sched.c 265 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/perf_counter.h>
  42. #include <linux/security.h>
  43. #include <linux/notifier.h>
  44. #include <linux/profile.h>
  45. #include <linux/freezer.h>
  46. #include <linux/vmalloc.h>
  47. #include <linux/blkdev.h>
  48. #include <linux/delay.h>
  49. #include <linux/pid_namespace.h>
  50. #include <linux/smp.h>
  51. #include <linux/threads.h>
  52. #include <linux/timer.h>
  53. #include <linux/rcupdate.h>
  54. #include <linux/cpu.h>
  55. #include <linux/cpuset.h>
  56. #include <linux/percpu.h>
  57. #include <linux/kthread.h>
  58. #include <linux/proc_fs.h>
  59. #include <linux/seq_file.h>
  60. #include <linux/sysctl.h>
  61. #include <linux/syscalls.h>
  62. #include <linux/times.h>
  63. #include <linux/tsacct_kern.h>
  64. #include <linux/kprobes.h>
  65. #include <linux/delayacct.h>
  66. #include <linux/unistd.h>
  67. #include <linux/pagemap.h>
  68. #include <linux/hrtimer.h>
  69. #include <linux/tick.h>
  70. #include <linux/debugfs.h>
  71. #include <linux/ctype.h>
  72. #include <linux/ftrace.h>
  73. #include <asm/tlb.h>
  74. #include <asm/irq_regs.h>
  75. #include "sched_cpupri.h"
  76. #define CREATE_TRACE_POINTS
  77. #include <trace/events/sched.h>
  78. /*
  79. * Convert user-nice values [ -20 ... 0 ... 19 ]
  80. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  81. * and back.
  82. */
  83. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  84. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  85. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  86. /*
  87. * 'User priority' is the nice value converted to something we
  88. * can work with better when scaling various scheduler parameters,
  89. * it's a [ 0 ... 39 ] range.
  90. */
  91. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  92. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  93. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  94. /*
  95. * Helpers for converting nanosecond timing to jiffy resolution
  96. */
  97. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  98. #define NICE_0_LOAD SCHED_LOAD_SCALE
  99. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  100. /*
  101. * These are the 'tuning knobs' of the scheduler:
  102. *
  103. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  104. * Timeslices get refilled after they expire.
  105. */
  106. #define DEF_TIMESLICE (100 * HZ / 1000)
  107. /*
  108. * single value that denotes runtime == period, ie unlimited time.
  109. */
  110. #define RUNTIME_INF ((u64)~0ULL)
  111. static inline int rt_policy(int policy)
  112. {
  113. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  114. return 1;
  115. return 0;
  116. }
  117. static inline int task_has_rt_policy(struct task_struct *p)
  118. {
  119. return rt_policy(p->policy);
  120. }
  121. /*
  122. * This is the priority-queue data structure of the RT scheduling class:
  123. */
  124. struct rt_prio_array {
  125. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  126. struct list_head queue[MAX_RT_PRIO];
  127. };
  128. struct rt_bandwidth {
  129. /* nests inside the rq lock: */
  130. spinlock_t rt_runtime_lock;
  131. ktime_t rt_period;
  132. u64 rt_runtime;
  133. struct hrtimer rt_period_timer;
  134. };
  135. static struct rt_bandwidth def_rt_bandwidth;
  136. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  137. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  138. {
  139. struct rt_bandwidth *rt_b =
  140. container_of(timer, struct rt_bandwidth, rt_period_timer);
  141. ktime_t now;
  142. int overrun;
  143. int idle = 0;
  144. for (;;) {
  145. now = hrtimer_cb_get_time(timer);
  146. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  147. if (!overrun)
  148. break;
  149. idle = do_sched_rt_period_timer(rt_b, overrun);
  150. }
  151. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  152. }
  153. static
  154. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  155. {
  156. rt_b->rt_period = ns_to_ktime(period);
  157. rt_b->rt_runtime = runtime;
  158. spin_lock_init(&rt_b->rt_runtime_lock);
  159. hrtimer_init(&rt_b->rt_period_timer,
  160. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  161. rt_b->rt_period_timer.function = sched_rt_period_timer;
  162. }
  163. static inline int rt_bandwidth_enabled(void)
  164. {
  165. return sysctl_sched_rt_runtime >= 0;
  166. }
  167. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  168. {
  169. ktime_t now;
  170. if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  171. return;
  172. if (hrtimer_active(&rt_b->rt_period_timer))
  173. return;
  174. spin_lock(&rt_b->rt_runtime_lock);
  175. for (;;) {
  176. unsigned long delta;
  177. ktime_t soft, hard;
  178. if (hrtimer_active(&rt_b->rt_period_timer))
  179. break;
  180. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  181. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  182. soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
  183. hard = hrtimer_get_expires(&rt_b->rt_period_timer);
  184. delta = ktime_to_ns(ktime_sub(hard, soft));
  185. __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
  186. HRTIMER_MODE_ABS_PINNED, 0);
  187. }
  188. spin_unlock(&rt_b->rt_runtime_lock);
  189. }
  190. #ifdef CONFIG_RT_GROUP_SCHED
  191. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  192. {
  193. hrtimer_cancel(&rt_b->rt_period_timer);
  194. }
  195. #endif
  196. /*
  197. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  198. * detach_destroy_domains and partition_sched_domains.
  199. */
  200. static DEFINE_MUTEX(sched_domains_mutex);
  201. #ifdef CONFIG_GROUP_SCHED
  202. #include <linux/cgroup.h>
  203. struct cfs_rq;
  204. static LIST_HEAD(task_groups);
  205. /* task group related information */
  206. struct task_group {
  207. #ifdef CONFIG_CGROUP_SCHED
  208. struct cgroup_subsys_state css;
  209. #endif
  210. #ifdef CONFIG_USER_SCHED
  211. uid_t uid;
  212. #endif
  213. #ifdef CONFIG_FAIR_GROUP_SCHED
  214. /* schedulable entities of this group on each cpu */
  215. struct sched_entity **se;
  216. /* runqueue "owned" by this group on each cpu */
  217. struct cfs_rq **cfs_rq;
  218. unsigned long shares;
  219. #endif
  220. #ifdef CONFIG_RT_GROUP_SCHED
  221. struct sched_rt_entity **rt_se;
  222. struct rt_rq **rt_rq;
  223. struct rt_bandwidth rt_bandwidth;
  224. #endif
  225. struct rcu_head rcu;
  226. struct list_head list;
  227. struct task_group *parent;
  228. struct list_head siblings;
  229. struct list_head children;
  230. };
  231. #ifdef CONFIG_USER_SCHED
  232. /* Helper function to pass uid information to create_sched_user() */
  233. void set_tg_uid(struct user_struct *user)
  234. {
  235. user->tg->uid = user->uid;
  236. }
  237. /*
  238. * Root task group.
  239. * Every UID task group (including init_task_group aka UID-0) will
  240. * be a child to this group.
  241. */
  242. struct task_group root_task_group;
  243. #ifdef CONFIG_FAIR_GROUP_SCHED
  244. /* Default task group's sched entity on each cpu */
  245. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  246. /* Default task group's cfs_rq on each cpu */
  247. static DEFINE_PER_CPU(struct cfs_rq, init_tg_cfs_rq) ____cacheline_aligned_in_smp;
  248. #endif /* CONFIG_FAIR_GROUP_SCHED */
  249. #ifdef CONFIG_RT_GROUP_SCHED
  250. static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
  251. static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
  252. #endif /* CONFIG_RT_GROUP_SCHED */
  253. #else /* !CONFIG_USER_SCHED */
  254. #define root_task_group init_task_group
  255. #endif /* CONFIG_USER_SCHED */
  256. /* task_group_lock serializes add/remove of task groups and also changes to
  257. * a task group's cpu shares.
  258. */
  259. static DEFINE_SPINLOCK(task_group_lock);
  260. #ifdef CONFIG_SMP
  261. static int root_task_group_empty(void)
  262. {
  263. return list_empty(&root_task_group.children);
  264. }
  265. #endif
  266. #ifdef CONFIG_FAIR_GROUP_SCHED
  267. #ifdef CONFIG_USER_SCHED
  268. # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
  269. #else /* !CONFIG_USER_SCHED */
  270. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  271. #endif /* CONFIG_USER_SCHED */
  272. /*
  273. * A weight of 0 or 1 can cause arithmetics problems.
  274. * A weight of a cfs_rq is the sum of weights of which entities
  275. * are queued on this cfs_rq, so a weight of a entity should not be
  276. * too large, so as the shares value of a task group.
  277. * (The default weight is 1024 - so there's no practical
  278. * limitation from this.)
  279. */
  280. #define MIN_SHARES 2
  281. #define MAX_SHARES (1UL << 18)
  282. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  283. #endif
  284. /* Default task group.
  285. * Every task in system belong to this group at bootup.
  286. */
  287. struct task_group init_task_group;
  288. /* return group to which a task belongs */
  289. static inline struct task_group *task_group(struct task_struct *p)
  290. {
  291. struct task_group *tg;
  292. #ifdef CONFIG_USER_SCHED
  293. rcu_read_lock();
  294. tg = __task_cred(p)->user->tg;
  295. rcu_read_unlock();
  296. #elif defined(CONFIG_CGROUP_SCHED)
  297. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  298. struct task_group, css);
  299. #else
  300. tg = &init_task_group;
  301. #endif
  302. return tg;
  303. }
  304. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  305. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  306. {
  307. #ifdef CONFIG_FAIR_GROUP_SCHED
  308. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  309. p->se.parent = task_group(p)->se[cpu];
  310. #endif
  311. #ifdef CONFIG_RT_GROUP_SCHED
  312. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  313. p->rt.parent = task_group(p)->rt_se[cpu];
  314. #endif
  315. }
  316. #else
  317. #ifdef CONFIG_SMP
  318. static int root_task_group_empty(void)
  319. {
  320. return 1;
  321. }
  322. #endif
  323. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  324. static inline struct task_group *task_group(struct task_struct *p)
  325. {
  326. return NULL;
  327. }
  328. #endif /* CONFIG_GROUP_SCHED */
  329. /* CFS-related fields in a runqueue */
  330. struct cfs_rq {
  331. struct load_weight load;
  332. unsigned long nr_running;
  333. u64 exec_clock;
  334. u64 min_vruntime;
  335. struct rb_root tasks_timeline;
  336. struct rb_node *rb_leftmost;
  337. struct list_head tasks;
  338. struct list_head *balance_iterator;
  339. /*
  340. * 'curr' points to currently running entity on this cfs_rq.
  341. * It is set to NULL otherwise (i.e when none are currently running).
  342. */
  343. struct sched_entity *curr, *next, *last;
  344. unsigned int nr_spread_over;
  345. #ifdef CONFIG_FAIR_GROUP_SCHED
  346. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  347. /*
  348. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  349. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  350. * (like users, containers etc.)
  351. *
  352. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  353. * list is used during load balance.
  354. */
  355. struct list_head leaf_cfs_rq_list;
  356. struct task_group *tg; /* group that "owns" this runqueue */
  357. #ifdef CONFIG_SMP
  358. /*
  359. * the part of load.weight contributed by tasks
  360. */
  361. unsigned long task_weight;
  362. /*
  363. * h_load = weight * f(tg)
  364. *
  365. * Where f(tg) is the recursive weight fraction assigned to
  366. * this group.
  367. */
  368. unsigned long h_load;
  369. /*
  370. * this cpu's part of tg->shares
  371. */
  372. unsigned long shares;
  373. /*
  374. * load.weight at the time we set shares
  375. */
  376. unsigned long rq_weight;
  377. #endif
  378. #endif
  379. };
  380. /* Real-Time classes' related field in a runqueue: */
  381. struct rt_rq {
  382. struct rt_prio_array active;
  383. unsigned long rt_nr_running;
  384. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  385. struct {
  386. int curr; /* highest queued rt task prio */
  387. #ifdef CONFIG_SMP
  388. int next; /* next highest */
  389. #endif
  390. } highest_prio;
  391. #endif
  392. #ifdef CONFIG_SMP
  393. unsigned long rt_nr_migratory;
  394. unsigned long rt_nr_total;
  395. int overloaded;
  396. struct plist_head pushable_tasks;
  397. #endif
  398. int rt_throttled;
  399. u64 rt_time;
  400. u64 rt_runtime;
  401. /* Nests inside the rq lock: */
  402. spinlock_t rt_runtime_lock;
  403. #ifdef CONFIG_RT_GROUP_SCHED
  404. unsigned long rt_nr_boosted;
  405. struct rq *rq;
  406. struct list_head leaf_rt_rq_list;
  407. struct task_group *tg;
  408. struct sched_rt_entity *rt_se;
  409. #endif
  410. };
  411. #ifdef CONFIG_SMP
  412. /*
  413. * We add the notion of a root-domain which will be used to define per-domain
  414. * variables. Each exclusive cpuset essentially defines an island domain by
  415. * fully partitioning the member cpus from any other cpuset. Whenever a new
  416. * exclusive cpuset is created, we also create and attach a new root-domain
  417. * object.
  418. *
  419. */
  420. struct root_domain {
  421. atomic_t refcount;
  422. cpumask_var_t span;
  423. cpumask_var_t online;
  424. /*
  425. * The "RT overload" flag: it gets set if a CPU has more than
  426. * one runnable RT task.
  427. */
  428. cpumask_var_t rto_mask;
  429. atomic_t rto_count;
  430. #ifdef CONFIG_SMP
  431. struct cpupri cpupri;
  432. #endif
  433. };
  434. /*
  435. * By default the system creates a single root-domain with all cpus as
  436. * members (mimicking the global state we have today).
  437. */
  438. static struct root_domain def_root_domain;
  439. #endif
  440. /*
  441. * This is the main, per-CPU runqueue data structure.
  442. *
  443. * Locking rule: those places that want to lock multiple runqueues
  444. * (such as the load balancing or the thread migration code), lock
  445. * acquire operations must be ordered by ascending &runqueue.
  446. */
  447. struct rq {
  448. /* runqueue lock: */
  449. spinlock_t lock;
  450. /*
  451. * nr_running and cpu_load should be in the same cacheline because
  452. * remote CPUs use both these fields when doing load calculation.
  453. */
  454. unsigned long nr_running;
  455. #define CPU_LOAD_IDX_MAX 5
  456. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  457. #ifdef CONFIG_NO_HZ
  458. unsigned long last_tick_seen;
  459. unsigned char in_nohz_recently;
  460. #endif
  461. /* capture load from *all* tasks on this cpu: */
  462. struct load_weight load;
  463. unsigned long nr_load_updates;
  464. u64 nr_switches;
  465. u64 nr_migrations_in;
  466. struct cfs_rq cfs;
  467. struct rt_rq rt;
  468. #ifdef CONFIG_FAIR_GROUP_SCHED
  469. /* list of leaf cfs_rq on this cpu: */
  470. struct list_head leaf_cfs_rq_list;
  471. #endif
  472. #ifdef CONFIG_RT_GROUP_SCHED
  473. struct list_head leaf_rt_rq_list;
  474. #endif
  475. /*
  476. * This is part of a global counter where only the total sum
  477. * over all CPUs matters. A task can increase this counter on
  478. * one CPU and if it got migrated afterwards it may decrease
  479. * it on another CPU. Always updated under the runqueue lock:
  480. */
  481. unsigned long nr_uninterruptible;
  482. struct task_struct *curr, *idle;
  483. unsigned long next_balance;
  484. struct mm_struct *prev_mm;
  485. u64 clock;
  486. atomic_t nr_iowait;
  487. #ifdef CONFIG_SMP
  488. struct root_domain *rd;
  489. struct sched_domain *sd;
  490. unsigned char idle_at_tick;
  491. /* For active balancing */
  492. int post_schedule;
  493. int active_balance;
  494. int push_cpu;
  495. /* cpu of this runqueue: */
  496. int cpu;
  497. int online;
  498. unsigned long avg_load_per_task;
  499. struct task_struct *migration_thread;
  500. struct list_head migration_queue;
  501. u64 rt_avg;
  502. u64 age_stamp;
  503. #endif
  504. /* calc_load related fields */
  505. unsigned long calc_load_update;
  506. long calc_load_active;
  507. #ifdef CONFIG_SCHED_HRTICK
  508. #ifdef CONFIG_SMP
  509. int hrtick_csd_pending;
  510. struct call_single_data hrtick_csd;
  511. #endif
  512. struct hrtimer hrtick_timer;
  513. #endif
  514. #ifdef CONFIG_SCHEDSTATS
  515. /* latency stats */
  516. struct sched_info rq_sched_info;
  517. unsigned long long rq_cpu_time;
  518. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  519. /* sys_sched_yield() stats */
  520. unsigned int yld_count;
  521. /* schedule() stats */
  522. unsigned int sched_switch;
  523. unsigned int sched_count;
  524. unsigned int sched_goidle;
  525. /* try_to_wake_up() stats */
  526. unsigned int ttwu_count;
  527. unsigned int ttwu_local;
  528. /* BKL stats */
  529. unsigned int bkl_count;
  530. #endif
  531. };
  532. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  533. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
  534. {
  535. rq->curr->sched_class->check_preempt_curr(rq, p, sync);
  536. }
  537. static inline int cpu_of(struct rq *rq)
  538. {
  539. #ifdef CONFIG_SMP
  540. return rq->cpu;
  541. #else
  542. return 0;
  543. #endif
  544. }
  545. /*
  546. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  547. * See detach_destroy_domains: synchronize_sched for details.
  548. *
  549. * The domain tree of any CPU may only be accessed from within
  550. * preempt-disabled sections.
  551. */
  552. #define for_each_domain(cpu, __sd) \
  553. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  554. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  555. #define this_rq() (&__get_cpu_var(runqueues))
  556. #define task_rq(p) cpu_rq(task_cpu(p))
  557. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  558. #define raw_rq() (&__raw_get_cpu_var(runqueues))
  559. inline void update_rq_clock(struct rq *rq)
  560. {
  561. rq->clock = sched_clock_cpu(cpu_of(rq));
  562. }
  563. /*
  564. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  565. */
  566. #ifdef CONFIG_SCHED_DEBUG
  567. # define const_debug __read_mostly
  568. #else
  569. # define const_debug static const
  570. #endif
  571. /**
  572. * runqueue_is_locked
  573. *
  574. * Returns true if the current cpu runqueue is locked.
  575. * This interface allows printk to be called with the runqueue lock
  576. * held and know whether or not it is OK to wake up the klogd.
  577. */
  578. int runqueue_is_locked(void)
  579. {
  580. int cpu = get_cpu();
  581. struct rq *rq = cpu_rq(cpu);
  582. int ret;
  583. ret = spin_is_locked(&rq->lock);
  584. put_cpu();
  585. return ret;
  586. }
  587. /*
  588. * Debugging: various feature bits
  589. */
  590. #define SCHED_FEAT(name, enabled) \
  591. __SCHED_FEAT_##name ,
  592. enum {
  593. #include "sched_features.h"
  594. };
  595. #undef SCHED_FEAT
  596. #define SCHED_FEAT(name, enabled) \
  597. (1UL << __SCHED_FEAT_##name) * enabled |
  598. const_debug unsigned int sysctl_sched_features =
  599. #include "sched_features.h"
  600. 0;
  601. #undef SCHED_FEAT
  602. #ifdef CONFIG_SCHED_DEBUG
  603. #define SCHED_FEAT(name, enabled) \
  604. #name ,
  605. static __read_mostly char *sched_feat_names[] = {
  606. #include "sched_features.h"
  607. NULL
  608. };
  609. #undef SCHED_FEAT
  610. static int sched_feat_show(struct seq_file *m, void *v)
  611. {
  612. int i;
  613. for (i = 0; sched_feat_names[i]; i++) {
  614. if (!(sysctl_sched_features & (1UL << i)))
  615. seq_puts(m, "NO_");
  616. seq_printf(m, "%s ", sched_feat_names[i]);
  617. }
  618. seq_puts(m, "\n");
  619. return 0;
  620. }
  621. static ssize_t
  622. sched_feat_write(struct file *filp, const char __user *ubuf,
  623. size_t cnt, loff_t *ppos)
  624. {
  625. char buf[64];
  626. char *cmp = buf;
  627. int neg = 0;
  628. int i;
  629. if (cnt > 63)
  630. cnt = 63;
  631. if (copy_from_user(&buf, ubuf, cnt))
  632. return -EFAULT;
  633. buf[cnt] = 0;
  634. if (strncmp(buf, "NO_", 3) == 0) {
  635. neg = 1;
  636. cmp += 3;
  637. }
  638. for (i = 0; sched_feat_names[i]; i++) {
  639. int len = strlen(sched_feat_names[i]);
  640. if (strncmp(cmp, sched_feat_names[i], len) == 0) {
  641. if (neg)
  642. sysctl_sched_features &= ~(1UL << i);
  643. else
  644. sysctl_sched_features |= (1UL << i);
  645. break;
  646. }
  647. }
  648. if (!sched_feat_names[i])
  649. return -EINVAL;
  650. filp->f_pos += cnt;
  651. return cnt;
  652. }
  653. static int sched_feat_open(struct inode *inode, struct file *filp)
  654. {
  655. return single_open(filp, sched_feat_show, NULL);
  656. }
  657. static struct file_operations sched_feat_fops = {
  658. .open = sched_feat_open,
  659. .write = sched_feat_write,
  660. .read = seq_read,
  661. .llseek = seq_lseek,
  662. .release = single_release,
  663. };
  664. static __init int sched_init_debug(void)
  665. {
  666. debugfs_create_file("sched_features", 0644, NULL, NULL,
  667. &sched_feat_fops);
  668. return 0;
  669. }
  670. late_initcall(sched_init_debug);
  671. #endif
  672. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  673. /*
  674. * Number of tasks to iterate in a single balance run.
  675. * Limited because this is done with IRQs disabled.
  676. */
  677. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  678. /*
  679. * ratelimit for updating the group shares.
  680. * default: 0.25ms
  681. */
  682. unsigned int sysctl_sched_shares_ratelimit = 250000;
  683. /*
  684. * Inject some fuzzyness into changing the per-cpu group shares
  685. * this avoids remote rq-locks at the expense of fairness.
  686. * default: 4
  687. */
  688. unsigned int sysctl_sched_shares_thresh = 4;
  689. /*
  690. * period over which we average the RT time consumption, measured
  691. * in ms.
  692. *
  693. * default: 1s
  694. */
  695. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  696. /*
  697. * period over which we measure -rt task cpu usage in us.
  698. * default: 1s
  699. */
  700. unsigned int sysctl_sched_rt_period = 1000000;
  701. static __read_mostly int scheduler_running;
  702. /*
  703. * part of the period that we allow rt tasks to run in us.
  704. * default: 0.95s
  705. */
  706. int sysctl_sched_rt_runtime = 950000;
  707. static inline u64 global_rt_period(void)
  708. {
  709. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  710. }
  711. static inline u64 global_rt_runtime(void)
  712. {
  713. if (sysctl_sched_rt_runtime < 0)
  714. return RUNTIME_INF;
  715. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  716. }
  717. #ifndef prepare_arch_switch
  718. # define prepare_arch_switch(next) do { } while (0)
  719. #endif
  720. #ifndef finish_arch_switch
  721. # define finish_arch_switch(prev) do { } while (0)
  722. #endif
  723. static inline int task_current(struct rq *rq, struct task_struct *p)
  724. {
  725. return rq->curr == p;
  726. }
  727. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  728. static inline int task_running(struct rq *rq, struct task_struct *p)
  729. {
  730. return task_current(rq, p);
  731. }
  732. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  733. {
  734. }
  735. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  736. {
  737. #ifdef CONFIG_DEBUG_SPINLOCK
  738. /* this is a valid case when another task releases the spinlock */
  739. rq->lock.owner = current;
  740. #endif
  741. /*
  742. * If we are tracking spinlock dependencies then we have to
  743. * fix up the runqueue lock - which gets 'carried over' from
  744. * prev into current:
  745. */
  746. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  747. spin_unlock_irq(&rq->lock);
  748. }
  749. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  750. static inline int task_running(struct rq *rq, struct task_struct *p)
  751. {
  752. #ifdef CONFIG_SMP
  753. return p->oncpu;
  754. #else
  755. return task_current(rq, p);
  756. #endif
  757. }
  758. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  759. {
  760. #ifdef CONFIG_SMP
  761. /*
  762. * We can optimise this out completely for !SMP, because the
  763. * SMP rebalancing from interrupt is the only thing that cares
  764. * here.
  765. */
  766. next->oncpu = 1;
  767. #endif
  768. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  769. spin_unlock_irq(&rq->lock);
  770. #else
  771. spin_unlock(&rq->lock);
  772. #endif
  773. }
  774. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  775. {
  776. #ifdef CONFIG_SMP
  777. /*
  778. * After ->oncpu is cleared, the task can be moved to a different CPU.
  779. * We must ensure this doesn't happen until the switch is completely
  780. * finished.
  781. */
  782. smp_wmb();
  783. prev->oncpu = 0;
  784. #endif
  785. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  786. local_irq_enable();
  787. #endif
  788. }
  789. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  790. /*
  791. * __task_rq_lock - lock the runqueue a given task resides on.
  792. * Must be called interrupts disabled.
  793. */
  794. static inline struct rq *__task_rq_lock(struct task_struct *p)
  795. __acquires(rq->lock)
  796. {
  797. for (;;) {
  798. struct rq *rq = task_rq(p);
  799. spin_lock(&rq->lock);
  800. if (likely(rq == task_rq(p)))
  801. return rq;
  802. spin_unlock(&rq->lock);
  803. }
  804. }
  805. /*
  806. * task_rq_lock - lock the runqueue a given task resides on and disable
  807. * interrupts. Note the ordering: we can safely lookup the task_rq without
  808. * explicitly disabling preemption.
  809. */
  810. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  811. __acquires(rq->lock)
  812. {
  813. struct rq *rq;
  814. for (;;) {
  815. local_irq_save(*flags);
  816. rq = task_rq(p);
  817. spin_lock(&rq->lock);
  818. if (likely(rq == task_rq(p)))
  819. return rq;
  820. spin_unlock_irqrestore(&rq->lock, *flags);
  821. }
  822. }
  823. void task_rq_unlock_wait(struct task_struct *p)
  824. {
  825. struct rq *rq = task_rq(p);
  826. smp_mb(); /* spin-unlock-wait is not a full memory barrier */
  827. spin_unlock_wait(&rq->lock);
  828. }
  829. static void __task_rq_unlock(struct rq *rq)
  830. __releases(rq->lock)
  831. {
  832. spin_unlock(&rq->lock);
  833. }
  834. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  835. __releases(rq->lock)
  836. {
  837. spin_unlock_irqrestore(&rq->lock, *flags);
  838. }
  839. /*
  840. * this_rq_lock - lock this runqueue and disable interrupts.
  841. */
  842. static struct rq *this_rq_lock(void)
  843. __acquires(rq->lock)
  844. {
  845. struct rq *rq;
  846. local_irq_disable();
  847. rq = this_rq();
  848. spin_lock(&rq->lock);
  849. return rq;
  850. }
  851. #ifdef CONFIG_SCHED_HRTICK
  852. /*
  853. * Use HR-timers to deliver accurate preemption points.
  854. *
  855. * Its all a bit involved since we cannot program an hrt while holding the
  856. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  857. * reschedule event.
  858. *
  859. * When we get rescheduled we reprogram the hrtick_timer outside of the
  860. * rq->lock.
  861. */
  862. /*
  863. * Use hrtick when:
  864. * - enabled by features
  865. * - hrtimer is actually high res
  866. */
  867. static inline int hrtick_enabled(struct rq *rq)
  868. {
  869. if (!sched_feat(HRTICK))
  870. return 0;
  871. if (!cpu_active(cpu_of(rq)))
  872. return 0;
  873. return hrtimer_is_hres_active(&rq->hrtick_timer);
  874. }
  875. static void hrtick_clear(struct rq *rq)
  876. {
  877. if (hrtimer_active(&rq->hrtick_timer))
  878. hrtimer_cancel(&rq->hrtick_timer);
  879. }
  880. /*
  881. * High-resolution timer tick.
  882. * Runs from hardirq context with interrupts disabled.
  883. */
  884. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  885. {
  886. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  887. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  888. spin_lock(&rq->lock);
  889. update_rq_clock(rq);
  890. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  891. spin_unlock(&rq->lock);
  892. return HRTIMER_NORESTART;
  893. }
  894. #ifdef CONFIG_SMP
  895. /*
  896. * called from hardirq (IPI) context
  897. */
  898. static void __hrtick_start(void *arg)
  899. {
  900. struct rq *rq = arg;
  901. spin_lock(&rq->lock);
  902. hrtimer_restart(&rq->hrtick_timer);
  903. rq->hrtick_csd_pending = 0;
  904. spin_unlock(&rq->lock);
  905. }
  906. /*
  907. * Called to set the hrtick timer state.
  908. *
  909. * called with rq->lock held and irqs disabled
  910. */
  911. static void hrtick_start(struct rq *rq, u64 delay)
  912. {
  913. struct hrtimer *timer = &rq->hrtick_timer;
  914. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  915. hrtimer_set_expires(timer, time);
  916. if (rq == this_rq()) {
  917. hrtimer_restart(timer);
  918. } else if (!rq->hrtick_csd_pending) {
  919. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  920. rq->hrtick_csd_pending = 1;
  921. }
  922. }
  923. static int
  924. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  925. {
  926. int cpu = (int)(long)hcpu;
  927. switch (action) {
  928. case CPU_UP_CANCELED:
  929. case CPU_UP_CANCELED_FROZEN:
  930. case CPU_DOWN_PREPARE:
  931. case CPU_DOWN_PREPARE_FROZEN:
  932. case CPU_DEAD:
  933. case CPU_DEAD_FROZEN:
  934. hrtick_clear(cpu_rq(cpu));
  935. return NOTIFY_OK;
  936. }
  937. return NOTIFY_DONE;
  938. }
  939. static __init void init_hrtick(void)
  940. {
  941. hotcpu_notifier(hotplug_hrtick, 0);
  942. }
  943. #else
  944. /*
  945. * Called to set the hrtick timer state.
  946. *
  947. * called with rq->lock held and irqs disabled
  948. */
  949. static void hrtick_start(struct rq *rq, u64 delay)
  950. {
  951. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  952. HRTIMER_MODE_REL_PINNED, 0);
  953. }
  954. static inline void init_hrtick(void)
  955. {
  956. }
  957. #endif /* CONFIG_SMP */
  958. static void init_rq_hrtick(struct rq *rq)
  959. {
  960. #ifdef CONFIG_SMP
  961. rq->hrtick_csd_pending = 0;
  962. rq->hrtick_csd.flags = 0;
  963. rq->hrtick_csd.func = __hrtick_start;
  964. rq->hrtick_csd.info = rq;
  965. #endif
  966. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  967. rq->hrtick_timer.function = hrtick;
  968. }
  969. #else /* CONFIG_SCHED_HRTICK */
  970. static inline void hrtick_clear(struct rq *rq)
  971. {
  972. }
  973. static inline void init_rq_hrtick(struct rq *rq)
  974. {
  975. }
  976. static inline void init_hrtick(void)
  977. {
  978. }
  979. #endif /* CONFIG_SCHED_HRTICK */
  980. /*
  981. * resched_task - mark a task 'to be rescheduled now'.
  982. *
  983. * On UP this means the setting of the need_resched flag, on SMP it
  984. * might also involve a cross-CPU call to trigger the scheduler on
  985. * the target CPU.
