qlge_dbg.c 54 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605
  1. #include "qlge.h"
  2. static int ql_get_ets_regs(struct ql_adapter *qdev, u32 * buf)
  3. {
  4. int status = 0;
  5. int i;
  6. for (i = 0; i < 8; i++, buf++) {
  7. ql_write32(qdev, NIC_ETS, i << 29 | 0x08000000);
  8. *buf = ql_read32(qdev, NIC_ETS);
  9. }
  10. for (i = 0; i < 2; i++, buf++) {
  11. ql_write32(qdev, CNA_ETS, i << 29 | 0x08000000);
  12. *buf = ql_read32(qdev, CNA_ETS);
  13. }
  14. return status;
  15. }
  16. static void ql_get_intr_states(struct ql_adapter *qdev, u32 * buf)
  17. {
  18. int i;
  19. for (i = 0; i < qdev->rx_ring_count; i++, buf++) {
  20. ql_write32(qdev, INTR_EN,
  21. qdev->intr_context[i].intr_read_mask);
  22. *buf = ql_read32(qdev, INTR_EN);
  23. }
  24. }
  25. static int ql_get_cam_entries(struct ql_adapter *qdev, u32 * buf)
  26. {
  27. int i, status;
  28. u32 value[3];
  29. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  30. if (status)
  31. return status;
  32. for (i = 0; i < 16; i++) {
  33. status = ql_get_mac_addr_reg(qdev,
  34. MAC_ADDR_TYPE_CAM_MAC, i, value);
  35. if (status) {
  36. QPRINTK(qdev, DRV, ERR,
  37. "Failed read of mac index register.\n");
  38. goto err;
  39. }
  40. *buf++ = value[0]; /* lower MAC address */
  41. *buf++ = value[1]; /* upper MAC address */
  42. *buf++ = value[2]; /* output */
  43. }
  44. for (i = 0; i < 32; i++) {
  45. status = ql_get_mac_addr_reg(qdev,
  46. MAC_ADDR_TYPE_MULTI_MAC, i, value);
  47. if (status) {
  48. QPRINTK(qdev, DRV, ERR,
  49. "Failed read of mac index register.\n");
  50. goto err;
  51. }
  52. *buf++ = value[0]; /* lower Mcast address */
  53. *buf++ = value[1]; /* upper Mcast address */
  54. }
  55. err:
  56. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  57. return status;
  58. }
  59. static int ql_get_routing_entries(struct ql_adapter *qdev, u32 * buf)
  60. {
  61. int status;
  62. u32 value, i;
  63. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  64. if (status)
  65. return status;
  66. for (i = 0; i < 16; i++) {
  67. status = ql_get_routing_reg(qdev, i, &value);
  68. if (status) {
  69. QPRINTK(qdev, DRV, ERR,
  70. "Failed read of routing index register.\n");
  71. goto err;
  72. } else {
  73. *buf++ = value;
  74. }
  75. }
  76. err:
  77. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  78. return status;
  79. }
  80. /* Read the MPI Processor shadow registers */
  81. static int ql_get_mpi_shadow_regs(struct ql_adapter *qdev, u32 * buf)
  82. {
  83. u32 i;
  84. int status;
  85. for (i = 0; i < MPI_CORE_SH_REGS_CNT; i++, buf++) {
  86. status = ql_write_mpi_reg(qdev, RISC_124,
  87. (SHADOW_OFFSET | i << SHADOW_REG_SHIFT));
  88. if (status)
  89. goto end;
  90. status = ql_read_mpi_reg(qdev, RISC_127, buf);
  91. if (status)
  92. goto end;
  93. }
  94. end:
  95. return status;
  96. }
  97. /* Read the MPI Processor core registers */
  98. static int ql_get_mpi_regs(struct ql_adapter *qdev, u32 * buf,
  99. u32 offset, u32 count)
  100. {
  101. int i, status = 0;
  102. for (i = 0; i < count; i++, buf++) {
  103. status = ql_read_mpi_reg(qdev, offset + i, buf);
  104. if (status)
  105. return status;
  106. }
  107. return status;
  108. }
  109. /* Read the ASIC probe dump */
  110. static unsigned int *ql_get_probe(struct ql_adapter *qdev, u32 clock,
  111. u32 valid, u32 *buf)
  112. {
  113. u32 module, mux_sel, probe, lo_val, hi_val;
  114. for (module = 0; module < PRB_MX_ADDR_MAX_MODS; module++) {
  115. if (!((valid >> module) & 1))
  116. continue;
  117. for (mux_sel = 0; mux_sel < PRB_MX_ADDR_MAX_MUX; mux_sel++) {
  118. probe = clock
  119. | PRB_MX_ADDR_ARE
  120. | mux_sel
  121. | (module << PRB_MX_ADDR_MOD_SEL_SHIFT);
  122. ql_write32(qdev, PRB_MX_ADDR, probe);
  123. lo_val = ql_read32(qdev, PRB_MX_DATA);
  124. if (mux_sel == 0) {
  125. *buf = probe;
  126. buf++;
  127. }
  128. probe |= PRB_MX_ADDR_UP;
  129. ql_write32(qdev, PRB_MX_ADDR, probe);
  130. hi_val = ql_read32(qdev, PRB_MX_DATA);
  131. *buf = lo_val;
  132. buf++;
  133. *buf = hi_val;
  134. buf++;
  135. }
  136. }
  137. return buf;
  138. }
  139. static int ql_get_probe_dump(struct ql_adapter *qdev, unsigned int *buf)
  140. {
  141. /* First we have to enable the probe mux */
  142. ql_write_mpi_reg(qdev, MPI_TEST_FUNC_PRB_CTL, MPI_TEST_FUNC_PRB_EN);
  143. buf = ql_get_probe(qdev, PRB_MX_ADDR_SYS_CLOCK,
  144. PRB_MX_ADDR_VALID_SYS_MOD, buf);
  145. buf = ql_get_probe(qdev, PRB_MX_ADDR_PCI_CLOCK,
  146. PRB_MX_ADDR_VALID_PCI_MOD, buf);
  147. buf = ql_get_probe(qdev, PRB_MX_ADDR_XGM_CLOCK,
  148. PRB_MX_ADDR_VALID_XGM_MOD, buf);
  149. buf = ql_get_probe(qdev, PRB_MX_ADDR_FC_CLOCK,
  150. PRB_MX_ADDR_VALID_FC_MOD, buf);
  151. return 0;
  152. }
  153. /* Read out the routing index registers */
  154. static int ql_get_routing_index_registers(struct ql_adapter *qdev, u32 *buf)
  155. {
  156. int status;
  157. u32 type, index, index_max;
  158. u32 result_index;
  159. u32 result_data;
  160. u32 val;
  161. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  162. if (status)
  163. return status;
  164. for (type = 0; type < 4; type++) {
  165. if (type < 2)
  166. index_max = 8;
  167. else
  168. index_max = 16;
  169. for (index = 0; index < index_max; index++) {
  170. val = RT_IDX_RS
  171. | (type << RT_IDX_TYPE_SHIFT)
  172. | (index << RT_IDX_IDX_SHIFT);
  173. ql_write32(qdev, RT_IDX, val);
  174. result_index = 0;
  175. while ((result_index & RT_IDX_MR) == 0)
  176. result_index = ql_read32(qdev, RT_IDX);
  177. result_data = ql_read32(qdev, RT_DATA);
  178. *buf = type;
  179. buf++;
  180. *buf = index;
  181. buf++;
  182. *buf = result_index;
  183. buf++;
  184. *buf = result_data;
  185. buf++;
  186. }
  187. }
  188. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  189. return status;
  190. }
  191. /* Read out the MAC protocol registers */
  192. static void ql_get_mac_protocol_registers(struct ql_adapter *qdev, u32 *buf)
  193. {
  194. u32 result_index, result_data;
  195. u32 type;
  196. u32 index;
  197. u32 offset;
  198. u32 val;
  199. u32 initial_val = MAC_ADDR_RS;
  200. u32 max_index;
  201. u32 max_offset;
  202. for (type = 0; type < MAC_ADDR_TYPE_COUNT; type++) {
  203. switch (type) {
  204. case 0: /* CAM */
  205. initial_val |= MAC_ADDR_ADR;
  206. max_index = MAC_ADDR_MAX_CAM_ENTRIES;
  207. max_offset = MAC_ADDR_MAX_CAM_WCOUNT;
  208. break;
  209. case 1: /* Multicast MAC Address */
  210. max_index = MAC_ADDR_MAX_CAM_WCOUNT;
  211. max_offset = MAC_ADDR_MAX_CAM_WCOUNT;
  212. break;
  213. case 2: /* VLAN filter mask */
  214. case 3: /* MC filter mask */
  215. max_index = MAC_ADDR_MAX_CAM_WCOUNT;
  216. max_offset = MAC_ADDR_MAX_CAM_WCOUNT;
  217. break;
  218. case 4: /* FC MAC addresses */
  219. max_index = MAC_ADDR_MAX_FC_MAC_ENTRIES;
  220. max_offset = MAC_ADDR_MAX_FC_MAC_WCOUNT;
  221. break;
  222. case 5: /* Mgmt MAC addresses */
  223. max_index = MAC_ADDR_MAX_MGMT_MAC_ENTRIES;
  224. max_offset = MAC_ADDR_MAX_MGMT_MAC_WCOUNT;
  225. break;
  226. case 6: /* Mgmt VLAN addresses */
  227. max_index = MAC_ADDR_MAX_MGMT_VLAN_ENTRIES;
  228. max_offset = MAC_ADDR_MAX_MGMT_VLAN_WCOUNT;
  229. break;
  230. case 7: /* Mgmt IPv4 address */
  231. max_index = MAC_ADDR_MAX_MGMT_V4_ENTRIES;
  232. max_offset = MAC_ADDR_MAX_MGMT_V4_WCOUNT;
  233. break;
  234. case 8: /* Mgmt IPv6 address */
  235. max_index = MAC_ADDR_MAX_MGMT_V6_ENTRIES;
  236. max_offset = MAC_ADDR_MAX_MGMT_V6_WCOUNT;
  237. break;
  238. case 9: /* Mgmt TCP/UDP Dest port */
  239. max_index = MAC_ADDR_MAX_MGMT_TU_DP_ENTRIES;
  240. max_offset = MAC_ADDR_MAX_MGMT_TU_DP_WCOUNT;
  241. break;
  242. default:
  243. printk(KERN_ERR"Bad type!!! 0x%08x\n", type);
  244. max_index = 0;
  245. max_offset = 0;
  246. break;
  247. }
  248. for (index = 0; index < max_index; index++) {
  249. for (offset = 0; offset < max_offset; offset++) {
  250. val = initial_val
  251. | (type << MAC_ADDR_TYPE_SHIFT)
  252. | (index << MAC_ADDR_IDX_SHIFT)
  253. | (offset);
  254. ql_write32(qdev, MAC_ADDR_IDX, val);
  255. result_index = 0;
  256. while ((result_index & MAC_ADDR_MR) == 0) {
  257. result_index = ql_read32(qdev,
  258. MAC_ADDR_IDX);
  259. }
  260. result_data = ql_read32(qdev, MAC_ADDR_DATA);
  261. *buf = result_index;
  262. buf++;
  263. *buf = result_data;
  264. buf++;
  265. }
  266. }
  267. }
  268. }
  269. static void ql_get_sem_registers(struct ql_adapter *qdev, u32 *buf)
  270. {
  271. u32 func_num, reg, reg_val;
  272. int status;
  273. for (func_num = 0; func_num < MAX_SEMAPHORE_FUNCTIONS ; func_num++) {
  274. reg = MPI_NIC_REG_BLOCK
  275. | (func_num << MPI_NIC_FUNCTION_SHIFT)
  276. | (SEM / 4);
  277. status = ql_read_mpi_reg(qdev, reg, &reg_val);
  278. *buf = reg_val;
  279. /* if the read failed then dead fill the element. */
  280. if (!status)
  281. *buf = 0xdeadbeef;
  282. buf++;
  283. }
  284. }
  285. /* Create a coredump segment header */
  286. static void ql_build_coredump_seg_header(
  287. struct mpi_coredump_segment_header *seg_hdr,
  288. u32 seg_number, u32 seg_size, u8 *desc)
  289. {
  290. memset(seg_hdr, 0, sizeof(struct mpi_coredump_segment_header));
  291. seg_hdr->cookie = MPI_COREDUMP_COOKIE;
  292. seg_hdr->segNum = seg_number;
  293. seg_hdr->segSize = seg_size;
  294. memcpy(seg_hdr->description, desc, (sizeof(seg_hdr->description)) - 1);
  295. }
  296. /*
  297. * This function should be called when a coredump / probedump
  298. * is to be extracted from the HBA. It is assumed there is a
  299. * qdev structure that contains the base address of the register
  300. * space for this function as well as a coredump structure that
  301. * will contain the dump.
