qlge_main.c 135 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983
  1. /*
  2. * QLogic qlge NIC HBA Driver
  3. * Copyright (c) 2003-2008 QLogic Corporation
  4. * See LICENSE.qlge for copyright and licensing details.
  5. * Author: Linux qlge network device driver by
  6. * Ron Mercer <ron.mercer@qlogic.com>
  7. */
  8. #include <linux/kernel.h>
  9. #include <linux/init.h>
  10. #include <linux/bitops.h>
  11. #include <linux/types.h>
  12. #include <linux/module.h>
  13. #include <linux/list.h>
  14. #include <linux/pci.h>
  15. #include <linux/dma-mapping.h>
  16. #include <linux/pagemap.h>
  17. #include <linux/sched.h>
  18. #include <linux/slab.h>
  19. #include <linux/dmapool.h>
  20. #include <linux/mempool.h>
  21. #include <linux/spinlock.h>
  22. #include <linux/kthread.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/errno.h>
  25. #include <linux/ioport.h>
  26. #include <linux/in.h>
  27. #include <linux/ip.h>
  28. #include <linux/ipv6.h>
  29. #include <net/ipv6.h>
  30. #include <linux/tcp.h>
  31. #include <linux/udp.h>
  32. #include <linux/if_arp.h>
  33. #include <linux/if_ether.h>
  34. #include <linux/netdevice.h>
  35. #include <linux/etherdevice.h>
  36. #include <linux/ethtool.h>
  37. #include <linux/if_vlan.h>
  38. #include <linux/skbuff.h>
  39. #include <linux/delay.h>
  40. #include <linux/mm.h>
  41. #include <linux/vmalloc.h>
  42. #include <linux/prefetch.h>
  43. #include <net/ip6_checksum.h>
  44. #include "qlge.h"
  45. char qlge_driver_name[] = DRV_NAME;
  46. const char qlge_driver_version[] = DRV_VERSION;
  47. MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
  48. MODULE_DESCRIPTION(DRV_STRING " ");
  49. MODULE_LICENSE("GPL");
  50. MODULE_VERSION(DRV_VERSION);
  51. static const u32 default_msg =
  52. NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
  53. /* NETIF_MSG_TIMER | */
  54. NETIF_MSG_IFDOWN |
  55. NETIF_MSG_IFUP |
  56. NETIF_MSG_RX_ERR |
  57. NETIF_MSG_TX_ERR |
  58. /* NETIF_MSG_TX_QUEUED | */
  59. /* NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS | */
  60. /* NETIF_MSG_PKTDATA | */
  61. NETIF_MSG_HW | NETIF_MSG_WOL | 0;
  62. static int debug = -1; /* defaults above */
  63. module_param(debug, int, 0664);
  64. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  65. #define MSIX_IRQ 0
  66. #define MSI_IRQ 1
  67. #define LEG_IRQ 2
  68. static int qlge_irq_type = MSIX_IRQ;
  69. module_param(qlge_irq_type, int, 0664);
  70. MODULE_PARM_DESC(qlge_irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
  71. static int qlge_mpi_coredump;
  72. module_param(qlge_mpi_coredump, int, 0);
  73. MODULE_PARM_DESC(qlge_mpi_coredump,
  74. "Option to enable MPI firmware dump. "
  75. "Default is OFF - Do Not allocate memory. ");
  76. static int qlge_force_coredump;
  77. module_param(qlge_force_coredump, int, 0);
  78. MODULE_PARM_DESC(qlge_force_coredump,
  79. "Option to allow force of firmware core dump. "
  80. "Default is OFF - Do not allow.");
  81. static DEFINE_PCI_DEVICE_TABLE(qlge_pci_tbl) = {
  82. {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8012)},
  83. {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8000)},
  84. /* required last entry */
  85. {0,}
  86. };
  87. MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
  88. static int ql_wol(struct ql_adapter *qdev);
  89. static void qlge_set_multicast_list(struct net_device *ndev);
  90. /* This hardware semaphore causes exclusive access to
  91. * resources shared between the NIC driver, MPI firmware,
  92. * FCOE firmware and the FC driver.
  93. */
  94. static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
  95. {
  96. u32 sem_bits = 0;
  97. switch (sem_mask) {
  98. case SEM_XGMAC0_MASK:
  99. sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
  100. break;
  101. case SEM_XGMAC1_MASK:
  102. sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
  103. break;
  104. case SEM_ICB_MASK:
  105. sem_bits = SEM_SET << SEM_ICB_SHIFT;
  106. break;
  107. case SEM_MAC_ADDR_MASK:
  108. sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
  109. break;
  110. case SEM_FLASH_MASK:
  111. sem_bits = SEM_SET << SEM_FLASH_SHIFT;
  112. break;
  113. case SEM_PROBE_MASK:
  114. sem_bits = SEM_SET << SEM_PROBE_SHIFT;
  115. break;
  116. case SEM_RT_IDX_MASK:
  117. sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
  118. break;
  119. case SEM_PROC_REG_MASK:
  120. sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
  121. break;
  122. default:
  123. netif_alert(qdev, probe, qdev->ndev, "bad Semaphore mask!.\n");
  124. return -EINVAL;
  125. }
  126. ql_write32(qdev, SEM, sem_bits | sem_mask);
  127. return !(ql_read32(qdev, SEM) & sem_bits);
  128. }
  129. int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
  130. {
  131. unsigned int wait_count = 30;
  132. do {
  133. if (!ql_sem_trylock(qdev, sem_mask))
  134. return 0;
  135. udelay(100);
  136. } while (--wait_count);
  137. return -ETIMEDOUT;
  138. }
  139. void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
  140. {
  141. ql_write32(qdev, SEM, sem_mask);
  142. ql_read32(qdev, SEM); /* flush */
  143. }
  144. /* This function waits for a specific bit to come ready
  145. * in a given register. It is used mostly by the initialize
  146. * process, but is also used in kernel thread API such as
  147. * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
  148. */
  149. int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
  150. {
  151. u32 temp;
  152. int count = UDELAY_COUNT;
  153. while (count) {
  154. temp = ql_read32(qdev, reg);
  155. /* check for errors */
  156. if (temp & err_bit) {
  157. netif_alert(qdev, probe, qdev->ndev,
  158. "register 0x%.08x access error, value = 0x%.08x!.\n",
  159. reg, temp);
  160. return -EIO;
  161. } else if (temp & bit)
  162. return 0;
  163. udelay(UDELAY_DELAY);
  164. count--;
  165. }
  166. netif_alert(qdev, probe, qdev->ndev,
  167. "Timed out waiting for reg %x to come ready.\n", reg);
  168. return -ETIMEDOUT;
  169. }
  170. /* The CFG register is used to download TX and RX control blocks
  171. * to the chip. This function waits for an operation to complete.
  172. */
  173. static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
  174. {
  175. int count = UDELAY_COUNT;
  176. u32 temp;
  177. while (count) {
  178. temp = ql_read32(qdev, CFG);
  179. if (temp & CFG_LE)
  180. return -EIO;
  181. if (!(temp & bit))
  182. return 0;
  183. udelay(UDELAY_DELAY);
  184. count--;
  185. }
  186. return -ETIMEDOUT;
  187. }
  188. /* Used to issue init control blocks to hw. Maps control block,
  189. * sets address, triggers download, waits for completion.
  190. */
  191. int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
  192. u16 q_id)
  193. {
  194. u64 map;
  195. int status = 0;
  196. int direction;
  197. u32 mask;
  198. u32 value;
  199. direction =
  200. (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
  201. PCI_DMA_FROMDEVICE;
  202. map = pci_map_single(qdev->pdev, ptr, size, direction);
  203. if (pci_dma_mapping_error(qdev->pdev, map)) {
  204. netif_err(qdev, ifup, qdev->ndev, "Couldn't map DMA area.\n");
  205. return -ENOMEM;
  206. }
  207. status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
  208. if (status)
  209. return status;
  210. status = ql_wait_cfg(qdev, bit);
  211. if (status) {
  212. netif_err(qdev, ifup, qdev->ndev,
  213. "Timed out waiting for CFG to come ready.\n");
  214. goto exit;
  215. }
  216. ql_write32(qdev, ICB_L, (u32) map);
  217. ql_write32(qdev, ICB_H, (u32) (map >> 32));
  218. mask = CFG_Q_MASK | (bit << 16);
  219. value = bit | (q_id << CFG_Q_SHIFT);
  220. ql_write32(qdev, CFG, (mask | value));
  221. /*
  222. * Wait for the bit to clear after signaling hw.
  223. */
  224. status = ql_wait_cfg(qdev, bit);
  225. exit:
  226. ql_sem_unlock(qdev, SEM_ICB_MASK); /* does flush too */
  227. pci_unmap_single(qdev->pdev, map, size, direction);
  228. return status;
  229. }
  230. /* Get a specific MAC address from the CAM. Used for debug and reg dump. */
  231. int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
  232. u32 *value)
  233. {
  234. u32 offset = 0;
  235. int status;
  236. switch (type) {
  237. case MAC_ADDR_TYPE_MULTI_MAC:
  238. case MAC_ADDR_TYPE_CAM_MAC:
  239. {
  240. status =
  241. ql_wait_reg_rdy(qdev,
  242. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  243. if (status)
  244. goto exit;
  245. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  246. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  247. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  248. status =
  249. ql_wait_reg_rdy(qdev,
  250. MAC_ADDR_IDX, MAC_ADDR_MR, 0);
  251. if (status)
  252. goto exit;
  253. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  254. status =
  255. ql_wait_reg_rdy(qdev,
  256. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  257. if (status)
  258. goto exit;
  259. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  260. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  261. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  262. status =
  263. ql_wait_reg_rdy(qdev,
  264. MAC_ADDR_IDX, MAC_ADDR_MR, 0);
  265. if (status)
  266. goto exit;
  267. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  268. if (type == MAC_ADDR_TYPE_CAM_MAC) {
  269. status =
  270. ql_wait_reg_rdy(qdev,
  271. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  272. if (status)
  273. goto exit;
  274. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  275. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  276. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  277. status =
  278. ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
  279. MAC_ADDR_MR, 0);
  280. if (status)
  281. goto exit;
  282. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  283. }
  284. break;
  285. }
  286. case MAC_ADDR_TYPE_VLAN:
  287. case MAC_ADDR_TYPE_MULTI_FLTR:
  288. default:
  289. netif_crit(qdev, ifup, qdev->ndev,
  290. "Address type %d not yet supported.\n", type);
  291. status = -EPERM;
  292. }
  293. exit:
  294. return status;
  295. }
  296. /* Set up a MAC, multicast or VLAN address for the
  297. * inbound frame matching.
  298. */
  299. static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
  300. u16 index)
  301. {
  302. u32 offset = 0;
  303. int status = 0;
  304. switch (type) {
  305. case MAC_ADDR_TYPE_MULTI_MAC:
  306. {
  307. u32 upper = (addr[0] << 8) | addr[1];
  308. u32 lower = (addr[2] << 24) | (addr[3] << 16) |
  309. (addr[4] << 8) | (addr[5]);
  310. status =
  311. ql_wait_reg_rdy(qdev,
  312. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  313. if (status)
  314. goto exit;
  315. ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
  316. (index << MAC_ADDR_IDX_SHIFT) |
  317. type | MAC_ADDR_E);
  318. ql_write32(qdev, MAC_ADDR_DATA, lower);
  319. status =
  320. ql_wait_reg_rdy(qdev,
  321. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  322. if (status)
  323. goto exit;
  324. ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
  325. (index << MAC_ADDR_IDX_SHIFT) |
  326. type | MAC_ADDR_E);
  327. ql_write32(qdev, MAC_ADDR_DATA, upper);
  328. status =
  329. ql_wait_reg_rdy(qdev,
  330. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  331. if (status)
  332. goto exit;
  333. break;
  334. }
  335. case MAC_ADDR_TYPE_CAM_MAC:
  336. {
  337. u32 cam_output;
  338. u32 upper = (addr[0] << 8) | addr[1];
  339. u32 lower =
  340. (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
  341. (addr[5]);
  342. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  343. "Adding %s address %pM at index %d in the CAM.\n",
  344. type == MAC_ADDR_TYPE_MULTI_MAC ?
  345. "MULTICAST" : "UNICAST",
  346. addr, index);
  347. status =
  348. ql_wait_reg_rdy(qdev,
  349. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  350. if (status)
  351. goto exit;
  352. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  353. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  354. type); /* type */
  355. ql_write32(qdev, MAC_ADDR_DATA, lower);
  356. status =
  357. ql_wait_reg_rdy(qdev,
  358. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  359. if (status)
  360. goto exit;
  361. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  362. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  363. type); /* type */
  364. ql_write32(qdev, MAC_ADDR_DATA, upper);
  365. status =
  366. ql_wait_reg_rdy(qdev,
  367. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  368. if (status)
  369. goto exit;
  370. ql_write32(qdev, MAC_ADDR_IDX, (offset) | /* offset */
  371. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  372. type); /* type */
  373. /* This field should also include the queue id
  374. and possibly the function id. Right now we hardcode
  375. the route field to NIC core.
  376. */
  377. cam_output = (CAM_OUT_ROUTE_NIC |
  378. (qdev->
  379. func << CAM_OUT_FUNC_SHIFT) |
  380. (0 << CAM_OUT_CQ_ID_SHIFT));
  381. if (qdev->ndev->features & NETIF_F_HW_VLAN_RX)
  382. cam_output |= CAM_OUT_RV;
  383. /* route to NIC core */
  384. ql_write32(qdev, MAC_ADDR_DATA, cam_output);
  385. break;
  386. }
  387. case MAC_ADDR_TYPE_VLAN:
  388. {
  389. u32 enable_bit = *((u32 *) &addr[0]);
  390. /* For VLAN, the addr actually holds a bit that
  391. * either enables or disables the vlan id we are
  392. * addressing. It's either MAC_ADDR_E on or off.
  393. * That's bit-27 we're talking about.
  394. */
  395. netif_info(qdev, ifup, qdev->ndev,
  396. "%s VLAN ID %d %s the CAM.\n",
  397. enable_bit ? "Adding" : "Removing",
  398. index,
  399. enable_bit ? "to" : "from");
  400. status =
  401. ql_wait_reg_rdy(qdev,
  402. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  403. if (status)
  404. goto exit;
  405. ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
  406. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  407. type | /* type */
  408. enable_bit); /* enable/disable */
  409. break;
  410. }
  411. case MAC_ADDR_TYPE_MULTI_FLTR:
  412. default:
  413. netif_crit(qdev, ifup, qdev->ndev,
  414. "Address type %d not yet supported.\n", type);
  415. status = -EPERM;
  416. }
  417. exit:
  418. return status;
  419. }
  420. /* Set or clear MAC address in hardware. We sometimes
  421. * have to clear it to prevent wrong frame routing
  422. * especially in a bonding environment.
  423. */
  424. static int ql_set_mac_addr(struct ql_adapter *qdev, int set)
  425. {
  426. int status;
  427. char zero_mac_addr[ETH_ALEN];
  428. char *addr;
  429. if (set) {
  430. addr = &qdev->current_mac_addr[0];
  431. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  432. "Set Mac addr %pM\n", addr);
  433. } else {
  434. memset(zero_mac_addr, 0, ETH_ALEN);
  435. addr = &zero_mac_addr[0];
  436. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  437. "Clearing MAC address\n");
  438. }
  439. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  440. if (status)
  441. return status;
  442. status = ql_set_mac_addr_reg(qdev, (u8 *) addr,
  443. MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
  444. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  445. if (status)
  446. netif_err(qdev, ifup, qdev->ndev,
  447. "Failed to init mac address.\n");
  448. return status;
  449. }
  450. void ql_link_on(struct ql_adapter *qdev)
  451. {
  452. netif_err(qdev, link, qdev->ndev, "Link is up.\n");
  453. netif_carrier_on(qdev->ndev);
  454. ql_set_mac_addr(qdev, 1);
  455. }
  456. void ql_link_off(struct ql_adapter *qdev)
  457. {
  458. netif_err(qdev, link, qdev->ndev, "Link is down.\n");
  459. netif_carrier_off(qdev->ndev);
  460. ql_set_mac_addr(qdev, 0);
  461. }
  462. /* Get a specific frame routing value from the CAM.
  463. * Used for debug and reg dump.
  464. */
  465. int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
  466. {
  467. int status = 0;
  468. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
  469. if (status)
  470. goto exit;
  471. ql_write32(qdev, RT_IDX,
  472. RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
  473. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
  474. if (status)
  475. goto exit;
  476. *value = ql_read32(qdev, RT_DATA);
  477. exit:
  478. return status;
  479. }
  480. /* The NIC function for this chip has 16 routing indexes. Each one can be used
  481. * to route different frame types to various inbound queues. We send broadcast/
  482. * multicast/error frames to the default queue for slow handling,
  483. * and CAM hit/RSS frames to the fast handling queues.
  484. */
  485. static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
  486. int enable)
  487. {
  488. int status = -EINVAL; /* Return error if no mask match. */
  489. u32 value = 0;
  490. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  491. "%s %s mask %s the routing reg.\n",
  492. enable ? "Adding" : "Removing",
  493. index == RT_IDX_ALL_ERR_SLOT ? "MAC ERROR/ALL ERROR" :
  494. index == RT_IDX_IP_CSUM_ERR_SLOT ? "IP CSUM ERROR" :
  495. index == RT_IDX_TCP_UDP_CSUM_ERR_SLOT ? "TCP/UDP CSUM ERROR" :
  496. index == RT_IDX_BCAST_SLOT ? "BROADCAST" :
  497. index == RT_IDX_MCAST_MATCH_SLOT ? "MULTICAST MATCH" :
  498. index == RT_IDX_ALLMULTI_SLOT ? "ALL MULTICAST MATCH" :
  499. index == RT_IDX_UNUSED6_SLOT ? "UNUSED6" :
  500. index == RT_IDX_UNUSED7_SLOT ? "UNUSED7" :
  501. index == RT_IDX_RSS_MATCH_SLOT ? "RSS ALL/IPV4 MATCH" :
  502. index == RT_IDX_RSS_IPV6_SLOT ? "RSS IPV6" :
  503. index == RT_IDX_RSS_TCP4_SLOT ? "RSS TCP4" :
  504. index == RT_IDX_RSS_TCP6_SLOT ? "RSS TCP6" :
  505. index == RT_IDX_CAM_HIT_SLOT ? "CAM HIT" :
  506. index == RT_IDX_UNUSED013 ? "UNUSED13" :
  507. index == RT_IDX_UNUSED014 ? "UNUSED14" :
  508. index == RT_IDX_PROMISCUOUS_SLOT ? "PROMISCUOUS" :
  509. "(Bad index != RT_IDX)",
  510. enable ? "to" : "from");
  511. switch (mask) {
  512. case RT_IDX_CAM_HIT:
  513. {
  514. value = RT_IDX_DST_CAM_Q | /* dest */
  515. RT_IDX_TYPE_NICQ | /* type */
  516. (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
  517. break;
  518. }
  519. case RT_IDX_VALID: /* Promiscuous Mode frames. */
  520. {
  521. value = RT_IDX_DST_DFLT_Q | /* dest */
  522. RT_IDX_TYPE_NICQ | /* type */
  523. (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
  524. break;
  525. }
  526. case RT_IDX_ERR: /* Pass up MAC,IP,TCP/UDP error frames. */
  527. {
  528. value = RT_IDX_DST_DFLT_Q | /* dest */
  529. RT_IDX_TYPE_NICQ | /* type */
  530. (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
  531. break;
  532. }
  533. case RT_IDX_IP_CSUM_ERR: /* Pass up IP CSUM error frames. */
  534. {
  535. value = RT_IDX_DST_DFLT_Q | /* dest */
  536. RT_IDX_TYPE_NICQ | /* type */
  537. (RT_IDX_IP_CSUM_ERR_SLOT <<
  538. RT_IDX_IDX_SHIFT); /* index */
  539. break;
  540. }
  541. case RT_IDX_TU_CSUM_ERR: /* Pass up TCP/UDP CSUM error frames. */
  542. {
  543. value = RT_IDX_DST_DFLT_Q | /* dest */
  544. RT_IDX_TYPE_NICQ | /* type */
  545. (RT_IDX_TCP_UDP_CSUM_ERR_SLOT <<
  546. RT_IDX_IDX_SHIFT); /* index */
  547. break;
  548. }
  549. case RT_IDX_BCAST: /* Pass up Broadcast frames to default Q. */
  550. {
  551. value = RT_IDX_DST_DFLT_Q | /* dest */
  552. RT_IDX_TYPE_NICQ | /* type */
  553. (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
  554. break;
  555. }
  556. case RT_IDX_MCAST: /* Pass up All Multicast frames. */
  557. {
  558. value = RT_IDX_DST_DFLT_Q | /* dest */
  559. RT_IDX_TYPE_NICQ | /* type */
  560. (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
  561. break;
  562. }
  563. case RT_IDX_MCAST_MATCH: /* Pass up matched Multicast frames. */
  564. {
  565. value = RT_IDX_DST_DFLT_Q | /* dest */
  566. RT_IDX_TYPE_NICQ | /* type */
  567. (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
  568. break;
  569. }
  570. case RT_IDX_RSS_MATCH: /* Pass up matched RSS frames. */
  571. {
  572. value = RT_IDX_DST_RSS | /* dest */
  573. RT_IDX_TYPE_NICQ | /* type */
  574. (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
  575. break;
  576. }
  577. case 0: /* Clear the E-bit on an entry. */
  578. {
  579. value = RT_IDX_DST_DFLT_Q | /* dest */
  580. RT_IDX_TYPE_NICQ | /* type */
  581. (index << RT_IDX_IDX_SHIFT);/* index */
  582. break;
  583. }
  584. default:
  585. netif_err(qdev, ifup, qdev->ndev,
  586. "Mask type %d not yet supported.\n", mask);
  587. status = -EPERM;
  588. goto exit;
  589. }
  590. if (value) {
  591. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
  592. if (status)
  593. goto exit;
  594. value |= (enable ? RT_IDX_E : 0);
  595. ql_write32(qdev, RT_IDX, value);
  596. ql_write32(qdev, RT_DATA, enable ? mask : 0);
  597. }
  598. exit:
  599. return status;
  600. }
  601. static void ql_enable_interrupts(struct ql_adapter *qdev)
  602. {
  603. ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
  604. }
  605. static void ql_disable_interrupts(struct ql_adapter *qdev)
  606. {
  607. ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
  608. }
  609. /* If we're running with multiple MSI-X vectors then we enable on the fly.
