amd64_edac.c 70 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718
  1. #include "amd64_edac.h"
  2. #include <asm/amd_nb.h>
  3. static struct edac_pci_ctl_info *amd64_ctl_pci;
  4. static int report_gart_errors;
  5. module_param(report_gart_errors, int, 0644);
  6. /*
  7. * Set by command line parameter. If BIOS has enabled the ECC, this override is
  8. * cleared to prevent re-enabling the hardware by this driver.
  9. */
  10. static int ecc_enable_override;
  11. module_param(ecc_enable_override, int, 0644);
  12. static struct msr __percpu *msrs;
  13. /*
  14. * count successfully initialized driver instances for setup_pci_device()
  15. */
  16. static atomic_t drv_instances = ATOMIC_INIT(0);
  17. /* Per-node driver instances */
  18. static struct mem_ctl_info **mcis;
  19. static struct ecc_settings **ecc_stngs;
  20. /*
  21. * Address to DRAM bank mapping: see F2x80 for K8 and F2x[1,0]80 for Fam10 and
  22. * later.
  23. */
  24. static int ddr2_dbam_revCG[] = {
  25. [0] = 32,
  26. [1] = 64,
  27. [2] = 128,
  28. [3] = 256,
  29. [4] = 512,
  30. [5] = 1024,
  31. [6] = 2048,
  32. };
  33. static int ddr2_dbam_revD[] = {
  34. [0] = 32,
  35. [1] = 64,
  36. [2 ... 3] = 128,
  37. [4] = 256,
  38. [5] = 512,
  39. [6] = 256,
  40. [7] = 512,
  41. [8 ... 9] = 1024,
  42. [10] = 2048,
  43. };
  44. static int ddr2_dbam[] = { [0] = 128,
  45. [1] = 256,
  46. [2 ... 4] = 512,
  47. [5 ... 6] = 1024,
  48. [7 ... 8] = 2048,
  49. [9 ... 10] = 4096,
  50. [11] = 8192,
  51. };
  52. static int ddr3_dbam[] = { [0] = -1,
  53. [1] = 256,
  54. [2] = 512,
  55. [3 ... 4] = -1,
  56. [5 ... 6] = 1024,
  57. [7 ... 8] = 2048,
  58. [9 ... 10] = 4096,
  59. [11] = 8192,
  60. };
  61. /*
  62. * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
  63. * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
  64. * or higher value'.
  65. *
  66. *FIXME: Produce a better mapping/linearisation.
  67. */
  68. struct scrubrate {
  69. u32 scrubval; /* bit pattern for scrub rate */
  70. u32 bandwidth; /* bandwidth consumed (bytes/sec) */
  71. } scrubrates[] = {
  72. { 0x01, 1600000000UL},
  73. { 0x02, 800000000UL},
  74. { 0x03, 400000000UL},
  75. { 0x04, 200000000UL},
  76. { 0x05, 100000000UL},
  77. { 0x06, 50000000UL},
  78. { 0x07, 25000000UL},
  79. { 0x08, 12284069UL},
  80. { 0x09, 6274509UL},
  81. { 0x0A, 3121951UL},
  82. { 0x0B, 1560975UL},
  83. { 0x0C, 781440UL},
  84. { 0x0D, 390720UL},
  85. { 0x0E, 195300UL},
  86. { 0x0F, 97650UL},
  87. { 0x10, 48854UL},
  88. { 0x11, 24427UL},
  89. { 0x12, 12213UL},
  90. { 0x13, 6101UL},
  91. { 0x14, 3051UL},
  92. { 0x15, 1523UL},
  93. { 0x16, 761UL},
  94. { 0x00, 0UL}, /* scrubbing off */
  95. };
  96. static int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
  97. u32 *val, const char *func)
  98. {
  99. int err = 0;
  100. err = pci_read_config_dword(pdev, offset, val);
  101. if (err)
  102. amd64_warn("%s: error reading F%dx%03x.\n",
  103. func, PCI_FUNC(pdev->devfn), offset);
  104. return err;
  105. }
  106. int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
  107. u32 val, const char *func)
  108. {
  109. int err = 0;
  110. err = pci_write_config_dword(pdev, offset, val);
  111. if (err)
  112. amd64_warn("%s: error writing to F%dx%03x.\n",
  113. func, PCI_FUNC(pdev->devfn), offset);
  114. return err;
  115. }
  116. /*
  117. *
  118. * Depending on the family, F2 DCT reads need special handling:
  119. *
  120. * K8: has a single DCT only
  121. *
  122. * F10h: each DCT has its own set of regs
  123. * DCT0 -> F2x040..
  124. * DCT1 -> F2x140..
  125. *
  126. * F15h: we select which DCT we access using F1x10C[DctCfgSel]
  127. *
  128. */
  129. static int k8_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
  130. const char *func)
  131. {
  132. if (addr >= 0x100)
  133. return -EINVAL;
  134. return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
  135. }
  136. static int f10_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
  137. const char *func)
  138. {
  139. return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
  140. }
  141. static int f15_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
  142. const char *func)
  143. {
  144. u32 reg = 0;
  145. u8 dct = 0;
  146. if (addr >= 0x140 && addr <= 0x1a0) {
  147. dct = 1;
  148. addr -= 0x100;
  149. }
  150. amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
  151. reg &= 0xfffffffe;
  152. reg |= dct;
  153. amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
  154. return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
  155. }
  156. /*
  157. * Memory scrubber control interface. For K8, memory scrubbing is handled by
  158. * hardware and can involve L2 cache, dcache as well as the main memory. With
  159. * F10, this is extended to L3 cache scrubbing on CPU models sporting that
  160. * functionality.
  161. *
  162. * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
  163. * (dram) over to cache lines. This is nasty, so we will use bandwidth in
  164. * bytes/sec for the setting.
  165. *
  166. * Currently, we only do dram scrubbing. If the scrubbing is done in software on
  167. * other archs, we might not have access to the caches directly.
  168. */
  169. /*
  170. * scan the scrub rate mapping table for a close or matching bandwidth value to
  171. * issue. If requested is too big, then use last maximum value found.
  172. */
  173. static int __amd64_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate)
  174. {
  175. u32 scrubval;
  176. int i;
  177. /*
  178. * map the configured rate (new_bw) to a value specific to the AMD64
  179. * memory controller and apply to register. Search for the first
  180. * bandwidth entry that is greater or equal than the setting requested
  181. * and program that. If at last entry, turn off DRAM scrubbing.
  182. */
  183. for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
  184. /*
  185. * skip scrub rates which aren't recommended
  186. * (see F10 BKDG, F3x58)
  187. */
  188. if (scrubrates[i].scrubval < min_rate)
  189. continue;
  190. if (scrubrates[i].bandwidth <= new_bw)
  191. break;
  192. /*
  193. * if no suitable bandwidth found, turn off DRAM scrubbing
  194. * entirely by falling back to the last element in the
  195. * scrubrates array.
  196. */
  197. }
  198. scrubval = scrubrates[i].scrubval;
  199. pci_write_bits32(ctl, K8_SCRCTRL, scrubval, 0x001F);
  200. if (scrubval)
  201. return scrubrates[i].bandwidth;
  202. return 0;
  203. }
  204. static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
  205. {
  206. struct amd64_pvt *pvt = mci->pvt_info;
  207. return __amd64_set_scrub_rate(pvt->F3, bw, pvt->min_scrubrate);
  208. }
  209. static int amd64_get_scrub_rate(struct mem_ctl_info *mci)
  210. {
  211. struct amd64_pvt *pvt = mci->pvt_info;
  212. u32 scrubval = 0;
  213. int i, retval = -EINVAL;
  214. amd64_read_pci_cfg(pvt->F3, K8_SCRCTRL, &scrubval);
  215. scrubval = scrubval & 0x001F;
  216. amd64_debug("pci-read, sdram scrub control value: %d\n", scrubval);
  217. for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
  218. if (scrubrates[i].scrubval == scrubval) {
  219. retval = scrubrates[i].bandwidth;
  220. break;
  221. }
  222. }
  223. return retval;
  224. }
  225. /*
  226. * returns true if the SysAddr given by sys_addr matches the
  227. * DRAM base/limit associated with node_id
  228. */
  229. static bool amd64_base_limit_match(struct amd64_pvt *pvt, u64 sys_addr, int nid)
  230. {
  231. u64 addr;
  232. /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
  233. * all ones if the most significant implemented address bit is 1.
  234. * Here we discard bits 63-40. See section 3.4.2 of AMD publication
  235. * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
  236. * Application Programming.
  237. */
  238. addr = sys_addr & 0x000000ffffffffffull;
  239. return ((addr >= get_dram_base(pvt, nid)) &&
  240. (addr <= get_dram_limit(pvt, nid)));
  241. }
  242. /*
  243. * Attempt to map a SysAddr to a node. On success, return a pointer to the
  244. * mem_ctl_info structure for the node that the SysAddr maps to.
  245. *
  246. * On failure, return NULL.
  247. */
  248. static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
  249. u64 sys_addr)
  250. {
  251. struct amd64_pvt *pvt;
  252. int node_id;
  253. u32 intlv_en, bits;
  254. /*
  255. * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
  256. * 3.4.4.2) registers to map the SysAddr to a node ID.
  257. */
  258. pvt = mci->pvt_info;
  259. /*
  260. * The value of this field should be the same for all DRAM Base
  261. * registers. Therefore we arbitrarily choose to read it from the
  262. * register for node 0.
  263. */
  264. intlv_en = dram_intlv_en(pvt, 0);
  265. if (intlv_en == 0) {
  266. for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
  267. if (amd64_base_limit_match(pvt, sys_addr, node_id))
  268. goto found;
  269. }
  270. goto err_no_match;
  271. }
  272. if (unlikely((intlv_en != 0x01) &&
  273. (intlv_en != 0x03) &&
  274. (intlv_en != 0x07))) {
  275. amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
  276. return NULL;
  277. }
  278. bits = (((u32) sys_addr) >> 12) & intlv_en;
  279. for (node_id = 0; ; ) {
  280. if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
  281. break; /* intlv_sel field matches */
  282. if (++node_id >= DRAM_RANGES)
  283. goto err_no_match;
  284. }
  285. /* sanity test for sys_addr */
  286. if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
  287. amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
  288. "range for node %d with node interleaving enabled.\n",
  289. __func__, sys_addr, node_id);
  290. return NULL;
  291. }
  292. found:
  293. return edac_mc_find(node_id);
  294. err_no_match:
  295. debugf2("sys_addr 0x%lx doesn't match any node\n",
  296. (unsigned long)sys_addr);
  297. return NULL;
  298. }
  299. /*
  300. * compute the CS base address of the @csrow on the DRAM controller @dct.
