inetpeer.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628
  1. /*
  2. * INETPEER - A storage for permanent information about peers
  3. *
  4. * This source is covered by the GNU GPL, the same as all kernel sources.
  5. *
  6. * Authors: Andrey V. Savochkin <saw@msu.ru>
  7. */
  8. #include <linux/module.h>
  9. #include <linux/types.h>
  10. #include <linux/slab.h>
  11. #include <linux/interrupt.h>
  12. #include <linux/spinlock.h>
  13. #include <linux/random.h>
  14. #include <linux/timer.h>
  15. #include <linux/time.h>
  16. #include <linux/kernel.h>
  17. #include <linux/mm.h>
  18. #include <linux/net.h>
  19. #include <linux/workqueue.h>
  20. #include <net/ip.h>
  21. #include <net/inetpeer.h>
  22. #include <net/secure_seq.h>
  23. /*
  24. * Theory of operations.
  25. * We keep one entry for each peer IP address. The nodes contains long-living
  26. * information about the peer which doesn't depend on routes.
  27. * At this moment this information consists only of ID field for the next
  28. * outgoing IP packet. This field is incremented with each packet as encoded
  29. * in inet_getid() function (include/net/inetpeer.h).
  30. * At the moment of writing this notes identifier of IP packets is generated
  31. * to be unpredictable using this code only for packets subjected
  32. * (actually or potentially) to defragmentation. I.e. DF packets less than
  33. * PMTU in size uses a constant ID and do not use this code (see
  34. * ip_select_ident() in include/net/ip.h).
  35. *
  36. * Route cache entries hold references to our nodes.
  37. * New cache entries get references via lookup by destination IP address in
  38. * the avl tree. The reference is grabbed only when it's needed i.e. only
  39. * when we try to output IP packet which needs an unpredictable ID (see
  40. * __ip_select_ident() in net/ipv4/route.c).
  41. * Nodes are removed only when reference counter goes to 0.
  42. * When it's happened the node may be removed when a sufficient amount of
  43. * time has been passed since its last use. The less-recently-used entry can
  44. * also be removed if the pool is overloaded i.e. if the total amount of
  45. * entries is greater-or-equal than the threshold.
  46. *
  47. * Node pool is organised as an AVL tree.
  48. * Such an implementation has been chosen not just for fun. It's a way to
  49. * prevent easy and efficient DoS attacks by creating hash collisions. A huge
  50. * amount of long living nodes in a single hash slot would significantly delay
  51. * lookups performed with disabled BHs.
  52. *
  53. * Serialisation issues.
  54. * 1. Nodes may appear in the tree only with the pool lock held.
  55. * 2. Nodes may disappear from the tree only with the pool lock held
  56. * AND reference count being 0.
  57. * 3. Global variable peer_total is modified under the pool lock.
  58. * 4. struct inet_peer fields modification:
  59. * avl_left, avl_right, avl_parent, avl_height: pool lock
  60. * refcnt: atomically against modifications on other CPU;
  61. * usually under some other lock to prevent node disappearing
  62. * daddr: unchangeable
  63. * ip_id_count: atomic value (no lock needed)
  64. */
  65. static struct kmem_cache *peer_cachep __read_mostly;
  66. static LIST_HEAD(gc_list);
  67. static const int gc_delay = 60 * HZ;
  68. static struct delayed_work gc_work;
  69. static DEFINE_SPINLOCK(gc_lock);
  70. #define node_height(x) x->avl_height
  71. #define peer_avl_empty ((struct inet_peer *)&peer_fake_node)
  72. #define peer_avl_empty_rcu ((struct inet_peer __rcu __force *)&peer_fake_node)
  73. static const struct inet_peer peer_fake_node = {
  74. .avl_left = peer_avl_empty_rcu,
  75. .avl_right = peer_avl_empty_rcu,
  76. .avl_height = 0
  77. };
  78. struct inet_peer_base {
  79. struct inet_peer __rcu *root;
  80. seqlock_t lock;
  81. int total;
  82. };
  83. #define PEER_MAXDEPTH 40 /* sufficient for about 2^27 nodes */
  84. /* Exported for sysctl_net_ipv4. */
