omap-sham.c 30 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268
  1. /*
  2. * Cryptographic API.
  3. *
  4. * Support for OMAP SHA1/MD5 HW acceleration.
  5. *
  6. * Copyright (c) 2010 Nokia Corporation
  7. * Author: Dmitry Kasatkin <dmitry.kasatkin@nokia.com>
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License version 2 as published
  11. * by the Free Software Foundation.
  12. *
  13. * Some ideas are from old omap-sha1-md5.c driver.
  14. */
  15. #define pr_fmt(fmt) "%s: " fmt, __func__
  16. #include <linux/err.h>
  17. #include <linux/device.h>
  18. #include <linux/module.h>
  19. #include <linux/init.h>
  20. #include <linux/errno.h>
  21. #include <linux/interrupt.h>
  22. #include <linux/kernel.h>
  23. #include <linux/clk.h>
  24. #include <linux/irq.h>
  25. #include <linux/io.h>
  26. #include <linux/platform_device.h>
  27. #include <linux/scatterlist.h>
  28. #include <linux/dma-mapping.h>
  29. #include <linux/delay.h>
  30. #include <linux/crypto.h>
  31. #include <linux/cryptohash.h>
  32. #include <crypto/scatterwalk.h>
  33. #include <crypto/algapi.h>
  34. #include <crypto/sha.h>
  35. #include <crypto/hash.h>
  36. #include <crypto/internal/hash.h>
  37. #include <plat/cpu.h>
  38. #include <plat/dma.h>
  39. #include <mach/irqs.h>
  40. #define SHA_REG_DIGEST(x) (0x00 + ((x) * 0x04))
  41. #define SHA_REG_DIN(x) (0x1C + ((x) * 0x04))
  42. #define SHA1_MD5_BLOCK_SIZE SHA1_BLOCK_SIZE
  43. #define MD5_DIGEST_SIZE 16
  44. #define SHA_REG_DIGCNT 0x14
  45. #define SHA_REG_CTRL 0x18
  46. #define SHA_REG_CTRL_LENGTH (0xFFFFFFFF << 5)
  47. #define SHA_REG_CTRL_CLOSE_HASH (1 << 4)
  48. #define SHA_REG_CTRL_ALGO_CONST (1 << 3)
  49. #define SHA_REG_CTRL_ALGO (1 << 2)
  50. #define SHA_REG_CTRL_INPUT_READY (1 << 1)
  51. #define SHA_REG_CTRL_OUTPUT_READY (1 << 0)
  52. #define SHA_REG_REV 0x5C
  53. #define SHA_REG_REV_MAJOR 0xF0
  54. #define SHA_REG_REV_MINOR 0x0F
  55. #define SHA_REG_MASK 0x60
  56. #define SHA_REG_MASK_DMA_EN (1 << 3)
  57. #define SHA_REG_MASK_IT_EN (1 << 2)
  58. #define SHA_REG_MASK_SOFTRESET (1 << 1)
  59. #define SHA_REG_AUTOIDLE (1 << 0)
  60. #define SHA_REG_SYSSTATUS 0x64
  61. #define SHA_REG_SYSSTATUS_RESETDONE (1 << 0)
  62. #define DEFAULT_TIMEOUT_INTERVAL HZ
  63. #define FLAGS_FIRST 0x0001
  64. #define FLAGS_FINUP 0x0002
  65. #define FLAGS_FINAL 0x0004
  66. #define FLAGS_FAST 0x0008
  67. #define FLAGS_SHA1 0x0010
  68. #define FLAGS_DMA_ACTIVE 0x0020
  69. #define FLAGS_OUTPUT_READY 0x0040
  70. #define FLAGS_CLEAN 0x0080
  71. #define FLAGS_INIT 0x0100
  72. #define FLAGS_CPU 0x0200
  73. #define FLAGS_HMAC 0x0400
  74. /* 3rd byte */
  75. #define FLAGS_BUSY 16
  76. #define OP_UPDATE 1
  77. #define OP_FINAL 2
  78. struct omap_sham_dev;
  79. struct omap_sham_reqctx {
  80. struct omap_sham_dev *dd;
  81. unsigned long flags;
  82. unsigned long op;
  83. u8 digest[SHA1_DIGEST_SIZE];
  84. size_t digcnt;
  85. u8 *buffer;
  86. size_t bufcnt;
  87. size_t buflen;
  88. dma_addr_t dma_addr;
  89. /* walk state */
  90. struct scatterlist *sg;
  91. unsigned int offset; /* offset in current sg */
  92. unsigned int total; /* total request */
  93. };
  94. struct omap_sham_hmac_ctx {
  95. struct crypto_shash *shash;
  96. u8 ipad[SHA1_MD5_BLOCK_SIZE];
  97. u8 opad[SHA1_MD5_BLOCK_SIZE];
  98. };
  99. struct omap_sham_ctx {
  100. struct omap_sham_dev *dd;
  101. unsigned long flags;
  102. /* fallback stuff */
  103. struct crypto_shash *fallback;
  104. struct omap_sham_hmac_ctx base[0];
  105. };
  106. #define OMAP_SHAM_QUEUE_LENGTH 1
  107. struct omap_sham_dev {
  108. struct list_head list;
  109. unsigned long phys_base;
  110. struct device *dev;
  111. void __iomem *io_base;
  112. int irq;
  113. struct clk *iclk;
  114. spinlock_t lock;
  115. int dma;
  116. int dma_lch;
  117. struct tasklet_struct done_task;
  118. struct tasklet_struct queue_task;
  119. unsigned long flags;
  120. struct crypto_queue queue;
  121. struct ahash_request *req;
  122. };
  123. struct omap_sham_drv {
  124. struct list_head dev_list;
  125. spinlock_t lock;
  126. unsigned long flags;
  127. };
  128. static struct omap_sham_drv sham = {
  129. .dev_list = LIST_HEAD_INIT(sham.dev_list),
  130. .lock = __SPIN_LOCK_UNLOCKED(sham.lock),
  131. };
