rt2800pci.c 34 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147
  1. /*
  2. Copyright (C) 2009 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
  3. Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
  4. Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
  5. Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
  6. Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
  7. Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
  8. Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
  9. Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com>
  10. <http://rt2x00.serialmonkey.com>
  11. This program is free software; you can redistribute it and/or modify
  12. it under the terms of the GNU General Public License as published by
  13. the Free Software Foundation; either version 2 of the License, or
  14. (at your option) any later version.
  15. This program is distributed in the hope that it will be useful,
  16. but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  18. GNU General Public License for more details.
  19. You should have received a copy of the GNU General Public License
  20. along with this program; if not, write to the
  21. Free Software Foundation, Inc.,
  22. 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  23. */
  24. /*
  25. Module: rt2800pci
  26. Abstract: rt2800pci device specific routines.
  27. Supported chipsets: RT2800E & RT2800ED.
  28. */
  29. #include <linux/delay.h>
  30. #include <linux/etherdevice.h>
  31. #include <linux/init.h>
  32. #include <linux/kernel.h>
  33. #include <linux/module.h>
  34. #include <linux/pci.h>
  35. #include <linux/platform_device.h>
  36. #include <linux/eeprom_93cx6.h>
  37. #include "rt2x00.h"
  38. #include "rt2x00pci.h"
  39. #include "rt2x00soc.h"
  40. #include "rt2800lib.h"
  41. #include "rt2800.h"
  42. #include "rt2800pci.h"
  43. /*
  44. * Allow hardware encryption to be disabled.
  45. */
  46. static int modparam_nohwcrypt = 0;
  47. module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
  48. MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
  49. static void rt2800pci_mcu_status(struct rt2x00_dev *rt2x00dev, const u8 token)
  50. {
  51. unsigned int i;
  52. u32 reg;
  53. /*
  54. * SOC devices don't support MCU requests.
  55. */
  56. if (rt2x00_is_soc(rt2x00dev))
  57. return;
  58. for (i = 0; i < 200; i++) {
  59. rt2800_register_read(rt2x00dev, H2M_MAILBOX_CID, &reg);
  60. if ((rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD0) == token) ||
  61. (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD1) == token) ||
  62. (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD2) == token) ||
  63. (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD3) == token))
  64. break;
  65. udelay(REGISTER_BUSY_DELAY);
  66. }
  67. if (i == 200)
  68. ERROR(rt2x00dev, "MCU request failed, no response from hardware\n");
  69. rt2800_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
  70. rt2800_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);
  71. }
  72. #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
  73. static void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
  74. {
  75. void __iomem *base_addr = ioremap(0x1F040000, EEPROM_SIZE);
  76. memcpy_fromio(rt2x00dev->eeprom, base_addr, EEPROM_SIZE);
  77. iounmap(base_addr);
  78. }
  79. #else
  80. static inline void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
  81. {
  82. }
  83. #endif /* CONFIG_RALINK_RT288X || CONFIG_RALINK_RT305X */
  84. #ifdef CONFIG_PCI
  85. static void rt2800pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
  86. {
  87. struct rt2x00_dev *rt2x00dev = eeprom->data;
  88. u32 reg;
  89. rt2800_register_read(rt2x00dev, E2PROM_CSR, &reg);
  90. eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
  91. eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
  92. eeprom->reg_data_clock =
  93. !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
  94. eeprom->reg_chip_select =
  95. !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
  96. }
  97. static void rt2800pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
  98. {
  99. struct rt2x00_dev *rt2x00dev = eeprom->data;
  100. u32 reg = 0;
  101. rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
  102. rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
  103. rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
  104. !!eeprom->reg_data_clock);
  105. rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
  106. !!eeprom->reg_chip_select);
  107. rt2800_register_write(rt2x00dev, E2PROM_CSR, reg);
  108. }
  109. static void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
  110. {
  111. struct eeprom_93cx6 eeprom;
  112. u32 reg;
  113. rt2800_register_read(rt2x00dev, E2PROM_CSR, &reg);
  114. eeprom.data = rt2x00dev;
  115. eeprom.register_read = rt2800pci_eepromregister_read;
  116. eeprom.register_write = rt2800pci_eepromregister_write;
  117. switch (rt2x00_get_field32(reg, E2PROM_CSR_TYPE))
  118. {
  119. case 0:
  120. eeprom.width = PCI_EEPROM_WIDTH_93C46;
  121. break;
  122. case 1:
  123. eeprom.width = PCI_EEPROM_WIDTH_93C66;
  124. break;
  125. default:
  126. eeprom.width = PCI_EEPROM_WIDTH_93C86;
  127. break;
  128. }
  129. eeprom.reg_data_in = 0;
  130. eeprom.reg_data_out = 0;
  131. eeprom.reg_data_clock = 0;
  132. eeprom.reg_chip_select = 0;
  133. eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
  134. EEPROM_SIZE / sizeof(u16));
  135. }
  136. static int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
  137. {
  138. return rt2800_efuse_detect(rt2x00dev);
  139. }
  140. static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
  141. {
  142. rt2800_read_eeprom_efuse(rt2x00dev);
  143. }
  144. #else
  145. static inline void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
  146. {
  147. }
  148. static inline int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
  149. {
  150. return 0;
  151. }
  152. static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
  153. {
  154. }
  155. #endif /* CONFIG_PCI */
  156. /*
  157. * Queue handlers.