  85. int inet_peer_threshold __read_mostly = 65536 + 128; /* start to throw entries more
  86. * aggressively at this stage */
  87. int inet_peer_minttl __read_mostly = 120 * HZ; /* TTL under high load: 120 sec */
  88. int inet_peer_maxttl __read_mostly = 10 * 60 * HZ; /* usual time to live: 10 min */
  89. static void inetpeer_gc_worker(struct work_struct *work)
  90. {
  91. struct inet_peer *p, *n;
  92. LIST_HEAD(list);
  93. spin_lock_bh(&gc_lock);
  94. list_replace_init(&gc_list, &list);
  95. spin_unlock_bh(&gc_lock);
  96. if (list_empty(&list))
  97. return;
  98. list_for_each_entry_safe(p, n, &list, gc_list) {
  99. if(need_resched())
  100. cond_resched();
  101. if (p->avl_left != peer_avl_empty) {
  102. list_add_tail(&p->avl_left->gc_list, &list);
  103. p->avl_left = peer_avl_empty;
  104. }
  105. if (p->avl_right != peer_avl_empty) {
  106. list_add_tail(&p->avl_right->gc_list, &list);
  107. p->avl_right = peer_avl_empty;
  108. }
  109. n = list_entry(p->gc_list.next, struct inet_peer, gc_list);
  110. if (!atomic_read(&p->refcnt)) {
  111. list_del(&p->gc_list);
  112. kmem_cache_free(peer_cachep, p);
  113. }
  114. }
  115. if (list_empty(&list))
  116. return;
  117. spin_lock_bh(&gc_lock);
  118. list_splice(&list, &gc_list);
  119. spin_unlock_bh(&gc_lock);
  120. schedule_delayed_work(&gc_work, gc_delay);
  121. }
  122. static int __net_init inetpeer_net_init(struct net *net)
  123. {
  124. net->ipv4.peers = kzalloc(sizeof(struct inet_peer_base),
  125. GFP_KERNEL);
  126. if (net->ipv4.peers == NULL)
  127. return -ENOMEM;
  128. net->ipv4.peers->root = peer_avl_empty_rcu;
  129. seqlock_init(&net->ipv4.peers->lock);
  130. net->ipv6.peers = kzalloc(sizeof(struct inet_peer_base),
  131. GFP_KERNEL);
  132. if (net->ipv6.peers == NULL)
  133. goto out_ipv6;
  134. net->ipv6.peers->root = peer_avl_empty_rcu;
  135. seqlock_init(&net->ipv6.peers->lock);
  136. return 0;
  137. out_ipv6:
  138. kfree(net->ipv4.peers);
  139. return -ENOMEM;
  140. }
  141. static void __net_exit inetpeer_net_exit(struct net *net)
  142. {
  143. inetpeer_invalidate_tree(net, AF_INET);
  144. kfree(net->ipv4.peers);
  145. net->ipv4.peers = NULL;
  146. inetpeer_invalidate_tree(net, AF_INET6);
  147. kfree(net->ipv6.peers);
  148. net->ipv6.peers = NULL;
  149. }
  150. static struct pernet_operations inetpeer_ops = {
  151. .init = inetpeer_net_init,
  152. .exit = inetpeer_net_exit,
  153. };
  154. /* Called from ip_output.c:ip_init */
  155. void __init inet_initpeers(void)
  156. {
  157. struct sysinfo si;
  158. /* Use the straight interface to information about memory. */
  159. si_meminfo(&si);
  160. /* The values below were suggested by Alexey Kuznetsov
  161. * <kuznet@ms2.inr.ac.ru>. I don't have any opinion about the values
  162. * myself. --SAW
  163. */
  164. if (si.totalram <= (32768*1024)/PAGE_SIZE)
  165. inet_peer_threshold >>= 1; /* max pool size about 1MB on IA32 */
  166. if (si.totalram <= (16384*1024)/PAGE_SIZE)
  167. inet_peer_threshold >>= 1; /* about 512KB */
  168. if (si.totalram <= (8192*1024)/PAGE_SIZE)
  169. inet_peer_threshold >>= 2; /* about 128KB */
  170. peer_cachep = kmem_cache_create("inet_peer_cache",
  171. sizeof(struct inet_peer),
  172. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC,
  173. NULL);
  174. INIT_DELAYED_WORK_DEFERRABLE(&gc_work, inetpeer_gc_worker);
  175. register_pernet_subsys(&inetpeer_ops);
  176. }
  177. static int addr_compare(const struct inetpeer_addr *a,
  178. const struct inetpeer_addr *b)
  179. {
  180. int i, n = (a->family == AF_INET ? 1 : 4);
  181. for (i = 0; i < n; i++) {
  182. if (a->addr.a6[i] == b->addr.a6[i])
  183. continue;
  184. if ((__force u32)a->addr.a6[i] < (__force u32)b->addr.a6[i])
  185. return -1;
  186. return 1;
  187. }
  188. return 0;
  189. }
  190. #define rcu_deref_locked(X, BASE) \
  191. rcu_dereference_protected(X, lockdep_is_held(&(BASE)->lock.lock))
  192. /*
  193. * Called with local BH disabled and the pool lock held.