  986. */
  987. #ifdef CONFIG_SMP
  988. #ifndef tsk_is_polling
  989. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  990. #endif
  991. static void resched_task(struct task_struct *p)
  992. {
  993. int cpu;
  994. assert_spin_locked(&task_rq(p)->lock);
  995. if (test_tsk_need_resched(p))
  996. return;
  997. set_tsk_need_resched(p);
  998. cpu = task_cpu(p);
  999. if (cpu == smp_processor_id())
  1000. return;
  1001. /* NEED_RESCHED must be visible before we test polling */
  1002. smp_mb();
  1003. if (!tsk_is_polling(p))
  1004. smp_send_reschedule(cpu);
  1005. }
  1006. static void resched_cpu(int cpu)
  1007. {
  1008. struct rq *rq = cpu_rq(cpu);
  1009. unsigned long flags;
  1010. if (!spin_trylock_irqsave(&rq->lock, flags))
  1011. return;
  1012. resched_task(cpu_curr(cpu));
  1013. spin_unlock_irqrestore(&rq->lock, flags);
  1014. }
  1015. #ifdef CONFIG_NO_HZ
  1016. /*
  1017. * When add_timer_on() enqueues a timer into the timer wheel of an
  1018. * idle CPU then this timer might expire before the next timer event
  1019. * which is scheduled to wake up that CPU. In case of a completely
  1020. * idle system the next event might even be infinite time into the
  1021. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1022. * leaves the inner idle loop so the newly added timer is taken into
  1023. * account when the CPU goes back to idle and evaluates the timer
  1024. * wheel for the next timer event.
  1025. */
  1026. void wake_up_idle_cpu(int cpu)
  1027. {
  1028. struct rq *rq = cpu_rq(cpu);
  1029. if (cpu == smp_processor_id())
  1030. return;
  1031. /*
  1032. * This is safe, as this function is called with the timer
  1033. * wheel base lock of (cpu) held. When the CPU is on the way
  1034. * to idle and has not yet set rq->curr to idle then it will
  1035. * be serialized on the timer wheel base lock and take the new
  1036. * timer into account automatically.
  1037. */
  1038. if (rq->curr != rq->idle)
  1039. return;
  1040. /*
  1041. * We can set TIF_RESCHED on the idle task of the other CPU
  1042. * lockless. The worst case is that the other CPU runs the
  1043. * idle task through an additional NOOP schedule()
  1044. */
  1045. set_tsk_need_resched(rq->idle);
  1046. /* NEED_RESCHED must be visible before we test polling */
  1047. smp_mb();
  1048. if (!tsk_is_polling(rq->idle))
  1049. smp_send_reschedule(cpu);
  1050. }
  1051. #endif /* CONFIG_NO_HZ */
  1052. static u64 sched_avg_period(void)
  1053. {
  1054. return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
  1055. }
  1056. static void sched_avg_update(struct rq *rq)
  1057. {
  1058. s64 period = sched_avg_period();
  1059. while ((s64)(rq->clock - rq->age_stamp) > period) {
  1060. rq->age_stamp += period;
  1061. rq->rt_avg /= 2;
  1062. }
  1063. }
  1064. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1065. {
  1066. rq->rt_avg += rt_delta;
  1067. sched_avg_update(rq);
  1068. }
  1069. #else /* !CONFIG_SMP */
  1070. static void resched_task(struct task_struct *p)
  1071. {
  1072. assert_spin_locked(&task_rq(p)->lock);
  1073. set_tsk_need_resched(p);
  1074. }
  1075. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1076. {
  1077. }
  1078. #endif /* CONFIG_SMP */
  1079. #if BITS_PER_LONG == 32
  1080. # define WMULT_CONST (~0UL)
  1081. #else
  1082. # define WMULT_CONST (1UL << 32)
  1083. #endif
  1084. #define WMULT_SHIFT 32
  1085. /*
  1086. * Shift right and round:
  1087. */
  1088. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1089. /*
  1090. * delta *= weight / lw
  1091. */
  1092. static unsigned long
  1093. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1094. struct load_weight *lw)
  1095. {
  1096. u64 tmp;
  1097. if (!lw->inv_weight) {
  1098. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1099. lw->inv_weight = 1;
  1100. else
  1101. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1102. / (lw->weight+1);
  1103. }
  1104. tmp = (u64)delta_exec * weight;
  1105. /*
  1106. * Check whether we'd overflow the 64-bit multiplication:
  1107. */
  1108. if (unlikely(tmp > WMULT_CONST))
  1109. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1110. WMULT_SHIFT/2);
  1111. else
  1112. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1113. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1114. }
  1115. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1116. {
  1117. lw->weight += inc;
  1118. lw->inv_weight = 0;
  1119. }
  1120. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1121. {
  1122. lw->weight -= dec;
  1123. lw->inv_weight = 0;
  1124. }
  1125. /*
  1126. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1127. * of tasks with abnormal "nice" values across CPUs the contribution that
  1128. * each task makes to its run queue's load is weighted according to its
  1129. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1130. * scaled version of the new time slice allocation that they receive on time
  1131. * slice expiry etc.
  1132. */
  1133. #define WEIGHT_IDLEPRIO 3
  1134. #define WMULT_IDLEPRIO 1431655765
  1135. /*
  1136. * Nice levels are multiplicative, with a gentle 10% change for every
  1137. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1138. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1139. * that remained on nice 0.
  1140. *
  1141. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1142. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1143. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1144. * If a task goes up by ~10% and another task goes down by ~10% then
  1145. * the relative distance between them is ~25%.)
  1146. */
  1147. static const int prio_to_weight[40] = {
  1148. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1149. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1150. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1151. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1152. /* 0 */ 1024, 820, 655, 526, 423,
  1153. /* 5 */ 335, 272, 215, 172, 137,
  1154. /* 10 */ 110, 87, 70, 56, 45,
  1155. /* 15 */ 36, 29, 23, 18, 15,
  1156. };
  1157. /*
  1158. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1159. *
  1160. * In cases where the weight does not change often, we can use the
  1161. * precalculated inverse to speed up arithmetics by turning divisions
  1162. * into multiplications:
  1163. */
  1164. static const u32 prio_to_wmult[40] = {
  1165. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1166. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1167. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1168. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1169. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1170. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1171. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1172. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1173. };
  1174. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  1175. /*
  1176. * runqueue iterator, to support SMP load-balancing between different
  1177. * scheduling classes, without having to expose their internal data
  1178. * structures to the load-balancing proper:
  1179. */
  1180. struct rq_iterator {
  1181. void *arg;
  1182. struct task_struct *(*start)(void *);
  1183. struct task_struct *(*next)(void *);
  1184. };
  1185. #ifdef CONFIG_SMP
  1186. static unsigned long
  1187. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1188. unsigned long max_load_move, struct sched_domain *sd,
  1189. enum cpu_idle_type idle, int *all_pinned,
  1190. int *this_best_prio, struct rq_iterator *iterator);
  1191. static int
  1192. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1193. struct sched_domain *sd, enum cpu_idle_type idle,
  1194. struct rq_iterator *iterator);
  1195. #endif
  1196. /* Time spent by the tasks of the cpu accounting group executing in ... */
  1197. enum cpuacct_stat_index {
  1198. CPUACCT_STAT_USER, /* ... user mode */
  1199. CPUACCT_STAT_SYSTEM, /* ... kernel mode */
  1200. CPUACCT_STAT_NSTATS,
  1201. };
  1202. #ifdef CONFIG_CGROUP_CPUACCT
  1203. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1204. static void cpuacct_update_stats(struct task_struct *tsk,
  1205. enum cpuacct_stat_index idx, cputime_t val);
  1206. #else
  1207. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1208. static inline void cpuacct_update_stats(struct task_struct *tsk,
  1209. enum cpuacct_stat_index idx, cputime_t val) {}
  1210. #endif
  1211. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1212. {
  1213. update_load_add(&rq->load, load);
  1214. }
  1215. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1216. {
  1217. update_load_sub(&rq->load, load);
  1218. }
  1219. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1220. typedef int (*tg_visitor)(struct task_group *, void *);
  1221. /*
  1222. * Iterate the full tree, calling @down when first entering a node and @up when
  1223. * leaving it for the final time.
  1224. */
  1225. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1226. {
  1227. struct task_group *parent, *child;
  1228. int ret;
  1229. rcu_read_lock();
  1230. parent = &root_task_group;
  1231. down:
  1232. ret = (*down)(parent, data);
  1233. if (ret)
  1234. goto out_unlock;
  1235. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1236. parent = child;
  1237. goto down;
  1238. up:
  1239. continue;
  1240. }
  1241. ret = (*up)(parent, data);
  1242. if (ret)
  1243. goto out_unlock;
  1244. child = parent;
  1245. parent = parent->parent;
  1246. if (parent)
  1247. goto up;
  1248. out_unlock:
  1249. rcu_read_unlock();
  1250. return ret;
  1251. }
  1252. static int tg_nop(struct task_group *tg, void *data)
  1253. {
  1254. return 0;
  1255. }
  1256. #endif
  1257. #ifdef CONFIG_SMP
  1258. /* Used instead of source_load when we know the type == 0 */
  1259. static unsigned long weighted_cpuload(const int cpu)
  1260. {
  1261. return cpu_rq(cpu)->load.weight;
  1262. }
  1263. /*
  1264. * Return a low guess at the load of a migration-source cpu weighted
  1265. * according to the scheduling class and "nice" value.
  1266. *
  1267. * We want to under-estimate the load of migration sources, to
  1268. * balance conservatively.
  1269. */
  1270. static unsigned long source_load(int cpu, int type)
  1271. {
  1272. struct rq *rq = cpu_rq(cpu);
  1273. unsigned long total = weighted_cpuload(cpu);
  1274. if (type == 0 || !sched_feat(LB_BIAS))
  1275. return total;
  1276. return min(rq->cpu_load[type-1], total);
  1277. }
  1278. /*
  1279. * Return a high guess at the load of a migration-target cpu weighted
  1280. * according to the scheduling class and "nice" value.
  1281. */
  1282. static unsigned long target_load(int cpu, int type)
  1283. {
  1284. struct rq *rq = cpu_rq(cpu);
  1285. unsigned long total = weighted_cpuload(cpu);
  1286. if (type == 0 || !sched_feat(LB_BIAS))
  1287. return total;
  1288. return max(rq->cpu_load[type-1], total);
  1289. }
  1290. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1291. static unsigned long cpu_avg_load_per_task(int cpu)
  1292. {
  1293. struct rq *rq = cpu_rq(cpu);
  1294. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1295. if (nr_running)
  1296. rq->avg_load_per_task = rq->load.weight / nr_running;
  1297. else
  1298. rq->avg_load_per_task = 0;
  1299. return rq->avg_load_per_task;
  1300. }
  1301. #ifdef CONFIG_FAIR_GROUP_SCHED
  1302. struct update_shares_data {
  1303. unsigned long rq_weight[NR_CPUS];
  1304. };
  1305. static DEFINE_PER_CPU(struct update_shares_data, update_shares_data);
  1306. static void __set_se_shares(struct sched_entity *se, unsigned long shares);
  1307. /*
  1308. * Calculate and set the cpu's group shares.
  1309. */
  1310. static void update_group_shares_cpu(struct task_group *tg, int cpu,
  1311. unsigned long sd_shares,
  1312. unsigned long sd_rq_weight,
  1313. struct update_shares_data *usd)
  1314. {
  1315. unsigned long shares, rq_weight;
  1316. int boost = 0;
  1317. rq_weight = usd->rq_weight[cpu];
  1318. if (!rq_weight) {
  1319. boost = 1;
  1320. rq_weight = NICE_0_LOAD;
  1321. }
  1322. /*
  1323. * \Sum_j shares_j * rq_weight_i
  1324. * shares_i = -----------------------------
  1325. * \Sum_j rq_weight_j
  1326. */
  1327. shares = (sd_shares * rq_weight) / sd_rq_weight;
  1328. shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
  1329. if (abs(shares - tg->se[cpu]->load.weight) >
  1330. sysctl_sched_shares_thresh) {
  1331. struct rq *rq = cpu_rq(cpu);
  1332. unsigned long flags;
  1333. spin_lock_irqsave(&rq->lock, flags);
  1334. tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
  1335. tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
  1336. __set_se_shares(tg->se[cpu], shares);
  1337. spin_unlock_irqrestore(&rq->lock, flags);
  1338. }
  1339. }
  1340. /*
  1341. * Re-compute the task group their per cpu shares over the given domain.
  1342. * This needs to be done in a bottom-up fashion because the rq weight of a
  1343. * parent group depends on the shares of its child groups.
  1344. */
  1345. static int tg_shares_up(struct task_group *tg, void *data)
  1346. {
  1347. unsigned long weight, rq_weight = 0, shares = 0;
  1348. struct update_shares_data *usd;
  1349. struct sched_domain *sd = data;
  1350. unsigned long flags;
  1351. int i;
  1352. if (!tg->se[0])
  1353. return 0;
  1354. local_irq_save(flags);
  1355. usd = &__get_cpu_var(update_shares_data);
  1356. for_each_cpu(i, sched_domain_span(sd)) {
  1357. weight = tg->cfs_rq[i]->load.weight;
  1358. usd->rq_weight[i] = weight;
  1359. /*
  1360. * If there are currently no tasks on the cpu pretend there
  1361. * is one of average load so that when a new task gets to
  1362. * run here it will not get delayed by group starvation.
  1363. */
  1364. if (!weight)
  1365. weight = NICE_0_LOAD;
  1366. rq_weight += weight;
  1367. shares += tg->cfs_rq[i]->shares;
  1368. }
  1369. if ((!shares && rq_weight) || shares > tg->shares)
  1370. shares = tg->shares;
  1371. if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
  1372. shares = tg->shares;
  1373. for_each_cpu(i, sched_domain_span(sd))
  1374. update_group_shares_cpu(tg, i, shares, rq_weight, usd);
  1375. local_irq_restore(flags);
  1376. return 0;
  1377. }
  1378. /*
  1379. * Compute the cpu's hierarchical load factor for each task group.
  1380. * This needs to be done in a top-down fashion because the load of a child
  1381. * group is a fraction of its parents load.
  1382. */
  1383. static int tg_load_down(struct task_group *tg, void *data)
  1384. {
  1385. unsigned long load;
  1386. long cpu = (long)data;
  1387. if (!tg->parent) {
  1388. load = cpu_rq(cpu)->load.weight;
  1389. } else {
  1390. load = tg->parent->cfs_rq[cpu]->h_load;
  1391. load *= tg->cfs_rq[cpu]->shares;
  1392. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1393. }
  1394. tg->cfs_rq[cpu]->h_load = load;
  1395. return 0;
  1396. }
  1397. static void update_shares(struct sched_domain *sd)
  1398. {
  1399. s64 elapsed;
  1400. u64 now;
  1401. if (root_task_group_empty())
  1402. return;
  1403. now = cpu_clock(raw_smp_processor_id());
  1404. elapsed = now - sd->last_update;
  1405. if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
  1406. sd->last_update = now;
  1407. walk_tg_tree(tg_nop, tg_shares_up, sd);
  1408. }
  1409. }
  1410. static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1411. {
  1412. if (root_task_group_empty())
  1413. return;
  1414. spin_unlock(&rq->lock);
  1415. update_shares(sd);
  1416. spin_lock(&rq->lock);
  1417. }
  1418. static void update_h_load(long cpu)
  1419. {
  1420. if (root_task_group_empty())
  1421. return;
  1422. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1423. }
  1424. #else
  1425. static inline void update_shares(struct sched_domain *sd)
  1426. {
  1427. }
  1428. static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1429. {
  1430. }
  1431. #endif
  1432. #ifdef CONFIG_PREEMPT
  1433. static void double_rq_lock(struct rq *rq1, struct rq *rq2);
  1434. /*
  1435. * fair double_lock_balance: Safely acquires both rq->locks in a fair
  1436. * way at the expense of forcing extra atomic operations in all
  1437. * invocations. This assures that the double_lock is acquired using the
  1438. * same underlying policy as the spinlock_t on this architecture, which
  1439. * reduces latency compared to the unfair variant below. However, it
  1440. * also adds more overhead and therefore may reduce throughput.
  1441. */
  1442. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1443. __releases(this_rq->lock)
  1444. __acquires(busiest->lock)
  1445. __acquires(this_rq->lock)
  1446. {
  1447. spin_unlock(&this_rq->lock);
  1448. double_rq_lock(this_rq, busiest);
  1449. return 1;
  1450. }
  1451. #else
  1452. /*
  1453. * Unfair double_lock_balance: Optimizes throughput at the expense of
  1454. * latency by eliminating extra atomic operations when the locks are
  1455. * already in proper order on entry. This favors lower cpu-ids and will
  1456. * grant the double lock to lower cpus over higher ids under contention,
  1457. * regardless of entry order into the function.
  1458. */
  1459. static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1460. __releases(this_rq->lock)
  1461. __acquires(busiest->lock)
  1462. __acquires(this_rq->lock)
  1463. {
  1464. int ret = 0;
  1465. if (unlikely(!spin_trylock(&busiest->lock))) {
  1466. if (busiest < this_rq) {
  1467. spin_unlock(&this_rq->lock);
  1468. spin_lock(&busiest->lock);
  1469. spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
  1470. ret = 1;
  1471. } else
  1472. spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
  1473. }
  1474. return ret;
  1475. }
  1476. #endif /* CONFIG_PREEMPT */
  1477. /*
  1478. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1479. */
  1480. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1481. {
  1482. if (unlikely(!irqs_disabled())) {
  1483. /* printk() doesn't work good under rq->lock */
  1484. spin_unlock(&this_rq->lock);
  1485. BUG_ON(1);
  1486. }
  1487. return _double_lock_balance(this_rq, busiest);
  1488. }
  1489. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1490. __releases(busiest->lock)
  1491. {
  1492. spin_unlock(&busiest->lock);
  1493. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1494. }
  1495. #endif
  1496. #ifdef CONFIG_FAIR_GROUP_SCHED
  1497. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1498. {
  1499. #ifdef CONFIG_SMP
  1500. cfs_rq->shares = shares;
  1501. #endif
  1502. }
  1503. #endif
  1504. static void calc_load_account_active(struct rq *this_rq);
  1505. #include "sched_stats.h"
  1506. #include "sched_idletask.c"
  1507. #include "sched_fair.c"
  1508. #include "sched_rt.c"
  1509. #ifdef CONFIG_SCHED_DEBUG
  1510. # include "sched_debug.c"
  1511. #endif
  1512. #define sched_class_highest (&rt_sched_class)
  1513. #define for_each_class(class) \
  1514. for (class = sched_class_highest; class; class = class->next)
  1515. static void inc_nr_running(struct rq *rq)
  1516. {
  1517. rq->nr_running++;
  1518. }
  1519. static void dec_nr_running(struct rq *rq)
  1520. {
  1521. rq->nr_running--;
  1522. }
  1523. static void set_load_weight(struct task_struct *p)
  1524. {
  1525. if (task_has_rt_policy(p)) {
  1526. p->se.load.weight = prio_to_weight[0] * 2;
  1527. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1528. return;
  1529. }
  1530. /*
  1531. * SCHED_IDLE tasks get minimal weight:
  1532. */
  1533. if (p->policy == SCHED_IDLE) {
  1534. p->se.load.weight = WEIGHT_IDLEPRIO;
  1535. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1536. return;
  1537. }
  1538. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1539. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1540. }
  1541. static void update_avg(u64 *avg, u64 sample)
  1542. {
  1543. s64 diff = sample - *avg;
  1544. *avg += diff >> 3;
  1545. }
  1546. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  1547. {
  1548. if (wakeup)
  1549. p->se.start_runtime = p->se.sum_exec_runtime;
  1550. sched_info_queued(p);
  1551. p->sched_class->enqueue_task(rq, p, wakeup);
  1552. p->se.on_rq = 1;
  1553. }
  1554. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  1555. {
  1556. if (sleep) {
  1557. if (p->se.last_wakeup) {
  1558. update_avg(&p->se.avg_overlap,
  1559. p->se.sum_exec_runtime - p->se.last_wakeup);
  1560. p->se.last_wakeup = 0;
  1561. } else {
  1562. update_avg(&p->se.avg_wakeup,
  1563. sysctl_sched_wakeup_granularity);
  1564. }
  1565. }
  1566. sched_info_dequeued(p);
  1567. p->sched_class->dequeue_task(rq, p, sleep);
  1568. p->se.on_rq = 0;
  1569. }
  1570. /*
  1571. * __normal_prio - return the priority that is based on the static prio
  1572. */
  1573. static inline int __normal_prio(struct task_struct *p)
  1574. {
  1575. return p->static_prio;
  1576. }
  1577. /*
  1578. * Calculate the expected normal priority: i.e. priority
  1579. * without taking RT-inheritance into account. Might be
  1580. * boosted by interactivity modifiers. Changes upon fork,
  1581. * setprio syscalls, and whenever the interactivity
  1582. * estimator recalculates.
  1583. */
  1584. static inline int normal_prio(struct task_struct *p)
  1585. {
  1586. int prio;
  1587. if (task_has_rt_policy(p))
  1588. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1589. else
  1590. prio = __normal_prio(p);
  1591. return prio;
  1592. }
  1593. /*
  1594. * Calculate the current priority, i.e. the priority
  1595. * taken into account by the scheduler. This value might
  1596. * be boosted by RT tasks, or might be boosted by
  1597. * interactivity modifiers. Will be RT if the task got
  1598. * RT-boosted. If not then it returns p->normal_prio.
  1599. */
  1600. static int effective_prio(struct task_struct *p)
  1601. {
  1602. p->normal_prio = normal_prio(p);
  1603. /*
  1604. * If we are RT tasks or we were boosted to RT priority,
  1605. * keep the priority unchanged. Otherwise, update priority
  1606. * to the normal priority:
  1607. */
  1608. if (!rt_prio(p->prio))
  1609. return p->normal_prio;
  1610. return p->prio;
  1611. }
  1612. /*
  1613. * activate_task - move a task to the runqueue.
  1614. */
  1615. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  1616. {
  1617. if (task_contributes_to_load(p))
  1618. rq->nr_uninterruptible--;
  1619. enqueue_task(rq, p, wakeup);
  1620. inc_nr_running(rq);
  1621. }
  1622. /*
  1623. * deactivate_task - remove a task from the runqueue.
  1624. */
  1625. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  1626. {
  1627. if (task_contributes_to_load(p))
  1628. rq->nr_uninterruptible++;
  1629. dequeue_task(rq, p, sleep);
  1630. dec_nr_running(rq);
  1631. }
  1632. /**
  1633. * task_curr - is this task currently executing on a CPU?
  1634. * @p: the task in question.
  1635. */
  1636. inline int task_curr(const struct task_struct *p)
  1637. {
  1638. return cpu_curr(task_cpu(p)) == p;
  1639. }
  1640. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1641. {
  1642. set_task_rq(p, cpu);
  1643. #ifdef CONFIG_SMP
  1644. /*
  1645. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1646. * successfuly executed on another CPU. We must ensure that updates of
  1647. * per-task data have been completed by this moment.
  1648. */
  1649. smp_wmb();
  1650. task_thread_info(p)->cpu = cpu;
  1651. #endif
  1652. }
  1653. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1654. const struct sched_class *prev_class,
  1655. int oldprio, int running)
  1656. {
  1657. if (prev_class != p->sched_class) {
  1658. if (prev_class->switched_from)
  1659. prev_class->switched_from(rq, p, running);
  1660. p->sched_class->switched_to(rq, p, running);
  1661. } else
  1662. p->sched_class->prio_changed(rq, p, oldprio, running);
  1663. }
  1664. #ifdef CONFIG_SMP
  1665. /*
  1666. * Is this task likely cache-hot:
  1667. */
  1668. static int
  1669. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1670. {
  1671. s64 delta;
  1672. /*
  1673. * Buddy candidates are cache hot:
  1674. */
  1675. if (sched_feat(CACHE_HOT_BUDDY) &&
  1676. (&p->se == cfs_rq_of(&p->se)->next ||
  1677. &p->se == cfs_rq_of(&p->se)->last))
  1678. return 1;
  1679. if (p->sched_class != &fair_sched_class)
  1680. return 0;
  1681. if (sysctl_sched_migration_cost == -1)
  1682. return 1;
  1683. if (sysctl_sched_migration_cost == 0)
  1684. return 0;
  1685. delta = now - p->se.exec_start;
  1686. return delta < (s64)sysctl_sched_migration_cost;
  1687. }
  1688. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1689. {
  1690. int old_cpu = task_cpu(p);
  1691. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  1692. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  1693. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  1694. u64 clock_offset;
  1695. clock_offset = old_rq->clock - new_rq->clock;
  1696. trace_sched_migrate_task(p, new_cpu);
  1697. #ifdef CONFIG_SCHEDSTATS
  1698. if (p->se.wait_start)
  1699. p->se.wait_start -= clock_offset;
  1700. if (p->se.sleep_start)
  1701. p->se.sleep_start -= clock_offset;
  1702. if (p->se.block_start)
  1703. p->se.block_start -= clock_offset;
  1704. #endif
  1705. if (old_cpu != new_cpu) {
  1706. p->se.nr_migrations++;
  1707. new_rq->nr_migrations_in++;
  1708. #ifdef CONFIG_SCHEDSTATS
  1709. if (task_hot(p, old_rq->clock, NULL))
  1710. schedstat_inc(p, se.nr_forced2_migrations);
  1711. #endif
  1712. perf_swcounter_event(PERF_COUNT_SW_CPU_MIGRATIONS,
  1713. 1, 1, NULL, 0);
  1714. }
  1715. p->se.vruntime -= old_cfsrq->min_vruntime -
  1716. new_cfsrq->min_vruntime;
  1717. __set_task_cpu(p, new_cpu);
  1718. }
  1719. struct migration_req {
  1720. struct list_head list;
  1721. struct task_struct *task;
  1722. int dest_cpu;
  1723. struct completion done;
  1724. };
  1725. /*
  1726. * The task's runqueue lock must be held.
  1727. * Returns true if you have to wait for migration thread.
  1728. */
  1729. static int
  1730. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1731. {
  1732. struct rq *rq = task_rq(p);
  1733. /*
  1734. * If the task is not on a runqueue (and not running), then
  1735. * it is sufficient to simply update the task's cpu field.
  1736. */
  1737. if (!p->se.on_rq && !task_running(rq, p)) {
  1738. set_task_cpu(p, dest_cpu);
  1739. return 0;
  1740. }
  1741. init_completion(&req->done);
  1742. req->task = p;
  1743. req->dest_cpu = dest_cpu;
  1744. list_add(&req->list, &rq->migration_queue);
  1745. return 1;
  1746. }
  1747. /*
  1748. * wait_task_context_switch - wait for a thread to complete at least one
  1749. * context switch.
  1750. *
  1751. * @p must not be current.
  1752. */
  1753. void wait_task_context_switch(struct task_struct *p)
  1754. {
  1755. unsigned long nvcsw, nivcsw, flags;
  1756. int running;
  1757. struct rq *rq;
  1758. nvcsw = p->nvcsw;
  1759. nivcsw = p->nivcsw;
  1760. for (;;) {
  1761. /*
  1762. * The runqueue is assigned before the actual context
  1763. * switch. We need to take the runqueue lock.
  1764. *
  1765. * We could check initially without the lock but it is
  1766. * very likely that we need to take the lock in every
  1767. * iteration.
  1768. */
  1769. rq = task_rq_lock(p, &flags);
  1770. running = task_running(rq, p);
  1771. task_rq_unlock(rq, &flags);
  1772. if (likely(!running))
  1773. break;
  1774. /*
  1775. * The switch count is incremented before the actual
  1776. * context switch. We thus wait for two switches to be
  1777. * sure at least one completed.
  1778. */
  1779. if ((p->nvcsw - nvcsw) > 1)
  1780. break;
  1781. if ((p->nivcsw - nivcsw) > 1)
  1782. break;
  1783. cpu_relax();
  1784. }
  1785. }
  1786. /*
  1787. * wait_task_inactive - wait for a thread to unschedule.
  1788. *
  1789. * If @match_state is nonzero, it's the @p->state value just checked and
  1790. * not expected to change. If it changes, i.e. @p might have woken up,
  1791. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1792. * we return a positive number (its total switch count). If a second call
  1793. * a short while later returns the same number, the caller can be sure that
  1794. * @p has remained unscheduled the whole time.
  1795. *
  1796. * The caller must ensure that the task *will* unschedule sometime soon,
  1797. * else this function might spin for a *long* time. This function can't
  1798. * be called with interrupts off, or it may introduce deadlock with
  1799. * smp_call_function() if an IPI is sent by the same process we are
  1800. * waiting to become inactive.
  1801. */
  1802. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1803. {
  1804. unsigned long flags;
  1805. int running, on_rq;
  1806. unsigned long ncsw;
  1807. struct rq *rq;
  1808. for (;;) {
  1809. /*
  1810. * We do the initial early heuristics without holding
  1811. * any task-queue locks at all. We'll only try to get
  1812. * the runqueue lock when things look like they will
  1813. * work out!
  1814. */
  1815. rq = task_rq(p);
  1816. /*
  1817. * If the task is actively running on another CPU
  1818. * still, just relax and busy-wait without holding
  1819. * any locks.
  1820. *
  1821. * NOTE! Since we don't hold any locks, it's not
  1822. * even sure that "rq" stays as the right runqueue!
  1823. * But we don't care, since "task_running()" will
  1824. * return false if the runqueue has changed and p
  1825. * is actually now running somewhere else!
  1826. */
  1827. while (task_running(rq, p)) {
  1828. if (match_state && unlikely(p->state != match_state))
  1829. return 0;
  1830. cpu_relax();
  1831. }
  1832. /*
  1833. * Ok, time to look more closely! We need the rq
  1834. * lock now, to be *sure*. If we're wrong, we'll
  1835. * just go back and repeat.
  1836. */
  1837. rq = task_rq_lock(p, &flags);
  1838. trace_sched_wait_task(rq, p);
  1839. running = task_running(rq, p);
  1840. on_rq = p->se.on_rq;
  1841. ncsw = 0;
  1842. if (!match_state || p->state == match_state)
  1843. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1844. task_rq_unlock(rq, &flags);
  1845. /*
  1846. * If it changed from the expected state, bail out now.
  1847. */
  1848. if (unlikely(!ncsw))
  1849. break;
  1850. /*
  1851. * Was it really running after all now that we
  1852. * checked with the proper locks actually held?
  1853. *
  1854. * Oops. Go back and try again..
  1855. */
  1856. if (unlikely(running)) {
  1857. cpu_relax();
  1858. continue;
  1859. }
  1860. /*
  1861. * It's not enough that it's not actively running,
  1862. * it must be off the runqueue _entirely_, and not
  1863. * preempted!
  1864. *
  1865. * So if it was still runnable (but just not actively
  1866. * running right now), it's preempted, and we should
  1867. * yield - it could be a while.
  1868. */
  1869. if (unlikely(on_rq)) {
  1870. schedule_timeout_uninterruptible(1);
  1871. continue;
  1872. }
  1873. /*
  1874. * Ahh, all good. It wasn't running, and it wasn't
  1875. * runnable, which means that it will never become
  1876. * running in the future either. We're all done!
  1877. */
  1878. break;
  1879. }
  1880. return ncsw;
  1881. }
  1882. /***
  1883. * kick_process - kick a running thread to enter/exit the kernel
  1884. * @p: the to-be-kicked thread
  1885. *
  1886. * Cause a process which is running on another CPU to enter
  1887. * kernel-mode, without any delay. (to get signals handled.)
  1888. *
  1889. * NOTE: this function doesnt have to take the runqueue lock,
  1890. * because all it wants to ensure is that the remote task enters
  1891. * the kernel. If the IPI races and the task has been migrated
  1892. * to another CPU then no harm is done and the purpose has been
  1893. * achieved as well.
  1894. */
  1895. void kick_process(struct task_struct *p)
  1896. {
  1897. int cpu;
  1898. preempt_disable();
  1899. cpu = task_cpu(p);
  1900. if ((cpu != smp_processor_id()) && task_curr(p))
  1901. smp_send_reschedule(cpu);
  1902. preempt_enable();
  1903. }
  1904. EXPORT_SYMBOL_GPL(kick_process);
  1905. #endif /* CONFIG_SMP */
  1906. /**
  1907. * task_oncpu_function_call - call a function on the cpu on which a task runs
  1908. * @p: the task to evaluate
  1909. * @func: the function to be called
  1910. * @info: the function call argument
  1911. *
  1912. * Calls the function @func when the task is currently running. This might
  1913. * be on the current CPU, which just calls the function directly
  1914. */
  1915. void task_oncpu_function_call(struct task_struct *p,
  1916. void (*func) (void *info), void *info)
  1917. {
  1918. int cpu;
  1919. preempt_disable();
  1920. cpu = task_cpu(p);
  1921. if (task_curr(p))
  1922. smp_call_function_single(cpu, func, info, 1);
  1923. preempt_enable();
  1924. }
  1925. /***
  1926. * try_to_wake_up - wake up a thread
  1927. * @p: the to-be-woken-up thread
  1928. * @state: the mask of task states that can be woken
  1929. * @sync: do a synchronous wakeup?