  132. static inline u32 omap_sham_read(struct omap_sham_dev *dd, u32 offset)
  133. {
  134. return __raw_readl(dd->io_base + offset);
  135. }
  136. static inline void omap_sham_write(struct omap_sham_dev *dd,
  137. u32 offset, u32 value)
  138. {
  139. __raw_writel(value, dd->io_base + offset);
  140. }
  141. static inline void omap_sham_write_mask(struct omap_sham_dev *dd, u32 address,
  142. u32 value, u32 mask)
  143. {
  144. u32 val;
  145. val = omap_sham_read(dd, address);
  146. val &= ~mask;
  147. val |= value;
  148. omap_sham_write(dd, address, val);
  149. }
  150. static inline int omap_sham_wait(struct omap_sham_dev *dd, u32 offset, u32 bit)
  151. {
  152. unsigned long timeout = jiffies + DEFAULT_TIMEOUT_INTERVAL;
  153. while (!(omap_sham_read(dd, offset) & bit)) {
  154. if (time_is_before_jiffies(timeout))
  155. return -ETIMEDOUT;
  156. }
  157. return 0;
  158. }
  159. static void omap_sham_copy_hash(struct ahash_request *req, int out)
  160. {
  161. struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
  162. u32 *hash = (u32 *)ctx->digest;
  163. int i;
  164. if (likely(ctx->flags & FLAGS_SHA1)) {
  165. /* SHA1 results are in big endian */
  166. for (i = 0; i < SHA1_DIGEST_SIZE / sizeof(u32); i++)
  167. if (out)
  168. hash[i] = be32_to_cpu(omap_sham_read(ctx->dd,
  169. SHA_REG_DIGEST(i)));
  170. else
  171. omap_sham_write(ctx->dd, SHA_REG_DIGEST(i),
  172. cpu_to_be32(hash[i]));
  173. } else {
  174. /* MD5 results are in little endian */
  175. for (i = 0; i < MD5_DIGEST_SIZE / sizeof(u32); i++)
  176. if (out)
  177. hash[i] = le32_to_cpu(omap_sham_read(ctx->dd,
  178. SHA_REG_DIGEST(i)));
  179. else
  180. omap_sham_write(ctx->dd, SHA_REG_DIGEST(i),
  181. cpu_to_le32(hash[i]));
  182. }
  183. }
  184. static int omap_sham_write_ctrl(struct omap_sham_dev *dd, size_t length,
  185. int final, int dma)
  186. {
  187. struct omap_sham_reqctx *ctx = ahash_request_ctx(dd->req);
  188. u32 val = length << 5, mask;
  189. if (unlikely(!ctx->digcnt)) {
  190. clk_enable(dd->iclk);
  191. if (!(dd->flags & FLAGS_INIT)) {
  192. omap_sham_write_mask(dd, SHA_REG_MASK,
  193. SHA_REG_MASK_SOFTRESET, SHA_REG_MASK_SOFTRESET);
  194. if (omap_sham_wait(dd, SHA_REG_SYSSTATUS,
  195. SHA_REG_SYSSTATUS_RESETDONE))
  196. return -ETIMEDOUT;
  197. dd->flags |= FLAGS_INIT;
  198. }
  199. } else {
  200. omap_sham_write(dd, SHA_REG_DIGCNT, ctx->digcnt);
  201. }
  202. omap_sham_write_mask(dd, SHA_REG_MASK,
  203. SHA_REG_MASK_IT_EN | (dma ? SHA_REG_MASK_DMA_EN : 0),
  204. SHA_REG_MASK_IT_EN | SHA_REG_MASK_DMA_EN);
  205. /*
  206. * Setting ALGO_CONST only for the first iteration
  207. * and CLOSE_HASH only for the last one.
  208. */
  209. if (ctx->flags & FLAGS_SHA1)
  210. val |= SHA_REG_CTRL_ALGO;
  211. if (!ctx->digcnt)
  212. val |= SHA_REG_CTRL_ALGO_CONST;
  213. if (final)
  214. val |= SHA_REG_CTRL_CLOSE_HASH;
  215. mask = SHA_REG_CTRL_ALGO_CONST | SHA_REG_CTRL_CLOSE_HASH |
  216. SHA_REG_CTRL_ALGO | SHA_REG_CTRL_LENGTH;
  217. omap_sham_write_mask(dd, SHA_REG_CTRL, val, mask);
  218. return 0;
  219. }
  220. static int omap_sham_xmit_cpu(struct omap_sham_dev *dd, const u8 *buf,
  221. size_t length, int final)
  222. {
  223. struct omap_sham_reqctx *ctx = ahash_request_ctx(dd->req);
  224. int err, count, len32;
  225. const u32 *buffer = (const u32 *)buf;
  226. dev_dbg(dd->dev, "xmit_cpu: digcnt: %d, length: %d, final: %d\n",
  227. ctx->digcnt, length, final);
  228. err = omap_sham_write_ctrl(dd, length, final, 0);
  229. if (err)
  230. return err;
  231. if (omap_sham_wait(dd, SHA_REG_CTRL, SHA_REG_CTRL_INPUT_READY))
  232. return -ETIMEDOUT;
  233. ctx->digcnt += length;
  234. if (final)
  235. ctx->flags |= FLAGS_FINAL; /* catch last interrupt */
  236. len32 = DIV_ROUND_UP(length, sizeof(u32));
  237. for (count = 0; count < len32; count++)
  238. omap_sham_write(dd, SHA_REG_DIN(count), buffer[count]);
  239. return -EINPROGRESS;
  240. }
  241. static int omap_sham_xmit_dma(struct omap_sham_dev *dd, dma_addr_t dma_addr,
  242. size_t length, int final)
  243. {
  244. struct omap_sham_reqctx *ctx = ahash_request_ctx(dd->req);
  245. int err, len32;
  246. dev_dbg(dd->dev, "xmit_dma: digcnt: %d, length: %d, final: %d\n",
  247. ctx->digcnt, length, final);
  248. /* flush cache entries related to our page */
  249. if (dma_addr == ctx->dma_addr)
