i915_gem.c 103 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include "drmP.h"
  28. #include "drm.h"
  29. #include "i915_drm.h"
  30. #include "i915_drv.h"
  31. #include "i915_trace.h"
  32. #include "intel_drv.h"
  33. #include <linux/slab.h>
  34. #include <linux/swap.h>
  35. #include <linux/pci.h>
  36. static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
  37. static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
  38. static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
  39. static __must_check int i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj,
  40. bool write);
  41. static __must_check int i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
  42. uint64_t offset,
  43. uint64_t size);
  44. static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj);
  45. static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  46. unsigned alignment,
  47. bool map_and_fenceable);
  48. static void i915_gem_clear_fence_reg(struct drm_device *dev,
  49. struct drm_i915_fence_reg *reg);
  50. static int i915_gem_phys_pwrite(struct drm_device *dev,
  51. struct drm_i915_gem_object *obj,
  52. struct drm_i915_gem_pwrite *args,
  53. struct drm_file *file);
  54. static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj);
  55. static int i915_gem_inactive_shrink(struct shrinker *shrinker,
  56. int nr_to_scan,
  57. gfp_t gfp_mask);
  58. /* some bookkeeping */
  59. static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
  60. size_t size)
  61. {
  62. dev_priv->mm.object_count++;
  63. dev_priv->mm.object_memory += size;
  64. }
  65. static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
  66. size_t size)
  67. {
  68. dev_priv->mm.object_count--;
  69. dev_priv->mm.object_memory -= size;
  70. }
  71. int
  72. i915_gem_check_is_wedged(struct drm_device *dev)
  73. {
  74. struct drm_i915_private *dev_priv = dev->dev_private;
  75. struct completion *x = &dev_priv->error_completion;
  76. unsigned long flags;
  77. int ret;
  78. if (!atomic_read(&dev_priv->mm.wedged))
  79. return 0;
  80. ret = wait_for_completion_interruptible(x);
  81. if (ret)
  82. return ret;
  83. /* Success, we reset the GPU! */
  84. if (!atomic_read(&dev_priv->mm.wedged))
  85. return 0;
  86. /* GPU is hung, bump the completion count to account for
  87. * the token we just consumed so that we never hit zero and
  88. * end up waiting upon a subsequent completion event that
  89. * will never happen.
  90. */
  91. spin_lock_irqsave(&x->wait.lock, flags);
  92. x->done++;
  93. spin_unlock_irqrestore(&x->wait.lock, flags);
  94. return -EIO;
  95. }
  96. int i915_mutex_lock_interruptible(struct drm_device *dev)
  97. {
  98. struct drm_i915_private *dev_priv = dev->dev_private;
  99. int ret;
  100. ret = i915_gem_check_is_wedged(dev);
  101. if (ret)
  102. return ret;
  103. ret = mutex_lock_interruptible(&dev->struct_mutex);
  104. if (ret)
  105. return ret;
  106. if (atomic_read(&dev_priv->mm.wedged)) {
  107. mutex_unlock(&dev->struct_mutex);
  108. return -EAGAIN;
  109. }
  110. WARN_ON(i915_verify_lists(dev));
  111. return 0;
  112. }
  113. static inline bool
  114. i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
  115. {
  116. return obj->gtt_space && !obj->active && obj->pin_count == 0;
  117. }
  118. void i915_gem_do_init(struct drm_device *dev,
  119. unsigned long start,
  120. unsigned long mappable_end,
  121. unsigned long end)
  122. {
  123. drm_i915_private_t *dev_priv = dev->dev_private;
  124. drm_mm_init(&dev_priv->mm.gtt_space, start, end - start);
  125. dev_priv->mm.gtt_start = start;
  126. dev_priv->mm.gtt_mappable_end = mappable_end;
  127. dev_priv->mm.gtt_end = end;
  128. dev_priv->mm.gtt_total = end - start;
  129. dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
  130. /* Take over this portion of the GTT */
  131. intel_gtt_clear_range(start / PAGE_SIZE, (end-start) / PAGE_SIZE);
  132. }
  133. int
  134. i915_gem_init_ioctl(struct drm_device *dev, void *data,
  135. struct drm_file *file)
  136. {
  137. struct drm_i915_gem_init *args = data;
  138. if (args->gtt_start >= args->gtt_end ||
  139. (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
  140. return -EINVAL;
  141. mutex_lock(&dev->struct_mutex);
  142. i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
  143. mutex_unlock(&dev->struct_mutex);
  144. return 0;
  145. }
  146. int
  147. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  148. struct drm_file *file)
  149. {
  150. struct drm_i915_private *dev_priv = dev->dev_private;
  151. struct drm_i915_gem_get_aperture *args = data;
  152. struct drm_i915_gem_object *obj;
  153. size_t pinned;
  154. if (!(dev->driver->driver_features & DRIVER_GEM))
  155. return -ENODEV;
  156. pinned = 0;
  157. mutex_lock(&dev->struct_mutex);
  158. list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list)
  159. pinned += obj->gtt_space->size;
  160. mutex_unlock(&dev->struct_mutex);
  161. args->aper_size = dev_priv->mm.gtt_total;
  162. args->aper_available_size = args->aper_size -pinned;
  163. return 0;
  164. }
  165. /**
  166. * Creates a new mm object and returns a handle to it.
  167. */
  168. int
  169. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  170. struct drm_file *file)
  171. {
  172. struct drm_i915_gem_create *args = data;
  173. struct drm_i915_gem_object *obj;
  174. int ret;
  175. u32 handle;
  176. args->size = roundup(args->size, PAGE_SIZE);
  177. /* Allocate the new object */
  178. obj = i915_gem_alloc_object(dev, args->size);
  179. if (obj == NULL)
  180. return -ENOMEM;
  181. ret = drm_gem_handle_create(file, &obj->base, &handle);
  182. if (ret) {
  183. drm_gem_object_release(&obj->base);
  184. i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
  185. kfree(obj);
  186. return ret;
  187. }
  188. /* drop reference from allocate - handle holds it now */
  189. drm_gem_object_unreference(&obj->base);
  190. trace_i915_gem_object_create(obj);
  191. args->handle = handle;
  192. return 0;
  193. }
  194. static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
  195. {
  196. drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
  197. return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
  198. obj->tiling_mode != I915_TILING_NONE;
  199. }
  200. static inline void
  201. slow_shmem_copy(struct page *dst_page,
  202. int dst_offset,
  203. struct page *src_page,
  204. int src_offset,
  205. int length)
  206. {
  207. char *dst_vaddr, *src_vaddr;
  208. dst_vaddr = kmap(dst_page);
  209. src_vaddr = kmap(src_page);
  210. memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
  211. kunmap(src_page);
  212. kunmap(dst_page);
  213. }
  214. static inline void
  215. slow_shmem_bit17_copy(struct page *gpu_page,
  216. int gpu_offset,
  217. struct page *cpu_page,
  218. int cpu_offset,
  219. int length,
  220. int is_read)
  221. {
  222. char *gpu_vaddr, *cpu_vaddr;
  223. /* Use the unswizzled path if this page isn't affected. */
  224. if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
  225. if (is_read)
  226. return slow_shmem_copy(cpu_page, cpu_offset,
  227. gpu_page, gpu_offset, length);
  228. else
  229. return slow_shmem_copy(gpu_page, gpu_offset,
  230. cpu_page, cpu_offset, length);
  231. }
  232. gpu_vaddr = kmap(gpu_page);
  233. cpu_vaddr = kmap(cpu_page);
  234. /* Copy the data, XORing A6 with A17 (1). The user already knows he's
  235. * XORing with the other bits (A9 for Y, A9 and A10 for X)
  236. */
  237. while (length > 0) {
  238. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  239. int this_length = min(cacheline_end - gpu_offset, length);
  240. int swizzled_gpu_offset = gpu_offset ^ 64;
  241. if (is_read) {
  242. memcpy(cpu_vaddr + cpu_offset,
  243. gpu_vaddr + swizzled_gpu_offset,
  244. this_length);
  245. } else {
  246. memcpy(gpu_vaddr + swizzled_gpu_offset,
  247. cpu_vaddr + cpu_offset,
  248. this_length);
  249. }
  250. cpu_offset += this_length;
  251. gpu_offset += this_length;
  252. length -= this_length;
  253. }
  254. kunmap(cpu_page);
  255. kunmap(gpu_page);
  256. }
  257. /**
  258. * This is the fast shmem pread path, which attempts to copy_from_user directly
  259. * from the backing pages of the object to the user's address space. On a
  260. * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
  261. */
  262. static int
  263. i915_gem_shmem_pread_fast(struct drm_device *dev,
  264. struct drm_i915_gem_object *obj,
  265. struct drm_i915_gem_pread *args,
  266. struct drm_file *file)
  267. {
  268. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  269. ssize_t remain;
  270. loff_t offset;
  271. char __user *user_data;
  272. int page_offset, page_length;
  273. user_data = (char __user *) (uintptr_t) args->data_ptr;
  274. remain = args->size;
  275. offset = args->offset;
  276. while (remain > 0) {
  277. struct page *page;
  278. char *vaddr;
  279. int ret;
  280. /* Operation in this page
  281. *
  282. * page_offset = offset within page
  283. * page_length = bytes to copy for this page
  284. */
  285. page_offset = offset & (PAGE_SIZE-1);
  286. page_length = remain;
  287. if ((page_offset + remain) > PAGE_SIZE)
  288. page_length = PAGE_SIZE - page_offset;
  289. page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
  290. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  291. if (IS_ERR(page))
  292. return PTR_ERR(page);
  293. vaddr = kmap_atomic(page);
  294. ret = __copy_to_user_inatomic(user_data,
  295. vaddr + page_offset,
  296. page_length);
  297. kunmap_atomic(vaddr);
  298. mark_page_accessed(page);
  299. page_cache_release(page);
  300. if (ret)
  301. return -EFAULT;
  302. remain -= page_length;
  303. user_data += page_length;
  304. offset += page_length;
  305. }
  306. return 0;
  307. }
  308. /**
  309. * This is the fallback shmem pread path, which allocates temporary storage
  310. * in kernel space to copy_to_user into outside of the struct_mutex, so we
  311. * can copy out of the object's backing pages while holding the struct mutex
  312. * and not take page faults.
  313. */
  314. static int
  315. i915_gem_shmem_pread_slow(struct drm_device *dev,
  316. struct drm_i915_gem_object *obj,
  317. struct drm_i915_gem_pread *args,
  318. struct drm_file *file)
  319. {
  320. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  321. struct mm_struct *mm = current->mm;
  322. struct page **user_pages;
  323. ssize_t remain;
  324. loff_t offset, pinned_pages, i;
  325. loff_t first_data_page, last_data_page, num_pages;
  326. int shmem_page_offset;
  327. int data_page_index, data_page_offset;
  328. int page_length;
  329. int ret;
  330. uint64_t data_ptr = args->data_ptr;
  331. int do_bit17_swizzling;
  332. remain = args->size;
  333. /* Pin the user pages containing the data. We can't fault while
  334. * holding the struct mutex, yet we want to hold it while
  335. * dereferencing the user data.
  336. */
  337. first_data_page = data_ptr / PAGE_SIZE;
  338. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  339. num_pages = last_data_page - first_data_page + 1;
  340. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  341. if (user_pages == NULL)
  342. return -ENOMEM;
  343. mutex_unlock(&dev->struct_mutex);
  344. down_read(&mm->mmap_sem);
  345. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  346. num_pages, 1, 0, user_pages, NULL);
  347. up_read(&mm->mmap_sem);
  348. mutex_lock(&dev->struct_mutex);
  349. if (pinned_pages < num_pages) {
  350. ret = -EFAULT;
  351. goto out;
  352. }
  353. ret = i915_gem_object_set_cpu_read_domain_range(obj,
  354. args->offset,
  355. args->size);
  356. if (ret)
  357. goto out;
  358. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  359. offset = args->offset;
  360. while (remain > 0) {
  361. struct page *page;
  362. /* Operation in this page
  363. *
  364. * shmem_page_offset = offset within page in shmem file
  365. * data_page_index = page number in get_user_pages return
  366. * data_page_offset = offset with data_page_index page.
  367. * page_length = bytes to copy for this page
  368. */
  369. shmem_page_offset = offset & ~PAGE_MASK;
  370. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  371. data_page_offset = data_ptr & ~PAGE_MASK;
  372. page_length = remain;
  373. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  374. page_length = PAGE_SIZE - shmem_page_offset;
  375. if ((data_page_offset + page_length) > PAGE_SIZE)
  376. page_length = PAGE_SIZE - data_page_offset;
  377. page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
  378. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  379. if (IS_ERR(page))
  380. return PTR_ERR(page);
  381. if (do_bit17_swizzling) {
  382. slow_shmem_bit17_copy(page,
  383. shmem_page_offset,
  384. user_pages[data_page_index],
  385. data_page_offset,
  386. page_length,
  387. 1);
  388. } else {
  389. slow_shmem_copy(user_pages[data_page_index],
  390. data_page_offset,
  391. page,
  392. shmem_page_offset,
  393. page_length);
  394. }
  395. mark_page_accessed(page);
  396. page_cache_release(page);
  397. remain -= page_length;
  398. data_ptr += page_length;
  399. offset += page_length;
  400. }
  401. out:
  402. for (i = 0; i < pinned_pages; i++) {
  403. SetPageDirty(user_pages[i]);
  404. mark_page_accessed(user_pages[i]);
  405. page_cache_release(user_pages[i]);
  406. }
  407. drm_free_large(user_pages);
  408. return ret;
  409. }
  410. /**
  411. * Reads data from the object referenced by handle.
  412. *
  413. * On error, the contents of *data are undefined.
  414. */
  415. int
  416. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  417. struct drm_file *file)
  418. {
  419. struct drm_i915_gem_pread *args = data;
  420. struct drm_i915_gem_object *obj;
  421. int ret = 0;
  422. if (args->size == 0)
  423. return 0;
  424. if (!access_ok(VERIFY_WRITE,
  425. (char __user *)(uintptr_t)args->data_ptr,
  426. args->size))
  427. return -EFAULT;
  428. ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
  429. args->size);
  430. if (ret)
  431. return -EFAULT;
  432. ret = i915_mutex_lock_interruptible(dev);
  433. if (ret)
  434. return ret;
  435. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  436. if (obj == NULL) {
  437. ret = -ENOENT;
  438. goto unlock;
  439. }
  440. /* Bounds check source. */
  441. if (args->offset > obj->base.size ||
  442. args->size > obj->base.size - args->offset) {
  443. ret = -EINVAL;
  444. goto out;
  445. }
  446. ret = i915_gem_object_set_cpu_read_domain_range(obj,
  447. args->offset,
  448. args->size);
  449. if (ret)
  450. goto out;
  451. ret = -EFAULT;
  452. if (!i915_gem_object_needs_bit17_swizzle(obj))
  453. ret = i915_gem_shmem_pread_fast(dev, obj, args, file);
  454. if (ret == -EFAULT)
  455. ret = i915_gem_shmem_pread_slow(dev, obj, args, file);
  456. out:
  457. drm_gem_object_unreference(&obj->base);
  458. unlock:
  459. mutex_unlock(&dev->struct_mutex);
  460. return ret;
  461. }
  462. /* This is the fast write path which cannot handle
  463. * page faults in the source data
  464. */
  465. static inline int
  466. fast_user_write(struct io_mapping *mapping,
  467. loff_t page_base, int page_offset,
  468. char __user *user_data,
  469. int length)
  470. {
  471. char *vaddr_atomic;
  472. unsigned long unwritten;
  473. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
  474. unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
  475. user_data, length);
  476. io_mapping_unmap_atomic(vaddr_atomic);
  477. return unwritten;
  478. }
  479. /* Here's the write path which can sleep for
  480. * page faults
  481. */
  482. static inline void
  483. slow_kernel_write(struct io_mapping *mapping,
  484. loff_t gtt_base, int gtt_offset,
  485. struct page *user_page, int user_offset,
  486. int length)
  487. {
  488. char __iomem *dst_vaddr;
  489. char *src_vaddr;
  490. dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
  491. src_vaddr = kmap(user_page);
  492. memcpy_toio(dst_vaddr + gtt_offset,
  493. src_vaddr + user_offset,
  494. length);
  495. kunmap(user_page);
  496. io_mapping_unmap(dst_vaddr);
  497. }
  498. /**
  499. * This is the fast pwrite path, where we copy the data directly from the
  500. * user into the GTT, uncached.