  610. * Otherwise, we may have multiple outstanding workers and don't want to
  611. * enable until the last one finishes. In this case, the irq_cnt gets
  612. * incremented every time we queue a worker and decremented every time
  613. * a worker finishes. Once it hits zero we enable the interrupt.
  614. */
  615. u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
  616. {
  617. u32 var = 0;
  618. unsigned long hw_flags = 0;
  619. struct intr_context *ctx = qdev->intr_context + intr;
  620. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
  621. /* Always enable if we're MSIX multi interrupts and
  622. * it's not the default (zeroeth) interrupt.
  623. */
  624. ql_write32(qdev, INTR_EN,
  625. ctx->intr_en_mask);
  626. var = ql_read32(qdev, STS);
  627. return var;
  628. }
  629. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  630. if (atomic_dec_and_test(&ctx->irq_cnt)) {
  631. ql_write32(qdev, INTR_EN,
  632. ctx->intr_en_mask);
  633. var = ql_read32(qdev, STS);
  634. }
  635. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  636. return var;
  637. }
  638. static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
  639. {
  640. u32 var = 0;
  641. struct intr_context *ctx;
  642. /* HW disables for us if we're MSIX multi interrupts and
  643. * it's not the default (zeroeth) interrupt.
  644. */
  645. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
  646. return 0;
  647. ctx = qdev->intr_context + intr;
  648. spin_lock(&qdev->hw_lock);
  649. if (!atomic_read(&ctx->irq_cnt)) {
  650. ql_write32(qdev, INTR_EN,
  651. ctx->intr_dis_mask);
  652. var = ql_read32(qdev, STS);
  653. }
  654. atomic_inc(&ctx->irq_cnt);
  655. spin_unlock(&qdev->hw_lock);
  656. return var;
  657. }
  658. static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
  659. {
  660. int i;
  661. for (i = 0; i < qdev->intr_count; i++) {
  662. /* The enable call does a atomic_dec_and_test
  663. * and enables only if the result is zero.
  664. * So we precharge it here.
  665. */
  666. if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
  667. i == 0))
  668. atomic_set(&qdev->intr_context[i].irq_cnt, 1);
  669. ql_enable_completion_interrupt(qdev, i);
  670. }
  671. }
  672. static int ql_validate_flash(struct ql_adapter *qdev, u32 size, const char *str)
  673. {
  674. int status, i;
  675. u16 csum = 0;
  676. __le16 *flash = (__le16 *)&qdev->flash;
  677. status = strncmp((char *)&qdev->flash, str, 4);
  678. if (status) {
  679. netif_err(qdev, ifup, qdev->ndev, "Invalid flash signature.\n");
  680. return status;
  681. }
  682. for (i = 0; i < size; i++)
  683. csum += le16_to_cpu(*flash++);
  684. if (csum)
  685. netif_err(qdev, ifup, qdev->ndev,
  686. "Invalid flash checksum, csum = 0x%.04x.\n", csum);
  687. return csum;
  688. }
  689. static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
  690. {
  691. int status = 0;
  692. /* wait for reg to come ready */
  693. status = ql_wait_reg_rdy(qdev,
  694. FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
  695. if (status)
  696. goto exit;
  697. /* set up for reg read */
  698. ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
  699. /* wait for reg to come ready */
  700. status = ql_wait_reg_rdy(qdev,
  701. FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
  702. if (status)
  703. goto exit;
  704. /* This data is stored on flash as an array of
  705. * __le32. Since ql_read32() returns cpu endian
  706. * we need to swap it back.
  707. */
  708. *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
  709. exit:
  710. return status;
  711. }
  712. static int ql_get_8000_flash_params(struct ql_adapter *qdev)
  713. {
  714. u32 i, size;
  715. int status;
  716. __le32 *p = (__le32 *)&qdev->flash;
  717. u32 offset;
  718. u8 mac_addr[6];
  719. /* Get flash offset for function and adjust
  720. * for dword access.
  721. */
  722. if (!qdev->port)
  723. offset = FUNC0_FLASH_OFFSET / sizeof(u32);
  724. else
  725. offset = FUNC1_FLASH_OFFSET / sizeof(u32);
  726. if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
  727. return -ETIMEDOUT;
  728. size = sizeof(struct flash_params_8000) / sizeof(u32);
  729. for (i = 0; i < size; i++, p++) {
  730. status = ql_read_flash_word(qdev, i+offset, p);
  731. if (status) {
  732. netif_err(qdev, ifup, qdev->ndev,
  733. "Error reading flash.\n");
  734. goto exit;
  735. }
  736. }
  737. status = ql_validate_flash(qdev,
  738. sizeof(struct flash_params_8000) / sizeof(u16),
  739. "8000");
  740. if (status) {
  741. netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
  742. status = -EINVAL;
  743. goto exit;
  744. }
  745. /* Extract either manufacturer or BOFM modified
  746. * MAC address.
  747. */
  748. if (qdev->flash.flash_params_8000.data_type1 == 2)
  749. memcpy(mac_addr,
  750. qdev->flash.flash_params_8000.mac_addr1,
  751. qdev->ndev->addr_len);
  752. else
  753. memcpy(mac_addr,
  754. qdev->flash.flash_params_8000.mac_addr,
  755. qdev->ndev->addr_len);
  756. if (!is_valid_ether_addr(mac_addr)) {
  757. netif_err(qdev, ifup, qdev->ndev, "Invalid MAC address.\n");
  758. status = -EINVAL;
  759. goto exit;
  760. }
  761. memcpy(qdev->ndev->dev_addr,
  762. mac_addr,
  763. qdev->ndev->addr_len);
  764. exit:
  765. ql_sem_unlock(qdev, SEM_FLASH_MASK);
  766. return status;
  767. }
  768. static int ql_get_8012_flash_params(struct ql_adapter *qdev)
  769. {
  770. int i;
  771. int status;
  772. __le32 *p = (__le32 *)&qdev->flash;
  773. u32 offset = 0;
  774. u32 size = sizeof(struct flash_params_8012) / sizeof(u32);
  775. /* Second function's parameters follow the first
  776. * function's.
  777. */
  778. if (qdev->port)
  779. offset = size;
  780. if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
  781. return -ETIMEDOUT;
  782. for (i = 0; i < size; i++, p++) {
  783. status = ql_read_flash_word(qdev, i+offset, p);
  784. if (status) {
  785. netif_err(qdev, ifup, qdev->ndev,
  786. "Error reading flash.\n");
  787. goto exit;
  788. }
  789. }
  790. status = ql_validate_flash(qdev,
  791. sizeof(struct flash_params_8012) / sizeof(u16),
  792. "8012");
  793. if (status) {
  794. netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
  795. status = -EINVAL;
  796. goto exit;
  797. }
  798. if (!is_valid_ether_addr(qdev->flash.flash_params_8012.mac_addr)) {
  799. status = -EINVAL;
  800. goto exit;
  801. }
  802. memcpy(qdev->ndev->dev_addr,
  803. qdev->flash.flash_params_8012.mac_addr,
  804. qdev->ndev->addr_len);
  805. exit:
  806. ql_sem_unlock(qdev, SEM_FLASH_MASK);
  807. return status;
  808. }
  809. /* xgmac register are located behind the xgmac_addr and xgmac_data
  810. * register pair. Each read/write requires us to wait for the ready
  811. * bit before reading/writing the data.
  812. */
  813. static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
  814. {
  815. int status;
  816. /* wait for reg to come ready */
  817. status = ql_wait_reg_rdy(qdev,
  818. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  819. if (status)
  820. return status;
  821. /* write the data to the data reg */
  822. ql_write32(qdev, XGMAC_DATA, data);
  823. /* trigger the write */
  824. ql_write32(qdev, XGMAC_ADDR, reg);
  825. return status;
  826. }
  827. /* xgmac register are located behind the xgmac_addr and xgmac_data
  828. * register pair. Each read/write requires us to wait for the ready
  829. * bit before reading/writing the data.
  830. */
  831. int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
  832. {
  833. int status = 0;
  834. /* wait for reg to come ready */
  835. status = ql_wait_reg_rdy(qdev,
  836. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  837. if (status)
  838. goto exit;
  839. /* set up for reg read */
  840. ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
  841. /* wait for reg to come ready */
  842. status = ql_wait_reg_rdy(qdev,
  843. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  844. if (status)
  845. goto exit;
  846. /* get the data */
  847. *data = ql_read32(qdev, XGMAC_DATA);
  848. exit:
  849. return status;
  850. }
  851. /* This is used for reading the 64-bit statistics regs. */
  852. int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
  853. {
  854. int status = 0;
  855. u32 hi = 0;
  856. u32 lo = 0;
  857. status = ql_read_xgmac_reg(qdev, reg, &lo);
  858. if (status)
  859. goto exit;
  860. status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
  861. if (status)
  862. goto exit;
  863. *data = (u64) lo | ((u64) hi << 32);
  864. exit:
  865. return status;
  866. }
  867. static int ql_8000_port_initialize(struct ql_adapter *qdev)
  868. {
  869. int status;
  870. /*
  871. * Get MPI firmware version for driver banner
  872. * and ethool info.
  873. */
  874. status = ql_mb_about_fw(qdev);
  875. if (status)
  876. goto exit;
  877. status = ql_mb_get_fw_state(qdev);
  878. if (status)
  879. goto exit;
  880. /* Wake up a worker to get/set the TX/RX frame sizes. */
  881. queue_delayed_work(qdev->workqueue, &qdev->mpi_port_cfg_work, 0);
  882. exit:
  883. return status;
  884. }
  885. /* Take the MAC Core out of reset.
  886. * Enable statistics counting.
  887. * Take the transmitter/receiver out of reset.
  888. * This functionality may be done in the MPI firmware at a
  889. * later date.
  890. */
  891. static int ql_8012_port_initialize(struct ql_adapter *qdev)
  892. {
  893. int status = 0;
  894. u32 data;
  895. if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
  896. /* Another function has the semaphore, so
  897. * wait for the port init bit to come ready.
  898. */
  899. netif_info(qdev, link, qdev->ndev,
  900. "Another function has the semaphore, so wait for the port init bit to come ready.\n");
  901. status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
  902. if (status) {
  903. netif_crit(qdev, link, qdev->ndev,
  904. "Port initialize timed out.\n");
  905. }
  906. return status;
  907. }
  908. netif_info(qdev, link, qdev->ndev, "Got xgmac semaphore!.\n");
  909. /* Set the core reset. */
  910. status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
  911. if (status)
  912. goto end;
  913. data |= GLOBAL_CFG_RESET;
  914. status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
  915. if (status)
  916. goto end;
  917. /* Clear the core reset and turn on jumbo for receiver. */
  918. data &= ~GLOBAL_CFG_RESET; /* Clear core reset. */
  919. data |= GLOBAL_CFG_JUMBO; /* Turn on jumbo. */
  920. data |= GLOBAL_CFG_TX_STAT_EN;
  921. data |= GLOBAL_CFG_RX_STAT_EN;
  922. status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
  923. if (status)
  924. goto end;
  925. /* Enable transmitter, and clear it's reset. */
  926. status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
  927. if (status)
  928. goto end;
  929. data &= ~TX_CFG_RESET; /* Clear the TX MAC reset. */
  930. data |= TX_CFG_EN; /* Enable the transmitter. */
  931. status = ql_write_xgmac_reg(qdev, TX_CFG, data);
  932. if (status)
  933. goto end;
  934. /* Enable receiver and clear it's reset. */
  935. status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
  936. if (status)
  937. goto end;
  938. data &= ~RX_CFG_RESET; /* Clear the RX MAC reset. */
  939. data |= RX_CFG_EN; /* Enable the receiver. */
  940. status = ql_write_xgmac_reg(qdev, RX_CFG, data);
  941. if (status)
  942. goto end;
  943. /* Turn on jumbo. */
  944. status =
  945. ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
  946. if (status)
  947. goto end;
  948. status =
  949. ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
  950. if (status)
  951. goto end;
  952. /* Signal to the world that the port is enabled. */
  953. ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
  954. end:
  955. ql_sem_unlock(qdev, qdev->xg_sem_mask);
  956. return status;
  957. }
  958. static inline unsigned int ql_lbq_block_size(struct ql_adapter *qdev)
  959. {
  960. return PAGE_SIZE << qdev->lbq_buf_order;
  961. }
  962. /* Get the next large buffer. */
  963. static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
  964. {
  965. struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
  966. rx_ring->lbq_curr_idx++;
  967. if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
  968. rx_ring->lbq_curr_idx = 0;
  969. rx_ring->lbq_free_cnt++;
  970. return lbq_desc;
  971. }
  972. static struct bq_desc *ql_get_curr_lchunk(struct ql_adapter *qdev,
  973. struct rx_ring *rx_ring)
  974. {
  975. struct bq_desc *lbq_desc = ql_get_curr_lbuf(rx_ring);
  976. pci_dma_sync_single_for_cpu(qdev->pdev,
  977. dma_unmap_addr(lbq_desc, mapaddr),
  978. rx_ring->lbq_buf_size,
  979. PCI_DMA_FROMDEVICE);
  980. /* If it's the last chunk of our master page then
  981. * we unmap it.
  982. */
  983. if ((lbq_desc->p.pg_chunk.offset + rx_ring->lbq_buf_size)
  984. == ql_lbq_block_size(qdev))
  985. pci_unmap_page(qdev->pdev,
  986. lbq_desc->p.pg_chunk.map,
  987. ql_lbq_block_size(qdev),
  988. PCI_DMA_FROMDEVICE);
  989. return lbq_desc;
  990. }
  991. /* Get the next small buffer. */
  992. static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
  993. {
  994. struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
  995. rx_ring->sbq_curr_idx++;
  996. if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
  997. rx_ring->sbq_curr_idx = 0;
  998. rx_ring->sbq_free_cnt++;
  999. return sbq_desc;
  1000. }
  1001. /* Update an rx ring index. */
  1002. static void ql_update_cq(struct rx_ring *rx_ring)
  1003. {
  1004. rx_ring->cnsmr_idx++;
  1005. rx_ring->curr_entry++;
  1006. if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
  1007. rx_ring->cnsmr_idx = 0;
  1008. rx_ring->curr_entry = rx_ring->cq_base;
  1009. }
  1010. }
  1011. static void ql_write_cq_idx(struct rx_ring *rx_ring)
  1012. {
  1013. ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
  1014. }
  1015. static int ql_get_next_chunk(struct ql_adapter *qdev, struct rx_ring *rx_ring,
  1016. struct bq_desc *lbq_desc)
  1017. {
  1018. if (!rx_ring->pg_chunk.page) {
  1019. u64 map;
  1020. rx_ring->pg_chunk.page = alloc_pages(__GFP_COLD | __GFP_COMP |
  1021. GFP_ATOMIC,
  1022. qdev->lbq_buf_order);
  1023. if (unlikely(!rx_ring->pg_chunk.page)) {
  1024. netif_err(qdev, drv, qdev->ndev,
  1025. "page allocation failed.\n");
  1026. return -ENOMEM;
  1027. }
  1028. rx_ring->pg_chunk.offset = 0;
  1029. map = pci_map_page(qdev->pdev, rx_ring->pg_chunk.page,
  1030. 0, ql_lbq_block_size(qdev),
  1031. PCI_DMA_FROMDEVICE);
  1032. if (pci_dma_mapping_error(qdev->pdev, map)) {
  1033. __free_pages(rx_ring->pg_chunk.page,
  1034. qdev->lbq_buf_order);
  1035. netif_err(qdev, drv, qdev->ndev,
  1036. "PCI mapping failed.\n");
  1037. return -ENOMEM;
  1038. }
  1039. rx_ring->pg_chunk.map = map;
  1040. rx_ring->pg_chunk.va = page_address(rx_ring->pg_chunk.page);
  1041. }
  1042. /* Copy the current master pg_chunk info
  1043. * to the current descriptor.
  1044. */
  1045. lbq_desc->p.pg_chunk = rx_ring->pg_chunk;
  1046. /* Adjust the master page chunk for next
  1047. * buffer get.
  1048. */
  1049. rx_ring->pg_chunk.offset += rx_ring->lbq_buf_size;
  1050. if (rx_ring->pg_chunk.offset == ql_lbq_block_size(qdev)) {
  1051. rx_ring->pg_chunk.page = NULL;
  1052. lbq_desc->p.pg_chunk.last_flag = 1;
  1053. } else {
  1054. rx_ring->pg_chunk.va += rx_ring->lbq_buf_size;
  1055. get_page(rx_ring->pg_chunk.page);
  1056. lbq_desc->p.pg_chunk.last_flag = 0;
  1057. }
  1058. return 0;
  1059. }
  1060. /* Process (refill) a large buffer queue. */
  1061. static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  1062. {
  1063. u32 clean_idx = rx_ring->lbq_clean_idx;
  1064. u32 start_idx = clean_idx;
  1065. struct bq_desc *lbq_desc;
  1066. u64 map;
  1067. int i;
  1068. while (rx_ring->lbq_free_cnt > 32) {
  1069. for (i = 0; i < 16; i++) {
  1070. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1071. "lbq: try cleaning clean_idx = %d.\n",
  1072. clean_idx);
  1073. lbq_desc = &rx_ring->lbq[clean_idx];
  1074. if (ql_get_next_chunk(qdev, rx_ring, lbq_desc)) {
  1075. netif_err(qdev, ifup, qdev->ndev,
  1076. "Could not get a page chunk.\n");
  1077. return;
  1078. }
  1079. map = lbq_desc->p.pg_chunk.map +
  1080. lbq_desc->p.pg_chunk.offset;
  1081. dma_unmap_addr_set(lbq_desc, mapaddr, map);
  1082. dma_unmap_len_set(lbq_desc, maplen,
  1083. rx_ring->lbq_buf_size);
  1084. *lbq_desc->addr = cpu_to_le64(map);
  1085. pci_dma_sync_single_for_device(qdev->pdev, map,
  1086. rx_ring->lbq_buf_size,
  1087. PCI_DMA_FROMDEVICE);
  1088. clean_idx++;
  1089. if (clean_idx == rx_ring->lbq_len)
  1090. clean_idx = 0;
  1091. }
  1092. rx_ring->lbq_clean_idx = clean_idx;
  1093. rx_ring->lbq_prod_idx += 16;
  1094. if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
  1095. rx_ring->lbq_prod_idx = 0;
  1096. rx_ring->lbq_free_cnt -= 16;
  1097. }
  1098. if (start_idx != clean_idx) {
  1099. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1100. "lbq: updating prod idx = %d.\n",
  1101. rx_ring->lbq_prod_idx);
  1102. ql_write_db_reg(rx_ring->lbq_prod_idx,
  1103. rx_ring->lbq_prod_idx_db_reg);
  1104. }
  1105. }
  1106. /* Process (refill) a small buffer queue. */
  1107. static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  1108. {
  1109. u32 clean_idx = rx_ring->sbq_clean_idx;
  1110. u32 start_idx = clean_idx;
  1111. struct bq_desc *sbq_desc;
  1112. u64 map;
  1113. int i;
  1114. while (rx_ring->sbq_free_cnt > 16) {
  1115. for (i = 0; i < 16; i++) {
  1116. sbq_desc = &rx_ring->sbq[clean_idx];
  1117. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1118. "sbq: try cleaning clean_idx = %d.\n",
  1119. clean_idx);
  1120. if (sbq_desc->p.skb == NULL) {
  1121. netif_printk(qdev, rx_status, KERN_DEBUG,
  1122. qdev->ndev,
  1123. "sbq: getting new skb for index %d.\n",
  1124. sbq_desc->index);
  1125. sbq_desc->p.skb =
  1126. netdev_alloc_skb(qdev->ndev,
  1127. SMALL_BUFFER_SIZE);
  1128. if (sbq_desc->p.skb == NULL) {
  1129. netif_err(qdev, probe, qdev->ndev,
  1130. "Couldn't get an skb.\n");
  1131. rx_ring->sbq_clean_idx = clean_idx;
  1132. return;
  1133. }
  1134. skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
  1135. map = pci_map_single(qdev->pdev,
  1136. sbq_desc->p.skb->data,
  1137. rx_ring->sbq_buf_size,
  1138. PCI_DMA_FROMDEVICE);
  1139. if (pci_dma_mapping_error(qdev->pdev, map)) {
  1140. netif_err(qdev, ifup, qdev->ndev,
  1141. "PCI mapping failed.\n");
  1142. rx_ring->sbq_clean_idx = clean_idx;
  1143. dev_kfree_skb_any(sbq_desc->p.skb);
  1144. sbq_desc->p.skb = NULL;
  1145. return;
  1146. }
  1147. dma_unmap_addr_set(sbq_desc, mapaddr, map);
  1148. dma_unmap_len_set(sbq_desc, maplen,
  1149. rx_ring->sbq_buf_size);
  1150. *sbq_desc->addr = cpu_to_le64(map);
  1151. }
  1152. clean_idx++;
  1153. if (clean_idx == rx_ring->sbq_len)
  1154. clean_idx = 0;
  1155. }
  1156. rx_ring->sbq_clean_idx = clean_idx;
  1157. rx_ring->sbq_prod_idx += 16;
  1158. if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
  1159. rx_ring->sbq_prod_idx = 0;
  1160. rx_ring->sbq_free_cnt -= 16;
  1161. }
  1162. if (start_idx != clean_idx) {
  1163. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1164. "sbq: updating prod idx = %d.\n",
  1165. rx_ring->sbq_prod_idx);
  1166. ql_write_db_reg(rx_ring->sbq_prod_idx,
  1167. rx_ring->sbq_prod_idx_db_reg);
  1168. }
  1169. }
  1170. static void ql_update_buffer_queues(struct ql_adapter *qdev,
  1171. struct rx_ring *rx_ring)
  1172. {
  1173. ql_update_sbq(qdev, rx_ring);
  1174. ql_update_lbq(qdev, rx_ring);
  1175. }
  1176. /* Unmaps tx buffers. Can be called from send() if a pci mapping
  1177. * fails at some stage, or from the interrupt when a tx completes.
  1178. */
  1179. static void ql_unmap_send(struct ql_adapter *qdev,
  1180. struct tx_ring_desc *tx_ring_desc, int mapped)
  1181. {
  1182. int i;
  1183. for (i = 0; i < mapped; i++) {
  1184. if (i == 0 || (i == 7 && mapped > 7)) {
  1185. /*
  1186. * Unmap the skb->data area, or the
  1187. * external sglist (AKA the Outbound
  1188. * Address List (OAL)).
  1189. * If its the zeroeth element, then it's
  1190. * the skb->data area. If it's the 7th
  1191. * element and there is more than 6 frags,
  1192. * then its an OAL.