  1930. *
  1931. * Put it on the run-queue if it's not already there. The "current"
  1932. * thread is always on the run-queue (except when the actual
  1933. * re-schedule is in progress), and as such you're allowed to do
  1934. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1935. * runnable without the overhead of this.
  1936. *
  1937. * returns failure only if the task is already active.
  1938. */
  1939. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1940. {
  1941. int cpu, orig_cpu, this_cpu, success = 0;
  1942. unsigned long flags;
  1943. struct rq *rq;
  1944. if (!sched_feat(SYNC_WAKEUPS))
  1945. sync = 0;
  1946. this_cpu = get_cpu();
  1947. smp_wmb();
  1948. rq = task_rq_lock(p, &flags);
  1949. update_rq_clock(rq);
  1950. if (!(p->state & state))
  1951. goto out;
  1952. if (p->se.on_rq)
  1953. goto out_running;
  1954. cpu = task_cpu(p);
  1955. orig_cpu = cpu;
  1956. #ifdef CONFIG_SMP
  1957. if (unlikely(task_running(rq, p)))
  1958. goto out_activate;
  1959. /*
  1960. * In order to handle concurrent wakeups and release the rq->lock
  1961. * we put the task in TASK_WAKING state.
  1962. */
  1963. p->state = TASK_WAKING;
  1964. task_rq_unlock(rq, &flags);
  1965. cpu = p->sched_class->select_task_rq(p, SD_BALANCE_WAKE, sync);
  1966. if (cpu != orig_cpu)
  1967. set_task_cpu(p, cpu);
  1968. rq = task_rq_lock(p, &flags);
  1969. WARN_ON(p->state != TASK_WAKING);
  1970. cpu = task_cpu(p);
  1971. #ifdef CONFIG_SCHEDSTATS
  1972. schedstat_inc(rq, ttwu_count);
  1973. if (cpu == this_cpu)
  1974. schedstat_inc(rq, ttwu_local);
  1975. else {
  1976. struct sched_domain *sd;
  1977. for_each_domain(this_cpu, sd) {
  1978. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  1979. schedstat_inc(sd, ttwu_wake_remote);
  1980. break;
  1981. }
  1982. }
  1983. }
  1984. #endif /* CONFIG_SCHEDSTATS */
  1985. out_activate:
  1986. #endif /* CONFIG_SMP */
  1987. schedstat_inc(p, se.nr_wakeups);
  1988. if (sync)
  1989. schedstat_inc(p, se.nr_wakeups_sync);
  1990. if (orig_cpu != cpu)
  1991. schedstat_inc(p, se.nr_wakeups_migrate);
  1992. if (cpu == this_cpu)
  1993. schedstat_inc(p, se.nr_wakeups_local);
  1994. else
  1995. schedstat_inc(p, se.nr_wakeups_remote);
  1996. activate_task(rq, p, 1);
  1997. success = 1;
  1998. /*
  1999. * Only attribute actual wakeups done by this task.
  2000. */
  2001. if (!in_interrupt()) {
  2002. struct sched_entity *se = &current->se;
  2003. u64 sample = se->sum_exec_runtime;
  2004. if (se->last_wakeup)
  2005. sample -= se->last_wakeup;
  2006. else
  2007. sample -= se->start_runtime;
  2008. update_avg(&se->avg_wakeup, sample);
  2009. se->last_wakeup = se->sum_exec_runtime;
  2010. }
  2011. out_running:
  2012. trace_sched_wakeup(rq, p, success);
  2013. check_preempt_curr(rq, p, sync);
  2014. p->state = TASK_RUNNING;
  2015. #ifdef CONFIG_SMP
  2016. if (p->sched_class->task_wake_up)
  2017. p->sched_class->task_wake_up(rq, p);
  2018. #endif
  2019. out:
  2020. task_rq_unlock(rq, &flags);
  2021. put_cpu();
  2022. return success;
  2023. }
  2024. /**
  2025. * wake_up_process - Wake up a specific process
  2026. * @p: The process to be woken up.
  2027. *
  2028. * Attempt to wake up the nominated process and move it to the set of runnable
  2029. * processes. Returns 1 if the process was woken up, 0 if it was already
  2030. * running.
  2031. *
  2032. * It may be assumed that this function implies a write memory barrier before
  2033. * changing the task state if and only if any tasks are woken up.
  2034. */
  2035. int wake_up_process(struct task_struct *p)
  2036. {
  2037. return try_to_wake_up(p, TASK_ALL, 0);
  2038. }
  2039. EXPORT_SYMBOL(wake_up_process);
  2040. int wake_up_state(struct task_struct *p, unsigned int state)
  2041. {
  2042. return try_to_wake_up(p, state, 0);
  2043. }
  2044. /*
  2045. * Perform scheduler related setup for a newly forked process p.
  2046. * p is forked by current.
  2047. *
  2048. * __sched_fork() is basic setup used by init_idle() too:
  2049. */
  2050. static void __sched_fork(struct task_struct *p)
  2051. {
  2052. p->se.exec_start = 0;
  2053. p->se.sum_exec_runtime = 0;
  2054. p->se.prev_sum_exec_runtime = 0;
  2055. p->se.nr_migrations = 0;
  2056. p->se.last_wakeup = 0;
  2057. p->se.avg_overlap = 0;
  2058. p->se.start_runtime = 0;
  2059. p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
  2060. #ifdef CONFIG_SCHEDSTATS
  2061. p->se.wait_start = 0;
  2062. p->se.wait_max = 0;
  2063. p->se.wait_count = 0;
  2064. p->se.wait_sum = 0;
  2065. p->se.sleep_start = 0;
  2066. p->se.sleep_max = 0;
  2067. p->se.sum_sleep_runtime = 0;
  2068. p->se.block_start = 0;
  2069. p->se.block_max = 0;
  2070. p->se.exec_max = 0;
  2071. p->se.slice_max = 0;
  2072. p->se.nr_migrations_cold = 0;
  2073. p->se.nr_failed_migrations_affine = 0;
  2074. p->se.nr_failed_migrations_running = 0;
  2075. p->se.nr_failed_migrations_hot = 0;
  2076. p->se.nr_forced_migrations = 0;
  2077. p->se.nr_forced2_migrations = 0;
  2078. p->se.nr_wakeups = 0;
  2079. p->se.nr_wakeups_sync = 0;
  2080. p->se.nr_wakeups_migrate = 0;
  2081. p->se.nr_wakeups_local = 0;
  2082. p->se.nr_wakeups_remote = 0;
  2083. p->se.nr_wakeups_affine = 0;
  2084. p->se.nr_wakeups_affine_attempts = 0;
  2085. p->se.nr_wakeups_passive = 0;
  2086. p->se.nr_wakeups_idle = 0;
  2087. #endif
  2088. INIT_LIST_HEAD(&p->rt.run_list);
  2089. p->se.on_rq = 0;
  2090. INIT_LIST_HEAD(&p->se.group_node);
  2091. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2092. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2093. #endif
  2094. /*
  2095. * We mark the process as running here, but have not actually
  2096. * inserted it onto the runqueue yet. This guarantees that
  2097. * nobody will actually run it, and a signal or other external
  2098. * event cannot wake it up and insert it on the runqueue either.
  2099. */
  2100. p->state = TASK_RUNNING;
  2101. }
  2102. /*
  2103. * fork()/clone()-time setup:
  2104. */
  2105. void sched_fork(struct task_struct *p, int clone_flags)
  2106. {
  2107. int cpu = get_cpu();
  2108. __sched_fork(p);
  2109. /*
  2110. * Make sure we do not leak PI boosting priority to the child.
  2111. */
  2112. p->prio = current->normal_prio;
  2113. /*
  2114. * Revert to default priority/policy on fork if requested.
  2115. */
  2116. if (unlikely(p->sched_reset_on_fork)) {
  2117. if (p->policy == SCHED_FIFO || p->policy == SCHED_RR)
  2118. p->policy = SCHED_NORMAL;
  2119. if (p->normal_prio < DEFAULT_PRIO)
  2120. p->prio = DEFAULT_PRIO;
  2121. if (PRIO_TO_NICE(p->static_prio) < 0) {
  2122. p->static_prio = NICE_TO_PRIO(0);
  2123. set_load_weight(p);
  2124. }
  2125. /*
  2126. * We don't need the reset flag anymore after the fork. It has
  2127. * fulfilled its duty:
  2128. */
  2129. p->sched_reset_on_fork = 0;
  2130. }
  2131. if (!rt_prio(p->prio))
  2132. p->sched_class = &fair_sched_class;
  2133. #ifdef CONFIG_SMP
  2134. cpu = p->sched_class->select_task_rq(p, SD_BALANCE_FORK, 0);
  2135. #endif
  2136. set_task_cpu(p, cpu);
  2137. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2138. if (likely(sched_info_on()))
  2139. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2140. #endif
  2141. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2142. p->oncpu = 0;
  2143. #endif
  2144. #ifdef CONFIG_PREEMPT
  2145. /* Want to start with kernel preemption disabled. */
  2146. task_thread_info(p)->preempt_count = 1;
  2147. #endif
  2148. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  2149. put_cpu();
  2150. }
  2151. /*
  2152. * wake_up_new_task - wake up a newly created task for the first time.
  2153. *
  2154. * This function will do some initial scheduler statistics housekeeping
  2155. * that must be done for every newly created context, then puts the task
  2156. * on the runqueue and wakes it.
  2157. */
  2158. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2159. {
  2160. unsigned long flags;
  2161. struct rq *rq;
  2162. rq = task_rq_lock(p, &flags);
  2163. BUG_ON(p->state != TASK_RUNNING);
  2164. update_rq_clock(rq);
  2165. p->prio = effective_prio(p);
  2166. if (!p->sched_class->task_new || !current->se.on_rq) {
  2167. activate_task(rq, p, 0);
  2168. } else {
  2169. /*
  2170. * Let the scheduling class do new task startup
  2171. * management (if any):
  2172. */
  2173. p->sched_class->task_new(rq, p);
  2174. inc_nr_running(rq);
  2175. }
  2176. trace_sched_wakeup_new(rq, p, 1);
  2177. check_preempt_curr(rq, p, 0);
  2178. #ifdef CONFIG_SMP
  2179. if (p->sched_class->task_wake_up)
  2180. p->sched_class->task_wake_up(rq, p);
  2181. #endif
  2182. task_rq_unlock(rq, &flags);
  2183. }
  2184. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2185. /**
  2186. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  2187. * @notifier: notifier struct to register
  2188. */
  2189. void preempt_notifier_register(struct preempt_notifier *notifier)
  2190. {
  2191. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2192. }
  2193. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2194. /**
  2195. * preempt_notifier_unregister - no longer interested in preemption notifications
  2196. * @notifier: notifier struct to unregister
  2197. *
  2198. * This is safe to call from within a preemption notifier.
  2199. */
  2200. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2201. {
  2202. hlist_del(&notifier->link);
  2203. }
  2204. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2205. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2206. {
  2207. struct preempt_notifier *notifier;
  2208. struct hlist_node *node;
  2209. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2210. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2211. }
  2212. static void
  2213. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2214. struct task_struct *next)
  2215. {
  2216. struct preempt_notifier *notifier;
  2217. struct hlist_node *node;
  2218. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2219. notifier->ops->sched_out(notifier, next);
  2220. }
  2221. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2222. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2223. {
  2224. }
  2225. static void
  2226. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2227. struct task_struct *next)
  2228. {
  2229. }
  2230. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2231. /**
  2232. * prepare_task_switch - prepare to switch tasks
  2233. * @rq: the runqueue preparing to switch
  2234. * @prev: the current task that is being switched out
  2235. * @next: the task we are going to switch to.
  2236. *
  2237. * This is called with the rq lock held and interrupts off. It must
  2238. * be paired with a subsequent finish_task_switch after the context
  2239. * switch.
  2240. *
  2241. * prepare_task_switch sets up locking and calls architecture specific
  2242. * hooks.
  2243. */
  2244. static inline void
  2245. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2246. struct task_struct *next)
  2247. {
  2248. fire_sched_out_preempt_notifiers(prev, next);
  2249. prepare_lock_switch(rq, next);
  2250. prepare_arch_switch(next);
  2251. }
  2252. /**
  2253. * finish_task_switch - clean up after a task-switch
  2254. * @rq: runqueue associated with task-switch
  2255. * @prev: the thread we just switched away from.
  2256. *
  2257. * finish_task_switch must be called after the context switch, paired
  2258. * with a prepare_task_switch call before the context switch.
  2259. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2260. * and do any other architecture-specific cleanup actions.
  2261. *
  2262. * Note that we may have delayed dropping an mm in context_switch(). If
  2263. * so, we finish that here outside of the runqueue lock. (Doing it
  2264. * with the lock held can cause deadlocks; see schedule() for
  2265. * details.)
  2266. */
  2267. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2268. __releases(rq->lock)
  2269. {
  2270. struct mm_struct *mm = rq->prev_mm;
  2271. long prev_state;
  2272. rq->prev_mm = NULL;
  2273. /*
  2274. * A task struct has one reference for the use as "current".
  2275. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2276. * schedule one last time. The schedule call will never return, and
  2277. * the scheduled task must drop that reference.
  2278. * The test for TASK_DEAD must occur while the runqueue locks are
  2279. * still held, otherwise prev could be scheduled on another cpu, die
  2280. * there before we look at prev->state, and then the reference would
  2281. * be dropped twice.
  2282. * Manfred Spraul <manfred@colorfullife.com>
  2283. */
  2284. prev_state = prev->state;
  2285. finish_arch_switch(prev);
  2286. perf_counter_task_sched_in(current, cpu_of(rq));
  2287. finish_lock_switch(rq, prev);
  2288. fire_sched_in_preempt_notifiers(current);
  2289. if (mm)
  2290. mmdrop(mm);
  2291. if (unlikely(prev_state == TASK_DEAD)) {
  2292. /*
  2293. * Remove function-return probe instances associated with this
  2294. * task and put them back on the free list.
  2295. */
  2296. kprobe_flush_task(prev);
  2297. put_task_struct(prev);
  2298. }
  2299. }
  2300. #ifdef CONFIG_SMP
  2301. /* assumes rq->lock is held */
  2302. static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
  2303. {
  2304. if (prev->sched_class->pre_schedule)
  2305. prev->sched_class->pre_schedule(rq, prev);
  2306. }
  2307. /* rq->lock is NOT held, but preemption is disabled */
  2308. static inline void post_schedule(struct rq *rq)
  2309. {
  2310. if (rq->post_schedule) {
  2311. unsigned long flags;
  2312. spin_lock_irqsave(&rq->lock, flags);
  2313. if (rq->curr->sched_class->post_schedule)
  2314. rq->curr->sched_class->post_schedule(rq);
  2315. spin_unlock_irqrestore(&rq->lock, flags);
  2316. rq->post_schedule = 0;
  2317. }
  2318. }
  2319. #else
  2320. static inline void pre_schedule(struct rq *rq, struct task_struct *p)
  2321. {
  2322. }
  2323. static inline void post_schedule(struct rq *rq)
  2324. {
  2325. }
  2326. #endif
  2327. /**
  2328. * schedule_tail - first thing a freshly forked thread must call.
  2329. * @prev: the thread we just switched away from.
  2330. */
  2331. asmlinkage void schedule_tail(struct task_struct *prev)
  2332. __releases(rq->lock)
  2333. {
  2334. struct rq *rq = this_rq();
  2335. finish_task_switch(rq, prev);
  2336. /*
  2337. * FIXME: do we need to worry about rq being invalidated by the
  2338. * task_switch?
  2339. */
  2340. post_schedule(rq);
  2341. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2342. /* In this case, finish_task_switch does not reenable preemption */
  2343. preempt_enable();
  2344. #endif
  2345. if (current->set_child_tid)
  2346. put_user(task_pid_vnr(current), current->set_child_tid);
  2347. }
  2348. /*
  2349. * context_switch - switch to the new MM and the new
  2350. * thread's register state.
  2351. */
  2352. static inline void
  2353. context_switch(struct rq *rq, struct task_struct *prev,
  2354. struct task_struct *next)
  2355. {
  2356. struct mm_struct *mm, *oldmm;
  2357. prepare_task_switch(rq, prev, next);
  2358. trace_sched_switch(rq, prev, next);
  2359. mm = next->mm;
  2360. oldmm = prev->active_mm;
  2361. /*
  2362. * For paravirt, this is coupled with an exit in switch_to to
  2363. * combine the page table reload and the switch backend into
  2364. * one hypercall.
  2365. */
  2366. arch_start_context_switch(prev);
  2367. if (unlikely(!mm)) {
  2368. next->active_mm = oldmm;
  2369. atomic_inc(&oldmm->mm_count);
  2370. enter_lazy_tlb(oldmm, next);
  2371. } else
  2372. switch_mm(oldmm, mm, next);
  2373. if (unlikely(!prev->mm)) {
  2374. prev->active_mm = NULL;
  2375. rq->prev_mm = oldmm;
  2376. }
  2377. /*
  2378. * Since the runqueue lock will be released by the next
  2379. * task (which is an invalid locking op but in the case
  2380. * of the scheduler it's an obvious special-case), so we
  2381. * do an early lockdep release here:
  2382. */
  2383. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2384. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2385. #endif
  2386. /* Here we just switch the register state and the stack. */
  2387. switch_to(prev, next, prev);
  2388. barrier();
  2389. /*
  2390. * this_rq must be evaluated again because prev may have moved
  2391. * CPUs since it called schedule(), thus the 'rq' on its stack
  2392. * frame will be invalid.
  2393. */
  2394. finish_task_switch(this_rq(), prev);
  2395. }
  2396. /*
  2397. * nr_running, nr_uninterruptible and nr_context_switches:
  2398. *
  2399. * externally visible scheduler statistics: current number of runnable
  2400. * threads, current number of uninterruptible-sleeping threads, total
  2401. * number of context switches performed since bootup.
  2402. */
  2403. unsigned long nr_running(void)
  2404. {
  2405. unsigned long i, sum = 0;
  2406. for_each_online_cpu(i)
  2407. sum += cpu_rq(i)->nr_running;
  2408. return sum;
  2409. }
  2410. unsigned long nr_uninterruptible(void)
  2411. {
  2412. unsigned long i, sum = 0;
  2413. for_each_possible_cpu(i)
  2414. sum += cpu_rq(i)->nr_uninterruptible;
  2415. /*
  2416. * Since we read the counters lockless, it might be slightly
  2417. * inaccurate. Do not allow it to go below zero though:
  2418. */
  2419. if (unlikely((long)sum < 0))
  2420. sum = 0;
  2421. return sum;
  2422. }
  2423. unsigned long long nr_context_switches(void)
  2424. {
  2425. int i;
  2426. unsigned long long sum = 0;
  2427. for_each_possible_cpu(i)
  2428. sum += cpu_rq(i)->nr_switches;
  2429. return sum;
  2430. }
  2431. unsigned long nr_iowait(void)
  2432. {
  2433. unsigned long i, sum = 0;
  2434. for_each_possible_cpu(i)
  2435. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2436. return sum;
  2437. }
  2438. /* Variables and functions for calc_load */
  2439. static atomic_long_t calc_load_tasks;
  2440. static unsigned long calc_load_update;
  2441. unsigned long avenrun[3];
  2442. EXPORT_SYMBOL(avenrun);
  2443. /**
  2444. * get_avenrun - get the load average array
  2445. * @loads: pointer to dest load array
  2446. * @offset: offset to add
  2447. * @shift: shift count to shift the result left
  2448. *
  2449. * These values are estimates at best, so no need for locking.
  2450. */
  2451. void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
  2452. {
  2453. loads[0] = (avenrun[0] + offset) << shift;
  2454. loads[1] = (avenrun[1] + offset) << shift;
  2455. loads[2] = (avenrun[2] + offset) << shift;
  2456. }
  2457. static unsigned long
  2458. calc_load(unsigned long load, unsigned long exp, unsigned long active)
  2459. {
  2460. load *= exp;
  2461. load += active * (FIXED_1 - exp);
  2462. return load >> FSHIFT;
  2463. }
  2464. /*
  2465. * calc_load - update the avenrun load estimates 10 ticks after the
  2466. * CPUs have updated calc_load_tasks.
  2467. */
  2468. void calc_global_load(void)
  2469. {
  2470. unsigned long upd = calc_load_update + 10;
  2471. long active;
  2472. if (time_before(jiffies, upd))
  2473. return;
  2474. active = atomic_long_read(&calc_load_tasks);
  2475. active = active > 0 ? active * FIXED_1 : 0;
  2476. avenrun[0] = calc_load(avenrun[0], EXP_1, active);
  2477. avenrun[1] = calc_load(avenrun[1], EXP_5, active);
  2478. avenrun[2] = calc_load(avenrun[2], EXP_15, active);
  2479. calc_load_update += LOAD_FREQ;
  2480. }
  2481. /*
  2482. * Either called from update_cpu_load() or from a cpu going idle
  2483. */
  2484. static void calc_load_account_active(struct rq *this_rq)
  2485. {
  2486. long nr_active, delta;
  2487. nr_active = this_rq->nr_running;
  2488. nr_active += (long) this_rq->nr_uninterruptible;
  2489. if (nr_active != this_rq->calc_load_active) {
  2490. delta = nr_active - this_rq->calc_load_active;
  2491. this_rq->calc_load_active = nr_active;
  2492. atomic_long_add(delta, &calc_load_tasks);
  2493. }
  2494. }
  2495. /*
  2496. * Externally visible per-cpu scheduler statistics:
  2497. * cpu_nr_migrations(cpu) - number of migrations into that cpu
  2498. */
  2499. u64 cpu_nr_migrations(int cpu)
  2500. {
  2501. return cpu_rq(cpu)->nr_migrations_in;
  2502. }
  2503. /*
  2504. * Update rq->cpu_load[] statistics. This function is usually called every
  2505. * scheduler tick (TICK_NSEC).
  2506. */
  2507. static void update_cpu_load(struct rq *this_rq)
  2508. {
  2509. unsigned long this_load = this_rq->load.weight;
  2510. int i, scale;
  2511. this_rq->nr_load_updates++;
  2512. /* Update our load: */
  2513. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2514. unsigned long old_load, new_load;
  2515. /* scale is effectively 1 << i now, and >> i divides by scale */
  2516. old_load = this_rq->cpu_load[i];
  2517. new_load = this_load;
  2518. /*
  2519. * Round up the averaging division if load is increasing. This
  2520. * prevents us from getting stuck on 9 if the load is 10, for
  2521. * example.
  2522. */
  2523. if (new_load > old_load)
  2524. new_load += scale-1;
  2525. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2526. }
  2527. if (time_after_eq(jiffies, this_rq->calc_load_update)) {
  2528. this_rq->calc_load_update += LOAD_FREQ;
  2529. calc_load_account_active(this_rq);
  2530. }
  2531. }
  2532. #ifdef CONFIG_SMP
  2533. /*
  2534. * double_rq_lock - safely lock two runqueues
  2535. *
  2536. * Note this does not disable interrupts like task_rq_lock,
  2537. * you need to do so manually before calling.
  2538. */
  2539. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  2540. __acquires(rq1->lock)
  2541. __acquires(rq2->lock)
  2542. {
  2543. BUG_ON(!irqs_disabled());
  2544. if (rq1 == rq2) {
  2545. spin_lock(&rq1->lock);
  2546. __acquire(rq2->lock); /* Fake it out ;) */
  2547. } else {
  2548. if (rq1 < rq2) {
  2549. spin_lock(&rq1->lock);
  2550. spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  2551. } else {
  2552. spin_lock(&rq2->lock);
  2553. spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  2554. }
  2555. }
  2556. update_rq_clock(rq1);
  2557. update_rq_clock(rq2);
  2558. }
  2559. /*
  2560. * double_rq_unlock - safely unlock two runqueues
  2561. *
  2562. * Note this does not restore interrupts like task_rq_unlock,
  2563. * you need to do so manually after calling.
  2564. */
  2565. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  2566. __releases(rq1->lock)
  2567. __releases(rq2->lock)
  2568. {
  2569. spin_unlock(&rq1->lock);
  2570. if (rq1 != rq2)
  2571. spin_unlock(&rq2->lock);
  2572. else
  2573. __release(rq2->lock);
  2574. }
  2575. /*
  2576. * If dest_cpu is allowed for this process, migrate the task to it.
  2577. * This is accomplished by forcing the cpu_allowed mask to only
  2578. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  2579. * the cpu_allowed mask is restored.
  2580. */
  2581. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  2582. {
  2583. struct migration_req req;
  2584. unsigned long flags;
  2585. struct rq *rq;
  2586. rq = task_rq_lock(p, &flags);
  2587. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
  2588. || unlikely(!cpu_active(dest_cpu)))
  2589. goto out;
  2590. /* force the process onto the specified CPU */
  2591. if (migrate_task(p, dest_cpu, &req)) {
  2592. /* Need to wait for migration thread (might exit: take ref). */
  2593. struct task_struct *mt = rq->migration_thread;
  2594. get_task_struct(mt);
  2595. task_rq_unlock(rq, &flags);
  2596. wake_up_process(mt);
  2597. put_task_struct(mt);
  2598. wait_for_completion(&req.done);
  2599. return;
  2600. }
  2601. out:
  2602. task_rq_unlock(rq, &flags);
  2603. }
  2604. /*
  2605. * sched_exec - execve() is a valuable balancing opportunity, because at
  2606. * this point the task has the smallest effective memory and cache footprint.
  2607. */
  2608. void sched_exec(void)
  2609. {
  2610. int new_cpu, this_cpu = get_cpu();
  2611. new_cpu = current->sched_class->select_task_rq(current, SD_BALANCE_EXEC, 0);
  2612. put_cpu();
  2613. if (new_cpu != this_cpu)
  2614. sched_migrate_task(current, new_cpu);
  2615. }
  2616. /*
  2617. * pull_task - move a task from a remote runqueue to the local runqueue.
  2618. * Both runqueues must be locked.
  2619. */
  2620. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2621. struct rq *this_rq, int this_cpu)
  2622. {
  2623. deactivate_task(src_rq, p, 0);
  2624. set_task_cpu(p, this_cpu);
  2625. activate_task(this_rq, p, 0);
  2626. /*
  2627. * Note that idle threads have a prio of MAX_PRIO, for this test
  2628. * to be always true for them.
  2629. */
  2630. check_preempt_curr(this_rq, p, 0);
  2631. }
  2632. /*
  2633. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2634. */
  2635. static
  2636. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2637. struct sched_domain *sd, enum cpu_idle_type idle,
  2638. int *all_pinned)
  2639. {
  2640. int tsk_cache_hot = 0;
  2641. /*
  2642. * We do not migrate tasks that are:
  2643. * 1) running (obviously), or
  2644. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2645. * 3) are cache-hot on their current CPU.
  2646. */
  2647. if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
  2648. schedstat_inc(p, se.nr_failed_migrations_affine);
  2649. return 0;
  2650. }
  2651. *all_pinned = 0;
  2652. if (task_running(rq, p)) {
  2653. schedstat_inc(p, se.nr_failed_migrations_running);
  2654. return 0;
  2655. }
  2656. /*
  2657. * Aggressive migration if:
  2658. * 1) task is cache cold, or
  2659. * 2) too many balance attempts have failed.
  2660. */
  2661. tsk_cache_hot = task_hot(p, rq->clock, sd);
  2662. if (!tsk_cache_hot ||
  2663. sd->nr_balance_failed > sd->cache_nice_tries) {
  2664. #ifdef CONFIG_SCHEDSTATS
  2665. if (tsk_cache_hot) {
  2666. schedstat_inc(sd, lb_hot_gained[idle]);
  2667. schedstat_inc(p, se.nr_forced_migrations);
  2668. }
  2669. #endif
  2670. return 1;
  2671. }
  2672. if (tsk_cache_hot) {
  2673. schedstat_inc(p, se.nr_failed_migrations_hot);
  2674. return 0;
  2675. }
  2676. return 1;
  2677. }
  2678. static unsigned long
  2679. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2680. unsigned long max_load_move, struct sched_domain *sd,
  2681. enum cpu_idle_type idle, int *all_pinned,
  2682. int *this_best_prio, struct rq_iterator *iterator)
  2683. {
  2684. int loops = 0, pulled = 0, pinned = 0;
  2685. struct task_struct *p;
  2686. long rem_load_move = max_load_move;
  2687. if (max_load_move == 0)
  2688. goto out;
  2689. pinned = 1;
  2690. /*
  2691. * Start the load-balancing iterator:
  2692. */
  2693. p = iterator->start(iterator->arg);
  2694. next:
  2695. if (!p || loops++ > sysctl_sched_nr_migrate)
  2696. goto out;
  2697. if ((p->se.load.weight >> 1) > rem_load_move ||
  2698. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2699. p = iterator->next(iterator->arg);
  2700. goto next;
  2701. }
  2702. pull_task(busiest, p, this_rq, this_cpu);
  2703. pulled++;
  2704. rem_load_move -= p->se.load.weight;
  2705. #ifdef CONFIG_PREEMPT
  2706. /*
  2707. * NEWIDLE balancing is a source of latency, so preemptible kernels
  2708. * will stop after the first task is pulled to minimize the critical
  2709. * section.
  2710. */
  2711. if (idle == CPU_NEWLY_IDLE)
  2712. goto out;
  2713. #endif
  2714. /*
  2715. * We only want to steal up to the prescribed amount of weighted load.
  2716. */
  2717. if (rem_load_move > 0) {
  2718. if (p->prio < *this_best_prio)
  2719. *this_best_prio = p->prio;
  2720. p = iterator->next(iterator->arg);
  2721. goto next;
  2722. }
  2723. out:
  2724. /*
  2725. * Right now, this is one of only two places pull_task() is called,
  2726. * so we can safely collect pull_task() stats here rather than
  2727. * inside pull_task().
  2728. */
  2729. schedstat_add(sd, lb_gained[idle], pulled);
  2730. if (all_pinned)
  2731. *all_pinned = pinned;
  2732. return max_load_move - rem_load_move;
  2733. }
  2734. /*
  2735. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2736. * this_rq, as part of a balancing operation within domain "sd".
  2737. * Returns 1 if successful and 0 otherwise.
  2738. *
  2739. * Called with both runqueues locked.
  2740. */
  2741. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2742. unsigned long max_load_move,
  2743. struct sched_domain *sd, enum cpu_idle_type idle,
  2744. int *all_pinned)
  2745. {
  2746. const struct sched_class *class = sched_class_highest;
  2747. unsigned long total_load_moved = 0;
  2748. int this_best_prio = this_rq->curr->prio;
  2749. do {
  2750. total_load_moved +=
  2751. class->load_balance(this_rq, this_cpu, busiest,
  2752. max_load_move - total_load_moved,
  2753. sd, idle, all_pinned, &this_best_prio);
  2754. class = class->next;
  2755. #ifdef CONFIG_PREEMPT
  2756. /*
  2757. * NEWIDLE balancing is a source of latency, so preemptible
  2758. * kernels will stop after the first task is pulled to minimize
  2759. * the critical section.
  2760. */
  2761. if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
  2762. break;
  2763. #endif
  2764. } while (class && max_load_move > total_load_moved);
  2765. return total_load_moved > 0;
  2766. }
  2767. static int
  2768. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2769. struct sched_domain *sd, enum cpu_idle_type idle,
  2770. struct rq_iterator *iterator)
  2771. {
  2772. struct task_struct *p = iterator->start(iterator->arg);
  2773. int pinned = 0;
  2774. while (p) {
  2775. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2776. pull_task(busiest, p, this_rq, this_cpu);
  2777. /*
  2778. * Right now, this is only the second place pull_task()
  2779. * is called, so we can safely collect pull_task()
  2780. * stats here rather than inside pull_task().