  302. */
  303. int ql_core_dump(struct ql_adapter *qdev, struct ql_mpi_coredump *mpi_coredump)
  304. {
  305. int status;
  306. int i;
  307. if (!mpi_coredump) {
  308. QPRINTK(qdev, DRV, ERR,
  309. "No memory available.\n");
  310. return -ENOMEM;
  311. }
  312. /* Try to get the spinlock, but dont worry if
  313. * it isn't available. If the firmware died it
  314. * might be holding the sem.
  315. */
  316. ql_sem_spinlock(qdev, SEM_PROC_REG_MASK);
  317. status = ql_pause_mpi_risc(qdev);
  318. if (status) {
  319. QPRINTK(qdev, DRV, ERR,
  320. "Failed RISC pause. Status = 0x%.08x\n", status);
  321. goto err;
  322. }
  323. /* Insert the global header */
  324. memset(&(mpi_coredump->mpi_global_header), 0,
  325. sizeof(struct mpi_coredump_global_header));
  326. mpi_coredump->mpi_global_header.cookie = MPI_COREDUMP_COOKIE;
  327. mpi_coredump->mpi_global_header.headerSize =
  328. sizeof(struct mpi_coredump_global_header);
  329. mpi_coredump->mpi_global_header.imageSize =
  330. sizeof(struct ql_mpi_coredump);
  331. memcpy(mpi_coredump->mpi_global_header.idString, "MPI Coredump",
  332. sizeof(mpi_coredump->mpi_global_header.idString));
  333. /* Get generic NIC reg dump */
  334. ql_build_coredump_seg_header(&mpi_coredump->nic_regs_seg_hdr,
  335. NIC1_CONTROL_SEG_NUM,
  336. sizeof(struct mpi_coredump_segment_header) +
  337. sizeof(mpi_coredump->nic_regs), "NIC1 Registers");
  338. if (qdev->func & 1) {
  339. /* Odd means our function is NIC 2 */
  340. for (i = 0; i < NIC_REGS_DUMP_WORD_COUNT; i++)
  341. mpi_coredump->nic2_regs[i] =
  342. ql_read32(qdev, i * sizeof(u32));
  343. } else {
  344. /* Even means our function is NIC 1 */
  345. for (i = 0; i < NIC_REGS_DUMP_WORD_COUNT; i++)
  346. mpi_coredump->nic_regs[i] =
  347. ql_read32(qdev, i * sizeof(u32));
  348. }
  349. ql_build_coredump_seg_header(&mpi_coredump->core_regs_seg_hdr,
  350. CORE_SEG_NUM,
  351. sizeof(mpi_coredump->core_regs_seg_hdr) +
  352. sizeof(mpi_coredump->mpi_core_regs) +
  353. sizeof(mpi_coredump->mpi_core_sh_regs),
  354. "Core Registers");
  355. /* Get the MPI Core Registers */
  356. status = ql_get_mpi_regs(qdev, &mpi_coredump->mpi_core_regs[0],
  357. MPI_CORE_REGS_ADDR, MPI_CORE_REGS_CNT);
  358. if (status)
  359. goto err;
  360. /* Get the 16 MPI shadow registers */
  361. status = ql_get_mpi_shadow_regs(qdev,
  362. &mpi_coredump->mpi_core_sh_regs[0]);
  363. if (status)
  364. goto err;
  365. /* Get the Test Logic Registers */
  366. ql_build_coredump_seg_header(&mpi_coredump->test_logic_regs_seg_hdr,
  367. TEST_LOGIC_SEG_NUM,
  368. sizeof(struct mpi_coredump_segment_header)
  369. + sizeof(mpi_coredump->test_logic_regs),
  370. "Test Logic Regs");
  371. status = ql_get_mpi_regs(qdev, &mpi_coredump->test_logic_regs[0],
  372. TEST_REGS_ADDR, TEST_REGS_CNT);
  373. if (status)
  374. goto err;
  375. /* Get the RMII Registers */
  376. ql_build_coredump_seg_header(&mpi_coredump->rmii_regs_seg_hdr,
  377. RMII_SEG_NUM,
  378. sizeof(struct mpi_coredump_segment_header)
  379. + sizeof(mpi_coredump->rmii_regs),
  380. "RMII Registers");
  381. status = ql_get_mpi_regs(qdev, &mpi_coredump->rmii_regs[0],
  382. RMII_REGS_ADDR, RMII_REGS_CNT);
  383. if (status)
  384. goto err;
  385. /* Get the FCMAC1 Registers */
  386. ql_build_coredump_seg_header(&mpi_coredump->fcmac1_regs_seg_hdr,
  387. FCMAC1_SEG_NUM,
  388. sizeof(struct mpi_coredump_segment_header)
  389. + sizeof(mpi_coredump->fcmac1_regs),
  390. "FCMAC1 Registers");
  391. status = ql_get_mpi_regs(qdev, &mpi_coredump->fcmac1_regs[0],
  392. FCMAC1_REGS_ADDR, FCMAC_REGS_CNT);
  393. if (status)
  394. goto err;
  395. /* Get the FCMAC2 Registers */
  396. ql_build_coredump_seg_header(&mpi_coredump->fcmac2_regs_seg_hdr,
  397. FCMAC2_SEG_NUM,
  398. sizeof(struct mpi_coredump_segment_header)
  399. + sizeof(mpi_coredump->fcmac2_regs),
  400. "FCMAC2 Registers");
  401. status = ql_get_mpi_regs(qdev, &mpi_coredump->fcmac2_regs[0],
  402. FCMAC2_REGS_ADDR, FCMAC_REGS_CNT);
  403. if (status)
  404. goto err;
  405. /* Get the FC1 MBX Registers */
  406. ql_build_coredump_seg_header(&mpi_coredump->fc1_mbx_regs_seg_hdr,
  407. FC1_MBOX_SEG_NUM,
  408. sizeof(struct mpi_coredump_segment_header)
  409. + sizeof(mpi_coredump->fc1_mbx_regs),
  410. "FC1 MBox Regs");
  411. status = ql_get_mpi_regs(qdev, &mpi_coredump->fc1_mbx_regs[0],
  412. FC1_MBX_REGS_ADDR, FC_MBX_REGS_CNT);
  413. if (status)
  414. goto err;
  415. /* Get the IDE Registers */
  416. ql_build_coredump_seg_header(&mpi_coredump->ide_regs_seg_hdr,
  417. IDE_SEG_NUM,
  418. sizeof(struct mpi_coredump_segment_header)
  419. + sizeof(mpi_coredump->ide_regs),
  420. "IDE Registers");
  421. status = ql_get_mpi_regs(qdev, &mpi_coredump->ide_regs[0],
  422. IDE_REGS_ADDR, IDE_REGS_CNT);
  423. if (status)
  424. goto err;
  425. /* Get the NIC1 MBX Registers */
  426. ql_build_coredump_seg_header(&mpi_coredump->nic1_mbx_regs_seg_hdr,
  427. NIC1_MBOX_SEG_NUM,
  428. sizeof(struct mpi_coredump_segment_header)
  429. + sizeof(mpi_coredump->nic1_mbx_regs),
  430. "NIC1 MBox Regs");
  431. status = ql_get_mpi_regs(qdev, &mpi_coredump->nic1_mbx_regs[0],
  432. NIC1_MBX_REGS_ADDR, NIC_MBX_REGS_CNT);
  433. if (status)
  434. goto err;
  435. /* Get the SMBus Registers */
  436. ql_build_coredump_seg_header(&mpi_coredump->smbus_regs_seg_hdr,
  437. SMBUS_SEG_NUM,
  438. sizeof(struct mpi_coredump_segment_header)
  439. + sizeof(mpi_coredump->smbus_regs),
  440. "SMBus Registers");
  441. status = ql_get_mpi_regs(qdev, &mpi_coredump->smbus_regs[0],
  442. SMBUS_REGS_ADDR, SMBUS_REGS_CNT);
  443. if (status)
  444. goto err;
  445. /* Get the FC2 MBX Registers */
  446. ql_build_coredump_seg_header(&mpi_coredump->fc2_mbx_regs_seg_hdr,
  447. FC2_MBOX_SEG_NUM,
  448. sizeof(struct mpi_coredump_segment_header)
  449. + sizeof(mpi_coredump->fc2_mbx_regs),
  450. "FC2 MBox Regs");
  451. status = ql_get_mpi_regs(qdev, &mpi_coredump->fc2_mbx_regs[0],
  452. FC2_MBX_REGS_ADDR, FC_MBX_REGS_CNT);
  453. if (status)
  454. goto err;
  455. /* Get the NIC2 MBX Registers */
  456. ql_build_coredump_seg_header(&mpi_coredump->nic2_mbx_regs_seg_hdr,
  457. NIC2_MBOX_SEG_NUM,
  458. sizeof(struct mpi_coredump_segment_header)
  459. + sizeof(mpi_coredump->nic2_mbx_regs),
  460. "NIC2 MBox Regs");
  461. status = ql_get_mpi_regs(qdev, &mpi_coredump->nic2_mbx_regs[0],
  462. NIC2_MBX_REGS_ADDR, NIC_MBX_REGS_CNT);
  463. if (status)
  464. goto err;
  465. /* Get the I2C Registers */
  466. ql_build_coredump_seg_header(&mpi_coredump->i2c_regs_seg_hdr,
  467. I2C_SEG_NUM,
  468. sizeof(struct mpi_coredump_segment_header)
  469. + sizeof(mpi_coredump->i2c_regs),
  470. "I2C Registers");
  471. status = ql_get_mpi_regs(qdev, &mpi_coredump->i2c_regs[0],
  472. I2C_REGS_ADDR, I2C_REGS_CNT);
  473. if (status)
  474. goto err;
  475. /* Get the MEMC Registers */
  476. ql_build_coredump_seg_header(&mpi_coredump->memc_regs_seg_hdr,
  477. MEMC_SEG_NUM,
  478. sizeof(struct mpi_coredump_segment_header)
  479. + sizeof(mpi_coredump->memc_regs),
  480. "MEMC Registers");
  481. status = ql_get_mpi_regs(qdev, &mpi_coredump->memc_regs[0],
  482. MEMC_REGS_ADDR, MEMC_REGS_CNT);
  483. if (status)
  484. goto err;
  485. /* Get the PBus Registers */
  486. ql_build_coredump_seg_header(&mpi_coredump->pbus_regs_seg_hdr,
  487. PBUS_SEG_NUM,
  488. sizeof(struct mpi_coredump_segment_header)
  489. + sizeof(mpi_coredump->pbus_regs),
  490. "PBUS Registers");