  301. * For details see F2x[5C:40] in the processor's BKDG
  302. */
  303. static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
  304. u64 *base, u64 *mask)
  305. {
  306. u64 csbase, csmask, base_bits, mask_bits;
  307. u8 addr_shift;
  308. if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
  309. csbase = pvt->csels[dct].csbases[csrow];
  310. csmask = pvt->csels[dct].csmasks[csrow];
  311. base_bits = GENMASK(21, 31) | GENMASK(9, 15);
  312. mask_bits = GENMASK(21, 29) | GENMASK(9, 15);
  313. addr_shift = 4;
  314. } else {
  315. csbase = pvt->csels[dct].csbases[csrow];
  316. csmask = pvt->csels[dct].csmasks[csrow >> 1];
  317. addr_shift = 8;
  318. if (boot_cpu_data.x86 == 0x15)
  319. base_bits = mask_bits = GENMASK(19,30) | GENMASK(5,13);
  320. else
  321. base_bits = mask_bits = GENMASK(19,28) | GENMASK(5,13);
  322. }
  323. *base = (csbase & base_bits) << addr_shift;
  324. *mask = ~0ULL;
  325. /* poke holes for the csmask */
  326. *mask &= ~(mask_bits << addr_shift);
  327. /* OR them in */
  328. *mask |= (csmask & mask_bits) << addr_shift;
  329. }
  330. #define for_each_chip_select(i, dct, pvt) \
  331. for (i = 0; i < pvt->csels[dct].b_cnt; i++)
  332. #define for_each_chip_select_mask(i, dct, pvt) \
  333. for (i = 0; i < pvt->csels[dct].m_cnt; i++)
  334. /*
  335. * @input_addr is an InputAddr associated with the node given by mci. Return the
  336. * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
  337. */
  338. static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
  339. {
  340. struct amd64_pvt *pvt;
  341. int csrow;
  342. u64 base, mask;
  343. pvt = mci->pvt_info;
  344. for_each_chip_select(csrow, 0, pvt) {
  345. if (!csrow_enabled(csrow, 0, pvt))
  346. continue;
  347. get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
  348. mask = ~mask;
  349. if ((input_addr & mask) == (base & mask)) {
  350. debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
  351. (unsigned long)input_addr, csrow,
  352. pvt->mc_node_id);
  353. return csrow;
  354. }
  355. }
  356. debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
  357. (unsigned long)input_addr, pvt->mc_node_id);
  358. return -1;
  359. }
  360. /*
  361. * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
  362. * for the node represented by mci. Info is passed back in *hole_base,
  363. * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
  364. * info is invalid. Info may be invalid for either of the following reasons:
  365. *
  366. * - The revision of the node is not E or greater. In this case, the DRAM Hole
  367. * Address Register does not exist.
  368. *
  369. * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
  370. * indicating that its contents are not valid.
  371. *
  372. * The values passed back in *hole_base, *hole_offset, and *hole_size are
  373. * complete 32-bit values despite the fact that the bitfields in the DHAR
  374. * only represent bits 31-24 of the base and offset values.
  375. */
  376. int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
  377. u64 *hole_offset, u64 *hole_size)
  378. {
  379. struct amd64_pvt *pvt = mci->pvt_info;
  380. u64 base;
  381. /* only revE and later have the DRAM Hole Address Register */
  382. if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
  383. debugf1(" revision %d for node %d does not support DHAR\n",
  384. pvt->ext_model, pvt->mc_node_id);
  385. return 1;
  386. }
  387. /* valid for Fam10h and above */
  388. if (boot_cpu_data.x86 >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
  389. debugf1(" Dram Memory Hoisting is DISABLED on this system\n");
  390. return 1;
  391. }
  392. if (!dhar_valid(pvt)) {
  393. debugf1(" Dram Memory Hoisting is DISABLED on this node %d\n",
  394. pvt->mc_node_id);
  395. return 1;
  396. }
  397. /* This node has Memory Hoisting */
  398. /* +------------------+--------------------+--------------------+-----
  399. * | memory | DRAM hole | relocated |
  400. * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
  401. * | | | DRAM hole |
  402. * | | | [0x100000000, |
  403. * | | | (0x100000000+ |
  404. * | | | (0xffffffff-x))] |
  405. * +------------------+--------------------+--------------------+-----
  406. *
  407. * Above is a diagram of physical memory showing the DRAM hole and the
  408. * relocated addresses from the DRAM hole. As shown, the DRAM hole
  409. * starts at address x (the base address) and extends through address
  410. * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
  411. * addresses in the hole so that they start at 0x100000000.
  412. */
  413. base = dhar_base(pvt);
  414. *hole_base = base;
  415. *hole_size = (0x1ull << 32) - base;
  416. if (boot_cpu_data.x86 > 0xf)
  417. *hole_offset = f10_dhar_offset(pvt);
  418. else
  419. *hole_offset = k8_dhar_offset(pvt);
  420. debugf1(" DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
  421. pvt->mc_node_id, (unsigned long)*hole_base,
  422. (unsigned long)*hole_offset, (unsigned long)*hole_size);
  423. return 0;
  424. }
  425. EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
  426. /*
  427. * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
  428. * assumed that sys_addr maps to the node given by mci.
  429. *
  430. * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
  431. * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
  432. * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
  433. * then it is also involved in translating a SysAddr to a DramAddr. Sections
  434. * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
  435. * These parts of the documentation are unclear. I interpret them as follows:
  436. *
  437. * When node n receives a SysAddr, it processes the SysAddr as follows:
  438. *
  439. * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
  440. * Limit registers for node n. If the SysAddr is not within the range
  441. * specified by the base and limit values, then node n ignores the Sysaddr
  442. * (since it does not map to node n). Otherwise continue to step 2 below.
  443. *
  444. * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
  445. * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
  446. * the range of relocated addresses (starting at 0x100000000) from the DRAM
  447. * hole. If not, skip to step 3 below. Else get the value of the
  448. * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
  449. * offset defined by this value from the SysAddr.
  450. *
  451. * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
  452. * Base register for node n. To obtain the DramAddr, subtract the base
  453. * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
  454. */
  455. static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
  456. {
  457. struct amd64_pvt *pvt = mci->pvt_info;
  458. u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
  459. int ret = 0;
  460. dram_base = get_dram_base(pvt, pvt->mc_node_id);
  461. ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
  462. &hole_size);
  463. if (!ret) {
  464. if ((sys_addr >= (1ull << 32)) &&
  465. (sys_addr < ((1ull << 32) + hole_size))) {
  466. /* use DHAR to translate SysAddr to DramAddr */
  467. dram_addr = sys_addr - hole_offset;
  468. debugf2("using DHAR to translate SysAddr 0x%lx to "
  469. "DramAddr 0x%lx\n",
  470. (unsigned long)sys_addr,
  471. (unsigned long)dram_addr);
  472. return dram_addr;
  473. }
  474. }
  475. /*
  476. * Translate the SysAddr to a DramAddr as shown near the start of
  477. * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
  478. * only deals with 40-bit values. Therefore we discard bits 63-40 of
  479. * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
  480. * discard are all 1s. Otherwise the bits we discard are all 0s. See
  481. * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
  482. * Programmer's Manual Volume 1 Application Programming.
  483. */
  484. dram_addr = (sys_addr & 0xffffffffffull) - dram_base;
  485. debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
  486. "DramAddr 0x%lx\n", (unsigned long)sys_addr,
  487. (unsigned long)dram_addr);
  488. return dram_addr;
  489. }
  490. /*
  491. * @intlv_en is the value of the IntlvEn field from a DRAM Base register
  492. * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
  493. * for node interleaving.
  494. */
  495. static int num_node_interleave_bits(unsigned intlv_en)
  496. {
  497. static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
  498. int n;
  499. BUG_ON(intlv_en > 7);
  500. n = intlv_shift_table[intlv_en];
  501. return n;
  502. }
  503. /* Translate the DramAddr given by @dram_addr to an InputAddr. */
  504. static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
  505. {
  506. struct amd64_pvt *pvt;
  507. int intlv_shift;
  508. u64 input_addr;
  509. pvt = mci->pvt_info;
  510. /*
  511. * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
  512. * concerning translating a DramAddr to an InputAddr.
  513. */
  514. intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
  515. input_addr = ((dram_addr >> intlv_shift) & 0xffffff000ull) +
  516. (dram_addr & 0xfff);
  517. debugf2(" Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
  518. intlv_shift, (unsigned long)dram_addr,
  519. (unsigned long)input_addr);
  520. return input_addr;
  521. }
  522. /*
  523. * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
  524. * assumed that @sys_addr maps to the node given by mci.
  525. */
  526. static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
  527. {
  528. u64 input_addr;
  529. input_addr =
  530. dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
  531. debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
  532. (unsigned long)sys_addr, (unsigned long)input_addr);
  533. return input_addr;
  534. }
  535. /*
  536. * @input_addr is an InputAddr associated with the node represented by mci.
  537. * Translate @input_addr to a DramAddr and return the result.
  538. */
  539. static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
  540. {
  541. struct amd64_pvt *pvt;
  542. int node_id, intlv_shift;
  543. u64 bits, dram_addr;
  544. u32 intlv_sel;
  545. /*
  546. * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
  547. * shows how to translate a DramAddr to an InputAddr. Here we reverse
  548. * this procedure. When translating from a DramAddr to an InputAddr, the
  549. * bits used for node interleaving are discarded. Here we recover these
  550. * bits from the IntlvSel field of the DRAM Limit register (section
  551. * 3.4.4.2) for the node that input_addr is associated with.
  552. */
  553. pvt = mci->pvt_info;
  554. node_id = pvt->mc_node_id;
  555. BUG_ON((node_id < 0) || (node_id > 7));
  556. intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
  557. if (intlv_shift == 0) {
  558. debugf1(" InputAddr 0x%lx translates to DramAddr of "
  559. "same value\n", (unsigned long)input_addr);
  560. return input_addr;
  561. }
  562. bits = ((input_addr & 0xffffff000ull) << intlv_shift) +
  563. (input_addr & 0xfff);
  564. intlv_sel = dram_intlv_sel(pvt, node_id) & ((1 << intlv_shift) - 1);
  565. dram_addr = bits + (intlv_sel << 12);
  566. debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
  567. "(%d node interleave bits)\n", (unsigned long)input_addr,
  568. (unsigned long)dram_addr, intlv_shift);
  569. return dram_addr;
  570. }
  571. /*
  572. * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
  573. * @dram_addr to a SysAddr.
  574. */
  575. static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
  576. {
  577. struct amd64_pvt *pvt = mci->pvt_info;
  578. u64 hole_base, hole_offset, hole_size, base, sys_addr;
  579. int ret = 0;
  580. ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
  581. &hole_size);
  582. if (!ret) {
  583. if ((dram_addr >= hole_base) &&
  584. (dram_addr < (hole_base + hole_size))) {
  585. sys_addr = dram_addr + hole_offset;
  586. debugf1("using DHAR to translate DramAddr 0x%lx to "
  587. "SysAddr 0x%lx\n", (unsigned long)dram_addr,
  588. (unsigned long)sys_addr);
  589. return sys_addr;
  590. }
  591. }
  592. base = get_dram_base(pvt, pvt->mc_node_id);
  593. sys_addr = dram_addr + base;
  594. /*
  595. * The sys_addr we have computed up to this point is a 40-bit value
  596. * because the k8 deals with 40-bit values. However, the value we are
  597. * supposed to return is a full 64-bit physical address. The AMD
  598. * x86-64 architecture specifies that the most significant implemented
  599. * address bit through bit 63 of a physical address must be either all
  600. * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a
  601. * 64-bit value below. See section 3.4.2 of AMD publication 24592:
  602. * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
  603. * Programming.
  604. */
  605. sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
  606. debugf1(" Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
  607. pvt->mc_node_id, (unsigned long)dram_addr,
  608. (unsigned long)sys_addr);
  609. return sys_addr;
  610. }
  611. /*
  612. * @input_addr is an InputAddr associated with the node given by mci. Translate
  613. * @input_addr to a SysAddr.