  2781. */
  2782. schedstat_inc(sd, lb_gained[idle]);
  2783. return 1;
  2784. }
  2785. p = iterator->next(iterator->arg);
  2786. }
  2787. return 0;
  2788. }
  2789. /*
  2790. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2791. * part of active balancing operations within "domain".
  2792. * Returns 1 if successful and 0 otherwise.
  2793. *
  2794. * Called with both runqueues locked.
  2795. */
  2796. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2797. struct sched_domain *sd, enum cpu_idle_type idle)
  2798. {
  2799. const struct sched_class *class;
  2800. for_each_class(class) {
  2801. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2802. return 1;
  2803. }
  2804. return 0;
  2805. }
  2806. /********** Helpers for find_busiest_group ************************/
  2807. /*
  2808. * sd_lb_stats - Structure to store the statistics of a sched_domain
  2809. * during load balancing.
  2810. */
  2811. struct sd_lb_stats {
  2812. struct sched_group *busiest; /* Busiest group in this sd */
  2813. struct sched_group *this; /* Local group in this sd */
  2814. unsigned long total_load; /* Total load of all groups in sd */
  2815. unsigned long total_pwr; /* Total power of all groups in sd */
  2816. unsigned long avg_load; /* Average load across all groups in sd */
  2817. /** Statistics of this group */
  2818. unsigned long this_load;
  2819. unsigned long this_load_per_task;
  2820. unsigned long this_nr_running;
  2821. /* Statistics of the busiest group */
  2822. unsigned long max_load;
  2823. unsigned long busiest_load_per_task;
  2824. unsigned long busiest_nr_running;
  2825. int group_imb; /* Is there imbalance in this sd */
  2826. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2827. int power_savings_balance; /* Is powersave balance needed for this sd */
  2828. struct sched_group *group_min; /* Least loaded group in sd */
  2829. struct sched_group *group_leader; /* Group which relieves group_min */
  2830. unsigned long min_load_per_task; /* load_per_task in group_min */
  2831. unsigned long leader_nr_running; /* Nr running of group_leader */
  2832. unsigned long min_nr_running; /* Nr running of group_min */
  2833. #endif
  2834. };
  2835. /*
  2836. * sg_lb_stats - stats of a sched_group required for load_balancing
  2837. */
  2838. struct sg_lb_stats {
  2839. unsigned long avg_load; /*Avg load across the CPUs of the group */
  2840. unsigned long group_load; /* Total load over the CPUs of the group */
  2841. unsigned long sum_nr_running; /* Nr tasks running in the group */
  2842. unsigned long sum_weighted_load; /* Weighted load of group's tasks */
  2843. unsigned long group_capacity;
  2844. int group_imb; /* Is there an imbalance in the group ? */
  2845. };
  2846. /**
  2847. * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
  2848. * @group: The group whose first cpu is to be returned.
  2849. */
  2850. static inline unsigned int group_first_cpu(struct sched_group *group)
  2851. {
  2852. return cpumask_first(sched_group_cpus(group));
  2853. }
  2854. /**
  2855. * get_sd_load_idx - Obtain the load index for a given sched domain.
  2856. * @sd: The sched_domain whose load_idx is to be obtained.
  2857. * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
  2858. */
  2859. static inline int get_sd_load_idx(struct sched_domain *sd,
  2860. enum cpu_idle_type idle)
  2861. {
  2862. int load_idx;
  2863. switch (idle) {
  2864. case CPU_NOT_IDLE:
  2865. load_idx = sd->busy_idx;
  2866. break;
  2867. case CPU_NEWLY_IDLE:
  2868. load_idx = sd->newidle_idx;
  2869. break;
  2870. default:
  2871. load_idx = sd->idle_idx;
  2872. break;
  2873. }
  2874. return load_idx;
  2875. }
  2876. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2877. /**
  2878. * init_sd_power_savings_stats - Initialize power savings statistics for
  2879. * the given sched_domain, during load balancing.
  2880. *
  2881. * @sd: Sched domain whose power-savings statistics are to be initialized.
  2882. * @sds: Variable containing the statistics for sd.
  2883. * @idle: Idle status of the CPU at which we're performing load-balancing.
  2884. */
  2885. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  2886. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  2887. {
  2888. /*
  2889. * Busy processors will not participate in power savings
  2890. * balance.
  2891. */
  2892. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2893. sds->power_savings_balance = 0;
  2894. else {
  2895. sds->power_savings_balance = 1;
  2896. sds->min_nr_running = ULONG_MAX;
  2897. sds->leader_nr_running = 0;
  2898. }
  2899. }
  2900. /**
  2901. * update_sd_power_savings_stats - Update the power saving stats for a
  2902. * sched_domain while performing load balancing.
  2903. *
  2904. * @group: sched_group belonging to the sched_domain under consideration.
  2905. * @sds: Variable containing the statistics of the sched_domain
  2906. * @local_group: Does group contain the CPU for which we're performing
  2907. * load balancing ?
  2908. * @sgs: Variable containing the statistics of the group.
  2909. */
  2910. static inline void update_sd_power_savings_stats(struct sched_group *group,
  2911. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  2912. {
  2913. if (!sds->power_savings_balance)
  2914. return;
  2915. /*
  2916. * If the local group is idle or completely loaded
  2917. * no need to do power savings balance at this domain
  2918. */
  2919. if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
  2920. !sds->this_nr_running))
  2921. sds->power_savings_balance = 0;
  2922. /*
  2923. * If a group is already running at full capacity or idle,
  2924. * don't include that group in power savings calculations
  2925. */
  2926. if (!sds->power_savings_balance ||
  2927. sgs->sum_nr_running >= sgs->group_capacity ||
  2928. !sgs->sum_nr_running)
  2929. return;
  2930. /*
  2931. * Calculate the group which has the least non-idle load.
  2932. * This is the group from where we need to pick up the load
  2933. * for saving power
  2934. */
  2935. if ((sgs->sum_nr_running < sds->min_nr_running) ||
  2936. (sgs->sum_nr_running == sds->min_nr_running &&
  2937. group_first_cpu(group) > group_first_cpu(sds->group_min))) {
  2938. sds->group_min = group;
  2939. sds->min_nr_running = sgs->sum_nr_running;
  2940. sds->min_load_per_task = sgs->sum_weighted_load /
  2941. sgs->sum_nr_running;
  2942. }
  2943. /*
  2944. * Calculate the group which is almost near its
  2945. * capacity but still has some space to pick up some load
  2946. * from other group and save more power
  2947. */
  2948. if (sgs->sum_nr_running + 1 > sgs->group_capacity)
  2949. return;
  2950. if (sgs->sum_nr_running > sds->leader_nr_running ||
  2951. (sgs->sum_nr_running == sds->leader_nr_running &&
  2952. group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
  2953. sds->group_leader = group;
  2954. sds->leader_nr_running = sgs->sum_nr_running;
  2955. }
  2956. }
  2957. /**
  2958. * check_power_save_busiest_group - see if there is potential for some power-savings balance
  2959. * @sds: Variable containing the statistics of the sched_domain
  2960. * under consideration.
  2961. * @this_cpu: Cpu at which we're currently performing load-balancing.
  2962. * @imbalance: Variable to store the imbalance.
  2963. *
  2964. * Description:
  2965. * Check if we have potential to perform some power-savings balance.
  2966. * If yes, set the busiest group to be the least loaded group in the
  2967. * sched_domain, so that it's CPUs can be put to idle.
  2968. *
  2969. * Returns 1 if there is potential to perform power-savings balance.
  2970. * Else returns 0.
  2971. */
  2972. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  2973. int this_cpu, unsigned long *imbalance)
  2974. {
  2975. if (!sds->power_savings_balance)
  2976. return 0;
  2977. if (sds->this != sds->group_leader ||
  2978. sds->group_leader == sds->group_min)
  2979. return 0;
  2980. *imbalance = sds->min_load_per_task;
  2981. sds->busiest = sds->group_min;
  2982. return 1;
  2983. }
  2984. #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  2985. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  2986. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  2987. {
  2988. return;
  2989. }
  2990. static inline void update_sd_power_savings_stats(struct sched_group *group,
  2991. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  2992. {
  2993. return;
  2994. }
  2995. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  2996. int this_cpu, unsigned long *imbalance)
  2997. {
  2998. return 0;
  2999. }
  3000. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  3001. unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
  3002. {
  3003. unsigned long weight = cpumask_weight(sched_domain_span(sd));
  3004. unsigned long smt_gain = sd->smt_gain;
  3005. smt_gain /= weight;
  3006. return smt_gain;
  3007. }
  3008. unsigned long scale_rt_power(int cpu)
  3009. {
  3010. struct rq *rq = cpu_rq(cpu);
  3011. u64 total, available;
  3012. sched_avg_update(rq);
  3013. total = sched_avg_period() + (rq->clock - rq->age_stamp);
  3014. available = total - rq->rt_avg;
  3015. if (unlikely((s64)total < SCHED_LOAD_SCALE))
  3016. total = SCHED_LOAD_SCALE;
  3017. total >>= SCHED_LOAD_SHIFT;
  3018. return div_u64(available, total);
  3019. }
  3020. static void update_cpu_power(struct sched_domain *sd, int cpu)
  3021. {
  3022. unsigned long weight = cpumask_weight(sched_domain_span(sd));
  3023. unsigned long power = SCHED_LOAD_SCALE;
  3024. struct sched_group *sdg = sd->groups;
  3025. /* here we could scale based on cpufreq */
  3026. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  3027. power *= arch_scale_smt_power(sd, cpu);
  3028. power >>= SCHED_LOAD_SHIFT;
  3029. }
  3030. power *= scale_rt_power(cpu);
  3031. power >>= SCHED_LOAD_SHIFT;
  3032. if (!power)
  3033. power = 1;
  3034. sdg->cpu_power = power;
  3035. }
  3036. static void update_group_power(struct sched_domain *sd, int cpu)
  3037. {
  3038. struct sched_domain *child = sd->child;
  3039. struct sched_group *group, *sdg = sd->groups;
  3040. unsigned long power;
  3041. if (!child) {
  3042. update_cpu_power(sd, cpu);
  3043. return;
  3044. }
  3045. power = 0;
  3046. group = child->groups;
  3047. do {
  3048. power += group->cpu_power;
  3049. group = group->next;
  3050. } while (group != child->groups);
  3051. sdg->cpu_power = power;
  3052. }
  3053. /**
  3054. * update_sg_lb_stats - Update sched_group's statistics for load balancing.
  3055. * @group: sched_group whose statistics are to be updated.
  3056. * @this_cpu: Cpu for which load balance is currently performed.
  3057. * @idle: Idle status of this_cpu
  3058. * @load_idx: Load index of sched_domain of this_cpu for load calc.
  3059. * @sd_idle: Idle status of the sched_domain containing group.
  3060. * @local_group: Does group contain this_cpu.
  3061. * @cpus: Set of cpus considered for load balancing.
  3062. * @balance: Should we balance.
  3063. * @sgs: variable to hold the statistics for this group.
  3064. */
  3065. static inline void update_sg_lb_stats(struct sched_domain *sd,
  3066. struct sched_group *group, int this_cpu,
  3067. enum cpu_idle_type idle, int load_idx, int *sd_idle,
  3068. int local_group, const struct cpumask *cpus,
  3069. int *balance, struct sg_lb_stats *sgs)
  3070. {
  3071. unsigned long load, max_cpu_load, min_cpu_load;
  3072. int i;
  3073. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  3074. unsigned long sum_avg_load_per_task;
  3075. unsigned long avg_load_per_task;
  3076. if (local_group) {
  3077. balance_cpu = group_first_cpu(group);
  3078. if (balance_cpu == this_cpu)
  3079. update_group_power(sd, this_cpu);
  3080. }
  3081. /* Tally up the load of all CPUs in the group */
  3082. sum_avg_load_per_task = avg_load_per_task = 0;
  3083. max_cpu_load = 0;
  3084. min_cpu_load = ~0UL;
  3085. for_each_cpu_and(i, sched_group_cpus(group), cpus) {
  3086. struct rq *rq = cpu_rq(i);
  3087. if (*sd_idle && rq->nr_running)
  3088. *sd_idle = 0;
  3089. /* Bias balancing toward cpus of our domain */
  3090. if (local_group) {
  3091. if (idle_cpu(i) && !first_idle_cpu) {
  3092. first_idle_cpu = 1;
  3093. balance_cpu = i;
  3094. }
  3095. load = target_load(i, load_idx);
  3096. } else {
  3097. load = source_load(i, load_idx);
  3098. if (load > max_cpu_load)
  3099. max_cpu_load = load;
  3100. if (min_cpu_load > load)
  3101. min_cpu_load = load;
  3102. }
  3103. sgs->group_load += load;
  3104. sgs->sum_nr_running += rq->nr_running;
  3105. sgs->sum_weighted_load += weighted_cpuload(i);
  3106. sum_avg_load_per_task += cpu_avg_load_per_task(i);
  3107. }
  3108. /*
  3109. * First idle cpu or the first cpu(busiest) in this sched group
  3110. * is eligible for doing load balancing at this and above
  3111. * domains. In the newly idle case, we will allow all the cpu's
  3112. * to do the newly idle load balance.
  3113. */
  3114. if (idle != CPU_NEWLY_IDLE && local_group &&
  3115. balance_cpu != this_cpu && balance) {
  3116. *balance = 0;
  3117. return;
  3118. }
  3119. /* Adjust by relative CPU power of the group */
  3120. sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
  3121. /*
  3122. * Consider the group unbalanced when the imbalance is larger
  3123. * than the average weight of two tasks.
  3124. *
  3125. * APZ: with cgroup the avg task weight can vary wildly and
  3126. * might not be a suitable number - should we keep a
  3127. * normalized nr_running number somewhere that negates
  3128. * the hierarchy?
  3129. */
  3130. avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
  3131. group->cpu_power;
  3132. if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
  3133. sgs->group_imb = 1;
  3134. sgs->group_capacity =
  3135. DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
  3136. }
  3137. /**
  3138. * update_sd_lb_stats - Update sched_group's statistics for load balancing.
  3139. * @sd: sched_domain whose statistics are to be updated.
  3140. * @this_cpu: Cpu for which load balance is currently performed.
  3141. * @idle: Idle status of this_cpu
  3142. * @sd_idle: Idle status of the sched_domain containing group.
  3143. * @cpus: Set of cpus considered for load balancing.
  3144. * @balance: Should we balance.
  3145. * @sds: variable to hold the statistics for this sched_domain.
  3146. */
  3147. static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
  3148. enum cpu_idle_type idle, int *sd_idle,
  3149. const struct cpumask *cpus, int *balance,
  3150. struct sd_lb_stats *sds)
  3151. {
  3152. struct sched_domain *child = sd->child;
  3153. struct sched_group *group = sd->groups;
  3154. struct sg_lb_stats sgs;
  3155. int load_idx, prefer_sibling = 0;
  3156. if (child && child->flags & SD_PREFER_SIBLING)
  3157. prefer_sibling = 1;
  3158. init_sd_power_savings_stats(sd, sds, idle);
  3159. load_idx = get_sd_load_idx(sd, idle);
  3160. do {
  3161. int local_group;
  3162. local_group = cpumask_test_cpu(this_cpu,
  3163. sched_group_cpus(group));
  3164. memset(&sgs, 0, sizeof(sgs));
  3165. update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
  3166. local_group, cpus, balance, &sgs);
  3167. if (local_group && balance && !(*balance))
  3168. return;
  3169. sds->total_load += sgs.group_load;
  3170. sds->total_pwr += group->cpu_power;
  3171. /*
  3172. * In case the child domain prefers tasks go to siblings
  3173. * first, lower the group capacity to one so that we'll try
  3174. * and move all the excess tasks away.
  3175. */
  3176. if (prefer_sibling)
  3177. sgs.group_capacity = min(sgs.group_capacity, 1UL);
  3178. if (local_group) {
  3179. sds->this_load = sgs.avg_load;
  3180. sds->this = group;
  3181. sds->this_nr_running = sgs.sum_nr_running;
  3182. sds->this_load_per_task = sgs.sum_weighted_load;
  3183. } else if (sgs.avg_load > sds->max_load &&
  3184. (sgs.sum_nr_running > sgs.group_capacity ||
  3185. sgs.group_imb)) {
  3186. sds->max_load = sgs.avg_load;
  3187. sds->busiest = group;
  3188. sds->busiest_nr_running = sgs.sum_nr_running;
  3189. sds->busiest_load_per_task = sgs.sum_weighted_load;
  3190. sds->group_imb = sgs.group_imb;
  3191. }
  3192. update_sd_power_savings_stats(group, sds, local_group, &sgs);
  3193. group = group->next;
  3194. } while (group != sd->groups);
  3195. }
  3196. /**
  3197. * fix_small_imbalance - Calculate the minor imbalance that exists
  3198. * amongst the groups of a sched_domain, during
  3199. * load balancing.
  3200. * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
  3201. * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
  3202. * @imbalance: Variable to store the imbalance.
  3203. */
  3204. static inline void fix_small_imbalance(struct sd_lb_stats *sds,
  3205. int this_cpu, unsigned long *imbalance)
  3206. {
  3207. unsigned long tmp, pwr_now = 0, pwr_move = 0;
  3208. unsigned int imbn = 2;
  3209. if (sds->this_nr_running) {
  3210. sds->this_load_per_task /= sds->this_nr_running;
  3211. if (sds->busiest_load_per_task >
  3212. sds->this_load_per_task)
  3213. imbn = 1;
  3214. } else
  3215. sds->this_load_per_task =
  3216. cpu_avg_load_per_task(this_cpu);
  3217. if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
  3218. sds->busiest_load_per_task * imbn) {
  3219. *imbalance = sds->busiest_load_per_task;
  3220. return;
  3221. }
  3222. /*
  3223. * OK, we don't have enough imbalance to justify moving tasks,
  3224. * however we may be able to increase total CPU power used by
  3225. * moving them.
  3226. */
  3227. pwr_now += sds->busiest->cpu_power *
  3228. min(sds->busiest_load_per_task, sds->max_load);
  3229. pwr_now += sds->this->cpu_power *
  3230. min(sds->this_load_per_task, sds->this_load);
  3231. pwr_now /= SCHED_LOAD_SCALE;
  3232. /* Amount of load we'd subtract */
  3233. tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
  3234. sds->busiest->cpu_power;
  3235. if (sds->max_load > tmp)
  3236. pwr_move += sds->busiest->cpu_power *
  3237. min(sds->busiest_load_per_task, sds->max_load - tmp);
  3238. /* Amount of load we'd add */
  3239. if (sds->max_load * sds->busiest->cpu_power <
  3240. sds->busiest_load_per_task * SCHED_LOAD_SCALE)
  3241. tmp = (sds->max_load * sds->busiest->cpu_power) /
  3242. sds->this->cpu_power;
  3243. else
  3244. tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
  3245. sds->this->cpu_power;
  3246. pwr_move += sds->this->cpu_power *
  3247. min(sds->this_load_per_task, sds->this_load + tmp);
  3248. pwr_move /= SCHED_LOAD_SCALE;
  3249. /* Move if we gain throughput */
  3250. if (pwr_move > pwr_now)
  3251. *imbalance = sds->busiest_load_per_task;
  3252. }
  3253. /**
  3254. * calculate_imbalance - Calculate the amount of imbalance present within the
  3255. * groups of a given sched_domain during load balance.
  3256. * @sds: statistics of the sched_domain whose imbalance is to be calculated.
  3257. * @this_cpu: Cpu for which currently load balance is being performed.
  3258. * @imbalance: The variable to store the imbalance.
  3259. */
  3260. static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
  3261. unsigned long *imbalance)
  3262. {
  3263. unsigned long max_pull;
  3264. /*
  3265. * In the presence of smp nice balancing, certain scenarios can have
  3266. * max load less than avg load(as we skip the groups at or below
  3267. * its cpu_power, while calculating max_load..)
  3268. */
  3269. if (sds->max_load < sds->avg_load) {
  3270. *imbalance = 0;
  3271. return fix_small_imbalance(sds, this_cpu, imbalance);
  3272. }
  3273. /* Don't want to pull so many tasks that a group would go idle */
  3274. max_pull = min(sds->max_load - sds->avg_load,
  3275. sds->max_load - sds->busiest_load_per_task);
  3276. /* How much load to actually move to equalise the imbalance */
  3277. *imbalance = min(max_pull * sds->busiest->cpu_power,
  3278. (sds->avg_load - sds->this_load) * sds->this->cpu_power)
  3279. / SCHED_LOAD_SCALE;
  3280. /*
  3281. * if *imbalance is less than the average load per runnable task
  3282. * there is no gaurantee that any tasks will be moved so we'll have
  3283. * a think about bumping its value to force at least one task to be
  3284. * moved
  3285. */
  3286. if (*imbalance < sds->busiest_load_per_task)
  3287. return fix_small_imbalance(sds, this_cpu, imbalance);
  3288. }
  3289. /******* find_busiest_group() helpers end here *********************/
  3290. /**
  3291. * find_busiest_group - Returns the busiest group within the sched_domain
  3292. * if there is an imbalance. If there isn't an imbalance, and
  3293. * the user has opted for power-savings, it returns a group whose
  3294. * CPUs can be put to idle by rebalancing those tasks elsewhere, if
  3295. * such a group exists.
  3296. *
  3297. * Also calculates the amount of weighted load which should be moved
  3298. * to restore balance.
  3299. *
  3300. * @sd: The sched_domain whose busiest group is to be returned.
  3301. * @this_cpu: The cpu for which load balancing is currently being performed.
  3302. * @imbalance: Variable which stores amount of weighted load which should
  3303. * be moved to restore balance/put a group to idle.
  3304. * @idle: The idle status of this_cpu.
  3305. * @sd_idle: The idleness of sd
  3306. * @cpus: The set of CPUs under consideration for load-balancing.
  3307. * @balance: Pointer to a variable indicating if this_cpu
  3308. * is the appropriate cpu to perform load balancing at this_level.
  3309. *
  3310. * Returns: - the busiest group if imbalance exists.
  3311. * - If no imbalance and user has opted for power-savings balance,
  3312. * return the least loaded group whose CPUs can be
  3313. * put to idle by rebalancing its tasks onto our group.
  3314. */
  3315. static struct sched_group *
  3316. find_busiest_group(struct sched_domain *sd, int this_cpu,
  3317. unsigned long *imbalance, enum cpu_idle_type idle,
  3318. int *sd_idle, const struct cpumask *cpus, int *balance)
  3319. {
  3320. struct sd_lb_stats sds;
  3321. memset(&sds, 0, sizeof(sds));
  3322. /*
  3323. * Compute the various statistics relavent for load balancing at
  3324. * this level.
  3325. */
  3326. update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
  3327. balance, &sds);
  3328. /* Cases where imbalance does not exist from POV of this_cpu */
  3329. /* 1) this_cpu is not the appropriate cpu to perform load balancing
  3330. * at this level.
  3331. * 2) There is no busy sibling group to pull from.
  3332. * 3) This group is the busiest group.
  3333. * 4) This group is more busy than the avg busieness at this
  3334. * sched_domain.
  3335. * 5) The imbalance is within the specified limit.
  3336. * 6) Any rebalance would lead to ping-pong
  3337. */
  3338. if (balance && !(*balance))
  3339. goto ret;
  3340. if (!sds.busiest || sds.busiest_nr_running == 0)
  3341. goto out_balanced;
  3342. if (sds.this_load >= sds.max_load)
  3343. goto out_balanced;
  3344. sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
  3345. if (sds.this_load >= sds.avg_load)
  3346. goto out_balanced;
  3347. if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
  3348. goto out_balanced;
  3349. sds.busiest_load_per_task /= sds.busiest_nr_running;
  3350. if (sds.group_imb)
  3351. sds.busiest_load_per_task =
  3352. min(sds.busiest_load_per_task, sds.avg_load);
  3353. /*
  3354. * We're trying to get all the cpus to the average_load, so we don't
  3355. * want to push ourselves above the average load, nor do we wish to
  3356. * reduce the max loaded cpu below the average load, as either of these
  3357. * actions would just result in more rebalancing later, and ping-pong
  3358. * tasks around. Thus we look for the minimum possible imbalance.
  3359. * Negative imbalances (*we* are more loaded than anyone else) will
  3360. * be counted as no imbalance for these purposes -- we can't fix that
  3361. * by pulling tasks to us. Be careful of negative numbers as they'll
  3362. * appear as very large values with unsigned longs.
  3363. */
  3364. if (sds.max_load <= sds.busiest_load_per_task)
  3365. goto out_balanced;
  3366. /* Looks like there is an imbalance. Compute it */
  3367. calculate_imbalance(&sds, this_cpu, imbalance);
  3368. return sds.busiest;
  3369. out_balanced:
  3370. /*
  3371. * There is no obvious imbalance. But check if we can do some balancing
  3372. * to save power.
  3373. */
  3374. if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
  3375. return sds.busiest;
  3376. ret:
  3377. *imbalance = 0;
  3378. return NULL;
  3379. }
  3380. static struct sched_group *group_of(int cpu)
  3381. {
  3382. struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
  3383. if (!sd)
  3384. return NULL;
  3385. return sd->groups;
  3386. }
  3387. static unsigned long power_of(int cpu)
  3388. {
  3389. struct sched_group *group = group_of(cpu);
  3390. if (!group)
  3391. return SCHED_LOAD_SCALE;
  3392. return group->cpu_power;
  3393. }
  3394. /*
  3395. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  3396. */
  3397. static struct rq *
  3398. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  3399. unsigned long imbalance, const struct cpumask *cpus)
  3400. {
  3401. struct rq *busiest = NULL, *rq;
  3402. unsigned long max_load = 0;
  3403. int i;
  3404. for_each_cpu(i, sched_group_cpus(group)) {
  3405. unsigned long power = power_of(i);
  3406. unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
  3407. unsigned long wl;
  3408. if (!cpumask_test_cpu(i, cpus))
  3409. continue;
  3410. rq = cpu_rq(i);
  3411. wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
  3412. wl /= power;
  3413. if (capacity && rq->nr_running == 1 && wl > imbalance)
  3414. continue;
  3415. if (wl > max_load) {
  3416. max_load = wl;
  3417. busiest = rq;
  3418. }
  3419. }
  3420. return busiest;
  3421. }
  3422. /*
  3423. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  3424. * so long as it is large enough.
  3425. */
  3426. #define MAX_PINNED_INTERVAL 512
  3427. /* Working cpumask for load_balance and load_balance_newidle. */
  3428. static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
  3429. /*
  3430. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3431. * tasks if there is an imbalance.
  3432. */
  3433. static int load_balance(int this_cpu, struct rq *this_rq,
  3434. struct sched_domain *sd, enum cpu_idle_type idle,
  3435. int *balance)
  3436. {
  3437. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  3438. struct sched_group *group;
  3439. unsigned long imbalance;
  3440. struct rq *busiest;
  3441. unsigned long flags;
  3442. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  3443. cpumask_setall(cpus);
  3444. /*
  3445. * When power savings policy is enabled for the parent domain, idle
  3446. * sibling can pick up load irrespective of busy siblings. In this case,
  3447. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  3448. * portraying it as CPU_NOT_IDLE.
  3449. */
  3450. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  3451. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3452. sd_idle = 1;
  3453. schedstat_inc(sd, lb_count[idle]);
  3454. redo:
  3455. update_shares(sd);
  3456. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  3457. cpus, balance);
  3458. if (*balance == 0)
  3459. goto out_balanced;
  3460. if (!group) {
  3461. schedstat_inc(sd, lb_nobusyg[idle]);
  3462. goto out_balanced;
  3463. }
  3464. busiest = find_busiest_queue(group, idle, imbalance, cpus);
  3465. if (!busiest) {
  3466. schedstat_inc(sd, lb_nobusyq[idle]);
  3467. goto out_balanced;
  3468. }
  3469. BUG_ON(busiest == this_rq);
  3470. schedstat_add(sd, lb_imbalance[idle], imbalance);
  3471. ld_moved = 0;
  3472. if (busiest->nr_running > 1) {
  3473. /*
  3474. * Attempt to move tasks. If find_busiest_group has found
  3475. * an imbalance but busiest->nr_running <= 1, the group is
  3476. * still unbalanced. ld_moved simply stays zero, so it is
  3477. * correctly treated as an imbalance.
  3478. */
  3479. local_irq_save(flags);
  3480. double_rq_lock(this_rq, busiest);
  3481. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3482. imbalance, sd, idle, &all_pinned);
  3483. double_rq_unlock(this_rq, busiest);
  3484. local_irq_restore(flags);
  3485. /*
  3486. * some other cpu did the load balance for us.
  3487. */
  3488. if (ld_moved && this_cpu != smp_processor_id())
  3489. resched_cpu(this_cpu);
  3490. /* All tasks on this runqueue were pinned by CPU affinity */
  3491. if (unlikely(all_pinned)) {
  3492. cpumask_clear_cpu(cpu_of(busiest), cpus);
  3493. if (!cpumask_empty(cpus))
  3494. goto redo;
  3495. goto out_balanced;
  3496. }
  3497. }
  3498. if (!ld_moved) {
  3499. schedstat_inc(sd, lb_failed[idle]);
  3500. sd->nr_balance_failed++;
  3501. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  3502. spin_lock_irqsave(&busiest->lock, flags);
  3503. /* don't kick the migration_thread, if the curr
  3504. * task on busiest cpu can't be moved to this_cpu
  3505. */
  3506. if (!cpumask_test_cpu(this_cpu,
  3507. &busiest->curr->cpus_allowed)) {
  3508. spin_unlock_irqrestore(&busiest->lock, flags);
  3509. all_pinned = 1;
  3510. goto out_one_pinned;
  3511. }
  3512. if (!busiest->active_balance) {
  3513. busiest->active_balance = 1;
  3514. busiest->push_cpu = this_cpu;
  3515. active_balance = 1;
  3516. }
  3517. spin_unlock_irqrestore(&busiest->lock, flags);
  3518. if (active_balance)
  3519. wake_up_process(busiest->migration_thread);
  3520. /*
  3521. * We've kicked active balancing, reset the failure
  3522. * counter.
  3523. */
  3524. sd->nr_balance_failed = sd->cache_nice_tries+1;
  3525. }
  3526. } else
  3527. sd->nr_balance_failed = 0;
  3528. if (likely(!active_balance)) {
  3529. /* We were unbalanced, so reset the balancing interval */
  3530. sd->balance_interval = sd->min_interval;
  3531. } else {
  3532. /*
  3533. * If we've begun active balancing, start to back off. This
  3534. * case may not be covered by the all_pinned logic if there
  3535. * is only 1 task on the busy runqueue (because we don't call
  3536. * move_tasks).
  3537. */
  3538. if (sd->balance_interval < sd->max_interval)
  3539. sd->balance_interval *= 2;
  3540. }
  3541. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3542. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3543. ld_moved = -1;
  3544. goto out;
  3545. out_balanced:
  3546. schedstat_inc(sd, lb_balanced[idle]);
  3547. sd->nr_balance_failed = 0;
  3548. out_one_pinned:
  3549. /* tune up the balancing interval */
  3550. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  3551. (sd->balance_interval < sd->max_interval))
  3552. sd->balance_interval *= 2;
  3553. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3554. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3555. ld_moved = -1;
  3556. else
  3557. ld_moved = 0;
  3558. out:
  3559. if (ld_moved)
  3560. update_shares(sd);
  3561. return ld_moved;
  3562. }
  3563. /*
  3564. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3565. * tasks if there is an imbalance.
  3566. *
  3567. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  3568. * this_rq is locked.