  491. status = ql_get_mpi_regs(qdev, &mpi_coredump->pbus_regs[0],
  492. PBUS_REGS_ADDR, PBUS_REGS_CNT);
  493. if (status)
  494. goto err;
  495. /* Get the MDE Registers */
  496. ql_build_coredump_seg_header(&mpi_coredump->mde_regs_seg_hdr,
  497. MDE_SEG_NUM,
  498. sizeof(struct mpi_coredump_segment_header)
  499. + sizeof(mpi_coredump->mde_regs),
  500. "MDE Registers");
  501. status = ql_get_mpi_regs(qdev, &mpi_coredump->mde_regs[0],
  502. MDE_REGS_ADDR, MDE_REGS_CNT);
  503. if (status)
  504. goto err;
  505. ql_build_coredump_seg_header(&mpi_coredump->misc_nic_seg_hdr,
  506. MISC_NIC_INFO_SEG_NUM,
  507. sizeof(struct mpi_coredump_segment_header)
  508. + sizeof(mpi_coredump->misc_nic_info),
  509. "MISC NIC INFO");
  510. mpi_coredump->misc_nic_info.rx_ring_count = qdev->rx_ring_count;
  511. mpi_coredump->misc_nic_info.tx_ring_count = qdev->tx_ring_count;
  512. mpi_coredump->misc_nic_info.intr_count = qdev->intr_count;
  513. mpi_coredump->misc_nic_info.function = qdev->func;
  514. /* Segment 31 */
  515. /* Get indexed register values. */
  516. ql_build_coredump_seg_header(&mpi_coredump->intr_states_seg_hdr,
  517. INTR_STATES_SEG_NUM,
  518. sizeof(struct mpi_coredump_segment_header)
  519. + sizeof(mpi_coredump->intr_states),
  520. "INTR States");
  521. ql_get_intr_states(qdev, &mpi_coredump->intr_states[0]);
  522. ql_build_coredump_seg_header(&mpi_coredump->cam_entries_seg_hdr,
  523. CAM_ENTRIES_SEG_NUM,
  524. sizeof(struct mpi_coredump_segment_header)
  525. + sizeof(mpi_coredump->cam_entries),
  526. "CAM Entries");
  527. status = ql_get_cam_entries(qdev, &mpi_coredump->cam_entries[0]);
  528. if (status)
  529. goto err;
  530. ql_build_coredump_seg_header(&mpi_coredump->nic_routing_words_seg_hdr,
  531. ROUTING_WORDS_SEG_NUM,
  532. sizeof(struct mpi_coredump_segment_header)
  533. + sizeof(mpi_coredump->nic_routing_words),
  534. "Routing Words");
  535. status = ql_get_routing_entries(qdev,
  536. &mpi_coredump->nic_routing_words[0]);
  537. if (status)
  538. goto err;
  539. /* Segment 34 (Rev C. step 23) */
  540. ql_build_coredump_seg_header(&mpi_coredump->ets_seg_hdr,
  541. ETS_SEG_NUM,
  542. sizeof(struct mpi_coredump_segment_header)
  543. + sizeof(mpi_coredump->ets),
  544. "ETS Registers");
  545. status = ql_get_ets_regs(qdev, &mpi_coredump->ets[0]);
  546. if (status)
  547. goto err;
  548. ql_build_coredump_seg_header(&mpi_coredump->probe_dump_seg_hdr,
  549. PROBE_DUMP_SEG_NUM,
  550. sizeof(struct mpi_coredump_segment_header)
  551. + sizeof(mpi_coredump->probe_dump),
  552. "Probe Dump");
  553. ql_get_probe_dump(qdev, &mpi_coredump->probe_dump[0]);
  554. ql_build_coredump_seg_header(&mpi_coredump->routing_reg_seg_hdr,
  555. ROUTING_INDEX_SEG_NUM,
  556. sizeof(struct mpi_coredump_segment_header)
  557. + sizeof(mpi_coredump->routing_regs),
  558. "Routing Regs");
  559. status = ql_get_routing_index_registers(qdev,
  560. &mpi_coredump->routing_regs[0]);
  561. if (status)
  562. goto err;
  563. ql_build_coredump_seg_header(&mpi_coredump->mac_prot_reg_seg_hdr,
  564. MAC_PROTOCOL_SEG_NUM,
  565. sizeof(struct mpi_coredump_segment_header)
  566. + sizeof(mpi_coredump->mac_prot_regs),
  567. "MAC Prot Regs");
  568. ql_get_mac_protocol_registers(qdev, &mpi_coredump->mac_prot_regs[0]);
  569. /* Get the semaphore registers for all 5 functions */
  570. ql_build_coredump_seg_header(&mpi_coredump->sem_regs_seg_hdr,
  571. SEM_REGS_SEG_NUM,
  572. sizeof(struct mpi_coredump_segment_header) +
  573. sizeof(mpi_coredump->sem_regs), "Sem Registers");
  574. ql_get_sem_registers(qdev, &mpi_coredump->sem_regs[0]);
  575. /* Prevent the mpi restarting while we dump the memory.*/
  576. ql_write_mpi_reg(qdev, MPI_TEST_FUNC_RST_STS, MPI_TEST_FUNC_RST_FRC);
  577. /* clear the pause */
  578. status = ql_unpause_mpi_risc(qdev);
  579. if (status) {
  580. QPRINTK(qdev, DRV, ERR,
  581. "Failed RISC unpause. Status = 0x%.08x\n", status);
  582. goto err;
  583. }
  584. err:
  585. ql_sem_unlock(qdev, SEM_PROC_REG_MASK); /* does flush too */
  586. return status;
  587. }
  588. void ql_gen_reg_dump(struct ql_adapter *qdev,
  589. struct ql_reg_dump *mpi_coredump)
  590. {
  591. int i, status;
  592. memset(&(mpi_coredump->mpi_global_header), 0,
  593. sizeof(struct mpi_coredump_global_header));
  594. mpi_coredump->mpi_global_header.cookie = MPI_COREDUMP_COOKIE;
  595. mpi_coredump->mpi_global_header.headerSize =
  596. sizeof(struct mpi_coredump_global_header);
  597. mpi_coredump->mpi_global_header.imageSize =
  598. sizeof(struct ql_reg_dump);
  599. memcpy(mpi_coredump->mpi_global_header.idString, "MPI Coredump",
  600. sizeof(mpi_coredump->mpi_global_header.idString));
  601. /* segment 16 */
  602. ql_build_coredump_seg_header(&mpi_coredump->misc_nic_seg_hdr,
  603. MISC_NIC_INFO_SEG_NUM,
  604. sizeof(struct mpi_coredump_segment_header)
  605. + sizeof(mpi_coredump->misc_nic_info),
  606. "MISC NIC INFO");
  607. mpi_coredump->misc_nic_info.rx_ring_count = qdev->rx_ring_count;
  608. mpi_coredump->misc_nic_info.tx_ring_count = qdev->tx_ring_count;
  609. mpi_coredump->misc_nic_info.intr_count = qdev->intr_count;
  610. mpi_coredump->misc_nic_info.function = qdev->func;
  611. /* Segment 16, Rev C. Step 18 */
  612. ql_build_coredump_seg_header(&mpi_coredump->nic_regs_seg_hdr,
  613. NIC1_CONTROL_SEG_NUM,
  614. sizeof(struct mpi_coredump_segment_header)
  615. + sizeof(mpi_coredump->nic_regs),
  616. "NIC Registers");
  617. /* Get generic reg dump */
  618. for (i = 0; i < 64; i++)
  619. mpi_coredump->nic_regs[i] = ql_read32(qdev, i * sizeof(u32));
  620. /* Segment 31 */
  621. /* Get indexed register values. */
  622. ql_build_coredump_seg_header(&mpi_coredump->intr_states_seg_hdr,
  623. INTR_STATES_SEG_NUM,
  624. sizeof(struct mpi_coredump_segment_header)
  625. + sizeof(mpi_coredump->intr_states),
  626. "INTR States");
  627. ql_get_intr_states(qdev, &mpi_coredump->intr_states[0]);
  628. ql_build_coredump_seg_header(&mpi_coredump->cam_entries_seg_hdr,
  629. CAM_ENTRIES_SEG_NUM,
  630. sizeof(struct mpi_coredump_segment_header)
  631. + sizeof(mpi_coredump->cam_entries),
  632. "CAM Entries");
  633. status = ql_get_cam_entries(qdev, &mpi_coredump->cam_entries[0]);
  634. if (status)
  635. return;
  636. ql_build_coredump_seg_header(&mpi_coredump->nic_routing_words_seg_hdr,
  637. ROUTING_WORDS_SEG_NUM,
  638. sizeof(struct mpi_coredump_segment_header)
  639. + sizeof(mpi_coredump->nic_routing_words),
  640. "Routing Words");
  641. status = ql_get_routing_entries(qdev,
  642. &mpi_coredump->nic_routing_words[0]);
  643. if (status)
  644. return;
  645. /* Segment 34 (Rev C. step 23) */
  646. ql_build_coredump_seg_header(&mpi_coredump->ets_seg_hdr,
  647. ETS_SEG_NUM,
  648. sizeof(struct mpi_coredump_segment_header)
  649. + sizeof(mpi_coredump->ets),
  650. "ETS Registers");
  651. status = ql_get_ets_regs(qdev, &mpi_coredump->ets[0]);
  652. if (status)
  653. return;
  654. }
  655. /* Coredump to messages log file using separate worker thread */
  656. void ql_mpi_core_to_log(struct work_struct *work)
  657. {
  658. struct ql_adapter *qdev =
  659. container_of(work, struct ql_adapter, mpi_core_to_log.work);
  660. u32 *tmp, count;
  661. int i;
  662. count = sizeof(struct ql_mpi_coredump) / sizeof(u32);
  663. tmp = (u32 *)qdev->mpi_coredump;
  664. QPRINTK(qdev, DRV, DEBUG, "Core is dumping to log file!\n");
  665. for (i = 0; i < count; i += 8) {