  158. */
  159. static void rt2800pci_start_queue(struct data_queue *queue)
  160. {
  161. struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
  162. u32 reg;
  163. switch (queue->qid) {
  164. case QID_RX:
  165. rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
  166. rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 1);
  167. rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
  168. break;
  169. case QID_BEACON:
  170. rt2800_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
  171. rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 1);
  172. rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 1);
  173. rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 1);
  174. rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
  175. rt2800_register_read(rt2x00dev, INT_TIMER_EN, &reg);
  176. rt2x00_set_field32(&reg, INT_TIMER_EN_PRE_TBTT_TIMER, 1);
  177. rt2800_register_write(rt2x00dev, INT_TIMER_EN, reg);
  178. break;
  179. default:
  180. break;
  181. };
  182. }
  183. static void rt2800pci_kick_queue(struct data_queue *queue)
  184. {
  185. struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
  186. struct queue_entry *entry;
  187. switch (queue->qid) {
  188. case QID_AC_VO:
  189. case QID_AC_VI:
  190. case QID_AC_BE:
  191. case QID_AC_BK:
  192. entry = rt2x00queue_get_entry(queue, Q_INDEX);
  193. rt2800_register_write(rt2x00dev, TX_CTX_IDX(queue->qid), entry->entry_idx);
  194. break;
  195. case QID_MGMT:
  196. entry = rt2x00queue_get_entry(queue, Q_INDEX);
  197. rt2800_register_write(rt2x00dev, TX_CTX_IDX(5), entry->entry_idx);
  198. break;
  199. default:
  200. break;
  201. }
  202. }
  203. static void rt2800pci_stop_queue(struct data_queue *queue)
  204. {
  205. struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
  206. u32 reg;
  207. switch (queue->qid) {
  208. case QID_RX:
  209. rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
  210. rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 0);
  211. rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
  212. break;
  213. case QID_BEACON:
  214. rt2800_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
  215. rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 0);
  216. rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 0);
  217. rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
  218. rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
  219. rt2800_register_read(rt2x00dev, INT_TIMER_EN, &reg);
  220. rt2x00_set_field32(&reg, INT_TIMER_EN_PRE_TBTT_TIMER, 0);
  221. rt2800_register_write(rt2x00dev, INT_TIMER_EN, reg);
  222. break;
  223. default:
  224. break;
  225. }
  226. }
  227. /*
  228. * Firmware functions
  229. */
  230. static char *rt2800pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
  231. {
  232. return FIRMWARE_RT2860;
  233. }
  234. static int rt2800pci_write_firmware(struct rt2x00_dev *rt2x00dev,
  235. const u8 *data, const size_t len)
  236. {
  237. u32 reg;
  238. /*
  239. * enable Host program ram write selection
  240. */
  241. reg = 0;
  242. rt2x00_set_field32(&reg, PBF_SYS_CTRL_HOST_RAM_WRITE, 1);
  243. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, reg);
  244. /*
  245. * Write firmware to device.
  246. */
  247. rt2800_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
  248. data, len);
  249. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000);
  250. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001);
  251. rt2800_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
  252. rt2800_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
  253. return 0;
  254. }
  255. /*
  256. * Initialization functions.
  257. */
  258. static bool rt2800pci_get_entry_state(struct queue_entry *entry)
  259. {
  260. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  261. u32 word;
  262. if (entry->queue->qid == QID_RX) {
  263. rt2x00_desc_read(entry_priv->desc, 1, &word);
  264. return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE));
  265. } else {
  266. rt2x00_desc_read(entry_priv->desc, 1, &word);
  267. return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE));
  268. }
  269. }
  270. static void rt2800pci_clear_entry(struct queue_entry *entry)
  271. {
  272. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  273. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  274. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  275. u32 word;
  276. if (entry->queue->qid == QID_RX) {
  277. rt2x00_desc_read(entry_priv->desc, 0, &word);
  278. rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma);
  279. rt2x00_desc_write(entry_priv->desc, 0, word);
  280. rt2x00_desc_read(entry_priv->desc, 1, &word);
  281. rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0);
  282. rt2x00_desc_write(entry_priv->desc, 1, word);
  283. /*
  284. * Set RX IDX in register to inform hardware that we have
  285. * handled this entry and it is available for reuse again.
  286. */
  287. rt2800_register_write(rt2x00dev, RX_CRX_IDX,
  288. entry->entry_idx);
  289. } else {
  290. rt2x00_desc_read(entry_priv->desc, 1, &word);
  291. rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1);
  292. rt2x00_desc_write(entry_priv->desc, 1, word);
  293. }
  294. }
  295. static int rt2800pci_init_queues(struct rt2x00_dev *rt2x00dev)
  296. {
  297. struct queue_entry_priv_pci *entry_priv;
  298. u32 reg;
  299. /*
  300. * Initialize registers.