  1193. */
  1194. if (i == 7) {
  1195. netif_printk(qdev, tx_done, KERN_DEBUG,
  1196. qdev->ndev,
  1197. "unmapping OAL area.\n");
  1198. }
  1199. pci_unmap_single(qdev->pdev,
  1200. dma_unmap_addr(&tx_ring_desc->map[i],
  1201. mapaddr),
  1202. dma_unmap_len(&tx_ring_desc->map[i],
  1203. maplen),
  1204. PCI_DMA_TODEVICE);
  1205. } else {
  1206. netif_printk(qdev, tx_done, KERN_DEBUG, qdev->ndev,
  1207. "unmapping frag %d.\n", i);
  1208. pci_unmap_page(qdev->pdev,
  1209. dma_unmap_addr(&tx_ring_desc->map[i],
  1210. mapaddr),
  1211. dma_unmap_len(&tx_ring_desc->map[i],
  1212. maplen), PCI_DMA_TODEVICE);
  1213. }
  1214. }
  1215. }
  1216. /* Map the buffers for this transmit. This will return
  1217. * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
  1218. */
  1219. static int ql_map_send(struct ql_adapter *qdev,
  1220. struct ob_mac_iocb_req *mac_iocb_ptr,
  1221. struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
  1222. {
  1223. int len = skb_headlen(skb);
  1224. dma_addr_t map;
  1225. int frag_idx, err, map_idx = 0;
  1226. struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
  1227. int frag_cnt = skb_shinfo(skb)->nr_frags;
  1228. if (frag_cnt) {
  1229. netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
  1230. "frag_cnt = %d.\n", frag_cnt);
  1231. }
  1232. /*
  1233. * Map the skb buffer first.
  1234. */
  1235. map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
  1236. err = pci_dma_mapping_error(qdev->pdev, map);
  1237. if (err) {
  1238. netif_err(qdev, tx_queued, qdev->ndev,
  1239. "PCI mapping failed with error: %d\n", err);
  1240. return NETDEV_TX_BUSY;
  1241. }
  1242. tbd->len = cpu_to_le32(len);
  1243. tbd->addr = cpu_to_le64(map);
  1244. dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
  1245. dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
  1246. map_idx++;
  1247. /*
  1248. * This loop fills the remainder of the 8 address descriptors
  1249. * in the IOCB. If there are more than 7 fragments, then the
  1250. * eighth address desc will point to an external list (OAL).
  1251. * When this happens, the remainder of the frags will be stored
  1252. * in this list.
  1253. */
  1254. for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
  1255. skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
  1256. tbd++;
  1257. if (frag_idx == 6 && frag_cnt > 7) {
  1258. /* Let's tack on an sglist.
  1259. * Our control block will now
  1260. * look like this:
  1261. * iocb->seg[0] = skb->data
  1262. * iocb->seg[1] = frag[0]
  1263. * iocb->seg[2] = frag[1]
  1264. * iocb->seg[3] = frag[2]
  1265. * iocb->seg[4] = frag[3]
  1266. * iocb->seg[5] = frag[4]
  1267. * iocb->seg[6] = frag[5]
  1268. * iocb->seg[7] = ptr to OAL (external sglist)
  1269. * oal->seg[0] = frag[6]
  1270. * oal->seg[1] = frag[7]
  1271. * oal->seg[2] = frag[8]
  1272. * oal->seg[3] = frag[9]
  1273. * oal->seg[4] = frag[10]
  1274. * etc...
  1275. */
  1276. /* Tack on the OAL in the eighth segment of IOCB. */
  1277. map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
  1278. sizeof(struct oal),
  1279. PCI_DMA_TODEVICE);
  1280. err = pci_dma_mapping_error(qdev->pdev, map);
  1281. if (err) {
  1282. netif_err(qdev, tx_queued, qdev->ndev,
  1283. "PCI mapping outbound address list with error: %d\n",
  1284. err);
  1285. goto map_error;
  1286. }
  1287. tbd->addr = cpu_to_le64(map);
  1288. /*
  1289. * The length is the number of fragments
  1290. * that remain to be mapped times the length
  1291. * of our sglist (OAL).
  1292. */
  1293. tbd->len =
  1294. cpu_to_le32((sizeof(struct tx_buf_desc) *
  1295. (frag_cnt - frag_idx)) | TX_DESC_C);
  1296. dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
  1297. map);
  1298. dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
  1299. sizeof(struct oal));
  1300. tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
  1301. map_idx++;
  1302. }
  1303. map = skb_frag_dma_map(&qdev->pdev->dev, frag, 0, skb_frag_size(frag),
  1304. DMA_TO_DEVICE);
  1305. err = dma_mapping_error(&qdev->pdev->dev, map);
  1306. if (err) {
  1307. netif_err(qdev, tx_queued, qdev->ndev,
  1308. "PCI mapping frags failed with error: %d.\n",
  1309. err);
  1310. goto map_error;
  1311. }
  1312. tbd->addr = cpu_to_le64(map);
  1313. tbd->len = cpu_to_le32(skb_frag_size(frag));
  1314. dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
  1315. dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
  1316. skb_frag_size(frag));
  1317. }
  1318. /* Save the number of segments we've mapped. */
  1319. tx_ring_desc->map_cnt = map_idx;
  1320. /* Terminate the last segment. */
  1321. tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
  1322. return NETDEV_TX_OK;
  1323. map_error:
  1324. /*
  1325. * If the first frag mapping failed, then i will be zero.
  1326. * This causes the unmap of the skb->data area. Otherwise
  1327. * we pass in the number of frags that mapped successfully
  1328. * so they can be umapped.
  1329. */
  1330. ql_unmap_send(qdev, tx_ring_desc, map_idx);
  1331. return NETDEV_TX_BUSY;
  1332. }
  1333. /* Process an inbound completion from an rx ring. */
  1334. static void ql_process_mac_rx_gro_page(struct ql_adapter *qdev,
  1335. struct rx_ring *rx_ring,
  1336. struct ib_mac_iocb_rsp *ib_mac_rsp,
  1337. u32 length,
  1338. u16 vlan_id)
  1339. {
  1340. struct sk_buff *skb;
  1341. struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
  1342. struct napi_struct *napi = &rx_ring->napi;
  1343. napi->dev = qdev->ndev;
  1344. skb = napi_get_frags(napi);
  1345. if (!skb) {
  1346. netif_err(qdev, drv, qdev->ndev,
  1347. "Couldn't get an skb, exiting.\n");
  1348. rx_ring->rx_dropped++;
  1349. put_page(lbq_desc->p.pg_chunk.page);
  1350. return;
  1351. }
  1352. prefetch(lbq_desc->p.pg_chunk.va);
  1353. __skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
  1354. lbq_desc->p.pg_chunk.page,
  1355. lbq_desc->p.pg_chunk.offset,
  1356. length);
  1357. skb->len += length;
  1358. skb->data_len += length;
  1359. skb->truesize += length;
  1360. skb_shinfo(skb)->nr_frags++;
  1361. rx_ring->rx_packets++;
  1362. rx_ring->rx_bytes += length;
  1363. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1364. skb_record_rx_queue(skb, rx_ring->cq_id);
  1365. if (vlan_id != 0xffff)
  1366. __vlan_hwaccel_put_tag(skb, vlan_id);
  1367. napi_gro_frags(napi);
  1368. }
  1369. /* Process an inbound completion from an rx ring. */
  1370. static void ql_process_mac_rx_page(struct ql_adapter *qdev,
  1371. struct rx_ring *rx_ring,
  1372. struct ib_mac_iocb_rsp *ib_mac_rsp,
  1373. u32 length,
  1374. u16 vlan_id)
  1375. {
  1376. struct net_device *ndev = qdev->ndev;
  1377. struct sk_buff *skb = NULL;
  1378. void *addr;
  1379. struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
  1380. struct napi_struct *napi = &rx_ring->napi;
  1381. skb = netdev_alloc_skb(ndev, length);
  1382. if (!skb) {
  1383. netif_err(qdev, drv, qdev->ndev,
  1384. "Couldn't get an skb, need to unwind!.\n");
  1385. rx_ring->rx_dropped++;
  1386. put_page(lbq_desc->p.pg_chunk.page);
  1387. return;
  1388. }
  1389. addr = lbq_desc->p.pg_chunk.va;
  1390. prefetch(addr);
  1391. /* Frame error, so drop the packet. */
  1392. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
  1393. netif_info(qdev, drv, qdev->ndev,
  1394. "Receive error, flags2 = 0x%x\n", ib_mac_rsp->flags2);
  1395. rx_ring->rx_errors++;
  1396. goto err_out;
  1397. }
  1398. /* The max framesize filter on this chip is set higher than
  1399. * MTU since FCoE uses 2k frames.
  1400. */
  1401. if (skb->len > ndev->mtu + ETH_HLEN) {
  1402. netif_err(qdev, drv, qdev->ndev,
  1403. "Segment too small, dropping.\n");
  1404. rx_ring->rx_dropped++;
  1405. goto err_out;
  1406. }
  1407. memcpy(skb_put(skb, ETH_HLEN), addr, ETH_HLEN);
  1408. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1409. "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
  1410. length);
  1411. skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
  1412. lbq_desc->p.pg_chunk.offset+ETH_HLEN,
  1413. length-ETH_HLEN);
  1414. skb->len += length-ETH_HLEN;
  1415. skb->data_len += length-ETH_HLEN;
  1416. skb->truesize += length-ETH_HLEN;
  1417. rx_ring->rx_packets++;
  1418. rx_ring->rx_bytes += skb->len;
  1419. skb->protocol = eth_type_trans(skb, ndev);
  1420. skb_checksum_none_assert(skb);
  1421. if ((ndev->features & NETIF_F_RXCSUM) &&
  1422. !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
  1423. /* TCP frame. */
  1424. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
  1425. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1426. "TCP checksum done!\n");
  1427. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1428. } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
  1429. (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
  1430. /* Unfragmented ipv4 UDP frame. */
  1431. struct iphdr *iph = (struct iphdr *) skb->data;
  1432. if (!(iph->frag_off &
  1433. cpu_to_be16(IP_MF|IP_OFFSET))) {
  1434. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1435. netif_printk(qdev, rx_status, KERN_DEBUG,
  1436. qdev->ndev,
  1437. "TCP checksum done!\n");
  1438. }
  1439. }
  1440. }
  1441. skb_record_rx_queue(skb, rx_ring->cq_id);
  1442. if (vlan_id != 0xffff)
  1443. __vlan_hwaccel_put_tag(skb, vlan_id);
  1444. if (skb->ip_summed == CHECKSUM_UNNECESSARY)
  1445. napi_gro_receive(napi, skb);
  1446. else
  1447. netif_receive_skb(skb);
  1448. return;
  1449. err_out:
  1450. dev_kfree_skb_any(skb);
  1451. put_page(lbq_desc->p.pg_chunk.page);
  1452. }
  1453. /* Process an inbound completion from an rx ring. */
  1454. static void ql_process_mac_rx_skb(struct ql_adapter *qdev,
  1455. struct rx_ring *rx_ring,
  1456. struct ib_mac_iocb_rsp *ib_mac_rsp,
  1457. u32 length,
  1458. u16 vlan_id)
  1459. {
  1460. struct net_device *ndev = qdev->ndev;
  1461. struct sk_buff *skb = NULL;
  1462. struct sk_buff *new_skb = NULL;
  1463. struct bq_desc *sbq_desc = ql_get_curr_sbuf(rx_ring);
  1464. skb = sbq_desc->p.skb;
  1465. /* Allocate new_skb and copy */
  1466. new_skb = netdev_alloc_skb(qdev->ndev, length + NET_IP_ALIGN);
  1467. if (new_skb == NULL) {
  1468. netif_err(qdev, probe, qdev->ndev,
  1469. "No skb available, drop the packet.\n");
  1470. rx_ring->rx_dropped++;
  1471. return;
  1472. }
  1473. skb_reserve(new_skb, NET_IP_ALIGN);
  1474. memcpy(skb_put(new_skb, length), skb->data, length);
  1475. skb = new_skb;
  1476. /* Frame error, so drop the packet. */
  1477. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
  1478. netif_info(qdev, drv, qdev->ndev,
  1479. "Receive error, flags2 = 0x%x\n", ib_mac_rsp->flags2);
  1480. dev_kfree_skb_any(skb);
  1481. rx_ring->rx_errors++;
  1482. return;
  1483. }
  1484. /* loopback self test for ethtool */
  1485. if (test_bit(QL_SELFTEST, &qdev->flags)) {
  1486. ql_check_lb_frame(qdev, skb);
  1487. dev_kfree_skb_any(skb);
  1488. return;
  1489. }
  1490. /* The max framesize filter on this chip is set higher than
  1491. * MTU since FCoE uses 2k frames.
  1492. */
  1493. if (skb->len > ndev->mtu + ETH_HLEN) {
  1494. dev_kfree_skb_any(skb);
  1495. rx_ring->rx_dropped++;
  1496. return;
  1497. }
  1498. prefetch(skb->data);
  1499. skb->dev = ndev;
  1500. if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
  1501. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1502. "%s Multicast.\n",
  1503. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1504. IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
  1505. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1506. IB_MAC_IOCB_RSP_M_REG ? "Registered" :
  1507. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1508. IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
  1509. }
  1510. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P)
  1511. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1512. "Promiscuous Packet.\n");
  1513. rx_ring->rx_packets++;
  1514. rx_ring->rx_bytes += skb->len;
  1515. skb->protocol = eth_type_trans(skb, ndev);
  1516. skb_checksum_none_assert(skb);
  1517. /* If rx checksum is on, and there are no
  1518. * csum or frame errors.
  1519. */
  1520. if ((ndev->features & NETIF_F_RXCSUM) &&
  1521. !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
  1522. /* TCP frame. */
  1523. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
  1524. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1525. "TCP checksum done!\n");
  1526. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1527. } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
  1528. (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
  1529. /* Unfragmented ipv4 UDP frame. */
  1530. struct iphdr *iph = (struct iphdr *) skb->data;
  1531. if (!(iph->frag_off &
  1532. ntohs(IP_MF|IP_OFFSET))) {
  1533. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1534. netif_printk(qdev, rx_status, KERN_DEBUG,
  1535. qdev->ndev,
  1536. "TCP checksum done!\n");
  1537. }
  1538. }
  1539. }
  1540. skb_record_rx_queue(skb, rx_ring->cq_id);
  1541. if (vlan_id != 0xffff)
  1542. __vlan_hwaccel_put_tag(skb, vlan_id);
  1543. if (skb->ip_summed == CHECKSUM_UNNECESSARY)
  1544. napi_gro_receive(&rx_ring->napi, skb);
  1545. else
  1546. netif_receive_skb(skb);
  1547. }
  1548. static void ql_realign_skb(struct sk_buff *skb, int len)
  1549. {
  1550. void *temp_addr = skb->data;
  1551. /* Undo the skb_reserve(skb,32) we did before
  1552. * giving to hardware, and realign data on
  1553. * a 2-byte boundary.
  1554. */
  1555. skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
  1556. skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
  1557. skb_copy_to_linear_data(skb, temp_addr,
  1558. (unsigned int)len);
  1559. }
  1560. /*
  1561. * This function builds an skb for the given inbound
  1562. * completion. It will be rewritten for readability in the near
  1563. * future, but for not it works well.
  1564. */
  1565. static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
  1566. struct rx_ring *rx_ring,
  1567. struct ib_mac_iocb_rsp *ib_mac_rsp)
  1568. {
  1569. struct bq_desc *lbq_desc;
  1570. struct bq_desc *sbq_desc;
  1571. struct sk_buff *skb = NULL;
  1572. u32 length = le32_to_cpu(ib_mac_rsp->data_len);
  1573. u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
  1574. /*
  1575. * Handle the header buffer if present.
  1576. */
  1577. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
  1578. ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1579. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1580. "Header of %d bytes in small buffer.\n", hdr_len);
  1581. /*
  1582. * Headers fit nicely into a small buffer.
  1583. */
  1584. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1585. pci_unmap_single(qdev->pdev,
  1586. dma_unmap_addr(sbq_desc, mapaddr),
  1587. dma_unmap_len(sbq_desc, maplen),
  1588. PCI_DMA_FROMDEVICE);
  1589. skb = sbq_desc->p.skb;
  1590. ql_realign_skb(skb, hdr_len);
  1591. skb_put(skb, hdr_len);
  1592. sbq_desc->p.skb = NULL;
  1593. }
  1594. /*
  1595. * Handle the data buffer(s).
  1596. */
  1597. if (unlikely(!length)) { /* Is there data too? */
  1598. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1599. "No Data buffer in this packet.\n");
  1600. return skb;
  1601. }
  1602. if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
  1603. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1604. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1605. "Headers in small, data of %d bytes in small, combine them.\n",
  1606. length);
  1607. /*
  1608. * Data is less than small buffer size so it's
  1609. * stuffed in a small buffer.
  1610. * For this case we append the data
  1611. * from the "data" small buffer to the "header" small
  1612. * buffer.
  1613. */
  1614. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1615. pci_dma_sync_single_for_cpu(qdev->pdev,
  1616. dma_unmap_addr
  1617. (sbq_desc, mapaddr),
  1618. dma_unmap_len
  1619. (sbq_desc, maplen),
  1620. PCI_DMA_FROMDEVICE);
  1621. memcpy(skb_put(skb, length),
  1622. sbq_desc->p.skb->data, length);
  1623. pci_dma_sync_single_for_device(qdev->pdev,
  1624. dma_unmap_addr
  1625. (sbq_desc,
  1626. mapaddr),
  1627. dma_unmap_len
  1628. (sbq_desc,
  1629. maplen),
  1630. PCI_DMA_FROMDEVICE);
  1631. } else {
  1632. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1633. "%d bytes in a single small buffer.\n",
  1634. length);
  1635. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1636. skb = sbq_desc->p.skb;
  1637. ql_realign_skb(skb, length);
  1638. skb_put(skb, length);
  1639. pci_unmap_single(qdev->pdev,
  1640. dma_unmap_addr(sbq_desc,
  1641. mapaddr),
  1642. dma_unmap_len(sbq_desc,
  1643. maplen),
  1644. PCI_DMA_FROMDEVICE);
  1645. sbq_desc->p.skb = NULL;
  1646. }
  1647. } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
  1648. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1649. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1650. "Header in small, %d bytes in large. Chain large to small!\n",
  1651. length);
  1652. /*
  1653. * The data is in a single large buffer. We
  1654. * chain it to the header buffer's skb and let
  1655. * it rip.
  1656. */
  1657. lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
  1658. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1659. "Chaining page at offset = %d, for %d bytes to skb.\n",
  1660. lbq_desc->p.pg_chunk.offset, length);
  1661. skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
  1662. lbq_desc->p.pg_chunk.offset,
  1663. length);
  1664. skb->len += length;
  1665. skb->data_len += length;
  1666. skb->truesize += length;
  1667. } else {
  1668. /*
  1669. * The headers and data are in a single large buffer. We
  1670. * copy it to a new skb and let it go. This can happen with
  1671. * jumbo mtu on a non-TCP/UDP frame.
  1672. */
  1673. lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
  1674. skb = netdev_alloc_skb(qdev->ndev, length);
  1675. if (skb == NULL) {
  1676. netif_printk(qdev, probe, KERN_DEBUG, qdev->ndev,
  1677. "No skb available, drop the packet.\n");
  1678. return NULL;
  1679. }
  1680. pci_unmap_page(qdev->pdev,
  1681. dma_unmap_addr(lbq_desc,
  1682. mapaddr),
  1683. dma_unmap_len(lbq_desc, maplen),
  1684. PCI_DMA_FROMDEVICE);
  1685. skb_reserve(skb, NET_IP_ALIGN);
  1686. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1687. "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
  1688. length);
  1689. skb_fill_page_desc(skb, 0,
  1690. lbq_desc->p.pg_chunk.page,
  1691. lbq_desc->p.pg_chunk.offset,
  1692. length);
  1693. skb->len += length;
  1694. skb->data_len += length;
  1695. skb->truesize += length;
  1696. length -= length;
  1697. __pskb_pull_tail(skb,
  1698. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
  1699. VLAN_ETH_HLEN : ETH_HLEN);
  1700. }
  1701. } else {
  1702. /*
  1703. * The data is in a chain of large buffers
  1704. * pointed to by a small buffer. We loop
  1705. * thru and chain them to the our small header
  1706. * buffer's skb.
  1707. * frags: There are 18 max frags and our small
  1708. * buffer will hold 32 of them. The thing is,
  1709. * we'll use 3 max for our 9000 byte jumbo
  1710. * frames. If the MTU goes up we could
  1711. * eventually be in trouble.
  1712. */
  1713. int size, i = 0;
  1714. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1715. pci_unmap_single(qdev->pdev,
  1716. dma_unmap_addr(sbq_desc, mapaddr),
  1717. dma_unmap_len(sbq_desc, maplen),
  1718. PCI_DMA_FROMDEVICE);
  1719. if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
  1720. /*
  1721. * This is an non TCP/UDP IP frame, so
  1722. * the headers aren't split into a small
  1723. * buffer. We have to use the small buffer
  1724. * that contains our sg list as our skb to
  1725. * send upstairs. Copy the sg list here to
  1726. * a local buffer and use it to find the
  1727. * pages to chain.
  1728. */
  1729. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1730. "%d bytes of headers & data in chain of large.\n",
  1731. length);
  1732. skb = sbq_desc->p.skb;
  1733. sbq_desc->p.skb = NULL;
  1734. skb_reserve(skb, NET_IP_ALIGN);
  1735. }
  1736. while (length > 0) {
  1737. lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
  1738. size = (length < rx_ring->lbq_buf_size) ? length :
  1739. rx_ring->lbq_buf_size;
  1740. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1741. "Adding page %d to skb for %d bytes.\n",
  1742. i, size);
  1743. skb_fill_page_desc(skb, i,
  1744. lbq_desc->p.pg_chunk.page,
  1745. lbq_desc->p.pg_chunk.offset,
  1746. size);
  1747. skb->len += size;
  1748. skb->data_len += size;
  1749. skb->truesize += size;
  1750. length -= size;
  1751. i++;
  1752. }
  1753. __pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
  1754. VLAN_ETH_HLEN : ETH_HLEN);
  1755. }
  1756. return skb;
  1757. }
  1758. /* Process an inbound completion from an rx ring. */
  1759. static void ql_process_mac_split_rx_intr(struct ql_adapter *qdev,
  1760. struct rx_ring *rx_ring,
  1761. struct ib_mac_iocb_rsp *ib_mac_rsp,
  1762. u16 vlan_id)
  1763. {
  1764. struct net_device *ndev = qdev->ndev;
  1765. struct sk_buff *skb = NULL;
  1766. QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
  1767. skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
  1768. if (unlikely(!skb)) {
  1769. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1770. "No skb available, drop packet.\n");
  1771. rx_ring->rx_dropped++;
  1772. return;
  1773. }
  1774. /* Frame error, so drop the packet. */
  1775. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
  1776. netif_info(qdev, drv, qdev->ndev,
  1777. "Receive error, flags2 = 0x%x\n", ib_mac_rsp->flags2);
  1778. dev_kfree_skb_any(skb);
  1779. rx_ring->rx_errors++;
  1780. return;
  1781. }
  1782. /* The max framesize filter on this chip is set higher than
  1783. * MTU since FCoE uses 2k frames.