  3569. */
  3570. static int
  3571. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
  3572. {
  3573. struct sched_group *group;
  3574. struct rq *busiest = NULL;
  3575. unsigned long imbalance;
  3576. int ld_moved = 0;
  3577. int sd_idle = 0;
  3578. int all_pinned = 0;
  3579. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  3580. cpumask_setall(cpus);
  3581. /*
  3582. * When power savings policy is enabled for the parent domain, idle
  3583. * sibling can pick up load irrespective of busy siblings. In this case,
  3584. * let the state of idle sibling percolate up as IDLE, instead of
  3585. * portraying it as CPU_NOT_IDLE.
  3586. */
  3587. if (sd->flags & SD_SHARE_CPUPOWER &&
  3588. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3589. sd_idle = 1;
  3590. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  3591. redo:
  3592. update_shares_locked(this_rq, sd);
  3593. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  3594. &sd_idle, cpus, NULL);
  3595. if (!group) {
  3596. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  3597. goto out_balanced;
  3598. }
  3599. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
  3600. if (!busiest) {
  3601. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  3602. goto out_balanced;
  3603. }
  3604. BUG_ON(busiest == this_rq);
  3605. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  3606. ld_moved = 0;
  3607. if (busiest->nr_running > 1) {
  3608. /* Attempt to move tasks */
  3609. double_lock_balance(this_rq, busiest);
  3610. /* this_rq->clock is already updated */
  3611. update_rq_clock(busiest);
  3612. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3613. imbalance, sd, CPU_NEWLY_IDLE,
  3614. &all_pinned);
  3615. double_unlock_balance(this_rq, busiest);
  3616. if (unlikely(all_pinned)) {
  3617. cpumask_clear_cpu(cpu_of(busiest), cpus);
  3618. if (!cpumask_empty(cpus))
  3619. goto redo;
  3620. }
  3621. }
  3622. if (!ld_moved) {
  3623. int active_balance = 0;
  3624. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  3625. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3626. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3627. return -1;
  3628. if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
  3629. return -1;
  3630. if (sd->nr_balance_failed++ < 2)
  3631. return -1;
  3632. /*
  3633. * The only task running in a non-idle cpu can be moved to this
  3634. * cpu in an attempt to completely freeup the other CPU
  3635. * package. The same method used to move task in load_balance()
  3636. * have been extended for load_balance_newidle() to speedup
  3637. * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
  3638. *
  3639. * The package power saving logic comes from
  3640. * find_busiest_group(). If there are no imbalance, then
  3641. * f_b_g() will return NULL. However when sched_mc={1,2} then
  3642. * f_b_g() will select a group from which a running task may be
  3643. * pulled to this cpu in order to make the other package idle.
  3644. * If there is no opportunity to make a package idle and if
  3645. * there are no imbalance, then f_b_g() will return NULL and no
  3646. * action will be taken in load_balance_newidle().
  3647. *
  3648. * Under normal task pull operation due to imbalance, there
  3649. * will be more than one task in the source run queue and
  3650. * move_tasks() will succeed. ld_moved will be true and this
  3651. * active balance code will not be triggered.
  3652. */
  3653. /* Lock busiest in correct order while this_rq is held */
  3654. double_lock_balance(this_rq, busiest);
  3655. /*
  3656. * don't kick the migration_thread, if the curr
  3657. * task on busiest cpu can't be moved to this_cpu
  3658. */
  3659. if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
  3660. double_unlock_balance(this_rq, busiest);
  3661. all_pinned = 1;
  3662. return ld_moved;
  3663. }
  3664. if (!busiest->active_balance) {
  3665. busiest->active_balance = 1;
  3666. busiest->push_cpu = this_cpu;
  3667. active_balance = 1;
  3668. }
  3669. double_unlock_balance(this_rq, busiest);
  3670. /*
  3671. * Should not call ttwu while holding a rq->lock
  3672. */
  3673. spin_unlock(&this_rq->lock);
  3674. if (active_balance)
  3675. wake_up_process(busiest->migration_thread);
  3676. spin_lock(&this_rq->lock);
  3677. } else
  3678. sd->nr_balance_failed = 0;
  3679. update_shares_locked(this_rq, sd);
  3680. return ld_moved;
  3681. out_balanced:
  3682. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  3683. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3684. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3685. return -1;
  3686. sd->nr_balance_failed = 0;
  3687. return 0;
  3688. }
  3689. /*
  3690. * idle_balance is called by schedule() if this_cpu is about to become
  3691. * idle. Attempts to pull tasks from other CPUs.
  3692. */
  3693. static void idle_balance(int this_cpu, struct rq *this_rq)
  3694. {
  3695. struct sched_domain *sd;
  3696. int pulled_task = 0;
  3697. unsigned long next_balance = jiffies + HZ;
  3698. for_each_domain(this_cpu, sd) {
  3699. unsigned long interval;
  3700. if (!(sd->flags & SD_LOAD_BALANCE))
  3701. continue;
  3702. if (sd->flags & SD_BALANCE_NEWIDLE)
  3703. /* If we've pulled tasks over stop searching: */
  3704. pulled_task = load_balance_newidle(this_cpu, this_rq,
  3705. sd);
  3706. interval = msecs_to_jiffies(sd->balance_interval);
  3707. if (time_after(next_balance, sd->last_balance + interval))
  3708. next_balance = sd->last_balance + interval;
  3709. if (pulled_task)
  3710. break;
  3711. }
  3712. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  3713. /*
  3714. * We are going idle. next_balance may be set based on
  3715. * a busy processor. So reset next_balance.
  3716. */
  3717. this_rq->next_balance = next_balance;
  3718. }
  3719. }
  3720. /*
  3721. * active_load_balance is run by migration threads. It pushes running tasks
  3722. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  3723. * running on each physical CPU where possible, and avoids physical /
  3724. * logical imbalances.
  3725. *
  3726. * Called with busiest_rq locked.
  3727. */
  3728. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  3729. {
  3730. int target_cpu = busiest_rq->push_cpu;
  3731. struct sched_domain *sd;
  3732. struct rq *target_rq;
  3733. /* Is there any task to move? */
  3734. if (busiest_rq->nr_running <= 1)
  3735. return;
  3736. target_rq = cpu_rq(target_cpu);
  3737. /*
  3738. * This condition is "impossible", if it occurs
  3739. * we need to fix it. Originally reported by
  3740. * Bjorn Helgaas on a 128-cpu setup.
  3741. */
  3742. BUG_ON(busiest_rq == target_rq);
  3743. /* move a task from busiest_rq to target_rq */
  3744. double_lock_balance(busiest_rq, target_rq);
  3745. update_rq_clock(busiest_rq);
  3746. update_rq_clock(target_rq);
  3747. /* Search for an sd spanning us and the target CPU. */
  3748. for_each_domain(target_cpu, sd) {
  3749. if ((sd->flags & SD_LOAD_BALANCE) &&
  3750. cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
  3751. break;
  3752. }
  3753. if (likely(sd)) {
  3754. schedstat_inc(sd, alb_count);
  3755. if (move_one_task(target_rq, target_cpu, busiest_rq,
  3756. sd, CPU_IDLE))
  3757. schedstat_inc(sd, alb_pushed);
  3758. else
  3759. schedstat_inc(sd, alb_failed);
  3760. }
  3761. double_unlock_balance(busiest_rq, target_rq);
  3762. }
  3763. #ifdef CONFIG_NO_HZ
  3764. static struct {
  3765. atomic_t load_balancer;
  3766. cpumask_var_t cpu_mask;
  3767. cpumask_var_t ilb_grp_nohz_mask;
  3768. } nohz ____cacheline_aligned = {
  3769. .load_balancer = ATOMIC_INIT(-1),
  3770. };
  3771. int get_nohz_load_balancer(void)
  3772. {
  3773. return atomic_read(&nohz.load_balancer);
  3774. }
  3775. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  3776. /**
  3777. * lowest_flag_domain - Return lowest sched_domain containing flag.
  3778. * @cpu: The cpu whose lowest level of sched domain is to
  3779. * be returned.
  3780. * @flag: The flag to check for the lowest sched_domain
  3781. * for the given cpu.
  3782. *
  3783. * Returns the lowest sched_domain of a cpu which contains the given flag.
  3784. */
  3785. static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
  3786. {
  3787. struct sched_domain *sd;
  3788. for_each_domain(cpu, sd)
  3789. if (sd && (sd->flags & flag))
  3790. break;
  3791. return sd;
  3792. }
  3793. /**
  3794. * for_each_flag_domain - Iterates over sched_domains containing the flag.
  3795. * @cpu: The cpu whose domains we're iterating over.
  3796. * @sd: variable holding the value of the power_savings_sd
  3797. * for cpu.
  3798. * @flag: The flag to filter the sched_domains to be iterated.
  3799. *
  3800. * Iterates over all the scheduler domains for a given cpu that has the 'flag'
  3801. * set, starting from the lowest sched_domain to the highest.
  3802. */
  3803. #define for_each_flag_domain(cpu, sd, flag) \
  3804. for (sd = lowest_flag_domain(cpu, flag); \
  3805. (sd && (sd->flags & flag)); sd = sd->parent)
  3806. /**
  3807. * is_semi_idle_group - Checks if the given sched_group is semi-idle.
  3808. * @ilb_group: group to be checked for semi-idleness
  3809. *
  3810. * Returns: 1 if the group is semi-idle. 0 otherwise.
  3811. *
  3812. * We define a sched_group to be semi idle if it has atleast one idle-CPU
  3813. * and atleast one non-idle CPU. This helper function checks if the given
  3814. * sched_group is semi-idle or not.
  3815. */
  3816. static inline int is_semi_idle_group(struct sched_group *ilb_group)
  3817. {
  3818. cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
  3819. sched_group_cpus(ilb_group));
  3820. /*
  3821. * A sched_group is semi-idle when it has atleast one busy cpu
  3822. * and atleast one idle cpu.
  3823. */
  3824. if (cpumask_empty(nohz.ilb_grp_nohz_mask))
  3825. return 0;
  3826. if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
  3827. return 0;
  3828. return 1;
  3829. }
  3830. /**
  3831. * find_new_ilb - Finds the optimum idle load balancer for nomination.
  3832. * @cpu: The cpu which is nominating a new idle_load_balancer.
  3833. *
  3834. * Returns: Returns the id of the idle load balancer if it exists,
  3835. * Else, returns >= nr_cpu_ids.
  3836. *
  3837. * This algorithm picks the idle load balancer such that it belongs to a
  3838. * semi-idle powersavings sched_domain. The idea is to try and avoid
  3839. * completely idle packages/cores just for the purpose of idle load balancing
  3840. * when there are other idle cpu's which are better suited for that job.
  3841. */
  3842. static int find_new_ilb(int cpu)
  3843. {
  3844. struct sched_domain *sd;
  3845. struct sched_group *ilb_group;
  3846. /*
  3847. * Have idle load balancer selection from semi-idle packages only
  3848. * when power-aware load balancing is enabled
  3849. */
  3850. if (!(sched_smt_power_savings || sched_mc_power_savings))
  3851. goto out_done;
  3852. /*
  3853. * Optimize for the case when we have no idle CPUs or only one
  3854. * idle CPU. Don't walk the sched_domain hierarchy in such cases
  3855. */
  3856. if (cpumask_weight(nohz.cpu_mask) < 2)
  3857. goto out_done;
  3858. for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
  3859. ilb_group = sd->groups;
  3860. do {
  3861. if (is_semi_idle_group(ilb_group))
  3862. return cpumask_first(nohz.ilb_grp_nohz_mask);
  3863. ilb_group = ilb_group->next;
  3864. } while (ilb_group != sd->groups);
  3865. }
  3866. out_done:
  3867. return cpumask_first(nohz.cpu_mask);
  3868. }
  3869. #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
  3870. static inline int find_new_ilb(int call_cpu)
  3871. {
  3872. return cpumask_first(nohz.cpu_mask);
  3873. }
  3874. #endif
  3875. /*
  3876. * This routine will try to nominate the ilb (idle load balancing)
  3877. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  3878. * load balancing on behalf of all those cpus. If all the cpus in the system
  3879. * go into this tickless mode, then there will be no ilb owner (as there is
  3880. * no need for one) and all the cpus will sleep till the next wakeup event
  3881. * arrives...
  3882. *
  3883. * For the ilb owner, tick is not stopped. And this tick will be used
  3884. * for idle load balancing. ilb owner will still be part of
  3885. * nohz.cpu_mask..
  3886. *
  3887. * While stopping the tick, this cpu will become the ilb owner if there
  3888. * is no other owner. And will be the owner till that cpu becomes busy
  3889. * or if all cpus in the system stop their ticks at which point
  3890. * there is no need for ilb owner.
  3891. *
  3892. * When the ilb owner becomes busy, it nominates another owner, during the
  3893. * next busy scheduler_tick()
  3894. */
  3895. int select_nohz_load_balancer(int stop_tick)
  3896. {
  3897. int cpu = smp_processor_id();
  3898. if (stop_tick) {
  3899. cpu_rq(cpu)->in_nohz_recently = 1;
  3900. if (!cpu_active(cpu)) {
  3901. if (atomic_read(&nohz.load_balancer) != cpu)
  3902. return 0;
  3903. /*
  3904. * If we are going offline and still the leader,
  3905. * give up!
  3906. */
  3907. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3908. BUG();
  3909. return 0;
  3910. }
  3911. cpumask_set_cpu(cpu, nohz.cpu_mask);
  3912. /* time for ilb owner also to sleep */
  3913. if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
  3914. if (atomic_read(&nohz.load_balancer) == cpu)
  3915. atomic_set(&nohz.load_balancer, -1);
  3916. return 0;
  3917. }
  3918. if (atomic_read(&nohz.load_balancer) == -1) {
  3919. /* make me the ilb owner */
  3920. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  3921. return 1;
  3922. } else if (atomic_read(&nohz.load_balancer) == cpu) {
  3923. int new_ilb;
  3924. if (!(sched_smt_power_savings ||
  3925. sched_mc_power_savings))
  3926. return 1;
  3927. /*
  3928. * Check to see if there is a more power-efficient
  3929. * ilb.
  3930. */
  3931. new_ilb = find_new_ilb(cpu);
  3932. if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
  3933. atomic_set(&nohz.load_balancer, -1);
  3934. resched_cpu(new_ilb);
  3935. return 0;
  3936. }
  3937. return 1;
  3938. }
  3939. } else {
  3940. if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
  3941. return 0;
  3942. cpumask_clear_cpu(cpu, nohz.cpu_mask);
  3943. if (atomic_read(&nohz.load_balancer) == cpu)
  3944. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3945. BUG();
  3946. }
  3947. return 0;
  3948. }
  3949. #endif
  3950. static DEFINE_SPINLOCK(balancing);
  3951. /*
  3952. * It checks each scheduling domain to see if it is due to be balanced,
  3953. * and initiates a balancing operation if so.
  3954. *
  3955. * Balancing parameters are set up in arch_init_sched_domains.
  3956. */
  3957. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  3958. {
  3959. int balance = 1;
  3960. struct rq *rq = cpu_rq(cpu);
  3961. unsigned long interval;
  3962. struct sched_domain *sd;
  3963. /* Earliest time when we have to do rebalance again */
  3964. unsigned long next_balance = jiffies + 60*HZ;
  3965. int update_next_balance = 0;
  3966. int need_serialize;
  3967. for_each_domain(cpu, sd) {
  3968. if (!(sd->flags & SD_LOAD_BALANCE))
  3969. continue;
  3970. interval = sd->balance_interval;
  3971. if (idle != CPU_IDLE)
  3972. interval *= sd->busy_factor;
  3973. /* scale ms to jiffies */
  3974. interval = msecs_to_jiffies(interval);
  3975. if (unlikely(!interval))
  3976. interval = 1;
  3977. if (interval > HZ*NR_CPUS/10)
  3978. interval = HZ*NR_CPUS/10;
  3979. need_serialize = sd->flags & SD_SERIALIZE;
  3980. if (need_serialize) {
  3981. if (!spin_trylock(&balancing))
  3982. goto out;
  3983. }
  3984. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  3985. if (load_balance(cpu, rq, sd, idle, &balance)) {
  3986. /*
  3987. * We've pulled tasks over so either we're no
  3988. * longer idle, or one of our SMT siblings is
  3989. * not idle.
  3990. */
  3991. idle = CPU_NOT_IDLE;
  3992. }
  3993. sd->last_balance = jiffies;
  3994. }
  3995. if (need_serialize)
  3996. spin_unlock(&balancing);
  3997. out:
  3998. if (time_after(next_balance, sd->last_balance + interval)) {
  3999. next_balance = sd->last_balance + interval;
  4000. update_next_balance = 1;
  4001. }
  4002. /*
  4003. * Stop the load balance at this level. There is another
  4004. * CPU in our sched group which is doing load balancing more
  4005. * actively.
  4006. */
  4007. if (!balance)
  4008. break;
  4009. }
  4010. /*
  4011. * next_balance will be updated only when there is a need.
  4012. * When the cpu is attached to null domain for ex, it will not be
  4013. * updated.
  4014. */
  4015. if (likely(update_next_balance))
  4016. rq->next_balance = next_balance;
  4017. }
  4018. /*
  4019. * run_rebalance_domains is triggered when needed from the scheduler tick.
  4020. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  4021. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  4022. */
  4023. static void run_rebalance_domains(struct softirq_action *h)
  4024. {
  4025. int this_cpu = smp_processor_id();
  4026. struct rq *this_rq = cpu_rq(this_cpu);
  4027. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  4028. CPU_IDLE : CPU_NOT_IDLE;
  4029. rebalance_domains(this_cpu, idle);
  4030. #ifdef CONFIG_NO_HZ
  4031. /*
  4032. * If this cpu is the owner for idle load balancing, then do the
  4033. * balancing on behalf of the other idle cpus whose ticks are
  4034. * stopped.
  4035. */
  4036. if (this_rq->idle_at_tick &&
  4037. atomic_read(&nohz.load_balancer) == this_cpu) {
  4038. struct rq *rq;
  4039. int balance_cpu;
  4040. for_each_cpu(balance_cpu, nohz.cpu_mask) {
  4041. if (balance_cpu == this_cpu)
  4042. continue;
  4043. /*
  4044. * If this cpu gets work to do, stop the load balancing
  4045. * work being done for other cpus. Next load
  4046. * balancing owner will pick it up.
  4047. */
  4048. if (need_resched())
  4049. break;
  4050. rebalance_domains(balance_cpu, CPU_IDLE);
  4051. rq = cpu_rq(balance_cpu);
  4052. if (time_after(this_rq->next_balance, rq->next_balance))
  4053. this_rq->next_balance = rq->next_balance;
  4054. }
  4055. }
  4056. #endif
  4057. }
  4058. static inline int on_null_domain(int cpu)
  4059. {
  4060. return !rcu_dereference(cpu_rq(cpu)->sd);
  4061. }
  4062. /*
  4063. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  4064. *
  4065. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  4066. * idle load balancing owner or decide to stop the periodic load balancing,
  4067. * if the whole system is idle.
  4068. */
  4069. static inline void trigger_load_balance(struct rq *rq, int cpu)
  4070. {
  4071. #ifdef CONFIG_NO_HZ
  4072. /*
  4073. * If we were in the nohz mode recently and busy at the current
  4074. * scheduler tick, then check if we need to nominate new idle
  4075. * load balancer.
  4076. */
  4077. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  4078. rq->in_nohz_recently = 0;
  4079. if (atomic_read(&nohz.load_balancer) == cpu) {
  4080. cpumask_clear_cpu(cpu, nohz.cpu_mask);
  4081. atomic_set(&nohz.load_balancer, -1);
  4082. }
  4083. if (atomic_read(&nohz.load_balancer) == -1) {
  4084. int ilb = find_new_ilb(cpu);
  4085. if (ilb < nr_cpu_ids)
  4086. resched_cpu(ilb);
  4087. }
  4088. }
  4089. /*
  4090. * If this cpu is idle and doing idle load balancing for all the
  4091. * cpus with ticks stopped, is it time for that to stop?
  4092. */
  4093. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  4094. cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
  4095. resched_cpu(cpu);
  4096. return;
  4097. }
  4098. /*
  4099. * If this cpu is idle and the idle load balancing is done by
  4100. * someone else, then no need raise the SCHED_SOFTIRQ
  4101. */
  4102. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  4103. cpumask_test_cpu(cpu, nohz.cpu_mask))
  4104. return;
  4105. #endif
  4106. /* Don't need to rebalance while attached to NULL domain */
  4107. if (time_after_eq(jiffies, rq->next_balance) &&
  4108. likely(!on_null_domain(cpu)))
  4109. raise_softirq(SCHED_SOFTIRQ);
  4110. }
  4111. #else /* CONFIG_SMP */
  4112. /*
  4113. * on UP we do not need to balance between CPUs:
  4114. */
  4115. static inline void idle_balance(int cpu, struct rq *rq)
  4116. {
  4117. }
  4118. #endif
  4119. DEFINE_PER_CPU(struct kernel_stat, kstat);
  4120. EXPORT_PER_CPU_SYMBOL(kstat);
  4121. /*
  4122. * Return any ns on the sched_clock that have not yet been accounted in
  4123. * @p in case that task is currently running.
  4124. *
  4125. * Called with task_rq_lock() held on @rq.
  4126. */
  4127. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  4128. {
  4129. u64 ns = 0;
  4130. if (task_current(rq, p)) {
  4131. update_rq_clock(rq);
  4132. ns = rq->clock - p->se.exec_start;
  4133. if ((s64)ns < 0)
  4134. ns = 0;
  4135. }
  4136. return ns;
  4137. }
  4138. unsigned long long task_delta_exec(struct task_struct *p)
  4139. {
  4140. unsigned long flags;
  4141. struct rq *rq;
  4142. u64 ns = 0;
  4143. rq = task_rq_lock(p, &flags);
  4144. ns = do_task_delta_exec(p, rq);
  4145. task_rq_unlock(rq, &flags);
  4146. return ns;
  4147. }
  4148. /*
  4149. * Return accounted runtime for the task.
  4150. * In case the task is currently running, return the runtime plus current's
  4151. * pending runtime that have not been accounted yet.
  4152. */
  4153. unsigned long long task_sched_runtime(struct task_struct *p)
  4154. {
  4155. unsigned long flags;
  4156. struct rq *rq;
  4157. u64 ns = 0;
  4158. rq = task_rq_lock(p, &flags);
  4159. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  4160. task_rq_unlock(rq, &flags);
  4161. return ns;
  4162. }
  4163. /*
  4164. * Return sum_exec_runtime for the thread group.
  4165. * In case the task is currently running, return the sum plus current's
  4166. * pending runtime that have not been accounted yet.
  4167. *
  4168. * Note that the thread group might have other running tasks as well,
  4169. * so the return value not includes other pending runtime that other
  4170. * running tasks might have.
  4171. */
  4172. unsigned long long thread_group_sched_runtime(struct task_struct *p)
  4173. {
  4174. struct task_cputime totals;
  4175. unsigned long flags;
  4176. struct rq *rq;
  4177. u64 ns;
  4178. rq = task_rq_lock(p, &flags);
  4179. thread_group_cputime(p, &totals);
  4180. ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
  4181. task_rq_unlock(rq, &flags);
  4182. return ns;
  4183. }
  4184. /*
  4185. * Account user cpu time to a process.
  4186. * @p: the process that the cpu time gets accounted to
  4187. * @cputime: the cpu time spent in user space since the last update
  4188. * @cputime_scaled: cputime scaled by cpu frequency
  4189. */
  4190. void account_user_time(struct task_struct *p, cputime_t cputime,
  4191. cputime_t cputime_scaled)
  4192. {
  4193. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4194. cputime64_t tmp;
  4195. /* Add user time to process. */
  4196. p->utime = cputime_add(p->utime, cputime);
  4197. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  4198. account_group_user_time(p, cputime);
  4199. /* Add user time to cpustat. */
  4200. tmp = cputime_to_cputime64(cputime);
  4201. if (TASK_NICE(p) > 0)
  4202. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  4203. else
  4204. cpustat->user = cputime64_add(cpustat->user, tmp);
  4205. cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
  4206. /* Account for user time used */
  4207. acct_update_integrals(p);
  4208. }
  4209. /*
  4210. * Account guest cpu time to a process.
  4211. * @p: the process that the cpu time gets accounted to
  4212. * @cputime: the cpu time spent in virtual machine since the last update
  4213. * @cputime_scaled: cputime scaled by cpu frequency
  4214. */
  4215. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  4216. cputime_t cputime_scaled)
  4217. {
  4218. cputime64_t tmp;
  4219. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4220. tmp = cputime_to_cputime64(cputime);
  4221. /* Add guest time to process. */
  4222. p->utime = cputime_add(p->utime, cputime);
  4223. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  4224. account_group_user_time(p, cputime);
  4225. p->gtime = cputime_add(p->gtime, cputime);
  4226. /* Add guest time to cpustat. */
  4227. cpustat->user = cputime64_add(cpustat->user, tmp);
  4228. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  4229. }
  4230. /*
  4231. * Account system cpu time to a process.
  4232. * @p: the process that the cpu time gets accounted to
  4233. * @hardirq_offset: the offset to subtract from hardirq_count()
  4234. * @cputime: the cpu time spent in kernel space since the last update
  4235. * @cputime_scaled: cputime scaled by cpu frequency
  4236. */
  4237. void account_system_time(struct task_struct *p, int hardirq_offset,
  4238. cputime_t cputime, cputime_t cputime_scaled)
  4239. {
  4240. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4241. cputime64_t tmp;
  4242. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  4243. account_guest_time(p, cputime, cputime_scaled);
  4244. return;
  4245. }
  4246. /* Add system time to process. */
  4247. p->stime = cputime_add(p->stime, cputime);
  4248. p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
  4249. account_group_system_time(p, cputime);
  4250. /* Add system time to cpustat. */
  4251. tmp = cputime_to_cputime64(cputime);
  4252. if (hardirq_count() - hardirq_offset)
  4253. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  4254. else if (softirq_count())
  4255. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  4256. else
  4257. cpustat->system = cputime64_add(cpustat->system, tmp);
  4258. cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
  4259. /* Account for system time used */
  4260. acct_update_integrals(p);
  4261. }
  4262. /*
  4263. * Account for involuntary wait time.
  4264. * @steal: the cpu time spent in involuntary wait
  4265. */
  4266. void account_steal_time(cputime_t cputime)
  4267. {
  4268. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4269. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  4270. cpustat->steal = cputime64_add(cpustat->steal, cputime64);
  4271. }
  4272. /*
  4273. * Account for idle time.
  4274. * @cputime: the cpu time spent in idle wait
  4275. */
  4276. void account_idle_time(cputime_t cputime)
  4277. {
  4278. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4279. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  4280. struct rq *rq = this_rq();
  4281. if (atomic_read(&rq->nr_iowait) > 0)
  4282. cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
  4283. else
  4284. cpustat->idle = cputime64_add(cpustat->idle, cputime64);
  4285. }
  4286. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  4287. /*
  4288. * Account a single tick of cpu time.
  4289. * @p: the process that the cpu time gets accounted to
  4290. * @user_tick: indicates if the tick is a user or a system tick
  4291. */
  4292. void account_process_tick(struct task_struct *p, int user_tick)
  4293. {
  4294. cputime_t one_jiffy = jiffies_to_cputime(1);
  4295. cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
  4296. struct rq *rq = this_rq();
  4297. if (user_tick)
  4298. account_user_time(p, one_jiffy, one_jiffy_scaled);
  4299. else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
  4300. account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
  4301. one_jiffy_scaled);
  4302. else
  4303. account_idle_time(one_jiffy);
  4304. }
  4305. /*
  4306. * Account multiple ticks of steal time.
  4307. * @p: the process from which the cpu time has been stolen
  4308. * @ticks: number of stolen ticks
  4309. */
  4310. void account_steal_ticks(unsigned long ticks)
  4311. {
  4312. account_steal_time(jiffies_to_cputime(ticks));
  4313. }
  4314. /*
  4315. * Account multiple ticks of idle time.
  4316. * @ticks: number of stolen ticks
  4317. */
  4318. void account_idle_ticks(unsigned long ticks)
  4319. {
  4320. account_idle_time(jiffies_to_cputime(ticks));
  4321. }
  4322. #endif
  4323. /*
  4324. * Use precise platform statistics if available:
  4325. */
  4326. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  4327. cputime_t task_utime(struct task_struct *p)
  4328. {
  4329. return p->utime;
  4330. }
  4331. cputime_t task_stime(struct task_struct *p)
  4332. {
  4333. return p->stime;
  4334. }
  4335. #else
  4336. cputime_t task_utime(struct task_struct *p)
  4337. {
  4338. clock_t utime = cputime_to_clock_t(p->utime),
  4339. total = utime + cputime_to_clock_t(p->stime);
  4340. u64 temp;
  4341. /*
  4342. * Use CFS's precise accounting:
  4343. */
  4344. temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
  4345. if (total) {
  4346. temp *= utime;
  4347. do_div(temp, total);
  4348. }
  4349. utime = (clock_t)temp;
  4350. p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
  4351. return p->prev_utime;
  4352. }
  4353. cputime_t task_stime(struct task_struct *p)
  4354. {
  4355. clock_t stime;
  4356. /*
  4357. * Use CFS's precise accounting. (we subtract utime from
  4358. * the total, to make sure the total observed by userspace
  4359. * grows monotonically - apps rely on that):
  4360. */
  4361. stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
  4362. cputime_to_clock_t(task_utime(p));
  4363. if (stime >= 0)
  4364. p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
  4365. return p->prev_stime;
  4366. }
  4367. #endif
  4368. inline cputime_t task_gtime(struct task_struct *p)
  4369. {
  4370. return p->gtime;
  4371. }
  4372. /*
  4373. * This function gets called by the timer code, with HZ frequency.
  4374. * We call it with interrupts disabled.
  4375. *
  4376. * It also gets called by the fork code, when changing the parent's
  4377. * timeslices.
  4378. */
  4379. void scheduler_tick(void)
  4380. {
  4381. int cpu = smp_processor_id();
  4382. struct rq *rq = cpu_rq(cpu);
  4383. struct task_struct *curr = rq->curr;
  4384. sched_clock_tick();
  4385. spin_lock(&rq->lock);
  4386. update_rq_clock(rq);
  4387. update_cpu_load(rq);
  4388. curr->sched_class->task_tick(rq, curr, 0);
  4389. spin_unlock(&rq->lock);
  4390. perf_counter_task_tick(curr, cpu);
  4391. #ifdef CONFIG_SMP
  4392. rq->idle_at_tick = idle_cpu(cpu);
  4393. trigger_load_balance(rq, cpu);
  4394. #endif
  4395. }
  4396. notrace unsigned long get_parent_ip(unsigned long addr)
  4397. {
  4398. if (in_lock_functions(addr)) {
  4399. addr = CALLER_ADDR2;
  4400. if (in_lock_functions(addr))
  4401. addr = CALLER_ADDR3;
  4402. }
  4403. return addr;
  4404. }
  4405. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  4406. defined(CONFIG_PREEMPT_TRACER))
  4407. void __kprobes add_preempt_count(int val)
  4408. {
  4409. #ifdef CONFIG_DEBUG_PREEMPT
  4410. /*
  4411. * Underflow?
  4412. */
  4413. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  4414. return;
  4415. #endif
  4416. preempt_count() += val;
  4417. #ifdef CONFIG_DEBUG_PREEMPT
  4418. /*
  4419. * Spinlock count overflowing soon?
  4420. */
  4421. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  4422. PREEMPT_MASK - 10);
  4423. #endif
  4424. if (preempt_count() == val)
  4425. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  4426. }
  4427. EXPORT_SYMBOL(add_preempt_count);
  4428. void __kprobes sub_preempt_count(int val)
  4429. {
  4430. #ifdef CONFIG_DEBUG_PREEMPT
  4431. /*
  4432. * Underflow?
  4433. */
  4434. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  4435. return;
  4436. /*
  4437. * Is the spinlock portion underflowing?