  666. printk(KERN_ERR "%.08x: %.08x %.08x %.08x %.08x %.08x "
  667. "%.08x %.08x %.08x \n", i,
  668. tmp[i + 0],
  669. tmp[i + 1],
  670. tmp[i + 2],
  671. tmp[i + 3],
  672. tmp[i + 4],
  673. tmp[i + 5],
  674. tmp[i + 6],
  675. tmp[i + 7]);
  676. msleep(5);
  677. }
  678. }
  679. #ifdef QL_REG_DUMP
  680. static void ql_dump_intr_states(struct ql_adapter *qdev)
  681. {
  682. int i;
  683. u32 value;
  684. for (i = 0; i < qdev->intr_count; i++) {
  685. ql_write32(qdev, INTR_EN, qdev->intr_context[i].intr_read_mask);
  686. value = ql_read32(qdev, INTR_EN);
  687. printk(KERN_ERR PFX
  688. "%s: Interrupt %d is %s.\n",
  689. qdev->ndev->name, i,
  690. (value & INTR_EN_EN ? "enabled" : "disabled"));
  691. }
  692. }
  693. void ql_dump_xgmac_control_regs(struct ql_adapter *qdev)
  694. {
  695. u32 data;
  696. if (ql_sem_spinlock(qdev, qdev->xg_sem_mask)) {
  697. printk(KERN_ERR "%s: Couldn't get xgmac sem.\n", __func__);
  698. return;
  699. }
  700. ql_read_xgmac_reg(qdev, PAUSE_SRC_LO, &data);
  701. printk(KERN_ERR PFX "%s: PAUSE_SRC_LO = 0x%.08x.\n", qdev->ndev->name,
  702. data);
  703. ql_read_xgmac_reg(qdev, PAUSE_SRC_HI, &data);
  704. printk(KERN_ERR PFX "%s: PAUSE_SRC_HI = 0x%.08x.\n", qdev->ndev->name,
  705. data);
  706. ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
  707. printk(KERN_ERR PFX "%s: GLOBAL_CFG = 0x%.08x.\n", qdev->ndev->name,
  708. data);
  709. ql_read_xgmac_reg(qdev, TX_CFG, &data);
  710. printk(KERN_ERR PFX "%s: TX_CFG = 0x%.08x.\n", qdev->ndev->name, data);
  711. ql_read_xgmac_reg(qdev, RX_CFG, &data);
  712. printk(KERN_ERR PFX "%s: RX_CFG = 0x%.08x.\n", qdev->ndev->name, data);
  713. ql_read_xgmac_reg(qdev, FLOW_CTL, &data);
  714. printk(KERN_ERR PFX "%s: FLOW_CTL = 0x%.08x.\n", qdev->ndev->name,
  715. data);
  716. ql_read_xgmac_reg(qdev, PAUSE_OPCODE, &data);
  717. printk(KERN_ERR PFX "%s: PAUSE_OPCODE = 0x%.08x.\n", qdev->ndev->name,
  718. data);
  719. ql_read_xgmac_reg(qdev, PAUSE_TIMER, &data);
  720. printk(KERN_ERR PFX "%s: PAUSE_TIMER = 0x%.08x.\n", qdev->ndev->name,
  721. data);
  722. ql_read_xgmac_reg(qdev, PAUSE_FRM_DEST_LO, &data);
  723. printk(KERN_ERR PFX "%s: PAUSE_FRM_DEST_LO = 0x%.08x.\n",
  724. qdev->ndev->name, data);
  725. ql_read_xgmac_reg(qdev, PAUSE_FRM_DEST_HI, &data);
  726. printk(KERN_ERR PFX "%s: PAUSE_FRM_DEST_HI = 0x%.08x.\n",
  727. qdev->ndev->name, data);
  728. ql_read_xgmac_reg(qdev, MAC_TX_PARAMS, &data);
  729. printk(KERN_ERR PFX "%s: MAC_TX_PARAMS = 0x%.08x.\n", qdev->ndev->name,
  730. data);
  731. ql_read_xgmac_reg(qdev, MAC_RX_PARAMS, &data);
  732. printk(KERN_ERR PFX "%s: MAC_RX_PARAMS = 0x%.08x.\n", qdev->ndev->name,
  733. data);
  734. ql_read_xgmac_reg(qdev, MAC_SYS_INT, &data);
  735. printk(KERN_ERR PFX "%s: MAC_SYS_INT = 0x%.08x.\n", qdev->ndev->name,
  736. data);
  737. ql_read_xgmac_reg(qdev, MAC_SYS_INT_MASK, &data);
  738. printk(KERN_ERR PFX "%s: MAC_SYS_INT_MASK = 0x%.08x.\n",
  739. qdev->ndev->name, data);
  740. ql_read_xgmac_reg(qdev, MAC_MGMT_INT, &data);
  741. printk(KERN_ERR PFX "%s: MAC_MGMT_INT = 0x%.08x.\n", qdev->ndev->name,
  742. data);
  743. ql_read_xgmac_reg(qdev, MAC_MGMT_IN_MASK, &data);
  744. printk(KERN_ERR PFX "%s: MAC_MGMT_IN_MASK = 0x%.08x.\n",
  745. qdev->ndev->name, data);
  746. ql_read_xgmac_reg(qdev, EXT_ARB_MODE, &data);
  747. printk(KERN_ERR PFX "%s: EXT_ARB_MODE = 0x%.08x.\n", qdev->ndev->name,
  748. data);
  749. ql_sem_unlock(qdev, qdev->xg_sem_mask);
  750. }
  751. static void ql_dump_ets_regs(struct ql_adapter *qdev)
  752. {
  753. }
  754. static void ql_dump_cam_entries(struct ql_adapter *qdev)
  755. {
  756. int i;
  757. u32 value[3];
  758. i = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  759. if (i)
  760. return;
  761. for (i = 0; i < 4; i++) {
  762. if (ql_get_mac_addr_reg(qdev, MAC_ADDR_TYPE_CAM_MAC, i, value)) {
  763. printk(KERN_ERR PFX
  764. "%s: Failed read of mac index register.\n",
  765. __func__);
  766. return;
  767. } else {
  768. if (value[0])
  769. printk(KERN_ERR PFX
  770. "%s: CAM index %d CAM Lookup Lower = 0x%.08x:%.08x, Output = 0x%.08x.\n",
  771. qdev->ndev->name, i, value[1], value[0],
  772. value[2]);
  773. }
  774. }
  775. for (i = 0; i < 32; i++) {
  776. if (ql_get_mac_addr_reg
  777. (qdev, MAC_ADDR_TYPE_MULTI_MAC, i, value)) {
  778. printk(KERN_ERR PFX
  779. "%s: Failed read of mac index register.\n",
  780. __func__);
  781. return;
  782. } else {
  783. if (value[0])
  784. printk(KERN_ERR PFX
  785. "%s: MCAST index %d CAM Lookup Lower = 0x%.08x:%.08x.\n",
  786. qdev->ndev->name, i, value[1], value[0]);
  787. }
  788. }
  789. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  790. }
  791. void ql_dump_routing_entries(struct ql_adapter *qdev)
  792. {
  793. int i;
  794. u32 value;
  795. i = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  796. if (i)
  797. return;
  798. for (i = 0; i < 16; i++) {
  799. value = 0;
  800. if (ql_get_routing_reg(qdev, i, &value)) {
  801. printk(KERN_ERR PFX
  802. "%s: Failed read of routing index register.\n",
  803. __func__);
  804. return;
  805. } else {
  806. if (value)
  807. printk(KERN_ERR PFX
  808. "%s: Routing Mask %d = 0x%.08x.\n",
  809. qdev->ndev->name, i, value);
  810. }
  811. }
  812. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  813. }
  814. void ql_dump_regs(struct ql_adapter *qdev)
  815. {
  816. printk(KERN_ERR PFX "reg dump for function #%d.\n", qdev->func);
  817. printk(KERN_ERR PFX "SYS = 0x%x.\n",
  818. ql_read32(qdev, SYS));
  819. printk(KERN_ERR PFX "RST_FO = 0x%x.\n",
  820. ql_read32(qdev, RST_FO));
  821. printk(KERN_ERR PFX "FSC = 0x%x.\n",
  822. ql_read32(qdev, FSC));
  823. printk(KERN_ERR PFX "CSR = 0x%x.\n",
  824. ql_read32(qdev, CSR));
  825. printk(KERN_ERR PFX "ICB_RID = 0x%x.\n",
  826. ql_read32(qdev, ICB_RID));
  827. printk(KERN_ERR PFX "ICB_L = 0x%x.\n",
  828. ql_read32(qdev, ICB_L));
  829. printk(KERN_ERR PFX "ICB_H = 0x%x.\n",
  830. ql_read32(qdev, ICB_H));
  831. printk(KERN_ERR PFX "CFG = 0x%x.\n",
  832. ql_read32(qdev, CFG));
  833. printk(KERN_ERR PFX "BIOS_ADDR = 0x%x.\n",
  834. ql_read32(qdev, BIOS_ADDR));
  835. printk(KERN_ERR PFX "STS = 0x%x.\n",
  836. ql_read32(qdev, STS));
  837. printk(KERN_ERR PFX "INTR_EN = 0x%x.\n",
  838. ql_read32(qdev, INTR_EN));
  839. printk(KERN_ERR PFX "INTR_MASK = 0x%x.\n",
  840. ql_read32(qdev, INTR_MASK));
  841. printk(KERN_ERR PFX "ISR1 = 0x%x.\n",
  842. ql_read32(qdev, ISR1));
  843. printk(KERN_ERR PFX "ISR2 = 0x%x.\n",
  844. ql_read32(qdev, ISR2));
  845. printk(KERN_ERR PFX "ISR3 = 0x%x.\n",
  846. ql_read32(qdev, ISR3));
  847. printk(KERN_ERR PFX "ISR4 = 0x%x.\n",
  848. ql_read32(qdev, ISR4));
  849. printk(KERN_ERR PFX "REV_ID = 0x%x.\n",
  850. ql_read32(qdev, REV_ID));
  851. printk(KERN_ERR PFX "FRC_ECC_ERR = 0x%x.\n",
  852. ql_read32(qdev, FRC_ECC_ERR));
  853. printk(KERN_ERR PFX "ERR_STS = 0x%x.\n",
  854. ql_read32(qdev, ERR_STS));
  855. printk(KERN_ERR PFX "RAM_DBG_ADDR = 0x%x.\n",
  856. ql_read32(qdev, RAM_DBG_ADDR));
  857. printk(KERN_ERR PFX "RAM_DBG_DATA = 0x%x.\n",
  858. ql_read32(qdev, RAM_DBG_DATA));
  859. printk(KERN_ERR PFX "ECC_ERR_CNT = 0x%x.\n",
  860. ql_read32(qdev, ECC_ERR_CNT));
  861. printk(KERN_ERR PFX "SEM = 0x%x.\n",
  862. ql_read32(qdev, SEM));
  863. printk(KERN_ERR PFX "GPIO_1 = 0x%x.\n",
  864. ql_read32(qdev, GPIO_1));
  865. printk(KERN_ERR PFX "GPIO_2 = 0x%x.\n",
  866. ql_read32(qdev, GPIO_2));