  501. */
  502. static int
  503. i915_gem_gtt_pwrite_fast(struct drm_device *dev,
  504. struct drm_i915_gem_object *obj,
  505. struct drm_i915_gem_pwrite *args,
  506. struct drm_file *file)
  507. {
  508. drm_i915_private_t *dev_priv = dev->dev_private;
  509. ssize_t remain;
  510. loff_t offset, page_base;
  511. char __user *user_data;
  512. int page_offset, page_length;
  513. user_data = (char __user *) (uintptr_t) args->data_ptr;
  514. remain = args->size;
  515. offset = obj->gtt_offset + args->offset;
  516. while (remain > 0) {
  517. /* Operation in this page
  518. *
  519. * page_base = page offset within aperture
  520. * page_offset = offset within page
  521. * page_length = bytes to copy for this page
  522. */
  523. page_base = (offset & ~(PAGE_SIZE-1));
  524. page_offset = offset & (PAGE_SIZE-1);
  525. page_length = remain;
  526. if ((page_offset + remain) > PAGE_SIZE)
  527. page_length = PAGE_SIZE - page_offset;
  528. /* If we get a fault while copying data, then (presumably) our
  529. * source page isn't available. Return the error and we'll
  530. * retry in the slow path.
  531. */
  532. if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
  533. page_offset, user_data, page_length))
  534. return -EFAULT;
  535. remain -= page_length;
  536. user_data += page_length;
  537. offset += page_length;
  538. }
  539. return 0;
  540. }
  541. /**
  542. * This is the fallback GTT pwrite path, which uses get_user_pages to pin
  543. * the memory and maps it using kmap_atomic for copying.
  544. *
  545. * This code resulted in x11perf -rgb10text consuming about 10% more CPU
  546. * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
  547. */
  548. static int
  549. i915_gem_gtt_pwrite_slow(struct drm_device *dev,
  550. struct drm_i915_gem_object *obj,
  551. struct drm_i915_gem_pwrite *args,
  552. struct drm_file *file)
  553. {
  554. drm_i915_private_t *dev_priv = dev->dev_private;
  555. ssize_t remain;
  556. loff_t gtt_page_base, offset;
  557. loff_t first_data_page, last_data_page, num_pages;
  558. loff_t pinned_pages, i;
  559. struct page **user_pages;
  560. struct mm_struct *mm = current->mm;
  561. int gtt_page_offset, data_page_offset, data_page_index, page_length;
  562. int ret;
  563. uint64_t data_ptr = args->data_ptr;
  564. remain = args->size;
  565. /* Pin the user pages containing the data. We can't fault while
  566. * holding the struct mutex, and all of the pwrite implementations
  567. * want to hold it while dereferencing the user data.
  568. */
  569. first_data_page = data_ptr / PAGE_SIZE;
  570. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  571. num_pages = last_data_page - first_data_page + 1;
  572. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  573. if (user_pages == NULL)
  574. return -ENOMEM;
  575. mutex_unlock(&dev->struct_mutex);
  576. down_read(&mm->mmap_sem);
  577. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  578. num_pages, 0, 0, user_pages, NULL);
  579. up_read(&mm->mmap_sem);
  580. mutex_lock(&dev->struct_mutex);
  581. if (pinned_pages < num_pages) {
  582. ret = -EFAULT;
  583. goto out_unpin_pages;
  584. }
  585. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  586. if (ret)
  587. goto out_unpin_pages;
  588. ret = i915_gem_object_put_fence(obj);
  589. if (ret)
  590. goto out_unpin_pages;
  591. offset = obj->gtt_offset + args->offset;
  592. while (remain > 0) {
  593. /* Operation in this page
  594. *
  595. * gtt_page_base = page offset within aperture
  596. * gtt_page_offset = offset within page in aperture
  597. * data_page_index = page number in get_user_pages return
  598. * data_page_offset = offset with data_page_index page.
  599. * page_length = bytes to copy for this page
  600. */
  601. gtt_page_base = offset & PAGE_MASK;
  602. gtt_page_offset = offset & ~PAGE_MASK;
  603. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  604. data_page_offset = data_ptr & ~PAGE_MASK;
  605. page_length = remain;
  606. if ((gtt_page_offset + page_length) > PAGE_SIZE)
  607. page_length = PAGE_SIZE - gtt_page_offset;
  608. if ((data_page_offset + page_length) > PAGE_SIZE)
  609. page_length = PAGE_SIZE - data_page_offset;
  610. slow_kernel_write(dev_priv->mm.gtt_mapping,
  611. gtt_page_base, gtt_page_offset,
  612. user_pages[data_page_index],
  613. data_page_offset,
  614. page_length);
  615. remain -= page_length;
  616. offset += page_length;
  617. data_ptr += page_length;
  618. }
  619. out_unpin_pages:
  620. for (i = 0; i < pinned_pages; i++)
  621. page_cache_release(user_pages[i]);
  622. drm_free_large(user_pages);
  623. return ret;
  624. }
  625. /**
  626. * This is the fast shmem pwrite path, which attempts to directly
  627. * copy_from_user into the kmapped pages backing the object.
  628. */
  629. static int
  630. i915_gem_shmem_pwrite_fast(struct drm_device *dev,
  631. struct drm_i915_gem_object *obj,
  632. struct drm_i915_gem_pwrite *args,
  633. struct drm_file *file)
  634. {
  635. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  636. ssize_t remain;
  637. loff_t offset;
  638. char __user *user_data;
  639. int page_offset, page_length;
  640. user_data = (char __user *) (uintptr_t) args->data_ptr;
  641. remain = args->size;
  642. offset = args->offset;
  643. obj->dirty = 1;
  644. while (remain > 0) {
  645. struct page *page;
  646. char *vaddr;
  647. int ret;
  648. /* Operation in this page
  649. *
  650. * page_offset = offset within page
  651. * page_length = bytes to copy for this page
  652. */
  653. page_offset = offset & (PAGE_SIZE-1);
  654. page_length = remain;
  655. if ((page_offset + remain) > PAGE_SIZE)
  656. page_length = PAGE_SIZE - page_offset;
  657. page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
  658. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  659. if (IS_ERR(page))
  660. return PTR_ERR(page);
  661. vaddr = kmap_atomic(page, KM_USER0);
  662. ret = __copy_from_user_inatomic(vaddr + page_offset,
  663. user_data,
  664. page_length);
  665. kunmap_atomic(vaddr, KM_USER0);
  666. set_page_dirty(page);
  667. mark_page_accessed(page);
  668. page_cache_release(page);
  669. /* If we get a fault while copying data, then (presumably) our
  670. * source page isn't available. Return the error and we'll
  671. * retry in the slow path.
  672. */
  673. if (ret)
  674. return -EFAULT;
  675. remain -= page_length;
  676. user_data += page_length;
  677. offset += page_length;
  678. }
  679. return 0;
  680. }
  681. /**
  682. * This is the fallback shmem pwrite path, which uses get_user_pages to pin
  683. * the memory and maps it using kmap_atomic for copying.
  684. *
  685. * This avoids taking mmap_sem for faulting on the user's address while the
  686. * struct_mutex is held.
  687. */
  688. static int
  689. i915_gem_shmem_pwrite_slow(struct drm_device *dev,
  690. struct drm_i915_gem_object *obj,
  691. struct drm_i915_gem_pwrite *args,
  692. struct drm_file *file)
  693. {
  694. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  695. struct mm_struct *mm = current->mm;
  696. struct page **user_pages;
  697. ssize_t remain;
  698. loff_t offset, pinned_pages, i;
  699. loff_t first_data_page, last_data_page, num_pages;
  700. int shmem_page_offset;
  701. int data_page_index, data_page_offset;
  702. int page_length;
  703. int ret;
  704. uint64_t data_ptr = args->data_ptr;
  705. int do_bit17_swizzling;
  706. remain = args->size;
  707. /* Pin the user pages containing the data. We can't fault while
  708. * holding the struct mutex, and all of the pwrite implementations
  709. * want to hold it while dereferencing the user data.
  710. */
  711. first_data_page = data_ptr / PAGE_SIZE;
  712. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  713. num_pages = last_data_page - first_data_page + 1;
  714. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  715. if (user_pages == NULL)
  716. return -ENOMEM;
  717. mutex_unlock(&dev->struct_mutex);
  718. down_read(&mm->mmap_sem);
  719. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  720. num_pages, 0, 0, user_pages, NULL);
  721. up_read(&mm->mmap_sem);
  722. mutex_lock(&dev->struct_mutex);
  723. if (pinned_pages < num_pages) {
  724. ret = -EFAULT;
  725. goto out;
  726. }
  727. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  728. if (ret)
  729. goto out;
  730. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  731. offset = args->offset;
  732. obj->dirty = 1;
  733. while (remain > 0) {
  734. struct page *page;
  735. /* Operation in this page
  736. *
  737. * shmem_page_offset = offset within page in shmem file
  738. * data_page_index = page number in get_user_pages return
  739. * data_page_offset = offset with data_page_index page.
  740. * page_length = bytes to copy for this page
  741. */
  742. shmem_page_offset = offset & ~PAGE_MASK;
  743. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  744. data_page_offset = data_ptr & ~PAGE_MASK;
  745. page_length = remain;
  746. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  747. page_length = PAGE_SIZE - shmem_page_offset;
  748. if ((data_page_offset + page_length) > PAGE_SIZE)
  749. page_length = PAGE_SIZE - data_page_offset;
  750. page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
  751. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  752. if (IS_ERR(page)) {
  753. ret = PTR_ERR(page);
  754. goto out;
  755. }
  756. if (do_bit17_swizzling) {
  757. slow_shmem_bit17_copy(page,
  758. shmem_page_offset,
  759. user_pages[data_page_index],
  760. data_page_offset,
  761. page_length,
  762. 0);
  763. } else {
  764. slow_shmem_copy(page,
  765. shmem_page_offset,
  766. user_pages[data_page_index],
  767. data_page_offset,
  768. page_length);
  769. }
  770. set_page_dirty(page);
  771. mark_page_accessed(page);
  772. page_cache_release(page);
  773. remain -= page_length;
  774. data_ptr += page_length;
  775. offset += page_length;
  776. }
  777. out:
  778. for (i = 0; i < pinned_pages; i++)
  779. page_cache_release(user_pages[i]);
  780. drm_free_large(user_pages);
  781. return ret;
  782. }
  783. /**
  784. * Writes data to the object referenced by handle.
  785. *
  786. * On error, the contents of the buffer that were to be modified are undefined.
  787. */
  788. int
  789. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  790. struct drm_file *file)
  791. {
  792. struct drm_i915_gem_pwrite *args = data;
  793. struct drm_i915_gem_object *obj;
  794. int ret;
  795. if (args->size == 0)
  796. return 0;
  797. if (!access_ok(VERIFY_READ,
  798. (char __user *)(uintptr_t)args->data_ptr,
  799. args->size))
  800. return -EFAULT;
  801. ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
  802. args->size);
  803. if (ret)
  804. return -EFAULT;
  805. ret = i915_mutex_lock_interruptible(dev);
  806. if (ret)
  807. return ret;
  808. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  809. if (obj == NULL) {
  810. ret = -ENOENT;
  811. goto unlock;
  812. }
  813. /* Bounds check destination. */
  814. if (args->offset > obj->base.size ||
  815. args->size > obj->base.size - args->offset) {
  816. ret = -EINVAL;
  817. goto out;
  818. }
  819. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  820. * it would end up going through the fenced access, and we'll get
  821. * different detiling behavior between reading and writing.
  822. * pread/pwrite currently are reading and writing from the CPU
  823. * perspective, requiring manual detiling by the client.
  824. */
  825. if (obj->phys_obj)
  826. ret = i915_gem_phys_pwrite(dev, obj, args, file);
  827. else if (obj->gtt_space &&
  828. obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  829. ret = i915_gem_object_pin(obj, 0, true);
  830. if (ret)
  831. goto out;
  832. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  833. if (ret)
  834. goto out_unpin;
  835. ret = i915_gem_object_put_fence(obj);
  836. if (ret)
  837. goto out_unpin;
  838. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
  839. if (ret == -EFAULT)
  840. ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
  841. out_unpin:
  842. i915_gem_object_unpin(obj);
  843. } else {
  844. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  845. if (ret)
  846. goto out;
  847. ret = -EFAULT;
  848. if (!i915_gem_object_needs_bit17_swizzle(obj))
  849. ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
  850. if (ret == -EFAULT)
  851. ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
  852. }
  853. out:
  854. drm_gem_object_unreference(&obj->base);
  855. unlock:
  856. mutex_unlock(&dev->struct_mutex);
  857. return ret;
  858. }
  859. /**
  860. * Called when user space prepares to use an object with the CPU, either
  861. * through the mmap ioctl's mapping or a GTT mapping.
  862. */
  863. int
  864. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  865. struct drm_file *file)
  866. {
  867. struct drm_i915_gem_set_domain *args = data;
  868. struct drm_i915_gem_object *obj;
  869. uint32_t read_domains = args->read_domains;
  870. uint32_t write_domain = args->write_domain;
  871. int ret;
  872. if (!(dev->driver->driver_features & DRIVER_GEM))
  873. return -ENODEV;
  874. /* Only handle setting domains to types used by the CPU. */
  875. if (write_domain & I915_GEM_GPU_DOMAINS)
  876. return -EINVAL;
  877. if (read_domains & I915_GEM_GPU_DOMAINS)
  878. return -EINVAL;
  879. /* Having something in the write domain implies it's in the read
  880. * domain, and only that read domain. Enforce that in the request.
  881. */
  882. if (write_domain != 0 && read_domains != write_domain)
  883. return -EINVAL;
  884. ret = i915_mutex_lock_interruptible(dev);
  885. if (ret)
  886. return ret;
  887. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  888. if (obj == NULL) {
  889. ret = -ENOENT;
  890. goto unlock;
  891. }
  892. if (read_domains & I915_GEM_DOMAIN_GTT) {
  893. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  894. /* Silently promote "you're not bound, there was nothing to do"
  895. * to success, since the client was just asking us to
  896. * make sure everything was done.
  897. */
  898. if (ret == -EINVAL)
  899. ret = 0;
  900. } else {
  901. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  902. }
  903. drm_gem_object_unreference(&obj->base);
  904. unlock:
  905. mutex_unlock(&dev->struct_mutex);
  906. return ret;
  907. }
  908. /**
  909. * Called when user space has done writes to this buffer
  910. */
  911. int
  912. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  913. struct drm_file *file)
  914. {
  915. struct drm_i915_gem_sw_finish *args = data;
  916. struct drm_i915_gem_object *obj;
  917. int ret = 0;
  918. if (!(dev->driver->driver_features & DRIVER_GEM))
  919. return -ENODEV;
  920. ret = i915_mutex_lock_interruptible(dev);
  921. if (ret)
  922. return ret;
  923. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  924. if (obj == NULL) {
  925. ret = -ENOENT;
  926. goto unlock;
  927. }
  928. /* Pinned buffers may be scanout, so flush the cache */
  929. if (obj->pin_count)
  930. i915_gem_object_flush_cpu_write_domain(obj);
  931. drm_gem_object_unreference(&obj->base);
  932. unlock:
  933. mutex_unlock(&dev->struct_mutex);
  934. return ret;
  935. }
  936. /**
  937. * Maps the contents of an object, returning the address it is mapped
  938. * into.
  939. *
  940. * While the mapping holds a reference on the contents of the object, it doesn't
  941. * imply a ref on the object itself.