  301. */
  302. entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
  303. rt2800_register_write(rt2x00dev, TX_BASE_PTR0, entry_priv->desc_dma);
  304. rt2800_register_write(rt2x00dev, TX_MAX_CNT0, rt2x00dev->tx[0].limit);
  305. rt2800_register_write(rt2x00dev, TX_CTX_IDX0, 0);
  306. rt2800_register_write(rt2x00dev, TX_DTX_IDX0, 0);
  307. entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
  308. rt2800_register_write(rt2x00dev, TX_BASE_PTR1, entry_priv->desc_dma);
  309. rt2800_register_write(rt2x00dev, TX_MAX_CNT1, rt2x00dev->tx[1].limit);
  310. rt2800_register_write(rt2x00dev, TX_CTX_IDX1, 0);
  311. rt2800_register_write(rt2x00dev, TX_DTX_IDX1, 0);
  312. entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
  313. rt2800_register_write(rt2x00dev, TX_BASE_PTR2, entry_priv->desc_dma);
  314. rt2800_register_write(rt2x00dev, TX_MAX_CNT2, rt2x00dev->tx[2].limit);
  315. rt2800_register_write(rt2x00dev, TX_CTX_IDX2, 0);
  316. rt2800_register_write(rt2x00dev, TX_DTX_IDX2, 0);
  317. entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
  318. rt2800_register_write(rt2x00dev, TX_BASE_PTR3, entry_priv->desc_dma);
  319. rt2800_register_write(rt2x00dev, TX_MAX_CNT3, rt2x00dev->tx[3].limit);
  320. rt2800_register_write(rt2x00dev, TX_CTX_IDX3, 0);
  321. rt2800_register_write(rt2x00dev, TX_DTX_IDX3, 0);
  322. entry_priv = rt2x00dev->rx->entries[0].priv_data;
  323. rt2800_register_write(rt2x00dev, RX_BASE_PTR, entry_priv->desc_dma);
  324. rt2800_register_write(rt2x00dev, RX_MAX_CNT, rt2x00dev->rx[0].limit);
  325. rt2800_register_write(rt2x00dev, RX_CRX_IDX, rt2x00dev->rx[0].limit - 1);
  326. rt2800_register_write(rt2x00dev, RX_DRX_IDX, 0);
  327. /*
  328. * Enable global DMA configuration
  329. */
  330. rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
  331. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
  332. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
  333. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
  334. rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
  335. rt2800_register_write(rt2x00dev, DELAY_INT_CFG, 0);
  336. return 0;
  337. }
  338. /*
  339. * Device state switch handlers.
  340. */
  341. static void rt2800pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
  342. enum dev_state state)
  343. {
  344. int mask = (state == STATE_RADIO_IRQ_ON) ||
  345. (state == STATE_RADIO_IRQ_ON_ISR);
  346. u32 reg;
  347. /*
  348. * When interrupts are being enabled, the interrupt registers
  349. * should clear the register to assure a clean state.
  350. */
  351. if (state == STATE_RADIO_IRQ_ON) {
  352. rt2800_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
  353. rt2800_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
  354. tasklet_enable(&rt2x00dev->txstatus_tasklet);
  355. } else if (state == STATE_RADIO_IRQ_OFF)
  356. tasklet_disable(&rt2x00dev->txstatus_tasklet);
  357. rt2800_register_read(rt2x00dev, INT_MASK_CSR, &reg);
  358. rt2x00_set_field32(&reg, INT_MASK_CSR_RXDELAYINT, 0);
  359. rt2x00_set_field32(&reg, INT_MASK_CSR_TXDELAYINT, 0);
  360. rt2x00_set_field32(&reg, INT_MASK_CSR_RX_DONE, mask);
  361. rt2x00_set_field32(&reg, INT_MASK_CSR_AC0_DMA_DONE, 0);
  362. rt2x00_set_field32(&reg, INT_MASK_CSR_AC1_DMA_DONE, 0);
  363. rt2x00_set_field32(&reg, INT_MASK_CSR_AC2_DMA_DONE, 0);
  364. rt2x00_set_field32(&reg, INT_MASK_CSR_AC3_DMA_DONE, 0);
  365. rt2x00_set_field32(&reg, INT_MASK_CSR_HCCA_DMA_DONE, 0);
  366. rt2x00_set_field32(&reg, INT_MASK_CSR_MGMT_DMA_DONE, 0);
  367. rt2x00_set_field32(&reg, INT_MASK_CSR_MCU_COMMAND, 0);
  368. rt2x00_set_field32(&reg, INT_MASK_CSR_RXTX_COHERENT, 0);
  369. rt2x00_set_field32(&reg, INT_MASK_CSR_TBTT, mask);
  370. rt2x00_set_field32(&reg, INT_MASK_CSR_PRE_TBTT, mask);
  371. rt2x00_set_field32(&reg, INT_MASK_CSR_TX_FIFO_STATUS, mask);
  372. rt2x00_set_field32(&reg, INT_MASK_CSR_AUTO_WAKEUP, mask);
  373. rt2x00_set_field32(&reg, INT_MASK_CSR_GPTIMER, 0);
  374. rt2x00_set_field32(&reg, INT_MASK_CSR_RX_COHERENT, 0);
  375. rt2x00_set_field32(&reg, INT_MASK_CSR_TX_COHERENT, 0);
  376. rt2800_register_write(rt2x00dev, INT_MASK_CSR, reg);
  377. }
  378. static int rt2800pci_init_registers(struct rt2x00_dev *rt2x00dev)
  379. {
  380. u32 reg;
  381. /*
  382. * Reset DMA indexes
  383. */
  384. rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
  385. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
  386. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
  387. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
  388. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
  389. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
  390. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
  391. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
  392. rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
  393. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
  394. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
  395. rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003);
  396. rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
  397. rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_CSR, 1);
  398. rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_BBP, 1);
  399. rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
  400. rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000);
  401. return 0;
  402. }
  403. static int rt2800pci_enable_radio(struct rt2x00_dev *rt2x00dev)
  404. {
  405. if (unlikely(rt2800_wait_wpdma_ready(rt2x00dev) ||
  406. rt2800pci_init_queues(rt2x00dev)))
  407. return -EIO;
  408. return rt2800_enable_radio(rt2x00dev);
  409. }
  410. static void rt2800pci_disable_radio(struct rt2x00_dev *rt2x00dev)
  411. {
  412. if (rt2x00_is_soc(rt2x00dev)) {
  413. rt2800_disable_radio(rt2x00dev);
  414. rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0);
  415. rt2800_register_write(rt2x00dev, TX_PIN_CFG, 0);
  416. }
  417. }
  418. static int rt2800pci_set_state(struct rt2x00_dev *rt2x00dev,
  419. enum dev_state state)
  420. {
  421. if (state == STATE_AWAKE) {
  422. rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKUP, 0, 0x02);
  423. rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKUP);
  424. } else if (state == STATE_SLEEP) {
  425. rt2800_register_write(rt2x00dev, H2M_MAILBOX_STATUS, 0xffffffff);
  426. rt2800_register_write(rt2x00dev, H2M_MAILBOX_CID, 0xffffffff);
  427. rt2800_mcu_request(rt2x00dev, MCU_SLEEP, 0x01, 0xff, 0x01);
  428. }
  429. return 0;
  430. }
  431. static int rt2800pci_set_device_state(struct rt2x00_dev *rt2x00dev,
  432. enum dev_state state)
  433. {
  434. int retval = 0;
  435. switch (state) {
  436. case STATE_RADIO_ON:
  437. /*
  438. * Before the radio can be enabled, the device first has
  439. * to be woken up. After that it needs a bit of time
  440. * to be fully awake and then the radio can be enabled.