  194. */
  195. #define lookup(_daddr, _stack, _base) \
  196. ({ \
  197. struct inet_peer *u; \
  198. struct inet_peer __rcu **v; \
  199. \
  200. stackptr = _stack; \
  201. *stackptr++ = &_base->root; \
  202. for (u = rcu_deref_locked(_base->root, _base); \
  203. u != peer_avl_empty; ) { \
  204. int cmp = addr_compare(_daddr, &u->daddr); \
  205. if (cmp == 0) \
  206. break; \
  207. if (cmp == -1) \
  208. v = &u->avl_left; \
  209. else \
  210. v = &u->avl_right; \
  211. *stackptr++ = v; \
  212. u = rcu_deref_locked(*v, _base); \
  213. } \
  214. u; \
  215. })
  216. /*
  217. * Called with rcu_read_lock()
  218. * Because we hold no lock against a writer, its quite possible we fall
  219. * in an endless loop.
  220. * But every pointer we follow is guaranteed to be valid thanks to RCU.
  221. * We exit from this function if number of links exceeds PEER_MAXDEPTH
  222. */
  223. static struct inet_peer *lookup_rcu(const struct inetpeer_addr *daddr,
  224. struct inet_peer_base *base)
  225. {
  226. struct inet_peer *u = rcu_dereference(base->root);
  227. int count = 0;
  228. while (u != peer_avl_empty) {
  229. int cmp = addr_compare(daddr, &u->daddr);
  230. if (cmp == 0) {
  231. /* Before taking a reference, check if this entry was
  232. * deleted (refcnt=-1)
  233. */
  234. if (!atomic_add_unless(&u->refcnt, 1, -1))
  235. u = NULL;
  236. return u;
  237. }
  238. if (cmp == -1)
  239. u = rcu_dereference(u->avl_left);
  240. else
  241. u = rcu_dereference(u->avl_right);
  242. if (unlikely(++count == PEER_MAXDEPTH))
  243. break;
  244. }
  245. return NULL;
  246. }
  247. /* Called with local BH disabled and the pool lock held. */
  248. #define lookup_rightempty(start, base) \
  249. ({ \
  250. struct inet_peer *u; \
  251. struct inet_peer __rcu **v; \
  252. *stackptr++ = &start->avl_left; \
  253. v = &start->avl_left; \
  254. for (u = rcu_deref_locked(*v, base); \
  255. u->avl_right != peer_avl_empty_rcu; ) { \
  256. v = &u->avl_right; \
  257. *stackptr++ = v; \
  258. u = rcu_deref_locked(*v, base); \
  259. } \
  260. u; \
  261. })
  262. /* Called with local BH disabled and the pool lock held.
  263. * Variable names are the proof of operation correctness.
  264. * Look into mm/map_avl.c for more detail description of the ideas.