  942. */
  943. int
  944. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  945. struct drm_file *file)
  946. {
  947. struct drm_i915_private *dev_priv = dev->dev_private;
  948. struct drm_i915_gem_mmap *args = data;
  949. struct drm_gem_object *obj;
  950. loff_t offset;
  951. unsigned long addr;
  952. if (!(dev->driver->driver_features & DRIVER_GEM))
  953. return -ENODEV;
  954. obj = drm_gem_object_lookup(dev, file, args->handle);
  955. if (obj == NULL)
  956. return -ENOENT;
  957. if (obj->size > dev_priv->mm.gtt_mappable_end) {
  958. drm_gem_object_unreference_unlocked(obj);
  959. return -E2BIG;
  960. }
  961. offset = args->offset;
  962. down_write(&current->mm->mmap_sem);
  963. addr = do_mmap(obj->filp, 0, args->size,
  964. PROT_READ | PROT_WRITE, MAP_SHARED,
  965. args->offset);
  966. up_write(&current->mm->mmap_sem);
  967. drm_gem_object_unreference_unlocked(obj);
  968. if (IS_ERR((void *)addr))
  969. return addr;
  970. args->addr_ptr = (uint64_t) addr;
  971. return 0;
  972. }
  973. /**
  974. * i915_gem_fault - fault a page into the GTT
  975. * vma: VMA in question
  976. * vmf: fault info
  977. *
  978. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  979. * from userspace. The fault handler takes care of binding the object to
  980. * the GTT (if needed), allocating and programming a fence register (again,
  981. * only if needed based on whether the old reg is still valid or the object
  982. * is tiled) and inserting a new PTE into the faulting process.
  983. *
  984. * Note that the faulting process may involve evicting existing objects
  985. * from the GTT and/or fence registers to make room. So performance may
  986. * suffer if the GTT working set is large or there are few fence registers
  987. * left.
  988. */
  989. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  990. {
  991. struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
  992. struct drm_device *dev = obj->base.dev;
  993. drm_i915_private_t *dev_priv = dev->dev_private;
  994. pgoff_t page_offset;
  995. unsigned long pfn;
  996. int ret = 0;
  997. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  998. /* We don't use vmf->pgoff since that has the fake offset */
  999. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  1000. PAGE_SHIFT;
  1001. /* Now bind it into the GTT if needed */
  1002. mutex_lock(&dev->struct_mutex);
  1003. if (!obj->map_and_fenceable) {
  1004. ret = i915_gem_object_unbind(obj);
  1005. if (ret)
  1006. goto unlock;
  1007. }
  1008. if (!obj->gtt_space) {
  1009. ret = i915_gem_object_bind_to_gtt(obj, 0, true);
  1010. if (ret)
  1011. goto unlock;
  1012. }
  1013. ret = i915_gem_object_set_to_gtt_domain(obj, write);
  1014. if (ret)
  1015. goto unlock;
  1016. if (obj->tiling_mode == I915_TILING_NONE)
  1017. ret = i915_gem_object_put_fence(obj);
  1018. else
  1019. ret = i915_gem_object_get_fence(obj, NULL, true);
  1020. if (ret)
  1021. goto unlock;
  1022. if (i915_gem_object_is_inactive(obj))
  1023. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  1024. obj->fault_mappable = true;
  1025. pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
  1026. page_offset;
  1027. /* Finally, remap it using the new GTT offset */
  1028. ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
  1029. unlock:
  1030. mutex_unlock(&dev->struct_mutex);
  1031. switch (ret) {
  1032. case -EAGAIN:
  1033. set_need_resched();
  1034. case 0:
  1035. case -ERESTARTSYS:
  1036. return VM_FAULT_NOPAGE;
  1037. case -ENOMEM:
  1038. return VM_FAULT_OOM;
  1039. default:
  1040. return VM_FAULT_SIGBUS;
  1041. }
  1042. }
  1043. /**
  1044. * i915_gem_create_mmap_offset - create a fake mmap offset for an object
  1045. * @obj: obj in question
  1046. *
  1047. * GEM memory mapping works by handing back to userspace a fake mmap offset
  1048. * it can use in a subsequent mmap(2) call. The DRM core code then looks
  1049. * up the object based on the offset and sets up the various memory mapping
  1050. * structures.
  1051. *
  1052. * This routine allocates and attaches a fake offset for @obj.
  1053. */
  1054. static int
  1055. i915_gem_create_mmap_offset(struct drm_i915_gem_object *obj)
  1056. {
  1057. struct drm_device *dev = obj->base.dev;
  1058. struct drm_gem_mm *mm = dev->mm_private;
  1059. struct drm_map_list *list;
  1060. struct drm_local_map *map;
  1061. int ret = 0;
  1062. /* Set the object up for mmap'ing */
  1063. list = &obj->base.map_list;
  1064. list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
  1065. if (!list->map)
  1066. return -ENOMEM;
  1067. map = list->map;
  1068. map->type = _DRM_GEM;
  1069. map->size = obj->base.size;
  1070. map->handle = obj;
  1071. /* Get a DRM GEM mmap offset allocated... */
  1072. list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
  1073. obj->base.size / PAGE_SIZE,
  1074. 0, 0);
  1075. if (!list->file_offset_node) {
  1076. DRM_ERROR("failed to allocate offset for bo %d\n",
  1077. obj->base.name);
  1078. ret = -ENOSPC;
  1079. goto out_free_list;
  1080. }
  1081. list->file_offset_node = drm_mm_get_block(list->file_offset_node,
  1082. obj->base.size / PAGE_SIZE,
  1083. 0);
  1084. if (!list->file_offset_node) {
  1085. ret = -ENOMEM;
  1086. goto out_free_list;
  1087. }
  1088. list->hash.key = list->file_offset_node->start;
  1089. ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
  1090. if (ret) {
  1091. DRM_ERROR("failed to add to map hash\n");
  1092. goto out_free_mm;
  1093. }
  1094. return 0;
  1095. out_free_mm:
  1096. drm_mm_put_block(list->file_offset_node);
  1097. out_free_list:
  1098. kfree(list->map);
  1099. list->map = NULL;
  1100. return ret;
  1101. }
  1102. /**
  1103. * i915_gem_release_mmap - remove physical page mappings
  1104. * @obj: obj in question
  1105. *
  1106. * Preserve the reservation of the mmapping with the DRM core code, but
  1107. * relinquish ownership of the pages back to the system.
  1108. *
  1109. * It is vital that we remove the page mapping if we have mapped a tiled
  1110. * object through the GTT and then lose the fence register due to
  1111. * resource pressure. Similarly if the object has been moved out of the
  1112. * aperture, than pages mapped into userspace must be revoked. Removing the
  1113. * mapping will then trigger a page fault on the next user access, allowing
  1114. * fixup by i915_gem_fault().
  1115. */
  1116. void
  1117. i915_gem_release_mmap(struct drm_i915_gem_object *obj)
  1118. {
  1119. if (!obj->fault_mappable)
  1120. return;
  1121. unmap_mapping_range(obj->base.dev->dev_mapping,
  1122. (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
  1123. obj->base.size, 1);
  1124. obj->fault_mappable = false;
  1125. }
  1126. static void
  1127. i915_gem_free_mmap_offset(struct drm_i915_gem_object *obj)
  1128. {
  1129. struct drm_device *dev = obj->base.dev;
  1130. struct drm_gem_mm *mm = dev->mm_private;
  1131. struct drm_map_list *list = &obj->base.map_list;
  1132. drm_ht_remove_item(&mm->offset_hash, &list->hash);
  1133. drm_mm_put_block(list->file_offset_node);
  1134. kfree(list->map);
  1135. list->map = NULL;
  1136. }
  1137. static uint32_t
  1138. i915_gem_get_gtt_size(struct drm_i915_gem_object *obj)
  1139. {
  1140. struct drm_device *dev = obj->base.dev;
  1141. uint32_t size;
  1142. if (INTEL_INFO(dev)->gen >= 4 ||
  1143. obj->tiling_mode == I915_TILING_NONE)
  1144. return obj->base.size;
  1145. /* Previous chips need a power-of-two fence region when tiling */
  1146. if (INTEL_INFO(dev)->gen == 3)
  1147. size = 1024*1024;
  1148. else
  1149. size = 512*1024;
  1150. while (size < obj->base.size)
  1151. size <<= 1;
  1152. return size;
  1153. }
  1154. /**
  1155. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  1156. * @obj: object to check
  1157. *
  1158. * Return the required GTT alignment for an object, taking into account
  1159. * potential fence register mapping.
  1160. */
  1161. static uint32_t
  1162. i915_gem_get_gtt_alignment(struct drm_i915_gem_object *obj)
  1163. {
  1164. struct drm_device *dev = obj->base.dev;
  1165. /*
  1166. * Minimum alignment is 4k (GTT page size), but might be greater
  1167. * if a fence register is needed for the object.
  1168. */
  1169. if (INTEL_INFO(dev)->gen >= 4 ||
  1170. obj->tiling_mode == I915_TILING_NONE)
  1171. return 4096;
  1172. /*
  1173. * Previous chips need to be aligned to the size of the smallest
  1174. * fence register that can contain the object.
  1175. */
  1176. return i915_gem_get_gtt_size(obj);
  1177. }
  1178. /**
  1179. * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
  1180. * unfenced object
  1181. * @obj: object to check
  1182. *
  1183. * Return the required GTT alignment for an object, only taking into account
  1184. * unfenced tiled surface requirements.
  1185. */
  1186. static uint32_t
  1187. i915_gem_get_unfenced_gtt_alignment(struct drm_i915_gem_object *obj)
  1188. {
  1189. struct drm_device *dev = obj->base.dev;
  1190. int tile_height;
  1191. /*
  1192. * Minimum alignment is 4k (GTT page size) for sane hw.
  1193. */
  1194. if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
  1195. obj->tiling_mode == I915_TILING_NONE)
  1196. return 4096;
  1197. /*
  1198. * Older chips need unfenced tiled buffers to be aligned to the left
  1199. * edge of an even tile row (where tile rows are counted as if the bo is
  1200. * placed in a fenced gtt region).
  1201. */
  1202. if (IS_GEN2(dev) ||
  1203. (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)))
  1204. tile_height = 32;
  1205. else
  1206. tile_height = 8;
  1207. return tile_height * obj->stride * 2;
  1208. }
  1209. /**
  1210. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1211. * @dev: DRM device
  1212. * @data: GTT mapping ioctl data
  1213. * @file: GEM object info
  1214. *
  1215. * Simply returns the fake offset to userspace so it can mmap it.
  1216. * The mmap call will end up in drm_gem_mmap(), which will set things
  1217. * up so we can get faults in the handler above.
  1218. *
  1219. * The fault handler will take care of binding the object into the GTT
  1220. * (since it may have been evicted to make room for something), allocating
  1221. * a fence register, and mapping the appropriate aperture address into
  1222. * userspace.
  1223. */
  1224. int
  1225. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1226. struct drm_file *file)
  1227. {
  1228. struct drm_i915_private *dev_priv = dev->dev_private;
  1229. struct drm_i915_gem_mmap_gtt *args = data;
  1230. struct drm_i915_gem_object *obj;
  1231. int ret;
  1232. if (!(dev->driver->driver_features & DRIVER_GEM))
  1233. return -ENODEV;
  1234. ret = i915_mutex_lock_interruptible(dev);
  1235. if (ret)
  1236. return ret;
  1237. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  1238. if (obj == NULL) {
  1239. ret = -ENOENT;
  1240. goto unlock;
  1241. }
  1242. if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
  1243. ret = -E2BIG;
  1244. goto unlock;
  1245. }
  1246. if (obj->madv != I915_MADV_WILLNEED) {
  1247. DRM_ERROR("Attempting to mmap a purgeable buffer\n");
  1248. ret = -EINVAL;
  1249. goto out;
  1250. }
  1251. if (!obj->base.map_list.map) {
  1252. ret = i915_gem_create_mmap_offset(obj);
  1253. if (ret)
  1254. goto out;
  1255. }
  1256. args->offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
  1257. out:
  1258. drm_gem_object_unreference(&obj->base);
  1259. unlock:
  1260. mutex_unlock(&dev->struct_mutex);
  1261. return ret;
  1262. }
  1263. static int
  1264. i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
  1265. gfp_t gfpmask)
  1266. {
  1267. int page_count, i;
  1268. struct address_space *mapping;
  1269. struct inode *inode;
  1270. struct page *page;
  1271. /* Get the list of pages out of our struct file. They'll be pinned
  1272. * at this point until we release them.
  1273. */
  1274. page_count = obj->base.size / PAGE_SIZE;
  1275. BUG_ON(obj->pages != NULL);
  1276. obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
  1277. if (obj->pages == NULL)
  1278. return -ENOMEM;
  1279. inode = obj->base.filp->f_path.dentry->d_inode;
  1280. mapping = inode->i_mapping;
  1281. for (i = 0; i < page_count; i++) {
  1282. page = read_cache_page_gfp(mapping, i,
  1283. GFP_HIGHUSER |
  1284. __GFP_COLD |
  1285. __GFP_RECLAIMABLE |
  1286. gfpmask);
  1287. if (IS_ERR(page))
  1288. goto err_pages;
  1289. obj->pages[i] = page;
  1290. }
  1291. if (obj->tiling_mode != I915_TILING_NONE)
  1292. i915_gem_object_do_bit_17_swizzle(obj);
  1293. return 0;
  1294. err_pages:
  1295. while (i--)
  1296. page_cache_release(obj->pages[i]);
  1297. drm_free_large(obj->pages);
  1298. obj->pages = NULL;
  1299. return PTR_ERR(page);
  1300. }
  1301. static void
  1302. i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
  1303. {
  1304. int page_count = obj->base.size / PAGE_SIZE;
  1305. int i;
  1306. BUG_ON(obj->madv == __I915_MADV_PURGED);
  1307. if (obj->tiling_mode != I915_TILING_NONE)
  1308. i915_gem_object_save_bit_17_swizzle(obj);
  1309. if (obj->madv == I915_MADV_DONTNEED)
  1310. obj->dirty = 0;
  1311. for (i = 0; i < page_count; i++) {
  1312. if (obj->dirty)
  1313. set_page_dirty(obj->pages[i]);
  1314. if (obj->madv == I915_MADV_WILLNEED)
  1315. mark_page_accessed(obj->pages[i]);
  1316. page_cache_release(obj->pages[i]);
  1317. }
  1318. obj->dirty = 0;
  1319. drm_free_large(obj->pages);
  1320. obj->pages = NULL;
  1321. }
  1322. void
  1323. i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
  1324. struct intel_ring_buffer *ring,
  1325. u32 seqno)
  1326. {
  1327. struct drm_device *dev = obj->base.dev;
  1328. struct drm_i915_private *dev_priv = dev->dev_private;
  1329. BUG_ON(ring == NULL);
  1330. obj->ring = ring;
  1331. /* Add a reference if we're newly entering the active list. */
  1332. if (!obj->active) {
  1333. drm_gem_object_reference(&obj->base);
  1334. obj->active = 1;
  1335. }
  1336. /* Move from whatever list we were on to the tail of execution. */
  1337. list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
  1338. list_move_tail(&obj->ring_list, &ring->active_list);
  1339. obj->last_rendering_seqno = seqno;
  1340. if (obj->fenced_gpu_access) {
  1341. struct drm_i915_fence_reg *reg;
  1342. BUG_ON(obj->fence_reg == I915_FENCE_REG_NONE);
  1343. obj->last_fenced_seqno = seqno;
  1344. obj->last_fenced_ring = ring;
  1345. reg = &dev_priv->fence_regs[obj->fence_reg];
  1346. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  1347. }
  1348. }
  1349. static void
  1350. i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
  1351. {
  1352. list_del_init(&obj->ring_list);
  1353. obj->last_rendering_seqno = 0;
  1354. }
  1355. static void
  1356. i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
  1357. {
  1358. struct drm_device *dev = obj->base.dev;
  1359. drm_i915_private_t *dev_priv = dev->dev_private;
  1360. BUG_ON(!obj->active);
  1361. list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
  1362. i915_gem_object_move_off_active(obj);
  1363. }
  1364. static void
  1365. i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
  1366. {
  1367. struct drm_device *dev = obj->base.dev;
  1368. struct drm_i915_private *dev_priv = dev->dev_private;
  1369. if (obj->pin_count != 0)
  1370. list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list);
  1371. else
  1372. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  1373. BUG_ON(!list_empty(&obj->gpu_write_list));
  1374. BUG_ON(!obj->active);
  1375. obj->ring = NULL;
  1376. i915_gem_object_move_off_active(obj);
  1377. obj->fenced_gpu_access = false;
  1378. obj->active = 0;
  1379. obj->pending_gpu_write = false;
  1380. drm_gem_object_unreference(&obj->base);
  1381. WARN_ON(i915_verify_lists(dev));
  1382. }
  1383. /* Immediately discard the backing storage */
  1384. static void
  1385. i915_gem_object_truncate(struct drm_i915_gem_object *obj)
  1386. {
  1387. struct inode *inode;
  1388. /* Our goal here is to return as much of the memory as
  1389. * is possible back to the system as we are called from OOM.