  250. dma_sync_single_for_device(dd->dev, dma_addr, length,
  251. DMA_TO_DEVICE);
  252. len32 = DIV_ROUND_UP(length, sizeof(u32));
  253. omap_set_dma_transfer_params(dd->dma_lch, OMAP_DMA_DATA_TYPE_S32, len32,
  254. 1, OMAP_DMA_SYNC_PACKET, dd->dma,
  255. OMAP_DMA_DST_SYNC_PREFETCH);
  256. omap_set_dma_src_params(dd->dma_lch, 0, OMAP_DMA_AMODE_POST_INC,
  257. dma_addr, 0, 0);
  258. omap_set_dma_dest_params(dd->dma_lch, 0,
  259. OMAP_DMA_AMODE_CONSTANT,
  260. dd->phys_base + SHA_REG_DIN(0), 0, 16);
  261. omap_set_dma_dest_burst_mode(dd->dma_lch,
  262. OMAP_DMA_DATA_BURST_16);
  263. omap_set_dma_src_burst_mode(dd->dma_lch,
  264. OMAP_DMA_DATA_BURST_4);
  265. err = omap_sham_write_ctrl(dd, length, final, 1);
  266. if (err)
  267. return err;
  268. ctx->digcnt += length;
  269. if (final)
  270. ctx->flags |= FLAGS_FINAL; /* catch last interrupt */
  271. dd->flags |= FLAGS_DMA_ACTIVE;
  272. omap_start_dma(dd->dma_lch);
  273. return -EINPROGRESS;
  274. }
  275. static size_t omap_sham_append_buffer(struct omap_sham_reqctx *ctx,
  276. const u8 *data, size_t length)
  277. {
  278. size_t count = min(length, ctx->buflen - ctx->bufcnt);
  279. count = min(count, ctx->total);
  280. if (count <= 0)
  281. return 0;
  282. memcpy(ctx->buffer + ctx->bufcnt, data, count);
  283. ctx->bufcnt += count;
  284. return count;
  285. }
  286. static size_t omap_sham_append_sg(struct omap_sham_reqctx *ctx)
  287. {
  288. size_t count;
  289. while (ctx->sg) {
  290. count = omap_sham_append_buffer(ctx,
  291. sg_virt(ctx->sg) + ctx->offset,
  292. ctx->sg->length - ctx->offset);
  293. if (!count)
  294. break;
  295. ctx->offset += count;
  296. ctx->total -= count;
  297. if (ctx->offset == ctx->sg->length) {
  298. ctx->sg = sg_next(ctx->sg);
  299. if (ctx->sg)
  300. ctx->offset = 0;
  301. else
  302. ctx->total = 0;
  303. }
  304. }
  305. return 0;
  306. }
  307. static int omap_sham_update_dma_slow(struct omap_sham_dev *dd)
  308. {
  309. struct omap_sham_reqctx *ctx = ahash_request_ctx(dd->req);
  310. unsigned int final;
  311. size_t count;
  312. if (!ctx->total)
  313. return 0;
  314. omap_sham_append_sg(ctx);
  315. final = (ctx->flags & FLAGS_FINUP) && !ctx->total;
  316. dev_dbg(dd->dev, "slow: bufcnt: %u, digcnt: %d, final: %d\n",
  317. ctx->bufcnt, ctx->digcnt, final);
  318. if (final || (ctx->bufcnt == ctx->buflen && ctx->total)) {
  319. count = ctx->bufcnt;
  320. ctx->bufcnt = 0;
  321. return omap_sham_xmit_dma(dd, ctx->dma_addr, count, final);
  322. }
  323. return 0;
  324. }
  325. static int omap_sham_update_dma_fast(struct omap_sham_dev *dd)
  326. {
  327. struct omap_sham_reqctx *ctx = ahash_request_ctx(dd->req);
  328. unsigned int length;
  329. ctx->flags |= FLAGS_FAST;
  330. length = min(ctx->total, sg_dma_len(ctx->sg));
  331. ctx->total = length;
  332. if (!dma_map_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE)) {
  333. dev_err(dd->dev, "dma_map_sg error\n");
  334. return -EINVAL;
  335. }
  336. ctx->total -= length;
  337. return omap_sham_xmit_dma(dd, sg_dma_address(ctx->sg), length, 1);
  338. }
  339. static int omap_sham_update_cpu(struct omap_sham_dev *dd)
  340. {
  341. struct omap_sham_reqctx *ctx = ahash_request_ctx(dd->req);
  342. int bufcnt;
  343. omap_sham_append_sg(ctx);
  344. bufcnt = ctx->bufcnt;
  345. ctx->bufcnt = 0;
  346. return omap_sham_xmit_cpu(dd, ctx->buffer, bufcnt, 1);
  347. }
  348. static int omap_sham_update_dma_stop(struct omap_sham_dev *dd)
  349. {
  350. struct omap_sham_reqctx *ctx = ahash_request_ctx(dd->req);
  351. omap_stop_dma(dd->dma_lch);
  352. if (ctx->flags & FLAGS_FAST)
  353. dma_unmap_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE);
  354. return 0;
  355. }
  356. static void omap_sham_cleanup(struct ahash_request *req)
  357. {
  358. struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
  359. struct omap_sham_dev *dd = ctx->dd;
  360. unsigned long flags;
  361. spin_lock_irqsave(&dd->lock, flags);
  362. if (ctx->flags & FLAGS_CLEAN) {
  363. spin_unlock_irqrestore(&dd->lock, flags);
  364. return;
  365. }
  366. ctx->flags |= FLAGS_CLEAN;
  367. spin_unlock_irqrestore(&dd->lock, flags);
  368. if (ctx->digcnt) {
  369. clk_disable(dd->iclk);
  370. memcpy(req->result, ctx->digest, (ctx->flags & FLAGS_SHA1) ?