  1784. */
  1785. if (skb->len > ndev->mtu + ETH_HLEN) {
  1786. dev_kfree_skb_any(skb);
  1787. rx_ring->rx_dropped++;
  1788. return;
  1789. }
  1790. /* loopback self test for ethtool */
  1791. if (test_bit(QL_SELFTEST, &qdev->flags)) {
  1792. ql_check_lb_frame(qdev, skb);
  1793. dev_kfree_skb_any(skb);
  1794. return;
  1795. }
  1796. prefetch(skb->data);
  1797. skb->dev = ndev;
  1798. if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
  1799. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "%s Multicast.\n",
  1800. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1801. IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
  1802. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1803. IB_MAC_IOCB_RSP_M_REG ? "Registered" :
  1804. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1805. IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
  1806. rx_ring->rx_multicast++;
  1807. }
  1808. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
  1809. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1810. "Promiscuous Packet.\n");
  1811. }
  1812. skb->protocol = eth_type_trans(skb, ndev);
  1813. skb_checksum_none_assert(skb);
  1814. /* If rx checksum is on, and there are no
  1815. * csum or frame errors.
  1816. */
  1817. if ((ndev->features & NETIF_F_RXCSUM) &&
  1818. !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
  1819. /* TCP frame. */
  1820. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
  1821. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1822. "TCP checksum done!\n");
  1823. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1824. } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
  1825. (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
  1826. /* Unfragmented ipv4 UDP frame. */
  1827. struct iphdr *iph = (struct iphdr *) skb->data;
  1828. if (!(iph->frag_off &
  1829. ntohs(IP_MF|IP_OFFSET))) {
  1830. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1831. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1832. "TCP checksum done!\n");
  1833. }
  1834. }
  1835. }
  1836. rx_ring->rx_packets++;
  1837. rx_ring->rx_bytes += skb->len;
  1838. skb_record_rx_queue(skb, rx_ring->cq_id);
  1839. if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) && (vlan_id != 0))
  1840. __vlan_hwaccel_put_tag(skb, vlan_id);
  1841. if (skb->ip_summed == CHECKSUM_UNNECESSARY)
  1842. napi_gro_receive(&rx_ring->napi, skb);
  1843. else
  1844. netif_receive_skb(skb);
  1845. }
  1846. /* Process an inbound completion from an rx ring. */
  1847. static unsigned long ql_process_mac_rx_intr(struct ql_adapter *qdev,
  1848. struct rx_ring *rx_ring,
  1849. struct ib_mac_iocb_rsp *ib_mac_rsp)
  1850. {
  1851. u32 length = le32_to_cpu(ib_mac_rsp->data_len);
  1852. u16 vlan_id = (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
  1853. ((le16_to_cpu(ib_mac_rsp->vlan_id) &
  1854. IB_MAC_IOCB_RSP_VLAN_MASK)) : 0xffff;
  1855. QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
  1856. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV) {
  1857. /* The data and headers are split into
  1858. * separate buffers.
  1859. */
  1860. ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
  1861. vlan_id);
  1862. } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
  1863. /* The data fit in a single small buffer.
  1864. * Allocate a new skb, copy the data and
  1865. * return the buffer to the free pool.
  1866. */
  1867. ql_process_mac_rx_skb(qdev, rx_ring, ib_mac_rsp,
  1868. length, vlan_id);
  1869. } else if ((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) &&
  1870. !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK) &&
  1871. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T)) {
  1872. /* TCP packet in a page chunk that's been checksummed.
  1873. * Tack it on to our GRO skb and let it go.
  1874. */
  1875. ql_process_mac_rx_gro_page(qdev, rx_ring, ib_mac_rsp,
  1876. length, vlan_id);
  1877. } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
  1878. /* Non-TCP packet in a page chunk. Allocate an
  1879. * skb, tack it on frags, and send it up.
  1880. */
  1881. ql_process_mac_rx_page(qdev, rx_ring, ib_mac_rsp,
  1882. length, vlan_id);
  1883. } else {
  1884. /* Non-TCP/UDP large frames that span multiple buffers
  1885. * can be processed corrrectly by the split frame logic.
  1886. */
  1887. ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
  1888. vlan_id);
  1889. }
  1890. return (unsigned long)length;
  1891. }
  1892. /* Process an outbound completion from an rx ring. */
  1893. static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
  1894. struct ob_mac_iocb_rsp *mac_rsp)
  1895. {
  1896. struct tx_ring *tx_ring;
  1897. struct tx_ring_desc *tx_ring_desc;
  1898. QL_DUMP_OB_MAC_RSP(mac_rsp);
  1899. tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
  1900. tx_ring_desc = &tx_ring->q[mac_rsp->tid];
  1901. ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
  1902. tx_ring->tx_bytes += (tx_ring_desc->skb)->len;
  1903. tx_ring->tx_packets++;
  1904. dev_kfree_skb(tx_ring_desc->skb);
  1905. tx_ring_desc->skb = NULL;
  1906. if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
  1907. OB_MAC_IOCB_RSP_S |
  1908. OB_MAC_IOCB_RSP_L |
  1909. OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
  1910. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
  1911. netif_warn(qdev, tx_done, qdev->ndev,
  1912. "Total descriptor length did not match transfer length.\n");
  1913. }
  1914. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
  1915. netif_warn(qdev, tx_done, qdev->ndev,
  1916. "Frame too short to be valid, not sent.\n");
  1917. }
  1918. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
  1919. netif_warn(qdev, tx_done, qdev->ndev,
  1920. "Frame too long, but sent anyway.\n");
  1921. }
  1922. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
  1923. netif_warn(qdev, tx_done, qdev->ndev,
  1924. "PCI backplane error. Frame not sent.\n");
  1925. }
  1926. }
  1927. atomic_inc(&tx_ring->tx_count);
  1928. }
  1929. /* Fire up a handler to reset the MPI processor. */
  1930. void ql_queue_fw_error(struct ql_adapter *qdev)
  1931. {
  1932. ql_link_off(qdev);
  1933. queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
  1934. }
  1935. void ql_queue_asic_error(struct ql_adapter *qdev)
  1936. {
  1937. ql_link_off(qdev);
  1938. ql_disable_interrupts(qdev);
  1939. /* Clear adapter up bit to signal the recovery
  1940. * process that it shouldn't kill the reset worker
  1941. * thread
  1942. */
  1943. clear_bit(QL_ADAPTER_UP, &qdev->flags);
  1944. /* Set asic recovery bit to indicate reset process that we are
  1945. * in fatal error recovery process rather than normal close
  1946. */
  1947. set_bit(QL_ASIC_RECOVERY, &qdev->flags);
  1948. queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
  1949. }
  1950. static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
  1951. struct ib_ae_iocb_rsp *ib_ae_rsp)
  1952. {
  1953. switch (ib_ae_rsp->event) {
  1954. case MGMT_ERR_EVENT:
  1955. netif_err(qdev, rx_err, qdev->ndev,
  1956. "Management Processor Fatal Error.\n");
  1957. ql_queue_fw_error(qdev);
  1958. return;
  1959. case CAM_LOOKUP_ERR_EVENT:
  1960. netdev_err(qdev->ndev, "Multiple CAM hits lookup occurred.\n");
  1961. netdev_err(qdev->ndev, "This event shouldn't occur.\n");
  1962. ql_queue_asic_error(qdev);
  1963. return;
  1964. case SOFT_ECC_ERROR_EVENT:
  1965. netdev_err(qdev->ndev, "Soft ECC error detected.\n");
  1966. ql_queue_asic_error(qdev);
  1967. break;
  1968. case PCI_ERR_ANON_BUF_RD:
  1969. netdev_err(qdev->ndev, "PCI error occurred when reading "
  1970. "anonymous buffers from rx_ring %d.\n",
  1971. ib_ae_rsp->q_id);
  1972. ql_queue_asic_error(qdev);
  1973. break;
  1974. default:
  1975. netif_err(qdev, drv, qdev->ndev, "Unexpected event %d.\n",
  1976. ib_ae_rsp->event);
  1977. ql_queue_asic_error(qdev);
  1978. break;
  1979. }
  1980. }
  1981. static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
  1982. {
  1983. struct ql_adapter *qdev = rx_ring->qdev;
  1984. u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  1985. struct ob_mac_iocb_rsp *net_rsp = NULL;
  1986. int count = 0;
  1987. struct tx_ring *tx_ring;
  1988. /* While there are entries in the completion queue. */
  1989. while (prod != rx_ring->cnsmr_idx) {
  1990. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  1991. "cq_id = %d, prod = %d, cnsmr = %d.\n.",
  1992. rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
  1993. net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
  1994. rmb();
  1995. switch (net_rsp->opcode) {
  1996. case OPCODE_OB_MAC_TSO_IOCB:
  1997. case OPCODE_OB_MAC_IOCB:
  1998. ql_process_mac_tx_intr(qdev, net_rsp);
  1999. break;
  2000. default:
  2001. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  2002. "Hit default case, not handled! dropping the packet, opcode = %x.\n",
  2003. net_rsp->opcode);
  2004. }
  2005. count++;
  2006. ql_update_cq(rx_ring);
  2007. prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  2008. }
  2009. if (!net_rsp)
  2010. return 0;
  2011. ql_write_cq_idx(rx_ring);
  2012. tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
  2013. if (__netif_subqueue_stopped(qdev->ndev, tx_ring->wq_id)) {
  2014. if (atomic_read(&tx_ring->queue_stopped) &&
  2015. (atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
  2016. /*
  2017. * The queue got stopped because the tx_ring was full.
  2018. * Wake it up, because it's now at least 25% empty.
  2019. */
  2020. netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
  2021. }
  2022. return count;
  2023. }
  2024. static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
  2025. {
  2026. struct ql_adapter *qdev = rx_ring->qdev;
  2027. u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  2028. struct ql_net_rsp_iocb *net_rsp;
  2029. int count = 0;
  2030. /* While there are entries in the completion queue. */
  2031. while (prod != rx_ring->cnsmr_idx) {
  2032. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  2033. "cq_id = %d, prod = %d, cnsmr = %d.\n.",
  2034. rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
  2035. net_rsp = rx_ring->curr_entry;
  2036. rmb();
  2037. switch (net_rsp->opcode) {
  2038. case OPCODE_IB_MAC_IOCB:
  2039. ql_process_mac_rx_intr(qdev, rx_ring,
  2040. (struct ib_mac_iocb_rsp *)
  2041. net_rsp);
  2042. break;
  2043. case OPCODE_IB_AE_IOCB:
  2044. ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
  2045. net_rsp);
  2046. break;
  2047. default:
  2048. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  2049. "Hit default case, not handled! dropping the packet, opcode = %x.\n",
  2050. net_rsp->opcode);
  2051. break;
  2052. }
  2053. count++;
  2054. ql_update_cq(rx_ring);
  2055. prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  2056. if (count == budget)
  2057. break;
  2058. }
  2059. ql_update_buffer_queues(qdev, rx_ring);
  2060. ql_write_cq_idx(rx_ring);
  2061. return count;
  2062. }
  2063. static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
  2064. {
  2065. struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
  2066. struct ql_adapter *qdev = rx_ring->qdev;
  2067. struct rx_ring *trx_ring;
  2068. int i, work_done = 0;
  2069. struct intr_context *ctx = &qdev->intr_context[rx_ring->cq_id];
  2070. netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
  2071. "Enter, NAPI POLL cq_id = %d.\n", rx_ring->cq_id);
  2072. /* Service the TX rings first. They start
  2073. * right after the RSS rings. */
  2074. for (i = qdev->rss_ring_count; i < qdev->rx_ring_count; i++) {
  2075. trx_ring = &qdev->rx_ring[i];
  2076. /* If this TX completion ring belongs to this vector and
  2077. * it's not empty then service it.
  2078. */
  2079. if ((ctx->irq_mask & (1 << trx_ring->cq_id)) &&
  2080. (ql_read_sh_reg(trx_ring->prod_idx_sh_reg) !=
  2081. trx_ring->cnsmr_idx)) {
  2082. netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
  2083. "%s: Servicing TX completion ring %d.\n",
  2084. __func__, trx_ring->cq_id);
  2085. ql_clean_outbound_rx_ring(trx_ring);
  2086. }
  2087. }
  2088. /*
  2089. * Now service the RSS ring if it's active.
  2090. */
  2091. if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
  2092. rx_ring->cnsmr_idx) {
  2093. netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
  2094. "%s: Servicing RX completion ring %d.\n",
  2095. __func__, rx_ring->cq_id);
  2096. work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
  2097. }
  2098. if (work_done < budget) {
  2099. napi_complete(napi);
  2100. ql_enable_completion_interrupt(qdev, rx_ring->irq);
  2101. }
  2102. return work_done;
  2103. }
  2104. static void qlge_vlan_mode(struct net_device *ndev, netdev_features_t features)
  2105. {
  2106. struct ql_adapter *qdev = netdev_priv(ndev);
  2107. if (features & NETIF_F_HW_VLAN_RX) {
  2108. netif_printk(qdev, ifup, KERN_DEBUG, ndev,
  2109. "Turning on VLAN in NIC_RCV_CFG.\n");
  2110. ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
  2111. NIC_RCV_CFG_VLAN_MATCH_AND_NON);
  2112. } else {
  2113. netif_printk(qdev, ifup, KERN_DEBUG, ndev,
  2114. "Turning off VLAN in NIC_RCV_CFG.\n");
  2115. ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
  2116. }
  2117. }
  2118. static netdev_features_t qlge_fix_features(struct net_device *ndev,
  2119. netdev_features_t features)
  2120. {
  2121. /*
  2122. * Since there is no support for separate rx/tx vlan accel
  2123. * enable/disable make sure tx flag is always in same state as rx.
  2124. */
  2125. if (features & NETIF_F_HW_VLAN_RX)
  2126. features |= NETIF_F_HW_VLAN_TX;
  2127. else
  2128. features &= ~NETIF_F_HW_VLAN_TX;
  2129. return features;
  2130. }
  2131. static int qlge_set_features(struct net_device *ndev,
  2132. netdev_features_t features)
  2133. {
  2134. netdev_features_t changed = ndev->features ^ features;
  2135. if (changed & NETIF_F_HW_VLAN_RX)
  2136. qlge_vlan_mode(ndev, features);
  2137. return 0;
  2138. }
  2139. static void __qlge_vlan_rx_add_vid(struct ql_adapter *qdev, u16 vid)
  2140. {
  2141. u32 enable_bit = MAC_ADDR_E;
  2142. if (ql_set_mac_addr_reg
  2143. (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
  2144. netif_err(qdev, ifup, qdev->ndev,
  2145. "Failed to init vlan address.\n");
  2146. }
  2147. }
  2148. static void qlge_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
  2149. {
  2150. struct ql_adapter *qdev = netdev_priv(ndev);
  2151. int status;
  2152. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  2153. if (status)
  2154. return;
  2155. __qlge_vlan_rx_add_vid(qdev, vid);
  2156. set_bit(vid, qdev->active_vlans);
  2157. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  2158. }
  2159. static void __qlge_vlan_rx_kill_vid(struct ql_adapter *qdev, u16 vid)
  2160. {
  2161. u32 enable_bit = 0;
  2162. if (ql_set_mac_addr_reg
  2163. (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
  2164. netif_err(qdev, ifup, qdev->ndev,
  2165. "Failed to clear vlan address.\n");
  2166. }
  2167. }
  2168. static void qlge_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
  2169. {
  2170. struct ql_adapter *qdev = netdev_priv(ndev);
  2171. int status;
  2172. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  2173. if (status)
  2174. return;
  2175. __qlge_vlan_rx_kill_vid(qdev, vid);
  2176. clear_bit(vid, qdev->active_vlans);
  2177. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  2178. }
  2179. static void qlge_restore_vlan(struct ql_adapter *qdev)
  2180. {
  2181. int status;
  2182. u16 vid;
  2183. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  2184. if (status)
  2185. return;
  2186. for_each_set_bit(vid, qdev->active_vlans, VLAN_N_VID)
  2187. __qlge_vlan_rx_add_vid(qdev, vid);
  2188. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  2189. }
  2190. /* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
  2191. static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
  2192. {
  2193. struct rx_ring *rx_ring = dev_id;
  2194. napi_schedule(&rx_ring->napi);
  2195. return IRQ_HANDLED;
  2196. }
  2197. /* This handles a fatal error, MPI activity, and the default
  2198. * rx_ring in an MSI-X multiple vector environment.
  2199. * In MSI/Legacy environment it also process the rest of
  2200. * the rx_rings.
  2201. */
  2202. static irqreturn_t qlge_isr(int irq, void *dev_id)
  2203. {
  2204. struct rx_ring *rx_ring = dev_id;
  2205. struct ql_adapter *qdev = rx_ring->qdev;
  2206. struct intr_context *intr_context = &qdev->intr_context[0];
  2207. u32 var;
  2208. int work_done = 0;
  2209. spin_lock(&qdev->hw_lock);
  2210. if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
  2211. netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
  2212. "Shared Interrupt, Not ours!\n");
  2213. spin_unlock(&qdev->hw_lock);
  2214. return IRQ_NONE;
  2215. }
  2216. spin_unlock(&qdev->hw_lock);
  2217. var = ql_disable_completion_interrupt(qdev, intr_context->intr);
  2218. /*
  2219. * Check for fatal error.
  2220. */
  2221. if (var & STS_FE) {
  2222. ql_queue_asic_error(qdev);
  2223. netdev_err(qdev->ndev, "Got fatal error, STS = %x.\n", var);
  2224. var = ql_read32(qdev, ERR_STS);
  2225. netdev_err(qdev->ndev, "Resetting chip. "
  2226. "Error Status Register = 0x%x\n", var);
  2227. return IRQ_HANDLED;
  2228. }
  2229. /*
  2230. * Check MPI processor activity.
  2231. */
  2232. if ((var & STS_PI) &&
  2233. (ql_read32(qdev, INTR_MASK) & INTR_MASK_PI)) {
  2234. /*
  2235. * We've got an async event or mailbox completion.
  2236. * Handle it and clear the source of the interrupt.
  2237. */
  2238. netif_err(qdev, intr, qdev->ndev,
  2239. "Got MPI processor interrupt.\n");
  2240. ql_disable_completion_interrupt(qdev, intr_context->intr);
  2241. ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16));
  2242. queue_delayed_work_on(smp_processor_id(),
  2243. qdev->workqueue, &qdev->mpi_work, 0);
  2244. work_done++;
  2245. }
  2246. /*
  2247. * Get the bit-mask that shows the active queues for this
  2248. * pass. Compare it to the queues that this irq services
  2249. * and call napi if there's a match.
  2250. */
  2251. var = ql_read32(qdev, ISR1);
  2252. if (var & intr_context->irq_mask) {
  2253. netif_info(qdev, intr, qdev->ndev,
  2254. "Waking handler for rx_ring[0].\n");
  2255. ql_disable_completion_interrupt(qdev, intr_context->intr);
  2256. napi_schedule(&rx_ring->napi);
  2257. work_done++;
  2258. }
  2259. ql_enable_completion_interrupt(qdev, intr_context->intr);
  2260. return work_done ? IRQ_HANDLED : IRQ_NONE;
  2261. }
  2262. static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
  2263. {
  2264. if (skb_is_gso(skb)) {
  2265. int err;
  2266. if (skb_header_cloned(skb)) {
  2267. err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
  2268. if (err)
  2269. return err;
  2270. }
  2271. mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
  2272. mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
  2273. mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
  2274. mac_iocb_ptr->total_hdrs_len =
  2275. cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
  2276. mac_iocb_ptr->net_trans_offset =
  2277. cpu_to_le16(skb_network_offset(skb) |
  2278. skb_transport_offset(skb)
  2279. << OB_MAC_TRANSPORT_HDR_SHIFT);
  2280. mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
  2281. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
  2282. if (likely(skb->protocol == htons(ETH_P_IP))) {
  2283. struct iphdr *iph = ip_hdr(skb);
  2284. iph->check = 0;
  2285. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
  2286. tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
  2287. iph->daddr, 0,
  2288. IPPROTO_TCP,
  2289. 0);
  2290. } else if (skb->protocol == htons(ETH_P_IPV6)) {
  2291. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
  2292. tcp_hdr(skb)->check =
  2293. ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
  2294. &ipv6_hdr(skb)->daddr,
  2295. 0, IPPROTO_TCP, 0);
  2296. }
  2297. return 1;
  2298. }
  2299. return 0;
  2300. }
  2301. static void ql_hw_csum_setup(struct sk_buff *skb,
  2302. struct ob_mac_tso_iocb_req *mac_iocb_ptr)
  2303. {
  2304. int len;
  2305. struct iphdr *iph = ip_hdr(skb);
  2306. __sum16 *check;
  2307. mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
  2308. mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
  2309. mac_iocb_ptr->net_trans_offset =
  2310. cpu_to_le16(skb_network_offset(skb) |
  2311. skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
  2312. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
  2313. len = (ntohs(iph->tot_len) - (iph->ihl << 2));
  2314. if (likely(iph->protocol == IPPROTO_TCP)) {
  2315. check = &(tcp_hdr(skb)->check);
  2316. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
  2317. mac_iocb_ptr->total_hdrs_len =
  2318. cpu_to_le16(skb_transport_offset(skb) +
  2319. (tcp_hdr(skb)->doff << 2));
  2320. } else {
  2321. check = &(udp_hdr(skb)->check);
  2322. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
  2323. mac_iocb_ptr->total_hdrs_len =
  2324. cpu_to_le16(skb_transport_offset(skb) +
  2325. sizeof(struct udphdr));
  2326. }
  2327. *check = ~csum_tcpudp_magic(iph->saddr,
  2328. iph->daddr, len, iph->protocol, 0);
  2329. }
  2330. static netdev_tx_t qlge_send(struct sk_buff *skb, struct net_device *ndev)
  2331. {
  2332. struct tx_ring_desc *tx_ring_desc;
  2333. struct ob_mac_iocb_req *mac_iocb_ptr;
  2334. struct ql_adapter *qdev = netdev_priv(ndev);
  2335. int tso;
  2336. struct tx_ring *tx_ring;
  2337. u32 tx_ring_idx = (u32) skb->queue_mapping;
  2338. tx_ring = &qdev->tx_ring[tx_ring_idx];
  2339. if (skb_padto(skb, ETH_ZLEN))
  2340. return NETDEV_TX_OK;
  2341. if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
  2342. netif_info(qdev, tx_queued, qdev->ndev,
  2343. "%s: shutting down tx queue %d du to lack of resources.\n",
  2344. __func__, tx_ring_idx);
  2345. netif_stop_subqueue(ndev, tx_ring->wq_id);
  2346. atomic_inc(&tx_ring->queue_stopped);
  2347. tx_ring->tx_errors++;
  2348. return NETDEV_TX_BUSY;
  2349. }
  2350. tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
  2351. mac_iocb_ptr = tx_ring_desc->queue_entry;
  2352. memset((void *)mac_iocb_ptr, 0, sizeof(*mac_iocb_ptr));
  2353. mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
  2354. mac_iocb_ptr->tid = tx_ring_desc->index;
  2355. /* We use the upper 32-bits to store the tx queue for this IO.