  1390. * To do this we must instruct the shmfs to drop all of its
  1391. * backing pages, *now*. Here we mirror the actions taken
  1392. * when by shmem_delete_inode() to release the backing store.
  1393. */
  1394. inode = obj->base.filp->f_path.dentry->d_inode;
  1395. truncate_inode_pages(inode->i_mapping, 0);
  1396. if (inode->i_op->truncate_range)
  1397. inode->i_op->truncate_range(inode, 0, (loff_t)-1);
  1398. obj->madv = __I915_MADV_PURGED;
  1399. }
  1400. static inline int
  1401. i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
  1402. {
  1403. return obj->madv == I915_MADV_DONTNEED;
  1404. }
  1405. static void
  1406. i915_gem_process_flushing_list(struct drm_device *dev,
  1407. uint32_t flush_domains,
  1408. struct intel_ring_buffer *ring)
  1409. {
  1410. struct drm_i915_gem_object *obj, *next;
  1411. list_for_each_entry_safe(obj, next,
  1412. &ring->gpu_write_list,
  1413. gpu_write_list) {
  1414. if (obj->base.write_domain & flush_domains) {
  1415. uint32_t old_write_domain = obj->base.write_domain;
  1416. obj->base.write_domain = 0;
  1417. list_del_init(&obj->gpu_write_list);
  1418. i915_gem_object_move_to_active(obj, ring,
  1419. i915_gem_next_request_seqno(dev, ring));
  1420. trace_i915_gem_object_change_domain(obj,
  1421. obj->base.read_domains,
  1422. old_write_domain);
  1423. }
  1424. }
  1425. }
  1426. int
  1427. i915_add_request(struct drm_device *dev,
  1428. struct drm_file *file,
  1429. struct drm_i915_gem_request *request,
  1430. struct intel_ring_buffer *ring)
  1431. {
  1432. drm_i915_private_t *dev_priv = dev->dev_private;
  1433. struct drm_i915_file_private *file_priv = NULL;
  1434. uint32_t seqno;
  1435. int was_empty;
  1436. int ret;
  1437. BUG_ON(request == NULL);
  1438. if (file != NULL)
  1439. file_priv = file->driver_priv;
  1440. ret = ring->add_request(ring, &seqno);
  1441. if (ret)
  1442. return ret;
  1443. ring->outstanding_lazy_request = false;
  1444. request->seqno = seqno;
  1445. request->ring = ring;
  1446. request->emitted_jiffies = jiffies;
  1447. was_empty = list_empty(&ring->request_list);
  1448. list_add_tail(&request->list, &ring->request_list);
  1449. if (file_priv) {
  1450. spin_lock(&file_priv->mm.lock);
  1451. request->file_priv = file_priv;
  1452. list_add_tail(&request->client_list,
  1453. &file_priv->mm.request_list);
  1454. spin_unlock(&file_priv->mm.lock);
  1455. }
  1456. if (!dev_priv->mm.suspended) {
  1457. mod_timer(&dev_priv->hangcheck_timer,
  1458. jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
  1459. if (was_empty)
  1460. queue_delayed_work(dev_priv->wq,
  1461. &dev_priv->mm.retire_work, HZ);
  1462. }
  1463. return 0;
  1464. }
  1465. static inline void
  1466. i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
  1467. {
  1468. struct drm_i915_file_private *file_priv = request->file_priv;
  1469. if (!file_priv)
  1470. return;
  1471. spin_lock(&file_priv->mm.lock);
  1472. list_del(&request->client_list);
  1473. request->file_priv = NULL;
  1474. spin_unlock(&file_priv->mm.lock);
  1475. }
  1476. static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
  1477. struct intel_ring_buffer *ring)
  1478. {
  1479. while (!list_empty(&ring->request_list)) {
  1480. struct drm_i915_gem_request *request;
  1481. request = list_first_entry(&ring->request_list,
  1482. struct drm_i915_gem_request,
  1483. list);
  1484. list_del(&request->list);
  1485. i915_gem_request_remove_from_client(request);
  1486. kfree(request);
  1487. }
  1488. while (!list_empty(&ring->active_list)) {
  1489. struct drm_i915_gem_object *obj;
  1490. obj = list_first_entry(&ring->active_list,
  1491. struct drm_i915_gem_object,
  1492. ring_list);
  1493. obj->base.write_domain = 0;
  1494. list_del_init(&obj->gpu_write_list);
  1495. i915_gem_object_move_to_inactive(obj);
  1496. }
  1497. }
  1498. static void i915_gem_reset_fences(struct drm_device *dev)
  1499. {
  1500. struct drm_i915_private *dev_priv = dev->dev_private;
  1501. int i;
  1502. for (i = 0; i < 16; i++) {
  1503. struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
  1504. struct drm_i915_gem_object *obj = reg->obj;
  1505. if (!obj)
  1506. continue;
  1507. if (obj->tiling_mode)
  1508. i915_gem_release_mmap(obj);
  1509. reg->obj->fence_reg = I915_FENCE_REG_NONE;
  1510. reg->obj->fenced_gpu_access = false;
  1511. reg->obj->last_fenced_seqno = 0;
  1512. reg->obj->last_fenced_ring = NULL;
  1513. i915_gem_clear_fence_reg(dev, reg);
  1514. }
  1515. }
  1516. void i915_gem_reset(struct drm_device *dev)
  1517. {
  1518. struct drm_i915_private *dev_priv = dev->dev_private;
  1519. struct drm_i915_gem_object *obj;
  1520. int i;
  1521. for (i = 0; i < I915_NUM_RINGS; i++)
  1522. i915_gem_reset_ring_lists(dev_priv, &dev_priv->ring[i]);
  1523. /* Remove anything from the flushing lists. The GPU cache is likely
  1524. * to be lost on reset along with the data, so simply move the
  1525. * lost bo to the inactive list.
  1526. */
  1527. while (!list_empty(&dev_priv->mm.flushing_list)) {
  1528. obj= list_first_entry(&dev_priv->mm.flushing_list,
  1529. struct drm_i915_gem_object,
  1530. mm_list);
  1531. obj->base.write_domain = 0;
  1532. list_del_init(&obj->gpu_write_list);
  1533. i915_gem_object_move_to_inactive(obj);
  1534. }
  1535. /* Move everything out of the GPU domains to ensure we do any
  1536. * necessary invalidation upon reuse.
  1537. */
  1538. list_for_each_entry(obj,
  1539. &dev_priv->mm.inactive_list,
  1540. mm_list)
  1541. {
  1542. obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  1543. }
  1544. /* The fence registers are invalidated so clear them out */
  1545. i915_gem_reset_fences(dev);
  1546. }
  1547. /**
  1548. * This function clears the request list as sequence numbers are passed.
  1549. */
  1550. static void
  1551. i915_gem_retire_requests_ring(struct drm_device *dev,
  1552. struct intel_ring_buffer *ring)
  1553. {
  1554. drm_i915_private_t *dev_priv = dev->dev_private;
  1555. uint32_t seqno;
  1556. int i;
  1557. if (!ring->status_page.page_addr ||
  1558. list_empty(&ring->request_list))
  1559. return;
  1560. WARN_ON(i915_verify_lists(dev));
  1561. seqno = ring->get_seqno(ring);
  1562. for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
  1563. if (seqno >= ring->sync_seqno[i])
  1564. ring->sync_seqno[i] = 0;
  1565. while (!list_empty(&ring->request_list)) {
  1566. struct drm_i915_gem_request *request;
  1567. request = list_first_entry(&ring->request_list,
  1568. struct drm_i915_gem_request,
  1569. list);
  1570. if (!i915_seqno_passed(seqno, request->seqno))
  1571. break;
  1572. trace_i915_gem_request_retire(dev, request->seqno);
  1573. list_del(&request->list);
  1574. i915_gem_request_remove_from_client(request);
  1575. kfree(request);
  1576. }
  1577. /* Move any buffers on the active list that are no longer referenced
  1578. * by the ringbuffer to the flushing/inactive lists as appropriate.
  1579. */
  1580. while (!list_empty(&ring->active_list)) {
  1581. struct drm_i915_gem_object *obj;
  1582. obj= list_first_entry(&ring->active_list,
  1583. struct drm_i915_gem_object,
  1584. ring_list);
  1585. if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
  1586. break;
  1587. if (obj->base.write_domain != 0)
  1588. i915_gem_object_move_to_flushing(obj);
  1589. else
  1590. i915_gem_object_move_to_inactive(obj);
  1591. }
  1592. if (unlikely (dev_priv->trace_irq_seqno &&
  1593. i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
  1594. ring->irq_put(ring);
  1595. dev_priv->trace_irq_seqno = 0;
  1596. }
  1597. WARN_ON(i915_verify_lists(dev));
  1598. }
  1599. void
  1600. i915_gem_retire_requests(struct drm_device *dev)
  1601. {
  1602. drm_i915_private_t *dev_priv = dev->dev_private;
  1603. int i;
  1604. if (!list_empty(&dev_priv->mm.deferred_free_list)) {
  1605. struct drm_i915_gem_object *obj, *next;
  1606. /* We must be careful that during unbind() we do not
  1607. * accidentally infinitely recurse into retire requests.
  1608. * Currently:
  1609. * retire -> free -> unbind -> wait -> retire_ring
  1610. */
  1611. list_for_each_entry_safe(obj, next,
  1612. &dev_priv->mm.deferred_free_list,
  1613. mm_list)
  1614. i915_gem_free_object_tail(obj);
  1615. }
  1616. for (i = 0; i < I915_NUM_RINGS; i++)
  1617. i915_gem_retire_requests_ring(dev, &dev_priv->ring[i]);
  1618. }
  1619. static void
  1620. i915_gem_retire_work_handler(struct work_struct *work)
  1621. {
  1622. drm_i915_private_t *dev_priv;
  1623. struct drm_device *dev;
  1624. bool idle;
  1625. int i;
  1626. dev_priv = container_of(work, drm_i915_private_t,
  1627. mm.retire_work.work);
  1628. dev = dev_priv->dev;
  1629. /* Come back later if the device is busy... */
  1630. if (!mutex_trylock(&dev->struct_mutex)) {
  1631. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1632. return;
  1633. }
  1634. i915_gem_retire_requests(dev);
  1635. /* Send a periodic flush down the ring so we don't hold onto GEM
  1636. * objects indefinitely.
  1637. */
  1638. idle = true;
  1639. for (i = 0; i < I915_NUM_RINGS; i++) {
  1640. struct intel_ring_buffer *ring = &dev_priv->ring[i];
  1641. if (!list_empty(&ring->gpu_write_list)) {
  1642. struct drm_i915_gem_request *request;
  1643. int ret;
  1644. ret = i915_gem_flush_ring(dev, ring, 0,
  1645. I915_GEM_GPU_DOMAINS);
  1646. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1647. if (ret || request == NULL ||
  1648. i915_add_request(dev, NULL, request, ring))
  1649. kfree(request);
  1650. }
  1651. idle &= list_empty(&ring->request_list);
  1652. }
  1653. if (!dev_priv->mm.suspended && !idle)
  1654. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1655. mutex_unlock(&dev->struct_mutex);
  1656. }
  1657. int
  1658. i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
  1659. bool interruptible, struct intel_ring_buffer *ring)
  1660. {
  1661. drm_i915_private_t *dev_priv = dev->dev_private;
  1662. u32 ier;
  1663. int ret = 0;
  1664. BUG_ON(seqno == 0);
  1665. if (atomic_read(&dev_priv->mm.wedged))
  1666. return -EAGAIN;
  1667. if (seqno == ring->outstanding_lazy_request) {
  1668. struct drm_i915_gem_request *request;
  1669. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1670. if (request == NULL)
  1671. return -ENOMEM;
  1672. ret = i915_add_request(dev, NULL, request, ring);
  1673. if (ret) {
  1674. kfree(request);
  1675. return ret;
  1676. }
  1677. seqno = request->seqno;
  1678. }
  1679. if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
  1680. if (HAS_PCH_SPLIT(dev))
  1681. ier = I915_READ(DEIER) | I915_READ(GTIER);
  1682. else
  1683. ier = I915_READ(IER);
  1684. if (!ier) {
  1685. DRM_ERROR("something (likely vbetool) disabled "
  1686. "interrupts, re-enabling\n");
  1687. i915_driver_irq_preinstall(dev);
  1688. i915_driver_irq_postinstall(dev);
  1689. }
  1690. trace_i915_gem_request_wait_begin(dev, seqno);
  1691. ring->waiting_seqno = seqno;
  1692. if (ring->irq_get(ring)) {
  1693. if (interruptible)
  1694. ret = wait_event_interruptible(ring->irq_queue,
  1695. i915_seqno_passed(ring->get_seqno(ring), seqno)
  1696. || atomic_read(&dev_priv->mm.wedged));
  1697. else
  1698. wait_event(ring->irq_queue,
  1699. i915_seqno_passed(ring->get_seqno(ring), seqno)
  1700. || atomic_read(&dev_priv->mm.wedged));
  1701. ring->irq_put(ring);
  1702. } else if (wait_for(i915_seqno_passed(ring->get_seqno(ring),
  1703. seqno) ||
  1704. atomic_read(&dev_priv->mm.wedged), 3000))
  1705. ret = -EBUSY;
  1706. ring->waiting_seqno = 0;
  1707. trace_i915_gem_request_wait_end(dev, seqno);
  1708. }
  1709. if (atomic_read(&dev_priv->mm.wedged))
  1710. ret = -EAGAIN;
  1711. if (ret && ret != -ERESTARTSYS)
  1712. DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
  1713. __func__, ret, seqno, ring->get_seqno(ring),
  1714. dev_priv->next_seqno);
  1715. /* Directly dispatch request retiring. While we have the work queue
  1716. * to handle this, the waiter on a request often wants an associated
  1717. * buffer to have made it to the inactive list, and we would need
  1718. * a separate wait queue to handle that.
  1719. */
  1720. if (ret == 0)
  1721. i915_gem_retire_requests_ring(dev, ring);
  1722. return ret;
  1723. }
  1724. /**
  1725. * Waits for a sequence number to be signaled, and cleans up the
  1726. * request and object lists appropriately for that event.
  1727. */
  1728. static int
  1729. i915_wait_request(struct drm_device *dev, uint32_t seqno,
  1730. struct intel_ring_buffer *ring)
  1731. {
  1732. return i915_do_wait_request(dev, seqno, 1, ring);
  1733. }
  1734. /**
  1735. * Ensures that all rendering to the object has completed and the object is
  1736. * safe to unbind from the GTT or access from the CPU.
  1737. */
  1738. int
  1739. i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
  1740. bool interruptible)
  1741. {
  1742. struct drm_device *dev = obj->base.dev;
  1743. int ret;
  1744. /* This function only exists to support waiting for existing rendering,
  1745. * not for emitting required flushes.
  1746. */
  1747. BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
  1748. /* If there is rendering queued on the buffer being evicted, wait for
  1749. * it.
  1750. */
  1751. if (obj->active) {
  1752. ret = i915_do_wait_request(dev,
  1753. obj->last_rendering_seqno,
  1754. interruptible,
  1755. obj->ring);
  1756. if (ret)
  1757. return ret;
  1758. }
  1759. return 0;
  1760. }
  1761. /**
  1762. * Unbinds an object from the GTT aperture.