  371. SHA1_DIGEST_SIZE : MD5_DIGEST_SIZE);
  372. }
  373. if (ctx->dma_addr)
  374. dma_unmap_single(dd->dev, ctx->dma_addr, ctx->buflen,
  375. DMA_TO_DEVICE);
  376. if (ctx->buffer)
  377. free_page((unsigned long)ctx->buffer);
  378. dev_dbg(dd->dev, "digcnt: %d, bufcnt: %d\n", ctx->digcnt, ctx->bufcnt);
  379. }
  380. static int omap_sham_init(struct ahash_request *req)
  381. {
  382. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  383. struct omap_sham_ctx *tctx = crypto_ahash_ctx(tfm);
  384. struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
  385. struct omap_sham_dev *dd = NULL, *tmp;
  386. spin_lock_bh(&sham.lock);
  387. if (!tctx->dd) {
  388. list_for_each_entry(tmp, &sham.dev_list, list) {
  389. dd = tmp;
  390. break;
  391. }
  392. tctx->dd = dd;
  393. } else {
  394. dd = tctx->dd;
  395. }
  396. spin_unlock_bh(&sham.lock);
  397. ctx->dd = dd;
  398. ctx->flags = 0;
  399. ctx->flags |= FLAGS_FIRST;
  400. dev_dbg(dd->dev, "init: digest size: %d\n",
  401. crypto_ahash_digestsize(tfm));
  402. if (crypto_ahash_digestsize(tfm) == SHA1_DIGEST_SIZE)
  403. ctx->flags |= FLAGS_SHA1;
  404. ctx->bufcnt = 0;
  405. ctx->digcnt = 0;
  406. ctx->buflen = PAGE_SIZE;
  407. ctx->buffer = (void *)__get_free_page(
  408. (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
  409. GFP_KERNEL : GFP_ATOMIC);
  410. if (!ctx->buffer)
  411. return -ENOMEM;
  412. ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer, ctx->buflen,
  413. DMA_TO_DEVICE);
  414. if (dma_mapping_error(dd->dev, ctx->dma_addr)) {
  415. dev_err(dd->dev, "dma %u bytes error\n", ctx->buflen);
  416. free_page((unsigned long)ctx->buffer);
  417. return -EINVAL;
  418. }
  419. if (tctx->flags & FLAGS_HMAC) {
  420. struct omap_sham_hmac_ctx *bctx = tctx->base;
  421. memcpy(ctx->buffer, bctx->ipad, SHA1_MD5_BLOCK_SIZE);
  422. ctx->bufcnt = SHA1_MD5_BLOCK_SIZE;
  423. ctx->flags |= FLAGS_HMAC;
  424. }
  425. return 0;
  426. }
  427. static int omap_sham_update_req(struct omap_sham_dev *dd)
  428. {
  429. struct ahash_request *req = dd->req;
  430. struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
  431. int err;
  432. dev_dbg(dd->dev, "update_req: total: %u, digcnt: %d, finup: %d\n",
  433. ctx->total, ctx->digcnt, (ctx->flags & FLAGS_FINUP) != 0);
  434. if (ctx->flags & FLAGS_CPU)
  435. err = omap_sham_update_cpu(dd);
  436. else if (ctx->flags & FLAGS_FAST)
  437. err = omap_sham_update_dma_fast(dd);
  438. else
  439. err = omap_sham_update_dma_slow(dd);
  440. /* wait for dma completion before can take more data */
  441. dev_dbg(dd->dev, "update: err: %d, digcnt: %d\n", err, ctx->digcnt);
  442. return err;
  443. }
  444. static int omap_sham_final_req(struct omap_sham_dev *dd)
  445. {
  446. struct ahash_request *req = dd->req;
  447. struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
  448. int err = 0, use_dma = 1;
  449. if (ctx->bufcnt <= 64)
  450. /* faster to handle last block with cpu */
  451. use_dma = 0;
  452. if (use_dma)
  453. err = omap_sham_xmit_dma(dd, ctx->dma_addr, ctx->bufcnt, 1);
  454. else
  455. err = omap_sham_xmit_cpu(dd, ctx->buffer, ctx->bufcnt, 1);
  456. ctx->bufcnt = 0;
  457. if (err != -EINPROGRESS)
  458. omap_sham_cleanup(req);
  459. dev_dbg(dd->dev, "final_req: err: %d\n", err);
  460. return err;
  461. }
  462. static int omap_sham_finish_req_hmac(struct ahash_request *req)
  463. {
  464. struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
  465. struct omap_sham_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
  466. struct omap_sham_hmac_ctx *bctx = tctx->base;
  467. int bs = crypto_shash_blocksize(bctx->shash);
  468. int ds = crypto_shash_digestsize(bctx->shash);
  469. struct {
  470. struct shash_desc shash;
  471. char ctx[crypto_shash_descsize(bctx->shash)];
  472. } desc;
  473. desc.shash.tfm = bctx->shash;
  474. desc.shash.flags = 0; /* not CRYPTO_TFM_REQ_MAY_SLEEP */
  475. return crypto_shash_init(&desc.shash) ?:
  476. crypto_shash_update(&desc.shash, bctx->opad, bs) ?:
  477. crypto_shash_finup(&desc.shash, ctx->digest, ds, ctx->digest);
  478. }
  479. static void omap_sham_finish_req(struct ahash_request *req, int err)
  480. {
  481. struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
  482. if (!err) {
  483. omap_sham_copy_hash(ctx->dd->req, 1);
  484. if (ctx->flags & FLAGS_HMAC)
  485. err = omap_sham_finish_req_hmac(req);
  486. }
  487. if (ctx->flags & FLAGS_FINAL)
  488. omap_sham_cleanup(req);
  489. clear_bit(FLAGS_BUSY, &ctx->dd->flags);