  441. */
  442. rt2800pci_set_state(rt2x00dev, STATE_AWAKE);
  443. msleep(1);
  444. retval = rt2800pci_enable_radio(rt2x00dev);
  445. break;
  446. case STATE_RADIO_OFF:
  447. /*
  448. * After the radio has been disabled, the device should
  449. * be put to sleep for powersaving.
  450. */
  451. rt2800pci_disable_radio(rt2x00dev);
  452. rt2800pci_set_state(rt2x00dev, STATE_SLEEP);
  453. break;
  454. case STATE_RADIO_IRQ_ON:
  455. case STATE_RADIO_IRQ_ON_ISR:
  456. case STATE_RADIO_IRQ_OFF:
  457. case STATE_RADIO_IRQ_OFF_ISR:
  458. rt2800pci_toggle_irq(rt2x00dev, state);
  459. break;
  460. case STATE_DEEP_SLEEP:
  461. case STATE_SLEEP:
  462. case STATE_STANDBY:
  463. case STATE_AWAKE:
  464. retval = rt2800pci_set_state(rt2x00dev, state);
  465. break;
  466. default:
  467. retval = -ENOTSUPP;
  468. break;
  469. }
  470. if (unlikely(retval))
  471. ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
  472. state, retval);
  473. return retval;
  474. }
  475. /*
  476. * TX descriptor initialization
  477. */
  478. static __le32 *rt2800pci_get_txwi(struct queue_entry *entry)
  479. {
  480. return (__le32 *) entry->skb->data;
  481. }
  482. static void rt2800pci_write_tx_desc(struct queue_entry *entry,
  483. struct txentry_desc *txdesc)
  484. {
  485. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  486. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  487. __le32 *txd = entry_priv->desc;
  488. u32 word;
  489. /*
  490. * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1
  491. * must contains a TXWI structure + 802.11 header + padding + 802.11
  492. * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and
  493. * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11
  494. * data. It means that LAST_SEC0 is always 0.
  495. */
  496. /*
  497. * Initialize TX descriptor
  498. */
  499. rt2x00_desc_read(txd, 0, &word);
  500. rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma);
  501. rt2x00_desc_write(txd, 0, word);
  502. rt2x00_desc_read(txd, 1, &word);
  503. rt2x00_set_field32(&word, TXD_W1_SD_LEN1, entry->skb->len);
  504. rt2x00_set_field32(&word, TXD_W1_LAST_SEC1,
  505. !test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
  506. rt2x00_set_field32(&word, TXD_W1_BURST,
  507. test_bit(ENTRY_TXD_BURST, &txdesc->flags));
  508. rt2x00_set_field32(&word, TXD_W1_SD_LEN0, TXWI_DESC_SIZE);
  509. rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0);
  510. rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0);
  511. rt2x00_desc_write(txd, 1, word);
  512. rt2x00_desc_read(txd, 2, &word);
  513. rt2x00_set_field32(&word, TXD_W2_SD_PTR1,
  514. skbdesc->skb_dma + TXWI_DESC_SIZE);
  515. rt2x00_desc_write(txd, 2, word);
  516. rt2x00_desc_read(txd, 3, &word);
  517. rt2x00_set_field32(&word, TXD_W3_WIV,
  518. !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags));
  519. rt2x00_set_field32(&word, TXD_W3_QSEL, 2);
  520. rt2x00_desc_write(txd, 3, word);
  521. /*
  522. * Register descriptor details in skb frame descriptor.
  523. */
  524. skbdesc->desc = txd;
  525. skbdesc->desc_len = TXD_DESC_SIZE;
  526. }
  527. /*
  528. * RX control handlers
  529. */
  530. static void rt2800pci_fill_rxdone(struct queue_entry *entry,
  531. struct rxdone_entry_desc *rxdesc)
  532. {
  533. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  534. __le32 *rxd = entry_priv->desc;
  535. u32 word;
  536. rt2x00_desc_read(rxd, 3, &word);
  537. if (rt2x00_get_field32(word, RXD_W3_CRC_ERROR))
  538. rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
  539. /*
  540. * Unfortunately we don't know the cipher type used during
  541. * decryption. This prevents us from correct providing
  542. * correct statistics through debugfs.