  614. */
  615. static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
  616. u64 input_addr)
  617. {
  618. return dram_addr_to_sys_addr(mci,
  619. input_addr_to_dram_addr(mci, input_addr));
  620. }
  621. /*
  622. * Find the minimum and maximum InputAddr values that map to the given @csrow.
  623. * Pass back these values in *input_addr_min and *input_addr_max.
  624. */
  625. static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
  626. u64 *input_addr_min, u64 *input_addr_max)
  627. {
  628. struct amd64_pvt *pvt;
  629. u64 base, mask;
  630. pvt = mci->pvt_info;
  631. BUG_ON((csrow < 0) || (csrow >= pvt->csels[0].b_cnt));
  632. get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
  633. *input_addr_min = base & ~mask;
  634. *input_addr_max = base | mask;
  635. }
  636. /* Map the Error address to a PAGE and PAGE OFFSET. */
  637. static inline void error_address_to_page_and_offset(u64 error_address,
  638. u32 *page, u32 *offset)
  639. {
  640. *page = (u32) (error_address >> PAGE_SHIFT);
  641. *offset = ((u32) error_address) & ~PAGE_MASK;
  642. }
  643. /*
  644. * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
  645. * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
  646. * of a node that detected an ECC memory error. mci represents the node that
  647. * the error address maps to (possibly different from the node that detected
  648. * the error). Return the number of the csrow that sys_addr maps to, or -1 on
  649. * error.
  650. */
  651. static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
  652. {
  653. int csrow;
  654. csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
  655. if (csrow == -1)
  656. amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
  657. "address 0x%lx\n", (unsigned long)sys_addr);
  658. return csrow;
  659. }
  660. static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
  661. static u16 extract_syndrome(struct err_regs *err)
  662. {
  663. return ((err->nbsh >> 15) & 0xff) | ((err->nbsl >> 16) & 0xff00);
  664. }
  665. /*
  666. * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
  667. * are ECC capable.
  668. */
  669. static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
  670. {
  671. int bit;
  672. enum dev_type edac_cap = EDAC_FLAG_NONE;
  673. bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
  674. ? 19
  675. : 17;
  676. if (pvt->dclr0 & BIT(bit))
  677. edac_cap = EDAC_FLAG_SECDED;
  678. return edac_cap;
  679. }
  680. static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt);
  681. static void amd64_dump_dramcfg_low(u32 dclr, int chan)
  682. {
  683. debugf1("F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
  684. debugf1(" DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
  685. (dclr & BIT(16)) ? "un" : "",
  686. (dclr & BIT(19)) ? "yes" : "no");
  687. debugf1(" PAR/ERR parity: %s\n",
  688. (dclr & BIT(8)) ? "enabled" : "disabled");
  689. debugf1(" DCT 128bit mode width: %s\n",
  690. (dclr & BIT(11)) ? "128b" : "64b");
  691. debugf1(" x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
  692. (dclr & BIT(12)) ? "yes" : "no",
  693. (dclr & BIT(13)) ? "yes" : "no",
  694. (dclr & BIT(14)) ? "yes" : "no",
  695. (dclr & BIT(15)) ? "yes" : "no");
  696. }
  697. /* Display and decode various NB registers for debug purposes. */
  698. static void dump_misc_regs(struct amd64_pvt *pvt)
  699. {
  700. debugf1("F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
  701. debugf1(" NB two channel DRAM capable: %s\n",
  702. (pvt->nbcap & K8_NBCAP_DCT_DUAL) ? "yes" : "no");
  703. debugf1(" ECC capable: %s, ChipKill ECC capable: %s\n",
  704. (pvt->nbcap & K8_NBCAP_SECDED) ? "yes" : "no",
  705. (pvt->nbcap & K8_NBCAP_CHIPKILL) ? "yes" : "no");
  706. amd64_dump_dramcfg_low(pvt->dclr0, 0);
  707. debugf1("F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
  708. debugf1("F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, "
  709. "offset: 0x%08x\n",
  710. pvt->dhar, dhar_base(pvt),
  711. (boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt)
  712. : f10_dhar_offset(pvt));
  713. debugf1(" DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
  714. amd64_debug_display_dimm_sizes(0, pvt);
  715. /* everything below this point is Fam10h and above */
  716. if (boot_cpu_data.x86 == 0xf)
  717. return;
  718. amd64_debug_display_dimm_sizes(1, pvt);
  719. amd64_info("using %s syndromes.\n", ((pvt->syn_type == 8) ? "x8" : "x4"));
  720. /* Only if NOT ganged does dclr1 have valid info */
  721. if (!dct_ganging_enabled(pvt))
  722. amd64_dump_dramcfg_low(pvt->dclr1, 1);
  723. }
  724. static void amd64_read_dbam_reg(struct amd64_pvt *pvt)
  725. {
  726. amd64_read_dct_pci_cfg(pvt, DBAM0, &pvt->dbam0);
  727. amd64_read_dct_pci_cfg(pvt, DBAM1, &pvt->dbam1);
  728. }
  729. /*
  730. * see BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
  731. */
  732. static void prep_chip_selects(struct amd64_pvt *pvt)
  733. {
  734. if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
  735. pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
  736. pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
  737. } else {
  738. pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
  739. pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
  740. }
  741. }
  742. /*
  743. * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
  744. */
  745. static void read_dct_base_mask(struct amd64_pvt *pvt)
  746. {
  747. int cs;
  748. prep_chip_selects(pvt);
  749. for_each_chip_select(cs, 0, pvt) {
  750. u32 reg0 = DCSB0 + (cs * 4);
  751. u32 reg1 = DCSB1 + (cs * 4);
  752. u32 *base0 = &pvt->csels[0].csbases[cs];
  753. u32 *base1 = &pvt->csels[1].csbases[cs];
  754. if (!amd64_read_dct_pci_cfg(pvt, reg0, base0))
  755. debugf0(" DCSB0[%d]=0x%08x reg: F2x%x\n",
  756. cs, *base0, reg0);
  757. if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
  758. continue;
  759. if (!amd64_read_dct_pci_cfg(pvt, reg1, base1))
  760. debugf0(" DCSB1[%d]=0x%08x reg: F2x%x\n",
  761. cs, *base1, reg1);
  762. }
  763. for_each_chip_select_mask(cs, 0, pvt) {
  764. u32 reg0 = DCSM0 + (cs * 4);
  765. u32 reg1 = DCSM1 + (cs * 4);
  766. u32 *mask0 = &pvt->csels[0].csmasks[cs];
  767. u32 *mask1 = &pvt->csels[1].csmasks[cs];
  768. if (!amd64_read_dct_pci_cfg(pvt, reg0, mask0))
  769. debugf0(" DCSM0[%d]=0x%08x reg: F2x%x\n",
  770. cs, *mask0, reg0);
  771. if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
  772. continue;
  773. if (!amd64_read_dct_pci_cfg(pvt, reg1, mask1))
  774. debugf0(" DCSM1[%d]=0x%08x reg: F2x%x\n",
  775. cs, *mask1, reg1);
  776. }
  777. }
  778. static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt, int cs)
  779. {
  780. enum mem_type type;
  781. if (boot_cpu_data.x86 >= 0x10 || pvt->ext_model >= K8_REV_F) {
  782. if (pvt->dchr0 & DDR3_MODE)
  783. type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
  784. else
  785. type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
  786. } else {
  787. type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
  788. }
  789. amd64_info("CS%d: %s\n", cs, edac_mem_types[type]);
  790. return type;
  791. }
  792. /*
  793. * Read the DRAM Configuration Low register. It differs between CG, D & E revs
  794. * and the later RevF memory controllers (DDR vs DDR2)
  795. *
  796. * Return:
  797. * number of memory channels in operation
  798. * Pass back:
  799. * contents of the DCL0_LOW register
  800. */
  801. static int k8_early_channel_count(struct amd64_pvt *pvt)
  802. {
  803. int flag, err = 0;
  804. err = amd64_read_dct_pci_cfg(pvt, F10_DCLR_0, &pvt->dclr0);
  805. if (err)
  806. return err;
  807. if (pvt->ext_model >= K8_REV_F)
  808. /* RevF (NPT) and later */
  809. flag = pvt->dclr0 & F10_WIDTH_128;
  810. else
  811. /* RevE and earlier */
  812. flag = pvt->dclr0 & REVE_WIDTH_128;
  813. /* not used */
  814. pvt->dclr1 = 0;
  815. return (flag) ? 2 : 1;
  816. }
  817. /* extract the ERROR ADDRESS for the K8 CPUs */
  818. static u64 k8_get_error_address(struct mem_ctl_info *mci,
  819. struct err_regs *info)
  820. {
  821. return (((u64) (info->nbeah & 0xff)) << 32) +
  822. (info->nbeal & ~0x03);
  823. }
  824. static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
  825. {
  826. u32 off = range << 3;
  827. amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off, &pvt->ranges[range].base.lo);
  828. amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
  829. if (boot_cpu_data.x86 == 0xf)
  830. return;
  831. if (!dram_rw(pvt, range))
  832. return;
  833. amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off, &pvt->ranges[range].base.hi);
  834. amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
  835. }
  836. static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
  837. struct err_regs *err_info, u64 sys_addr)
  838. {
  839. struct mem_ctl_info *src_mci;
  840. int channel, csrow;
  841. u32 page, offset;
  842. u16 syndrome;
  843. syndrome = extract_syndrome(err_info);
  844. /* CHIPKILL enabled */
  845. if (err_info->nbcfg & K8_NBCFG_CHIPKILL) {
  846. channel = get_channel_from_ecc_syndrome(mci, syndrome);
  847. if (channel < 0) {
  848. /*
  849. * Syndrome didn't map, so we don't know which of the
  850. * 2 DIMMs is in error. So we need to ID 'both' of them
  851. * as suspect.
  852. */
  853. amd64_mc_warn(mci, "unknown syndrome 0x%04x - possible "
  854. "error reporting race\n", syndrome);
  855. edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
  856. return;
  857. }
  858. } else {
  859. /*
  860. * non-chipkill ecc mode
  861. *
  862. * The k8 documentation is unclear about how to determine the
  863. * channel number when using non-chipkill memory. This method
  864. * was obtained from email communication with someone at AMD.
  865. * (Wish the email was placed in this comment - norsk)
  866. */
  867. channel = ((sys_addr & BIT(3)) != 0);
  868. }
  869. /*
  870. * Find out which node the error address belongs to. This may be
  871. * different from the node that detected the error.
  872. */
  873. src_mci = find_mc_by_sys_addr(mci, sys_addr);
  874. if (!src_mci) {
  875. amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
  876. (unsigned long)sys_addr);
  877. edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
  878. return;
  879. }
  880. /* Now map the sys_addr to a CSROW */
  881. csrow = sys_addr_to_csrow(src_mci, sys_addr);
  882. if (csrow < 0) {
  883. edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
  884. } else {
  885. error_address_to_page_and_offset(sys_addr, &page, &offset);
  886. edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
  887. channel, EDAC_MOD_STR);
  888. }
  889. }
  890. static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
  891. {
  892. int *dbam_map;
  893. if (pvt->ext_model >= K8_REV_F)
  894. dbam_map = ddr2_dbam;
  895. else if (pvt->ext_model >= K8_REV_D)
  896. dbam_map = ddr2_dbam_revD;
  897. else
  898. dbam_map = ddr2_dbam_revCG;
  899. return dbam_map[cs_mode];
  900. }
  901. /*
  902. * Get the number of DCT channels in use.