  490. if (req->base.complete)
  491. req->base.complete(&req->base, err);
  492. }
  493. static int omap_sham_handle_queue(struct omap_sham_dev *dd)
  494. {
  495. struct crypto_async_request *async_req, *backlog;
  496. struct omap_sham_reqctx *ctx;
  497. struct ahash_request *req, *prev_req;
  498. unsigned long flags;
  499. int err = 0;
  500. if (test_and_set_bit(FLAGS_BUSY, &dd->flags))
  501. return 0;
  502. spin_lock_irqsave(&dd->lock, flags);
  503. backlog = crypto_get_backlog(&dd->queue);
  504. async_req = crypto_dequeue_request(&dd->queue);
  505. if (!async_req)
  506. clear_bit(FLAGS_BUSY, &dd->flags);
  507. spin_unlock_irqrestore(&dd->lock, flags);
  508. if (!async_req)
  509. return 0;
  510. if (backlog)
  511. backlog->complete(backlog, -EINPROGRESS);
  512. req = ahash_request_cast(async_req);
  513. prev_req = dd->req;
  514. dd->req = req;
  515. ctx = ahash_request_ctx(req);
  516. dev_dbg(dd->dev, "handling new req, op: %lu, nbytes: %d\n",
  517. ctx->op, req->nbytes);
  518. if (req != prev_req && ctx->digcnt)
  519. /* request has changed - restore hash */
  520. omap_sham_copy_hash(req, 0);
  521. if (ctx->op == OP_UPDATE) {
  522. err = omap_sham_update_req(dd);
  523. if (err != -EINPROGRESS && (ctx->flags & FLAGS_FINUP))
  524. /* no final() after finup() */
  525. err = omap_sham_final_req(dd);
  526. } else if (ctx->op == OP_FINAL) {
  527. err = omap_sham_final_req(dd);
  528. }
  529. if (err != -EINPROGRESS) {
  530. /* done_task will not finish it, so do it here */
  531. omap_sham_finish_req(req, err);
  532. tasklet_schedule(&dd->queue_task);
  533. }
  534. dev_dbg(dd->dev, "exit, err: %d\n", err);
  535. return err;
  536. }
  537. static int omap_sham_enqueue(struct ahash_request *req, unsigned int op)
  538. {
  539. struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
  540. struct omap_sham_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
  541. struct omap_sham_dev *dd = tctx->dd;
  542. unsigned long flags;
  543. int err;
  544. ctx->op = op;
  545. spin_lock_irqsave(&dd->lock, flags);
  546. err = ahash_enqueue_request(&dd->queue, req);
  547. spin_unlock_irqrestore(&dd->lock, flags);
  548. omap_sham_handle_queue(dd);
  549. return err;
  550. }
  551. static int omap_sham_update(struct ahash_request *req)
  552. {
  553. struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
  554. if (!req->nbytes)
  555. return 0;
  556. ctx->total = req->nbytes;
  557. ctx->sg = req->src;
  558. ctx->offset = 0;
  559. if (ctx->flags & FLAGS_FINUP) {
  560. if ((ctx->digcnt + ctx->bufcnt + ctx->total) < 9) {
  561. /*
  562. * OMAP HW accel works only with buffers >= 9
  563. * will switch to bypass in final()
  564. * final has the same request and data
  565. */
  566. omap_sham_append_sg(ctx);
  567. return 0;
  568. } else if (ctx->bufcnt + ctx->total <= 64) {
  569. ctx->flags |= FLAGS_CPU;
  570. } else if (!ctx->bufcnt && sg_is_last(ctx->sg)) {
  571. /* may be can use faster functions */
  572. int aligned = IS_ALIGNED((u32)ctx->sg->offset,
  573. sizeof(u32));
  574. if (aligned && (ctx->flags & FLAGS_FIRST))
  575. /* digest: first and final */
  576. ctx->flags |= FLAGS_FAST;
  577. ctx->flags &= ~FLAGS_FIRST;
  578. }
  579. } else if (ctx->bufcnt + ctx->total <= ctx->buflen) {
  580. /* if not finaup -> not fast */
  581. omap_sham_append_sg(ctx);
  582. return 0;
  583. }
  584. return omap_sham_enqueue(req, OP_UPDATE);
  585. }
  586. static int omap_sham_shash_digest(struct crypto_shash *shash, u32 flags,
  587. const u8 *data, unsigned int len, u8 *out)
  588. {
  589. struct {
  590. struct shash_desc shash;
  591. char ctx[crypto_shash_descsize(shash)];
  592. } desc;
  593. desc.shash.tfm = shash;
  594. desc.shash.flags = flags & CRYPTO_TFM_REQ_MAY_SLEEP;
  595. return crypto_shash_digest(&desc.shash, data, len, out);
  596. }
  597. static int omap_sham_final_shash(struct ahash_request *req)
  598. {
  599. struct omap_sham_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
  600. struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
  601. return omap_sham_shash_digest(tctx->fallback, req->base.flags,
  602. ctx->buffer, ctx->bufcnt, req->result);
  603. }
  604. static int omap_sham_final(struct ahash_request *req)
  605. {
  606. struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
  607. int err = 0;
  608. ctx->flags |= FLAGS_FINUP;
  609. /* OMAP HW accel works only with buffers >= 9 */
  610. /* HMAC is always >= 9 because of ipad */
  611. if ((ctx->digcnt + ctx->bufcnt) < 9)