  543. */
  544. rxdesc->cipher_status = rt2x00_get_field32(word, RXD_W3_CIPHER_ERROR);
  545. if (rt2x00_get_field32(word, RXD_W3_DECRYPTED)) {
  546. /*
  547. * Hardware has stripped IV/EIV data from 802.11 frame during
  548. * decryption. Unfortunately the descriptor doesn't contain
  549. * any fields with the EIV/IV data either, so they can't
  550. * be restored by rt2x00lib.
  551. */
  552. rxdesc->flags |= RX_FLAG_IV_STRIPPED;
  553. if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
  554. rxdesc->flags |= RX_FLAG_DECRYPTED;
  555. else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
  556. rxdesc->flags |= RX_FLAG_MMIC_ERROR;
  557. }
  558. if (rt2x00_get_field32(word, RXD_W3_MY_BSS))
  559. rxdesc->dev_flags |= RXDONE_MY_BSS;
  560. if (rt2x00_get_field32(word, RXD_W3_L2PAD))
  561. rxdesc->dev_flags |= RXDONE_L2PAD;
  562. /*
  563. * Process the RXWI structure that is at the start of the buffer.
  564. */
  565. rt2800_process_rxwi(entry, rxdesc);
  566. }
  567. /*
  568. * Interrupt functions.
  569. */
  570. static void rt2800pci_wakeup(struct rt2x00_dev *rt2x00dev)
  571. {
  572. struct ieee80211_conf conf = { .flags = 0 };
  573. struct rt2x00lib_conf libconf = { .conf = &conf };
  574. rt2800_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
  575. }
  576. static void rt2800pci_txdone(struct rt2x00_dev *rt2x00dev)
  577. {
  578. struct data_queue *queue;
  579. struct queue_entry *entry;
  580. u32 status;
  581. u8 qid;
  582. while (kfifo_get(&rt2x00dev->txstatus_fifo, &status)) {
  583. qid = rt2x00_get_field32(status, TX_STA_FIFO_PID_QUEUE);
  584. if (qid >= QID_RX) {
  585. /*
  586. * Unknown queue, this shouldn't happen. Just drop
  587. * this tx status.
  588. */
  589. WARNING(rt2x00dev, "Got TX status report with "
  590. "unexpected pid %u, dropping\n", qid);
  591. break;
  592. }
  593. queue = rt2x00queue_get_queue(rt2x00dev, qid);
  594. if (unlikely(queue == NULL)) {
  595. /*
  596. * The queue is NULL, this shouldn't happen. Stop
  597. * processing here and drop the tx status
  598. */
  599. WARNING(rt2x00dev, "Got TX status for an unavailable "
  600. "queue %u, dropping\n", qid);
  601. break;
  602. }
  603. if (rt2x00queue_empty(queue)) {
  604. /*
  605. * The queue is empty. Stop processing here
  606. * and drop the tx status.
  607. */
  608. WARNING(rt2x00dev, "Got TX status for an empty "
  609. "queue %u, dropping\n", qid);
  610. break;
  611. }
  612. entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
  613. rt2800_txdone_entry(entry, status);
  614. }
  615. }
  616. static void rt2800pci_txstatus_tasklet(unsigned long data)
  617. {
  618. rt2800pci_txdone((struct rt2x00_dev *)data);
  619. }
  620. static irqreturn_t rt2800pci_interrupt_thread(int irq, void *dev_instance)
  621. {
  622. struct rt2x00_dev *rt2x00dev = dev_instance;
  623. u32 reg = rt2x00dev->irqvalue[0];
  624. /*
  625. * 1 - Pre TBTT interrupt.
  626. */
  627. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_PRE_TBTT))
  628. rt2x00lib_pretbtt(rt2x00dev);
  629. /*
  630. * 2 - Beacondone interrupt.
  631. */
  632. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TBTT))
  633. rt2x00lib_beacondone(rt2x00dev);
  634. /*
  635. * 3 - Rx ring done interrupt.
  636. */
  637. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE))
  638. rt2x00pci_rxdone(rt2x00dev);
  639. /*
  640. * 4 - Auto wakeup interrupt.
  641. */
  642. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP))
  643. rt2800pci_wakeup(rt2x00dev);
  644. /* Enable interrupts again. */
  645. rt2x00dev->ops->lib->set_device_state(rt2x00dev,
  646. STATE_RADIO_IRQ_ON_ISR);
  647. return IRQ_HANDLED;
  648. }
  649. static void rt2800pci_txstatus_interrupt(struct rt2x00_dev *rt2x00dev)
  650. {
  651. u32 status;
  652. int i;
  653. /*
  654. * The TX_FIFO_STATUS interrupt needs special care. We should
  655. * read TX_STA_FIFO but we should do it immediately as otherwise
  656. * the register can overflow and we would lose status reports.
  657. *
  658. * Hence, read the TX_STA_FIFO register and copy all tx status
  659. * reports into a kernel FIFO which is handled in the txstatus
  660. * tasklet. We use a tasklet to process the tx status reports
  661. * because we can schedule the tasklet multiple times (when the
  662. * interrupt fires again during tx status processing).
  663. *
  664. * Furthermore we don't disable the TX_FIFO_STATUS
  665. * interrupt here but leave it enabled so that the TX_STA_FIFO
  666. * can also be read while the interrupt thread gets executed.
  667. *
  668. * Since we have only one producer and one consumer we don't
  669. * need to lock the kfifo.