  2356. * When we get the completion we can use it to establish the context.
  2357. */
  2358. mac_iocb_ptr->txq_idx = tx_ring_idx;
  2359. tx_ring_desc->skb = skb;
  2360. mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
  2361. if (vlan_tx_tag_present(skb)) {
  2362. netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
  2363. "Adding a vlan tag %d.\n", vlan_tx_tag_get(skb));
  2364. mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
  2365. mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
  2366. }
  2367. tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
  2368. if (tso < 0) {
  2369. dev_kfree_skb_any(skb);
  2370. return NETDEV_TX_OK;
  2371. } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
  2372. ql_hw_csum_setup(skb,
  2373. (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
  2374. }
  2375. if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
  2376. NETDEV_TX_OK) {
  2377. netif_err(qdev, tx_queued, qdev->ndev,
  2378. "Could not map the segments.\n");
  2379. tx_ring->tx_errors++;
  2380. return NETDEV_TX_BUSY;
  2381. }
  2382. QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
  2383. tx_ring->prod_idx++;
  2384. if (tx_ring->prod_idx == tx_ring->wq_len)
  2385. tx_ring->prod_idx = 0;
  2386. wmb();
  2387. ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
  2388. netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
  2389. "tx queued, slot %d, len %d\n",
  2390. tx_ring->prod_idx, skb->len);
  2391. atomic_dec(&tx_ring->tx_count);
  2392. return NETDEV_TX_OK;
  2393. }
  2394. static void ql_free_shadow_space(struct ql_adapter *qdev)
  2395. {
  2396. if (qdev->rx_ring_shadow_reg_area) {
  2397. pci_free_consistent(qdev->pdev,
  2398. PAGE_SIZE,
  2399. qdev->rx_ring_shadow_reg_area,
  2400. qdev->rx_ring_shadow_reg_dma);
  2401. qdev->rx_ring_shadow_reg_area = NULL;
  2402. }
  2403. if (qdev->tx_ring_shadow_reg_area) {
  2404. pci_free_consistent(qdev->pdev,
  2405. PAGE_SIZE,
  2406. qdev->tx_ring_shadow_reg_area,
  2407. qdev->tx_ring_shadow_reg_dma);
  2408. qdev->tx_ring_shadow_reg_area = NULL;
  2409. }
  2410. }
  2411. static int ql_alloc_shadow_space(struct ql_adapter *qdev)
  2412. {
  2413. qdev->rx_ring_shadow_reg_area =
  2414. pci_alloc_consistent(qdev->pdev,
  2415. PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
  2416. if (qdev->rx_ring_shadow_reg_area == NULL) {
  2417. netif_err(qdev, ifup, qdev->ndev,
  2418. "Allocation of RX shadow space failed.\n");
  2419. return -ENOMEM;
  2420. }
  2421. memset(qdev->rx_ring_shadow_reg_area, 0, PAGE_SIZE);
  2422. qdev->tx_ring_shadow_reg_area =
  2423. pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
  2424. &qdev->tx_ring_shadow_reg_dma);
  2425. if (qdev->tx_ring_shadow_reg_area == NULL) {
  2426. netif_err(qdev, ifup, qdev->ndev,
  2427. "Allocation of TX shadow space failed.\n");
  2428. goto err_wqp_sh_area;
  2429. }
  2430. memset(qdev->tx_ring_shadow_reg_area, 0, PAGE_SIZE);
  2431. return 0;
  2432. err_wqp_sh_area:
  2433. pci_free_consistent(qdev->pdev,
  2434. PAGE_SIZE,
  2435. qdev->rx_ring_shadow_reg_area,
  2436. qdev->rx_ring_shadow_reg_dma);
  2437. return -ENOMEM;
  2438. }
  2439. static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
  2440. {
  2441. struct tx_ring_desc *tx_ring_desc;
  2442. int i;
  2443. struct ob_mac_iocb_req *mac_iocb_ptr;
  2444. mac_iocb_ptr = tx_ring->wq_base;
  2445. tx_ring_desc = tx_ring->q;
  2446. for (i = 0; i < tx_ring->wq_len; i++) {
  2447. tx_ring_desc->index = i;
  2448. tx_ring_desc->skb = NULL;
  2449. tx_ring_desc->queue_entry = mac_iocb_ptr;
  2450. mac_iocb_ptr++;
  2451. tx_ring_desc++;
  2452. }
  2453. atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
  2454. atomic_set(&tx_ring->queue_stopped, 0);
  2455. }
  2456. static void ql_free_tx_resources(struct ql_adapter *qdev,
  2457. struct tx_ring *tx_ring)
  2458. {
  2459. if (tx_ring->wq_base) {
  2460. pci_free_consistent(qdev->pdev, tx_ring->wq_size,
  2461. tx_ring->wq_base, tx_ring->wq_base_dma);
  2462. tx_ring->wq_base = NULL;
  2463. }
  2464. kfree(tx_ring->q);
  2465. tx_ring->q = NULL;
  2466. }
  2467. static int ql_alloc_tx_resources(struct ql_adapter *qdev,
  2468. struct tx_ring *tx_ring)
  2469. {
  2470. tx_ring->wq_base =
  2471. pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
  2472. &tx_ring->wq_base_dma);
  2473. if ((tx_ring->wq_base == NULL) ||
  2474. tx_ring->wq_base_dma & WQ_ADDR_ALIGN) {
  2475. netif_err(qdev, ifup, qdev->ndev, "tx_ring alloc failed.\n");
  2476. return -ENOMEM;
  2477. }
  2478. tx_ring->q =
  2479. kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
  2480. if (tx_ring->q == NULL)
  2481. goto err;
  2482. return 0;
  2483. err:
  2484. pci_free_consistent(qdev->pdev, tx_ring->wq_size,
  2485. tx_ring->wq_base, tx_ring->wq_base_dma);
  2486. return -ENOMEM;
  2487. }
  2488. static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  2489. {
  2490. struct bq_desc *lbq_desc;
  2491. uint32_t curr_idx, clean_idx;
  2492. curr_idx = rx_ring->lbq_curr_idx;
  2493. clean_idx = rx_ring->lbq_clean_idx;
  2494. while (curr_idx != clean_idx) {
  2495. lbq_desc = &rx_ring->lbq[curr_idx];
  2496. if (lbq_desc->p.pg_chunk.last_flag) {
  2497. pci_unmap_page(qdev->pdev,
  2498. lbq_desc->p.pg_chunk.map,
  2499. ql_lbq_block_size(qdev),
  2500. PCI_DMA_FROMDEVICE);
  2501. lbq_desc->p.pg_chunk.last_flag = 0;
  2502. }
  2503. put_page(lbq_desc->p.pg_chunk.page);
  2504. lbq_desc->p.pg_chunk.page = NULL;
  2505. if (++curr_idx == rx_ring->lbq_len)
  2506. curr_idx = 0;
  2507. }
  2508. }
  2509. static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  2510. {
  2511. int i;
  2512. struct bq_desc *sbq_desc;
  2513. for (i = 0; i < rx_ring->sbq_len; i++) {
  2514. sbq_desc = &rx_ring->sbq[i];
  2515. if (sbq_desc == NULL) {
  2516. netif_err(qdev, ifup, qdev->ndev,
  2517. "sbq_desc %d is NULL.\n", i);
  2518. return;
  2519. }
  2520. if (sbq_desc->p.skb) {
  2521. pci_unmap_single(qdev->pdev,
  2522. dma_unmap_addr(sbq_desc, mapaddr),
  2523. dma_unmap_len(sbq_desc, maplen),
  2524. PCI_DMA_FROMDEVICE);
  2525. dev_kfree_skb(sbq_desc->p.skb);
  2526. sbq_desc->p.skb = NULL;
  2527. }
  2528. }
  2529. }
  2530. /* Free all large and small rx buffers associated
  2531. * with the completion queues for this device.
  2532. */
  2533. static void ql_free_rx_buffers(struct ql_adapter *qdev)
  2534. {
  2535. int i;
  2536. struct rx_ring *rx_ring;
  2537. for (i = 0; i < qdev->rx_ring_count; i++) {
  2538. rx_ring = &qdev->rx_ring[i];
  2539. if (rx_ring->lbq)
  2540. ql_free_lbq_buffers(qdev, rx_ring);
  2541. if (rx_ring->sbq)
  2542. ql_free_sbq_buffers(qdev, rx_ring);
  2543. }
  2544. }
  2545. static void ql_alloc_rx_buffers(struct ql_adapter *qdev)
  2546. {
  2547. struct rx_ring *rx_ring;
  2548. int i;
  2549. for (i = 0; i < qdev->rx_ring_count; i++) {
  2550. rx_ring = &qdev->rx_ring[i];
  2551. if (rx_ring->type != TX_Q)
  2552. ql_update_buffer_queues(qdev, rx_ring);
  2553. }
  2554. }
  2555. static void ql_init_lbq_ring(struct ql_adapter *qdev,
  2556. struct rx_ring *rx_ring)
  2557. {
  2558. int i;
  2559. struct bq_desc *lbq_desc;
  2560. __le64 *bq = rx_ring->lbq_base;
  2561. memset(rx_ring->lbq, 0, rx_ring->lbq_len * sizeof(struct bq_desc));
  2562. for (i = 0; i < rx_ring->lbq_len; i++) {
  2563. lbq_desc = &rx_ring->lbq[i];
  2564. memset(lbq_desc, 0, sizeof(*lbq_desc));
  2565. lbq_desc->index = i;
  2566. lbq_desc->addr = bq;
  2567. bq++;
  2568. }
  2569. }
  2570. static void ql_init_sbq_ring(struct ql_adapter *qdev,
  2571. struct rx_ring *rx_ring)
  2572. {
  2573. int i;
  2574. struct bq_desc *sbq_desc;
  2575. __le64 *bq = rx_ring->sbq_base;
  2576. memset(rx_ring->sbq, 0, rx_ring->sbq_len * sizeof(struct bq_desc));
  2577. for (i = 0; i < rx_ring->sbq_len; i++) {
  2578. sbq_desc = &rx_ring->sbq[i];
  2579. memset(sbq_desc, 0, sizeof(*sbq_desc));
  2580. sbq_desc->index = i;
  2581. sbq_desc->addr = bq;
  2582. bq++;
  2583. }
  2584. }
  2585. static void ql_free_rx_resources(struct ql_adapter *qdev,
  2586. struct rx_ring *rx_ring)
  2587. {
  2588. /* Free the small buffer queue. */
  2589. if (rx_ring->sbq_base) {
  2590. pci_free_consistent(qdev->pdev,
  2591. rx_ring->sbq_size,
  2592. rx_ring->sbq_base, rx_ring->sbq_base_dma);
  2593. rx_ring->sbq_base = NULL;
  2594. }
  2595. /* Free the small buffer queue control blocks. */
  2596. kfree(rx_ring->sbq);
  2597. rx_ring->sbq = NULL;
  2598. /* Free the large buffer queue. */
  2599. if (rx_ring->lbq_base) {
  2600. pci_free_consistent(qdev->pdev,
  2601. rx_ring->lbq_size,
  2602. rx_ring->lbq_base, rx_ring->lbq_base_dma);
  2603. rx_ring->lbq_base = NULL;
  2604. }
  2605. /* Free the large buffer queue control blocks. */
  2606. kfree(rx_ring->lbq);
  2607. rx_ring->lbq = NULL;
  2608. /* Free the rx queue. */
  2609. if (rx_ring->cq_base) {
  2610. pci_free_consistent(qdev->pdev,
  2611. rx_ring->cq_size,
  2612. rx_ring->cq_base, rx_ring->cq_base_dma);
  2613. rx_ring->cq_base = NULL;
  2614. }
  2615. }
  2616. /* Allocate queues and buffers for this completions queue based
  2617. * on the values in the parameter structure. */
  2618. static int ql_alloc_rx_resources(struct ql_adapter *qdev,
  2619. struct rx_ring *rx_ring)
  2620. {
  2621. /*
  2622. * Allocate the completion queue for this rx_ring.
  2623. */
  2624. rx_ring->cq_base =
  2625. pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
  2626. &rx_ring->cq_base_dma);
  2627. if (rx_ring->cq_base == NULL) {
  2628. netif_err(qdev, ifup, qdev->ndev, "rx_ring alloc failed.\n");
  2629. return -ENOMEM;
  2630. }
  2631. if (rx_ring->sbq_len) {
  2632. /*
  2633. * Allocate small buffer queue.
  2634. */
  2635. rx_ring->sbq_base =
  2636. pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
  2637. &rx_ring->sbq_base_dma);
  2638. if (rx_ring->sbq_base == NULL) {
  2639. netif_err(qdev, ifup, qdev->ndev,
  2640. "Small buffer queue allocation failed.\n");
  2641. goto err_mem;
  2642. }
  2643. /*
  2644. * Allocate small buffer queue control blocks.
  2645. */
  2646. rx_ring->sbq =
  2647. kmalloc(rx_ring->sbq_len * sizeof(struct bq_desc),
  2648. GFP_KERNEL);
  2649. if (rx_ring->sbq == NULL) {
  2650. netif_err(qdev, ifup, qdev->ndev,
  2651. "Small buffer queue control block allocation failed.\n");
  2652. goto err_mem;
  2653. }
  2654. ql_init_sbq_ring(qdev, rx_ring);
  2655. }
  2656. if (rx_ring->lbq_len) {
  2657. /*
  2658. * Allocate large buffer queue.
  2659. */
  2660. rx_ring->lbq_base =
  2661. pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
  2662. &rx_ring->lbq_base_dma);
  2663. if (rx_ring->lbq_base == NULL) {
  2664. netif_err(qdev, ifup, qdev->ndev,
  2665. "Large buffer queue allocation failed.\n");
  2666. goto err_mem;
  2667. }
  2668. /*
  2669. * Allocate large buffer queue control blocks.
  2670. */
  2671. rx_ring->lbq =
  2672. kmalloc(rx_ring->lbq_len * sizeof(struct bq_desc),
  2673. GFP_KERNEL);
  2674. if (rx_ring->lbq == NULL) {
  2675. netif_err(qdev, ifup, qdev->ndev,
  2676. "Large buffer queue control block allocation failed.\n");
  2677. goto err_mem;
  2678. }
  2679. ql_init_lbq_ring(qdev, rx_ring);
  2680. }
  2681. return 0;
  2682. err_mem:
  2683. ql_free_rx_resources(qdev, rx_ring);
  2684. return -ENOMEM;
  2685. }
  2686. static void ql_tx_ring_clean(struct ql_adapter *qdev)
  2687. {
  2688. struct tx_ring *tx_ring;
  2689. struct tx_ring_desc *tx_ring_desc;
  2690. int i, j;
  2691. /*
  2692. * Loop through all queues and free
  2693. * any resources.
  2694. */
  2695. for (j = 0; j < qdev->tx_ring_count; j++) {
  2696. tx_ring = &qdev->tx_ring[j];
  2697. for (i = 0; i < tx_ring->wq_len; i++) {
  2698. tx_ring_desc = &tx_ring->q[i];
  2699. if (tx_ring_desc && tx_ring_desc->skb) {
  2700. netif_err(qdev, ifdown, qdev->ndev,
  2701. "Freeing lost SKB %p, from queue %d, index %d.\n",
  2702. tx_ring_desc->skb, j,
  2703. tx_ring_desc->index);
  2704. ql_unmap_send(qdev, tx_ring_desc,
  2705. tx_ring_desc->map_cnt);
  2706. dev_kfree_skb(tx_ring_desc->skb);
  2707. tx_ring_desc->skb = NULL;
  2708. }
  2709. }
  2710. }
  2711. }
  2712. static void ql_free_mem_resources(struct ql_adapter *qdev)
  2713. {
  2714. int i;
  2715. for (i = 0; i < qdev->tx_ring_count; i++)
  2716. ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
  2717. for (i = 0; i < qdev->rx_ring_count; i++)
  2718. ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
  2719. ql_free_shadow_space(qdev);
  2720. }
  2721. static int ql_alloc_mem_resources(struct ql_adapter *qdev)
  2722. {
  2723. int i;
  2724. /* Allocate space for our shadow registers and such. */
  2725. if (ql_alloc_shadow_space(qdev))
  2726. return -ENOMEM;
  2727. for (i = 0; i < qdev->rx_ring_count; i++) {
  2728. if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
  2729. netif_err(qdev, ifup, qdev->ndev,
  2730. "RX resource allocation failed.\n");
  2731. goto err_mem;
  2732. }
  2733. }
  2734. /* Allocate tx queue resources */
  2735. for (i = 0; i < qdev->tx_ring_count; i++) {
  2736. if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
  2737. netif_err(qdev, ifup, qdev->ndev,
  2738. "TX resource allocation failed.\n");
  2739. goto err_mem;
  2740. }
  2741. }
  2742. return 0;
  2743. err_mem:
  2744. ql_free_mem_resources(qdev);
  2745. return -ENOMEM;
  2746. }
  2747. /* Set up the rx ring control block and pass it to the chip.
  2748. * The control block is defined as
  2749. * "Completion Queue Initialization Control Block", or cqicb.
  2750. */
  2751. static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  2752. {
  2753. struct cqicb *cqicb = &rx_ring->cqicb;
  2754. void *shadow_reg = qdev->rx_ring_shadow_reg_area +
  2755. (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
  2756. u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
  2757. (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
  2758. void __iomem *doorbell_area =
  2759. qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
  2760. int err = 0;
  2761. u16 bq_len;
  2762. u64 tmp;
  2763. __le64 *base_indirect_ptr;
  2764. int page_entries;
  2765. /* Set up the shadow registers for this ring. */
  2766. rx_ring->prod_idx_sh_reg = shadow_reg;
  2767. rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
  2768. *rx_ring->prod_idx_sh_reg = 0;
  2769. shadow_reg += sizeof(u64);
  2770. shadow_reg_dma += sizeof(u64);
  2771. rx_ring->lbq_base_indirect = shadow_reg;
  2772. rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
  2773. shadow_reg += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
  2774. shadow_reg_dma += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
  2775. rx_ring->sbq_base_indirect = shadow_reg;
  2776. rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
  2777. /* PCI doorbell mem area + 0x00 for consumer index register */
  2778. rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
  2779. rx_ring->cnsmr_idx = 0;
  2780. rx_ring->curr_entry = rx_ring->cq_base;
  2781. /* PCI doorbell mem area + 0x04 for valid register */
  2782. rx_ring->valid_db_reg = doorbell_area + 0x04;
  2783. /* PCI doorbell mem area + 0x18 for large buffer consumer */
  2784. rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
  2785. /* PCI doorbell mem area + 0x1c */
  2786. rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
  2787. memset((void *)cqicb, 0, sizeof(struct cqicb));
  2788. cqicb->msix_vect = rx_ring->irq;
  2789. bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
  2790. cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
  2791. cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
  2792. cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
  2793. /*
  2794. * Set up the control block load flags.
  2795. */
  2796. cqicb->flags = FLAGS_LC | /* Load queue base address */
  2797. FLAGS_LV | /* Load MSI-X vector */
  2798. FLAGS_LI; /* Load irq delay values */
  2799. if (rx_ring->lbq_len) {
  2800. cqicb->flags |= FLAGS_LL; /* Load lbq values */
  2801. tmp = (u64)rx_ring->lbq_base_dma;
  2802. base_indirect_ptr = rx_ring->lbq_base_indirect;
  2803. page_entries = 0;
  2804. do {
  2805. *base_indirect_ptr = cpu_to_le64(tmp);
  2806. tmp += DB_PAGE_SIZE;
  2807. base_indirect_ptr++;
  2808. page_entries++;
  2809. } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
  2810. cqicb->lbq_addr =
  2811. cpu_to_le64(rx_ring->lbq_base_indirect_dma);
  2812. bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
  2813. (u16) rx_ring->lbq_buf_size;
  2814. cqicb->lbq_buf_size = cpu_to_le16(bq_len);
  2815. bq_len = (rx_ring->lbq_len == 65536) ? 0 :
  2816. (u16) rx_ring->lbq_len;
  2817. cqicb->lbq_len = cpu_to_le16(bq_len);
  2818. rx_ring->lbq_prod_idx = 0;
  2819. rx_ring->lbq_curr_idx = 0;
  2820. rx_ring->lbq_clean_idx = 0;
  2821. rx_ring->lbq_free_cnt = rx_ring->lbq_len;
  2822. }
  2823. if (rx_ring->sbq_len) {
  2824. cqicb->flags |= FLAGS_LS; /* Load sbq values */
  2825. tmp = (u64)rx_ring->sbq_base_dma;
  2826. base_indirect_ptr = rx_ring->sbq_base_indirect;
  2827. page_entries = 0;
  2828. do {
  2829. *base_indirect_ptr = cpu_to_le64(tmp);
  2830. tmp += DB_PAGE_SIZE;
  2831. base_indirect_ptr++;
  2832. page_entries++;
  2833. } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->sbq_len));
  2834. cqicb->sbq_addr =
  2835. cpu_to_le64(rx_ring->sbq_base_indirect_dma);
  2836. cqicb->sbq_buf_size =
  2837. cpu_to_le16((u16)(rx_ring->sbq_buf_size));
  2838. bq_len = (rx_ring->sbq_len == 65536) ? 0 :
  2839. (u16) rx_ring->sbq_len;
  2840. cqicb->sbq_len = cpu_to_le16(bq_len);
  2841. rx_ring->sbq_prod_idx = 0;
  2842. rx_ring->sbq_curr_idx = 0;
  2843. rx_ring->sbq_clean_idx = 0;
  2844. rx_ring->sbq_free_cnt = rx_ring->sbq_len;
  2845. }
  2846. switch (rx_ring->type) {
  2847. case TX_Q:
  2848. cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
  2849. cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
  2850. break;
  2851. case RX_Q:
  2852. /* Inbound completion handling rx_rings run in
  2853. * separate NAPI contexts.