  265. */
  266. static void peer_avl_rebalance(struct inet_peer __rcu **stack[],
  267. struct inet_peer __rcu ***stackend,
  268. struct inet_peer_base *base)
  269. {
  270. struct inet_peer __rcu **nodep;
  271. struct inet_peer *node, *l, *r;
  272. int lh, rh;
  273. while (stackend > stack) {
  274. nodep = *--stackend;
  275. node = rcu_deref_locked(*nodep, base);
  276. l = rcu_deref_locked(node->avl_left, base);
  277. r = rcu_deref_locked(node->avl_right, base);
  278. lh = node_height(l);
  279. rh = node_height(r);
  280. if (lh > rh + 1) { /* l: RH+2 */
  281. struct inet_peer *ll, *lr, *lrl, *lrr;
  282. int lrh;
  283. ll = rcu_deref_locked(l->avl_left, base);
  284. lr = rcu_deref_locked(l->avl_right, base);
  285. lrh = node_height(lr);
  286. if (lrh <= node_height(ll)) { /* ll: RH+1 */
  287. RCU_INIT_POINTER(node->avl_left, lr); /* lr: RH or RH+1 */
  288. RCU_INIT_POINTER(node->avl_right, r); /* r: RH */
  289. node->avl_height = lrh + 1; /* RH+1 or RH+2 */
  290. RCU_INIT_POINTER(l->avl_left, ll); /* ll: RH+1 */
  291. RCU_INIT_POINTER(l->avl_right, node); /* node: RH+1 or RH+2 */
  292. l->avl_height = node->avl_height + 1;
  293. RCU_INIT_POINTER(*nodep, l);
  294. } else { /* ll: RH, lr: RH+1 */
  295. lrl = rcu_deref_locked(lr->avl_left, base);/* lrl: RH or RH-1 */
  296. lrr = rcu_deref_locked(lr->avl_right, base);/* lrr: RH or RH-1 */
  297. RCU_INIT_POINTER(node->avl_left, lrr); /* lrr: RH or RH-1 */
  298. RCU_INIT_POINTER(node->avl_right, r); /* r: RH */
  299. node->avl_height = rh + 1; /* node: RH+1 */
  300. RCU_INIT_POINTER(l->avl_left, ll); /* ll: RH */
  301. RCU_INIT_POINTER(l->avl_right, lrl); /* lrl: RH or RH-1 */
  302. l->avl_height = rh + 1; /* l: RH+1 */
  303. RCU_INIT_POINTER(lr->avl_left, l); /* l: RH+1 */
  304. RCU_INIT_POINTER(lr->avl_right, node); /* node: RH+1 */
  305. lr->avl_height = rh + 2;
  306. RCU_INIT_POINTER(*nodep, lr);
  307. }
  308. } else if (rh > lh + 1) { /* r: LH+2 */
  309. struct inet_peer *rr, *rl, *rlr, *rll;
  310. int rlh;
  311. rr = rcu_deref_locked(r->avl_right, base);
  312. rl = rcu_deref_locked(r->avl_left, base);
  313. rlh = node_height(rl);
  314. if (rlh <= node_height(rr)) { /* rr: LH+1 */
  315. RCU_INIT_POINTER(node->avl_right, rl); /* rl: LH or LH+1 */
  316. RCU_INIT_POINTER(node->avl_left, l); /* l: LH */
  317. node->avl_height = rlh + 1; /* LH+1 or LH+2 */
  318. RCU_INIT_POINTER(r->avl_right, rr); /* rr: LH+1 */
  319. RCU_INIT_POINTER(r->avl_left, node); /* node: LH+1 or LH+2 */
  320. r->avl_height = node->avl_height + 1;
  321. RCU_INIT_POINTER(*nodep, r);
  322. } else { /* rr: RH, rl: RH+1 */
  323. rlr = rcu_deref_locked(rl->avl_right, base);/* rlr: LH or LH-1 */
  324. rll = rcu_deref_locked(rl->avl_left, base);/* rll: LH or LH-1 */
  325. RCU_INIT_POINTER(node->avl_right, rll); /* rll: LH or LH-1 */
  326. RCU_INIT_POINTER(node->avl_left, l); /* l: LH */
  327. node->avl_height = lh + 1; /* node: LH+1 */
  328. RCU_INIT_POINTER(r->avl_right, rr); /* rr: LH */
  329. RCU_INIT_POINTER(r->avl_left, rlr); /* rlr: LH or LH-1 */
  330. r->avl_height = lh + 1; /* r: LH+1 */
  331. RCU_INIT_POINTER(rl->avl_right, r); /* r: LH+1 */
  332. RCU_INIT_POINTER(rl->avl_left, node); /* node: LH+1 */
  333. rl->avl_height = lh + 2;
  334. RCU_INIT_POINTER(*nodep, rl);
  335. }
  336. } else {
  337. node->avl_height = (lh > rh ? lh : rh) + 1;
  338. }
  339. }
  340. }
  341. /* Called with local BH disabled and the pool lock held. */
  342. #define link_to_pool(n, base) \
  343. do { \
  344. n->avl_height = 1; \
  345. n->avl_left = peer_avl_empty_rcu; \
  346. n->avl_right = peer_avl_empty_rcu; \
  347. /* lockless readers can catch us now */ \
  348. rcu_assign_pointer(**--stackptr, n); \
  349. peer_avl_rebalance(stack, stackptr, base); \
  350. } while (0)
  351. static void inetpeer_free_rcu(struct rcu_head *head)
  352. {
  353. kmem_cache_free(peer_cachep, container_of(head, struct inet_peer, rcu));
  354. }
  355. static void unlink_from_pool(struct inet_peer *p, struct inet_peer_base *base,
  356. struct inet_peer __rcu **stack[PEER_MAXDEPTH])
  357. {
  358. struct inet_peer __rcu ***stackptr, ***delp;
  359. if (lookup(&p->daddr, stack, base) != p)
  360. BUG();
  361. delp = stackptr - 1; /* *delp[0] == p */
  362. if (p->avl_left == peer_avl_empty_rcu) {
  363. *delp[0] = p->avl_right;
  364. --stackptr;
  365. } else {
  366. /* look for a node to insert instead of p */
  367. struct inet_peer *t;
  368. t = lookup_rightempty(p, base);
  369. BUG_ON(rcu_deref_locked(*stackptr[-1], base) != t);
  370. **--stackptr = t->avl_left;
  371. /* t is removed, t->daddr > x->daddr for any
  372. * x in p->avl_left subtree.