  903. *
  904. * Return:
  905. * number of Memory Channels in operation
  906. * Pass back:
  907. * contents of the DCL0_LOW register
  908. */
  909. static int f10_early_channel_count(struct amd64_pvt *pvt)
  910. {
  911. int dbams[] = { DBAM0, DBAM1 };
  912. int i, j, channels = 0;
  913. u32 dbam;
  914. /* If we are in 128 bit mode, then we are using 2 channels */
  915. if (pvt->dclr0 & F10_WIDTH_128) {
  916. channels = 2;
  917. return channels;
  918. }
  919. /*
  920. * Need to check if in unganged mode: In such, there are 2 channels,
  921. * but they are not in 128 bit mode and thus the above 'dclr0' status
  922. * bit will be OFF.
  923. *
  924. * Need to check DCT0[0] and DCT1[0] to see if only one of them has
  925. * their CSEnable bit on. If so, then SINGLE DIMM case.
  926. */
  927. debugf0("Data width is not 128 bits - need more decoding\n");
  928. /*
  929. * Check DRAM Bank Address Mapping values for each DIMM to see if there
  930. * is more than just one DIMM present in unganged mode. Need to check
  931. * both controllers since DIMMs can be placed in either one.
  932. */
  933. for (i = 0; i < ARRAY_SIZE(dbams); i++) {
  934. if (amd64_read_dct_pci_cfg(pvt, dbams[i], &dbam))
  935. goto err_reg;
  936. for (j = 0; j < 4; j++) {
  937. if (DBAM_DIMM(j, dbam) > 0) {
  938. channels++;
  939. break;
  940. }
  941. }
  942. }
  943. if (channels > 2)
  944. channels = 2;
  945. amd64_info("MCT channel count: %d\n", channels);
  946. return channels;
  947. err_reg:
  948. return -1;
  949. }
  950. static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
  951. {
  952. int *dbam_map;
  953. if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
  954. dbam_map = ddr3_dbam;
  955. else
  956. dbam_map = ddr2_dbam;
  957. return dbam_map[cs_mode];
  958. }
  959. static u64 f10_get_error_address(struct mem_ctl_info *mci,
  960. struct err_regs *info)
  961. {
  962. return (((u64) (info->nbeah & 0xffff)) << 32) +
  963. (info->nbeal & ~0x01);
  964. }
  965. static void f10_read_dram_ctl_register(struct amd64_pvt *pvt)
  966. {
  967. if (!amd64_read_dct_pci_cfg(pvt, F10_DCTL_SEL_LOW, &pvt->dct_sel_low)) {
  968. debugf0("F2x110 (DCTL Sel. Low): 0x%08x, High range addrs at: 0x%x\n",
  969. pvt->dct_sel_low, dct_sel_baseaddr(pvt));
  970. debugf0(" DCT mode: %s, All DCTs on: %s\n",
  971. (dct_ganging_enabled(pvt) ? "ganged" : "unganged"),
  972. (dct_dram_enabled(pvt) ? "yes" : "no"));
  973. if (!dct_ganging_enabled(pvt))
  974. debugf0(" Address range split per DCT: %s\n",
  975. (dct_high_range_enabled(pvt) ? "yes" : "no"));
  976. debugf0(" DCT data interleave for ECC: %s, "
  977. "DRAM cleared since last warm reset: %s\n",
  978. (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
  979. (dct_memory_cleared(pvt) ? "yes" : "no"));
  980. debugf0(" DCT channel interleave: %s, "
  981. "DCT interleave bits selector: 0x%x\n",
  982. (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
  983. dct_sel_interleave_addr(pvt));
  984. }
  985. amd64_read_dct_pci_cfg(pvt, F10_DCTL_SEL_HIGH, &pvt->dct_sel_hi);
  986. }
  987. /*
  988. * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
  989. * Interleaving Modes.
  990. */
  991. static u8 f10_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
  992. bool hi_range_sel, u8 intlv_en)
  993. {
  994. u32 dct_sel_high = (pvt->dct_sel_low >> 1) & 1;
  995. if (dct_ganging_enabled(pvt))
  996. return 0;
  997. if (hi_range_sel)
  998. return dct_sel_high;
  999. /*
  1000. * see F2x110[DctSelIntLvAddr] - channel interleave mode
  1001. */
  1002. if (dct_interleave_enabled(pvt)) {
  1003. u8 intlv_addr = dct_sel_interleave_addr(pvt);
  1004. /* return DCT select function: 0=DCT0, 1=DCT1 */
  1005. if (!intlv_addr)
  1006. return sys_addr >> 6 & 1;
  1007. if (intlv_addr & 0x2) {
  1008. u8 shift = intlv_addr & 0x1 ? 9 : 6;
  1009. u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
  1010. return ((sys_addr >> shift) & 1) ^ temp;
  1011. }
  1012. return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
  1013. }
  1014. if (dct_high_range_enabled(pvt))
  1015. return ~dct_sel_high & 1;
  1016. return 0;
  1017. }
  1018. /* Convert the sys_addr to the normalized DCT address */
  1019. static u64 f10_get_norm_dct_addr(struct amd64_pvt *pvt, int range,
  1020. u64 sys_addr, bool hi_rng,
  1021. u32 dct_sel_base_addr)
  1022. {
  1023. u64 chan_off;
  1024. u64 dram_base = get_dram_base(pvt, range);
  1025. u64 hole_off = f10_dhar_offset(pvt);
  1026. u32 hole_valid = dhar_valid(pvt);
  1027. u64 dct_sel_base_off = (pvt->dct_sel_hi & 0xFFFFFC00) << 16;
  1028. if (hi_rng) {
  1029. /*
  1030. * if
  1031. * base address of high range is below 4Gb
  1032. * (bits [47:27] at [31:11])
  1033. * DRAM address space on this DCT is hoisted above 4Gb &&
  1034. * sys_addr > 4Gb
  1035. *
  1036. * remove hole offset from sys_addr
  1037. * else
  1038. * remove high range offset from sys_addr
  1039. */
  1040. if ((!(dct_sel_base_addr >> 16) ||
  1041. dct_sel_base_addr < dhar_base(pvt)) &&
  1042. hole_valid &&
  1043. (sys_addr >= BIT_64(32)))
  1044. chan_off = hole_off;
  1045. else
  1046. chan_off = dct_sel_base_off;
  1047. } else {
  1048. /*
  1049. * if
  1050. * we have a valid hole &&
  1051. * sys_addr > 4Gb
  1052. *
  1053. * remove hole
  1054. * else
  1055. * remove dram base to normalize to DCT address
  1056. */
  1057. if (hole_valid && (sys_addr >= BIT_64(32)))
  1058. chan_off = hole_off;
  1059. else
  1060. chan_off = dram_base;
  1061. }
  1062. return (sys_addr & GENMASK(6,47)) - (chan_off & GENMASK(23,47));
  1063. }
  1064. /* Hack for the time being - Can we get this from BIOS?? */
  1065. #define CH0SPARE_RANK 0
  1066. #define CH1SPARE_RANK 1
  1067. /*
  1068. * checks if the csrow passed in is marked as SPARED, if so returns the new
  1069. * spare row
  1070. */
  1071. static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
  1072. {
  1073. u32 swap_done;
  1074. u32 bad_dram_cs;
  1075. /* Depending on channel, isolate respective SPARING info */
  1076. if (dct) {
  1077. swap_done = F10_ONLINE_SPARE_SWAPDONE1(pvt->online_spare);
  1078. bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS1(pvt->online_spare);
  1079. if (swap_done && (csrow == bad_dram_cs))
  1080. csrow = CH1SPARE_RANK;
  1081. } else {
  1082. swap_done = F10_ONLINE_SPARE_SWAPDONE0(pvt->online_spare);
  1083. bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS0(pvt->online_spare);
  1084. if (swap_done && (csrow == bad_dram_cs))
  1085. csrow = CH0SPARE_RANK;
  1086. }
  1087. return csrow;
  1088. }
  1089. /*
  1090. * Iterate over the DRAM DCT "base" and "mask" registers looking for a
  1091. * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
  1092. *
  1093. * Return:
  1094. * -EINVAL: NOT FOUND
  1095. * 0..csrow = Chip-Select Row
  1096. */
  1097. static int f10_lookup_addr_in_dct(u64 in_addr, u32 nid, u8 dct)
  1098. {
  1099. struct mem_ctl_info *mci;
  1100. struct amd64_pvt *pvt;
  1101. u64 cs_base, cs_mask;
  1102. int cs_found = -EINVAL;
  1103. int csrow;
  1104. mci = mcis[nid];
  1105. if (!mci)
  1106. return cs_found;
  1107. pvt = mci->pvt_info;
  1108. debugf1("input addr: 0x%llx, DCT: %d\n", in_addr, dct);
  1109. for_each_chip_select(csrow, dct, pvt) {
  1110. if (!csrow_enabled(csrow, dct, pvt))
  1111. continue;
  1112. get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
  1113. debugf1(" CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
  1114. csrow, cs_base, cs_mask);
  1115. cs_mask = ~cs_mask;
  1116. debugf1(" (InputAddr & ~CSMask)=0x%llx "
  1117. "(CSBase & ~CSMask)=0x%llx\n",
  1118. (in_addr & cs_mask), (cs_base & cs_mask));
  1119. if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
  1120. cs_found = f10_process_possible_spare(pvt, dct, csrow);
  1121. debugf1(" MATCH csrow=%d\n", cs_found);
  1122. break;
  1123. }
  1124. }
  1125. return cs_found;
  1126. }
  1127. /* For a given @dram_range, check if @sys_addr falls within it. */
  1128. static int f10_match_to_this_node(struct amd64_pvt *pvt, int range,
  1129. u64 sys_addr, int *nid, int *chan_sel)
  1130. {
  1131. int cs_found = -EINVAL;
  1132. u64 chan_addr;
  1133. u32 tmp, dct_sel_base;
  1134. u8 channel;
  1135. bool high_range = false;
  1136. u8 node_id = dram_dst_node(pvt, range);
  1137. u8 intlv_en = dram_intlv_en(pvt, range);
  1138. u32 intlv_sel = dram_intlv_sel(pvt, range);
  1139. debugf1("(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
  1140. range, sys_addr, get_dram_limit(pvt, range));
  1141. if (intlv_en &&
  1142. (intlv_sel != ((sys_addr >> 12) & intlv_en)))
  1143. return -EINVAL;
  1144. dct_sel_base = dct_sel_baseaddr(pvt);
  1145. /*
  1146. * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
  1147. * select between DCT0 and DCT1.