  2854. */
  2855. netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
  2856. 64);
  2857. cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
  2858. cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
  2859. break;
  2860. default:
  2861. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  2862. "Invalid rx_ring->type = %d.\n", rx_ring->type);
  2863. }
  2864. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  2865. "Initializing rx work queue.\n");
  2866. err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
  2867. CFG_LCQ, rx_ring->cq_id);
  2868. if (err) {
  2869. netif_err(qdev, ifup, qdev->ndev, "Failed to load CQICB.\n");
  2870. return err;
  2871. }
  2872. return err;
  2873. }
  2874. static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
  2875. {
  2876. struct wqicb *wqicb = (struct wqicb *)tx_ring;
  2877. void __iomem *doorbell_area =
  2878. qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
  2879. void *shadow_reg = qdev->tx_ring_shadow_reg_area +
  2880. (tx_ring->wq_id * sizeof(u64));
  2881. u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
  2882. (tx_ring->wq_id * sizeof(u64));
  2883. int err = 0;
  2884. /*
  2885. * Assign doorbell registers for this tx_ring.
  2886. */
  2887. /* TX PCI doorbell mem area for tx producer index */
  2888. tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
  2889. tx_ring->prod_idx = 0;
  2890. /* TX PCI doorbell mem area + 0x04 */
  2891. tx_ring->valid_db_reg = doorbell_area + 0x04;
  2892. /*
  2893. * Assign shadow registers for this tx_ring.
  2894. */
  2895. tx_ring->cnsmr_idx_sh_reg = shadow_reg;
  2896. tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
  2897. wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
  2898. wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
  2899. Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
  2900. wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
  2901. wqicb->rid = 0;
  2902. wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
  2903. wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
  2904. ql_init_tx_ring(qdev, tx_ring);
  2905. err = ql_write_cfg(qdev, wqicb, sizeof(*wqicb), CFG_LRQ,
  2906. (u16) tx_ring->wq_id);
  2907. if (err) {
  2908. netif_err(qdev, ifup, qdev->ndev, "Failed to load tx_ring.\n");
  2909. return err;
  2910. }
  2911. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  2912. "Successfully loaded WQICB.\n");
  2913. return err;
  2914. }
  2915. static void ql_disable_msix(struct ql_adapter *qdev)
  2916. {
  2917. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  2918. pci_disable_msix(qdev->pdev);
  2919. clear_bit(QL_MSIX_ENABLED, &qdev->flags);
  2920. kfree(qdev->msi_x_entry);
  2921. qdev->msi_x_entry = NULL;
  2922. } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
  2923. pci_disable_msi(qdev->pdev);
  2924. clear_bit(QL_MSI_ENABLED, &qdev->flags);
  2925. }
  2926. }
  2927. /* We start by trying to get the number of vectors
  2928. * stored in qdev->intr_count. If we don't get that
  2929. * many then we reduce the count and try again.
  2930. */
  2931. static void ql_enable_msix(struct ql_adapter *qdev)
  2932. {
  2933. int i, err;
  2934. /* Get the MSIX vectors. */
  2935. if (qlge_irq_type == MSIX_IRQ) {
  2936. /* Try to alloc space for the msix struct,
  2937. * if it fails then go to MSI/legacy.
  2938. */
  2939. qdev->msi_x_entry = kcalloc(qdev->intr_count,
  2940. sizeof(struct msix_entry),
  2941. GFP_KERNEL);
  2942. if (!qdev->msi_x_entry) {
  2943. qlge_irq_type = MSI_IRQ;
  2944. goto msi;
  2945. }
  2946. for (i = 0; i < qdev->intr_count; i++)
  2947. qdev->msi_x_entry[i].entry = i;
  2948. /* Loop to get our vectors. We start with
  2949. * what we want and settle for what we get.
  2950. */
  2951. do {
  2952. err = pci_enable_msix(qdev->pdev,
  2953. qdev->msi_x_entry, qdev->intr_count);
  2954. if (err > 0)
  2955. qdev->intr_count = err;
  2956. } while (err > 0);
  2957. if (err < 0) {
  2958. kfree(qdev->msi_x_entry);
  2959. qdev->msi_x_entry = NULL;
  2960. netif_warn(qdev, ifup, qdev->ndev,
  2961. "MSI-X Enable failed, trying MSI.\n");
  2962. qdev->intr_count = 1;
  2963. qlge_irq_type = MSI_IRQ;
  2964. } else if (err == 0) {
  2965. set_bit(QL_MSIX_ENABLED, &qdev->flags);
  2966. netif_info(qdev, ifup, qdev->ndev,
  2967. "MSI-X Enabled, got %d vectors.\n",
  2968. qdev->intr_count);
  2969. return;
  2970. }
  2971. }
  2972. msi:
  2973. qdev->intr_count = 1;
  2974. if (qlge_irq_type == MSI_IRQ) {
  2975. if (!pci_enable_msi(qdev->pdev)) {
  2976. set_bit(QL_MSI_ENABLED, &qdev->flags);
  2977. netif_info(qdev, ifup, qdev->ndev,
  2978. "Running with MSI interrupts.\n");
  2979. return;
  2980. }
  2981. }
  2982. qlge_irq_type = LEG_IRQ;
  2983. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  2984. "Running with legacy interrupts.\n");
  2985. }
  2986. /* Each vector services 1 RSS ring and and 1 or more
  2987. * TX completion rings. This function loops through
  2988. * the TX completion rings and assigns the vector that
  2989. * will service it. An example would be if there are
  2990. * 2 vectors (so 2 RSS rings) and 8 TX completion rings.
  2991. * This would mean that vector 0 would service RSS ring 0
  2992. * and TX completion rings 0,1,2 and 3. Vector 1 would
  2993. * service RSS ring 1 and TX completion rings 4,5,6 and 7.
  2994. */
  2995. static void ql_set_tx_vect(struct ql_adapter *qdev)
  2996. {
  2997. int i, j, vect;
  2998. u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
  2999. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
  3000. /* Assign irq vectors to TX rx_rings.*/
  3001. for (vect = 0, j = 0, i = qdev->rss_ring_count;
  3002. i < qdev->rx_ring_count; i++) {
  3003. if (j == tx_rings_per_vector) {
  3004. vect++;
  3005. j = 0;
  3006. }
  3007. qdev->rx_ring[i].irq = vect;
  3008. j++;
  3009. }
  3010. } else {
  3011. /* For single vector all rings have an irq
  3012. * of zero.
  3013. */
  3014. for (i = 0; i < qdev->rx_ring_count; i++)
  3015. qdev->rx_ring[i].irq = 0;
  3016. }
  3017. }
  3018. /* Set the interrupt mask for this vector. Each vector
  3019. * will service 1 RSS ring and 1 or more TX completion
  3020. * rings. This function sets up a bit mask per vector
  3021. * that indicates which rings it services.
  3022. */
  3023. static void ql_set_irq_mask(struct ql_adapter *qdev, struct intr_context *ctx)
  3024. {
  3025. int j, vect = ctx->intr;
  3026. u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
  3027. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
  3028. /* Add the RSS ring serviced by this vector
  3029. * to the mask.
  3030. */
  3031. ctx->irq_mask = (1 << qdev->rx_ring[vect].cq_id);
  3032. /* Add the TX ring(s) serviced by this vector
  3033. * to the mask. */
  3034. for (j = 0; j < tx_rings_per_vector; j++) {
  3035. ctx->irq_mask |=
  3036. (1 << qdev->rx_ring[qdev->rss_ring_count +
  3037. (vect * tx_rings_per_vector) + j].cq_id);
  3038. }
  3039. } else {
  3040. /* For single vector we just shift each queue's
  3041. * ID into the mask.
  3042. */
  3043. for (j = 0; j < qdev->rx_ring_count; j++)
  3044. ctx->irq_mask |= (1 << qdev->rx_ring[j].cq_id);
  3045. }
  3046. }
  3047. /*
  3048. * Here we build the intr_context structures based on
  3049. * our rx_ring count and intr vector count.
  3050. * The intr_context structure is used to hook each vector
  3051. * to possibly different handlers.
  3052. */
  3053. static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
  3054. {
  3055. int i = 0;
  3056. struct intr_context *intr_context = &qdev->intr_context[0];
  3057. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
  3058. /* Each rx_ring has it's
  3059. * own intr_context since we have separate
  3060. * vectors for each queue.
  3061. */
  3062. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  3063. qdev->rx_ring[i].irq = i;
  3064. intr_context->intr = i;
  3065. intr_context->qdev = qdev;
  3066. /* Set up this vector's bit-mask that indicates
  3067. * which queues it services.
  3068. */
  3069. ql_set_irq_mask(qdev, intr_context);
  3070. /*
  3071. * We set up each vectors enable/disable/read bits so
  3072. * there's no bit/mask calculations in the critical path.
  3073. */
  3074. intr_context->intr_en_mask =
  3075. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  3076. INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
  3077. | i;
  3078. intr_context->intr_dis_mask =
  3079. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  3080. INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
  3081. INTR_EN_IHD | i;
  3082. intr_context->intr_read_mask =
  3083. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  3084. INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
  3085. i;
  3086. if (i == 0) {
  3087. /* The first vector/queue handles
  3088. * broadcast/multicast, fatal errors,
  3089. * and firmware events. This in addition
  3090. * to normal inbound NAPI processing.
  3091. */
  3092. intr_context->handler = qlge_isr;
  3093. sprintf(intr_context->name, "%s-rx-%d",
  3094. qdev->ndev->name, i);
  3095. } else {
  3096. /*
  3097. * Inbound queues handle unicast frames only.
  3098. */
  3099. intr_context->handler = qlge_msix_rx_isr;
  3100. sprintf(intr_context->name, "%s-rx-%d",
  3101. qdev->ndev->name, i);
  3102. }
  3103. }
  3104. } else {
  3105. /*
  3106. * All rx_rings use the same intr_context since
  3107. * there is only one vector.
  3108. */
  3109. intr_context->intr = 0;
  3110. intr_context->qdev = qdev;
  3111. /*
  3112. * We set up each vectors enable/disable/read bits so
  3113. * there's no bit/mask calculations in the critical path.
  3114. */
  3115. intr_context->intr_en_mask =
  3116. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
  3117. intr_context->intr_dis_mask =
  3118. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  3119. INTR_EN_TYPE_DISABLE;
  3120. intr_context->intr_read_mask =
  3121. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
  3122. /*
  3123. * Single interrupt means one handler for all rings.
  3124. */
  3125. intr_context->handler = qlge_isr;
  3126. sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
  3127. /* Set up this vector's bit-mask that indicates
  3128. * which queues it services. In this case there is
  3129. * a single vector so it will service all RSS and
  3130. * TX completion rings.
  3131. */
  3132. ql_set_irq_mask(qdev, intr_context);
  3133. }
  3134. /* Tell the TX completion rings which MSIx vector
  3135. * they will be using.
  3136. */
  3137. ql_set_tx_vect(qdev);
  3138. }
  3139. static void ql_free_irq(struct ql_adapter *qdev)
  3140. {
  3141. int i;
  3142. struct intr_context *intr_context = &qdev->intr_context[0];
  3143. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  3144. if (intr_context->hooked) {
  3145. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  3146. free_irq(qdev->msi_x_entry[i].vector,
  3147. &qdev->rx_ring[i]);
  3148. netif_printk(qdev, ifdown, KERN_DEBUG, qdev->ndev,
  3149. "freeing msix interrupt %d.\n", i);
  3150. } else {
  3151. free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
  3152. netif_printk(qdev, ifdown, KERN_DEBUG, qdev->ndev,
  3153. "freeing msi interrupt %d.\n", i);
  3154. }
  3155. }
  3156. }
  3157. ql_disable_msix(qdev);
  3158. }
  3159. static int ql_request_irq(struct ql_adapter *qdev)
  3160. {
  3161. int i;
  3162. int status = 0;
  3163. struct pci_dev *pdev = qdev->pdev;
  3164. struct intr_context *intr_context = &qdev->intr_context[0];
  3165. ql_resolve_queues_to_irqs(qdev);
  3166. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  3167. atomic_set(&intr_context->irq_cnt, 0);
  3168. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  3169. status = request_irq(qdev->msi_x_entry[i].vector,
  3170. intr_context->handler,
  3171. 0,
  3172. intr_context->name,
  3173. &qdev->rx_ring[i]);
  3174. if (status) {
  3175. netif_err(qdev, ifup, qdev->ndev,
  3176. "Failed request for MSIX interrupt %d.\n",
  3177. i);
  3178. goto err_irq;
  3179. } else {
  3180. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  3181. "Hooked intr %d, queue type %s, with name %s.\n",
  3182. i,
  3183. qdev->rx_ring[i].type == DEFAULT_Q ?
  3184. "DEFAULT_Q" :
  3185. qdev->rx_ring[i].type == TX_Q ?
  3186. "TX_Q" :
  3187. qdev->rx_ring[i].type == RX_Q ?
  3188. "RX_Q" : "",
  3189. intr_context->name);
  3190. }
  3191. } else {
  3192. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  3193. "trying msi or legacy interrupts.\n");
  3194. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  3195. "%s: irq = %d.\n", __func__, pdev->irq);
  3196. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  3197. "%s: context->name = %s.\n", __func__,
  3198. intr_context->name);
  3199. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  3200. "%s: dev_id = 0x%p.\n", __func__,
  3201. &qdev->rx_ring[0]);
  3202. status =
  3203. request_irq(pdev->irq, qlge_isr,
  3204. test_bit(QL_MSI_ENABLED,
  3205. &qdev->
  3206. flags) ? 0 : IRQF_SHARED,
  3207. intr_context->name, &qdev->rx_ring[0]);
  3208. if (status)
  3209. goto err_irq;
  3210. netif_err(qdev, ifup, qdev->ndev,
  3211. "Hooked intr %d, queue type %s, with name %s.\n",
  3212. i,
  3213. qdev->rx_ring[0].type == DEFAULT_Q ?
  3214. "DEFAULT_Q" :
  3215. qdev->rx_ring[0].type == TX_Q ? "TX_Q" :
  3216. qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
  3217. intr_context->name);
  3218. }
  3219. intr_context->hooked = 1;
  3220. }
  3221. return status;
  3222. err_irq:
  3223. netif_err(qdev, ifup, qdev->ndev, "Failed to get the interrupts!!!/n");
  3224. ql_free_irq(qdev);
  3225. return status;
  3226. }
  3227. static int ql_start_rss(struct ql_adapter *qdev)
  3228. {
  3229. static const u8 init_hash_seed[] = {
  3230. 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2,
  3231. 0x41, 0x67, 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0,
  3232. 0xd0, 0xca, 0x2b, 0xcb, 0xae, 0x7b, 0x30, 0xb4,
  3233. 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30, 0xf2, 0x0c,
  3234. 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa
  3235. };
  3236. struct ricb *ricb = &qdev->ricb;
  3237. int status = 0;
  3238. int i;
  3239. u8 *hash_id = (u8 *) ricb->hash_cq_id;
  3240. memset((void *)ricb, 0, sizeof(*ricb));
  3241. ricb->base_cq = RSS_L4K;
  3242. ricb->flags =
  3243. (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RT4 | RSS_RT6);
  3244. ricb->mask = cpu_to_le16((u16)(0x3ff));
  3245. /*
  3246. * Fill out the Indirection Table.
  3247. */
  3248. for (i = 0; i < 1024; i++)
  3249. hash_id[i] = (i & (qdev->rss_ring_count - 1));
  3250. memcpy((void *)&ricb->ipv6_hash_key[0], init_hash_seed, 40);
  3251. memcpy((void *)&ricb->ipv4_hash_key[0], init_hash_seed, 16);
  3252. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev, "Initializing RSS.\n");
  3253. status = ql_write_cfg(qdev, ricb, sizeof(*ricb), CFG_LR, 0);
  3254. if (status) {
  3255. netif_err(qdev, ifup, qdev->ndev, "Failed to load RICB.\n");
  3256. return status;
  3257. }
  3258. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  3259. "Successfully loaded RICB.\n");
  3260. return status;
  3261. }
  3262. static int ql_clear_routing_entries(struct ql_adapter *qdev)
  3263. {
  3264. int i, status = 0;
  3265. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  3266. if (status)
  3267. return status;
  3268. /* Clear all the entries in the routing table. */
  3269. for (i = 0; i < 16; i++) {
  3270. status = ql_set_routing_reg(qdev, i, 0, 0);
  3271. if (status) {
  3272. netif_err(qdev, ifup, qdev->ndev,
  3273. "Failed to init routing register for CAM packets.\n");
  3274. break;
  3275. }
  3276. }
  3277. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  3278. return status;
  3279. }
  3280. /* Initialize the frame-to-queue routing. */
  3281. static int ql_route_initialize(struct ql_adapter *qdev)
  3282. {
  3283. int status = 0;
  3284. /* Clear all the entries in the routing table. */
  3285. status = ql_clear_routing_entries(qdev);
  3286. if (status)
  3287. return status;
  3288. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  3289. if (status)
  3290. return status;
  3291. status = ql_set_routing_reg(qdev, RT_IDX_IP_CSUM_ERR_SLOT,
  3292. RT_IDX_IP_CSUM_ERR, 1);
  3293. if (status) {
  3294. netif_err(qdev, ifup, qdev->ndev,
  3295. "Failed to init routing register "
  3296. "for IP CSUM error packets.\n");
  3297. goto exit;
  3298. }
  3299. status = ql_set_routing_reg(qdev, RT_IDX_TCP_UDP_CSUM_ERR_SLOT,
  3300. RT_IDX_TU_CSUM_ERR, 1);
  3301. if (status) {
  3302. netif_err(qdev, ifup, qdev->ndev,
  3303. "Failed to init routing register "
  3304. "for TCP/UDP CSUM error packets.\n");
  3305. goto exit;
  3306. }
  3307. status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
  3308. if (status) {
  3309. netif_err(qdev, ifup, qdev->ndev,
  3310. "Failed to init routing register for broadcast packets.\n");
  3311. goto exit;
  3312. }
  3313. /* If we have more than one inbound queue, then turn on RSS in the
  3314. * routing block.
  3315. */
  3316. if (qdev->rss_ring_count > 1) {
  3317. status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
  3318. RT_IDX_RSS_MATCH, 1);
  3319. if (status) {
  3320. netif_err(qdev, ifup, qdev->ndev,
  3321. "Failed to init routing register for MATCH RSS packets.\n");
  3322. goto exit;
  3323. }
  3324. }
  3325. status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
  3326. RT_IDX_CAM_HIT, 1);
  3327. if (status)
  3328. netif_err(qdev, ifup, qdev->ndev,
  3329. "Failed to init routing register for CAM packets.\n");
  3330. exit:
  3331. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  3332. return status;
  3333. }
  3334. int ql_cam_route_initialize(struct ql_adapter *qdev)
  3335. {
  3336. int status, set;
  3337. /* If check if the link is up and use to
  3338. * determine if we are setting or clearing
  3339. * the MAC address in the CAM.
  3340. */
  3341. set = ql_read32(qdev, STS);
  3342. set &= qdev->port_link_up;
  3343. status = ql_set_mac_addr(qdev, set);
  3344. if (status) {
  3345. netif_err(qdev, ifup, qdev->ndev, "Failed to init mac address.\n");
  3346. return status;
  3347. }
  3348. status = ql_route_initialize(qdev);
  3349. if (status)
  3350. netif_err(qdev, ifup, qdev->ndev, "Failed to init routing table.\n");
  3351. return status;
  3352. }
  3353. static int ql_adapter_initialize(struct ql_adapter *qdev)
  3354. {
  3355. u32 value, mask;
  3356. int i;
  3357. int status = 0;
  3358. /*
  3359. * Set up the System register to halt on errors.
  3360. */
  3361. value = SYS_EFE | SYS_FAE;
  3362. mask = value << 16;
  3363. ql_write32(qdev, SYS, mask | value);
  3364. /* Set the default queue, and VLAN behavior. */
  3365. value = NIC_RCV_CFG_DFQ | NIC_RCV_CFG_RV;
  3366. mask = NIC_RCV_CFG_DFQ_MASK | (NIC_RCV_CFG_RV << 16);
  3367. ql_write32(qdev, NIC_RCV_CFG, (mask | value));
  3368. /* Set the MPI interrupt to enabled. */
  3369. ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
  3370. /* Enable the function, set pagesize, enable error checking. */
  3371. value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
  3372. FSC_EC | FSC_VM_PAGE_4K;
  3373. value |= SPLT_SETTING;
  3374. /* Set/clear header splitting. */
  3375. mask = FSC_VM_PAGESIZE_MASK |
  3376. FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
  3377. ql_write32(qdev, FSC, mask | value);
  3378. ql_write32(qdev, SPLT_HDR, SPLT_LEN);
  3379. /* Set RX packet routing to use port/pci function on which the
  3380. * packet arrived on in addition to usual frame routing.
  3381. * This is helpful on bonding where both interfaces can have
  3382. * the same MAC address.
  3383. */
  3384. ql_write32(qdev, RST_FO, RST_FO_RR_MASK | RST_FO_RR_RCV_FUNC_CQ);
  3385. /* Reroute all packets to our Interface.
  3386. * They may have been routed to MPI firmware
  3387. * due to WOL.
  3388. */
  3389. value = ql_read32(qdev, MGMT_RCV_CFG);
  3390. value &= ~MGMT_RCV_CFG_RM;
  3391. mask = 0xffff0000;
  3392. /* Sticky reg needs clearing due to WOL. */
  3393. ql_write32(qdev, MGMT_RCV_CFG, mask);
  3394. ql_write32(qdev, MGMT_RCV_CFG, mask | value);
  3395. /* Default WOL is enable on Mezz cards */
  3396. if (qdev->pdev->subsystem_device == 0x0068 ||
  3397. qdev->pdev->subsystem_device == 0x0180)
  3398. qdev->wol = WAKE_MAGIC;
  3399. /* Start up the rx queues. */
  3400. for (i = 0; i < qdev->rx_ring_count; i++) {
  3401. status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
  3402. if (status) {
  3403. netif_err(qdev, ifup, qdev->ndev,
  3404. "Failed to start rx ring[%d].\n", i);
  3405. return status;
  3406. }
  3407. }
  3408. /* If there is more than one inbound completion queue
  3409. * then download a RICB to configure RSS.