  373. * Put t in the old place of p. */
  374. RCU_INIT_POINTER(*delp[0], t);
  375. t->avl_left = p->avl_left;
  376. t->avl_right = p->avl_right;
  377. t->avl_height = p->avl_height;
  378. BUG_ON(delp[1] != &p->avl_left);
  379. delp[1] = &t->avl_left; /* was &p->avl_left */
  380. }
  381. peer_avl_rebalance(stack, stackptr, base);
  382. base->total--;
  383. call_rcu(&p->rcu, inetpeer_free_rcu);
  384. }
  385. static struct inet_peer_base *family_to_base(struct net *net,
  386. int family)
  387. {
  388. return family == AF_INET ? net->ipv4.peers : net->ipv6.peers;
  389. }
  390. /* perform garbage collect on all items stacked during a lookup */
  391. static int inet_peer_gc(struct inet_peer_base *base,
  392. struct inet_peer __rcu **stack[PEER_MAXDEPTH],
  393. struct inet_peer __rcu ***stackptr)
  394. {
  395. struct inet_peer *p, *gchead = NULL;
  396. __u32 delta, ttl;
  397. int cnt = 0;
  398. if (base->total >= inet_peer_threshold)
  399. ttl = 0; /* be aggressive */
  400. else
  401. ttl = inet_peer_maxttl
  402. - (inet_peer_maxttl - inet_peer_minttl) / HZ *
  403. base->total / inet_peer_threshold * HZ;
  404. stackptr--; /* last stack slot is peer_avl_empty */
  405. while (stackptr > stack) {
  406. stackptr--;
  407. p = rcu_deref_locked(**stackptr, base);
  408. if (atomic_read(&p->refcnt) == 0) {
  409. smp_rmb();
  410. delta = (__u32)jiffies - p->dtime;
  411. if (delta >= ttl &&
  412. atomic_cmpxchg(&p->refcnt, 0, -1) == 0) {
  413. p->gc_next = gchead;
  414. gchead = p;
  415. }
  416. }
  417. }
  418. while ((p = gchead) != NULL) {
  419. gchead = p->gc_next;
  420. cnt++;
  421. unlink_from_pool(p, base, stack);
  422. }
  423. return cnt;
  424. }
  425. struct inet_peer *inet_getpeer(struct net *net,
  426. const struct inetpeer_addr *daddr,
  427. int create)
  428. {
  429. struct inet_peer __rcu **stack[PEER_MAXDEPTH], ***stackptr;
  430. struct inet_peer_base *base = family_to_base(net, daddr->family);
  431. struct inet_peer *p;
  432. unsigned int sequence;
  433. int invalidated, gccnt = 0;
  434. /* Attempt a lockless lookup first.
  435. * Because of a concurrent writer, we might not find an existing entry.
  436. */
  437. rcu_read_lock();
  438. sequence = read_seqbegin(&base->lock);
  439. p = lookup_rcu(daddr, base);
  440. invalidated = read_seqretry(&base->lock, sequence);
  441. rcu_read_unlock();
  442. if (p)
  443. return p;
  444. /* If no writer did a change during our lookup, we can return early. */
  445. if (!create && !invalidated)
  446. return NULL;
  447. /* retry an exact lookup, taking the lock before.
  448. * At least, nodes should be hot in our cache.