  867. printk(KERN_ERR PFX "GPIO_3 = 0x%x.\n",
  868. ql_read32(qdev, GPIO_3));
  869. printk(KERN_ERR PFX "XGMAC_ADDR = 0x%x.\n",
  870. ql_read32(qdev, XGMAC_ADDR));
  871. printk(KERN_ERR PFX "XGMAC_DATA = 0x%x.\n",
  872. ql_read32(qdev, XGMAC_DATA));
  873. printk(KERN_ERR PFX "NIC_ETS = 0x%x.\n",
  874. ql_read32(qdev, NIC_ETS));
  875. printk(KERN_ERR PFX "CNA_ETS = 0x%x.\n",
  876. ql_read32(qdev, CNA_ETS));
  877. printk(KERN_ERR PFX "FLASH_ADDR = 0x%x.\n",
  878. ql_read32(qdev, FLASH_ADDR));
  879. printk(KERN_ERR PFX "FLASH_DATA = 0x%x.\n",
  880. ql_read32(qdev, FLASH_DATA));
  881. printk(KERN_ERR PFX "CQ_STOP = 0x%x.\n",
  882. ql_read32(qdev, CQ_STOP));
  883. printk(KERN_ERR PFX "PAGE_TBL_RID = 0x%x.\n",
  884. ql_read32(qdev, PAGE_TBL_RID));
  885. printk(KERN_ERR PFX "WQ_PAGE_TBL_LO = 0x%x.\n",
  886. ql_read32(qdev, WQ_PAGE_TBL_LO));
  887. printk(KERN_ERR PFX "WQ_PAGE_TBL_HI = 0x%x.\n",
  888. ql_read32(qdev, WQ_PAGE_TBL_HI));
  889. printk(KERN_ERR PFX "CQ_PAGE_TBL_LO = 0x%x.\n",
  890. ql_read32(qdev, CQ_PAGE_TBL_LO));
  891. printk(KERN_ERR PFX "CQ_PAGE_TBL_HI = 0x%x.\n",
  892. ql_read32(qdev, CQ_PAGE_TBL_HI));
  893. printk(KERN_ERR PFX "COS_DFLT_CQ1 = 0x%x.\n",
  894. ql_read32(qdev, COS_DFLT_CQ1));
  895. printk(KERN_ERR PFX "COS_DFLT_CQ2 = 0x%x.\n",
  896. ql_read32(qdev, COS_DFLT_CQ2));
  897. printk(KERN_ERR PFX "SPLT_HDR = 0x%x.\n",
  898. ql_read32(qdev, SPLT_HDR));
  899. printk(KERN_ERR PFX "FC_PAUSE_THRES = 0x%x.\n",
  900. ql_read32(qdev, FC_PAUSE_THRES));
  901. printk(KERN_ERR PFX "NIC_PAUSE_THRES = 0x%x.\n",
  902. ql_read32(qdev, NIC_PAUSE_THRES));
  903. printk(KERN_ERR PFX "FC_ETHERTYPE = 0x%x.\n",
  904. ql_read32(qdev, FC_ETHERTYPE));
  905. printk(KERN_ERR PFX "FC_RCV_CFG = 0x%x.\n",
  906. ql_read32(qdev, FC_RCV_CFG));
  907. printk(KERN_ERR PFX "NIC_RCV_CFG = 0x%x.\n",
  908. ql_read32(qdev, NIC_RCV_CFG));
  909. printk(KERN_ERR PFX "FC_COS_TAGS = 0x%x.\n",
  910. ql_read32(qdev, FC_COS_TAGS));
  911. printk(KERN_ERR PFX "NIC_COS_TAGS = 0x%x.\n",
  912. ql_read32(qdev, NIC_COS_TAGS));
  913. printk(KERN_ERR PFX "MGMT_RCV_CFG = 0x%x.\n",
  914. ql_read32(qdev, MGMT_RCV_CFG));
  915. printk(KERN_ERR PFX "XG_SERDES_ADDR = 0x%x.\n",
  916. ql_read32(qdev, XG_SERDES_ADDR));
  917. printk(KERN_ERR PFX "XG_SERDES_DATA = 0x%x.\n",
  918. ql_read32(qdev, XG_SERDES_DATA));
  919. printk(KERN_ERR PFX "PRB_MX_ADDR = 0x%x.\n",
  920. ql_read32(qdev, PRB_MX_ADDR));
  921. printk(KERN_ERR PFX "PRB_MX_DATA = 0x%x.\n",
  922. ql_read32(qdev, PRB_MX_DATA));
  923. ql_dump_intr_states(qdev);
  924. ql_dump_xgmac_control_regs(qdev);
  925. ql_dump_ets_regs(qdev);
  926. ql_dump_cam_entries(qdev);
  927. ql_dump_routing_entries(qdev);
  928. }
  929. #endif
  930. #ifdef QL_STAT_DUMP
  931. void ql_dump_stat(struct ql_adapter *qdev)
  932. {
  933. printk(KERN_ERR "%s: Enter.\n", __func__);
  934. printk(KERN_ERR "tx_pkts = %ld\n",
  935. (unsigned long)qdev->nic_stats.tx_pkts);
  936. printk(KERN_ERR "tx_bytes = %ld\n",
  937. (unsigned long)qdev->nic_stats.tx_bytes);
  938. printk(KERN_ERR "tx_mcast_pkts = %ld.\n",
  939. (unsigned long)qdev->nic_stats.tx_mcast_pkts);
  940. printk(KERN_ERR "tx_bcast_pkts = %ld.\n",
  941. (unsigned long)qdev->nic_stats.tx_bcast_pkts);
  942. printk(KERN_ERR "tx_ucast_pkts = %ld.\n",
  943. (unsigned long)qdev->nic_stats.tx_ucast_pkts);
  944. printk(KERN_ERR "tx_ctl_pkts = %ld.\n",
  945. (unsigned long)qdev->nic_stats.tx_ctl_pkts);
  946. printk(KERN_ERR "tx_pause_pkts = %ld.\n",
  947. (unsigned long)qdev->nic_stats.tx_pause_pkts);
  948. printk(KERN_ERR "tx_64_pkt = %ld.\n",
  949. (unsigned long)qdev->nic_stats.tx_64_pkt);
  950. printk(KERN_ERR "tx_65_to_127_pkt = %ld.\n",
  951. (unsigned long)qdev->nic_stats.tx_65_to_127_pkt);
  952. printk(KERN_ERR "tx_128_to_255_pkt = %ld.\n",
  953. (unsigned long)qdev->nic_stats.tx_128_to_255_pkt);
  954. printk(KERN_ERR "tx_256_511_pkt = %ld.\n",
  955. (unsigned long)qdev->nic_stats.tx_256_511_pkt);
  956. printk(KERN_ERR "tx_512_to_1023_pkt = %ld.\n",
  957. (unsigned long)qdev->nic_stats.tx_512_to_1023_pkt);
  958. printk(KERN_ERR "tx_1024_to_1518_pkt = %ld.\n",
  959. (unsigned long)qdev->nic_stats.tx_1024_to_1518_pkt);
  960. printk(KERN_ERR "tx_1519_to_max_pkt = %ld.\n",
  961. (unsigned long)qdev->nic_stats.tx_1519_to_max_pkt);
  962. printk(KERN_ERR "tx_undersize_pkt = %ld.\n",
  963. (unsigned long)qdev->nic_stats.tx_undersize_pkt);
  964. printk(KERN_ERR "tx_oversize_pkt = %ld.\n",
  965. (unsigned long)qdev->nic_stats.tx_oversize_pkt);
  966. printk(KERN_ERR "rx_bytes = %ld.\n",
  967. (unsigned long)qdev->nic_stats.rx_bytes);
  968. printk(KERN_ERR "rx_bytes_ok = %ld.\n",
  969. (unsigned long)qdev->nic_stats.rx_bytes_ok);
  970. printk(KERN_ERR "rx_pkts = %ld.\n",
  971. (unsigned long)qdev->nic_stats.rx_pkts);
  972. printk(KERN_ERR "rx_pkts_ok = %ld.\n",
  973. (unsigned long)qdev->nic_stats.rx_pkts_ok);
  974. printk(KERN_ERR "rx_bcast_pkts = %ld.\n",
  975. (unsigned long)qdev->nic_stats.rx_bcast_pkts);
  976. printk(KERN_ERR "rx_mcast_pkts = %ld.\n",
  977. (unsigned long)qdev->nic_stats.rx_mcast_pkts);
  978. printk(KERN_ERR "rx_ucast_pkts = %ld.\n",
  979. (unsigned long)qdev->nic_stats.rx_ucast_pkts);
  980. printk(KERN_ERR "rx_undersize_pkts = %ld.\n",
  981. (unsigned long)qdev->nic_stats.rx_undersize_pkts);
  982. printk(KERN_ERR "rx_oversize_pkts = %ld.\n",
  983. (unsigned long)qdev->nic_stats.rx_oversize_pkts);
  984. printk(KERN_ERR "rx_jabber_pkts = %ld.\n",
  985. (unsigned long)qdev->nic_stats.rx_jabber_pkts);
  986. printk(KERN_ERR "rx_undersize_fcerr_pkts = %ld.\n",
  987. (unsigned long)qdev->nic_stats.rx_undersize_fcerr_pkts);
  988. printk(KERN_ERR "rx_drop_events = %ld.\n",
  989. (unsigned long)qdev->nic_stats.rx_drop_events);
  990. printk(KERN_ERR "rx_fcerr_pkts = %ld.\n",
  991. (unsigned long)qdev->nic_stats.rx_fcerr_pkts);
  992. printk(KERN_ERR "rx_align_err = %ld.\n",
  993. (unsigned long)qdev->nic_stats.rx_align_err);
  994. printk(KERN_ERR "rx_symbol_err = %ld.\n",
  995. (unsigned long)qdev->nic_stats.rx_symbol_err);
  996. printk(KERN_ERR "rx_mac_err = %ld.\n",
  997. (unsigned long)qdev->nic_stats.rx_mac_err);
  998. printk(KERN_ERR "rx_ctl_pkts = %ld.\n",
  999. (unsigned long)qdev->nic_stats.rx_ctl_pkts);
  1000. printk(KERN_ERR "rx_pause_pkts = %ld.\n",
  1001. (unsigned long)qdev->nic_stats.rx_pause_pkts);
  1002. printk(KERN_ERR "rx_64_pkts = %ld.\n",
  1003. (unsigned long)qdev->nic_stats.rx_64_pkts);
  1004. printk(KERN_ERR "rx_65_to_127_pkts = %ld.\n",
  1005. (unsigned long)qdev->nic_stats.rx_65_to_127_pkts);
  1006. printk(KERN_ERR "rx_128_255_pkts = %ld.\n",
  1007. (unsigned long)qdev->nic_stats.rx_128_255_pkts);
  1008. printk(KERN_ERR "rx_256_511_pkts = %ld.\n",
  1009. (unsigned long)qdev->nic_stats.rx_256_511_pkts);
  1010. printk(KERN_ERR "rx_512_to_1023_pkts = %ld.\n",
  1011. (unsigned long)qdev->nic_stats.rx_512_to_1023_pkts);
  1012. printk(KERN_ERR "rx_1024_to_1518_pkts = %ld.\n",
  1013. (unsigned long)qdev->nic_stats.rx_1024_to_1518_pkts);
  1014. printk(KERN_ERR "rx_1519_to_max_pkts = %ld.\n",
  1015. (unsigned long)qdev->nic_stats.rx_1519_to_max_pkts);
  1016. printk(KERN_ERR "rx_len_err_pkts = %ld.\n",
  1017. (unsigned long)qdev->nic_stats.rx_len_err_pkts);
  1018. };
  1019. #endif
  1020. #ifdef QL_DEV_DUMP
  1021. void ql_dump_qdev(struct ql_adapter *qdev)
  1022. {
  1023. int i;
  1024. printk(KERN_ERR PFX "qdev->flags = %lx.\n",
  1025. qdev->flags);