  3410. */
  3411. if (qdev->rss_ring_count > 1) {
  3412. status = ql_start_rss(qdev);
  3413. if (status) {
  3414. netif_err(qdev, ifup, qdev->ndev, "Failed to start RSS.\n");
  3415. return status;
  3416. }
  3417. }
  3418. /* Start up the tx queues. */
  3419. for (i = 0; i < qdev->tx_ring_count; i++) {
  3420. status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
  3421. if (status) {
  3422. netif_err(qdev, ifup, qdev->ndev,
  3423. "Failed to start tx ring[%d].\n", i);
  3424. return status;
  3425. }
  3426. }
  3427. /* Initialize the port and set the max framesize. */
  3428. status = qdev->nic_ops->port_initialize(qdev);
  3429. if (status)
  3430. netif_err(qdev, ifup, qdev->ndev, "Failed to start port.\n");
  3431. /* Set up the MAC address and frame routing filter. */
  3432. status = ql_cam_route_initialize(qdev);
  3433. if (status) {
  3434. netif_err(qdev, ifup, qdev->ndev,
  3435. "Failed to init CAM/Routing tables.\n");
  3436. return status;
  3437. }
  3438. /* Start NAPI for the RSS queues. */
  3439. for (i = 0; i < qdev->rss_ring_count; i++) {
  3440. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  3441. "Enabling NAPI for rx_ring[%d].\n", i);
  3442. napi_enable(&qdev->rx_ring[i].napi);
  3443. }
  3444. return status;
  3445. }
  3446. /* Issue soft reset to chip. */
  3447. static int ql_adapter_reset(struct ql_adapter *qdev)
  3448. {
  3449. u32 value;
  3450. int status = 0;
  3451. unsigned long end_jiffies;
  3452. /* Clear all the entries in the routing table. */
  3453. status = ql_clear_routing_entries(qdev);
  3454. if (status) {
  3455. netif_err(qdev, ifup, qdev->ndev, "Failed to clear routing bits.\n");
  3456. return status;
  3457. }
  3458. end_jiffies = jiffies +
  3459. max((unsigned long)1, usecs_to_jiffies(30));
  3460. /* Check if bit is set then skip the mailbox command and
  3461. * clear the bit, else we are in normal reset process.
  3462. */
  3463. if (!test_bit(QL_ASIC_RECOVERY, &qdev->flags)) {
  3464. /* Stop management traffic. */
  3465. ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_STOP);
  3466. /* Wait for the NIC and MGMNT FIFOs to empty. */
  3467. ql_wait_fifo_empty(qdev);
  3468. } else
  3469. clear_bit(QL_ASIC_RECOVERY, &qdev->flags);
  3470. ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
  3471. do {
  3472. value = ql_read32(qdev, RST_FO);
  3473. if ((value & RST_FO_FR) == 0)
  3474. break;
  3475. cpu_relax();
  3476. } while (time_before(jiffies, end_jiffies));
  3477. if (value & RST_FO_FR) {
  3478. netif_err(qdev, ifdown, qdev->ndev,
  3479. "ETIMEDOUT!!! errored out of resetting the chip!\n");
  3480. status = -ETIMEDOUT;
  3481. }
  3482. /* Resume management traffic. */
  3483. ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_RESUME);
  3484. return status;
  3485. }
  3486. static void ql_display_dev_info(struct net_device *ndev)
  3487. {
  3488. struct ql_adapter *qdev = netdev_priv(ndev);
  3489. netif_info(qdev, probe, qdev->ndev,
  3490. "Function #%d, Port %d, NIC Roll %d, NIC Rev = %d, "
  3491. "XG Roll = %d, XG Rev = %d.\n",
  3492. qdev->func,
  3493. qdev->port,
  3494. qdev->chip_rev_id & 0x0000000f,
  3495. qdev->chip_rev_id >> 4 & 0x0000000f,
  3496. qdev->chip_rev_id >> 8 & 0x0000000f,
  3497. qdev->chip_rev_id >> 12 & 0x0000000f);
  3498. netif_info(qdev, probe, qdev->ndev,
  3499. "MAC address %pM\n", ndev->dev_addr);
  3500. }
  3501. static int ql_wol(struct ql_adapter *qdev)
  3502. {
  3503. int status = 0;
  3504. u32 wol = MB_WOL_DISABLE;
  3505. /* The CAM is still intact after a reset, but if we
  3506. * are doing WOL, then we may need to program the
  3507. * routing regs. We would also need to issue the mailbox
  3508. * commands to instruct the MPI what to do per the ethtool
  3509. * settings.
  3510. */
  3511. if (qdev->wol & (WAKE_ARP | WAKE_MAGICSECURE | WAKE_PHY | WAKE_UCAST |
  3512. WAKE_MCAST | WAKE_BCAST)) {
  3513. netif_err(qdev, ifdown, qdev->ndev,
  3514. "Unsupported WOL paramter. qdev->wol = 0x%x.\n",
  3515. qdev->wol);
  3516. return -EINVAL;
  3517. }
  3518. if (qdev->wol & WAKE_MAGIC) {
  3519. status = ql_mb_wol_set_magic(qdev, 1);
  3520. if (status) {
  3521. netif_err(qdev, ifdown, qdev->ndev,
  3522. "Failed to set magic packet on %s.\n",
  3523. qdev->ndev->name);
  3524. return status;
  3525. } else
  3526. netif_info(qdev, drv, qdev->ndev,
  3527. "Enabled magic packet successfully on %s.\n",
  3528. qdev->ndev->name);
  3529. wol |= MB_WOL_MAGIC_PKT;
  3530. }
  3531. if (qdev->wol) {
  3532. wol |= MB_WOL_MODE_ON;
  3533. status = ql_mb_wol_mode(qdev, wol);
  3534. netif_err(qdev, drv, qdev->ndev,
  3535. "WOL %s (wol code 0x%x) on %s\n",
  3536. (status == 0) ? "Successfully set" : "Failed",
  3537. wol, qdev->ndev->name);
  3538. }
  3539. return status;
  3540. }
  3541. static void ql_cancel_all_work_sync(struct ql_adapter *qdev)
  3542. {
  3543. /* Don't kill the reset worker thread if we
  3544. * are in the process of recovery.
  3545. */
  3546. if (test_bit(QL_ADAPTER_UP, &qdev->flags))
  3547. cancel_delayed_work_sync(&qdev->asic_reset_work);
  3548. cancel_delayed_work_sync(&qdev->mpi_reset_work);
  3549. cancel_delayed_work_sync(&qdev->mpi_work);
  3550. cancel_delayed_work_sync(&qdev->mpi_idc_work);
  3551. cancel_delayed_work_sync(&qdev->mpi_core_to_log);
  3552. cancel_delayed_work_sync(&qdev->mpi_port_cfg_work);
  3553. }
  3554. static int ql_adapter_down(struct ql_adapter *qdev)
  3555. {
  3556. int i, status = 0;
  3557. ql_link_off(qdev);
  3558. ql_cancel_all_work_sync(qdev);
  3559. for (i = 0; i < qdev->rss_ring_count; i++)
  3560. napi_disable(&qdev->rx_ring[i].napi);
  3561. clear_bit(QL_ADAPTER_UP, &qdev->flags);
  3562. ql_disable_interrupts(qdev);
  3563. ql_tx_ring_clean(qdev);
  3564. /* Call netif_napi_del() from common point.
  3565. */
  3566. for (i = 0; i < qdev->rss_ring_count; i++)
  3567. netif_napi_del(&qdev->rx_ring[i].napi);
  3568. status = ql_adapter_reset(qdev);
  3569. if (status)
  3570. netif_err(qdev, ifdown, qdev->ndev, "reset(func #%d) FAILED!\n",
  3571. qdev->func);
  3572. ql_free_rx_buffers(qdev);
  3573. return status;
  3574. }
  3575. static int ql_adapter_up(struct ql_adapter *qdev)
  3576. {
  3577. int err = 0;
  3578. err = ql_adapter_initialize(qdev);
  3579. if (err) {
  3580. netif_info(qdev, ifup, qdev->ndev, "Unable to initialize adapter.\n");
  3581. goto err_init;
  3582. }
  3583. set_bit(QL_ADAPTER_UP, &qdev->flags);
  3584. ql_alloc_rx_buffers(qdev);
  3585. /* If the port is initialized and the
  3586. * link is up the turn on the carrier.
  3587. */
  3588. if ((ql_read32(qdev, STS) & qdev->port_init) &&
  3589. (ql_read32(qdev, STS) & qdev->port_link_up))
  3590. ql_link_on(qdev);
  3591. /* Restore rx mode. */
  3592. clear_bit(QL_ALLMULTI, &qdev->flags);
  3593. clear_bit(QL_PROMISCUOUS, &qdev->flags);
  3594. qlge_set_multicast_list(qdev->ndev);
  3595. /* Restore vlan setting. */
  3596. qlge_restore_vlan(qdev);
  3597. ql_enable_interrupts(qdev);
  3598. ql_enable_all_completion_interrupts(qdev);
  3599. netif_tx_start_all_queues(qdev->ndev);
  3600. return 0;
  3601. err_init:
  3602. ql_adapter_reset(qdev);
  3603. return err;
  3604. }
  3605. static void ql_release_adapter_resources(struct ql_adapter *qdev)
  3606. {
  3607. ql_free_mem_resources(qdev);
  3608. ql_free_irq(qdev);
  3609. }
  3610. static int ql_get_adapter_resources(struct ql_adapter *qdev)
  3611. {
  3612. int status = 0;
  3613. if (ql_alloc_mem_resources(qdev)) {
  3614. netif_err(qdev, ifup, qdev->ndev, "Unable to allocate memory.\n");
  3615. return -ENOMEM;
  3616. }
  3617. status = ql_request_irq(qdev);
  3618. return status;
  3619. }
  3620. static int qlge_close(struct net_device *ndev)
  3621. {
  3622. struct ql_adapter *qdev = netdev_priv(ndev);
  3623. /* If we hit pci_channel_io_perm_failure
  3624. * failure condition, then we already
  3625. * brought the adapter down.
  3626. */
  3627. if (test_bit(QL_EEH_FATAL, &qdev->flags)) {
  3628. netif_err(qdev, drv, qdev->ndev, "EEH fatal did unload.\n");
  3629. clear_bit(QL_EEH_FATAL, &qdev->flags);
  3630. return 0;
  3631. }
  3632. /*
  3633. * Wait for device to recover from a reset.
  3634. * (Rarely happens, but possible.)
  3635. */
  3636. while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
  3637. msleep(1);
  3638. ql_adapter_down(qdev);
  3639. ql_release_adapter_resources(qdev);
  3640. return 0;
  3641. }
  3642. static int ql_configure_rings(struct ql_adapter *qdev)
  3643. {
  3644. int i;
  3645. struct rx_ring *rx_ring;
  3646. struct tx_ring *tx_ring;
  3647. int cpu_cnt = min(MAX_CPUS, (int)num_online_cpus());
  3648. unsigned int lbq_buf_len = (qdev->ndev->mtu > 1500) ?
  3649. LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
  3650. qdev->lbq_buf_order = get_order(lbq_buf_len);
  3651. /* In a perfect world we have one RSS ring for each CPU
  3652. * and each has it's own vector. To do that we ask for
  3653. * cpu_cnt vectors. ql_enable_msix() will adjust the
  3654. * vector count to what we actually get. We then
  3655. * allocate an RSS ring for each.
  3656. * Essentially, we are doing min(cpu_count, msix_vector_count).
  3657. */
  3658. qdev->intr_count = cpu_cnt;
  3659. ql_enable_msix(qdev);
  3660. /* Adjust the RSS ring count to the actual vector count. */
  3661. qdev->rss_ring_count = qdev->intr_count;
  3662. qdev->tx_ring_count = cpu_cnt;
  3663. qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count;
  3664. for (i = 0; i < qdev->tx_ring_count; i++) {
  3665. tx_ring = &qdev->tx_ring[i];
  3666. memset((void *)tx_ring, 0, sizeof(*tx_ring));
  3667. tx_ring->qdev = qdev;
  3668. tx_ring->wq_id = i;
  3669. tx_ring->wq_len = qdev->tx_ring_size;
  3670. tx_ring->wq_size =
  3671. tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
  3672. /*
  3673. * The completion queue ID for the tx rings start
  3674. * immediately after the rss rings.
  3675. */
  3676. tx_ring->cq_id = qdev->rss_ring_count + i;
  3677. }
  3678. for (i = 0; i < qdev->rx_ring_count; i++) {
  3679. rx_ring = &qdev->rx_ring[i];
  3680. memset((void *)rx_ring, 0, sizeof(*rx_ring));
  3681. rx_ring->qdev = qdev;
  3682. rx_ring->cq_id = i;
  3683. rx_ring->cpu = i % cpu_cnt; /* CPU to run handler on. */
  3684. if (i < qdev->rss_ring_count) {
  3685. /*
  3686. * Inbound (RSS) queues.
  3687. */
  3688. rx_ring->cq_len = qdev->rx_ring_size;
  3689. rx_ring->cq_size =
  3690. rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
  3691. rx_ring->lbq_len = NUM_LARGE_BUFFERS;
  3692. rx_ring->lbq_size =
  3693. rx_ring->lbq_len * sizeof(__le64);
  3694. rx_ring->lbq_buf_size = (u16)lbq_buf_len;
  3695. netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
  3696. "lbq_buf_size %d, order = %d\n",
  3697. rx_ring->lbq_buf_size,
  3698. qdev->lbq_buf_order);
  3699. rx_ring->sbq_len = NUM_SMALL_BUFFERS;
  3700. rx_ring->sbq_size =
  3701. rx_ring->sbq_len * sizeof(__le64);
  3702. rx_ring->sbq_buf_size = SMALL_BUF_MAP_SIZE;
  3703. rx_ring->type = RX_Q;
  3704. } else {
  3705. /*
  3706. * Outbound queue handles outbound completions only.
  3707. */
  3708. /* outbound cq is same size as tx_ring it services. */
  3709. rx_ring->cq_len = qdev->tx_ring_size;
  3710. rx_ring->cq_size =
  3711. rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
  3712. rx_ring->lbq_len = 0;
  3713. rx_ring->lbq_size = 0;
  3714. rx_ring->lbq_buf_size = 0;
  3715. rx_ring->sbq_len = 0;
  3716. rx_ring->sbq_size = 0;
  3717. rx_ring->sbq_buf_size = 0;
  3718. rx_ring->type = TX_Q;
  3719. }
  3720. }
  3721. return 0;
  3722. }
  3723. static int qlge_open(struct net_device *ndev)
  3724. {
  3725. int err = 0;
  3726. struct ql_adapter *qdev = netdev_priv(ndev);
  3727. err = ql_adapter_reset(qdev);
  3728. if (err)
  3729. return err;
  3730. err = ql_configure_rings(qdev);
  3731. if (err)
  3732. return err;
  3733. err = ql_get_adapter_resources(qdev);
  3734. if (err)
  3735. goto error_up;
  3736. err = ql_adapter_up(qdev);
  3737. if (err)
  3738. goto error_up;
  3739. return err;
  3740. error_up:
  3741. ql_release_adapter_resources(qdev);
  3742. return err;
  3743. }
  3744. static int ql_change_rx_buffers(struct ql_adapter *qdev)
  3745. {
  3746. struct rx_ring *rx_ring;
  3747. int i, status;
  3748. u32 lbq_buf_len;
  3749. /* Wait for an outstanding reset to complete. */
  3750. if (!test_bit(QL_ADAPTER_UP, &qdev->flags)) {
  3751. int i = 3;
  3752. while (i-- && !test_bit(QL_ADAPTER_UP, &qdev->flags)) {
  3753. netif_err(qdev, ifup, qdev->ndev,
  3754. "Waiting for adapter UP...\n");
  3755. ssleep(1);
  3756. }
  3757. if (!i) {
  3758. netif_err(qdev, ifup, qdev->ndev,
  3759. "Timed out waiting for adapter UP\n");
  3760. return -ETIMEDOUT;
  3761. }
  3762. }
  3763. status = ql_adapter_down(qdev);
  3764. if (status)
  3765. goto error;
  3766. /* Get the new rx buffer size. */
  3767. lbq_buf_len = (qdev->ndev->mtu > 1500) ?
  3768. LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
  3769. qdev->lbq_buf_order = get_order(lbq_buf_len);
  3770. for (i = 0; i < qdev->rss_ring_count; i++) {
  3771. rx_ring = &qdev->rx_ring[i];
  3772. /* Set the new size. */
  3773. rx_ring->lbq_buf_size = lbq_buf_len;
  3774. }
  3775. status = ql_adapter_up(qdev);
  3776. if (status)
  3777. goto error;
  3778. return status;
  3779. error:
  3780. netif_alert(qdev, ifup, qdev->ndev,
  3781. "Driver up/down cycle failed, closing device.\n");
  3782. set_bit(QL_ADAPTER_UP, &qdev->flags);
  3783. dev_close(qdev->ndev);
  3784. return status;
  3785. }
  3786. static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
  3787. {
  3788. struct ql_adapter *qdev = netdev_priv(ndev);
  3789. int status;
  3790. if (ndev->mtu == 1500 && new_mtu == 9000) {
  3791. netif_err(qdev, ifup, qdev->ndev, "Changing to jumbo MTU.\n");
  3792. } else if (ndev->mtu == 9000 && new_mtu == 1500) {
  3793. netif_err(qdev, ifup, qdev->ndev, "Changing to normal MTU.\n");
  3794. } else
  3795. return -EINVAL;
  3796. queue_delayed_work(qdev->workqueue,
  3797. &qdev->mpi_port_cfg_work, 3*HZ);
  3798. ndev->mtu = new_mtu;
  3799. if (!netif_running(qdev->ndev)) {
  3800. return 0;
  3801. }
  3802. status = ql_change_rx_buffers(qdev);
  3803. if (status) {
  3804. netif_err(qdev, ifup, qdev->ndev,
  3805. "Changing MTU failed.\n");
  3806. }
  3807. return status;
  3808. }
  3809. static struct net_device_stats *qlge_get_stats(struct net_device
  3810. *ndev)
  3811. {
  3812. struct ql_adapter *qdev = netdev_priv(ndev);
  3813. struct rx_ring *rx_ring = &qdev->rx_ring[0];
  3814. struct tx_ring *tx_ring = &qdev->tx_ring[0];
  3815. unsigned long pkts, mcast, dropped, errors, bytes;
  3816. int i;
  3817. /* Get RX stats. */
  3818. pkts = mcast = dropped = errors = bytes = 0;
  3819. for (i = 0; i < qdev->rss_ring_count; i++, rx_ring++) {
  3820. pkts += rx_ring->rx_packets;
  3821. bytes += rx_ring->rx_bytes;
  3822. dropped += rx_ring->rx_dropped;
  3823. errors += rx_ring->rx_errors;
  3824. mcast += rx_ring->rx_multicast;
  3825. }
  3826. ndev->stats.rx_packets = pkts;
  3827. ndev->stats.rx_bytes = bytes;
  3828. ndev->stats.rx_dropped = dropped;
  3829. ndev->stats.rx_errors = errors;
  3830. ndev->stats.multicast = mcast;
  3831. /* Get TX stats. */
  3832. pkts = errors = bytes = 0;
  3833. for (i = 0; i < qdev->tx_ring_count; i++, tx_ring++) {
  3834. pkts += tx_ring->tx_packets;
  3835. bytes += tx_ring->tx_bytes;
  3836. errors += tx_ring->tx_errors;
  3837. }
  3838. ndev->stats.tx_packets = pkts;
  3839. ndev->stats.tx_bytes = bytes;
  3840. ndev->stats.tx_errors = errors;
  3841. return &ndev->stats;
  3842. }
  3843. static void qlge_set_multicast_list(struct net_device *ndev)
  3844. {
  3845. struct ql_adapter *qdev = netdev_priv(ndev);
  3846. struct netdev_hw_addr *ha;
  3847. int i, status;
  3848. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  3849. if (status)
  3850. return;
  3851. /*
  3852. * Set or clear promiscuous mode if a
  3853. * transition is taking place.
  3854. */
  3855. if (ndev->flags & IFF_PROMISC) {
  3856. if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
  3857. if (ql_set_routing_reg
  3858. (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
  3859. netif_err(qdev, hw, qdev->ndev,
  3860. "Failed to set promiscuous mode.\n");
  3861. } else {
  3862. set_bit(QL_PROMISCUOUS, &qdev->flags);
  3863. }
  3864. }
  3865. } else {
  3866. if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
  3867. if (ql_set_routing_reg
  3868. (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
  3869. netif_err(qdev, hw, qdev->ndev,
  3870. "Failed to clear promiscuous mode.\n");
  3871. } else {
  3872. clear_bit(QL_PROMISCUOUS, &qdev->flags);
  3873. }
  3874. }
  3875. }
  3876. /*
  3877. * Set or clear all multicast mode if a
  3878. * transition is taking place.