  1763. */
  1764. int
  1765. i915_gem_object_unbind(struct drm_i915_gem_object *obj)
  1766. {
  1767. int ret = 0;
  1768. if (obj->gtt_space == NULL)
  1769. return 0;
  1770. if (obj->pin_count != 0) {
  1771. DRM_ERROR("Attempting to unbind pinned buffer\n");
  1772. return -EINVAL;
  1773. }
  1774. /* blow away mappings if mapped through GTT */
  1775. i915_gem_release_mmap(obj);
  1776. /* Move the object to the CPU domain to ensure that
  1777. * any possible CPU writes while it's not in the GTT
  1778. * are flushed when we go to remap it. This will
  1779. * also ensure that all pending GPU writes are finished
  1780. * before we unbind.
  1781. */
  1782. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  1783. if (ret == -ERESTARTSYS)
  1784. return ret;
  1785. /* Continue on if we fail due to EIO, the GPU is hung so we
  1786. * should be safe and we need to cleanup or else we might
  1787. * cause memory corruption through use-after-free.
  1788. */
  1789. if (ret) {
  1790. i915_gem_clflush_object(obj);
  1791. obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  1792. }
  1793. /* release the fence reg _after_ flushing */
  1794. ret = i915_gem_object_put_fence(obj);
  1795. if (ret == -ERESTARTSYS)
  1796. return ret;
  1797. i915_gem_gtt_unbind_object(obj);
  1798. i915_gem_object_put_pages_gtt(obj);
  1799. list_del_init(&obj->gtt_list);
  1800. list_del_init(&obj->mm_list);
  1801. /* Avoid an unnecessary call to unbind on rebind. */
  1802. obj->map_and_fenceable = true;
  1803. drm_mm_put_block(obj->gtt_space);
  1804. obj->gtt_space = NULL;
  1805. obj->gtt_offset = 0;
  1806. if (i915_gem_object_is_purgeable(obj))
  1807. i915_gem_object_truncate(obj);
  1808. trace_i915_gem_object_unbind(obj);
  1809. return ret;
  1810. }
  1811. int
  1812. i915_gem_flush_ring(struct drm_device *dev,
  1813. struct intel_ring_buffer *ring,
  1814. uint32_t invalidate_domains,
  1815. uint32_t flush_domains)
  1816. {
  1817. int ret;
  1818. ret = ring->flush(ring, invalidate_domains, flush_domains);
  1819. if (ret)
  1820. return ret;
  1821. i915_gem_process_flushing_list(dev, flush_domains, ring);
  1822. return 0;
  1823. }
  1824. static int i915_ring_idle(struct drm_device *dev,
  1825. struct intel_ring_buffer *ring)
  1826. {
  1827. int ret;
  1828. if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
  1829. return 0;
  1830. if (!list_empty(&ring->gpu_write_list)) {
  1831. ret = i915_gem_flush_ring(dev, ring,
  1832. I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
  1833. if (ret)
  1834. return ret;
  1835. }
  1836. return i915_wait_request(dev,
  1837. i915_gem_next_request_seqno(dev, ring),
  1838. ring);
  1839. }
  1840. int
  1841. i915_gpu_idle(struct drm_device *dev)
  1842. {
  1843. drm_i915_private_t *dev_priv = dev->dev_private;
  1844. bool lists_empty;
  1845. int ret, i;
  1846. lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
  1847. list_empty(&dev_priv->mm.active_list));
  1848. if (lists_empty)
  1849. return 0;
  1850. /* Flush everything onto the inactive list. */
  1851. for (i = 0; i < I915_NUM_RINGS; i++) {
  1852. ret = i915_ring_idle(dev, &dev_priv->ring[i]);
  1853. if (ret)
  1854. return ret;
  1855. }
  1856. return 0;
  1857. }
  1858. static int sandybridge_write_fence_reg(struct drm_i915_gem_object *obj,
  1859. struct intel_ring_buffer *pipelined)
  1860. {
  1861. struct drm_device *dev = obj->base.dev;
  1862. drm_i915_private_t *dev_priv = dev->dev_private;
  1863. u32 size = obj->gtt_space->size;
  1864. int regnum = obj->fence_reg;
  1865. uint64_t val;
  1866. val = (uint64_t)((obj->gtt_offset + size - 4096) &
  1867. 0xfffff000) << 32;
  1868. val |= obj->gtt_offset & 0xfffff000;
  1869. val |= (uint64_t)((obj->stride / 128) - 1) <<
  1870. SANDYBRIDGE_FENCE_PITCH_SHIFT;
  1871. if (obj->tiling_mode == I915_TILING_Y)
  1872. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1873. val |= I965_FENCE_REG_VALID;
  1874. if (pipelined) {
  1875. int ret = intel_ring_begin(pipelined, 6);
  1876. if (ret)
  1877. return ret;
  1878. intel_ring_emit(pipelined, MI_NOOP);
  1879. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
  1880. intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8);
  1881. intel_ring_emit(pipelined, (u32)val);
  1882. intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8 + 4);
  1883. intel_ring_emit(pipelined, (u32)(val >> 32));
  1884. intel_ring_advance(pipelined);
  1885. } else
  1886. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + regnum * 8, val);
  1887. return 0;
  1888. }
  1889. static int i965_write_fence_reg(struct drm_i915_gem_object *obj,
  1890. struct intel_ring_buffer *pipelined)
  1891. {
  1892. struct drm_device *dev = obj->base.dev;
  1893. drm_i915_private_t *dev_priv = dev->dev_private;
  1894. u32 size = obj->gtt_space->size;
  1895. int regnum = obj->fence_reg;
  1896. uint64_t val;
  1897. val = (uint64_t)((obj->gtt_offset + size - 4096) &
  1898. 0xfffff000) << 32;
  1899. val |= obj->gtt_offset & 0xfffff000;
  1900. val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
  1901. if (obj->tiling_mode == I915_TILING_Y)
  1902. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1903. val |= I965_FENCE_REG_VALID;
  1904. if (pipelined) {
  1905. int ret = intel_ring_begin(pipelined, 6);
  1906. if (ret)
  1907. return ret;
  1908. intel_ring_emit(pipelined, MI_NOOP);
  1909. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
  1910. intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8);
  1911. intel_ring_emit(pipelined, (u32)val);
  1912. intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8 + 4);
  1913. intel_ring_emit(pipelined, (u32)(val >> 32));
  1914. intel_ring_advance(pipelined);
  1915. } else
  1916. I915_WRITE64(FENCE_REG_965_0 + regnum * 8, val);
  1917. return 0;
  1918. }
  1919. static int i915_write_fence_reg(struct drm_i915_gem_object *obj,
  1920. struct intel_ring_buffer *pipelined)
  1921. {
  1922. struct drm_device *dev = obj->base.dev;
  1923. drm_i915_private_t *dev_priv = dev->dev_private;
  1924. u32 size = obj->gtt_space->size;
  1925. u32 fence_reg, val, pitch_val;
  1926. int tile_width;
  1927. if (WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
  1928. (size & -size) != size ||
  1929. (obj->gtt_offset & (size - 1)),
  1930. "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
  1931. obj->gtt_offset, obj->map_and_fenceable, size))
  1932. return -EINVAL;
  1933. if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
  1934. tile_width = 128;
  1935. else
  1936. tile_width = 512;
  1937. /* Note: pitch better be a power of two tile widths */
  1938. pitch_val = obj->stride / tile_width;
  1939. pitch_val = ffs(pitch_val) - 1;
  1940. val = obj->gtt_offset;
  1941. if (obj->tiling_mode == I915_TILING_Y)
  1942. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1943. val |= I915_FENCE_SIZE_BITS(size);
  1944. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1945. val |= I830_FENCE_REG_VALID;
  1946. fence_reg = obj->fence_reg;
  1947. if (fence_reg < 8)
  1948. fence_reg = FENCE_REG_830_0 + fence_reg * 4;
  1949. else
  1950. fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
  1951. if (pipelined) {
  1952. int ret = intel_ring_begin(pipelined, 4);
  1953. if (ret)
  1954. return ret;
  1955. intel_ring_emit(pipelined, MI_NOOP);
  1956. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
  1957. intel_ring_emit(pipelined, fence_reg);
  1958. intel_ring_emit(pipelined, val);
  1959. intel_ring_advance(pipelined);
  1960. } else
  1961. I915_WRITE(fence_reg, val);
  1962. return 0;
  1963. }
  1964. static int i830_write_fence_reg(struct drm_i915_gem_object *obj,
  1965. struct intel_ring_buffer *pipelined)
  1966. {
  1967. struct drm_device *dev = obj->base.dev;
  1968. drm_i915_private_t *dev_priv = dev->dev_private;
  1969. u32 size = obj->gtt_space->size;
  1970. int regnum = obj->fence_reg;
  1971. uint32_t val;
  1972. uint32_t pitch_val;
  1973. if (WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
  1974. (size & -size) != size ||
  1975. (obj->gtt_offset & (size - 1)),
  1976. "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
  1977. obj->gtt_offset, size))
  1978. return -EINVAL;
  1979. pitch_val = obj->stride / 128;
  1980. pitch_val = ffs(pitch_val) - 1;
  1981. val = obj->gtt_offset;
  1982. if (obj->tiling_mode == I915_TILING_Y)
  1983. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1984. val |= I830_FENCE_SIZE_BITS(size);
  1985. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1986. val |= I830_FENCE_REG_VALID;
  1987. if (pipelined) {
  1988. int ret = intel_ring_begin(pipelined, 4);
  1989. if (ret)
  1990. return ret;
  1991. intel_ring_emit(pipelined, MI_NOOP);
  1992. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
  1993. intel_ring_emit(pipelined, FENCE_REG_830_0 + regnum*4);
  1994. intel_ring_emit(pipelined, val);
  1995. intel_ring_advance(pipelined);
  1996. } else
  1997. I915_WRITE(FENCE_REG_830_0 + regnum * 4, val);
  1998. return 0;
  1999. }
  2000. static bool ring_passed_seqno(struct intel_ring_buffer *ring, u32 seqno)
  2001. {
  2002. return i915_seqno_passed(ring->get_seqno(ring), seqno);
  2003. }
  2004. static int
  2005. i915_gem_object_flush_fence(struct drm_i915_gem_object *obj,
  2006. struct intel_ring_buffer *pipelined,
  2007. bool interruptible)
  2008. {
  2009. int ret;
  2010. if (obj->fenced_gpu_access) {
  2011. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  2012. ret = i915_gem_flush_ring(obj->base.dev,
  2013. obj->last_fenced_ring,
  2014. 0, obj->base.write_domain);
  2015. if (ret)
  2016. return ret;
  2017. }
  2018. obj->fenced_gpu_access = false;
  2019. }
  2020. if (obj->last_fenced_seqno && pipelined != obj->last_fenced_ring) {
  2021. if (!ring_passed_seqno(obj->last_fenced_ring,
  2022. obj->last_fenced_seqno)) {
  2023. ret = i915_do_wait_request(obj->base.dev,
  2024. obj->last_fenced_seqno,
  2025. interruptible,
  2026. obj->last_fenced_ring);
  2027. if (ret)
  2028. return ret;
  2029. }
  2030. obj->last_fenced_seqno = 0;
  2031. obj->last_fenced_ring = NULL;
  2032. }
  2033. /* Ensure that all CPU reads are completed before installing a fence
  2034. * and all writes before removing the fence.
  2035. */
  2036. if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
  2037. mb();
  2038. return 0;
  2039. }
  2040. int
  2041. i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
  2042. {
  2043. int ret;
  2044. if (obj->tiling_mode)
  2045. i915_gem_release_mmap(obj);
  2046. ret = i915_gem_object_flush_fence(obj, NULL, true);
  2047. if (ret)
  2048. return ret;
  2049. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  2050. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  2051. i915_gem_clear_fence_reg(obj->base.dev,
  2052. &dev_priv->fence_regs[obj->fence_reg]);
  2053. obj->fence_reg = I915_FENCE_REG_NONE;
  2054. }
  2055. return 0;
  2056. }
  2057. static struct drm_i915_fence_reg *
  2058. i915_find_fence_reg(struct drm_device *dev,
  2059. struct intel_ring_buffer *pipelined)
  2060. {
  2061. struct drm_i915_private *dev_priv = dev->dev_private;
  2062. struct drm_i915_fence_reg *reg, *first, *avail;
  2063. int i;
  2064. /* First try to find a free reg */
  2065. avail = NULL;
  2066. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  2067. reg = &dev_priv->fence_regs[i];
  2068. if (!reg->obj)
  2069. return reg;
  2070. if (!reg->obj->pin_count)
  2071. avail = reg;
  2072. }
  2073. if (avail == NULL)
  2074. return NULL;
  2075. /* None available, try to steal one or wait for a user to finish */
  2076. avail = first = NULL;
  2077. list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
  2078. if (reg->obj->pin_count)
  2079. continue;
  2080. if (first == NULL)
  2081. first = reg;
  2082. if (!pipelined ||
  2083. !reg->obj->last_fenced_ring ||
  2084. reg->obj->last_fenced_ring == pipelined) {
  2085. avail = reg;
  2086. break;
  2087. }
  2088. }
  2089. if (avail == NULL)
  2090. avail = first;
  2091. return avail;
  2092. }
  2093. /**
  2094. * i915_gem_object_get_fence - set up a fence reg for an object
  2095. * @obj: object to map through a fence reg
  2096. * @pipelined: ring on which to queue the change, or NULL for CPU access
  2097. * @interruptible: must we wait uninterruptibly for the register to retire?
  2098. *
  2099. * When mapping objects through the GTT, userspace wants to be able to write
  2100. * to them without having to worry about swizzling if the object is tiled.
  2101. *
  2102. * This function walks the fence regs looking for a free one for @obj,
  2103. * stealing one if it can't find any.
  2104. *
  2105. * It then sets up the reg based on the object's properties: address, pitch
  2106. * and tiling format.