  1026. printk(KERN_ERR PFX "qdev->vlgrp = %p.\n",
  1027. qdev->vlgrp);
  1028. printk(KERN_ERR PFX "qdev->pdev = %p.\n",
  1029. qdev->pdev);
  1030. printk(KERN_ERR PFX "qdev->ndev = %p.\n",
  1031. qdev->ndev);
  1032. printk(KERN_ERR PFX "qdev->chip_rev_id = %d.\n",
  1033. qdev->chip_rev_id);
  1034. printk(KERN_ERR PFX "qdev->reg_base = %p.\n",
  1035. qdev->reg_base);
  1036. printk(KERN_ERR PFX "qdev->doorbell_area = %p.\n",
  1037. qdev->doorbell_area);
  1038. printk(KERN_ERR PFX "qdev->doorbell_area_size = %d.\n",
  1039. qdev->doorbell_area_size);
  1040. printk(KERN_ERR PFX "msg_enable = %x.\n",
  1041. qdev->msg_enable);
  1042. printk(KERN_ERR PFX "qdev->rx_ring_shadow_reg_area = %p.\n",
  1043. qdev->rx_ring_shadow_reg_area);
  1044. printk(KERN_ERR PFX "qdev->rx_ring_shadow_reg_dma = %llx.\n",
  1045. (unsigned long long) qdev->rx_ring_shadow_reg_dma);
  1046. printk(KERN_ERR PFX "qdev->tx_ring_shadow_reg_area = %p.\n",
  1047. qdev->tx_ring_shadow_reg_area);
  1048. printk(KERN_ERR PFX "qdev->tx_ring_shadow_reg_dma = %llx.\n",
  1049. (unsigned long long) qdev->tx_ring_shadow_reg_dma);
  1050. printk(KERN_ERR PFX "qdev->intr_count = %d.\n",
  1051. qdev->intr_count);
  1052. if (qdev->msi_x_entry)
  1053. for (i = 0; i < qdev->intr_count; i++) {
  1054. printk(KERN_ERR PFX
  1055. "msi_x_entry.[%d]vector = %d.\n", i,
  1056. qdev->msi_x_entry[i].vector);
  1057. printk(KERN_ERR PFX
  1058. "msi_x_entry.[%d]entry = %d.\n", i,
  1059. qdev->msi_x_entry[i].entry);
  1060. }
  1061. for (i = 0; i < qdev->intr_count; i++) {
  1062. printk(KERN_ERR PFX
  1063. "intr_context[%d].qdev = %p.\n", i,
  1064. qdev->intr_context[i].qdev);
  1065. printk(KERN_ERR PFX
  1066. "intr_context[%d].intr = %d.\n", i,
  1067. qdev->intr_context[i].intr);
  1068. printk(KERN_ERR PFX
  1069. "intr_context[%d].hooked = %d.\n", i,
  1070. qdev->intr_context[i].hooked);
  1071. printk(KERN_ERR PFX
  1072. "intr_context[%d].intr_en_mask = 0x%08x.\n", i,
  1073. qdev->intr_context[i].intr_en_mask);
  1074. printk(KERN_ERR PFX
  1075. "intr_context[%d].intr_dis_mask = 0x%08x.\n", i,
  1076. qdev->intr_context[i].intr_dis_mask);
  1077. printk(KERN_ERR PFX
  1078. "intr_context[%d].intr_read_mask = 0x%08x.\n", i,
  1079. qdev->intr_context[i].intr_read_mask);
  1080. }
  1081. printk(KERN_ERR PFX "qdev->tx_ring_count = %d.\n", qdev->tx_ring_count);
  1082. printk(KERN_ERR PFX "qdev->rx_ring_count = %d.\n", qdev->rx_ring_count);
  1083. printk(KERN_ERR PFX "qdev->ring_mem_size = %d.\n", qdev->ring_mem_size);
  1084. printk(KERN_ERR PFX "qdev->ring_mem = %p.\n", qdev->ring_mem);
  1085. printk(KERN_ERR PFX "qdev->intr_count = %d.\n", qdev->intr_count);
  1086. printk(KERN_ERR PFX "qdev->tx_ring = %p.\n",
  1087. qdev->tx_ring);
  1088. printk(KERN_ERR PFX "qdev->rss_ring_count = %d.\n",
  1089. qdev->rss_ring_count);
  1090. printk(KERN_ERR PFX "qdev->rx_ring = %p.\n", qdev->rx_ring);
  1091. printk(KERN_ERR PFX "qdev->default_rx_queue = %d.\n",
  1092. qdev->default_rx_queue);
  1093. printk(KERN_ERR PFX "qdev->xg_sem_mask = 0x%08x.\n",
  1094. qdev->xg_sem_mask);
  1095. printk(KERN_ERR PFX "qdev->port_link_up = 0x%08x.\n",
  1096. qdev->port_link_up);
  1097. printk(KERN_ERR PFX "qdev->port_init = 0x%08x.\n",
  1098. qdev->port_init);
  1099. }
  1100. #endif
  1101. #ifdef QL_CB_DUMP
  1102. void ql_dump_wqicb(struct wqicb *wqicb)
  1103. {
  1104. printk(KERN_ERR PFX "Dumping wqicb stuff...\n");
  1105. printk(KERN_ERR PFX "wqicb->len = 0x%x.\n", le16_to_cpu(wqicb->len));
  1106. printk(KERN_ERR PFX "wqicb->flags = %x.\n", le16_to_cpu(wqicb->flags));
  1107. printk(KERN_ERR PFX "wqicb->cq_id_rss = %d.\n",
  1108. le16_to_cpu(wqicb->cq_id_rss));
  1109. printk(KERN_ERR PFX "wqicb->rid = 0x%x.\n", le16_to_cpu(wqicb->rid));
  1110. printk(KERN_ERR PFX "wqicb->wq_addr = 0x%llx.\n",
  1111. (unsigned long long) le64_to_cpu(wqicb->addr));
  1112. printk(KERN_ERR PFX "wqicb->wq_cnsmr_idx_addr = 0x%llx.\n",
  1113. (unsigned long long) le64_to_cpu(wqicb->cnsmr_idx_addr));
  1114. }
  1115. void ql_dump_tx_ring(struct tx_ring *tx_ring)
  1116. {
  1117. if (tx_ring == NULL)
  1118. return;
  1119. printk(KERN_ERR PFX
  1120. "===================== Dumping tx_ring %d ===============.\n",
  1121. tx_ring->wq_id);
  1122. printk(KERN_ERR PFX "tx_ring->base = %p.\n", tx_ring->wq_base);
  1123. printk(KERN_ERR PFX "tx_ring->base_dma = 0x%llx.\n",
  1124. (unsigned long long) tx_ring->wq_base_dma);
  1125. printk(KERN_ERR PFX
  1126. "tx_ring->cnsmr_idx_sh_reg, addr = 0x%p, value = %d.\n",
  1127. tx_ring->cnsmr_idx_sh_reg,
  1128. tx_ring->cnsmr_idx_sh_reg
  1129. ? ql_read_sh_reg(tx_ring->cnsmr_idx_sh_reg) : 0);
  1130. printk(KERN_ERR PFX "tx_ring->size = %d.\n", tx_ring->wq_size);
  1131. printk(KERN_ERR PFX "tx_ring->len = %d.\n", tx_ring->wq_len);
  1132. printk(KERN_ERR PFX "tx_ring->prod_idx_db_reg = %p.\n",
  1133. tx_ring->prod_idx_db_reg);
  1134. printk(KERN_ERR PFX "tx_ring->valid_db_reg = %p.\n",
  1135. tx_ring->valid_db_reg);
  1136. printk(KERN_ERR PFX "tx_ring->prod_idx = %d.\n", tx_ring->prod_idx);
  1137. printk(KERN_ERR PFX "tx_ring->cq_id = %d.\n", tx_ring->cq_id);
  1138. printk(KERN_ERR PFX "tx_ring->wq_id = %d.\n", tx_ring->wq_id);
  1139. printk(KERN_ERR PFX "tx_ring->q = %p.\n", tx_ring->q);
  1140. printk(KERN_ERR PFX "tx_ring->tx_count = %d.\n",
  1141. atomic_read(&tx_ring->tx_count));
  1142. }
  1143. void ql_dump_ricb(struct ricb *ricb)
  1144. {
  1145. int i;
  1146. printk(KERN_ERR PFX
  1147. "===================== Dumping ricb ===============.\n");
  1148. printk(KERN_ERR PFX "Dumping ricb stuff...\n");
  1149. printk(KERN_ERR PFX "ricb->base_cq = %d.\n", ricb->base_cq & 0x1f);
  1150. printk(KERN_ERR PFX "ricb->flags = %s%s%s%s%s%s%s%s%s.\n",
  1151. ricb->base_cq & RSS_L4K ? "RSS_L4K " : "",
  1152. ricb->flags & RSS_L6K ? "RSS_L6K " : "",
  1153. ricb->flags & RSS_LI ? "RSS_LI " : "",
  1154. ricb->flags & RSS_LB ? "RSS_LB " : "",
  1155. ricb->flags & RSS_LM ? "RSS_LM " : "",
  1156. ricb->flags & RSS_RI4 ? "RSS_RI4 " : "",
  1157. ricb->flags & RSS_RT4 ? "RSS_RT4 " : "",
  1158. ricb->flags & RSS_RI6 ? "RSS_RI6 " : "",
  1159. ricb->flags & RSS_RT6 ? "RSS_RT6 " : "");
  1160. printk(KERN_ERR PFX "ricb->mask = 0x%.04x.\n", le16_to_cpu(ricb->mask));
  1161. for (i = 0; i < 16; i++)
  1162. printk(KERN_ERR PFX "ricb->hash_cq_id[%d] = 0x%.08x.\n", i,
  1163. le32_to_cpu(ricb->hash_cq_id[i]));
  1164. for (i = 0; i < 10; i++)
  1165. printk(KERN_ERR PFX "ricb->ipv6_hash_key[%d] = 0x%.08x.\n", i,
  1166. le32_to_cpu(ricb->ipv6_hash_key[i]));
  1167. for (i = 0; i < 4; i++)
  1168. printk(KERN_ERR PFX "ricb->ipv4_hash_key[%d] = 0x%.08x.\n", i,
  1169. le32_to_cpu(ricb->ipv4_hash_key[i]));
  1170. }
  1171. void ql_dump_cqicb(struct cqicb *cqicb)
  1172. {
  1173. printk(KERN_ERR PFX "Dumping cqicb stuff...\n");
  1174. printk(KERN_ERR PFX "cqicb->msix_vect = %d.\n", cqicb->msix_vect);
  1175. printk(KERN_ERR PFX "cqicb->flags = %x.\n", cqicb->flags);
  1176. printk(KERN_ERR PFX "cqicb->len = %d.\n", le16_to_cpu(cqicb->len));
  1177. printk(KERN_ERR PFX "cqicb->addr = 0x%llx.\n",
  1178. (unsigned long long) le64_to_cpu(cqicb->addr));
  1179. printk(KERN_ERR PFX "cqicb->prod_idx_addr = 0x%llx.\n",
  1180. (unsigned long long) le64_to_cpu(cqicb->prod_idx_addr));
  1181. printk(KERN_ERR PFX "cqicb->pkt_delay = 0x%.04x.\n",
  1182. le16_to_cpu(cqicb->pkt_delay));
  1183. printk(KERN_ERR PFX "cqicb->irq_delay = 0x%.04x.\n",