  612. err = omap_sham_final_shash(req);
  613. else if (ctx->bufcnt)
  614. return omap_sham_enqueue(req, OP_FINAL);
  615. omap_sham_cleanup(req);
  616. return err;
  617. }
  618. static int omap_sham_finup(struct ahash_request *req)
  619. {
  620. struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
  621. int err1, err2;
  622. ctx->flags |= FLAGS_FINUP;
  623. err1 = omap_sham_update(req);
  624. if (err1 == -EINPROGRESS)
  625. return err1;
  626. /*
  627. * final() has to be always called to cleanup resources
  628. * even if udpate() failed, except EINPROGRESS
  629. */
  630. err2 = omap_sham_final(req);
  631. return err1 ?: err2;
  632. }
  633. static int omap_sham_digest(struct ahash_request *req)
  634. {
  635. return omap_sham_init(req) ?: omap_sham_finup(req);
  636. }
  637. static int omap_sham_setkey(struct crypto_ahash *tfm, const u8 *key,
  638. unsigned int keylen)
  639. {
  640. struct omap_sham_ctx *tctx = crypto_ahash_ctx(tfm);
  641. struct omap_sham_hmac_ctx *bctx = tctx->base;
  642. int bs = crypto_shash_blocksize(bctx->shash);
  643. int ds = crypto_shash_digestsize(bctx->shash);
  644. int err, i;
  645. err = crypto_shash_setkey(tctx->fallback, key, keylen);
  646. if (err)
  647. return err;
  648. if (keylen > bs) {
  649. err = omap_sham_shash_digest(bctx->shash,
  650. crypto_shash_get_flags(bctx->shash),
  651. key, keylen, bctx->ipad);
  652. if (err)
  653. return err;
  654. keylen = ds;
  655. } else {
  656. memcpy(bctx->ipad, key, keylen);
  657. }
  658. memset(bctx->ipad + keylen, 0, bs - keylen);
  659. memcpy(bctx->opad, bctx->ipad, bs);
  660. for (i = 0; i < bs; i++) {
  661. bctx->ipad[i] ^= 0x36;
  662. bctx->opad[i] ^= 0x5c;
  663. }
  664. return err;
  665. }
  666. static int omap_sham_cra_init_alg(struct crypto_tfm *tfm, const char *alg_base)
  667. {
  668. struct omap_sham_ctx *tctx = crypto_tfm_ctx(tfm);
  669. const char *alg_name = crypto_tfm_alg_name(tfm);
  670. /* Allocate a fallback and abort if it failed. */
  671. tctx->fallback = crypto_alloc_shash(alg_name, 0,
  672. CRYPTO_ALG_NEED_FALLBACK);
  673. if (IS_ERR(tctx->fallback)) {
  674. pr_err("omap-sham: fallback driver '%s' "
  675. "could not be loaded.\n", alg_name);
  676. return PTR_ERR(tctx->fallback);
  677. }
  678. crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
  679. sizeof(struct omap_sham_reqctx));
  680. if (alg_base) {
  681. struct omap_sham_hmac_ctx *bctx = tctx->base;
  682. tctx->flags |= FLAGS_HMAC;
  683. bctx->shash = crypto_alloc_shash(alg_base, 0,
  684. CRYPTO_ALG_NEED_FALLBACK);
  685. if (IS_ERR(bctx->shash)) {
  686. pr_err("omap-sham: base driver '%s' "
  687. "could not be loaded.\n", alg_base);
  688. crypto_free_shash(tctx->fallback);
  689. return PTR_ERR(bctx->shash);
  690. }
  691. }
  692. return 0;
  693. }
  694. static int omap_sham_cra_init(struct crypto_tfm *tfm)
  695. {
  696. return omap_sham_cra_init_alg(tfm, NULL);
  697. }
  698. static int omap_sham_cra_sha1_init(struct crypto_tfm *tfm)
  699. {
  700. return omap_sham_cra_init_alg(tfm, "sha1");
  701. }
  702. static int omap_sham_cra_md5_init(struct crypto_tfm *tfm)
  703. {
  704. return omap_sham_cra_init_alg(tfm, "md5");
  705. }
  706. static void omap_sham_cra_exit(struct crypto_tfm *tfm)
  707. {
  708. struct omap_sham_ctx *tctx = crypto_tfm_ctx(tfm);
  709. crypto_free_shash(tctx->fallback);
  710. tctx->fallback = NULL;
  711. if (tctx->flags & FLAGS_HMAC) {
  712. struct omap_sham_hmac_ctx *bctx = tctx->base;
  713. crypto_free_shash(bctx->shash);
  714. }
  715. }
  716. static struct ahash_alg algs[] = {
  717. {
  718. .init = omap_sham_init,
  719. .update = omap_sham_update,
  720. .final = omap_sham_final,
  721. .finup = omap_sham_finup,
  722. .digest = omap_sham_digest,
  723. .halg.digestsize = SHA1_DIGEST_SIZE,
  724. .halg.base = {
  725. .cra_name = "sha1",
  726. .cra_driver_name = "omap-sha1",
  727. .cra_priority = 100,
  728. .cra_flags = CRYPTO_ALG_TYPE_AHASH |
  729. CRYPTO_ALG_ASYNC |
  730. CRYPTO_ALG_NEED_FALLBACK,
  731. .cra_blocksize = SHA1_BLOCK_SIZE,
  732. .cra_ctxsize = sizeof(struct omap_sham_ctx),
  733. .cra_alignmask = 0,
  734. .cra_module = THIS_MODULE,
  735. .cra_init = omap_sham_cra_init,
  736. .cra_exit = omap_sham_cra_exit,
  737. }
  738. },
  739. {
  740. .init = omap_sham_init,
  741. .update = omap_sham_update,
  742. .final = omap_sham_final,
  743. .finup = omap_sham_finup,
  744. .digest = omap_sham_digest,
  745. .halg.digestsize = MD5_DIGEST_SIZE,
  746. .halg.base = {