  2107. */
  2108. int
  2109. i915_gem_object_get_fence(struct drm_i915_gem_object *obj,
  2110. struct intel_ring_buffer *pipelined,
  2111. bool interruptible)
  2112. {
  2113. struct drm_device *dev = obj->base.dev;
  2114. struct drm_i915_private *dev_priv = dev->dev_private;
  2115. struct drm_i915_fence_reg *reg;
  2116. int ret;
  2117. /* XXX disable pipelining. There are bugs. Shocking. */
  2118. pipelined = NULL;
  2119. /* Just update our place in the LRU if our fence is getting reused. */
  2120. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  2121. reg = &dev_priv->fence_regs[obj->fence_reg];
  2122. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2123. if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
  2124. pipelined = NULL;
  2125. if (!pipelined) {
  2126. if (reg->setup_seqno) {
  2127. if (!ring_passed_seqno(obj->last_fenced_ring,
  2128. reg->setup_seqno)) {
  2129. ret = i915_do_wait_request(obj->base.dev,
  2130. reg->setup_seqno,
  2131. interruptible,
  2132. obj->last_fenced_ring);
  2133. if (ret)
  2134. return ret;
  2135. }
  2136. reg->setup_seqno = 0;
  2137. }
  2138. } else if (obj->last_fenced_ring &&
  2139. obj->last_fenced_ring != pipelined) {
  2140. ret = i915_gem_object_flush_fence(obj,
  2141. pipelined,
  2142. interruptible);
  2143. if (ret)
  2144. return ret;
  2145. } else if (obj->tiling_changed) {
  2146. if (obj->fenced_gpu_access) {
  2147. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  2148. ret = i915_gem_flush_ring(obj->base.dev, obj->ring,
  2149. 0, obj->base.write_domain);
  2150. if (ret)
  2151. return ret;
  2152. }
  2153. obj->fenced_gpu_access = false;
  2154. }
  2155. }
  2156. if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
  2157. pipelined = NULL;
  2158. BUG_ON(!pipelined && reg->setup_seqno);
  2159. if (obj->tiling_changed) {
  2160. if (pipelined) {
  2161. reg->setup_seqno =
  2162. i915_gem_next_request_seqno(dev, pipelined);
  2163. obj->last_fenced_seqno = reg->setup_seqno;
  2164. obj->last_fenced_ring = pipelined;
  2165. }
  2166. goto update;
  2167. }
  2168. return 0;
  2169. }
  2170. reg = i915_find_fence_reg(dev, pipelined);
  2171. if (reg == NULL)
  2172. return -ENOSPC;
  2173. ret = i915_gem_object_flush_fence(obj, pipelined, interruptible);
  2174. if (ret)
  2175. return ret;
  2176. if (reg->obj) {
  2177. struct drm_i915_gem_object *old = reg->obj;
  2178. drm_gem_object_reference(&old->base);
  2179. if (old->tiling_mode)
  2180. i915_gem_release_mmap(old);
  2181. ret = i915_gem_object_flush_fence(old,
  2182. pipelined,
  2183. interruptible);
  2184. if (ret) {
  2185. drm_gem_object_unreference(&old->base);
  2186. return ret;
  2187. }
  2188. if (old->last_fenced_seqno == 0 && obj->last_fenced_seqno == 0)
  2189. pipelined = NULL;
  2190. old->fence_reg = I915_FENCE_REG_NONE;
  2191. old->last_fenced_ring = pipelined;
  2192. old->last_fenced_seqno =
  2193. pipelined ? i915_gem_next_request_seqno(dev, pipelined) : 0;
  2194. drm_gem_object_unreference(&old->base);
  2195. } else if (obj->last_fenced_seqno == 0)
  2196. pipelined = NULL;
  2197. reg->obj = obj;
  2198. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2199. obj->fence_reg = reg - dev_priv->fence_regs;
  2200. obj->last_fenced_ring = pipelined;
  2201. reg->setup_seqno =
  2202. pipelined ? i915_gem_next_request_seqno(dev, pipelined) : 0;
  2203. obj->last_fenced_seqno = reg->setup_seqno;
  2204. update:
  2205. obj->tiling_changed = false;
  2206. switch (INTEL_INFO(dev)->gen) {
  2207. case 6:
  2208. ret = sandybridge_write_fence_reg(obj, pipelined);
  2209. break;
  2210. case 5:
  2211. case 4:
  2212. ret = i965_write_fence_reg(obj, pipelined);
  2213. break;
  2214. case 3:
  2215. ret = i915_write_fence_reg(obj, pipelined);
  2216. break;
  2217. case 2:
  2218. ret = i830_write_fence_reg(obj, pipelined);
  2219. break;
  2220. }
  2221. return ret;
  2222. }
  2223. /**
  2224. * i915_gem_clear_fence_reg - clear out fence register info
  2225. * @obj: object to clear
  2226. *
  2227. * Zeroes out the fence register itself and clears out the associated
  2228. * data structures in dev_priv and obj.
  2229. */
  2230. static void
  2231. i915_gem_clear_fence_reg(struct drm_device *dev,
  2232. struct drm_i915_fence_reg *reg)
  2233. {
  2234. drm_i915_private_t *dev_priv = dev->dev_private;
  2235. uint32_t fence_reg = reg - dev_priv->fence_regs;
  2236. switch (INTEL_INFO(dev)->gen) {
  2237. case 6:
  2238. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + fence_reg*8, 0);
  2239. break;
  2240. case 5:
  2241. case 4:
  2242. I915_WRITE64(FENCE_REG_965_0 + fence_reg*8, 0);
  2243. break;
  2244. case 3:
  2245. if (fence_reg >= 8)
  2246. fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
  2247. else
  2248. case 2:
  2249. fence_reg = FENCE_REG_830_0 + fence_reg * 4;
  2250. I915_WRITE(fence_reg, 0);
  2251. break;
  2252. }
  2253. list_del_init(&reg->lru_list);
  2254. reg->obj = NULL;
  2255. reg->setup_seqno = 0;
  2256. }
  2257. /**
  2258. * Finds free space in the GTT aperture and binds the object there.
  2259. */
  2260. static int
  2261. i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  2262. unsigned alignment,
  2263. bool map_and_fenceable)
  2264. {
  2265. struct drm_device *dev = obj->base.dev;
  2266. drm_i915_private_t *dev_priv = dev->dev_private;
  2267. struct drm_mm_node *free_space;
  2268. gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
  2269. u32 size, fence_size, fence_alignment, unfenced_alignment;
  2270. bool mappable, fenceable;
  2271. int ret;
  2272. if (obj->madv != I915_MADV_WILLNEED) {
  2273. DRM_ERROR("Attempting to bind a purgeable object\n");
  2274. return -EINVAL;
  2275. }
  2276. fence_size = i915_gem_get_gtt_size(obj);
  2277. fence_alignment = i915_gem_get_gtt_alignment(obj);
  2278. unfenced_alignment = i915_gem_get_unfenced_gtt_alignment(obj);
  2279. if (alignment == 0)
  2280. alignment = map_and_fenceable ? fence_alignment :
  2281. unfenced_alignment;
  2282. if (map_and_fenceable && alignment & (fence_alignment - 1)) {
  2283. DRM_ERROR("Invalid object alignment requested %u\n", alignment);
  2284. return -EINVAL;
  2285. }
  2286. size = map_and_fenceable ? fence_size : obj->base.size;
  2287. /* If the object is bigger than the entire aperture, reject it early
  2288. * before evicting everything in a vain attempt to find space.
  2289. */
  2290. if (obj->base.size >
  2291. (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
  2292. DRM_ERROR("Attempting to bind an object larger than the aperture\n");
  2293. return -E2BIG;
  2294. }
  2295. search_free:
  2296. if (map_and_fenceable)
  2297. free_space =
  2298. drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
  2299. size, alignment, 0,
  2300. dev_priv->mm.gtt_mappable_end,
  2301. 0);
  2302. else
  2303. free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
  2304. size, alignment, 0);
  2305. if (free_space != NULL) {
  2306. if (map_and_fenceable)
  2307. obj->gtt_space =
  2308. drm_mm_get_block_range_generic(free_space,
  2309. size, alignment, 0,
  2310. dev_priv->mm.gtt_mappable_end,
  2311. 0);
  2312. else
  2313. obj->gtt_space =
  2314. drm_mm_get_block(free_space, size, alignment);
  2315. }
  2316. if (obj->gtt_space == NULL) {
  2317. /* If the gtt is empty and we're still having trouble
  2318. * fitting our object in, we're out of memory.
  2319. */
  2320. ret = i915_gem_evict_something(dev, size, alignment,
  2321. map_and_fenceable);
  2322. if (ret)
  2323. return ret;
  2324. goto search_free;
  2325. }
  2326. ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
  2327. if (ret) {
  2328. drm_mm_put_block(obj->gtt_space);
  2329. obj->gtt_space = NULL;
  2330. if (ret == -ENOMEM) {
  2331. /* first try to reclaim some memory by clearing the GTT */
  2332. ret = i915_gem_evict_everything(dev, false);
  2333. if (ret) {
  2334. /* now try to shrink everyone else */
  2335. if (gfpmask) {
  2336. gfpmask = 0;
  2337. goto search_free;
  2338. }
  2339. return -ENOMEM;
  2340. }
  2341. goto search_free;
  2342. }
  2343. return ret;
  2344. }
  2345. ret = i915_gem_gtt_bind_object(obj);
  2346. if (ret) {
  2347. i915_gem_object_put_pages_gtt(obj);
  2348. drm_mm_put_block(obj->gtt_space);
  2349. obj->gtt_space = NULL;
  2350. if (i915_gem_evict_everything(dev, false))
  2351. return ret;
  2352. goto search_free;
  2353. }
  2354. list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
  2355. list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  2356. /* Assert that the object is not currently in any GPU domain. As it
  2357. * wasn't in the GTT, there shouldn't be any way it could have been in
  2358. * a GPU cache
  2359. */
  2360. BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
  2361. BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
  2362. obj->gtt_offset = obj->gtt_space->start;
  2363. fenceable =
  2364. obj->gtt_space->size == fence_size &&
  2365. (obj->gtt_space->start & (fence_alignment -1)) == 0;
  2366. mappable =
  2367. obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
  2368. obj->map_and_fenceable = mappable && fenceable;
  2369. trace_i915_gem_object_bind(obj, obj->gtt_offset, map_and_fenceable);
  2370. return 0;
  2371. }
  2372. void
  2373. i915_gem_clflush_object(struct drm_i915_gem_object *obj)
  2374. {
  2375. /* If we don't have a page list set up, then we're not pinned
  2376. * to GPU, and we can ignore the cache flush because it'll happen
  2377. * again at bind time.
  2378. */
  2379. if (obj->pages == NULL)
  2380. return;
  2381. trace_i915_gem_object_clflush(obj);
  2382. drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
  2383. }
  2384. /** Flushes any GPU write domain for the object if it's dirty. */
  2385. static int
  2386. i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
  2387. {
  2388. struct drm_device *dev = obj->base.dev;
  2389. if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
  2390. return 0;
  2391. /* Queue the GPU write cache flushing we need. */
  2392. return i915_gem_flush_ring(dev, obj->ring, 0, obj->base.write_domain);
  2393. }
  2394. /** Flushes the GTT write domain for the object if it's dirty. */
  2395. static void
  2396. i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
  2397. {
  2398. uint32_t old_write_domain;
  2399. if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
  2400. return;
  2401. /* No actual flushing is required for the GTT write domain. Writes
  2402. * to it immediately go to main memory as far as we know, so there's
  2403. * no chipset flush. It also doesn't land in render cache.
  2404. *
  2405. * However, we do have to enforce the order so that all writes through
  2406. * the GTT land before any writes to the device, such as updates to
  2407. * the GATT itself.
  2408. */
  2409. wmb();
  2410. i915_gem_release_mmap(obj);
  2411. old_write_domain = obj->base.write_domain;
  2412. obj->base.write_domain = 0;
  2413. trace_i915_gem_object_change_domain(obj,
  2414. obj->base.read_domains,
  2415. old_write_domain);
  2416. }
  2417. /** Flushes the CPU write domain for the object if it's dirty. */
  2418. static void
  2419. i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
  2420. {
  2421. uint32_t old_write_domain;
  2422. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
  2423. return;
  2424. i915_gem_clflush_object(obj);
  2425. intel_gtt_chipset_flush();
  2426. old_write_domain = obj->base.write_domain;
  2427. obj->base.write_domain = 0;
  2428. trace_i915_gem_object_change_domain(obj,
  2429. obj->base.read_domains,
  2430. old_write_domain);
  2431. }
  2432. /**
  2433. * Moves a single object to the GTT read, and possibly write domain.
  2434. *
  2435. * This function returns when the move is complete, including waiting on
  2436. * flushes to occur.
  2437. */
  2438. int
  2439. i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
  2440. {
  2441. uint32_t old_write_domain, old_read_domains;
  2442. int ret;
  2443. /* Not valid to be called on unbound objects. */
  2444. if (obj->gtt_space == NULL)
  2445. return -EINVAL;
  2446. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2447. if (ret)
  2448. return ret;
  2449. if (obj->pending_gpu_write || write) {
  2450. ret = i915_gem_object_wait_rendering(obj, true);
  2451. if (ret)
  2452. return ret;
  2453. }
  2454. i915_gem_object_flush_cpu_write_domain(obj);
  2455. old_write_domain = obj->base.write_domain;
  2456. old_read_domains = obj->base.read_domains;
  2457. /* It should now be out of any other write domains, and we can update
  2458. * the domain values for our changes.
  2459. */
  2460. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2461. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2462. if (write) {
  2463. obj->base.read_domains = I915_GEM_DOMAIN_GTT;
  2464. obj->base.write_domain = I915_GEM_DOMAIN_GTT;
  2465. obj->dirty = 1;
  2466. }
  2467. trace_i915_gem_object_change_domain(obj,
  2468. old_read_domains,
  2469. old_write_domain);
  2470. return 0;
  2471. }
  2472. /*
  2473. * Prepare buffer for display plane. Use uninterruptible for possible flush
  2474. * wait, as in modesetting process we're not supposed to be interrupted.
  2475. */
  2476. int
  2477. i915_gem_object_set_to_display_plane(struct drm_i915_gem_object *obj,
  2478. struct intel_ring_buffer *pipelined)
  2479. {
  2480. uint32_t old_read_domains;
  2481. int ret;
  2482. /* Not valid to be called on unbound objects. */
  2483. if (obj->gtt_space == NULL)
  2484. return -EINVAL;
  2485. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2486. if (ret)
  2487. return ret;
  2488. /* Currently, we are always called from an non-interruptible context. */
  2489. if (pipelined != obj->ring) {
  2490. ret = i915_gem_object_wait_rendering(obj, false);
  2491. if (ret)
  2492. return ret;
  2493. }
  2494. i915_gem_object_flush_cpu_write_domain(obj);
  2495. old_read_domains = obj->base.read_domains;
  2496. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2497. trace_i915_gem_object_change_domain(obj,
  2498. old_read_domains,
  2499. obj->base.write_domain);
  2500. return 0;
  2501. }
  2502. int
  2503. i915_gem_object_flush_gpu(struct drm_i915_gem_object *obj,
  2504. bool interruptible)
  2505. {
  2506. int ret;
  2507. if (!obj->active)
  2508. return 0;
  2509. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  2510. ret = i915_gem_flush_ring(obj->base.dev, obj->ring,
  2511. 0, obj->base.write_domain);
  2512. if (ret)
  2513. return ret;
  2514. }
  2515. return i915_gem_object_wait_rendering(obj, interruptible);
  2516. }
  2517. /**
  2518. * Moves a single object to the CPU read, and possibly write domain.
  2519. *
  2520. * This function returns when the move is complete, including waiting on
  2521. * flushes to occur.
  2522. */
  2523. static int
  2524. i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
  2525. {
  2526. uint32_t old_write_domain, old_read_domains;
  2527. int ret;
  2528. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2529. if (ret)
  2530. return ret;
  2531. ret = i915_gem_object_wait_rendering(obj, true);
  2532. if (ret)
  2533. return ret;
  2534. i915_gem_object_flush_gtt_write_domain(obj);
  2535. /* If we have a partially-valid cache of the object in the CPU,
  2536. * finish invalidating it and free the per-page flags.
  2537. */
  2538. i915_gem_object_set_to_full_cpu_read_domain(obj);
  2539. old_write_domain = obj->base.write_domain;
  2540. old_read_domains = obj->base.read_domains;
  2541. /* Flush the CPU cache if it's still invalid. */
  2542. if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  2543. i915_gem_clflush_object(obj);
  2544. obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
  2545. }
  2546. /* It should now be out of any other write domains, and we can update
  2547. * the domain values for our changes.
  2548. */
  2549. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2550. /* If we're writing through the CPU, then the GPU read domains will
  2551. * need to be invalidated at next use.
  2552. */
  2553. if (write) {
  2554. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2555. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2556. }
  2557. trace_i915_gem_object_change_domain(obj,
  2558. old_read_domains,
  2559. old_write_domain);
  2560. return 0;
  2561. }
  2562. /**
  2563. * Moves the object from a partially CPU read to a full one.
  2564. *
  2565. * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
  2566. * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
  2567. */
  2568. static void
  2569. i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj)
  2570. {
  2571. if (!obj->page_cpu_valid)
  2572. return;
  2573. /* If we're partially in the CPU read domain, finish moving it in.
  2574. */
  2575. if (obj->base.read_domains & I915_GEM_DOMAIN_CPU) {
  2576. int i;
  2577. for (i = 0; i <= (obj->base.size - 1) / PAGE_SIZE; i++) {
  2578. if (obj->page_cpu_valid[i])
  2579. continue;
  2580. drm_clflush_pages(obj->pages + i, 1);
  2581. }
  2582. }
  2583. /* Free the page_cpu_valid mappings which are now stale, whether
  2584. * or not we've got I915_GEM_DOMAIN_CPU.
  2585. */
  2586. kfree(obj->page_cpu_valid);
  2587. obj->page_cpu_valid = NULL;
  2588. }
  2589. /**
  2590. * Set the CPU read domain on a range of the object.