  449. */
  450. write_seqlock_bh(&base->lock);
  451. relookup:
  452. p = lookup(daddr, stack, base);
  453. if (p != peer_avl_empty) {
  454. atomic_inc(&p->refcnt);
  455. write_sequnlock_bh(&base->lock);
  456. return p;
  457. }
  458. if (!gccnt) {
  459. gccnt = inet_peer_gc(base, stack, stackptr);
  460. if (gccnt && create)
  461. goto relookup;
  462. }
  463. p = create ? kmem_cache_alloc(peer_cachep, GFP_ATOMIC) : NULL;
  464. if (p) {
  465. p->daddr = *daddr;
  466. atomic_set(&p->refcnt, 1);
  467. atomic_set(&p->rid, 0);
  468. atomic_set(&p->ip_id_count,
  469. (daddr->family == AF_INET) ?
  470. secure_ip_id(daddr->addr.a4) :
  471. secure_ipv6_id(daddr->addr.a6));
  472. p->tcp_ts_stamp = 0;
  473. p->metrics[RTAX_LOCK-1] = INETPEER_METRICS_NEW;
  474. p->rate_tokens = 0;
  475. p->rate_last = 0;
  476. p->pmtu_expires = 0;
  477. p->pmtu_orig = 0;
  478. memset(&p->redirect_learned, 0, sizeof(p->redirect_learned));
  479. INIT_LIST_HEAD(&p->gc_list);
  480. /* Link the node. */
  481. link_to_pool(p, base);
  482. base->total++;
  483. }
  484. write_sequnlock_bh(&base->lock);
  485. return p;
  486. }
  487. EXPORT_SYMBOL_GPL(inet_getpeer);
  488. void inet_putpeer(struct inet_peer *p)
  489. {
  490. p->dtime = (__u32)jiffies;
  491. smp_mb__before_atomic_dec();
  492. atomic_dec(&p->refcnt);
  493. }
  494. EXPORT_SYMBOL_GPL(inet_putpeer);
  495. /*
  496. * Check transmit rate limitation for given message.
  497. * The rate information is held in the inet_peer entries now.
  498. * This function is generic and could be used for other purposes
  499. * too. It uses a Token bucket filter as suggested by Alexey Kuznetsov.
  500. *
  501. * Note that the same inet_peer fields are modified by functions in
  502. * route.c too, but these work for packet destinations while xrlim_allow
  503. * works for icmp destinations. This means the rate limiting information
  504. * for one "ip object" is shared - and these ICMPs are twice limited:
  505. * by source and by destination.
  506. *
  507. * RFC 1812: 4.3.2.8 SHOULD be able to limit error message rate
  508. * SHOULD allow setting of rate limits
  509. *
  510. * Shared between ICMPv4 and ICMPv6.
  511. */
  512. #define XRLIM_BURST_FACTOR 6
  513. bool inet_peer_xrlim_allow(struct inet_peer *peer, int timeout)
  514. {
  515. unsigned long now, token;
  516. bool rc = false;
  517. if (!peer)
  518. return true;
  519. token = peer->rate_tokens;
  520. now = jiffies;
  521. token += now - peer->rate_last;
  522. peer->rate_last = now;
  523. if (token > XRLIM_BURST_FACTOR * timeout)
  524. token = XRLIM_BURST_FACTOR * timeout;
  525. if (token >= timeout) {
  526. token -= timeout;
  527. rc = true;
  528. }
  529. peer->rate_tokens = token;
  530. return rc;
  531. }
  532. EXPORT_SYMBOL(inet_peer_xrlim_allow);
  533. static void inetpeer_inval_rcu(struct rcu_head *head)
  534. {
  535. struct inet_peer *p = container_of(head, struct inet_peer, gc_rcu);
  536. spin_lock_bh(&gc_lock);
  537. list_add_tail(&p->gc_list, &gc_list);
  538. spin_unlock_bh(&gc_lock);
  539. schedule_delayed_work(&gc_work, gc_delay);
  540. }
  541. void inetpeer_invalidate_tree(struct net *net, int family)
  542. {
  543. struct inet_peer *old, *new, *prev;
  544. struct inet_peer_base *base = family_to_base(net, family);
  545. write_seqlock_bh(&base->lock);
  546. old = base->root;
  547. if (old == peer_avl_empty_rcu)
  548. goto out;
  549. new = peer_avl_empty_rcu;
  550. prev = cmpxchg(&base->root, old, new);
  551. if (prev == old) {
  552. base->total = 0;
  553. call_rcu(&prev->gc_rcu, inetpeer_inval_rcu);
  554. }
  555. out:
  556. write_sequnlock_bh(&base->lock);
  557. }
  558. EXPORT_SYMBOL(inetpeer_invalidate_tree);