  1184. le16_to_cpu(cqicb->irq_delay));
  1185. printk(KERN_ERR PFX "cqicb->lbq_addr = 0x%llx.\n",
  1186. (unsigned long long) le64_to_cpu(cqicb->lbq_addr));
  1187. printk(KERN_ERR PFX "cqicb->lbq_buf_size = 0x%.04x.\n",
  1188. le16_to_cpu(cqicb->lbq_buf_size));
  1189. printk(KERN_ERR PFX "cqicb->lbq_len = 0x%.04x.\n",
  1190. le16_to_cpu(cqicb->lbq_len));
  1191. printk(KERN_ERR PFX "cqicb->sbq_addr = 0x%llx.\n",
  1192. (unsigned long long) le64_to_cpu(cqicb->sbq_addr));
  1193. printk(KERN_ERR PFX "cqicb->sbq_buf_size = 0x%.04x.\n",
  1194. le16_to_cpu(cqicb->sbq_buf_size));
  1195. printk(KERN_ERR PFX "cqicb->sbq_len = 0x%.04x.\n",
  1196. le16_to_cpu(cqicb->sbq_len));
  1197. }
  1198. void ql_dump_rx_ring(struct rx_ring *rx_ring)
  1199. {
  1200. if (rx_ring == NULL)
  1201. return;
  1202. printk(KERN_ERR PFX
  1203. "===================== Dumping rx_ring %d ===============.\n",
  1204. rx_ring->cq_id);
  1205. printk(KERN_ERR PFX "Dumping rx_ring %d, type = %s%s%s.\n",
  1206. rx_ring->cq_id, rx_ring->type == DEFAULT_Q ? "DEFAULT" : "",
  1207. rx_ring->type == TX_Q ? "OUTBOUND COMPLETIONS" : "",
  1208. rx_ring->type == RX_Q ? "INBOUND_COMPLETIONS" : "");
  1209. printk(KERN_ERR PFX "rx_ring->cqicb = %p.\n", &rx_ring->cqicb);
  1210. printk(KERN_ERR PFX "rx_ring->cq_base = %p.\n", rx_ring->cq_base);
  1211. printk(KERN_ERR PFX "rx_ring->cq_base_dma = %llx.\n",
  1212. (unsigned long long) rx_ring->cq_base_dma);
  1213. printk(KERN_ERR PFX "rx_ring->cq_size = %d.\n", rx_ring->cq_size);
  1214. printk(KERN_ERR PFX "rx_ring->cq_len = %d.\n", rx_ring->cq_len);
  1215. printk(KERN_ERR PFX
  1216. "rx_ring->prod_idx_sh_reg, addr = 0x%p, value = %d.\n",
  1217. rx_ring->prod_idx_sh_reg,
  1218. rx_ring->prod_idx_sh_reg
  1219. ? ql_read_sh_reg(rx_ring->prod_idx_sh_reg) : 0);
  1220. printk(KERN_ERR PFX "rx_ring->prod_idx_sh_reg_dma = %llx.\n",
  1221. (unsigned long long) rx_ring->prod_idx_sh_reg_dma);
  1222. printk(KERN_ERR PFX "rx_ring->cnsmr_idx_db_reg = %p.\n",
  1223. rx_ring->cnsmr_idx_db_reg);
  1224. printk(KERN_ERR PFX "rx_ring->cnsmr_idx = %d.\n", rx_ring->cnsmr_idx);
  1225. printk(KERN_ERR PFX "rx_ring->curr_entry = %p.\n", rx_ring->curr_entry);
  1226. printk(KERN_ERR PFX "rx_ring->valid_db_reg = %p.\n",
  1227. rx_ring->valid_db_reg);
  1228. printk(KERN_ERR PFX "rx_ring->lbq_base = %p.\n", rx_ring->lbq_base);
  1229. printk(KERN_ERR PFX "rx_ring->lbq_base_dma = %llx.\n",
  1230. (unsigned long long) rx_ring->lbq_base_dma);
  1231. printk(KERN_ERR PFX "rx_ring->lbq_base_indirect = %p.\n",
  1232. rx_ring->lbq_base_indirect);
  1233. printk(KERN_ERR PFX "rx_ring->lbq_base_indirect_dma = %llx.\n",
  1234. (unsigned long long) rx_ring->lbq_base_indirect_dma);
  1235. printk(KERN_ERR PFX "rx_ring->lbq = %p.\n", rx_ring->lbq);
  1236. printk(KERN_ERR PFX "rx_ring->lbq_len = %d.\n", rx_ring->lbq_len);
  1237. printk(KERN_ERR PFX "rx_ring->lbq_size = %d.\n", rx_ring->lbq_size);
  1238. printk(KERN_ERR PFX "rx_ring->lbq_prod_idx_db_reg = %p.\n",
  1239. rx_ring->lbq_prod_idx_db_reg);
  1240. printk(KERN_ERR PFX "rx_ring->lbq_prod_idx = %d.\n",
  1241. rx_ring->lbq_prod_idx);
  1242. printk(KERN_ERR PFX "rx_ring->lbq_curr_idx = %d.\n",
  1243. rx_ring->lbq_curr_idx);
  1244. printk(KERN_ERR PFX "rx_ring->lbq_clean_idx = %d.\n",
  1245. rx_ring->lbq_clean_idx);
  1246. printk(KERN_ERR PFX "rx_ring->lbq_free_cnt = %d.\n",
  1247. rx_ring->lbq_free_cnt);
  1248. printk(KERN_ERR PFX "rx_ring->lbq_buf_size = %d.\n",
  1249. rx_ring->lbq_buf_size);
  1250. printk(KERN_ERR PFX "rx_ring->sbq_base = %p.\n", rx_ring->sbq_base);
  1251. printk(KERN_ERR PFX "rx_ring->sbq_base_dma = %llx.\n",
  1252. (unsigned long long) rx_ring->sbq_base_dma);
  1253. printk(KERN_ERR PFX "rx_ring->sbq_base_indirect = %p.\n",
  1254. rx_ring->sbq_base_indirect);
  1255. printk(KERN_ERR PFX "rx_ring->sbq_base_indirect_dma = %llx.\n",
  1256. (unsigned long long) rx_ring->sbq_base_indirect_dma);
  1257. printk(KERN_ERR PFX "rx_ring->sbq = %p.\n", rx_ring->sbq);
  1258. printk(KERN_ERR PFX "rx_ring->sbq_len = %d.\n", rx_ring->sbq_len);
  1259. printk(KERN_ERR PFX "rx_ring->sbq_size = %d.\n", rx_ring->sbq_size);
  1260. printk(KERN_ERR PFX "rx_ring->sbq_prod_idx_db_reg addr = %p.\n",
  1261. rx_ring->sbq_prod_idx_db_reg);
  1262. printk(KERN_ERR PFX "rx_ring->sbq_prod_idx = %d.\n",
  1263. rx_ring->sbq_prod_idx);
  1264. printk(KERN_ERR PFX "rx_ring->sbq_curr_idx = %d.\n",
  1265. rx_ring->sbq_curr_idx);
  1266. printk(KERN_ERR PFX "rx_ring->sbq_clean_idx = %d.\n",
  1267. rx_ring->sbq_clean_idx);
  1268. printk(KERN_ERR PFX "rx_ring->sbq_free_cnt = %d.\n",
  1269. rx_ring->sbq_free_cnt);
  1270. printk(KERN_ERR PFX "rx_ring->sbq_buf_size = %d.\n",
  1271. rx_ring->sbq_buf_size);
  1272. printk(KERN_ERR PFX "rx_ring->cq_id = %d.\n", rx_ring->cq_id);
  1273. printk(KERN_ERR PFX "rx_ring->irq = %d.\n", rx_ring->irq);
  1274. printk(KERN_ERR PFX "rx_ring->cpu = %d.\n", rx_ring->cpu);
  1275. printk(KERN_ERR PFX "rx_ring->qdev = %p.\n", rx_ring->qdev);
  1276. }
  1277. void ql_dump_hw_cb(struct ql_adapter *qdev, int size, u32 bit, u16 q_id)
  1278. {
  1279. void *ptr;
  1280. printk(KERN_ERR PFX "%s: Enter.\n", __func__);
  1281. ptr = kmalloc(size, GFP_ATOMIC);
  1282. if (ptr == NULL) {
  1283. printk(KERN_ERR PFX "%s: Couldn't allocate a buffer.\n",
  1284. __func__);
  1285. return;
  1286. }
  1287. if (ql_write_cfg(qdev, ptr, size, bit, q_id)) {
  1288. printk(KERN_ERR "%s: Failed to upload control block!\n",
  1289. __func__);
  1290. goto fail_it;
  1291. }
  1292. switch (bit) {
  1293. case CFG_DRQ:
  1294. ql_dump_wqicb((struct wqicb *)ptr);
  1295. break;
  1296. case CFG_DCQ:
  1297. ql_dump_cqicb((struct cqicb *)ptr);
  1298. break;
  1299. case CFG_DR:
  1300. ql_dump_ricb((struct ricb *)ptr);
  1301. break;
  1302. default:
  1303. printk(KERN_ERR PFX "%s: Invalid bit value = %x.\n",
  1304. __func__, bit);
  1305. break;
  1306. }
  1307. fail_it:
  1308. kfree(ptr);
  1309. }
  1310. #endif
  1311. #ifdef QL_OB_DUMP
  1312. void ql_dump_tx_desc(struct tx_buf_desc *tbd)
  1313. {
  1314. printk(KERN_ERR PFX "tbd->addr = 0x%llx\n",
  1315. le64_to_cpu((u64) tbd->addr));
  1316. printk(KERN_ERR PFX "tbd->len = %d\n",
  1317. le32_to_cpu(tbd->len & TX_DESC_LEN_MASK));
  1318. printk(KERN_ERR PFX "tbd->flags = %s %s\n",
  1319. tbd->len & TX_DESC_C ? "C" : ".",
  1320. tbd->len & TX_DESC_E ? "E" : ".");
  1321. tbd++;
  1322. printk(KERN_ERR PFX "tbd->addr = 0x%llx\n",
  1323. le64_to_cpu((u64) tbd->addr));
  1324. printk(KERN_ERR PFX "tbd->len = %d\n",
  1325. le32_to_cpu(tbd->len & TX_DESC_LEN_MASK));
  1326. printk(KERN_ERR PFX "tbd->flags = %s %s\n",
  1327. tbd->len & TX_DESC_C ? "C" : ".",
  1328. tbd->len & TX_DESC_E ? "E" : ".");
  1329. tbd++;
  1330. printk(KERN_ERR PFX "tbd->addr = 0x%llx\n",
  1331. le64_to_cpu((u64) tbd->addr));
  1332. printk(KERN_ERR PFX "tbd->len = %d\n",
  1333. le32_to_cpu(tbd->len & TX_DESC_LEN_MASK));
  1334. printk(KERN_ERR PFX "tbd->flags = %s %s\n",
  1335. tbd->len & TX_DESC_C ? "C" : ".",
  1336. tbd->len & TX_DESC_E ? "E" : ".");
  1337. }
  1338. void ql_dump_ob_mac_iocb(struct ob_mac_iocb_req *ob_mac_iocb)
  1339. {
  1340. struct ob_mac_tso_iocb_req *ob_mac_tso_iocb =
  1341. (struct ob_mac_tso_iocb_req *)ob_mac_iocb;
  1342. struct tx_buf_desc *tbd;
  1343. u16 frame_len;
  1344. printk(KERN_ERR PFX "%s\n", __func__);
  1345. printk(KERN_ERR PFX "opcode = %s\n",
  1346. (ob_mac_iocb->opcode == OPCODE_OB_MAC_IOCB) ? "MAC" : "TSO");