  670. */
  671. for (i = 0; i < rt2x00dev->ops->tx->entry_num; i++) {
  672. rt2800_register_read(rt2x00dev, TX_STA_FIFO, &status);
  673. if (!rt2x00_get_field32(status, TX_STA_FIFO_VALID))
  674. break;
  675. if (!kfifo_put(&rt2x00dev->txstatus_fifo, &status)) {
  676. WARNING(rt2x00dev, "TX status FIFO overrun,"
  677. "drop tx status report.\n");
  678. break;
  679. }
  680. }
  681. /* Schedule the tasklet for processing the tx status. */
  682. tasklet_schedule(&rt2x00dev->txstatus_tasklet);
  683. }
  684. static irqreturn_t rt2800pci_interrupt(int irq, void *dev_instance)
  685. {
  686. struct rt2x00_dev *rt2x00dev = dev_instance;
  687. u32 reg;
  688. irqreturn_t ret = IRQ_HANDLED;
  689. /* Read status and ACK all interrupts */
  690. rt2800_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
  691. rt2800_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
  692. if (!reg)
  693. return IRQ_NONE;
  694. if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  695. return IRQ_HANDLED;
  696. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS))
  697. rt2800pci_txstatus_interrupt(rt2x00dev);
  698. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_PRE_TBTT) ||
  699. rt2x00_get_field32(reg, INT_SOURCE_CSR_TBTT) ||
  700. rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE) ||
  701. rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP)) {
  702. /*
  703. * All other interrupts are handled in the interrupt thread.
  704. * Store irqvalue for use in the interrupt thread.
  705. */
  706. rt2x00dev->irqvalue[0] = reg;
  707. /*
  708. * Disable interrupts, will be enabled again in the
  709. * interrupt thread.
  710. */
  711. rt2x00dev->ops->lib->set_device_state(rt2x00dev,
  712. STATE_RADIO_IRQ_OFF_ISR);
  713. /*
  714. * Leave the TX_FIFO_STATUS interrupt enabled to not lose any
  715. * tx status reports.
  716. */
  717. rt2800_register_read(rt2x00dev, INT_MASK_CSR, &reg);
  718. rt2x00_set_field32(&reg, INT_MASK_CSR_TX_FIFO_STATUS, 1);
  719. rt2800_register_write(rt2x00dev, INT_MASK_CSR, reg);
  720. ret = IRQ_WAKE_THREAD;
  721. }
  722. return ret;
  723. }
  724. /*
  725. * Device probe functions.
  726. */
  727. static int rt2800pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
  728. {
  729. /*
  730. * Read EEPROM into buffer
  731. */
  732. if (rt2x00_is_soc(rt2x00dev))
  733. rt2800pci_read_eeprom_soc(rt2x00dev);
  734. else if (rt2800pci_efuse_detect(rt2x00dev))
  735. rt2800pci_read_eeprom_efuse(rt2x00dev);
  736. else
  737. rt2800pci_read_eeprom_pci(rt2x00dev);
  738. return rt2800_validate_eeprom(rt2x00dev);
  739. }
  740. static int rt2800pci_probe_hw(struct rt2x00_dev *rt2x00dev)
  741. {
  742. int retval;
  743. /*
  744. * Allocate eeprom data.
  745. */
  746. retval = rt2800pci_validate_eeprom(rt2x00dev);
  747. if (retval)
  748. return retval;
  749. retval = rt2800_init_eeprom(rt2x00dev);
  750. if (retval)
  751. return retval;
  752. /*
  753. * Initialize hw specifications.
  754. */
  755. retval = rt2800_probe_hw_mode(rt2x00dev);
  756. if (retval)
  757. return retval;
  758. /*
  759. * This device has multiple filters for control frames
  760. * and has a separate filter for PS Poll frames.
  761. */
  762. __set_bit(DRIVER_SUPPORT_CONTROL_FILTERS, &rt2x00dev->flags);
  763. __set_bit(DRIVER_SUPPORT_CONTROL_FILTER_PSPOLL, &rt2x00dev->flags);
  764. /*
  765. * This device has a pre tbtt interrupt and thus fetches
  766. * a new beacon directly prior to transmission.
  767. */
  768. __set_bit(DRIVER_SUPPORT_PRE_TBTT_INTERRUPT, &rt2x00dev->flags);
  769. /*
  770. * This device requires firmware.
  771. */
  772. if (!rt2x00_is_soc(rt2x00dev))
  773. __set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
  774. __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
  775. __set_bit(DRIVER_REQUIRE_L2PAD, &rt2x00dev->flags);
  776. __set_bit(DRIVER_REQUIRE_TXSTATUS_FIFO, &rt2x00dev->flags);
  777. __set_bit(DRIVER_REQUIRE_TASKLET_CONTEXT, &rt2x00dev->flags);
  778. if (!modparam_nohwcrypt)
  779. __set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
  780. __set_bit(DRIVER_SUPPORT_LINK_TUNING, &rt2x00dev->flags);
  781. /*
  782. * Set the rssi offset.