  2591. *
  2592. * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
  2593. * not entirely valid. The page_cpu_valid member of the object flags which
  2594. * pages have been flushed, and will be respected by
  2595. * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
  2596. * of the whole object.
  2597. *
  2598. * This function returns when the move is complete, including waiting on
  2599. * flushes to occur.
  2600. */
  2601. static int
  2602. i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
  2603. uint64_t offset, uint64_t size)
  2604. {
  2605. uint32_t old_read_domains;
  2606. int i, ret;
  2607. if (offset == 0 && size == obj->base.size)
  2608. return i915_gem_object_set_to_cpu_domain(obj, 0);
  2609. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2610. if (ret)
  2611. return ret;
  2612. ret = i915_gem_object_wait_rendering(obj, true);
  2613. if (ret)
  2614. return ret;
  2615. i915_gem_object_flush_gtt_write_domain(obj);
  2616. /* If we're already fully in the CPU read domain, we're done. */
  2617. if (obj->page_cpu_valid == NULL &&
  2618. (obj->base.read_domains & I915_GEM_DOMAIN_CPU) != 0)
  2619. return 0;
  2620. /* Otherwise, create/clear the per-page CPU read domain flag if we're
  2621. * newly adding I915_GEM_DOMAIN_CPU
  2622. */
  2623. if (obj->page_cpu_valid == NULL) {
  2624. obj->page_cpu_valid = kzalloc(obj->base.size / PAGE_SIZE,
  2625. GFP_KERNEL);
  2626. if (obj->page_cpu_valid == NULL)
  2627. return -ENOMEM;
  2628. } else if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
  2629. memset(obj->page_cpu_valid, 0, obj->base.size / PAGE_SIZE);
  2630. /* Flush the cache on any pages that are still invalid from the CPU's
  2631. * perspective.
  2632. */
  2633. for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
  2634. i++) {
  2635. if (obj->page_cpu_valid[i])
  2636. continue;
  2637. drm_clflush_pages(obj->pages + i, 1);
  2638. obj->page_cpu_valid[i] = 1;
  2639. }
  2640. /* It should now be out of any other write domains, and we can update
  2641. * the domain values for our changes.
  2642. */
  2643. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2644. old_read_domains = obj->base.read_domains;
  2645. obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
  2646. trace_i915_gem_object_change_domain(obj,
  2647. old_read_domains,
  2648. obj->base.write_domain);
  2649. return 0;
  2650. }
  2651. /* Throttle our rendering by waiting until the ring has completed our requests
  2652. * emitted over 20 msec ago.
  2653. *
  2654. * Note that if we were to use the current jiffies each time around the loop,
  2655. * we wouldn't escape the function with any frames outstanding if the time to
  2656. * render a frame was over 20ms.
  2657. *
  2658. * This should get us reasonable parallelism between CPU and GPU but also
  2659. * relatively low latency when blocking on a particular request to finish.
  2660. */
  2661. static int
  2662. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
  2663. {
  2664. struct drm_i915_private *dev_priv = dev->dev_private;
  2665. struct drm_i915_file_private *file_priv = file->driver_priv;
  2666. unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
  2667. struct drm_i915_gem_request *request;
  2668. struct intel_ring_buffer *ring = NULL;
  2669. u32 seqno = 0;
  2670. int ret;
  2671. spin_lock(&file_priv->mm.lock);
  2672. list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
  2673. if (time_after_eq(request->emitted_jiffies, recent_enough))
  2674. break;
  2675. ring = request->ring;
  2676. seqno = request->seqno;
  2677. }
  2678. spin_unlock(&file_priv->mm.lock);
  2679. if (seqno == 0)
  2680. return 0;
  2681. ret = 0;
  2682. if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
  2683. /* And wait for the seqno passing without holding any locks and
  2684. * causing extra latency for others. This is safe as the irq
  2685. * generation is designed to be run atomically and so is
  2686. * lockless.
  2687. */
  2688. if (ring->irq_get(ring)) {
  2689. ret = wait_event_interruptible(ring->irq_queue,
  2690. i915_seqno_passed(ring->get_seqno(ring), seqno)
  2691. || atomic_read(&dev_priv->mm.wedged));
  2692. ring->irq_put(ring);
  2693. if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
  2694. ret = -EIO;
  2695. }
  2696. }
  2697. if (ret == 0)
  2698. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
  2699. return ret;
  2700. }
  2701. int
  2702. i915_gem_object_pin(struct drm_i915_gem_object *obj,
  2703. uint32_t alignment,
  2704. bool map_and_fenceable)
  2705. {
  2706. struct drm_device *dev = obj->base.dev;
  2707. struct drm_i915_private *dev_priv = dev->dev_private;
  2708. int ret;
  2709. BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
  2710. WARN_ON(i915_verify_lists(dev));
  2711. if (obj->gtt_space != NULL) {
  2712. if ((alignment && obj->gtt_offset & (alignment - 1)) ||
  2713. (map_and_fenceable && !obj->map_and_fenceable)) {
  2714. WARN(obj->pin_count,
  2715. "bo is already pinned with incorrect alignment:"
  2716. " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
  2717. " obj->map_and_fenceable=%d\n",
  2718. obj->gtt_offset, alignment,
  2719. map_and_fenceable,
  2720. obj->map_and_fenceable);
  2721. ret = i915_gem_object_unbind(obj);
  2722. if (ret)
  2723. return ret;
  2724. }
  2725. }
  2726. if (obj->gtt_space == NULL) {
  2727. ret = i915_gem_object_bind_to_gtt(obj, alignment,
  2728. map_and_fenceable);
  2729. if (ret)
  2730. return ret;
  2731. }
  2732. if (obj->pin_count++ == 0) {
  2733. if (!obj->active)
  2734. list_move_tail(&obj->mm_list,
  2735. &dev_priv->mm.pinned_list);
  2736. }
  2737. obj->pin_mappable |= map_and_fenceable;
  2738. WARN_ON(i915_verify_lists(dev));
  2739. return 0;
  2740. }
  2741. void
  2742. i915_gem_object_unpin(struct drm_i915_gem_object *obj)
  2743. {
  2744. struct drm_device *dev = obj->base.dev;
  2745. drm_i915_private_t *dev_priv = dev->dev_private;
  2746. WARN_ON(i915_verify_lists(dev));
  2747. BUG_ON(obj->pin_count == 0);
  2748. BUG_ON(obj->gtt_space == NULL);
  2749. if (--obj->pin_count == 0) {
  2750. if (!obj->active)
  2751. list_move_tail(&obj->mm_list,
  2752. &dev_priv->mm.inactive_list);
  2753. obj->pin_mappable = false;
  2754. }
  2755. WARN_ON(i915_verify_lists(dev));
  2756. }
  2757. int
  2758. i915_gem_pin_ioctl(struct drm_device *dev, void *data,
  2759. struct drm_file *file)
  2760. {
  2761. struct drm_i915_gem_pin *args = data;
  2762. struct drm_i915_gem_object *obj;
  2763. int ret;
  2764. ret = i915_mutex_lock_interruptible(dev);
  2765. if (ret)
  2766. return ret;
  2767. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2768. if (obj == NULL) {
  2769. ret = -ENOENT;
  2770. goto unlock;
  2771. }
  2772. if (obj->madv != I915_MADV_WILLNEED) {
  2773. DRM_ERROR("Attempting to pin a purgeable buffer\n");
  2774. ret = -EINVAL;
  2775. goto out;
  2776. }
  2777. if (obj->pin_filp != NULL && obj->pin_filp != file) {
  2778. DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
  2779. args->handle);
  2780. ret = -EINVAL;
  2781. goto out;
  2782. }
  2783. obj->user_pin_count++;
  2784. obj->pin_filp = file;
  2785. if (obj->user_pin_count == 1) {
  2786. ret = i915_gem_object_pin(obj, args->alignment, true);
  2787. if (ret)
  2788. goto out;
  2789. }
  2790. /* XXX - flush the CPU caches for pinned objects
  2791. * as the X server doesn't manage domains yet
  2792. */
  2793. i915_gem_object_flush_cpu_write_domain(obj);
  2794. args->offset = obj->gtt_offset;
  2795. out:
  2796. drm_gem_object_unreference(&obj->base);
  2797. unlock:
  2798. mutex_unlock(&dev->struct_mutex);
  2799. return ret;
  2800. }
  2801. int
  2802. i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
  2803. struct drm_file *file)
  2804. {
  2805. struct drm_i915_gem_pin *args = data;
  2806. struct drm_i915_gem_object *obj;
  2807. int ret;
  2808. ret = i915_mutex_lock_interruptible(dev);
  2809. if (ret)
  2810. return ret;
  2811. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2812. if (obj == NULL) {
  2813. ret = -ENOENT;
  2814. goto unlock;
  2815. }
  2816. if (obj->pin_filp != file) {
  2817. DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
  2818. args->handle);
  2819. ret = -EINVAL;
  2820. goto out;
  2821. }
  2822. obj->user_pin_count--;
  2823. if (obj->user_pin_count == 0) {
  2824. obj->pin_filp = NULL;
  2825. i915_gem_object_unpin(obj);
  2826. }
  2827. out:
  2828. drm_gem_object_unreference(&obj->base);
  2829. unlock:
  2830. mutex_unlock(&dev->struct_mutex);
  2831. return ret;
  2832. }
  2833. int
  2834. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  2835. struct drm_file *file)
  2836. {
  2837. struct drm_i915_gem_busy *args = data;
  2838. struct drm_i915_gem_object *obj;
  2839. int ret;
  2840. ret = i915_mutex_lock_interruptible(dev);
  2841. if (ret)
  2842. return ret;
  2843. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2844. if (obj == NULL) {
  2845. ret = -ENOENT;
  2846. goto unlock;
  2847. }
  2848. /* Count all active objects as busy, even if they are currently not used
  2849. * by the gpu. Users of this interface expect objects to eventually
  2850. * become non-busy without any further actions, therefore emit any
  2851. * necessary flushes here.
  2852. */
  2853. args->busy = obj->active;
  2854. if (args->busy) {
  2855. /* Unconditionally flush objects, even when the gpu still uses this
  2856. * object. Userspace calling this function indicates that it wants to
  2857. * use this buffer rather sooner than later, so issuing the required
  2858. * flush earlier is beneficial.
  2859. */
  2860. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  2861. ret = i915_gem_flush_ring(dev, obj->ring,
  2862. 0, obj->base.write_domain);
  2863. } else if (obj->ring->outstanding_lazy_request ==
  2864. obj->last_rendering_seqno) {
  2865. struct drm_i915_gem_request *request;
  2866. /* This ring is not being cleared by active usage,
  2867. * so emit a request to do so.
  2868. */
  2869. request = kzalloc(sizeof(*request), GFP_KERNEL);
  2870. if (request)
  2871. ret = i915_add_request(dev,
  2872. NULL, request,
  2873. obj->ring);
  2874. else
  2875. ret = -ENOMEM;
  2876. }
  2877. /* Update the active list for the hardware's current position.
  2878. * Otherwise this only updates on a delayed timer or when irqs
  2879. * are actually unmasked, and our working set ends up being
  2880. * larger than required.
  2881. */
  2882. i915_gem_retire_requests_ring(dev, obj->ring);
  2883. args->busy = obj->active;
  2884. }
  2885. drm_gem_object_unreference(&obj->base);
  2886. unlock:
  2887. mutex_unlock(&dev->struct_mutex);
  2888. return ret;
  2889. }
  2890. int
  2891. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  2892. struct drm_file *file_priv)
  2893. {
  2894. return i915_gem_ring_throttle(dev, file_priv);
  2895. }
  2896. int
  2897. i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
  2898. struct drm_file *file_priv)
  2899. {
  2900. struct drm_i915_gem_madvise *args = data;
  2901. struct drm_i915_gem_object *obj;
  2902. int ret;
  2903. switch (args->madv) {
  2904. case I915_MADV_DONTNEED:
  2905. case I915_MADV_WILLNEED:
  2906. break;
  2907. default:
  2908. return -EINVAL;
  2909. }
  2910. ret = i915_mutex_lock_interruptible(dev);
  2911. if (ret)
  2912. return ret;
  2913. obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
  2914. if (obj == NULL) {
  2915. ret = -ENOENT;
  2916. goto unlock;
  2917. }
  2918. if (obj->pin_count) {
  2919. ret = -EINVAL;
  2920. goto out;
  2921. }
  2922. if (obj->madv != __I915_MADV_PURGED)
  2923. obj->madv = args->madv;
  2924. /* if the object is no longer bound, discard its backing storage */
  2925. if (i915_gem_object_is_purgeable(obj) &&
  2926. obj->gtt_space == NULL)
  2927. i915_gem_object_truncate(obj);
  2928. args->retained = obj->madv != __I915_MADV_PURGED;
  2929. out:
  2930. drm_gem_object_unreference(&obj->base);
  2931. unlock:
  2932. mutex_unlock(&dev->struct_mutex);
  2933. return ret;
  2934. }
  2935. struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
  2936. size_t size)
  2937. {
  2938. struct drm_i915_private *dev_priv = dev->dev_private;
  2939. struct drm_i915_gem_object *obj;
  2940. obj = kzalloc(sizeof(*obj), GFP_KERNEL);
  2941. if (obj == NULL)
  2942. return NULL;
  2943. if (drm_gem_object_init(dev, &obj->base, size) != 0) {
  2944. kfree(obj);
  2945. return NULL;
  2946. }
  2947. i915_gem_info_add_obj(dev_priv, size);
  2948. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2949. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2950. obj->agp_type = AGP_USER_MEMORY;
  2951. obj->base.driver_private = NULL;
  2952. obj->fence_reg = I915_FENCE_REG_NONE;
  2953. INIT_LIST_HEAD(&obj->mm_list);
  2954. INIT_LIST_HEAD(&obj->gtt_list);
  2955. INIT_LIST_HEAD(&obj->ring_list);
  2956. INIT_LIST_HEAD(&obj->exec_list);
  2957. INIT_LIST_HEAD(&obj->gpu_write_list);
  2958. obj->madv = I915_MADV_WILLNEED;
  2959. /* Avoid an unnecessary call to unbind on the first bind. */
  2960. obj->map_and_fenceable = true;
  2961. return obj;
  2962. }
  2963. int i915_gem_init_object(struct drm_gem_object *obj)
  2964. {
  2965. BUG();
  2966. return 0;
  2967. }
  2968. static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj)
  2969. {
  2970. struct drm_device *dev = obj->base.dev;
  2971. drm_i915_private_t *dev_priv = dev->dev_private;
  2972. int ret;
  2973. ret = i915_gem_object_unbind(obj);
  2974. if (ret == -ERESTARTSYS) {
  2975. list_move(&obj->mm_list,
  2976. &dev_priv->mm.deferred_free_list);
  2977. return;
  2978. }
  2979. if (obj->base.map_list.map)
  2980. i915_gem_free_mmap_offset(obj);
  2981. drm_gem_object_release(&obj->base);
  2982. i915_gem_info_remove_obj(dev_priv, obj->base.size);
  2983. kfree(obj->page_cpu_valid);
  2984. kfree(obj->bit_17);
  2985. kfree(obj);
  2986. }
  2987. void i915_gem_free_object(struct drm_gem_object *gem_obj)
  2988. {
  2989. struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
  2990. struct drm_device *dev = obj->base.dev;
  2991. trace_i915_gem_object_destroy(obj);
  2992. while (obj->pin_count > 0)
  2993. i915_gem_object_unpin(obj);
  2994. if (obj->phys_obj)
  2995. i915_gem_detach_phys_object(dev, obj);
  2996. i915_gem_free_object_tail(obj);
  2997. }
  2998. int
  2999. i915_gem_idle(struct drm_device *dev)
  3000. {
  3001. drm_i915_private_t *dev_priv = dev->dev_private;
  3002. int ret;
  3003. mutex_lock(&dev->struct_mutex);
  3004. if (dev_priv->mm.suspended) {
  3005. mutex_unlock(&dev->struct_mutex);
  3006. return 0;
  3007. }
  3008. ret = i915_gpu_idle(dev);
  3009. if (ret) {
  3010. mutex_unlock(&dev->struct_mutex);
  3011. return ret;
  3012. }
  3013. /* Under UMS, be paranoid and evict. */
  3014. if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
  3015. ret = i915_gem_evict_inactive(dev, false);
  3016. if (ret) {
  3017. mutex_unlock(&dev->struct_mutex);
  3018. return ret;
  3019. }
  3020. }
  3021. i915_gem_reset_fences(dev);
  3022. /* Hack! Don't let anybody do execbuf while we don't control the chip.