  1148. */
  1149. if (dct_high_range_enabled(pvt) &&
  1150. !dct_ganging_enabled(pvt) &&
  1151. ((sys_addr >> 27) >= (dct_sel_base >> 11)))
  1152. high_range = true;
  1153. channel = f10_determine_channel(pvt, sys_addr, high_range, intlv_en);
  1154. chan_addr = f10_get_norm_dct_addr(pvt, range, sys_addr,
  1155. high_range, dct_sel_base);
  1156. /* remove Node ID (in case of memory interleaving) */
  1157. tmp = chan_addr & 0xFC0;
  1158. chan_addr = ((chan_addr >> hweight8(intlv_en)) & 0xFFFFFFFFF000ULL) | tmp;
  1159. /* remove channel interleave and hash */
  1160. if (dct_interleave_enabled(pvt) &&
  1161. !dct_high_range_enabled(pvt) &&
  1162. !dct_ganging_enabled(pvt)) {
  1163. if (dct_sel_interleave_addr(pvt) != 1)
  1164. chan_addr = (chan_addr >> 1) & 0xFFFFFFFFFFFFFFC0ULL;
  1165. else {
  1166. tmp = chan_addr & 0xFC0;
  1167. chan_addr = ((chan_addr & 0xFFFFFFFFFFFFC000ULL) >> 1)
  1168. | tmp;
  1169. }
  1170. }
  1171. debugf1(" (ChannelAddrLong=0x%llx)\n", chan_addr);
  1172. cs_found = f10_lookup_addr_in_dct(chan_addr, node_id, channel);
  1173. if (cs_found >= 0) {
  1174. *nid = node_id;
  1175. *chan_sel = channel;
  1176. }
  1177. return cs_found;
  1178. }
  1179. static int f10_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
  1180. int *node, int *chan_sel)
  1181. {
  1182. int range, cs_found = -EINVAL;
  1183. for (range = 0; range < DRAM_RANGES; range++) {
  1184. if (!dram_rw(pvt, range))
  1185. continue;
  1186. if ((get_dram_base(pvt, range) <= sys_addr) &&
  1187. (get_dram_limit(pvt, range) >= sys_addr)) {
  1188. cs_found = f10_match_to_this_node(pvt, range,
  1189. sys_addr, node,
  1190. chan_sel);
  1191. if (cs_found >= 0)
  1192. break;
  1193. }
  1194. }
  1195. return cs_found;
  1196. }
  1197. /*
  1198. * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
  1199. * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
  1200. *
  1201. * The @sys_addr is usually an error address received from the hardware
  1202. * (MCX_ADDR).
  1203. */
  1204. static void f10_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
  1205. struct err_regs *err_info,
  1206. u64 sys_addr)
  1207. {
  1208. struct amd64_pvt *pvt = mci->pvt_info;
  1209. u32 page, offset;
  1210. int nid, csrow, chan = 0;
  1211. u16 syndrome;
  1212. csrow = f10_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
  1213. if (csrow < 0) {
  1214. edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
  1215. return;
  1216. }
  1217. error_address_to_page_and_offset(sys_addr, &page, &offset);
  1218. syndrome = extract_syndrome(err_info);
  1219. /*
  1220. * We need the syndromes for channel detection only when we're
  1221. * ganged. Otherwise @chan should already contain the channel at
  1222. * this point.
  1223. */
  1224. if (dct_ganging_enabled(pvt) && (pvt->nbcfg & K8_NBCFG_CHIPKILL))
  1225. chan = get_channel_from_ecc_syndrome(mci, syndrome);
  1226. if (chan >= 0)
  1227. edac_mc_handle_ce(mci, page, offset, syndrome, csrow, chan,
  1228. EDAC_MOD_STR);
  1229. else
  1230. /*
  1231. * Channel unknown, report all channels on this CSROW as failed.
  1232. */
  1233. for (chan = 0; chan < mci->csrows[csrow].nr_channels; chan++)
  1234. edac_mc_handle_ce(mci, page, offset, syndrome,
  1235. csrow, chan, EDAC_MOD_STR);
  1236. }
  1237. /*
  1238. * debug routine to display the memory sizes of all logical DIMMs and its
  1239. * CSROWs as well
  1240. */
  1241. static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt)
  1242. {
  1243. int dimm, size0, size1, factor = 0;
  1244. u32 dbam;
  1245. u32 *dcsb;
  1246. if (boot_cpu_data.x86 == 0xf) {
  1247. if (pvt->dclr0 & F10_WIDTH_128)
  1248. factor = 1;
  1249. /* K8 families < revF not supported yet */
  1250. if (pvt->ext_model < K8_REV_F)
  1251. return;
  1252. else
  1253. WARN_ON(ctrl != 0);
  1254. }
  1255. dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1 : pvt->dbam0;
  1256. dcsb = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->csels[1].csbases
  1257. : pvt->csels[0].csbases;
  1258. debugf1("F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n", ctrl, dbam);
  1259. edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
  1260. /* Dump memory sizes for DIMM and its CSROWs */
  1261. for (dimm = 0; dimm < 4; dimm++) {
  1262. size0 = 0;
  1263. if (dcsb[dimm*2] & DCSB_CS_ENABLE)
  1264. size0 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
  1265. size1 = 0;
  1266. if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
  1267. size1 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
  1268. amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
  1269. dimm * 2, size0 << factor,
  1270. dimm * 2 + 1, size1 << factor);
  1271. }
  1272. }
  1273. static struct amd64_family_type amd64_family_types[] = {
  1274. [K8_CPUS] = {
  1275. .ctl_name = "K8",
  1276. .f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
  1277. .f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC,
  1278. .ops = {
  1279. .early_channel_count = k8_early_channel_count,
  1280. .get_error_address = k8_get_error_address,
  1281. .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
  1282. .dbam_to_cs = k8_dbam_to_chip_select,
  1283. .read_dct_pci_cfg = k8_read_dct_pci_cfg,
  1284. }
  1285. },
  1286. [F10_CPUS] = {
  1287. .ctl_name = "F10h",
  1288. .f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
  1289. .f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC,
  1290. .ops = {
  1291. .early_channel_count = f10_early_channel_count,
  1292. .get_error_address = f10_get_error_address,
  1293. .read_dram_ctl_register = f10_read_dram_ctl_register,
  1294. .map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow,
  1295. .dbam_to_cs = f10_dbam_to_chip_select,
  1296. .read_dct_pci_cfg = f10_read_dct_pci_cfg,
  1297. }
  1298. },
  1299. [F15_CPUS] = {
  1300. .ctl_name = "F15h",
  1301. .ops = {
  1302. .read_dct_pci_cfg = f15_read_dct_pci_cfg,
  1303. }
  1304. },
  1305. };
  1306. static struct pci_dev *pci_get_related_function(unsigned int vendor,
  1307. unsigned int device,
  1308. struct pci_dev *related)
  1309. {
  1310. struct pci_dev *dev = NULL;
  1311. dev = pci_get_device(vendor, device, dev);
  1312. while (dev) {
  1313. if ((dev->bus->number == related->bus->number) &&
  1314. (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
  1315. break;
  1316. dev = pci_get_device(vendor, device, dev);
  1317. }
  1318. return dev;
  1319. }
  1320. /*
  1321. * These are tables of eigenvectors (one per line) which can be used for the
  1322. * construction of the syndrome tables. The modified syndrome search algorithm
  1323. * uses those to find the symbol in error and thus the DIMM.
  1324. *
  1325. * Algorithm courtesy of Ross LaFetra from AMD.
  1326. */
  1327. static u16 x4_vectors[] = {
  1328. 0x2f57, 0x1afe, 0x66cc, 0xdd88,
  1329. 0x11eb, 0x3396, 0x7f4c, 0xeac8,
  1330. 0x0001, 0x0002, 0x0004, 0x0008,
  1331. 0x1013, 0x3032, 0x4044, 0x8088,
  1332. 0x106b, 0x30d6, 0x70fc, 0xe0a8,
  1333. 0x4857, 0xc4fe, 0x13cc, 0x3288,
  1334. 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
  1335. 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
  1336. 0x15c1, 0x2a42, 0x89ac, 0x4758,
  1337. 0x2b03, 0x1602, 0x4f0c, 0xca08,
  1338. 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
  1339. 0x8ba7, 0x465e, 0x244c, 0x1cc8,
  1340. 0x2b87, 0x164e, 0x642c, 0xdc18,
  1341. 0x40b9, 0x80de, 0x1094, 0x20e8,
  1342. 0x27db, 0x1eb6, 0x9dac, 0x7b58,
  1343. 0x11c1, 0x2242, 0x84ac, 0x4c58,
  1344. 0x1be5, 0x2d7a, 0x5e34, 0xa718,
  1345. 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
  1346. 0x4c97, 0xc87e, 0x11fc, 0x33a8,
  1347. 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
  1348. 0x16b3, 0x3d62, 0x4f34, 0x8518,
  1349. 0x1e2f, 0x391a, 0x5cac, 0xf858,
  1350. 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
  1351. 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
  1352. 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
  1353. 0x4397, 0xc27e, 0x17fc, 0x3ea8,
  1354. 0x1617, 0x3d3e, 0x6464, 0xb8b8,
  1355. 0x23ff, 0x12aa, 0xab6c, 0x56d8,
  1356. 0x2dfb, 0x1ba6, 0x913c, 0x7328,
  1357. 0x185d, 0x2ca6, 0x7914, 0x9e28,
  1358. 0x171b, 0x3e36, 0x7d7c, 0xebe8,
  1359. 0x4199, 0x82ee, 0x19f4, 0x2e58,
  1360. 0x4807, 0xc40e, 0x130c, 0x3208,
  1361. 0x1905, 0x2e0a, 0x5804, 0xac08,
  1362. 0x213f, 0x132a, 0xadfc, 0x5ba8,
  1363. 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
  1364. };
  1365. static u16 x8_vectors[] = {
  1366. 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
  1367. 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
  1368. 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
  1369. 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
  1370. 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
  1371. 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
  1372. 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
  1373. 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
  1374. 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
  1375. 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
  1376. 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
  1377. 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
  1378. 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
  1379. 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
  1380. 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
  1381. 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
  1382. 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
  1383. 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
  1384. 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
  1385. };
  1386. static int decode_syndrome(u16 syndrome, u16 *vectors, int num_vecs,
  1387. int v_dim)
  1388. {
  1389. unsigned int i, err_sym;
  1390. for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
  1391. u16 s = syndrome;
  1392. int v_idx = err_sym * v_dim;
  1393. int v_end = (err_sym + 1) * v_dim;
  1394. /* walk over all 16 bits of the syndrome */
  1395. for (i = 1; i < (1U << 16); i <<= 1) {
  1396. /* if bit is set in that eigenvector... */
  1397. if (v_idx < v_end && vectors[v_idx] & i) {
  1398. u16 ev_comp = vectors[v_idx++];
  1399. /* ... and bit set in the modified syndrome, */
  1400. if (s & i) {
  1401. /* remove it. */
  1402. s ^= ev_comp;
  1403. if (!s)
  1404. return err_sym;
  1405. }
  1406. } else if (s & i)
  1407. /* can't get to zero, move to next symbol */
  1408. break;
  1409. }
  1410. }
  1411. debugf0("syndrome(%x) not found\n", syndrome);
  1412. return -1;
  1413. }
  1414. static int map_err_sym_to_channel(int err_sym, int sym_size)
  1415. {
  1416. if (sym_size == 4)
  1417. switch (err_sym) {
  1418. case 0x20:
  1419. case 0x21:
  1420. return 0;
  1421. break;
  1422. case 0x22:
  1423. case 0x23:
  1424. return 1;
  1425. break;
  1426. default:
  1427. return err_sym >> 4;
  1428. break;
  1429. }
  1430. /* x8 symbols */
  1431. else
  1432. switch (err_sym) {
  1433. /* imaginary bits not in a DIMM */
  1434. case 0x10:
  1435. WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
  1436. err_sym);
  1437. return -1;
  1438. break;
  1439. case 0x11:
  1440. return 0;
  1441. break;
  1442. case 0x12:
  1443. return 1;
  1444. break;
  1445. default:
  1446. return err_sym >> 3;
  1447. break;
  1448. }
  1449. return -1;
  1450. }
  1451. static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
  1452. {
  1453. struct amd64_pvt *pvt = mci->pvt_info;
  1454. int err_sym = -1;
  1455. if (pvt->syn_type == 8)
  1456. err_sym = decode_syndrome(syndrome, x8_vectors,
  1457. ARRAY_SIZE(x8_vectors),
  1458. pvt->syn_type);
  1459. else if (pvt->syn_type == 4)
  1460. err_sym = decode_syndrome(syndrome, x4_vectors,
  1461. ARRAY_SIZE(x4_vectors),
  1462. pvt->syn_type);
  1463. else {
  1464. amd64_warn("Illegal syndrome type: %u\n", pvt->syn_type);
  1465. return err_sym;
  1466. }
  1467. return map_err_sym_to_channel(err_sym, pvt->syn_type);
  1468. }
  1469. /*
  1470. * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
  1471. * ADDRESS and process.