  783. */
  784. rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
  785. return 0;
  786. }
  787. static const struct ieee80211_ops rt2800pci_mac80211_ops = {
  788. .tx = rt2x00mac_tx,
  789. .start = rt2x00mac_start,
  790. .stop = rt2x00mac_stop,
  791. .add_interface = rt2x00mac_add_interface,
  792. .remove_interface = rt2x00mac_remove_interface,
  793. .config = rt2x00mac_config,
  794. .configure_filter = rt2x00mac_configure_filter,
  795. .set_key = rt2x00mac_set_key,
  796. .sw_scan_start = rt2x00mac_sw_scan_start,
  797. .sw_scan_complete = rt2x00mac_sw_scan_complete,
  798. .get_stats = rt2x00mac_get_stats,
  799. .get_tkip_seq = rt2800_get_tkip_seq,
  800. .set_rts_threshold = rt2800_set_rts_threshold,
  801. .bss_info_changed = rt2x00mac_bss_info_changed,
  802. .conf_tx = rt2800_conf_tx,
  803. .get_tsf = rt2800_get_tsf,
  804. .rfkill_poll = rt2x00mac_rfkill_poll,
  805. .ampdu_action = rt2800_ampdu_action,
  806. .flush = rt2x00mac_flush,
  807. .get_survey = rt2800_get_survey,
  808. };
  809. static const struct rt2800_ops rt2800pci_rt2800_ops = {
  810. .register_read = rt2x00pci_register_read,
  811. .register_read_lock = rt2x00pci_register_read, /* same for PCI */
  812. .register_write = rt2x00pci_register_write,
  813. .register_write_lock = rt2x00pci_register_write, /* same for PCI */
  814. .register_multiread = rt2x00pci_register_multiread,
  815. .register_multiwrite = rt2x00pci_register_multiwrite,
  816. .regbusy_read = rt2x00pci_regbusy_read,
  817. .drv_write_firmware = rt2800pci_write_firmware,
  818. .drv_init_registers = rt2800pci_init_registers,
  819. .drv_get_txwi = rt2800pci_get_txwi,
  820. };
  821. static const struct rt2x00lib_ops rt2800pci_rt2x00_ops = {
  822. .irq_handler = rt2800pci_interrupt,
  823. .irq_handler_thread = rt2800pci_interrupt_thread,
  824. .txstatus_tasklet = rt2800pci_txstatus_tasklet,
  825. .probe_hw = rt2800pci_probe_hw,
  826. .get_firmware_name = rt2800pci_get_firmware_name,
  827. .check_firmware = rt2800_check_firmware,
  828. .load_firmware = rt2800_load_firmware,
  829. .initialize = rt2x00pci_initialize,
  830. .uninitialize = rt2x00pci_uninitialize,
  831. .get_entry_state = rt2800pci_get_entry_state,
  832. .clear_entry = rt2800pci_clear_entry,
  833. .set_device_state = rt2800pci_set_device_state,
  834. .rfkill_poll = rt2800_rfkill_poll,
  835. .link_stats = rt2800_link_stats,
  836. .reset_tuner = rt2800_reset_tuner,
  837. .link_tuner = rt2800_link_tuner,
  838. .start_queue = rt2800pci_start_queue,
  839. .kick_queue = rt2800pci_kick_queue,
  840. .stop_queue = rt2800pci_stop_queue,
  841. .write_tx_desc = rt2800pci_write_tx_desc,
  842. .write_tx_data = rt2800_write_tx_data,
  843. .write_beacon = rt2800_write_beacon,
  844. .clear_beacon = rt2800_clear_beacon,
  845. .fill_rxdone = rt2800pci_fill_rxdone,
  846. .config_shared_key = rt2800_config_shared_key,
  847. .config_pairwise_key = rt2800_config_pairwise_key,
  848. .config_filter = rt2800_config_filter,
  849. .config_intf = rt2800_config_intf,
  850. .config_erp = rt2800_config_erp,
  851. .config_ant = rt2800_config_ant,
  852. .config = rt2800_config,
  853. };
  854. static const struct data_queue_desc rt2800pci_queue_rx = {
  855. .entry_num = 128,
  856. .data_size = AGGREGATION_SIZE,
  857. .desc_size = RXD_DESC_SIZE,
  858. .priv_size = sizeof(struct queue_entry_priv_pci),
  859. };
  860. static const struct data_queue_desc rt2800pci_queue_tx = {
  861. .entry_num = 64,
  862. .data_size = AGGREGATION_SIZE,
  863. .desc_size = TXD_DESC_SIZE,
  864. .priv_size = sizeof(struct queue_entry_priv_pci),
  865. };
  866. static const struct data_queue_desc rt2800pci_queue_bcn = {
  867. .entry_num = 8,
  868. .data_size = 0, /* No DMA required for beacons */
  869. .desc_size = TXWI_DESC_SIZE,
  870. .priv_size = sizeof(struct queue_entry_priv_pci),
  871. };
  872. static const struct rt2x00_ops rt2800pci_ops = {
  873. .name = KBUILD_MODNAME,
  874. .max_sta_intf = 1,
  875. .max_ap_intf = 8,
  876. .eeprom_size = EEPROM_SIZE,
  877. .rf_size = RF_SIZE,
  878. .tx_queues = NUM_TX_QUEUES,
  879. .extra_tx_headroom = TXWI_DESC_SIZE,
  880. .rx = &rt2800pci_queue_rx,
  881. .tx = &rt2800pci_queue_tx,
  882. .bcn = &rt2800pci_queue_bcn,
  883. .lib = &rt2800pci_rt2x00_ops,
  884. .drv = &rt2800pci_rt2800_ops,
  885. .hw = &rt2800pci_mac80211_ops,
  886. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  887. .debugfs = &rt2800_rt2x00debug,
  888. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  889. };
  890. /*
  891. * RT2800pci module information.