  747. .cra_name = "md5",
  748. .cra_driver_name = "omap-md5",
  749. .cra_priority = 100,
  750. .cra_flags = CRYPTO_ALG_TYPE_AHASH |
  751. CRYPTO_ALG_ASYNC |
  752. CRYPTO_ALG_NEED_FALLBACK,
  753. .cra_blocksize = SHA1_BLOCK_SIZE,
  754. .cra_ctxsize = sizeof(struct omap_sham_ctx),
  755. .cra_alignmask = 0,
  756. .cra_module = THIS_MODULE,
  757. .cra_init = omap_sham_cra_init,
  758. .cra_exit = omap_sham_cra_exit,
  759. }
  760. },
  761. {
  762. .init = omap_sham_init,
  763. .update = omap_sham_update,
  764. .final = omap_sham_final,
  765. .finup = omap_sham_finup,
  766. .digest = omap_sham_digest,
  767. .setkey = omap_sham_setkey,
  768. .halg.digestsize = SHA1_DIGEST_SIZE,
  769. .halg.base = {
  770. .cra_name = "hmac(sha1)",
  771. .cra_driver_name = "omap-hmac-sha1",
  772. .cra_priority = 100,
  773. .cra_flags = CRYPTO_ALG_TYPE_AHASH |
  774. CRYPTO_ALG_ASYNC |
  775. CRYPTO_ALG_NEED_FALLBACK,
  776. .cra_blocksize = SHA1_BLOCK_SIZE,
  777. .cra_ctxsize = sizeof(struct omap_sham_ctx) +
  778. sizeof(struct omap_sham_hmac_ctx),
  779. .cra_alignmask = 0,
  780. .cra_module = THIS_MODULE,
  781. .cra_init = omap_sham_cra_sha1_init,
  782. .cra_exit = omap_sham_cra_exit,
  783. }
  784. },
  785. {
  786. .init = omap_sham_init,
  787. .update = omap_sham_update,
  788. .final = omap_sham_final,
  789. .finup = omap_sham_finup,
  790. .digest = omap_sham_digest,
  791. .setkey = omap_sham_setkey,
  792. .halg.digestsize = MD5_DIGEST_SIZE,
  793. .halg.base = {
  794. .cra_name = "hmac(md5)",
  795. .cra_driver_name = "omap-hmac-md5",
  796. .cra_priority = 100,
  797. .cra_flags = CRYPTO_ALG_TYPE_AHASH |
  798. CRYPTO_ALG_ASYNC |
  799. CRYPTO_ALG_NEED_FALLBACK,
  800. .cra_blocksize = SHA1_BLOCK_SIZE,
  801. .cra_ctxsize = sizeof(struct omap_sham_ctx) +
  802. sizeof(struct omap_sham_hmac_ctx),
  803. .cra_alignmask = 0,
  804. .cra_module = THIS_MODULE,
  805. .cra_init = omap_sham_cra_md5_init,
  806. .cra_exit = omap_sham_cra_exit,
  807. }
  808. }
  809. };
  810. static void omap_sham_done_task(unsigned long data)
  811. {
  812. struct omap_sham_dev *dd = (struct omap_sham_dev *)data;
  813. struct ahash_request *req = dd->req;
  814. struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
  815. int ready = 1;
  816. if (ctx->flags & FLAGS_OUTPUT_READY) {
  817. ctx->flags &= ~FLAGS_OUTPUT_READY;
  818. ready = 1;
  819. }
  820. if (dd->flags & FLAGS_DMA_ACTIVE) {
  821. dd->flags &= ~FLAGS_DMA_ACTIVE;
  822. omap_sham_update_dma_stop(dd);
  823. omap_sham_update_dma_slow(dd);
  824. }
  825. if (ready && !(dd->flags & FLAGS_DMA_ACTIVE)) {
  826. dev_dbg(dd->dev, "update done\n");
  827. /* finish curent request */
  828. omap_sham_finish_req(req, 0);
  829. /* start new request */
  830. omap_sham_handle_queue(dd);
  831. }
  832. }
  833. static void omap_sham_queue_task(unsigned long data)
  834. {
  835. struct omap_sham_dev *dd = (struct omap_sham_dev *)data;
  836. omap_sham_handle_queue(dd);
  837. }
  838. static irqreturn_t omap_sham_irq(int irq, void *dev_id)
  839. {
  840. struct omap_sham_dev *dd = dev_id;
  841. struct omap_sham_reqctx *ctx = ahash_request_ctx(dd->req);
  842. if (!ctx) {
  843. dev_err(dd->dev, "unknown interrupt.\n");
  844. return IRQ_HANDLED;
  845. }
  846. if (unlikely(ctx->flags & FLAGS_FINAL))
  847. /* final -> allow device to go to power-saving mode */
  848. omap_sham_write_mask(dd, SHA_REG_CTRL, 0, SHA_REG_CTRL_LENGTH);
  849. omap_sham_write_mask(dd, SHA_REG_CTRL, SHA_REG_CTRL_OUTPUT_READY,
  850. SHA_REG_CTRL_OUTPUT_READY);
  851. omap_sham_read(dd, SHA_REG_CTRL);
  852. ctx->flags |= FLAGS_OUTPUT_READY;
  853. tasklet_schedule(&dd->done_task);
  854. return IRQ_HANDLED;
  855. }
  856. static void omap_sham_dma_callback(int lch, u16 ch_status, void *data)
  857. {
  858. struct omap_sham_dev *dd = data;
  859. if (likely(lch == dd->dma_lch))
  860. tasklet_schedule(&dd->done_task);
  861. }
  862. static int omap_sham_dma_init(struct omap_sham_dev *dd)
  863. {
  864. int err;
  865. dd->dma_lch = -1;
  866. err = omap_request_dma(dd->dma, dev_name(dd->dev),
  867. omap_sham_dma_callback, dd, &dd->dma_lch);
  868. if (err) {
  869. dev_err(dd->dev, "Unable to request DMA channel\n");
  870. return err;
  871. }
  872. return 0;
  873. }
  874. static void omap_sham_dma_cleanup(struct omap_sham_dev *dd)
  875. {
  876. if (dd->dma_lch >= 0) {
  877. omap_free_dma(dd->dma_lch);
  878. dd->dma_lch = -1;
  879. }
  880. }
  881. static int __devinit omap_sham_probe(struct platform_device *pdev)