  3879. */
  3880. if ((ndev->flags & IFF_ALLMULTI) ||
  3881. (netdev_mc_count(ndev) > MAX_MULTICAST_ENTRIES)) {
  3882. if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
  3883. if (ql_set_routing_reg
  3884. (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
  3885. netif_err(qdev, hw, qdev->ndev,
  3886. "Failed to set all-multi mode.\n");
  3887. } else {
  3888. set_bit(QL_ALLMULTI, &qdev->flags);
  3889. }
  3890. }
  3891. } else {
  3892. if (test_bit(QL_ALLMULTI, &qdev->flags)) {
  3893. if (ql_set_routing_reg
  3894. (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
  3895. netif_err(qdev, hw, qdev->ndev,
  3896. "Failed to clear all-multi mode.\n");
  3897. } else {
  3898. clear_bit(QL_ALLMULTI, &qdev->flags);
  3899. }
  3900. }
  3901. }
  3902. if (!netdev_mc_empty(ndev)) {
  3903. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  3904. if (status)
  3905. goto exit;
  3906. i = 0;
  3907. netdev_for_each_mc_addr(ha, ndev) {
  3908. if (ql_set_mac_addr_reg(qdev, (u8 *) ha->addr,
  3909. MAC_ADDR_TYPE_MULTI_MAC, i)) {
  3910. netif_err(qdev, hw, qdev->ndev,
  3911. "Failed to loadmulticast address.\n");
  3912. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  3913. goto exit;
  3914. }
  3915. i++;
  3916. }
  3917. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  3918. if (ql_set_routing_reg
  3919. (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
  3920. netif_err(qdev, hw, qdev->ndev,
  3921. "Failed to set multicast match mode.\n");
  3922. } else {
  3923. set_bit(QL_ALLMULTI, &qdev->flags);
  3924. }
  3925. }
  3926. exit:
  3927. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  3928. }
  3929. static int qlge_set_mac_address(struct net_device *ndev, void *p)
  3930. {
  3931. struct ql_adapter *qdev = netdev_priv(ndev);
  3932. struct sockaddr *addr = p;
  3933. int status;
  3934. if (!is_valid_ether_addr(addr->sa_data))
  3935. return -EADDRNOTAVAIL;
  3936. memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
  3937. /* Update local copy of current mac address. */
  3938. memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
  3939. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  3940. if (status)
  3941. return status;
  3942. status = ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
  3943. MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
  3944. if (status)
  3945. netif_err(qdev, hw, qdev->ndev, "Failed to load MAC address.\n");
  3946. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  3947. return status;
  3948. }
  3949. static void qlge_tx_timeout(struct net_device *ndev)
  3950. {
  3951. struct ql_adapter *qdev = netdev_priv(ndev);
  3952. ql_queue_asic_error(qdev);
  3953. }
  3954. static void ql_asic_reset_work(struct work_struct *work)
  3955. {
  3956. struct ql_adapter *qdev =
  3957. container_of(work, struct ql_adapter, asic_reset_work.work);
  3958. int status;
  3959. rtnl_lock();
  3960. status = ql_adapter_down(qdev);
  3961. if (status)
  3962. goto error;
  3963. status = ql_adapter_up(qdev);
  3964. if (status)
  3965. goto error;
  3966. /* Restore rx mode. */
  3967. clear_bit(QL_ALLMULTI, &qdev->flags);
  3968. clear_bit(QL_PROMISCUOUS, &qdev->flags);
  3969. qlge_set_multicast_list(qdev->ndev);
  3970. rtnl_unlock();
  3971. return;
  3972. error:
  3973. netif_alert(qdev, ifup, qdev->ndev,
  3974. "Driver up/down cycle failed, closing device\n");
  3975. set_bit(QL_ADAPTER_UP, &qdev->flags);
  3976. dev_close(qdev->ndev);
  3977. rtnl_unlock();
  3978. }
  3979. static const struct nic_operations qla8012_nic_ops = {
  3980. .get_flash = ql_get_8012_flash_params,
  3981. .port_initialize = ql_8012_port_initialize,
  3982. };
  3983. static const struct nic_operations qla8000_nic_ops = {
  3984. .get_flash = ql_get_8000_flash_params,
  3985. .port_initialize = ql_8000_port_initialize,
  3986. };
  3987. /* Find the pcie function number for the other NIC
  3988. * on this chip. Since both NIC functions share a
  3989. * common firmware we have the lowest enabled function
  3990. * do any common work. Examples would be resetting
  3991. * after a fatal firmware error, or doing a firmware
  3992. * coredump.
  3993. */
  3994. static int ql_get_alt_pcie_func(struct ql_adapter *qdev)
  3995. {
  3996. int status = 0;
  3997. u32 temp;
  3998. u32 nic_func1, nic_func2;
  3999. status = ql_read_mpi_reg(qdev, MPI_TEST_FUNC_PORT_CFG,
  4000. &temp);
  4001. if (status)
  4002. return status;
  4003. nic_func1 = ((temp >> MPI_TEST_NIC1_FUNC_SHIFT) &
  4004. MPI_TEST_NIC_FUNC_MASK);
  4005. nic_func2 = ((temp >> MPI_TEST_NIC2_FUNC_SHIFT) &
  4006. MPI_TEST_NIC_FUNC_MASK);
  4007. if (qdev->func == nic_func1)
  4008. qdev->alt_func = nic_func2;
  4009. else if (qdev->func == nic_func2)
  4010. qdev->alt_func = nic_func1;
  4011. else
  4012. status = -EIO;
  4013. return status;
  4014. }
  4015. static int ql_get_board_info(struct ql_adapter *qdev)
  4016. {
  4017. int status;
  4018. qdev->func =
  4019. (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
  4020. if (qdev->func > 3)
  4021. return -EIO;
  4022. status = ql_get_alt_pcie_func(qdev);
  4023. if (status)
  4024. return status;
  4025. qdev->port = (qdev->func < qdev->alt_func) ? 0 : 1;
  4026. if (qdev->port) {
  4027. qdev->xg_sem_mask = SEM_XGMAC1_MASK;
  4028. qdev->port_link_up = STS_PL1;
  4029. qdev->port_init = STS_PI1;
  4030. qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
  4031. qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
  4032. } else {
  4033. qdev->xg_sem_mask = SEM_XGMAC0_MASK;
  4034. qdev->port_link_up = STS_PL0;
  4035. qdev->port_init = STS_PI0;
  4036. qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
  4037. qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
  4038. }
  4039. qdev->chip_rev_id = ql_read32(qdev, REV_ID);
  4040. qdev->device_id = qdev->pdev->device;
  4041. if (qdev->device_id == QLGE_DEVICE_ID_8012)
  4042. qdev->nic_ops = &qla8012_nic_ops;
  4043. else if (qdev->device_id == QLGE_DEVICE_ID_8000)
  4044. qdev->nic_ops = &qla8000_nic_ops;
  4045. return status;
  4046. }
  4047. static void ql_release_all(struct pci_dev *pdev)
  4048. {
  4049. struct net_device *ndev = pci_get_drvdata(pdev);
  4050. struct ql_adapter *qdev = netdev_priv(ndev);
  4051. if (qdev->workqueue) {
  4052. destroy_workqueue(qdev->workqueue);
  4053. qdev->workqueue = NULL;
  4054. }
  4055. if (qdev->reg_base)
  4056. iounmap(qdev->reg_base);
  4057. if (qdev->doorbell_area)
  4058. iounmap(qdev->doorbell_area);
  4059. vfree(qdev->mpi_coredump);
  4060. pci_release_regions(pdev);
  4061. pci_set_drvdata(pdev, NULL);
  4062. }
  4063. static int __devinit ql_init_device(struct pci_dev *pdev,
  4064. struct net_device *ndev, int cards_found)
  4065. {
  4066. struct ql_adapter *qdev = netdev_priv(ndev);
  4067. int err = 0;
  4068. memset((void *)qdev, 0, sizeof(*qdev));
  4069. err = pci_enable_device(pdev);
  4070. if (err) {
  4071. dev_err(&pdev->dev, "PCI device enable failed.\n");
  4072. return err;
  4073. }
  4074. qdev->ndev = ndev;
  4075. qdev->pdev = pdev;
  4076. pci_set_drvdata(pdev, ndev);
  4077. /* Set PCIe read request size */
  4078. err = pcie_set_readrq(pdev, 4096);
  4079. if (err) {
  4080. dev_err(&pdev->dev, "Set readrq failed.\n");
  4081. goto err_out1;
  4082. }
  4083. err = pci_request_regions(pdev, DRV_NAME);
  4084. if (err) {
  4085. dev_err(&pdev->dev, "PCI region request failed.\n");
  4086. return err;
  4087. }
  4088. pci_set_master(pdev);
  4089. if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
  4090. set_bit(QL_DMA64, &qdev->flags);
  4091. err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
  4092. } else {
  4093. err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
  4094. if (!err)
  4095. err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
  4096. }
  4097. if (err) {
  4098. dev_err(&pdev->dev, "No usable DMA configuration.\n");
  4099. goto err_out2;
  4100. }
  4101. /* Set PCIe reset type for EEH to fundamental. */
  4102. pdev->needs_freset = 1;
  4103. pci_save_state(pdev);
  4104. qdev->reg_base =
  4105. ioremap_nocache(pci_resource_start(pdev, 1),
  4106. pci_resource_len(pdev, 1));
  4107. if (!qdev->reg_base) {
  4108. dev_err(&pdev->dev, "Register mapping failed.\n");
  4109. err = -ENOMEM;
  4110. goto err_out2;
  4111. }
  4112. qdev->doorbell_area_size = pci_resource_len(pdev, 3);
  4113. qdev->doorbell_area =
  4114. ioremap_nocache(pci_resource_start(pdev, 3),
  4115. pci_resource_len(pdev, 3));
  4116. if (!qdev->doorbell_area) {
  4117. dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
  4118. err = -ENOMEM;
  4119. goto err_out2;
  4120. }
  4121. err = ql_get_board_info(qdev);
  4122. if (err) {
  4123. dev_err(&pdev->dev, "Register access failed.\n");
  4124. err = -EIO;
  4125. goto err_out2;
  4126. }
  4127. qdev->msg_enable = netif_msg_init(debug, default_msg);
  4128. spin_lock_init(&qdev->hw_lock);
  4129. spin_lock_init(&qdev->stats_lock);
  4130. if (qlge_mpi_coredump) {
  4131. qdev->mpi_coredump =
  4132. vmalloc(sizeof(struct ql_mpi_coredump));
  4133. if (qdev->mpi_coredump == NULL) {
  4134. dev_err(&pdev->dev, "Coredump alloc failed.\n");
  4135. err = -ENOMEM;
  4136. goto err_out2;
  4137. }
  4138. if (qlge_force_coredump)
  4139. set_bit(QL_FRC_COREDUMP, &qdev->flags);
  4140. }
  4141. /* make sure the EEPROM is good */
  4142. err = qdev->nic_ops->get_flash(qdev);
  4143. if (err) {
  4144. dev_err(&pdev->dev, "Invalid FLASH.\n");
  4145. goto err_out2;
  4146. }
  4147. memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
  4148. /* Keep local copy of current mac address. */
  4149. memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
  4150. /* Set up the default ring sizes. */
  4151. qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
  4152. qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
  4153. /* Set up the coalescing parameters. */
  4154. qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
  4155. qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
  4156. qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
  4157. qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
  4158. /*
  4159. * Set up the operating parameters.
  4160. */
  4161. qdev->workqueue = create_singlethread_workqueue(ndev->name);
  4162. INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
  4163. INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
  4164. INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
  4165. INIT_DELAYED_WORK(&qdev->mpi_port_cfg_work, ql_mpi_port_cfg_work);
  4166. INIT_DELAYED_WORK(&qdev->mpi_idc_work, ql_mpi_idc_work);
  4167. INIT_DELAYED_WORK(&qdev->mpi_core_to_log, ql_mpi_core_to_log);
  4168. init_completion(&qdev->ide_completion);
  4169. mutex_init(&qdev->mpi_mutex);
  4170. if (!cards_found) {
  4171. dev_info(&pdev->dev, "%s\n", DRV_STRING);
  4172. dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
  4173. DRV_NAME, DRV_VERSION);
  4174. }
  4175. return 0;
  4176. err_out2:
  4177. ql_release_all(pdev);
  4178. err_out1:
  4179. pci_disable_device(pdev);
  4180. return err;
  4181. }
  4182. static const struct net_device_ops qlge_netdev_ops = {
  4183. .ndo_open = qlge_open,
  4184. .ndo_stop = qlge_close,
  4185. .ndo_start_xmit = qlge_send,
  4186. .ndo_change_mtu = qlge_change_mtu,
  4187. .ndo_get_stats = qlge_get_stats,
  4188. .ndo_set_rx_mode = qlge_set_multicast_list,
  4189. .ndo_set_mac_address = qlge_set_mac_address,
  4190. .ndo_validate_addr = eth_validate_addr,
  4191. .ndo_tx_timeout = qlge_tx_timeout,
  4192. .ndo_fix_features = qlge_fix_features,
  4193. .ndo_set_features = qlge_set_features,
  4194. .ndo_vlan_rx_add_vid = qlge_vlan_rx_add_vid,
  4195. .ndo_vlan_rx_kill_vid = qlge_vlan_rx_kill_vid,
  4196. };
  4197. static void ql_timer(unsigned long data)
  4198. {
  4199. struct ql_adapter *qdev = (struct ql_adapter *)data;
  4200. u32 var = 0;
  4201. var = ql_read32(qdev, STS);
  4202. if (pci_channel_offline(qdev->pdev)) {
  4203. netif_err(qdev, ifup, qdev->ndev, "EEH STS = 0x%.08x.\n", var);
  4204. return;
  4205. }
  4206. mod_timer(&qdev->timer, jiffies + (5*HZ));
  4207. }
  4208. static int __devinit qlge_probe(struct pci_dev *pdev,
  4209. const struct pci_device_id *pci_entry)
  4210. {
  4211. struct net_device *ndev = NULL;
  4212. struct ql_adapter *qdev = NULL;
  4213. static int cards_found = 0;
  4214. int err = 0;
  4215. ndev = alloc_etherdev_mq(sizeof(struct ql_adapter),
  4216. min(MAX_CPUS, (int)num_online_cpus()));
  4217. if (!ndev)
  4218. return -ENOMEM;
  4219. err = ql_init_device(pdev, ndev, cards_found);
  4220. if (err < 0) {
  4221. free_netdev(ndev);
  4222. return err;
  4223. }
  4224. qdev = netdev_priv(ndev);
  4225. SET_NETDEV_DEV(ndev, &pdev->dev);
  4226. ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM |
  4227. NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN |
  4228. NETIF_F_HW_VLAN_TX | NETIF_F_RXCSUM;
  4229. ndev->features = ndev->hw_features |
  4230. NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER;
  4231. if (test_bit(QL_DMA64, &qdev->flags))
  4232. ndev->features |= NETIF_F_HIGHDMA;
  4233. /*
  4234. * Set up net_device structure.
  4235. */
  4236. ndev->tx_queue_len = qdev->tx_ring_size;
  4237. ndev->irq = pdev->irq;
  4238. ndev->netdev_ops = &qlge_netdev_ops;
  4239. SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
  4240. ndev->watchdog_timeo = 10 * HZ;
  4241. err = register_netdev(ndev);
  4242. if (err) {
  4243. dev_err(&pdev->dev, "net device registration failed.\n");
  4244. ql_release_all(pdev);
  4245. pci_disable_device(pdev);
  4246. return err;
  4247. }
  4248. /* Start up the timer to trigger EEH if
  4249. * the bus goes dead
  4250. */
  4251. init_timer_deferrable(&qdev->timer);
  4252. qdev->timer.data = (unsigned long)qdev;
  4253. qdev->timer.function = ql_timer;
  4254. qdev->timer.expires = jiffies + (5*HZ);
  4255. add_timer(&qdev->timer);
  4256. ql_link_off(qdev);
  4257. ql_display_dev_info(ndev);
  4258. atomic_set(&qdev->lb_count, 0);
  4259. cards_found++;
  4260. return 0;
  4261. }
  4262. netdev_tx_t ql_lb_send(struct sk_buff *skb, struct net_device *ndev)
  4263. {
  4264. return qlge_send(skb, ndev);
  4265. }
  4266. int ql_clean_lb_rx_ring(struct rx_ring *rx_ring, int budget)
  4267. {
  4268. return ql_clean_inbound_rx_ring(rx_ring, budget);
  4269. }
  4270. static void __devexit qlge_remove(struct pci_dev *pdev)
  4271. {
  4272. struct net_device *ndev = pci_get_drvdata(pdev);
  4273. struct ql_adapter *qdev = netdev_priv(ndev);
  4274. del_timer_sync(&qdev->timer);
  4275. ql_cancel_all_work_sync(qdev);
  4276. unregister_netdev(ndev);
  4277. ql_release_all(pdev);
  4278. pci_disable_device(pdev);
  4279. free_netdev(ndev);
  4280. }
  4281. /* Clean up resources without touching hardware. */
  4282. static void ql_eeh_close(struct net_device *ndev)
  4283. {
  4284. int i;
  4285. struct ql_adapter *qdev = netdev_priv(ndev);
  4286. if (netif_carrier_ok(ndev)) {
  4287. netif_carrier_off(ndev);
  4288. netif_stop_queue(ndev);
  4289. }
  4290. /* Disabling the timer */
  4291. del_timer_sync(&qdev->timer);
  4292. ql_cancel_all_work_sync(qdev);
  4293. for (i = 0; i < qdev->rss_ring_count; i++)
  4294. netif_napi_del(&qdev->rx_ring[i].napi);
  4295. clear_bit(QL_ADAPTER_UP, &qdev->flags);
  4296. ql_tx_ring_clean(qdev);
  4297. ql_free_rx_buffers(qdev);
  4298. ql_release_adapter_resources(qdev);
  4299. }
  4300. /*
  4301. * This callback is called by the PCI subsystem whenever
  4302. * a PCI bus error is detected.
  4303. */
  4304. static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
  4305. enum pci_channel_state state)
  4306. {
  4307. struct net_device *ndev = pci_get_drvdata(pdev);
  4308. struct ql_adapter *qdev = netdev_priv(ndev);
  4309. switch (state) {
  4310. case pci_channel_io_normal:
  4311. return PCI_ERS_RESULT_CAN_RECOVER;
  4312. case pci_channel_io_frozen:
  4313. netif_device_detach(ndev);
  4314. if (netif_running(ndev))
  4315. ql_eeh_close(ndev);
  4316. pci_disable_device(pdev);
  4317. return PCI_ERS_RESULT_NEED_RESET;
  4318. case pci_channel_io_perm_failure:
  4319. dev_err(&pdev->dev,
  4320. "%s: pci_channel_io_perm_failure.\n", __func__);
  4321. ql_eeh_close(ndev);
  4322. set_bit(QL_EEH_FATAL, &qdev->flags);
  4323. return PCI_ERS_RESULT_DISCONNECT;
  4324. }
  4325. /* Request a slot reset. */
  4326. return PCI_ERS_RESULT_NEED_RESET;
  4327. }
  4328. /*
  4329. * This callback is called after the PCI buss has been reset.
  4330. * Basically, this tries to restart the card from scratch.
  4331. * This is a shortened version of the device probe/discovery code,
  4332. * it resembles the first-half of the () routine.
  4333. */
  4334. static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
  4335. {
  4336. struct net_device *ndev = pci_get_drvdata(pdev);
  4337. struct ql_adapter *qdev = netdev_priv(ndev);
  4338. pdev->error_state = pci_channel_io_normal;
  4339. pci_restore_state(pdev);
  4340. if (pci_enable_device(pdev)) {
  4341. netif_err(qdev, ifup, qdev->ndev,
  4342. "Cannot re-enable PCI device after reset.\n");
  4343. return PCI_ERS_RESULT_DISCONNECT;
  4344. }
  4345. pci_set_master(pdev);
  4346. if (ql_adapter_reset(qdev)) {
  4347. netif_err(qdev, drv, qdev->ndev, "reset FAILED!\n");
  4348. set_bit(QL_EEH_FATAL, &qdev->flags);
  4349. return PCI_ERS_RESULT_DISCONNECT;
  4350. }
  4351. return PCI_ERS_RESULT_RECOVERED;
  4352. }
  4353. static void qlge_io_resume(struct pci_dev *pdev)
  4354. {
  4355. struct net_device *ndev = pci_get_drvdata(pdev);
  4356. struct ql_adapter *qdev = netdev_priv(ndev);
  4357. int err = 0;
  4358. if (netif_running(ndev)) {
  4359. err = qlge_open(ndev);
  4360. if (err) {
  4361. netif_err(qdev, ifup, qdev->ndev,
  4362. "Device initialization failed after reset.\n");
  4363. return;
  4364. }
  4365. } else {
  4366. netif_err(qdev, ifup, qdev->ndev,
  4367. "Device was not running prior to EEH.\n");
  4368. }
  4369. mod_timer(&qdev->timer, jiffies + (5*HZ));
  4370. netif_device_attach(ndev);
  4371. }
  4372. static struct pci_error_handlers qlge_err_handler = {
  4373. .error_detected = qlge_io_error_detected,
  4374. .slot_reset = qlge_io_slot_reset,
  4375. .resume = qlge_io_resume,
  4376. };
  4377. static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
  4378. {
  4379. struct net_device *ndev = pci_get_drvdata(pdev);
  4380. struct ql_adapter *qdev = netdev_priv(ndev);
  4381. int err;
  4382. netif_device_detach(ndev);
  4383. del_timer_sync(&qdev->timer);
  4384. if (netif_running(ndev)) {
  4385. err = ql_adapter_down(qdev);
  4386. if (!err)
  4387. return err;
  4388. }
  4389. ql_wol(qdev);
  4390. err = pci_save_state(pdev);
  4391. if (err)
  4392. return err;
  4393. pci_disable_device(pdev);
  4394. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  4395. return 0;
  4396. }
  4397. #ifdef CONFIG_PM
  4398. static int qlge_resume(struct pci_dev *pdev)
  4399. {
  4400. struct net_device *ndev = pci_get_drvdata(pdev);
  4401. struct ql_adapter *qdev = netdev_priv(ndev);
  4402. int err;
  4403. pci_set_power_state(pdev, PCI_D0);
  4404. pci_restore_state(pdev);
  4405. err = pci_enable_device(pdev);
  4406. if (err) {
  4407. netif_err(qdev, ifup, qdev->ndev, "Cannot enable PCI device from suspend\n");
  4408. return err;
  4409. }
  4410. pci_set_master(pdev);
  4411. pci_enable_wake(pdev, PCI_D3hot, 0);
  4412. pci_enable_wake(pdev, PCI_D3cold, 0);
  4413. if (netif_running(ndev)) {
  4414. err = ql_adapter_up(qdev);
  4415. if (err)
  4416. return err;
  4417. }
  4418. mod_timer(&qdev->timer, jiffies + (5*HZ));
  4419. netif_device_attach(ndev);
  4420. return 0;
  4421. }
  4422. #endif /* CONFIG_PM */
  4423. static void qlge_shutdown(struct pci_dev *pdev)
  4424. {
  4425. qlge_suspend(pdev, PMSG_SUSPEND);
  4426. }
  4427. static struct pci_driver qlge_driver = {
  4428. .name = DRV_NAME,
  4429. .id_table = qlge_pci_tbl,
  4430. .probe = qlge_probe,
  4431. .remove = __devexit_p(qlge_remove),
  4432. #ifdef CONFIG_PM
  4433. .suspend = qlge_suspend,
  4434. .resume = qlge_resume,
  4435. #endif
  4436. .shutdown = qlge_shutdown,
  4437. .err_handler = &qlge_err_handler
  4438. };
  4439. static int __init qlge_init_module(void)
  4440. {
  4441. return pci_register_driver(&qlge_driver);
  4442. }
  4443. static void __exit qlge_exit(void)
  4444. {
  4445. pci_unregister_driver(&qlge_driver);
  4446. }
  4447. module_init(qlge_init_module);
  4448. module_exit(qlge_exit);