  1472. */
  1473. static void amd64_handle_ce(struct mem_ctl_info *mci,
  1474. struct err_regs *info)
  1475. {
  1476. struct amd64_pvt *pvt = mci->pvt_info;
  1477. u64 sys_addr;
  1478. /* Ensure that the Error Address is VALID */
  1479. if (!(info->nbsh & K8_NBSH_VALID_ERROR_ADDR)) {
  1480. amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
  1481. edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
  1482. return;
  1483. }
  1484. sys_addr = pvt->ops->get_error_address(mci, info);
  1485. amd64_mc_err(mci, "CE ERROR_ADDRESS= 0x%llx\n", sys_addr);
  1486. pvt->ops->map_sysaddr_to_csrow(mci, info, sys_addr);
  1487. }
  1488. /* Handle any Un-correctable Errors (UEs) */
  1489. static void amd64_handle_ue(struct mem_ctl_info *mci,
  1490. struct err_regs *info)
  1491. {
  1492. struct amd64_pvt *pvt = mci->pvt_info;
  1493. struct mem_ctl_info *log_mci, *src_mci = NULL;
  1494. int csrow;
  1495. u64 sys_addr;
  1496. u32 page, offset;
  1497. log_mci = mci;
  1498. if (!(info->nbsh & K8_NBSH_VALID_ERROR_ADDR)) {
  1499. amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
  1500. edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
  1501. return;
  1502. }
  1503. sys_addr = pvt->ops->get_error_address(mci, info);
  1504. /*
  1505. * Find out which node the error address belongs to. This may be
  1506. * different from the node that detected the error.
  1507. */
  1508. src_mci = find_mc_by_sys_addr(mci, sys_addr);
  1509. if (!src_mci) {
  1510. amd64_mc_err(mci, "ERROR ADDRESS (0x%lx) NOT mapped to a MC\n",
  1511. (unsigned long)sys_addr);
  1512. edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
  1513. return;
  1514. }
  1515. log_mci = src_mci;
  1516. csrow = sys_addr_to_csrow(log_mci, sys_addr);
  1517. if (csrow < 0) {
  1518. amd64_mc_err(mci, "ERROR_ADDRESS (0x%lx) NOT mapped to CS\n",
  1519. (unsigned long)sys_addr);
  1520. edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
  1521. } else {
  1522. error_address_to_page_and_offset(sys_addr, &page, &offset);
  1523. edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
  1524. }
  1525. }
  1526. static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
  1527. struct err_regs *info)
  1528. {
  1529. u16 ec = EC(info->nbsl);
  1530. u8 xec = XEC(info->nbsl, 0x1f);
  1531. int ecc_type = (info->nbsh >> 13) & 0x3;
  1532. /* Bail early out if this was an 'observed' error */
  1533. if (PP(ec) == K8_NBSL_PP_OBS)
  1534. return;
  1535. /* Do only ECC errors */
  1536. if (xec && xec != F10_NBSL_EXT_ERR_ECC)
  1537. return;
  1538. if (ecc_type == 2)
  1539. amd64_handle_ce(mci, info);
  1540. else if (ecc_type == 1)
  1541. amd64_handle_ue(mci, info);
  1542. }
  1543. void amd64_decode_bus_error(int node_id, struct mce *m, u32 nbcfg)
  1544. {
  1545. struct mem_ctl_info *mci = mcis[node_id];
  1546. struct err_regs regs;
  1547. regs.nbsl = (u32) m->status;
  1548. regs.nbsh = (u32)(m->status >> 32);
  1549. regs.nbeal = (u32) m->addr;
  1550. regs.nbeah = (u32)(m->addr >> 32);
  1551. regs.nbcfg = nbcfg;
  1552. __amd64_decode_bus_error(mci, &regs);
  1553. /*
  1554. * Check the UE bit of the NB status high register, if set generate some
  1555. * logs. If NOT a GART error, then process the event as a NO-INFO event.
  1556. * If it was a GART error, skip that process.
  1557. *
  1558. * FIXME: this should go somewhere else, if at all.
  1559. */
  1560. if (regs.nbsh & K8_NBSH_UC_ERR && !report_gart_errors)
  1561. edac_mc_handle_ue_no_info(mci, "UE bit is set");
  1562. }
  1563. /*
  1564. * Use pvt->F2 which contains the F2 CPU PCI device to get the related
  1565. * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
  1566. */
  1567. static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id)
  1568. {
  1569. /* Reserve the ADDRESS MAP Device */
  1570. pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2);
  1571. if (!pvt->F1) {
  1572. amd64_err("error address map device not found: "
  1573. "vendor %x device 0x%x (broken BIOS?)\n",
  1574. PCI_VENDOR_ID_AMD, f1_id);
  1575. return -ENODEV;
  1576. }
  1577. /* Reserve the MISC Device */
  1578. pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2);
  1579. if (!pvt->F3) {
  1580. pci_dev_put(pvt->F1);
  1581. pvt->F1 = NULL;
  1582. amd64_err("error F3 device not found: "
  1583. "vendor %x device 0x%x (broken BIOS?)\n",
  1584. PCI_VENDOR_ID_AMD, f3_id);
  1585. return -ENODEV;
  1586. }
  1587. debugf1("F1: %s\n", pci_name(pvt->F1));
  1588. debugf1("F2: %s\n", pci_name(pvt->F2));
  1589. debugf1("F3: %s\n", pci_name(pvt->F3));
  1590. return 0;
  1591. }
  1592. static void free_mc_sibling_devs(struct amd64_pvt *pvt)
  1593. {
  1594. pci_dev_put(pvt->F1);
  1595. pci_dev_put(pvt->F3);
  1596. }
  1597. /*
  1598. * Retrieve the hardware registers of the memory controller (this includes the
  1599. * 'Address Map' and 'Misc' device regs)
  1600. */
  1601. static void read_mc_regs(struct amd64_pvt *pvt)
  1602. {
  1603. u64 msr_val;
  1604. u32 tmp;
  1605. int range;
  1606. /*
  1607. * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
  1608. * those are Read-As-Zero
  1609. */
  1610. rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
  1611. debugf0(" TOP_MEM: 0x%016llx\n", pvt->top_mem);
  1612. /* check first whether TOP_MEM2 is enabled */
  1613. rdmsrl(MSR_K8_SYSCFG, msr_val);
  1614. if (msr_val & (1U << 21)) {
  1615. rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
  1616. debugf0(" TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
  1617. } else
  1618. debugf0(" TOP_MEM2 disabled.\n");
  1619. amd64_read_pci_cfg(pvt->F3, K8_NBCAP, &pvt->nbcap);
  1620. if (pvt->ops->read_dram_ctl_register)
  1621. pvt->ops->read_dram_ctl_register(pvt);
  1622. for (range = 0; range < DRAM_RANGES; range++) {
  1623. u8 rw;
  1624. /* read settings for this DRAM range */
  1625. read_dram_base_limit_regs(pvt, range);
  1626. rw = dram_rw(pvt, range);
  1627. if (!rw)
  1628. continue;
  1629. debugf1(" DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
  1630. range,
  1631. get_dram_base(pvt, range),
  1632. get_dram_limit(pvt, range));
  1633. debugf1(" IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
  1634. dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
  1635. (rw & 0x1) ? "R" : "-",
  1636. (rw & 0x2) ? "W" : "-",
  1637. dram_intlv_sel(pvt, range),
  1638. dram_dst_node(pvt, range));
  1639. }
  1640. read_dct_base_mask(pvt);
  1641. amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
  1642. amd64_read_dbam_reg(pvt);
  1643. amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
  1644. amd64_read_dct_pci_cfg(pvt, F10_DCLR_0, &pvt->dclr0);
  1645. amd64_read_dct_pci_cfg(pvt, F10_DCHR_0, &pvt->dchr0);
  1646. if (!dct_ganging_enabled(pvt)) {
  1647. amd64_read_dct_pci_cfg(pvt, F10_DCLR_1, &pvt->dclr1);
  1648. amd64_read_dct_pci_cfg(pvt, F10_DCHR_1, &pvt->dchr1);
  1649. }
  1650. if (boot_cpu_data.x86 >= 0x10)
  1651. amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
  1652. if (boot_cpu_data.x86 == 0x10 &&
  1653. boot_cpu_data.x86_model > 7 &&
  1654. /* F3x180[EccSymbolSize]=1 => x8 symbols */
  1655. tmp & BIT(25))
  1656. pvt->syn_type = 8;
  1657. else
  1658. pvt->syn_type = 4;
  1659. dump_misc_regs(pvt);
  1660. }
  1661. /*
  1662. * NOTE: CPU Revision Dependent code
  1663. *
  1664. * Input:
  1665. * @csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
  1666. * k8 private pointer to -->
  1667. * DRAM Bank Address mapping register
  1668. * node_id
  1669. * DCL register where dual_channel_active is
  1670. *
  1671. * The DBAM register consists of 4 sets of 4 bits each definitions:
  1672. *
  1673. * Bits: CSROWs
  1674. * 0-3 CSROWs 0 and 1
  1675. * 4-7 CSROWs 2 and 3
  1676. * 8-11 CSROWs 4 and 5
  1677. * 12-15 CSROWs 6 and 7
  1678. *
  1679. * Values range from: 0 to 15
  1680. * The meaning of the values depends on CPU revision and dual-channel state,
  1681. * see relevant BKDG more info.
  1682. *
  1683. * The memory controller provides for total of only 8 CSROWs in its current
  1684. * architecture. Each "pair" of CSROWs normally represents just one DIMM in
  1685. * single channel or two (2) DIMMs in dual channel mode.
  1686. *
  1687. * The following code logic collapses the various tables for CSROW based on CPU
  1688. * revision.
  1689. *
  1690. * Returns:
  1691. * The number of PAGE_SIZE pages on the specified CSROW number it
  1692. * encompasses
  1693. *
  1694. */
  1695. static u32 amd64_csrow_nr_pages(int csrow_nr, struct amd64_pvt *pvt)
  1696. {
  1697. u32 cs_mode, nr_pages;
  1698. /*
  1699. * The math on this doesn't look right on the surface because x/2*4 can
  1700. * be simplified to x*2 but this expression makes use of the fact that
  1701. * it is integral math where 1/2=0. This intermediate value becomes the
  1702. * number of bits to shift the DBAM register to extract the proper CSROW
  1703. * field.
  1704. */
  1705. cs_mode = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF;
  1706. nr_pages = pvt->ops->dbam_to_cs(pvt, cs_mode) << (20 - PAGE_SHIFT);
  1707. /*
  1708. * If dual channel then double the memory size of single channel.