  3023. * We need to replace this with a semaphore, or something.
  3024. * And not confound mm.suspended!
  3025. */
  3026. dev_priv->mm.suspended = 1;
  3027. del_timer_sync(&dev_priv->hangcheck_timer);
  3028. i915_kernel_lost_context(dev);
  3029. i915_gem_cleanup_ringbuffer(dev);
  3030. mutex_unlock(&dev->struct_mutex);
  3031. /* Cancel the retire work handler, which should be idle now. */
  3032. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  3033. return 0;
  3034. }
  3035. int
  3036. i915_gem_init_ringbuffer(struct drm_device *dev)
  3037. {
  3038. drm_i915_private_t *dev_priv = dev->dev_private;
  3039. int ret;
  3040. ret = intel_init_render_ring_buffer(dev);
  3041. if (ret)
  3042. return ret;
  3043. if (HAS_BSD(dev)) {
  3044. ret = intel_init_bsd_ring_buffer(dev);
  3045. if (ret)
  3046. goto cleanup_render_ring;
  3047. }
  3048. if (HAS_BLT(dev)) {
  3049. ret = intel_init_blt_ring_buffer(dev);
  3050. if (ret)
  3051. goto cleanup_bsd_ring;
  3052. }
  3053. dev_priv->next_seqno = 1;
  3054. return 0;
  3055. cleanup_bsd_ring:
  3056. intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
  3057. cleanup_render_ring:
  3058. intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
  3059. return ret;
  3060. }
  3061. void
  3062. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  3063. {
  3064. drm_i915_private_t *dev_priv = dev->dev_private;
  3065. int i;
  3066. for (i = 0; i < I915_NUM_RINGS; i++)
  3067. intel_cleanup_ring_buffer(&dev_priv->ring[i]);
  3068. }
  3069. int
  3070. i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
  3071. struct drm_file *file_priv)
  3072. {
  3073. drm_i915_private_t *dev_priv = dev->dev_private;
  3074. int ret, i;
  3075. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3076. return 0;
  3077. if (atomic_read(&dev_priv->mm.wedged)) {
  3078. DRM_ERROR("Reenabling wedged hardware, good luck\n");
  3079. atomic_set(&dev_priv->mm.wedged, 0);
  3080. }
  3081. mutex_lock(&dev->struct_mutex);
  3082. dev_priv->mm.suspended = 0;
  3083. ret = i915_gem_init_ringbuffer(dev);
  3084. if (ret != 0) {
  3085. mutex_unlock(&dev->struct_mutex);
  3086. return ret;
  3087. }
  3088. BUG_ON(!list_empty(&dev_priv->mm.active_list));
  3089. BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
  3090. BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
  3091. for (i = 0; i < I915_NUM_RINGS; i++) {
  3092. BUG_ON(!list_empty(&dev_priv->ring[i].active_list));
  3093. BUG_ON(!list_empty(&dev_priv->ring[i].request_list));
  3094. }
  3095. mutex_unlock(&dev->struct_mutex);
  3096. ret = drm_irq_install(dev);
  3097. if (ret)
  3098. goto cleanup_ringbuffer;
  3099. return 0;
  3100. cleanup_ringbuffer:
  3101. mutex_lock(&dev->struct_mutex);
  3102. i915_gem_cleanup_ringbuffer(dev);
  3103. dev_priv->mm.suspended = 1;
  3104. mutex_unlock(&dev->struct_mutex);
  3105. return ret;
  3106. }
  3107. int
  3108. i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
  3109. struct drm_file *file_priv)
  3110. {
  3111. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3112. return 0;
  3113. drm_irq_uninstall(dev);
  3114. return i915_gem_idle(dev);
  3115. }
  3116. void
  3117. i915_gem_lastclose(struct drm_device *dev)
  3118. {
  3119. int ret;
  3120. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3121. return;
  3122. ret = i915_gem_idle(dev);
  3123. if (ret)
  3124. DRM_ERROR("failed to idle hardware: %d\n", ret);
  3125. }
  3126. static void
  3127. init_ring_lists(struct intel_ring_buffer *ring)
  3128. {
  3129. INIT_LIST_HEAD(&ring->active_list);
  3130. INIT_LIST_HEAD(&ring->request_list);
  3131. INIT_LIST_HEAD(&ring->gpu_write_list);
  3132. }
  3133. void
  3134. i915_gem_load(struct drm_device *dev)
  3135. {
  3136. int i;
  3137. drm_i915_private_t *dev_priv = dev->dev_private;
  3138. INIT_LIST_HEAD(&dev_priv->mm.active_list);
  3139. INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
  3140. INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
  3141. INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
  3142. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  3143. INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
  3144. INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
  3145. for (i = 0; i < I915_NUM_RINGS; i++)
  3146. init_ring_lists(&dev_priv->ring[i]);
  3147. for (i = 0; i < 16; i++)
  3148. INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
  3149. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  3150. i915_gem_retire_work_handler);
  3151. init_completion(&dev_priv->error_completion);
  3152. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  3153. if (IS_GEN3(dev)) {
  3154. u32 tmp = I915_READ(MI_ARB_STATE);
  3155. if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
  3156. /* arb state is a masked write, so set bit + bit in mask */
  3157. tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
  3158. I915_WRITE(MI_ARB_STATE, tmp);
  3159. }
  3160. }
  3161. dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
  3162. /* Old X drivers will take 0-2 for front, back, depth buffers */
  3163. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3164. dev_priv->fence_reg_start = 3;
  3165. if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3166. dev_priv->num_fence_regs = 16;
  3167. else
  3168. dev_priv->num_fence_regs = 8;
  3169. /* Initialize fence registers to zero */
  3170. switch (INTEL_INFO(dev)->gen) {
  3171. case 6:
  3172. for (i = 0; i < 16; i++)
  3173. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
  3174. break;
  3175. case 5:
  3176. case 4:
  3177. for (i = 0; i < 16; i++)
  3178. I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
  3179. break;
  3180. case 3:
  3181. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3182. for (i = 0; i < 8; i++)
  3183. I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
  3184. case 2:
  3185. for (i = 0; i < 8; i++)
  3186. I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
  3187. break;
  3188. }
  3189. i915_gem_detect_bit_6_swizzle(dev);
  3190. init_waitqueue_head(&dev_priv->pending_flip_queue);
  3191. dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
  3192. dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
  3193. register_shrinker(&dev_priv->mm.inactive_shrinker);
  3194. }
  3195. /*
  3196. * Create a physically contiguous memory object for this object
  3197. * e.g. for cursor + overlay regs
  3198. */
  3199. static int i915_gem_init_phys_object(struct drm_device *dev,
  3200. int id, int size, int align)
  3201. {
  3202. drm_i915_private_t *dev_priv = dev->dev_private;
  3203. struct drm_i915_gem_phys_object *phys_obj;
  3204. int ret;
  3205. if (dev_priv->mm.phys_objs[id - 1] || !size)
  3206. return 0;
  3207. phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
  3208. if (!phys_obj)
  3209. return -ENOMEM;
  3210. phys_obj->id = id;
  3211. phys_obj->handle = drm_pci_alloc(dev, size, align);
  3212. if (!phys_obj->handle) {
  3213. ret = -ENOMEM;
  3214. goto kfree_obj;
  3215. }
  3216. #ifdef CONFIG_X86
  3217. set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3218. #endif
  3219. dev_priv->mm.phys_objs[id - 1] = phys_obj;
  3220. return 0;
  3221. kfree_obj:
  3222. kfree(phys_obj);
  3223. return ret;
  3224. }
  3225. static void i915_gem_free_phys_object(struct drm_device *dev, int id)
  3226. {
  3227. drm_i915_private_t *dev_priv = dev->dev_private;
  3228. struct drm_i915_gem_phys_object *phys_obj;
  3229. if (!dev_priv->mm.phys_objs[id - 1])
  3230. return;
  3231. phys_obj = dev_priv->mm.phys_objs[id - 1];
  3232. if (phys_obj->cur_obj) {
  3233. i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
  3234. }
  3235. #ifdef CONFIG_X86
  3236. set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3237. #endif
  3238. drm_pci_free(dev, phys_obj->handle);
  3239. kfree(phys_obj);
  3240. dev_priv->mm.phys_objs[id - 1] = NULL;
  3241. }
  3242. void i915_gem_free_all_phys_object(struct drm_device *dev)
  3243. {
  3244. int i;
  3245. for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
  3246. i915_gem_free_phys_object(dev, i);
  3247. }
  3248. void i915_gem_detach_phys_object(struct drm_device *dev,
  3249. struct drm_i915_gem_object *obj)
  3250. {
  3251. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3252. char *vaddr;
  3253. int i;
  3254. int page_count;
  3255. if (!obj->phys_obj)
  3256. return;
  3257. vaddr = obj->phys_obj->handle->vaddr;
  3258. page_count = obj->base.size / PAGE_SIZE;
  3259. for (i = 0; i < page_count; i++) {
  3260. struct page *page = read_cache_page_gfp(mapping, i,
  3261. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  3262. if (!IS_ERR(page)) {
  3263. char *dst = kmap_atomic(page);
  3264. memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
  3265. kunmap_atomic(dst);
  3266. drm_clflush_pages(&page, 1);
  3267. set_page_dirty(page);
  3268. mark_page_accessed(page);
  3269. page_cache_release(page);
  3270. }
  3271. }
  3272. intel_gtt_chipset_flush();
  3273. obj->phys_obj->cur_obj = NULL;
  3274. obj->phys_obj = NULL;
  3275. }
  3276. int
  3277. i915_gem_attach_phys_object(struct drm_device *dev,
  3278. struct drm_i915_gem_object *obj,
  3279. int id,
  3280. int align)
  3281. {
  3282. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3283. drm_i915_private_t *dev_priv = dev->dev_private;
  3284. int ret = 0;
  3285. int page_count;
  3286. int i;
  3287. if (id > I915_MAX_PHYS_OBJECT)
  3288. return -EINVAL;
  3289. if (obj->phys_obj) {
  3290. if (obj->phys_obj->id == id)
  3291. return 0;
  3292. i915_gem_detach_phys_object(dev, obj);
  3293. }
  3294. /* create a new object */
  3295. if (!dev_priv->mm.phys_objs[id - 1]) {
  3296. ret = i915_gem_init_phys_object(dev, id,
  3297. obj->base.size, align);
  3298. if (ret) {
  3299. DRM_ERROR("failed to init phys object %d size: %zu\n",
  3300. id, obj->base.size);
  3301. return ret;
  3302. }
  3303. }
  3304. /* bind to the object */
  3305. obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
  3306. obj->phys_obj->cur_obj = obj;
  3307. page_count = obj->base.size / PAGE_SIZE;
  3308. for (i = 0; i < page_count; i++) {
  3309. struct page *page;
  3310. char *dst, *src;
  3311. page = read_cache_page_gfp(mapping, i,
  3312. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  3313. if (IS_ERR(page))
  3314. return PTR_ERR(page);
  3315. src = kmap_atomic(page);
  3316. dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  3317. memcpy(dst, src, PAGE_SIZE);
  3318. kunmap_atomic(src);
  3319. mark_page_accessed(page);
  3320. page_cache_release(page);
  3321. }
  3322. return 0;
  3323. }
  3324. static int
  3325. i915_gem_phys_pwrite(struct drm_device *dev,
  3326. struct drm_i915_gem_object *obj,
  3327. struct drm_i915_gem_pwrite *args,
  3328. struct drm_file *file_priv)
  3329. {
  3330. void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
  3331. char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
  3332. if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
  3333. unsigned long unwritten;
  3334. /* The physical object once assigned is fixed for the lifetime
  3335. * of the obj, so we can safely drop the lock and continue
  3336. * to access vaddr.
  3337. */
  3338. mutex_unlock(&dev->struct_mutex);
  3339. unwritten = copy_from_user(vaddr, user_data, args->size);
  3340. mutex_lock(&dev->struct_mutex);
  3341. if (unwritten)
  3342. return -EFAULT;
  3343. }
  3344. intel_gtt_chipset_flush();
  3345. return 0;
  3346. }
  3347. void i915_gem_release(struct drm_device *dev, struct drm_file *file)
  3348. {
  3349. struct drm_i915_file_private *file_priv = file->driver_priv;
  3350. /* Clean up our request list when the client is going away, so that
  3351. * later retire_requests won't dereference our soon-to-be-gone
  3352. * file_priv.
  3353. */
  3354. spin_lock(&file_priv->mm.lock);
  3355. while (!list_empty(&file_priv->mm.request_list)) {
  3356. struct drm_i915_gem_request *request;
  3357. request = list_first_entry(&file_priv->mm.request_list,
  3358. struct drm_i915_gem_request,
  3359. client_list);
  3360. list_del(&request->client_list);
  3361. request->file_priv = NULL;
  3362. }
  3363. spin_unlock(&file_priv->mm.lock);
  3364. }
  3365. static int
  3366. i915_gpu_is_active(struct drm_device *dev)
  3367. {
  3368. drm_i915_private_t *dev_priv = dev->dev_private;
  3369. int lists_empty;
  3370. lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
  3371. list_empty(&dev_priv->mm.active_list);
  3372. return !lists_empty;
  3373. }
  3374. static int
  3375. i915_gem_inactive_shrink(struct shrinker *shrinker,
  3376. int nr_to_scan,
  3377. gfp_t gfp_mask)
  3378. {
  3379. struct drm_i915_private *dev_priv =
  3380. container_of(shrinker,
  3381. struct drm_i915_private,
  3382. mm.inactive_shrinker);
  3383. struct drm_device *dev = dev_priv->dev;
  3384. struct drm_i915_gem_object *obj, *next;
  3385. int cnt;
  3386. if (!mutex_trylock(&dev->struct_mutex))
  3387. return 0;
  3388. /* "fast-path" to count number of available objects */
  3389. if (nr_to_scan == 0) {
  3390. cnt = 0;
  3391. list_for_each_entry(obj,
  3392. &dev_priv->mm.inactive_list,
  3393. mm_list)
  3394. cnt++;
  3395. mutex_unlock(&dev->struct_mutex);
  3396. return cnt / 100 * sysctl_vfs_cache_pressure;
  3397. }
  3398. rescan:
  3399. /* first scan for clean buffers */
  3400. i915_gem_retire_requests(dev);
  3401. list_for_each_entry_safe(obj, next,
  3402. &dev_priv->mm.inactive_list,
  3403. mm_list) {
  3404. if (i915_gem_object_is_purgeable(obj)) {
  3405. if (i915_gem_object_unbind(obj) == 0 &&
  3406. --nr_to_scan == 0)
  3407. break;
  3408. }
  3409. }
  3410. /* second pass, evict/count anything still on the inactive list */
  3411. cnt = 0;
  3412. list_for_each_entry_safe(obj, next,
  3413. &dev_priv->mm.inactive_list,
  3414. mm_list) {
  3415. if (nr_to_scan &&
  3416. i915_gem_object_unbind(obj) == 0)
  3417. nr_to_scan--;
  3418. else
  3419. cnt++;
  3420. }
  3421. if (nr_to_scan && i915_gpu_is_active(dev)) {
  3422. /*
  3423. * We are desperate for pages, so as a last resort, wait
  3424. * for the GPU to finish and discard whatever we can.
  3425. * This has a dramatic impact to reduce the number of
  3426. * OOM-killer events whilst running the GPU aggressively.
  3427. */
  3428. if (i915_gpu_idle(dev) == 0)
  3429. goto rescan;
  3430. }
  3431. mutex_unlock(&dev->struct_mutex);
  3432. return cnt / 100 * sysctl_vfs_cache_pressure;
  3433. }