  1347. printk(KERN_ERR PFX "flags1 = %s %s %s %s %s\n",
  1348. ob_mac_tso_iocb->flags1 & OB_MAC_TSO_IOCB_OI ? "OI" : "",
  1349. ob_mac_tso_iocb->flags1 & OB_MAC_TSO_IOCB_I ? "I" : "",
  1350. ob_mac_tso_iocb->flags1 & OB_MAC_TSO_IOCB_D ? "D" : "",
  1351. ob_mac_tso_iocb->flags1 & OB_MAC_TSO_IOCB_IP4 ? "IP4" : "",
  1352. ob_mac_tso_iocb->flags1 & OB_MAC_TSO_IOCB_IP6 ? "IP6" : "");
  1353. printk(KERN_ERR PFX "flags2 = %s %s %s\n",
  1354. ob_mac_tso_iocb->flags2 & OB_MAC_TSO_IOCB_LSO ? "LSO" : "",
  1355. ob_mac_tso_iocb->flags2 & OB_MAC_TSO_IOCB_UC ? "UC" : "",
  1356. ob_mac_tso_iocb->flags2 & OB_MAC_TSO_IOCB_TC ? "TC" : "");
  1357. printk(KERN_ERR PFX "flags3 = %s %s %s \n",
  1358. ob_mac_tso_iocb->flags3 & OB_MAC_TSO_IOCB_IC ? "IC" : "",
  1359. ob_mac_tso_iocb->flags3 & OB_MAC_TSO_IOCB_DFP ? "DFP" : "",
  1360. ob_mac_tso_iocb->flags3 & OB_MAC_TSO_IOCB_V ? "V" : "");
  1361. printk(KERN_ERR PFX "tid = %x\n", ob_mac_iocb->tid);
  1362. printk(KERN_ERR PFX "txq_idx = %d\n", ob_mac_iocb->txq_idx);
  1363. printk(KERN_ERR PFX "vlan_tci = %x\n", ob_mac_tso_iocb->vlan_tci);
  1364. if (ob_mac_iocb->opcode == OPCODE_OB_MAC_TSO_IOCB) {
  1365. printk(KERN_ERR PFX "frame_len = %d\n",
  1366. le32_to_cpu(ob_mac_tso_iocb->frame_len));
  1367. printk(KERN_ERR PFX "mss = %d\n",
  1368. le16_to_cpu(ob_mac_tso_iocb->mss));
  1369. printk(KERN_ERR PFX "prot_hdr_len = %d\n",
  1370. le16_to_cpu(ob_mac_tso_iocb->total_hdrs_len));
  1371. printk(KERN_ERR PFX "hdr_offset = 0x%.04x\n",
  1372. le16_to_cpu(ob_mac_tso_iocb->net_trans_offset));
  1373. frame_len = le32_to_cpu(ob_mac_tso_iocb->frame_len);
  1374. } else {
  1375. printk(KERN_ERR PFX "frame_len = %d\n",
  1376. le16_to_cpu(ob_mac_iocb->frame_len));
  1377. frame_len = le16_to_cpu(ob_mac_iocb->frame_len);
  1378. }
  1379. tbd = &ob_mac_iocb->tbd[0];
  1380. ql_dump_tx_desc(tbd);
  1381. }
  1382. void ql_dump_ob_mac_rsp(struct ob_mac_iocb_rsp *ob_mac_rsp)
  1383. {
  1384. printk(KERN_ERR PFX "%s\n", __func__);
  1385. printk(KERN_ERR PFX "opcode = %d\n", ob_mac_rsp->opcode);
  1386. printk(KERN_ERR PFX "flags = %s %s %s %s %s %s %s\n",
  1387. ob_mac_rsp->flags1 & OB_MAC_IOCB_RSP_OI ? "OI" : ".",
  1388. ob_mac_rsp->flags1 & OB_MAC_IOCB_RSP_I ? "I" : ".",
  1389. ob_mac_rsp->flags1 & OB_MAC_IOCB_RSP_E ? "E" : ".",
  1390. ob_mac_rsp->flags1 & OB_MAC_IOCB_RSP_S ? "S" : ".",
  1391. ob_mac_rsp->flags1 & OB_MAC_IOCB_RSP_L ? "L" : ".",
  1392. ob_mac_rsp->flags1 & OB_MAC_IOCB_RSP_P ? "P" : ".",
  1393. ob_mac_rsp->flags2 & OB_MAC_IOCB_RSP_B ? "B" : ".");
  1394. printk(KERN_ERR PFX "tid = %x\n", ob_mac_rsp->tid);
  1395. }
  1396. #endif
  1397. #ifdef QL_IB_DUMP
  1398. void ql_dump_ib_mac_rsp(struct ib_mac_iocb_rsp *ib_mac_rsp)
  1399. {
  1400. printk(KERN_ERR PFX "%s\n", __func__);
  1401. printk(KERN_ERR PFX "opcode = 0x%x\n", ib_mac_rsp->opcode);
  1402. printk(KERN_ERR PFX "flags1 = %s%s%s%s%s%s\n",
  1403. ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_OI ? "OI " : "",
  1404. ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_I ? "I " : "",
  1405. ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_TE ? "TE " : "",
  1406. ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_NU ? "NU " : "",
  1407. ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_IE ? "IE " : "",
  1408. ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_B ? "B " : "");
  1409. if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK)
  1410. printk(KERN_ERR PFX "%s%s%s Multicast.\n",
  1411. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1412. IB_MAC_IOCB_RSP_M_HASH ? "Hash" : "",
  1413. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1414. IB_MAC_IOCB_RSP_M_REG ? "Registered" : "",
  1415. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1416. IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
  1417. printk(KERN_ERR PFX "flags2 = %s%s%s%s%s\n",
  1418. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) ? "P " : "",
  1419. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ? "V " : "",
  1420. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) ? "U " : "",
  1421. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) ? "T " : "",
  1422. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_FO) ? "FO " : "");
  1423. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK)
  1424. printk(KERN_ERR PFX "%s%s%s%s%s error.\n",
  1425. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) ==
  1426. IB_MAC_IOCB_RSP_ERR_OVERSIZE ? "oversize" : "",
  1427. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) ==
  1428. IB_MAC_IOCB_RSP_ERR_UNDERSIZE ? "undersize" : "",
  1429. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) ==
  1430. IB_MAC_IOCB_RSP_ERR_PREAMBLE ? "preamble" : "",
  1431. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) ==
  1432. IB_MAC_IOCB_RSP_ERR_FRAME_LEN ? "frame length" : "",
  1433. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) ==
  1434. IB_MAC_IOCB_RSP_ERR_CRC ? "CRC" : "");
  1435. printk(KERN_ERR PFX "flags3 = %s%s.\n",
  1436. ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS ? "DS " : "",
  1437. ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL ? "DL " : "");
  1438. if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_RSS_MASK)
  1439. printk(KERN_ERR PFX "RSS flags = %s%s%s%s.\n",
  1440. ((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_RSS_MASK) ==
  1441. IB_MAC_IOCB_RSP_M_IPV4) ? "IPv4 RSS" : "",
  1442. ((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_RSS_MASK) ==
  1443. IB_MAC_IOCB_RSP_M_IPV6) ? "IPv6 RSS " : "",
  1444. ((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_RSS_MASK) ==
  1445. IB_MAC_IOCB_RSP_M_TCP_V4) ? "TCP/IPv4 RSS" : "",
  1446. ((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_RSS_MASK) ==
  1447. IB_MAC_IOCB_RSP_M_TCP_V6) ? "TCP/IPv6 RSS" : "");
  1448. printk(KERN_ERR PFX "data_len = %d\n",
  1449. le32_to_cpu(ib_mac_rsp->data_len));
  1450. printk(KERN_ERR PFX "data_addr = 0x%llx\n",
  1451. (unsigned long long) le64_to_cpu(ib_mac_rsp->data_addr));
  1452. if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_RSS_MASK)
  1453. printk(KERN_ERR PFX "rss = %x\n",
  1454. le32_to_cpu(ib_mac_rsp->rss));
  1455. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V)
  1456. printk(KERN_ERR PFX "vlan_id = %x\n",
  1457. le16_to_cpu(ib_mac_rsp->vlan_id));
  1458. printk(KERN_ERR PFX "flags4 = %s%s%s.\n",
  1459. ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV ? "HV " : "",
  1460. ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS ? "HS " : "",
  1461. ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HL ? "HL " : "");
  1462. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV) {
  1463. printk(KERN_ERR PFX "hdr length = %d.\n",
  1464. le32_to_cpu(ib_mac_rsp->hdr_len));
  1465. printk(KERN_ERR PFX "hdr addr = 0x%llx.\n",
  1466. (unsigned long long) le64_to_cpu(ib_mac_rsp->hdr_addr));
  1467. }
  1468. }
  1469. #endif
  1470. #ifdef QL_ALL_DUMP
  1471. void ql_dump_all(struct ql_adapter *qdev)
  1472. {
  1473. int i;
  1474. QL_DUMP_REGS(qdev);
  1475. QL_DUMP_QDEV(qdev);
  1476. for (i = 0; i < qdev->tx_ring_count; i++) {
  1477. QL_DUMP_TX_RING(&qdev->tx_ring[i]);
  1478. QL_DUMP_WQICB((struct wqicb *)&qdev->tx_ring[i]);
  1479. }
  1480. for (i = 0; i < qdev->rx_ring_count; i++) {
  1481. QL_DUMP_RX_RING(&qdev->rx_ring[i]);
  1482. QL_DUMP_CQICB((struct cqicb *)&qdev->rx_ring[i]);
  1483. }
  1484. }
  1485. #endif