  1709. * Channel count is 1 or 2
  1710. */
  1711. nr_pages <<= (pvt->channel_count - 1);
  1712. debugf0(" (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode);
  1713. debugf0(" nr_pages= %u channel-count = %d\n",
  1714. nr_pages, pvt->channel_count);
  1715. return nr_pages;
  1716. }
  1717. /*
  1718. * Initialize the array of csrow attribute instances, based on the values
  1719. * from pci config hardware registers.
  1720. */
  1721. static int init_csrows(struct mem_ctl_info *mci)
  1722. {
  1723. struct csrow_info *csrow;
  1724. struct amd64_pvt *pvt = mci->pvt_info;
  1725. u64 input_addr_min, input_addr_max, sys_addr, base, mask;
  1726. u32 val;
  1727. int i, empty = 1;
  1728. amd64_read_pci_cfg(pvt->F3, K8_NBCFG, &val);
  1729. pvt->nbcfg = val;
  1730. pvt->ctl_error_info.nbcfg = val;
  1731. debugf0("node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
  1732. pvt->mc_node_id, val,
  1733. !!(val & K8_NBCFG_CHIPKILL), !!(val & K8_NBCFG_ECC_ENABLE));
  1734. for_each_chip_select(i, 0, pvt) {
  1735. csrow = &mci->csrows[i];
  1736. if (!csrow_enabled(i, 0, pvt)) {
  1737. debugf1("----CSROW %d EMPTY for node %d\n", i,
  1738. pvt->mc_node_id);
  1739. continue;
  1740. }
  1741. debugf1("----CSROW %d VALID for MC node %d\n",
  1742. i, pvt->mc_node_id);
  1743. empty = 0;
  1744. csrow->nr_pages = amd64_csrow_nr_pages(i, pvt);
  1745. find_csrow_limits(mci, i, &input_addr_min, &input_addr_max);
  1746. sys_addr = input_addr_to_sys_addr(mci, input_addr_min);
  1747. csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT);
  1748. sys_addr = input_addr_to_sys_addr(mci, input_addr_max);
  1749. csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT);
  1750. get_cs_base_and_mask(pvt, i, 0, &base, &mask);
  1751. csrow->page_mask = ~mask;
  1752. /* 8 bytes of resolution */
  1753. csrow->mtype = amd64_determine_memory_type(pvt, i);
  1754. debugf1(" for MC node %d csrow %d:\n", pvt->mc_node_id, i);
  1755. debugf1(" input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
  1756. (unsigned long)input_addr_min,
  1757. (unsigned long)input_addr_max);
  1758. debugf1(" sys_addr: 0x%lx page_mask: 0x%lx\n",
  1759. (unsigned long)sys_addr, csrow->page_mask);
  1760. debugf1(" nr_pages: %u first_page: 0x%lx "
  1761. "last_page: 0x%lx\n",
  1762. (unsigned)csrow->nr_pages,
  1763. csrow->first_page, csrow->last_page);
  1764. /*
  1765. * determine whether CHIPKILL or JUST ECC or NO ECC is operating
  1766. */
  1767. if (pvt->nbcfg & K8_NBCFG_ECC_ENABLE)
  1768. csrow->edac_mode =
  1769. (pvt->nbcfg & K8_NBCFG_CHIPKILL) ?
  1770. EDAC_S4ECD4ED : EDAC_SECDED;
  1771. else
  1772. csrow->edac_mode = EDAC_NONE;
  1773. }
  1774. return empty;
  1775. }
  1776. /* get all cores on this DCT */
  1777. static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, int nid)
  1778. {
  1779. int cpu;
  1780. for_each_online_cpu(cpu)
  1781. if (amd_get_nb_id(cpu) == nid)
  1782. cpumask_set_cpu(cpu, mask);
  1783. }
  1784. /* check MCG_CTL on all the cpus on this node */
  1785. static bool amd64_nb_mce_bank_enabled_on_node(int nid)
  1786. {
  1787. cpumask_var_t mask;
  1788. int cpu, nbe;
  1789. bool ret = false;
  1790. if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
  1791. amd64_warn("%s: Error allocating mask\n", __func__);
  1792. return false;
  1793. }
  1794. get_cpus_on_this_dct_cpumask(mask, nid);
  1795. rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
  1796. for_each_cpu(cpu, mask) {
  1797. struct msr *reg = per_cpu_ptr(msrs, cpu);
  1798. nbe = reg->l & K8_MSR_MCGCTL_NBE;
  1799. debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
  1800. cpu, reg->q,
  1801. (nbe ? "enabled" : "disabled"));
  1802. if (!nbe)
  1803. goto out;
  1804. }
  1805. ret = true;
  1806. out:
  1807. free_cpumask_var(mask);
  1808. return ret;
  1809. }
  1810. static int toggle_ecc_err_reporting(struct ecc_settings *s, u8 nid, bool on)
  1811. {
  1812. cpumask_var_t cmask;
  1813. int cpu;
  1814. if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
  1815. amd64_warn("%s: error allocating mask\n", __func__);
  1816. return false;
  1817. }
  1818. get_cpus_on_this_dct_cpumask(cmask, nid);
  1819. rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
  1820. for_each_cpu(cpu, cmask) {
  1821. struct msr *reg = per_cpu_ptr(msrs, cpu);
  1822. if (on) {
  1823. if (reg->l & K8_MSR_MCGCTL_NBE)
  1824. s->flags.nb_mce_enable = 1;
  1825. reg->l |= K8_MSR_MCGCTL_NBE;
  1826. } else {
  1827. /*
  1828. * Turn off NB MCE reporting only when it was off before
  1829. */
  1830. if (!s->flags.nb_mce_enable)
  1831. reg->l &= ~K8_MSR_MCGCTL_NBE;
  1832. }
  1833. }
  1834. wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
  1835. free_cpumask_var(cmask);
  1836. return 0;
  1837. }
  1838. static bool enable_ecc_error_reporting(struct ecc_settings *s, u8 nid,
  1839. struct pci_dev *F3)
  1840. {
  1841. bool ret = true;
  1842. u32 value, mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
  1843. if (toggle_ecc_err_reporting(s, nid, ON)) {
  1844. amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
  1845. return false;
  1846. }
  1847. amd64_read_pci_cfg(F3, K8_NBCTL, &value);
  1848. /* turn on UECCEn and CECCEn bits */
  1849. s->old_nbctl = value & mask;
  1850. s->nbctl_valid = true;
  1851. value |= mask;
  1852. amd64_write_pci_cfg(F3, K8_NBCTL, value);
  1853. amd64_read_pci_cfg(F3, K8_NBCFG, &value);
  1854. debugf0("1: node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
  1855. nid, value,
  1856. !!(value & K8_NBCFG_CHIPKILL), !!(value & K8_NBCFG_ECC_ENABLE));
  1857. if (!(value & K8_NBCFG_ECC_ENABLE)) {
  1858. amd64_warn("DRAM ECC disabled on this node, enabling...\n");
  1859. s->flags.nb_ecc_prev = 0;
  1860. /* Attempt to turn on DRAM ECC Enable */
  1861. value |= K8_NBCFG_ECC_ENABLE;
  1862. amd64_write_pci_cfg(F3, K8_NBCFG, value);
  1863. amd64_read_pci_cfg(F3, K8_NBCFG, &value);
  1864. if (!(value & K8_NBCFG_ECC_ENABLE)) {
  1865. amd64_warn("Hardware rejected DRAM ECC enable,"
  1866. "check memory DIMM configuration.\n");
  1867. ret = false;
  1868. } else {
  1869. amd64_info("Hardware accepted DRAM ECC Enable\n");
  1870. }
  1871. } else {
  1872. s->flags.nb_ecc_prev = 1;
  1873. }
  1874. debugf0("2: node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
  1875. nid, value,
  1876. !!(value & K8_NBCFG_CHIPKILL), !!(value & K8_NBCFG_ECC_ENABLE));
  1877. return ret;
  1878. }
  1879. static void restore_ecc_error_reporting(struct ecc_settings *s, u8 nid,
  1880. struct pci_dev *F3)
  1881. {
  1882. u32 value, mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
  1883. if (!s->nbctl_valid)
  1884. return;
  1885. amd64_read_pci_cfg(F3, K8_NBCTL, &value);
  1886. value &= ~mask;
  1887. value |= s->old_nbctl;
  1888. amd64_write_pci_cfg(F3, K8_NBCTL, value);
  1889. /* restore previous BIOS DRAM ECC "off" setting we force-enabled */
  1890. if (!s->flags.nb_ecc_prev) {
  1891. amd64_read_pci_cfg(F3, K8_NBCFG, &value);
  1892. value &= ~K8_NBCFG_ECC_ENABLE;
  1893. amd64_write_pci_cfg(F3, K8_NBCFG, value);
  1894. }
  1895. /* restore the NB Enable MCGCTL bit */
  1896. if (toggle_ecc_err_reporting(s, nid, OFF))
  1897. amd64_warn("Error restoring NB MCGCTL settings!\n");
  1898. }
  1899. /*
  1900. * EDAC requires that the BIOS have ECC enabled before
  1901. * taking over the processing of ECC errors. A command line
  1902. * option allows to force-enable hardware ECC later in
  1903. * enable_ecc_error_reporting().
  1904. */
  1905. static const char *ecc_msg =
  1906. "ECC disabled in the BIOS or no ECC capability, module will not load.\n"
  1907. " Either enable ECC checking or force module loading by setting "
  1908. "'ecc_enable_override'.\n"
  1909. " (Note that use of the override may cause unknown side effects.)\n";
  1910. static bool ecc_enabled(struct pci_dev *F3, u8 nid)
  1911. {
  1912. u32 value;
  1913. u8 ecc_en = 0;
  1914. bool nb_mce_en = false;
  1915. amd64_read_pci_cfg(F3, K8_NBCFG, &value);
  1916. ecc_en = !!(value & K8_NBCFG_ECC_ENABLE);
  1917. amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
  1918. nb_mce_en = amd64_nb_mce_bank_enabled_on_node(nid);
  1919. if (!nb_mce_en)
  1920. amd64_notice("NB MCE bank disabled, set MSR "
  1921. "0x%08x[4] on node %d to enable.\n",
  1922. MSR_IA32_MCG_CTL, nid);
  1923. if (!ecc_en || !nb_mce_en) {
  1924. amd64_notice("%s", ecc_msg);
  1925. return false;
  1926. }
  1927. return true;
  1928. }
  1929. struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
  1930. ARRAY_SIZE(amd64_inj_attrs) +
  1931. 1];
  1932. struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };
  1933. static void set_mc_sysfs_attrs(struct mem_ctl_info *mci)
  1934. {
  1935. unsigned int i = 0, j = 0;
  1936. for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
  1937. sysfs_attrs[i] = amd64_dbg_attrs[i];
  1938. if (boot_cpu_data.x86 >= 0x10)
  1939. for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
  1940. sysfs_attrs[i] = amd64_inj_attrs[j];
  1941. sysfs_attrs[i] = terminator;
  1942. mci->mc_driver_sysfs_attributes = sysfs_attrs;
  1943. }
  1944. static void setup_mci_misc_attrs(struct mem_ctl_info *mci)
  1945. {
  1946. struct amd64_pvt *pvt = mci->pvt_info;
  1947. mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
  1948. mci->edac_ctl_cap = EDAC_FLAG_NONE;
  1949. if (pvt->nbcap & K8_NBCAP_SECDED)
  1950. mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
  1951. if (pvt->nbcap & K8_NBCAP_CHIPKILL)
  1952. mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
  1953. mci->edac_cap = amd64_determine_edac_cap(pvt);
  1954. mci->mod_name = EDAC_MOD_STR;
  1955. mci->mod_ver = EDAC_AMD64_VERSION;
  1956. mci->ctl_name = pvt->ctl_name;
  1957. mci->dev_name = pci_name(pvt->F2);
  1958. mci->ctl_page_to_phys = NULL;
  1959. /* memory scrubber interface */
  1960. mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
  1961. mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
  1962. }
  1963. /*
  1964. * returns a pointer to the family descriptor on success, NULL otherwise.