  882. {
  883. struct omap_sham_dev *dd;
  884. struct device *dev = &pdev->dev;
  885. struct resource *res;
  886. int err, i, j;
  887. dd = kzalloc(sizeof(struct omap_sham_dev), GFP_KERNEL);
  888. if (dd == NULL) {
  889. dev_err(dev, "unable to alloc data struct.\n");
  890. err = -ENOMEM;
  891. goto data_err;
  892. }
  893. dd->dev = dev;
  894. platform_set_drvdata(pdev, dd);
  895. INIT_LIST_HEAD(&dd->list);
  896. spin_lock_init(&dd->lock);
  897. tasklet_init(&dd->done_task, omap_sham_done_task, (unsigned long)dd);
  898. tasklet_init(&dd->queue_task, omap_sham_queue_task, (unsigned long)dd);
  899. crypto_init_queue(&dd->queue, OMAP_SHAM_QUEUE_LENGTH);
  900. dd->irq = -1;
  901. /* Get the base address */
  902. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  903. if (!res) {
  904. dev_err(dev, "no MEM resource info\n");
  905. err = -ENODEV;
  906. goto res_err;
  907. }
  908. dd->phys_base = res->start;
  909. /* Get the DMA */
  910. res = platform_get_resource(pdev, IORESOURCE_DMA, 0);
  911. if (!res) {
  912. dev_err(dev, "no DMA resource info\n");
  913. err = -ENODEV;
  914. goto res_err;
  915. }
  916. dd->dma = res->start;
  917. /* Get the IRQ */
  918. dd->irq = platform_get_irq(pdev, 0);
  919. if (dd->irq < 0) {
  920. dev_err(dev, "no IRQ resource info\n");
  921. err = dd->irq;
  922. goto res_err;
  923. }
  924. err = request_irq(dd->irq, omap_sham_irq,
  925. IRQF_TRIGGER_LOW, dev_name(dev), dd);
  926. if (err) {
  927. dev_err(dev, "unable to request irq.\n");
  928. goto res_err;
  929. }
  930. err = omap_sham_dma_init(dd);
  931. if (err)
  932. goto dma_err;
  933. /* Initializing the clock */
  934. dd->iclk = clk_get(dev, "ick");
  935. if (!dd->iclk) {
  936. dev_err(dev, "clock intialization failed.\n");
  937. err = -ENODEV;
  938. goto clk_err;
  939. }
  940. dd->io_base = ioremap(dd->phys_base, SZ_4K);
  941. if (!dd->io_base) {
  942. dev_err(dev, "can't ioremap\n");
  943. err = -ENOMEM;
  944. goto io_err;
  945. }
  946. clk_enable(dd->iclk);
  947. dev_info(dev, "hw accel on OMAP rev %u.%u\n",
  948. (omap_sham_read(dd, SHA_REG_REV) & SHA_REG_REV_MAJOR) >> 4,
  949. omap_sham_read(dd, SHA_REG_REV) & SHA_REG_REV_MINOR);
  950. clk_disable(dd->iclk);
  951. spin_lock(&sham.lock);
  952. list_add_tail(&dd->list, &sham.dev_list);
  953. spin_unlock(&sham.lock);
  954. for (i = 0; i < ARRAY_SIZE(algs); i++) {
  955. err = crypto_register_ahash(&algs[i]);
  956. if (err)
  957. goto err_algs;
  958. }
  959. return 0;
  960. err_algs:
  961. for (j = 0; j < i; j++)
  962. crypto_unregister_ahash(&algs[j]);
  963. iounmap(dd->io_base);
  964. io_err:
  965. clk_put(dd->iclk);
  966. clk_err:
  967. omap_sham_dma_cleanup(dd);
  968. dma_err:
  969. if (dd->irq >= 0)
  970. free_irq(dd->irq, dd);
  971. res_err:
  972. kfree(dd);
  973. dd = NULL;
  974. data_err:
  975. dev_err(dev, "initialization failed.\n");
  976. return err;
  977. }
  978. static int __devexit omap_sham_remove(struct platform_device *pdev)
  979. {
  980. static struct omap_sham_dev *dd;
  981. int i;
  982. dd = platform_get_drvdata(pdev);
  983. if (!dd)
  984. return -ENODEV;
  985. spin_lock(&sham.lock);
  986. list_del(&dd->list);
  987. spin_unlock(&sham.lock);
  988. for (i = 0; i < ARRAY_SIZE(algs); i++)
  989. crypto_unregister_ahash(&algs[i]);
  990. tasklet_kill(&dd->done_task);
  991. tasklet_kill(&dd->queue_task);
  992. iounmap(dd->io_base);
  993. clk_put(dd->iclk);
  994. omap_sham_dma_cleanup(dd);
  995. if (dd->irq >= 0)
  996. free_irq(dd->irq, dd);
  997. kfree(dd);
  998. dd = NULL;
  999. return 0;
  1000. }
  1001. static struct platform_driver omap_sham_driver = {
  1002. .probe = omap_sham_probe,
  1003. .remove = omap_sham_remove,
  1004. .driver = {
  1005. .name = "omap-sham",
  1006. .owner = THIS_MODULE,
  1007. },
  1008. };
  1009. static int __init omap_sham_mod_init(void)
  1010. {
  1011. pr_info("loading %s driver\n", "omap-sham");
  1012. if (!cpu_class_is_omap2() ||
  1013. omap_type() != OMAP2_DEVICE_TYPE_SEC) {
  1014. pr_err("Unsupported cpu\n");
  1015. return -ENODEV;
  1016. }
  1017. return platform_driver_register(&omap_sham_driver);
  1018. }
  1019. static void __exit omap_sham_mod_exit(void)
  1020. {
  1021. platform_driver_unregister(&omap_sham_driver);
  1022. }
  1023. module_init(omap_sham_mod_init);
  1024. module_exit(omap_sham_mod_exit);
  1025. MODULE_DESCRIPTION("OMAP SHA1/MD5 hw acceleration support.");
  1026. MODULE_LICENSE("GPL v2");
  1027. MODULE_AUTHOR("Dmitry Kasatkin");