  4438. */
  4439. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  4440. !(preempt_count() & PREEMPT_MASK)))
  4441. return;
  4442. #endif
  4443. if (preempt_count() == val)
  4444. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  4445. preempt_count() -= val;
  4446. }
  4447. EXPORT_SYMBOL(sub_preempt_count);
  4448. #endif
  4449. /*
  4450. * Print scheduling while atomic bug:
  4451. */
  4452. static noinline void __schedule_bug(struct task_struct *prev)
  4453. {
  4454. struct pt_regs *regs = get_irq_regs();
  4455. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  4456. prev->comm, prev->pid, preempt_count());
  4457. debug_show_held_locks(prev);
  4458. print_modules();
  4459. if (irqs_disabled())
  4460. print_irqtrace_events(prev);
  4461. if (regs)
  4462. show_regs(regs);
  4463. else
  4464. dump_stack();
  4465. }
  4466. /*
  4467. * Various schedule()-time debugging checks and statistics:
  4468. */
  4469. static inline void schedule_debug(struct task_struct *prev)
  4470. {
  4471. /*
  4472. * Test if we are atomic. Since do_exit() needs to call into
  4473. * schedule() atomically, we ignore that path for now.
  4474. * Otherwise, whine if we are scheduling when we should not be.
  4475. */
  4476. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  4477. __schedule_bug(prev);
  4478. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  4479. schedstat_inc(this_rq(), sched_count);
  4480. #ifdef CONFIG_SCHEDSTATS
  4481. if (unlikely(prev->lock_depth >= 0)) {
  4482. schedstat_inc(this_rq(), bkl_count);
  4483. schedstat_inc(prev, sched_info.bkl_count);
  4484. }
  4485. #endif
  4486. }
  4487. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  4488. {
  4489. if (prev->state == TASK_RUNNING) {
  4490. u64 runtime = prev->se.sum_exec_runtime;
  4491. runtime -= prev->se.prev_sum_exec_runtime;
  4492. runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
  4493. /*
  4494. * In order to avoid avg_overlap growing stale when we are
  4495. * indeed overlapping and hence not getting put to sleep, grow
  4496. * the avg_overlap on preemption.
  4497. *
  4498. * We use the average preemption runtime because that
  4499. * correlates to the amount of cache footprint a task can
  4500. * build up.
  4501. */
  4502. update_avg(&prev->se.avg_overlap, runtime);
  4503. }
  4504. prev->sched_class->put_prev_task(rq, prev);
  4505. }
  4506. /*
  4507. * Pick up the highest-prio task:
  4508. */
  4509. static inline struct task_struct *
  4510. pick_next_task(struct rq *rq)
  4511. {
  4512. const struct sched_class *class;
  4513. struct task_struct *p;
  4514. /*
  4515. * Optimization: we know that if all tasks are in
  4516. * the fair class we can call that function directly:
  4517. */
  4518. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  4519. p = fair_sched_class.pick_next_task(rq);
  4520. if (likely(p))
  4521. return p;
  4522. }
  4523. class = sched_class_highest;
  4524. for ( ; ; ) {
  4525. p = class->pick_next_task(rq);
  4526. if (p)
  4527. return p;
  4528. /*
  4529. * Will never be NULL as the idle class always
  4530. * returns a non-NULL p:
  4531. */
  4532. class = class->next;
  4533. }
  4534. }
  4535. /*
  4536. * schedule() is the main scheduler function.
  4537. */
  4538. asmlinkage void __sched schedule(void)
  4539. {
  4540. struct task_struct *prev, *next;
  4541. unsigned long *switch_count;
  4542. struct rq *rq;
  4543. int cpu;
  4544. need_resched:
  4545. preempt_disable();
  4546. cpu = smp_processor_id();
  4547. rq = cpu_rq(cpu);
  4548. rcu_sched_qs(cpu);
  4549. prev = rq->curr;
  4550. switch_count = &prev->nivcsw;
  4551. release_kernel_lock(prev);
  4552. need_resched_nonpreemptible:
  4553. schedule_debug(prev);
  4554. if (sched_feat(HRTICK))
  4555. hrtick_clear(rq);
  4556. spin_lock_irq(&rq->lock);
  4557. update_rq_clock(rq);
  4558. clear_tsk_need_resched(prev);
  4559. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  4560. if (unlikely(signal_pending_state(prev->state, prev)))
  4561. prev->state = TASK_RUNNING;
  4562. else
  4563. deactivate_task(rq, prev, 1);
  4564. switch_count = &prev->nvcsw;
  4565. }
  4566. pre_schedule(rq, prev);
  4567. if (unlikely(!rq->nr_running))
  4568. idle_balance(cpu, rq);
  4569. put_prev_task(rq, prev);
  4570. next = pick_next_task(rq);
  4571. if (likely(prev != next)) {
  4572. sched_info_switch(prev, next);
  4573. perf_counter_task_sched_out(prev, next, cpu);
  4574. rq->nr_switches++;
  4575. rq->curr = next;
  4576. ++*switch_count;
  4577. context_switch(rq, prev, next); /* unlocks the rq */
  4578. /*
  4579. * the context switch might have flipped the stack from under
  4580. * us, hence refresh the local variables.
  4581. */
  4582. cpu = smp_processor_id();
  4583. rq = cpu_rq(cpu);
  4584. } else
  4585. spin_unlock_irq(&rq->lock);
  4586. post_schedule(rq);
  4587. if (unlikely(reacquire_kernel_lock(current) < 0))
  4588. goto need_resched_nonpreemptible;
  4589. preempt_enable_no_resched();
  4590. if (need_resched())
  4591. goto need_resched;
  4592. }
  4593. EXPORT_SYMBOL(schedule);
  4594. #ifdef CONFIG_SMP
  4595. /*
  4596. * Look out! "owner" is an entirely speculative pointer
  4597. * access and not reliable.
  4598. */
  4599. int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
  4600. {
  4601. unsigned int cpu;
  4602. struct rq *rq;
  4603. if (!sched_feat(OWNER_SPIN))
  4604. return 0;
  4605. #ifdef CONFIG_DEBUG_PAGEALLOC
  4606. /*
  4607. * Need to access the cpu field knowing that
  4608. * DEBUG_PAGEALLOC could have unmapped it if
  4609. * the mutex owner just released it and exited.
  4610. */
  4611. if (probe_kernel_address(&owner->cpu, cpu))
  4612. goto out;
  4613. #else
  4614. cpu = owner->cpu;
  4615. #endif
  4616. /*
  4617. * Even if the access succeeded (likely case),
  4618. * the cpu field may no longer be valid.
  4619. */
  4620. if (cpu >= nr_cpumask_bits)
  4621. goto out;
  4622. /*
  4623. * We need to validate that we can do a
  4624. * get_cpu() and that we have the percpu area.
  4625. */
  4626. if (!cpu_online(cpu))
  4627. goto out;
  4628. rq = cpu_rq(cpu);
  4629. for (;;) {
  4630. /*
  4631. * Owner changed, break to re-assess state.
  4632. */
  4633. if (lock->owner != owner)
  4634. break;
  4635. /*
  4636. * Is that owner really running on that cpu?
  4637. */
  4638. if (task_thread_info(rq->curr) != owner || need_resched())
  4639. return 0;
  4640. cpu_relax();
  4641. }
  4642. out:
  4643. return 1;
  4644. }
  4645. #endif
  4646. #ifdef CONFIG_PREEMPT
  4647. /*
  4648. * this is the entry point to schedule() from in-kernel preemption
  4649. * off of preempt_enable. Kernel preemptions off return from interrupt
  4650. * occur there and call schedule directly.
  4651. */
  4652. asmlinkage void __sched preempt_schedule(void)
  4653. {
  4654. struct thread_info *ti = current_thread_info();
  4655. /*
  4656. * If there is a non-zero preempt_count or interrupts are disabled,
  4657. * we do not want to preempt the current task. Just return..
  4658. */
  4659. if (likely(ti->preempt_count || irqs_disabled()))
  4660. return;
  4661. do {
  4662. add_preempt_count(PREEMPT_ACTIVE);
  4663. schedule();
  4664. sub_preempt_count(PREEMPT_ACTIVE);
  4665. /*
  4666. * Check again in case we missed a preemption opportunity
  4667. * between schedule and now.
  4668. */
  4669. barrier();
  4670. } while (need_resched());
  4671. }
  4672. EXPORT_SYMBOL(preempt_schedule);
  4673. /*
  4674. * this is the entry point to schedule() from kernel preemption
  4675. * off of irq context.
  4676. * Note, that this is called and return with irqs disabled. This will
  4677. * protect us against recursive calling from irq.
  4678. */
  4679. asmlinkage void __sched preempt_schedule_irq(void)
  4680. {
  4681. struct thread_info *ti = current_thread_info();
  4682. /* Catch callers which need to be fixed */
  4683. BUG_ON(ti->preempt_count || !irqs_disabled());
  4684. do {
  4685. add_preempt_count(PREEMPT_ACTIVE);
  4686. local_irq_enable();
  4687. schedule();
  4688. local_irq_disable();
  4689. sub_preempt_count(PREEMPT_ACTIVE);
  4690. /*
  4691. * Check again in case we missed a preemption opportunity
  4692. * between schedule and now.
  4693. */
  4694. barrier();
  4695. } while (need_resched());
  4696. }
  4697. #endif /* CONFIG_PREEMPT */
  4698. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  4699. void *key)
  4700. {
  4701. return try_to_wake_up(curr->private, mode, sync);
  4702. }
  4703. EXPORT_SYMBOL(default_wake_function);
  4704. /*
  4705. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  4706. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  4707. * number) then we wake all the non-exclusive tasks and one exclusive task.
  4708. *
  4709. * There are circumstances in which we can try to wake a task which has already
  4710. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  4711. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  4712. */
  4713. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  4714. int nr_exclusive, int sync, void *key)
  4715. {
  4716. wait_queue_t *curr, *next;
  4717. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  4718. unsigned flags = curr->flags;
  4719. if (curr->func(curr, mode, sync, key) &&
  4720. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  4721. break;
  4722. }
  4723. }
  4724. /**
  4725. * __wake_up - wake up threads blocked on a waitqueue.
  4726. * @q: the waitqueue
  4727. * @mode: which threads
  4728. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  4729. * @key: is directly passed to the wakeup function
  4730. *
  4731. * It may be assumed that this function implies a write memory barrier before
  4732. * changing the task state if and only if any tasks are woken up.
  4733. */
  4734. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  4735. int nr_exclusive, void *key)
  4736. {
  4737. unsigned long flags;
  4738. spin_lock_irqsave(&q->lock, flags);
  4739. __wake_up_common(q, mode, nr_exclusive, 0, key);
  4740. spin_unlock_irqrestore(&q->lock, flags);
  4741. }
  4742. EXPORT_SYMBOL(__wake_up);
  4743. /*
  4744. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  4745. */
  4746. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  4747. {
  4748. __wake_up_common(q, mode, 1, 0, NULL);
  4749. }
  4750. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  4751. {
  4752. __wake_up_common(q, mode, 1, 0, key);
  4753. }
  4754. /**
  4755. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  4756. * @q: the waitqueue
  4757. * @mode: which threads
  4758. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  4759. * @key: opaque value to be passed to wakeup targets
  4760. *
  4761. * The sync wakeup differs that the waker knows that it will schedule
  4762. * away soon, so while the target thread will be woken up, it will not
  4763. * be migrated to another CPU - ie. the two threads are 'synchronized'
  4764. * with each other. This can prevent needless bouncing between CPUs.
  4765. *
  4766. * On UP it can prevent extra preemption.
  4767. *
  4768. * It may be assumed that this function implies a write memory barrier before
  4769. * changing the task state if and only if any tasks are woken up.
  4770. */
  4771. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  4772. int nr_exclusive, void *key)
  4773. {
  4774. unsigned long flags;
  4775. int sync = 1;
  4776. if (unlikely(!q))
  4777. return;
  4778. if (unlikely(!nr_exclusive))
  4779. sync = 0;
  4780. spin_lock_irqsave(&q->lock, flags);
  4781. __wake_up_common(q, mode, nr_exclusive, sync, key);
  4782. spin_unlock_irqrestore(&q->lock, flags);
  4783. }
  4784. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  4785. /*
  4786. * __wake_up_sync - see __wake_up_sync_key()
  4787. */
  4788. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  4789. {
  4790. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  4791. }
  4792. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  4793. /**
  4794. * complete: - signals a single thread waiting on this completion
  4795. * @x: holds the state of this particular completion
  4796. *
  4797. * This will wake up a single thread waiting on this completion. Threads will be
  4798. * awakened in the same order in which they were queued.
  4799. *
  4800. * See also complete_all(), wait_for_completion() and related routines.
  4801. *
  4802. * It may be assumed that this function implies a write memory barrier before
  4803. * changing the task state if and only if any tasks are woken up.
  4804. */
  4805. void complete(struct completion *x)
  4806. {
  4807. unsigned long flags;
  4808. spin_lock_irqsave(&x->wait.lock, flags);
  4809. x->done++;
  4810. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  4811. spin_unlock_irqrestore(&x->wait.lock, flags);
  4812. }
  4813. EXPORT_SYMBOL(complete);
  4814. /**
  4815. * complete_all: - signals all threads waiting on this completion
  4816. * @x: holds the state of this particular completion
  4817. *
  4818. * This will wake up all threads waiting on this particular completion event.
  4819. *
  4820. * It may be assumed that this function implies a write memory barrier before
  4821. * changing the task state if and only if any tasks are woken up.
  4822. */
  4823. void complete_all(struct completion *x)
  4824. {
  4825. unsigned long flags;
  4826. spin_lock_irqsave(&x->wait.lock, flags);
  4827. x->done += UINT_MAX/2;
  4828. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  4829. spin_unlock_irqrestore(&x->wait.lock, flags);
  4830. }
  4831. EXPORT_SYMBOL(complete_all);
  4832. static inline long __sched
  4833. do_wait_for_common(struct completion *x, long timeout, int state)
  4834. {
  4835. if (!x->done) {
  4836. DECLARE_WAITQUEUE(wait, current);
  4837. wait.flags |= WQ_FLAG_EXCLUSIVE;
  4838. __add_wait_queue_tail(&x->wait, &wait);
  4839. do {
  4840. if (signal_pending_state(state, current)) {
  4841. timeout = -ERESTARTSYS;
  4842. break;
  4843. }
  4844. __set_current_state(state);
  4845. spin_unlock_irq(&x->wait.lock);
  4846. timeout = schedule_timeout(timeout);
  4847. spin_lock_irq(&x->wait.lock);
  4848. } while (!x->done && timeout);
  4849. __remove_wait_queue(&x->wait, &wait);
  4850. if (!x->done)
  4851. return timeout;
  4852. }
  4853. x->done--;
  4854. return timeout ?: 1;
  4855. }
  4856. static long __sched
  4857. wait_for_common(struct completion *x, long timeout, int state)
  4858. {
  4859. might_sleep();
  4860. spin_lock_irq(&x->wait.lock);
  4861. timeout = do_wait_for_common(x, timeout, state);
  4862. spin_unlock_irq(&x->wait.lock);
  4863. return timeout;
  4864. }
  4865. /**
  4866. * wait_for_completion: - waits for completion of a task
  4867. * @x: holds the state of this particular completion
  4868. *
  4869. * This waits to be signaled for completion of a specific task. It is NOT
  4870. * interruptible and there is no timeout.
  4871. *
  4872. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  4873. * and interrupt capability. Also see complete().
  4874. */
  4875. void __sched wait_for_completion(struct completion *x)
  4876. {
  4877. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  4878. }
  4879. EXPORT_SYMBOL(wait_for_completion);
  4880. /**
  4881. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  4882. * @x: holds the state of this particular completion
  4883. * @timeout: timeout value in jiffies
  4884. *
  4885. * This waits for either a completion of a specific task to be signaled or for a
  4886. * specified timeout to expire. The timeout is in jiffies. It is not
  4887. * interruptible.
  4888. */
  4889. unsigned long __sched
  4890. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  4891. {
  4892. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  4893. }
  4894. EXPORT_SYMBOL(wait_for_completion_timeout);
  4895. /**
  4896. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  4897. * @x: holds the state of this particular completion
  4898. *
  4899. * This waits for completion of a specific task to be signaled. It is
  4900. * interruptible.
  4901. */
  4902. int __sched wait_for_completion_interruptible(struct completion *x)
  4903. {
  4904. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  4905. if (t == -ERESTARTSYS)
  4906. return t;
  4907. return 0;
  4908. }
  4909. EXPORT_SYMBOL(wait_for_completion_interruptible);
  4910. /**
  4911. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  4912. * @x: holds the state of this particular completion
  4913. * @timeout: timeout value in jiffies
  4914. *
  4915. * This waits for either a completion of a specific task to be signaled or for a
  4916. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  4917. */
  4918. unsigned long __sched
  4919. wait_for_completion_interruptible_timeout(struct completion *x,
  4920. unsigned long timeout)
  4921. {
  4922. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  4923. }
  4924. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  4925. /**
  4926. * wait_for_completion_killable: - waits for completion of a task (killable)
  4927. * @x: holds the state of this particular completion
  4928. *
  4929. * This waits to be signaled for completion of a specific task. It can be
  4930. * interrupted by a kill signal.
  4931. */
  4932. int __sched wait_for_completion_killable(struct completion *x)
  4933. {
  4934. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  4935. if (t == -ERESTARTSYS)
  4936. return t;
  4937. return 0;
  4938. }
  4939. EXPORT_SYMBOL(wait_for_completion_killable);
  4940. /**
  4941. * try_wait_for_completion - try to decrement a completion without blocking
  4942. * @x: completion structure
  4943. *
  4944. * Returns: 0 if a decrement cannot be done without blocking
  4945. * 1 if a decrement succeeded.
  4946. *
  4947. * If a completion is being used as a counting completion,
  4948. * attempt to decrement the counter without blocking. This
  4949. * enables us to avoid waiting if the resource the completion
  4950. * is protecting is not available.
  4951. */
  4952. bool try_wait_for_completion(struct completion *x)
  4953. {
  4954. int ret = 1;
  4955. spin_lock_irq(&x->wait.lock);
  4956. if (!x->done)
  4957. ret = 0;
  4958. else
  4959. x->done--;
  4960. spin_unlock_irq(&x->wait.lock);
  4961. return ret;
  4962. }
  4963. EXPORT_SYMBOL(try_wait_for_completion);
  4964. /**
  4965. * completion_done - Test to see if a completion has any waiters
  4966. * @x: completion structure
  4967. *
  4968. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  4969. * 1 if there are no waiters.
  4970. *
  4971. */
  4972. bool completion_done(struct completion *x)
  4973. {
  4974. int ret = 1;
  4975. spin_lock_irq(&x->wait.lock);
  4976. if (!x->done)
  4977. ret = 0;
  4978. spin_unlock_irq(&x->wait.lock);
  4979. return ret;
  4980. }
  4981. EXPORT_SYMBOL(completion_done);
  4982. static long __sched
  4983. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  4984. {
  4985. unsigned long flags;
  4986. wait_queue_t wait;
  4987. init_waitqueue_entry(&wait, current);
  4988. __set_current_state(state);
  4989. spin_lock_irqsave(&q->lock, flags);
  4990. __add_wait_queue(q, &wait);
  4991. spin_unlock(&q->lock);
  4992. timeout = schedule_timeout(timeout);
  4993. spin_lock_irq(&q->lock);
  4994. __remove_wait_queue(q, &wait);
  4995. spin_unlock_irqrestore(&q->lock, flags);
  4996. return timeout;
  4997. }
  4998. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  4999. {
  5000. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  5001. }
  5002. EXPORT_SYMBOL(interruptible_sleep_on);
  5003. long __sched
  5004. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  5005. {
  5006. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  5007. }
  5008. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  5009. void __sched sleep_on(wait_queue_head_t *q)
  5010. {
  5011. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  5012. }
  5013. EXPORT_SYMBOL(sleep_on);
  5014. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  5015. {
  5016. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  5017. }
  5018. EXPORT_SYMBOL(sleep_on_timeout);
  5019. #ifdef CONFIG_RT_MUTEXES
  5020. /*
  5021. * rt_mutex_setprio - set the current priority of a task
  5022. * @p: task
  5023. * @prio: prio value (kernel-internal form)
  5024. *
  5025. * This function changes the 'effective' priority of a task. It does
  5026. * not touch ->normal_prio like __setscheduler().
  5027. *
  5028. * Used by the rt_mutex code to implement priority inheritance logic.
  5029. */
  5030. void rt_mutex_setprio(struct task_struct *p, int prio)
  5031. {
  5032. unsigned long flags;
  5033. int oldprio, on_rq, running;
  5034. struct rq *rq;
  5035. const struct sched_class *prev_class = p->sched_class;
  5036. BUG_ON(prio < 0 || prio > MAX_PRIO);
  5037. rq = task_rq_lock(p, &flags);
  5038. update_rq_clock(rq);
  5039. oldprio = p->prio;
  5040. on_rq = p->se.on_rq;
  5041. running = task_current(rq, p);
  5042. if (on_rq)
  5043. dequeue_task(rq, p, 0);
  5044. if (running)
  5045. p->sched_class->put_prev_task(rq, p);
  5046. if (rt_prio(prio))
  5047. p->sched_class = &rt_sched_class;
  5048. else
  5049. p->sched_class = &fair_sched_class;
  5050. p->prio = prio;
  5051. if (running)
  5052. p->sched_class->set_curr_task(rq);
  5053. if (on_rq) {
  5054. enqueue_task(rq, p, 0);
  5055. check_class_changed(rq, p, prev_class, oldprio, running);
  5056. }
  5057. task_rq_unlock(rq, &flags);
  5058. }
  5059. #endif
  5060. void set_user_nice(struct task_struct *p, long nice)
  5061. {
  5062. int old_prio, delta, on_rq;
  5063. unsigned long flags;
  5064. struct rq *rq;
  5065. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  5066. return;
  5067. /*
  5068. * We have to be careful, if called from sys_setpriority(),
  5069. * the task might be in the middle of scheduling on another CPU.
  5070. */
  5071. rq = task_rq_lock(p, &flags);
  5072. update_rq_clock(rq);
  5073. /*
  5074. * The RT priorities are set via sched_setscheduler(), but we still
  5075. * allow the 'normal' nice value to be set - but as expected
  5076. * it wont have any effect on scheduling until the task is
  5077. * SCHED_FIFO/SCHED_RR:
  5078. */
  5079. if (task_has_rt_policy(p)) {
  5080. p->static_prio = NICE_TO_PRIO(nice);
  5081. goto out_unlock;
  5082. }
  5083. on_rq = p->se.on_rq;
  5084. if (on_rq)
  5085. dequeue_task(rq, p, 0);
  5086. p->static_prio = NICE_TO_PRIO(nice);
  5087. set_load_weight(p);
  5088. old_prio = p->prio;
  5089. p->prio = effective_prio(p);
  5090. delta = p->prio - old_prio;
  5091. if (on_rq) {
  5092. enqueue_task(rq, p, 0);
  5093. /*
  5094. * If the task increased its priority or is running and
  5095. * lowered its priority, then reschedule its CPU:
  5096. */
  5097. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  5098. resched_task(rq->curr);
  5099. }
  5100. out_unlock:
  5101. task_rq_unlock(rq, &flags);
  5102. }
  5103. EXPORT_SYMBOL(set_user_nice);
  5104. /*
  5105. * can_nice - check if a task can reduce its nice value
  5106. * @p: task
  5107. * @nice: nice value
  5108. */
  5109. int can_nice(const struct task_struct *p, const int nice)
  5110. {
  5111. /* convert nice value [19,-20] to rlimit style value [1,40] */
  5112. int nice_rlim = 20 - nice;
  5113. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  5114. capable(CAP_SYS_NICE));
  5115. }
  5116. #ifdef __ARCH_WANT_SYS_NICE
  5117. /*
  5118. * sys_nice - change the priority of the current process.
  5119. * @increment: priority increment
  5120. *
  5121. * sys_setpriority is a more generic, but much slower function that
  5122. * does similar things.
  5123. */
  5124. SYSCALL_DEFINE1(nice, int, increment)
  5125. {
  5126. long nice, retval;
  5127. /*
  5128. * Setpriority might change our priority at the same moment.
  5129. * We don't have to worry. Conceptually one call occurs first
  5130. * and we have a single winner.
  5131. */
  5132. if (increment < -40)
  5133. increment = -40;
  5134. if (increment > 40)
  5135. increment = 40;
  5136. nice = TASK_NICE(current) + increment;
  5137. if (nice < -20)
  5138. nice = -20;
  5139. if (nice > 19)
  5140. nice = 19;
  5141. if (increment < 0 && !can_nice(current, nice))
  5142. return -EPERM;
  5143. retval = security_task_setnice(current, nice);
  5144. if (retval)
  5145. return retval;
  5146. set_user_nice(current, nice);
  5147. return 0;
  5148. }
  5149. #endif
  5150. /**
  5151. * task_prio - return the priority value of a given task.
  5152. * @p: the task in question.
  5153. *
  5154. * This is the priority value as seen by users in /proc.
  5155. * RT tasks are offset by -200. Normal tasks are centered
  5156. * around 0, value goes from -16 to +15.
  5157. */
  5158. int task_prio(const struct task_struct *p)
  5159. {
  5160. return p->prio - MAX_RT_PRIO;
  5161. }
  5162. /**
  5163. * task_nice - return the nice value of a given task.
  5164. * @p: the task in question.
  5165. */
  5166. int task_nice(const struct task_struct *p)
  5167. {
  5168. return TASK_NICE(p);
  5169. }
  5170. EXPORT_SYMBOL(task_nice);
  5171. /**
  5172. * idle_cpu - is a given cpu idle currently?
  5173. * @cpu: the processor in question.
  5174. */
  5175. int idle_cpu(int cpu)
  5176. {
  5177. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  5178. }
  5179. /**
  5180. * idle_task - return the idle task for a given cpu.
  5181. * @cpu: the processor in question.
  5182. */
  5183. struct task_struct *idle_task(int cpu)
  5184. {
  5185. return cpu_rq(cpu)->idle;
  5186. }
  5187. /**
  5188. * find_process_by_pid - find a process with a matching PID value.
  5189. * @pid: the pid in question.
  5190. */
  5191. static struct task_struct *find_process_by_pid(pid_t pid)
  5192. {
  5193. return pid ? find_task_by_vpid(pid) : current;
  5194. }
  5195. /* Actually do priority change: must hold rq lock. */
  5196. static void
  5197. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  5198. {
  5199. BUG_ON(p->se.on_rq);
  5200. p->policy = policy;
  5201. switch (p->policy) {
  5202. case SCHED_NORMAL:
  5203. case SCHED_BATCH:
  5204. case SCHED_IDLE:
  5205. p->sched_class = &fair_sched_class;
  5206. break;
  5207. case SCHED_FIFO:
  5208. case SCHED_RR:
  5209. p->sched_class = &rt_sched_class;
  5210. break;
  5211. }
  5212. p->rt_priority = prio;
  5213. p->normal_prio = normal_prio(p);
  5214. /* we are holding p->pi_lock already */
  5215. p->prio = rt_mutex_getprio(p);
  5216. set_load_weight(p);
  5217. }
  5218. /*
  5219. * check the target process has a UID that matches the current process's
  5220. */
  5221. static bool check_same_owner(struct task_struct *p)
  5222. {
  5223. const struct cred *cred = current_cred(), *pcred;
  5224. bool match;
  5225. rcu_read_lock();
  5226. pcred = __task_cred(p);
  5227. match = (cred->euid == pcred->euid ||
  5228. cred->euid == pcred->uid);
  5229. rcu_read_unlock();
  5230. return match;
  5231. }
  5232. static int __sched_setscheduler(struct task_struct *p, int policy,
  5233. struct sched_param *param, bool user)
  5234. {
  5235. int retval, oldprio, oldpolicy = -1, on_rq, running;
  5236. unsigned long flags;
  5237. const struct sched_class *prev_class = p->sched_class;
  5238. struct rq *rq;
  5239. int reset_on_fork;
  5240. /* may grab non-irq protected spin_locks */
  5241. BUG_ON(in_interrupt());
  5242. recheck:
  5243. /* double check policy once rq lock held */
  5244. if (policy < 0) {
  5245. reset_on_fork = p->sched_reset_on_fork;
  5246. policy = oldpolicy = p->policy;
  5247. } else {
  5248. reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
  5249. policy &= ~SCHED_RESET_ON_FORK;
  5250. if (policy != SCHED_FIFO && policy != SCHED_RR &&
  5251. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  5252. policy != SCHED_IDLE)
  5253. return -EINVAL;
  5254. }
  5255. /*
  5256. * Valid priorities for SCHED_FIFO and SCHED_RR are
  5257. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  5258. * SCHED_BATCH and SCHED_IDLE is 0.
  5259. */
  5260. if (param->sched_priority < 0 ||
  5261. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  5262. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  5263. return -EINVAL;
  5264. if (rt_policy(policy) != (param->sched_priority != 0))
  5265. return -EINVAL;
  5266. /*
  5267. * Allow unprivileged RT tasks to decrease priority:
  5268. */
  5269. if (user && !capable(CAP_SYS_NICE)) {
  5270. if (rt_policy(policy)) {
  5271. unsigned long rlim_rtprio;
  5272. if (!lock_task_sighand(p, &flags))
  5273. return -ESRCH;
  5274. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  5275. unlock_task_sighand(p, &flags);
  5276. /* can't set/change the rt policy */
  5277. if (policy != p->policy && !rlim_rtprio)
  5278. return -EPERM;
  5279. /* can't increase priority */
  5280. if (param->sched_priority > p->rt_priority &&
  5281. param->sched_priority > rlim_rtprio)
  5282. return -EPERM;
  5283. }
  5284. /*
  5285. * Like positive nice levels, dont allow tasks to
  5286. * move out of SCHED_IDLE either:
  5287. */
  5288. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  5289. return -EPERM;
  5290. /* can't change other user's priorities */
  5291. if (!check_same_owner(p))
  5292. return -EPERM;
  5293. /* Normal users shall not reset the sched_reset_on_fork flag */
  5294. if (p->sched_reset_on_fork && !reset_on_fork)
  5295. return -EPERM;
  5296. }
  5297. if (user) {
  5298. #ifdef CONFIG_RT_GROUP_SCHED
  5299. /*
  5300. * Do not allow realtime tasks into groups that have no runtime
  5301. * assigned.
  5302. */
  5303. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  5304. task_group(p)->rt_bandwidth.rt_runtime == 0)
  5305. return -EPERM;
  5306. #endif
  5307. retval = security_task_setscheduler(p, policy, param);
  5308. if (retval)
  5309. return retval;
  5310. }
  5311. /*
  5312. * make sure no PI-waiters arrive (or leave) while we are
  5313. * changing the priority of the task:
  5314. */
  5315. spin_lock_irqsave(&p->pi_lock, flags);
  5316. /*
  5317. * To be able to change p->policy safely, the apropriate
  5318. * runqueue lock must be held.
  5319. */
  5320. rq = __task_rq_lock(p);
  5321. /* recheck policy now with rq lock held */
  5322. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  5323. policy = oldpolicy = -1;
  5324. __task_rq_unlock(rq);
  5325. spin_unlock_irqrestore(&p->pi_lock, flags);
  5326. goto recheck;
  5327. }
  5328. update_rq_clock(rq);
  5329. on_rq = p->se.on_rq;
  5330. running = task_current(rq, p);
  5331. if (on_rq)
  5332. deactivate_task(rq, p, 0);
  5333. if (running)
  5334. p->sched_class->put_prev_task(rq, p);
  5335. p->sched_reset_on_fork = reset_on_fork;
  5336. oldprio = p->prio;
  5337. __setscheduler(rq, p, policy, param->sched_priority);
  5338. if (running)
  5339. p->sched_class->set_curr_task(rq);
  5340. if (on_rq) {
  5341. activate_task(rq, p, 0);
  5342. check_class_changed(rq, p, prev_class, oldprio, running);
  5343. }
  5344. __task_rq_unlock(rq);
  5345. spin_unlock_irqrestore(&p->pi_lock, flags);
  5346. rt_mutex_adjust_pi(p);
  5347. return 0;
  5348. }
  5349. /**
  5350. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  5351. * @p: the task in question.
