, *erp_next; /* extent irec pointers */
  4256. int erp_idx = 0; /* extent irec index */
  4257. int ext_avail; /* empty entries in ex list */
  4258. int ext_diff; /* number of exts to add */
  4259. int nlists; /* number of irec's (ex lists) */
  4260. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4261. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4262. erp = ifp->if_u1.if_ext_irec;
  4263. ep = &erp->er_extbuf[erp->er_extcount];
  4264. erp_next = erp + 1;
  4265. ep_next = erp_next->er_extbuf;
  4266. while (erp_idx < nlists - 1) {
  4267. ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
  4268. ext_diff = MIN(ext_avail, erp_next->er_extcount);
  4269. memcpy(ep, ep_next, ext_diff * sizeof(xfs_bmbt_rec_t));
  4270. erp->er_extcount += ext_diff;
  4271. erp_next->er_extcount -= ext_diff;
  4272. /* Remove next page */
  4273. if (erp_next->er_extcount == 0) {
  4274. /*
  4275. * Free page before removing extent record
  4276. * so er_extoffs don't get modified in
  4277. * xfs_iext_irec_remove.
  4278. */
  4279. kmem_free(erp_next->er_extbuf,
  4280. erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
  4281. erp_next->er_extbuf = NULL;
  4282. xfs_iext_irec_remove(ifp, erp_idx + 1);
  4283. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4284. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4285. /* Update next page */
  4286. } else {
  4287. /* Move rest of page up to become next new page */
  4288. memmove(erp_next->er_extbuf, ep_next,
  4289. erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
  4290. ep_next = erp_next->er_extbuf;
  4291. memset(&ep_next[erp_next->er_extcount], 0,
  4292. (XFS_LINEAR_EXTS - erp_next->er_extcount) *
  4293. sizeof(xfs_bmbt_rec_t));
  4294. }
  4295. if (erp->er_extcount == XFS_LINEAR_EXTS) {
  4296. erp_idx++;
  4297. if (erp_idx < nlists)
  4298. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4299. else
  4300. break;
  4301. }
  4302. ep = &erp->er_extbuf[erp->er_extcount];
  4303. erp_next = erp + 1;
  4304. ep_next = erp_next->er_extbuf;
  4305. }
  4306. }
  4307. /*
  4308. * This is called to update the er_extoff field in the indirection
  4309. * array when extents have been added or removed from one of the
  4310. * extent lists. erp_idx contains the irec index to begin updating
  4311. * at and ext_diff contains the number of extents that were added
  4312. * or removed.
  4313. */
  4314. void
  4315. xfs_iext_irec_update_extoffs(
  4316. xfs_ifork_t *ifp, /* inode fork pointer */
  4317. int erp_idx, /* irec index to update */
  4318. int ext_diff) /* number of new extents */
  4319. {
  4320. int i; /* loop counter */
  4321. int nlists; /* number of irec's (ex lists */
  4322. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4323. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4324. for (i = erp_idx; i < nlists; i++) {
  4325. ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
  4326. }
  4327. }