  892. */
  893. #ifdef CONFIG_PCI
  894. static DEFINE_PCI_DEVICE_TABLE(rt2800pci_device_table) = {
  895. { PCI_DEVICE(0x1814, 0x0601), PCI_DEVICE_DATA(&rt2800pci_ops) },
  896. { PCI_DEVICE(0x1814, 0x0681), PCI_DEVICE_DATA(&rt2800pci_ops) },
  897. { PCI_DEVICE(0x1814, 0x0701), PCI_DEVICE_DATA(&rt2800pci_ops) },
  898. { PCI_DEVICE(0x1814, 0x0781), PCI_DEVICE_DATA(&rt2800pci_ops) },
  899. { PCI_DEVICE(0x1814, 0x3090), PCI_DEVICE_DATA(&rt2800pci_ops) },
  900. { PCI_DEVICE(0x1814, 0x3091), PCI_DEVICE_DATA(&rt2800pci_ops) },
  901. { PCI_DEVICE(0x1814, 0x3092), PCI_DEVICE_DATA(&rt2800pci_ops) },
  902. { PCI_DEVICE(0x1432, 0x7708), PCI_DEVICE_DATA(&rt2800pci_ops) },
  903. { PCI_DEVICE(0x1432, 0x7727), PCI_DEVICE_DATA(&rt2800pci_ops) },
  904. { PCI_DEVICE(0x1432, 0x7728), PCI_DEVICE_DATA(&rt2800pci_ops) },
  905. { PCI_DEVICE(0x1432, 0x7738), PCI_DEVICE_DATA(&rt2800pci_ops) },
  906. { PCI_DEVICE(0x1432, 0x7748), PCI_DEVICE_DATA(&rt2800pci_ops) },
  907. { PCI_DEVICE(0x1432, 0x7758), PCI_DEVICE_DATA(&rt2800pci_ops) },
  908. { PCI_DEVICE(0x1432, 0x7768), PCI_DEVICE_DATA(&rt2800pci_ops) },
  909. { PCI_DEVICE(0x1462, 0x891a), PCI_DEVICE_DATA(&rt2800pci_ops) },
  910. { PCI_DEVICE(0x1a3b, 0x1059), PCI_DEVICE_DATA(&rt2800pci_ops) },
  911. #ifdef CONFIG_RT2800PCI_RT33XX
  912. { PCI_DEVICE(0x1814, 0x3390), PCI_DEVICE_DATA(&rt2800pci_ops) },
  913. #endif
  914. #ifdef CONFIG_RT2800PCI_RT35XX
  915. { PCI_DEVICE(0x1814, 0x3060), PCI_DEVICE_DATA(&rt2800pci_ops) },
  916. { PCI_DEVICE(0x1814, 0x3062), PCI_DEVICE_DATA(&rt2800pci_ops) },
  917. { PCI_DEVICE(0x1814, 0x3562), PCI_DEVICE_DATA(&rt2800pci_ops) },
  918. { PCI_DEVICE(0x1814, 0x3592), PCI_DEVICE_DATA(&rt2800pci_ops) },
  919. { PCI_DEVICE(0x1814, 0x3593), PCI_DEVICE_DATA(&rt2800pci_ops) },
  920. #endif
  921. { 0, }
  922. };
  923. #endif /* CONFIG_PCI */
  924. MODULE_AUTHOR(DRV_PROJECT);
  925. MODULE_VERSION(DRV_VERSION);
  926. MODULE_DESCRIPTION("Ralink RT2800 PCI & PCMCIA Wireless LAN driver.");
  927. MODULE_SUPPORTED_DEVICE("Ralink RT2860 PCI & PCMCIA chipset based cards");
  928. #ifdef CONFIG_PCI
  929. MODULE_FIRMWARE(FIRMWARE_RT2860);
  930. MODULE_DEVICE_TABLE(pci, rt2800pci_device_table);
  931. #endif /* CONFIG_PCI */
  932. MODULE_LICENSE("GPL");
  933. #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
  934. static int rt2800soc_probe(struct platform_device *pdev)
  935. {
  936. return rt2x00soc_probe(pdev, &rt2800pci_ops);
  937. }
  938. static struct platform_driver rt2800soc_driver = {
  939. .driver = {
  940. .name = "rt2800_wmac",
  941. .owner = THIS_MODULE,
  942. .mod_name = KBUILD_MODNAME,
  943. },
  944. .probe = rt2800soc_probe,
  945. .remove = __devexit_p(rt2x00soc_remove),
  946. .suspend = rt2x00soc_suspend,
  947. .resume = rt2x00soc_resume,
  948. };
  949. #endif /* CONFIG_RALINK_RT288X || CONFIG_RALINK_RT305X */
  950. #ifdef CONFIG_PCI
  951. static struct pci_driver rt2800pci_driver = {
  952. .name = KBUILD_MODNAME,
  953. .id_table = rt2800pci_device_table,
  954. .probe = rt2x00pci_probe,
  955. .remove = __devexit_p(rt2x00pci_remove),
  956. .suspend = rt2x00pci_suspend,
  957. .resume = rt2x00pci_resume,
  958. };
  959. #endif /* CONFIG_PCI */
  960. static int __init rt2800pci_init(void)
  961. {
  962. int ret = 0;
  963. #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
  964. ret = platform_driver_register(&rt2800soc_driver);
  965. if (ret)
  966. return ret;
  967. #endif
  968. #ifdef CONFIG_PCI
  969. ret = pci_register_driver(&rt2800pci_driver);
  970. if (ret) {
  971. #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
  972. platform_driver_unregister(&rt2800soc_driver);
  973. #endif
  974. return ret;
  975. }
  976. #endif
  977. return ret;
  978. }
  979. static void __exit rt2800pci_exit(void)
  980. {
  981. #ifdef CONFIG_PCI
  982. pci_unregister_driver(&rt2800pci_driver);
  983. #endif
  984. #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
  985. platform_driver_unregister(&rt2800soc_driver);
  986. #endif
  987. }
  988. module_init(rt2800pci_init);
  989. module_exit(rt2800pci_exit);