  5352. * @policy: new policy.
  5353. * @param: structure containing the new RT priority.
  5354. *
  5355. * NOTE that the task may be already dead.
  5356. */
  5357. int sched_setscheduler(struct task_struct *p, int policy,
  5358. struct sched_param *param)
  5359. {
  5360. return __sched_setscheduler(p, policy, param, true);
  5361. }
  5362. EXPORT_SYMBOL_GPL(sched_setscheduler);
  5363. /**
  5364. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  5365. * @p: the task in question.
  5366. * @policy: new policy.
  5367. * @param: structure containing the new RT priority.
  5368. *
  5369. * Just like sched_setscheduler, only don't bother checking if the
  5370. * current context has permission. For example, this is needed in
  5371. * stop_machine(): we create temporary high priority worker threads,
  5372. * but our caller might not have that capability.
  5373. */
  5374. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  5375. struct sched_param *param)
  5376. {
  5377. return __sched_setscheduler(p, policy, param, false);
  5378. }
  5379. static int
  5380. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  5381. {
  5382. struct sched_param lparam;
  5383. struct task_struct *p;
  5384. int retval;
  5385. if (!param || pid < 0)
  5386. return -EINVAL;
  5387. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  5388. return -EFAULT;
  5389. rcu_read_lock();
  5390. retval = -ESRCH;
  5391. p = find_process_by_pid(pid);
  5392. if (p != NULL)
  5393. retval = sched_setscheduler(p, policy, &lparam);
  5394. rcu_read_unlock();
  5395. return retval;
  5396. }
  5397. /**
  5398. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  5399. * @pid: the pid in question.
  5400. * @policy: new policy.
  5401. * @param: structure containing the new RT priority.
  5402. */
  5403. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  5404. struct sched_param __user *, param)
  5405. {
  5406. /* negative values for policy are not valid */
  5407. if (policy < 0)
  5408. return -EINVAL;
  5409. return do_sched_setscheduler(pid, policy, param);
  5410. }
  5411. /**
  5412. * sys_sched_setparam - set/change the RT priority of a thread
  5413. * @pid: the pid in question.
  5414. * @param: structure containing the new RT priority.
  5415. */
  5416. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  5417. {
  5418. return do_sched_setscheduler(pid, -1, param);
  5419. }
  5420. /**
  5421. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  5422. * @pid: the pid in question.
  5423. */
  5424. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  5425. {
  5426. struct task_struct *p;
  5427. int retval;
  5428. if (pid < 0)
  5429. return -EINVAL;
  5430. retval = -ESRCH;
  5431. read_lock(&tasklist_lock);
  5432. p = find_process_by_pid(pid);
  5433. if (p) {
  5434. retval = security_task_getscheduler(p);
  5435. if (!retval)
  5436. retval = p->policy
  5437. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  5438. }
  5439. read_unlock(&tasklist_lock);
  5440. return retval;
  5441. }
  5442. /**
  5443. * sys_sched_getparam - get the RT priority of a thread
  5444. * @pid: the pid in question.
  5445. * @param: structure containing the RT priority.
  5446. */
  5447. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  5448. {
  5449. struct sched_param lp;
  5450. struct task_struct *p;
  5451. int retval;
  5452. if (!param || pid < 0)
  5453. return -EINVAL;
  5454. read_lock(&tasklist_lock);
  5455. p = find_process_by_pid(pid);
  5456. retval = -ESRCH;
  5457. if (!p)
  5458. goto out_unlock;
  5459. retval = security_task_getscheduler(p);
  5460. if (retval)
  5461. goto out_unlock;
  5462. lp.sched_priority = p->rt_priority;
  5463. read_unlock(&tasklist_lock);
  5464. /*
  5465. * This one might sleep, we cannot do it with a spinlock held ...
  5466. */
  5467. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  5468. return retval;
  5469. out_unlock:
  5470. read_unlock(&tasklist_lock);
  5471. return retval;
  5472. }
  5473. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  5474. {
  5475. cpumask_var_t cpus_allowed, new_mask;
  5476. struct task_struct *p;
  5477. int retval;
  5478. get_online_cpus();
  5479. read_lock(&tasklist_lock);
  5480. p = find_process_by_pid(pid);
  5481. if (!p) {
  5482. read_unlock(&tasklist_lock);
  5483. put_online_cpus();
  5484. return -ESRCH;
  5485. }
  5486. /*
  5487. * It is not safe to call set_cpus_allowed with the
  5488. * tasklist_lock held. We will bump the task_struct's
  5489. * usage count and then drop tasklist_lock.
  5490. */
  5491. get_task_struct(p);
  5492. read_unlock(&tasklist_lock);
  5493. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  5494. retval = -ENOMEM;
  5495. goto out_put_task;
  5496. }
  5497. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  5498. retval = -ENOMEM;
  5499. goto out_free_cpus_allowed;
  5500. }
  5501. retval = -EPERM;
  5502. if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
  5503. goto out_unlock;
  5504. retval = security_task_setscheduler(p, 0, NULL);
  5505. if (retval)
  5506. goto out_unlock;
  5507. cpuset_cpus_allowed(p, cpus_allowed);
  5508. cpumask_and(new_mask, in_mask, cpus_allowed);
  5509. again:
  5510. retval = set_cpus_allowed_ptr(p, new_mask);
  5511. if (!retval) {
  5512. cpuset_cpus_allowed(p, cpus_allowed);
  5513. if (!cpumask_subset(new_mask, cpus_allowed)) {
  5514. /*
  5515. * We must have raced with a concurrent cpuset
  5516. * update. Just reset the cpus_allowed to the
  5517. * cpuset's cpus_allowed
  5518. */
  5519. cpumask_copy(new_mask, cpus_allowed);
  5520. goto again;
  5521. }
  5522. }
  5523. out_unlock:
  5524. free_cpumask_var(new_mask);
  5525. out_free_cpus_allowed:
  5526. free_cpumask_var(cpus_allowed);
  5527. out_put_task:
  5528. put_task_struct(p);
  5529. put_online_cpus();
  5530. return retval;
  5531. }
  5532. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  5533. struct cpumask *new_mask)
  5534. {
  5535. if (len < cpumask_size())
  5536. cpumask_clear(new_mask);
  5537. else if (len > cpumask_size())
  5538. len = cpumask_size();
  5539. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  5540. }
  5541. /**
  5542. * sys_sched_setaffinity - set the cpu affinity of a process
  5543. * @pid: pid of the process
  5544. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  5545. * @user_mask_ptr: user-space pointer to the new cpu mask
  5546. */
  5547. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  5548. unsigned long __user *, user_mask_ptr)
  5549. {
  5550. cpumask_var_t new_mask;
  5551. int retval;
  5552. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  5553. return -ENOMEM;
  5554. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  5555. if (retval == 0)
  5556. retval = sched_setaffinity(pid, new_mask);
  5557. free_cpumask_var(new_mask);
  5558. return retval;
  5559. }
  5560. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  5561. {
  5562. struct task_struct *p;
  5563. int retval;
  5564. get_online_cpus();
  5565. read_lock(&tasklist_lock);
  5566. retval = -ESRCH;
  5567. p = find_process_by_pid(pid);
  5568. if (!p)
  5569. goto out_unlock;
  5570. retval = security_task_getscheduler(p);
  5571. if (retval)
  5572. goto out_unlock;
  5573. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  5574. out_unlock:
  5575. read_unlock(&tasklist_lock);
  5576. put_online_cpus();
  5577. return retval;
  5578. }
  5579. /**
  5580. * sys_sched_getaffinity - get the cpu affinity of a process
  5581. * @pid: pid of the process
  5582. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  5583. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  5584. */
  5585. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  5586. unsigned long __user *, user_mask_ptr)
  5587. {
  5588. int ret;
  5589. cpumask_var_t mask;
  5590. if (len < cpumask_size())
  5591. return -EINVAL;
  5592. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  5593. return -ENOMEM;
  5594. ret = sched_getaffinity(pid, mask);
  5595. if (ret == 0) {
  5596. if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
  5597. ret = -EFAULT;
  5598. else
  5599. ret = cpumask_size();
  5600. }
  5601. free_cpumask_var(mask);
  5602. return ret;
  5603. }
  5604. /**
  5605. * sys_sched_yield - yield the current processor to other threads.
  5606. *
  5607. * This function yields the current CPU to other tasks. If there are no
  5608. * other threads running on this CPU then this function will return.
  5609. */
  5610. SYSCALL_DEFINE0(sched_yield)
  5611. {
  5612. struct rq *rq = this_rq_lock();
  5613. schedstat_inc(rq, yld_count);
  5614. current->sched_class->yield_task(rq);
  5615. /*
  5616. * Since we are going to call schedule() anyway, there's
  5617. * no need to preempt or enable interrupts:
  5618. */
  5619. __release(rq->lock);
  5620. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  5621. _raw_spin_unlock(&rq->lock);
  5622. preempt_enable_no_resched();
  5623. schedule();
  5624. return 0;
  5625. }
  5626. static inline int should_resched(void)
  5627. {
  5628. return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
  5629. }
  5630. static void __cond_resched(void)
  5631. {
  5632. add_preempt_count(PREEMPT_ACTIVE);
  5633. schedule();
  5634. sub_preempt_count(PREEMPT_ACTIVE);
  5635. }
  5636. int __sched _cond_resched(void)
  5637. {
  5638. if (should_resched()) {
  5639. __cond_resched();
  5640. return 1;
  5641. }
  5642. return 0;
  5643. }
  5644. EXPORT_SYMBOL(_cond_resched);
  5645. /*
  5646. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  5647. * call schedule, and on return reacquire the lock.
  5648. *
  5649. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  5650. * operations here to prevent schedule() from being called twice (once via
  5651. * spin_unlock(), once by hand).
  5652. */
  5653. int __cond_resched_lock(spinlock_t *lock)
  5654. {
  5655. int resched = should_resched();
  5656. int ret = 0;
  5657. lockdep_assert_held(lock);
  5658. if (spin_needbreak(lock) || resched) {
  5659. spin_unlock(lock);
  5660. if (resched)
  5661. __cond_resched();
  5662. else
  5663. cpu_relax();
  5664. ret = 1;
  5665. spin_lock(lock);
  5666. }
  5667. return ret;
  5668. }
  5669. EXPORT_SYMBOL(__cond_resched_lock);
  5670. int __sched __cond_resched_softirq(void)
  5671. {
  5672. BUG_ON(!in_softirq());
  5673. if (should_resched()) {
  5674. local_bh_enable();
  5675. __cond_resched();
  5676. local_bh_disable();
  5677. return 1;
  5678. }
  5679. return 0;
  5680. }
  5681. EXPORT_SYMBOL(__cond_resched_softirq);
  5682. /**
  5683. * yield - yield the current processor to other threads.
  5684. *
  5685. * This is a shortcut for kernel-space yielding - it marks the
  5686. * thread runnable and calls sys_sched_yield().
  5687. */
  5688. void __sched yield(void)
  5689. {
  5690. set_current_state(TASK_RUNNING);
  5691. sys_sched_yield();
  5692. }
  5693. EXPORT_SYMBOL(yield);
  5694. /*
  5695. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  5696. * that process accounting knows that this is a task in IO wait state.
  5697. *
  5698. * But don't do that if it is a deliberate, throttling IO wait (this task
  5699. * has set its backing_dev_info: the queue against which it should throttle)
  5700. */
  5701. void __sched io_schedule(void)
  5702. {
  5703. struct rq *rq = raw_rq();
  5704. delayacct_blkio_start();
  5705. atomic_inc(&rq->nr_iowait);
  5706. current->in_iowait = 1;
  5707. schedule();
  5708. current->in_iowait = 0;
  5709. atomic_dec(&rq->nr_iowait);
  5710. delayacct_blkio_end();
  5711. }
  5712. EXPORT_SYMBOL(io_schedule);
  5713. long __sched io_schedule_timeout(long timeout)
  5714. {
  5715. struct rq *rq = raw_rq();
  5716. long ret;
  5717. delayacct_blkio_start();
  5718. atomic_inc(&rq->nr_iowait);
  5719. current->in_iowait = 1;
  5720. ret = schedule_timeout(timeout);
  5721. current->in_iowait = 0;
  5722. atomic_dec(&rq->nr_iowait);
  5723. delayacct_blkio_end();
  5724. return ret;
  5725. }
  5726. /**
  5727. * sys_sched_get_priority_max - return maximum RT priority.
  5728. * @policy: scheduling class.
  5729. *
  5730. * this syscall returns the maximum rt_priority that can be used
  5731. * by a given scheduling class.
  5732. */
  5733. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  5734. {
  5735. int ret = -EINVAL;
  5736. switch (policy) {
  5737. case SCHED_FIFO:
  5738. case SCHED_RR:
  5739. ret = MAX_USER_RT_PRIO-1;
  5740. break;
  5741. case SCHED_NORMAL:
  5742. case SCHED_BATCH:
  5743. case SCHED_IDLE:
  5744. ret = 0;
  5745. break;
  5746. }
  5747. return ret;
  5748. }
  5749. /**
  5750. * sys_sched_get_priority_min - return minimum RT priority.
  5751. * @policy: scheduling class.
  5752. *
  5753. * this syscall returns the minimum rt_priority that can be used
  5754. * by a given scheduling class.
  5755. */
  5756. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  5757. {
  5758. int ret = -EINVAL;
  5759. switch (policy) {
  5760. case SCHED_FIFO:
  5761. case SCHED_RR:
  5762. ret = 1;
  5763. break;
  5764. case SCHED_NORMAL:
  5765. case SCHED_BATCH:
  5766. case SCHED_IDLE:
  5767. ret = 0;
  5768. }
  5769. return ret;
  5770. }
  5771. /**
  5772. * sys_sched_rr_get_interval - return the default timeslice of a process.
  5773. * @pid: pid of the process.
  5774. * @interval: userspace pointer to the timeslice value.
  5775. *
  5776. * this syscall writes the default timeslice value of a given process
  5777. * into the user-space timespec buffer. A value of '0' means infinity.
  5778. */
  5779. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  5780. struct timespec __user *, interval)
  5781. {
  5782. struct task_struct *p;
  5783. unsigned int time_slice;
  5784. int retval;
  5785. struct timespec t;
  5786. if (pid < 0)
  5787. return -EINVAL;
  5788. retval = -ESRCH;
  5789. read_lock(&tasklist_lock);
  5790. p = find_process_by_pid(pid);
  5791. if (!p)
  5792. goto out_unlock;
  5793. retval = security_task_getscheduler(p);
  5794. if (retval)
  5795. goto out_unlock;
  5796. /*
  5797. * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
  5798. * tasks that are on an otherwise idle runqueue:
  5799. */
  5800. time_slice = 0;
  5801. if (p->policy == SCHED_RR) {
  5802. time_slice = DEF_TIMESLICE;
  5803. } else if (p->policy != SCHED_FIFO) {
  5804. struct sched_entity *se = &p->se;
  5805. unsigned long flags;
  5806. struct rq *rq;
  5807. rq = task_rq_lock(p, &flags);
  5808. if (rq->cfs.load.weight)
  5809. time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  5810. task_rq_unlock(rq, &flags);
  5811. }
  5812. read_unlock(&tasklist_lock);
  5813. jiffies_to_timespec(time_slice, &t);
  5814. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  5815. return retval;
  5816. out_unlock:
  5817. read_unlock(&tasklist_lock);
  5818. return retval;
  5819. }
  5820. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  5821. void sched_show_task(struct task_struct *p)
  5822. {
  5823. unsigned long free = 0;
  5824. unsigned state;
  5825. state = p->state ? __ffs(p->state) + 1 : 0;
  5826. printk(KERN_INFO "%-13.13s %c", p->comm,
  5827. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  5828. #if BITS_PER_LONG == 32
  5829. if (state == TASK_RUNNING)
  5830. printk(KERN_CONT " running ");
  5831. else
  5832. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  5833. #else
  5834. if (state == TASK_RUNNING)
  5835. printk(KERN_CONT " running task ");
  5836. else
  5837. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  5838. #endif
  5839. #ifdef CONFIG_DEBUG_STACK_USAGE
  5840. free = stack_not_used(p);
  5841. #endif
  5842. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  5843. task_pid_nr(p), task_pid_nr(p->real_parent),
  5844. (unsigned long)task_thread_info(p)->flags);
  5845. show_stack(p, NULL);
  5846. }
  5847. void show_state_filter(unsigned long state_filter)
  5848. {
  5849. struct task_struct *g, *p;
  5850. #if BITS_PER_LONG == 32
  5851. printk(KERN_INFO
  5852. " task PC stack pid father\n");
  5853. #else
  5854. printk(KERN_INFO
  5855. " task PC stack pid father\n");
  5856. #endif
  5857. read_lock(&tasklist_lock);
  5858. do_each_thread(g, p) {
  5859. /*
  5860. * reset the NMI-timeout, listing all files on a slow
  5861. * console might take alot of time:
  5862. */
  5863. touch_nmi_watchdog();
  5864. if (!state_filter || (p->state & state_filter))
  5865. sched_show_task(p);
  5866. } while_each_thread(g, p);
  5867. touch_all_softlockup_watchdogs();
  5868. #ifdef CONFIG_SCHED_DEBUG
  5869. sysrq_sched_debug_show();
  5870. #endif
  5871. read_unlock(&tasklist_lock);
  5872. /*
  5873. * Only show locks if all tasks are dumped:
  5874. */
  5875. if (state_filter == -1)
  5876. debug_show_all_locks();
  5877. }
  5878. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  5879. {
  5880. idle->sched_class = &idle_sched_class;
  5881. }
  5882. /**
  5883. * init_idle - set up an idle thread for a given CPU
  5884. * @idle: task in question
  5885. * @cpu: cpu the idle task belongs to
  5886. *
  5887. * NOTE: this function does not set the idle thread's NEED_RESCHED
  5888. * flag, to make booting more robust.
  5889. */
  5890. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  5891. {
  5892. struct rq *rq = cpu_rq(cpu);
  5893. unsigned long flags;
  5894. spin_lock_irqsave(&rq->lock, flags);
  5895. __sched_fork(idle);
  5896. idle->se.exec_start = sched_clock();
  5897. idle->prio = idle->normal_prio = MAX_PRIO;
  5898. cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
  5899. __set_task_cpu(idle, cpu);
  5900. rq->curr = rq->idle = idle;
  5901. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  5902. idle->oncpu = 1;
  5903. #endif
  5904. spin_unlock_irqrestore(&rq->lock, flags);
  5905. /* Set the preempt count _outside_ the spinlocks! */
  5906. #if defined(CONFIG_PREEMPT)
  5907. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  5908. #else
  5909. task_thread_info(idle)->preempt_count = 0;
  5910. #endif
  5911. /*
  5912. * The idle tasks have their own, simple scheduling class:
  5913. */
  5914. idle->sched_class = &idle_sched_class;
  5915. ftrace_graph_init_task(idle);
  5916. }
  5917. /*
  5918. * In a system that switches off the HZ timer nohz_cpu_mask
  5919. * indicates which cpus entered this state. This is used
  5920. * in the rcu update to wait only for active cpus. For system
  5921. * which do not switch off the HZ timer nohz_cpu_mask should
  5922. * always be CPU_BITS_NONE.
  5923. */
  5924. cpumask_var_t nohz_cpu_mask;
  5925. /*
  5926. * Increase the granularity value when there are more CPUs,
  5927. * because with more CPUs the 'effective latency' as visible
  5928. * to users decreases. But the relationship is not linear,
  5929. * so pick a second-best guess by going with the log2 of the
  5930. * number of CPUs.
  5931. *
  5932. * This idea comes from the SD scheduler of Con Kolivas:
  5933. */
  5934. static inline void sched_init_granularity(void)
  5935. {
  5936. unsigned int factor = 1 + ilog2(num_online_cpus());
  5937. const unsigned long limit = 200000000;
  5938. sysctl_sched_min_granularity *= factor;
  5939. if (sysctl_sched_min_granularity > limit)
  5940. sysctl_sched_min_granularity = limit;
  5941. sysctl_sched_latency *= factor;
  5942. if (sysctl_sched_latency > limit)
  5943. sysctl_sched_latency = limit;
  5944. sysctl_sched_wakeup_granularity *= factor;
  5945. sysctl_sched_shares_ratelimit *= factor;
  5946. }
  5947. #ifdef CONFIG_SMP
  5948. /*
  5949. * This is how migration works:
  5950. *
  5951. * 1) we queue a struct migration_req structure in the source CPU's
  5952. * runqueue and wake up that CPU's migration thread.
  5953. * 2) we down() the locked semaphore => thread blocks.
  5954. * 3) migration thread wakes up (implicitly it forces the migrated
  5955. * thread off the CPU)
  5956. * 4) it gets the migration request and checks whether the migrated
  5957. * task is still in the wrong runqueue.
  5958. * 5) if it's in the wrong runqueue then the migration thread removes
  5959. * it and puts it into the right queue.
  5960. * 6) migration thread up()s the semaphore.
  5961. * 7) we wake up and the migration is done.
  5962. */
  5963. /*
  5964. * Change a given task's CPU affinity. Migrate the thread to a
  5965. * proper CPU and schedule it away if the CPU it's executing on
  5966. * is removed from the allowed bitmask.
  5967. *
  5968. * NOTE: the caller must have a valid reference to the task, the
  5969. * task must not exit() & deallocate itself prematurely. The
  5970. * call is not atomic; no spinlocks may be held.
  5971. */
  5972. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  5973. {
  5974. struct migration_req req;
  5975. unsigned long flags;
  5976. struct rq *rq;
  5977. int ret = 0;
  5978. rq = task_rq_lock(p, &flags);
  5979. if (!cpumask_intersects(new_mask, cpu_online_mask)) {
  5980. ret = -EINVAL;
  5981. goto out;
  5982. }
  5983. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  5984. !cpumask_equal(&p->cpus_allowed, new_mask))) {
  5985. ret = -EINVAL;
  5986. goto out;
  5987. }
  5988. if (p->sched_class->set_cpus_allowed)
  5989. p->sched_class->set_cpus_allowed(p, new_mask);
  5990. else {
  5991. cpumask_copy(&p->cpus_allowed, new_mask);
  5992. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  5993. }
  5994. /* Can the task run on the task's current CPU? If so, we're done */
  5995. if (cpumask_test_cpu(task_cpu(p), new_mask))
  5996. goto out;
  5997. if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
  5998. /* Need help from migration thread: drop lock and wait. */
  5999. struct task_struct *mt = rq->migration_thread;
  6000. get_task_struct(mt);
  6001. task_rq_unlock(rq, &flags);
  6002. wake_up_process(rq->migration_thread);
  6003. put_task_struct(mt);
  6004. wait_for_completion(&req.done);
  6005. tlb_migrate_finish(p->mm);
  6006. return 0;
  6007. }
  6008. out:
  6009. task_rq_unlock(rq, &flags);
  6010. return ret;
  6011. }
  6012. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  6013. /*
  6014. * Move (not current) task off this cpu, onto dest cpu. We're doing
  6015. * this because either it can't run here any more (set_cpus_allowed()
  6016. * away from this CPU, or CPU going down), or because we're
  6017. * attempting to rebalance this task on exec (sched_exec).
  6018. *
  6019. * So we race with normal scheduler movements, but that's OK, as long
  6020. * as the task is no longer on this CPU.
  6021. *
  6022. * Returns non-zero if task was successfully migrated.
  6023. */
  6024. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  6025. {
  6026. struct rq *rq_dest, *rq_src;
  6027. int ret = 0, on_rq;
  6028. if (unlikely(!cpu_active(dest_cpu)))
  6029. return ret;
  6030. rq_src = cpu_rq(src_cpu);
  6031. rq_dest = cpu_rq(dest_cpu);
  6032. double_rq_lock(rq_src, rq_dest);
  6033. /* Already moved. */
  6034. if (task_cpu(p) != src_cpu)
  6035. goto done;
  6036. /* Affinity changed (again). */
  6037. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  6038. goto fail;
  6039. on_rq = p->se.on_rq;
  6040. if (on_rq)
  6041. deactivate_task(rq_src, p, 0);
  6042. set_task_cpu(p, dest_cpu);
  6043. if (on_rq) {
  6044. activate_task(rq_dest, p, 0);
  6045. check_preempt_curr(rq_dest, p, 0);
  6046. }
  6047. done:
  6048. ret = 1;
  6049. fail:
  6050. double_rq_unlock(rq_src, rq_dest);
  6051. return ret;
  6052. }
  6053. #define RCU_MIGRATION_IDLE 0
  6054. #define RCU_MIGRATION_NEED_QS 1
  6055. #define RCU_MIGRATION_GOT_QS 2
  6056. #define RCU_MIGRATION_MUST_SYNC 3
  6057. /*
  6058. * migration_thread - this is a highprio system thread that performs
  6059. * thread migration by bumping thread off CPU then 'pushing' onto
  6060. * another runqueue.
  6061. */
  6062. static int migration_thread(void *data)
  6063. {
  6064. int badcpu;
  6065. int cpu = (long)data;
  6066. struct rq *rq;
  6067. rq = cpu_rq(cpu);
  6068. BUG_ON(rq->migration_thread != current);
  6069. set_current_state(TASK_INTERRUPTIBLE);
  6070. while (!kthread_should_stop()) {
  6071. struct migration_req *req;
  6072. struct list_head *head;
  6073. spin_lock_irq(&rq->lock);
  6074. if (cpu_is_offline(cpu)) {
  6075. spin_unlock_irq(&rq->lock);
  6076. break;
  6077. }
  6078. if (rq->active_balance) {
  6079. active_load_balance(rq, cpu);
  6080. rq->active_balance = 0;
  6081. }
  6082. head = &rq->migration_queue;
  6083. if (list_empty(head)) {
  6084. spin_unlock_irq(&rq->lock);
  6085. schedule();
  6086. set_current_state(TASK_INTERRUPTIBLE);
  6087. continue;
  6088. }
  6089. req = list_entry(head->next, struct migration_req, list);
  6090. list_del_init(head->next);
  6091. if (req->task != NULL) {
  6092. spin_unlock(&rq->lock);
  6093. __migrate_task(req->task, cpu, req->dest_cpu);
  6094. } else if (likely(cpu == (badcpu = smp_processor_id()))) {
  6095. req->dest_cpu = RCU_MIGRATION_GOT_QS;
  6096. spin_unlock(&rq->lock);
  6097. } else {
  6098. req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
  6099. spin_unlock(&rq->lock);
  6100. WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
  6101. }
  6102. local_irq_enable();
  6103. complete(&req->done);
  6104. }
  6105. __set_current_state(TASK_RUNNING);
  6106. return 0;
  6107. }
  6108. #ifdef CONFIG_HOTPLUG_CPU
  6109. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  6110. {
  6111. int ret;
  6112. local_irq_disable();
  6113. ret = __migrate_task(p, src_cpu, dest_cpu);
  6114. local_irq_enable();
  6115. return ret;
  6116. }
  6117. /*
  6118. * Figure out where task on dead CPU should go, use force if necessary.
  6119. */
  6120. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  6121. {
  6122. int dest_cpu;
  6123. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
  6124. again:
  6125. /* Look for allowed, online CPU in same node. */
  6126. for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
  6127. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  6128. goto move;
  6129. /* Any allowed, online CPU? */
  6130. dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
  6131. if (dest_cpu < nr_cpu_ids)
  6132. goto move;
  6133. /* No more Mr. Nice Guy. */
  6134. if (dest_cpu >= nr_cpu_ids) {
  6135. cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
  6136. dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
  6137. /*
  6138. * Don't tell them about moving exiting tasks or
  6139. * kernel threads (both mm NULL), since they never
  6140. * leave kernel.
  6141. */
  6142. if (p->mm && printk_ratelimit()) {
  6143. printk(KERN_INFO "process %d (%s) no "
  6144. "longer affine to cpu%d\n",
  6145. task_pid_nr(p), p->comm, dead_cpu);
  6146. }
  6147. }
  6148. move:
  6149. /* It can have affinity changed while we were choosing. */
  6150. if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
  6151. goto again;
  6152. }
  6153. /*
  6154. * While a dead CPU has no uninterruptible tasks queued at this point,
  6155. * it might still have a nonzero ->nr_uninterruptible counter, because
  6156. * for performance reasons the counter is not stricly tracking tasks to
  6157. * their home CPUs. So we just add the counter to another CPU's counter,
  6158. * to keep the global sum constant after CPU-down:
  6159. */
  6160. static void migrate_nr_uninterruptible(struct rq *rq_src)
  6161. {
  6162. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
  6163. unsigned long flags;
  6164. local_irq_save(flags);
  6165. double_rq_lock(rq_src, rq_dest);
  6166. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  6167. rq_src->nr_uninterruptible = 0;
  6168. double_rq_unlock(rq_src, rq_dest);
  6169. local_irq_restore(flags);
  6170. }
  6171. /* Run through task list and migrate tasks from the dead cpu. */
  6172. static void migrate_live_tasks(int src_cpu)
  6173. {
  6174. struct task_struct *p, *t;
  6175. read_lock(&tasklist_lock);
  6176. do_each_thread(t, p) {
  6177. if (p == current)
  6178. continue;
  6179. if (task_cpu(p) == src_cpu)
  6180. move_task_off_dead_cpu(src_cpu, p);
  6181. } while_each_thread(t, p);
  6182. read_unlock(&tasklist_lock);
  6183. }
  6184. /*
  6185. * Schedules idle task to be the next runnable task on current CPU.
  6186. * It does so by boosting its priority to highest possible.
  6187. * Used by CPU offline code.
  6188. */
  6189. void sched_idle_next(void)
  6190. {
  6191. int this_cpu = smp_processor_id();
  6192. struct rq *rq = cpu_rq(this_cpu);
  6193. struct task_struct *p = rq->idle;
  6194. unsigned long flags;
  6195. /* cpu has to be offline */
  6196. BUG_ON(cpu_online(this_cpu));
  6197. /*
  6198. * Strictly not necessary since rest of the CPUs are stopped by now
  6199. * and interrupts disabled on the current cpu.
  6200. */
  6201. spin_lock_irqsave(&rq->lock, flags);
  6202. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  6203. update_rq_clock(rq);
  6204. activate_task(rq, p, 0);
  6205. spin_unlock_irqrestore(&rq->lock, flags);
  6206. }
  6207. /*
  6208. * Ensures that the idle task is using init_mm right before its cpu goes
  6209. * offline.
  6210. */
  6211. void idle_task_exit(void)
  6212. {
  6213. struct mm_struct *mm = current->active_mm;
  6214. BUG_ON(cpu_online(smp_processor_id()));
  6215. if (mm != &init_mm)
  6216. switch_mm(mm, &init_mm, current);
  6217. mmdrop(mm);
  6218. }
  6219. /* called under rq->lock with disabled interrupts */
  6220. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  6221. {
  6222. struct rq *rq = cpu_rq(dead_cpu);
  6223. /* Must be exiting, otherwise would be on tasklist. */
  6224. BUG_ON(!p->exit_state);
  6225. /* Cannot have done final schedule yet: would have vanished. */
  6226. BUG_ON(p->state == TASK_DEAD);
  6227. get_task_struct(p);
  6228. /*
  6229. * Drop lock around migration; if someone else moves it,
  6230. * that's OK. No task can be added to this CPU, so iteration is
  6231. * fine.
  6232. */
  6233. spin_unlock_irq(&rq->lock);
  6234. move_task_off_dead_cpu(dead_cpu, p);
  6235. spin_lock_irq(&rq->lock);
  6236. put_task_struct(p);
  6237. }
  6238. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  6239. static void migrate_dead_tasks(unsigned int dead_cpu)
  6240. {
  6241. struct rq *rq = cpu_rq(dead_cpu);
  6242. struct task_struct *next;
  6243. for ( ; ; ) {
  6244. if (!rq->nr_running)
  6245. break;
  6246. update_rq_clock(rq);
  6247. next = pick_next_task(rq);
  6248. if (!next)
  6249. break;
  6250. next->sched_class->put_prev_task(rq, next);
  6251. migrate_dead(dead_cpu, next);
  6252. }
  6253. }
  6254. /*
  6255. * remove the tasks which were accounted by rq from calc_load_tasks.