  1965. */
  1966. static struct amd64_family_type *amd64_per_family_init(struct amd64_pvt *pvt)
  1967. {
  1968. u8 fam = boot_cpu_data.x86;
  1969. struct amd64_family_type *fam_type = NULL;
  1970. switch (fam) {
  1971. case 0xf:
  1972. fam_type = &amd64_family_types[K8_CPUS];
  1973. pvt->ops = &amd64_family_types[K8_CPUS].ops;
  1974. pvt->ctl_name = fam_type->ctl_name;
  1975. pvt->min_scrubrate = K8_MIN_SCRUB_RATE_BITS;
  1976. break;
  1977. case 0x10:
  1978. fam_type = &amd64_family_types[F10_CPUS];
  1979. pvt->ops = &amd64_family_types[F10_CPUS].ops;
  1980. pvt->ctl_name = fam_type->ctl_name;
  1981. pvt->min_scrubrate = F10_MIN_SCRUB_RATE_BITS;
  1982. break;
  1983. default:
  1984. amd64_err("Unsupported family!\n");
  1985. return NULL;
  1986. }
  1987. pvt->ext_model = boot_cpu_data.x86_model >> 4;
  1988. amd64_info("%s %sdetected (node %d).\n", pvt->ctl_name,
  1989. (fam == 0xf ?
  1990. (pvt->ext_model >= K8_REV_F ? "revF or later "
  1991. : "revE or earlier ")
  1992. : ""), pvt->mc_node_id);
  1993. return fam_type;
  1994. }
  1995. static int amd64_init_one_instance(struct pci_dev *F2)
  1996. {
  1997. struct amd64_pvt *pvt = NULL;
  1998. struct amd64_family_type *fam_type = NULL;
  1999. struct mem_ctl_info *mci = NULL;
  2000. int err = 0, ret;
  2001. u8 nid = get_node_id(F2);
  2002. ret = -ENOMEM;
  2003. pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
  2004. if (!pvt)
  2005. goto err_ret;
  2006. pvt->mc_node_id = nid;
  2007. pvt->F2 = F2;
  2008. ret = -EINVAL;
  2009. fam_type = amd64_per_family_init(pvt);
  2010. if (!fam_type)
  2011. goto err_free;
  2012. ret = -ENODEV;
  2013. err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id);
  2014. if (err)
  2015. goto err_free;
  2016. read_mc_regs(pvt);
  2017. /*
  2018. * We need to determine how many memory channels there are. Then use
  2019. * that information for calculating the size of the dynamic instance
  2020. * tables in the 'mci' structure.
  2021. */
  2022. ret = -EINVAL;
  2023. pvt->channel_count = pvt->ops->early_channel_count(pvt);
  2024. if (pvt->channel_count < 0)
  2025. goto err_siblings;
  2026. ret = -ENOMEM;
  2027. mci = edac_mc_alloc(0, pvt->csels[0].b_cnt, pvt->channel_count, nid);
  2028. if (!mci)
  2029. goto err_siblings;
  2030. mci->pvt_info = pvt;
  2031. mci->dev = &pvt->F2->dev;
  2032. setup_mci_misc_attrs(mci);
  2033. if (init_csrows(mci))
  2034. mci->edac_cap = EDAC_FLAG_NONE;
  2035. set_mc_sysfs_attrs(mci);
  2036. ret = -ENODEV;
  2037. if (edac_mc_add_mc(mci)) {
  2038. debugf1("failed edac_mc_add_mc()\n");
  2039. goto err_add_mc;
  2040. }
  2041. /* register stuff with EDAC MCE */
  2042. if (report_gart_errors)
  2043. amd_report_gart_errors(true);
  2044. amd_register_ecc_decoder(amd64_decode_bus_error);
  2045. mcis[nid] = mci;
  2046. atomic_inc(&drv_instances);
  2047. return 0;
  2048. err_add_mc:
  2049. edac_mc_free(mci);
  2050. err_siblings:
  2051. free_mc_sibling_devs(pvt);
  2052. err_free:
  2053. kfree(pvt);
  2054. err_ret:
  2055. return ret;
  2056. }
  2057. static int __devinit amd64_probe_one_instance(struct pci_dev *pdev,
  2058. const struct pci_device_id *mc_type)
  2059. {
  2060. u8 nid = get_node_id(pdev);
  2061. struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
  2062. struct ecc_settings *s;
  2063. int ret = 0;
  2064. ret = pci_enable_device(pdev);
  2065. if (ret < 0) {
  2066. debugf0("ret=%d\n", ret);
  2067. return -EIO;
  2068. }
  2069. ret = -ENOMEM;
  2070. s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
  2071. if (!s)
  2072. goto err_out;
  2073. ecc_stngs[nid] = s;
  2074. if (!ecc_enabled(F3, nid)) {
  2075. ret = -ENODEV;
  2076. if (!ecc_enable_override)
  2077. goto err_enable;
  2078. amd64_warn("Forcing ECC on!\n");
  2079. if (!enable_ecc_error_reporting(s, nid, F3))
  2080. goto err_enable;
  2081. }
  2082. ret = amd64_init_one_instance(pdev);
  2083. if (ret < 0) {
  2084. amd64_err("Error probing instance: %d\n", nid);
  2085. restore_ecc_error_reporting(s, nid, F3);
  2086. }
  2087. return ret;
  2088. err_enable:
  2089. kfree(s);
  2090. ecc_stngs[nid] = NULL;
  2091. err_out:
  2092. return ret;
  2093. }
  2094. static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
  2095. {
  2096. struct mem_ctl_info *mci;
  2097. struct amd64_pvt *pvt;
  2098. u8 nid = get_node_id(pdev);
  2099. struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
  2100. struct ecc_settings *s = ecc_stngs[nid];
  2101. /* Remove from EDAC CORE tracking list */
  2102. mci = edac_mc_del_mc(&pdev->dev);
  2103. if (!mci)
  2104. return;
  2105. pvt = mci->pvt_info;
  2106. restore_ecc_error_reporting(s, nid, F3);
  2107. free_mc_sibling_devs(pvt);
  2108. /* unregister from EDAC MCE */
  2109. amd_report_gart_errors(false);
  2110. amd_unregister_ecc_decoder(amd64_decode_bus_error);
  2111. kfree(ecc_stngs[nid]);
  2112. ecc_stngs[nid] = NULL;
  2113. /* Free the EDAC CORE resources */
  2114. mci->pvt_info = NULL;
  2115. mcis[nid] = NULL;
  2116. kfree(pvt);
  2117. edac_mc_free(mci);
  2118. }
  2119. /*
  2120. * This table is part of the interface for loading drivers for PCI devices. The
  2121. * PCI core identifies what devices are on a system during boot, and then
  2122. * inquiry this table to see if this driver is for a given device found.
  2123. */
  2124. static const struct pci_device_id amd64_pci_table[] __devinitdata = {
  2125. {
  2126. .vendor = PCI_VENDOR_ID_AMD,
  2127. .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
  2128. .subvendor = PCI_ANY_ID,
  2129. .subdevice = PCI_ANY_ID,
  2130. .class = 0,
  2131. .class_mask = 0,
  2132. },
  2133. {
  2134. .vendor = PCI_VENDOR_ID_AMD,
  2135. .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
  2136. .subvendor = PCI_ANY_ID,
  2137. .subdevice = PCI_ANY_ID,
  2138. .class = 0,
  2139. .class_mask = 0,
  2140. },
  2141. {0, }
  2142. };
  2143. MODULE_DEVICE_TABLE(pci, amd64_pci_table);
  2144. static struct pci_driver amd64_pci_driver = {
  2145. .name = EDAC_MOD_STR,
  2146. .probe = amd64_probe_one_instance,
  2147. .remove = __devexit_p(amd64_remove_one_instance),
  2148. .id_table = amd64_pci_table,
  2149. };
  2150. static void setup_pci_device(void)
  2151. {
  2152. struct mem_ctl_info *mci;
  2153. struct amd64_pvt *pvt;
  2154. if (amd64_ctl_pci)
  2155. return;
  2156. mci = mcis[0];
  2157. if (mci) {
  2158. pvt = mci->pvt_info;
  2159. amd64_ctl_pci =
  2160. edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
  2161. if (!amd64_ctl_pci) {
  2162. pr_warning("%s(): Unable to create PCI control\n",
  2163. __func__);
  2164. pr_warning("%s(): PCI error report via EDAC not set\n",
  2165. __func__);
  2166. }
  2167. }
  2168. }
  2169. static int __init amd64_edac_init(void)
  2170. {
  2171. int err = -ENODEV;
  2172. edac_printk(KERN_INFO, EDAC_MOD_STR, EDAC_AMD64_VERSION "\n");
  2173. opstate_init();
  2174. if (amd_cache_northbridges() < 0)
  2175. goto err_ret;
  2176. err = -ENOMEM;
  2177. mcis = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL);
  2178. ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
  2179. if (!(mcis && ecc_stngs))
  2180. goto err_ret;
  2181. msrs = msrs_alloc();
  2182. if (!msrs)
  2183. goto err_free;
  2184. err = pci_register_driver(&amd64_pci_driver);
  2185. if (err)
  2186. goto err_pci;
  2187. err = -ENODEV;
  2188. if (!atomic_read(&drv_instances))
  2189. goto err_no_instances;
  2190. setup_pci_device();
  2191. return 0;
  2192. err_no_instances:
  2193. pci_unregister_driver(&amd64_pci_driver);
  2194. err_pci:
  2195. msrs_free(msrs);
  2196. msrs = NULL;
  2197. err_free:
  2198. kfree(mcis);
  2199. mcis = NULL;
  2200. kfree(ecc_stngs);
  2201. ecc_stngs = NULL;
  2202. err_ret:
  2203. return err;
  2204. }
  2205. static void __exit amd64_edac_exit(void)
  2206. {
  2207. if (amd64_ctl_pci)
  2208. edac_pci_release_generic_ctl(amd64_ctl_pci);
  2209. pci_unregister_driver(&amd64_pci_driver);
  2210. kfree(ecc_stngs);
  2211. ecc_stngs = NULL;
  2212. kfree(mcis);
  2213. mcis = NULL;
  2214. msrs_free(msrs);
  2215. msrs = NULL;
  2216. }
  2217. module_init(amd64_edac_init);
  2218. module_exit(amd64_edac_exit);
  2219. MODULE_LICENSE("GPL");
  2220. MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
  2221. "Dave Peterson, Thayne Harbaugh");
  2222. MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
  2223. EDAC_AMD64_VERSION);
  2224. module_param(edac_op_state, int, 0444);
  2225. MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");