  6256. */
  6257. static void calc_global_load_remove(struct rq *rq)
  6258. {
  6259. atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
  6260. rq->calc_load_active = 0;
  6261. }
  6262. #endif /* CONFIG_HOTPLUG_CPU */
  6263. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  6264. static struct ctl_table sd_ctl_dir[] = {
  6265. {
  6266. .procname = "sched_domain",
  6267. .mode = 0555,
  6268. },
  6269. {0, },
  6270. };
  6271. static struct ctl_table sd_ctl_root[] = {
  6272. {
  6273. .ctl_name = CTL_KERN,
  6274. .procname = "kernel",
  6275. .mode = 0555,
  6276. .child = sd_ctl_dir,
  6277. },
  6278. {0, },
  6279. };
  6280. static struct ctl_table *sd_alloc_ctl_entry(int n)
  6281. {
  6282. struct ctl_table *entry =
  6283. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  6284. return entry;
  6285. }
  6286. static void sd_free_ctl_entry(struct ctl_table **tablep)
  6287. {
  6288. struct ctl_table *entry;
  6289. /*
  6290. * In the intermediate directories, both the child directory and
  6291. * procname are dynamically allocated and could fail but the mode
  6292. * will always be set. In the lowest directory the names are
  6293. * static strings and all have proc handlers.
  6294. */
  6295. for (entry = *tablep; entry->mode; entry++) {
  6296. if (entry->child)
  6297. sd_free_ctl_entry(&entry->child);
  6298. if (entry->proc_handler == NULL)
  6299. kfree(entry->procname);
  6300. }
  6301. kfree(*tablep);
  6302. *tablep = NULL;
  6303. }
  6304. static void
  6305. set_table_entry(struct ctl_table *entry,
  6306. const char *procname, void *data, int maxlen,
  6307. mode_t mode, proc_handler *proc_handler)
  6308. {
  6309. entry->procname = procname;
  6310. entry->data = data;
  6311. entry->maxlen = maxlen;
  6312. entry->mode = mode;
  6313. entry->proc_handler = proc_handler;
  6314. }
  6315. static struct ctl_table *
  6316. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  6317. {
  6318. struct ctl_table *table = sd_alloc_ctl_entry(13);
  6319. if (table == NULL)
  6320. return NULL;
  6321. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  6322. sizeof(long), 0644, proc_doulongvec_minmax);
  6323. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  6324. sizeof(long), 0644, proc_doulongvec_minmax);
  6325. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  6326. sizeof(int), 0644, proc_dointvec_minmax);
  6327. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  6328. sizeof(int), 0644, proc_dointvec_minmax);
  6329. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  6330. sizeof(int), 0644, proc_dointvec_minmax);
  6331. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  6332. sizeof(int), 0644, proc_dointvec_minmax);
  6333. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  6334. sizeof(int), 0644, proc_dointvec_minmax);
  6335. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  6336. sizeof(int), 0644, proc_dointvec_minmax);
  6337. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  6338. sizeof(int), 0644, proc_dointvec_minmax);
  6339. set_table_entry(&table[9], "cache_nice_tries",
  6340. &sd->cache_nice_tries,
  6341. sizeof(int), 0644, proc_dointvec_minmax);
  6342. set_table_entry(&table[10], "flags", &sd->flags,
  6343. sizeof(int), 0644, proc_dointvec_minmax);
  6344. set_table_entry(&table[11], "name", sd->name,
  6345. CORENAME_MAX_SIZE, 0444, proc_dostring);
  6346. /* &table[12] is terminator */
  6347. return table;
  6348. }
  6349. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  6350. {
  6351. struct ctl_table *entry, *table;
  6352. struct sched_domain *sd;
  6353. int domain_num = 0, i;
  6354. char buf[32];
  6355. for_each_domain(cpu, sd)
  6356. domain_num++;
  6357. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  6358. if (table == NULL)
  6359. return NULL;
  6360. i = 0;
  6361. for_each_domain(cpu, sd) {
  6362. snprintf(buf, 32, "domain%d", i);
  6363. entry->procname = kstrdup(buf, GFP_KERNEL);
  6364. entry->mode = 0555;
  6365. entry->child = sd_alloc_ctl_domain_table(sd);
  6366. entry++;
  6367. i++;
  6368. }
  6369. return table;
  6370. }
  6371. static struct ctl_table_header *sd_sysctl_header;
  6372. static void register_sched_domain_sysctl(void)
  6373. {
  6374. int i, cpu_num = num_online_cpus();
  6375. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  6376. char buf[32];
  6377. WARN_ON(sd_ctl_dir[0].child);
  6378. sd_ctl_dir[0].child = entry;
  6379. if (entry == NULL)
  6380. return;
  6381. for_each_online_cpu(i) {
  6382. snprintf(buf, 32, "cpu%d", i);
  6383. entry->procname = kstrdup(buf, GFP_KERNEL);
  6384. entry->mode = 0555;
  6385. entry->child = sd_alloc_ctl_cpu_table(i);
  6386. entry++;
  6387. }
  6388. WARN_ON(sd_sysctl_header);
  6389. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  6390. }
  6391. /* may be called multiple times per register */
  6392. static void unregister_sched_domain_sysctl(void)
  6393. {
  6394. if (sd_sysctl_header)
  6395. unregister_sysctl_table(sd_sysctl_header);
  6396. sd_sysctl_header = NULL;
  6397. if (sd_ctl_dir[0].child)
  6398. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  6399. }
  6400. #else
  6401. static void register_sched_domain_sysctl(void)
  6402. {
  6403. }
  6404. static void unregister_sched_domain_sysctl(void)
  6405. {
  6406. }
  6407. #endif
  6408. static void set_rq_online(struct rq *rq)
  6409. {
  6410. if (!rq->online) {
  6411. const struct sched_class *class;
  6412. cpumask_set_cpu(rq->cpu, rq->rd->online);
  6413. rq->online = 1;
  6414. for_each_class(class) {
  6415. if (class->rq_online)
  6416. class->rq_online(rq);
  6417. }
  6418. }
  6419. }
  6420. static void set_rq_offline(struct rq *rq)
  6421. {
  6422. if (rq->online) {
  6423. const struct sched_class *class;
  6424. for_each_class(class) {
  6425. if (class->rq_offline)
  6426. class->rq_offline(rq);
  6427. }
  6428. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  6429. rq->online = 0;
  6430. }
  6431. }
  6432. /*
  6433. * migration_call - callback that gets triggered when a CPU is added.
  6434. * Here we can start up the necessary migration thread for the new CPU.
  6435. */
  6436. static int __cpuinit
  6437. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  6438. {
  6439. struct task_struct *p;
  6440. int cpu = (long)hcpu;
  6441. unsigned long flags;
  6442. struct rq *rq;
  6443. switch (action) {
  6444. case CPU_UP_PREPARE:
  6445. case CPU_UP_PREPARE_FROZEN:
  6446. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  6447. if (IS_ERR(p))
  6448. return NOTIFY_BAD;
  6449. kthread_bind(p, cpu);
  6450. /* Must be high prio: stop_machine expects to yield to it. */
  6451. rq = task_rq_lock(p, &flags);
  6452. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  6453. task_rq_unlock(rq, &flags);
  6454. get_task_struct(p);
  6455. cpu_rq(cpu)->migration_thread = p;
  6456. rq->calc_load_update = calc_load_update;
  6457. break;
  6458. case CPU_ONLINE:
  6459. case CPU_ONLINE_FROZEN:
  6460. /* Strictly unnecessary, as first user will wake it. */
  6461. wake_up_process(cpu_rq(cpu)->migration_thread);
  6462. /* Update our root-domain */
  6463. rq = cpu_rq(cpu);
  6464. spin_lock_irqsave(&rq->lock, flags);
  6465. if (rq->rd) {
  6466. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  6467. set_rq_online(rq);
  6468. }
  6469. spin_unlock_irqrestore(&rq->lock, flags);
  6470. break;
  6471. #ifdef CONFIG_HOTPLUG_CPU
  6472. case CPU_UP_CANCELED:
  6473. case CPU_UP_CANCELED_FROZEN:
  6474. if (!cpu_rq(cpu)->migration_thread)
  6475. break;
  6476. /* Unbind it from offline cpu so it can run. Fall thru. */
  6477. kthread_bind(cpu_rq(cpu)->migration_thread,
  6478. cpumask_any(cpu_online_mask));
  6479. kthread_stop(cpu_rq(cpu)->migration_thread);
  6480. put_task_struct(cpu_rq(cpu)->migration_thread);
  6481. cpu_rq(cpu)->migration_thread = NULL;
  6482. break;
  6483. case CPU_DEAD:
  6484. case CPU_DEAD_FROZEN:
  6485. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  6486. migrate_live_tasks(cpu);
  6487. rq = cpu_rq(cpu);
  6488. kthread_stop(rq->migration_thread);
  6489. put_task_struct(rq->migration_thread);
  6490. rq->migration_thread = NULL;
  6491. /* Idle task back to normal (off runqueue, low prio) */
  6492. spin_lock_irq(&rq->lock);
  6493. update_rq_clock(rq);
  6494. deactivate_task(rq, rq->idle, 0);
  6495. rq->idle->static_prio = MAX_PRIO;
  6496. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  6497. rq->idle->sched_class = &idle_sched_class;
  6498. migrate_dead_tasks(cpu);
  6499. spin_unlock_irq(&rq->lock);
  6500. cpuset_unlock();
  6501. migrate_nr_uninterruptible(rq);
  6502. BUG_ON(rq->nr_running != 0);
  6503. calc_global_load_remove(rq);
  6504. /*
  6505. * No need to migrate the tasks: it was best-effort if
  6506. * they didn't take sched_hotcpu_mutex. Just wake up
  6507. * the requestors.
  6508. */
  6509. spin_lock_irq(&rq->lock);
  6510. while (!list_empty(&rq->migration_queue)) {
  6511. struct migration_req *req;
  6512. req = list_entry(rq->migration_queue.next,
  6513. struct migration_req, list);
  6514. list_del_init(&req->list);
  6515. spin_unlock_irq(&rq->lock);
  6516. complete(&req->done);
  6517. spin_lock_irq(&rq->lock);
  6518. }
  6519. spin_unlock_irq(&rq->lock);
  6520. break;
  6521. case CPU_DYING:
  6522. case CPU_DYING_FROZEN:
  6523. /* Update our root-domain */
  6524. rq = cpu_rq(cpu);
  6525. spin_lock_irqsave(&rq->lock, flags);
  6526. if (rq->rd) {
  6527. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  6528. set_rq_offline(rq);
  6529. }
  6530. spin_unlock_irqrestore(&rq->lock, flags);
  6531. break;
  6532. #endif
  6533. }
  6534. return NOTIFY_OK;
  6535. }
  6536. /*
  6537. * Register at high priority so that task migration (migrate_all_tasks)
  6538. * happens before everything else. This has to be lower priority than
  6539. * the notifier in the perf_counter subsystem, though.
  6540. */
  6541. static struct notifier_block __cpuinitdata migration_notifier = {
  6542. .notifier_call = migration_call,
  6543. .priority = 10
  6544. };
  6545. static int __init migration_init(void)
  6546. {
  6547. void *cpu = (void *)(long)smp_processor_id();
  6548. int err;
  6549. /* Start one for the boot CPU: */
  6550. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  6551. BUG_ON(err == NOTIFY_BAD);
  6552. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  6553. register_cpu_notifier(&migration_notifier);
  6554. return 0;
  6555. }
  6556. early_initcall(migration_init);
  6557. #endif
  6558. #ifdef CONFIG_SMP
  6559. #ifdef CONFIG_SCHED_DEBUG
  6560. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  6561. struct cpumask *groupmask)
  6562. {
  6563. struct sched_group *group = sd->groups;
  6564. char str[256];
  6565. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  6566. cpumask_clear(groupmask);
  6567. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  6568. if (!(sd->flags & SD_LOAD_BALANCE)) {
  6569. printk("does not load-balance\n");
  6570. if (sd->parent)
  6571. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  6572. " has parent");
  6573. return -1;
  6574. }
  6575. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  6576. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  6577. printk(KERN_ERR "ERROR: domain->span does not contain "
  6578. "CPU%d\n", cpu);
  6579. }
  6580. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  6581. printk(KERN_ERR "ERROR: domain->groups does not contain"
  6582. " CPU%d\n", cpu);
  6583. }
  6584. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  6585. do {
  6586. if (!group) {
  6587. printk("\n");
  6588. printk(KERN_ERR "ERROR: group is NULL\n");
  6589. break;
  6590. }
  6591. if (!group->cpu_power) {
  6592. printk(KERN_CONT "\n");
  6593. printk(KERN_ERR "ERROR: domain->cpu_power not "
  6594. "set\n");
  6595. break;
  6596. }
  6597. if (!cpumask_weight(sched_group_cpus(group))) {
  6598. printk(KERN_CONT "\n");
  6599. printk(KERN_ERR "ERROR: empty group\n");
  6600. break;
  6601. }
  6602. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  6603. printk(KERN_CONT "\n");
  6604. printk(KERN_ERR "ERROR: repeated CPUs\n");
  6605. break;
  6606. }
  6607. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  6608. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  6609. printk(KERN_CONT " %s", str);
  6610. if (group->cpu_power != SCHED_LOAD_SCALE) {
  6611. printk(KERN_CONT " (cpu_power = %d)",
  6612. group->cpu_power);
  6613. }
  6614. group = group->next;
  6615. } while (group != sd->groups);
  6616. printk(KERN_CONT "\n");
  6617. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  6618. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  6619. if (sd->parent &&
  6620. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  6621. printk(KERN_ERR "ERROR: parent span is not a superset "
  6622. "of domain->span\n");
  6623. return 0;
  6624. }
  6625. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  6626. {
  6627. cpumask_var_t groupmask;
  6628. int level = 0;
  6629. if (!sd) {
  6630. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  6631. return;
  6632. }
  6633. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  6634. if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
  6635. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  6636. return;
  6637. }
  6638. for (;;) {
  6639. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  6640. break;
  6641. level++;
  6642. sd = sd->parent;
  6643. if (!sd)
  6644. break;
  6645. }
  6646. free_cpumask_var(groupmask);
  6647. }
  6648. #else /* !CONFIG_SCHED_DEBUG */
  6649. # define sched_domain_debug(sd, cpu) do { } while (0)
  6650. #endif /* CONFIG_SCHED_DEBUG */
  6651. static int sd_degenerate(struct sched_domain *sd)
  6652. {
  6653. if (cpumask_weight(sched_domain_span(sd)) == 1)
  6654. return 1;
  6655. /* Following flags need at least 2 groups */
  6656. if (sd->flags & (SD_LOAD_BALANCE |
  6657. SD_BALANCE_NEWIDLE |
  6658. SD_BALANCE_FORK |
  6659. SD_BALANCE_EXEC |
  6660. SD_SHARE_CPUPOWER |
  6661. SD_SHARE_PKG_RESOURCES)) {
  6662. if (sd->groups != sd->groups->next)
  6663. return 0;
  6664. }
  6665. /* Following flags don't use groups */
  6666. if (sd->flags & (SD_WAKE_AFFINE))
  6667. return 0;
  6668. return 1;
  6669. }
  6670. static int
  6671. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  6672. {
  6673. unsigned long cflags = sd->flags, pflags = parent->flags;
  6674. if (sd_degenerate(parent))
  6675. return 1;
  6676. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  6677. return 0;
  6678. /* Flags needing groups don't count if only 1 group in parent */
  6679. if (parent->groups == parent->groups->next) {
  6680. pflags &= ~(SD_LOAD_BALANCE |
  6681. SD_BALANCE_NEWIDLE |
  6682. SD_BALANCE_FORK |
  6683. SD_BALANCE_EXEC |
  6684. SD_SHARE_CPUPOWER |
  6685. SD_SHARE_PKG_RESOURCES);
  6686. if (nr_node_ids == 1)
  6687. pflags &= ~SD_SERIALIZE;
  6688. }
  6689. if (~cflags & pflags)
  6690. return 0;
  6691. return 1;
  6692. }
  6693. static void free_rootdomain(struct root_domain *rd)
  6694. {
  6695. cpupri_cleanup(&rd->cpupri);
  6696. free_cpumask_var(rd->rto_mask);
  6697. free_cpumask_var(rd->online);
  6698. free_cpumask_var(rd->span);
  6699. kfree(rd);
  6700. }
  6701. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  6702. {
  6703. struct root_domain *old_rd = NULL;
  6704. unsigned long flags;
  6705. spin_lock_irqsave(&rq->lock, flags);
  6706. if (rq->rd) {
  6707. old_rd = rq->rd;
  6708. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  6709. set_rq_offline(rq);
  6710. cpumask_clear_cpu(rq->cpu, old_rd->span);
  6711. /*
  6712. * If we dont want to free the old_rt yet then
  6713. * set old_rd to NULL to skip the freeing later
  6714. * in this function:
  6715. */
  6716. if (!atomic_dec_and_test(&old_rd->refcount))
  6717. old_rd = NULL;
  6718. }
  6719. atomic_inc(&rd->refcount);
  6720. rq->rd = rd;
  6721. cpumask_set_cpu(rq->cpu, rd->span);
  6722. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  6723. set_rq_online(rq);
  6724. spin_unlock_irqrestore(&rq->lock, flags);
  6725. if (old_rd)
  6726. free_rootdomain(old_rd);
  6727. }
  6728. static int init_rootdomain(struct root_domain *rd, bool bootmem)
  6729. {
  6730. gfp_t gfp = GFP_KERNEL;
  6731. memset(rd, 0, sizeof(*rd));
  6732. if (bootmem)
  6733. gfp = GFP_NOWAIT;
  6734. if (!alloc_cpumask_var(&rd->span, gfp))
  6735. goto out;
  6736. if (!alloc_cpumask_var(&rd->online, gfp))
  6737. goto free_span;
  6738. if (!alloc_cpumask_var(&rd->rto_mask, gfp))
  6739. goto free_online;
  6740. if (cpupri_init(&rd->cpupri, bootmem) != 0)
  6741. goto free_rto_mask;
  6742. return 0;
  6743. free_rto_mask:
  6744. free_cpumask_var(rd->rto_mask);
  6745. free_online:
  6746. free_cpumask_var(rd->online);
  6747. free_span:
  6748. free_cpumask_var(rd->span);
  6749. out:
  6750. return -ENOMEM;
  6751. }
  6752. static void init_defrootdomain(void)
  6753. {
  6754. init_rootdomain(&def_root_domain, true);
  6755. atomic_set(&def_root_domain.refcount, 1);
  6756. }
  6757. static struct root_domain *alloc_rootdomain(void)
  6758. {
  6759. struct root_domain *rd;
  6760. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  6761. if (!rd)
  6762. return NULL;
  6763. if (init_rootdomain(rd, false) != 0) {
  6764. kfree(rd);
  6765. return NULL;
  6766. }
  6767. return rd;
  6768. }
  6769. /*
  6770. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  6771. * hold the hotplug lock.
  6772. */
  6773. static void
  6774. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  6775. {
  6776. struct rq *rq = cpu_rq(cpu);
  6777. struct sched_domain *tmp;
  6778. /* Remove the sched domains which do not contribute to scheduling. */
  6779. for (tmp = sd; tmp; ) {
  6780. struct sched_domain *parent = tmp->parent;
  6781. if (!parent)
  6782. break;
  6783. if (sd_parent_degenerate(tmp, parent)) {
  6784. tmp->parent = parent->parent;
  6785. if (parent->parent)
  6786. parent->parent->child = tmp;
  6787. } else
  6788. tmp = tmp->parent;
  6789. }
  6790. if (sd && sd_degenerate(sd)) {
  6791. sd = sd->parent;
  6792. if (sd)
  6793. sd->child = NULL;
  6794. }
  6795. sched_domain_debug(sd, cpu);
  6796. rq_attach_root(rq, rd);
  6797. rcu_assign_pointer(rq->sd, sd);
  6798. }
  6799. /* cpus with isolated domains */
  6800. static cpumask_var_t cpu_isolated_map;
  6801. /* Setup the mask of cpus configured for isolated domains */
  6802. static int __init isolated_cpu_setup(char *str)
  6803. {
  6804. cpulist_parse(str, cpu_isolated_map);
  6805. return 1;
  6806. }
  6807. __setup("isolcpus=", isolated_cpu_setup);
  6808. /*
  6809. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  6810. * to a function which identifies what group(along with sched group) a CPU
  6811. * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
  6812. * (due to the fact that we keep track of groups covered with a struct cpumask).
  6813. *
  6814. * init_sched_build_groups will build a circular linked list of the groups
  6815. * covered by the given span, and will set each group's ->cpumask correctly,
  6816. * and ->cpu_power to 0.
  6817. */
  6818. static void
  6819. init_sched_build_groups(const struct cpumask *span,
  6820. const struct cpumask *cpu_map,
  6821. int (*group_fn)(int cpu, const struct cpumask *cpu_map,
  6822. struct sched_group **sg,
  6823. struct cpumask *tmpmask),
  6824. struct cpumask *covered, struct cpumask *tmpmask)
  6825. {
  6826. struct sched_group *first = NULL, *last = NULL;
  6827. int i;
  6828. cpumask_clear(covered);
  6829. for_each_cpu(i, span) {
  6830. struct sched_group *sg;
  6831. int group = group_fn(i, cpu_map, &sg, tmpmask);
  6832. int j;
  6833. if (cpumask_test_cpu(i, covered))
  6834. continue;
  6835. cpumask_clear(sched_group_cpus(sg));
  6836. sg->cpu_power = 0;
  6837. for_each_cpu(j, span) {
  6838. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  6839. continue;
  6840. cpumask_set_cpu(j, covered);
  6841. cpumask_set_cpu(j, sched_group_cpus(sg));
  6842. }
  6843. if (!first)
  6844. first = sg;
  6845. if (last)
  6846. last->next = sg;
  6847. last = sg;
  6848. }
  6849. last->next = first;
  6850. }
  6851. #define SD_NODES_PER_DOMAIN 16
  6852. #ifdef CONFIG_NUMA
  6853. /**
  6854. * find_next_best_node - find the next node to include in a sched_domain
  6855. * @node: node whose sched_domain we're building
  6856. * @used_nodes: nodes already in the sched_domain
  6857. *
  6858. * Find the next node to include in a given scheduling domain. Simply
  6859. * finds the closest node not already in the @used_nodes map.
  6860. *
  6861. * Should use nodemask_t.
  6862. */
  6863. static int find_next_best_node(int node, nodemask_t *used_nodes)
  6864. {
  6865. int i, n, val, min_val, best_node = 0;
  6866. min_val = INT_MAX;
  6867. for (i = 0; i < nr_node_ids; i++) {
  6868. /* Start at @node */
  6869. n = (node + i) % nr_node_ids;
  6870. if (!nr_cpus_node(n))
  6871. continue;
  6872. /* Skip already used nodes */
  6873. if (node_isset(n, *used_nodes))
  6874. continue;
  6875. /* Simple min distance search */
  6876. val = node_distance(node, n);
  6877. if (val < min_val) {
  6878. min_val = val;
  6879. best_node = n;
  6880. }
  6881. }
  6882. node_set(best_node, *used_nodes);
  6883. return best_node;
  6884. }
  6885. /**
  6886. * sched_domain_node_span - get a cpumask for a node's sched_domain
  6887. * @node: node whose cpumask we're constructing
  6888. * @span: resulting cpumask
  6889. *
  6890. * Given a node, construct a good cpumask for its sched_domain to span. It
  6891. * should be one that prevents unnecessary balancing, but also spreads tasks
  6892. * out optimally.
  6893. */
  6894. static void sched_domain_node_span(int node, struct cpumask *span)
  6895. {
  6896. nodemask_t used_nodes;
  6897. int i;
  6898. cpumask_clear(span);
  6899. nodes_clear(used_nodes);
  6900. cpumask_or(span, span, cpumask_of_node(node));
  6901. node_set(node, used_nodes);
  6902. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  6903. int next_node = find_next_best_node(node, &used_nodes);
  6904. cpumask_or(span, span, cpumask_of_node(next_node));
  6905. }
  6906. }
  6907. #endif /* CONFIG_NUMA */
  6908. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  6909. /*
  6910. * The cpus mask in sched_group and sched_domain hangs off the end.
  6911. *
  6912. * ( See the the comments in include/linux/sched.h:struct sched_group
  6913. * and struct sched_domain. )
  6914. */
  6915. struct static_sched_group {
  6916. struct sched_group sg;
  6917. DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
  6918. };
  6919. struct static_sched_domain {
  6920. struct sched_domain sd;
  6921. DECLARE_BITMAP(span, CONFIG_NR_CPUS);
  6922. };
  6923. struct s_data {
  6924. #ifdef CONFIG_NUMA
  6925. int sd_allnodes;
  6926. cpumask_var_t domainspan;
  6927. cpumask_var_t covered;
  6928. cpumask_var_t notcovered;
  6929. #endif
  6930. cpumask_var_t nodemask;
  6931. cpumask_var_t this_sibling_map;
  6932. cpumask_var_t this_core_map;
  6933. cpumask_var_t send_covered;
  6934. cpumask_var_t tmpmask;
  6935. struct sched_group **sched_group_nodes;
  6936. struct root_domain *rd;
  6937. };
  6938. enum s_alloc {
  6939. sa_sched_groups = 0,
  6940. sa_rootdomain,
  6941. sa_tmpmask,
  6942. sa_send_covered,
  6943. sa_this_core_map,
  6944. sa_this_sibling_map,
  6945. sa_nodemask,
  6946. sa_sched_group_nodes,
  6947. #ifdef CONFIG_NUMA
  6948. sa_notcovered,
  6949. sa_covered,
  6950. sa_domainspan,
  6951. #endif
  6952. sa_none,
  6953. };
  6954. /*
  6955. * SMT sched-domains:
  6956. */
  6957. #ifdef CONFIG_SCHED_SMT
  6958. static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
  6959. static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
  6960. static int
  6961. cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
  6962. struct sched_group **sg, struct cpumask *unused)
  6963. {
  6964. if (sg)
  6965. *sg = &per_cpu(sched_group_cpus, cpu).sg;
  6966. return cpu;
  6967. }
  6968. #endif /* CONFIG_SCHED_SMT */
  6969. /*
  6970. * multi-core sched-domains:
  6971. */
  6972. #ifdef CONFIG_SCHED_MC
  6973. static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
  6974. static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
  6975. #endif /* CONFIG_SCHED_MC */
  6976. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  6977. static int
  6978. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  6979. struct sched_group **sg, struct cpumask *mask)
  6980. {
  6981. int group;
  6982. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  6983. group = cpumask_first(mask);
  6984. if (sg)
  6985. *sg = &per_cpu(sched_group_core, group).sg;
  6986. return group;
  6987. }
  6988. #elif defined(CONFIG_SCHED_MC)
  6989. static int
  6990. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  6991. struct sched_group **sg, struct cpumask *unused)
  6992. {
  6993. if (sg)
  6994. *sg = &per_cpu(sched_group_core, cpu).sg;
  6995. return cpu;
  6996. }
  6997. #endif
  6998. static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
  6999. static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
  7000. static int
  7001. cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
  7002. struct sched_group **sg, struct cpumask *mask)
  7003. {
  7004. int group;
  7005. #ifdef CONFIG_SCHED_MC
  7006. cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
  7007. group = cpumask_first(mask);
  7008. #elif defined(CONFIG_SCHED_SMT)
  7009. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  7010. group = cpumask_first(mask);
  7011. #else
  7012. group = cpu;
  7013. #endif
  7014. if (sg)
  7015. *sg = &per_cpu(sched_group_phys, group).sg;
  7016. return group;
  7017. }
  7018. #ifdef CONFIG_NUMA
  7019. /*
  7020. * The init_sched_build_groups can't handle what we want to do with node
  7021. * groups, so roll our own. Now each node has its own list of groups which
  7022. * gets dynamically allocated.
  7023. */
  7024. static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
  7025. static struct sched_group ***sched_group_nodes_bycpu;
  7026. static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
  7027. static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
  7028. static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
  7029. struct sched_group **sg,
  7030. struct cpumask *nodemask)
  7031. {
  7032. int group;
  7033. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
  7034. group = cpumask_first(nodemask);
  7035. if (sg)
  7036. *sg = &per_cpu(sched_group_allnodes, group).sg;
  7037. return group;
  7038. }
  7039. static void init_numa_sched_groups_power(struct sched_group *group_head)
  7040. {
  7041. struct sched_group *sg = group_head;
  7042. int j;
  7043. if (!sg)
  7044. return;
  7045. do {
  7046. for_each_cpu(j, sched_group_cpus(sg)) {
  7047. struct sched_domain *sd;
  7048. sd = &per_cpu(phys_domains, j).sd;
  7049. if (j != group_first_cpu(sd->groups)) {
  7050. /*
  7051. * Only add "power" once for each
  7052. * physical package.
  7053. */
  7054. continue;
  7055. }
  7056. sg->cpu_power += sd->groups->cpu_power;
  7057. }
  7058. sg = sg->next;
  7059. } while (sg != group_head);
  7060. }
  7061. static int build_numa_sched_groups(struct s_data *d,
  7062. const struct cpumask *cpu_map, int num)
  7063. {
  7064. struct sched_domain *sd;
  7065. struct sched_group *sg, *prev;
  7066. int n, j;
  7067. cpumask_clear(d->covered);
  7068. cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
  7069. if (cpumask_empty(d->nodemask)) {
  7070. d->sched_group_nodes[num] = NULL;
  7071. goto out;
  7072. }
  7073. sched_domain_node_span(num, d->domainspan);
  7074. cpumask_and(d->domainspan, d->domainspan, cpu_map);
  7075. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  7076. GFP_KERNEL, num);
  7077. if (!sg) {
  7078. printk(KERN_WARNING "Can not alloc domain group for node %d\n",
  7079. num);
  7080. return -ENOMEM;
  7081. }
  7082. d->sched_group_nodes[num] = sg;
  7083. for_each_cpu(j, d->nodemask) {
  7084. sd = &per_cpu(node_domains, j).sd;
  7085. sd->groups = sg;
  7086. }
  7087. sg->cpu_power = 0;
  7088. cpumask_copy(sched_group_cpus(sg), d->nodemask);
  7089. sg->next = sg;
  7090. cpumask_or(d->covered, d->covered, d->nodemask);
  7091. prev = sg;
  7092. for (j = 0; j < nr_node_ids; j++) {
  7093. n = (num + j) % nr_node_ids;
  7094. cpumask_complement(d->notcovered, d->covered);
  7095. cpumask_and(d->tmpmask, d->notcovered, cpu_map);
  7096. cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
  7097. if (cpumask_empty(d->tmpmask))
  7098. break;
  7099. cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
  7100. if (cpumask_empty(d->tmpmask))
  7101. continue;
  7102. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  7103. GFP_KERNEL, num);
  7104. if (!sg) {
  7105. printk(KERN_WARNING
  7106. "Can not alloc domain group for node %d\n", j);
  7107. return -ENOMEM;
  7108. }
  7109. sg->cpu_power = 0;
  7110. cpumask_copy(sched_group_cpus(sg), d->tmpmask);
  7111. sg->next = prev->next;
  7112. cpumask_or(d->covered, d->covered, d->tmpmask);
  7113. prev->next = sg;
  7114. prev = sg;
  7115. }
  7116. out:
  7117. return 0;
  7118. }
  7119. #endif /* CONFIG_NUMA */
  7120. #ifdef CONFIG_NUMA
  7121. /* Free memory allocated for various sched_group structures */
  7122. static void free_sched_groups(const struct cpumask *cpu_map,
  7123. struct cpumask *nodemask)
  7124. {
  7125. int cpu, i;
  7126. for_each_cpu(cpu, cpu_map) {
  7127. struct sched_group **sched_group_nodes
  7128. = sched_group_nodes_bycpu[cpu];
  7129. if (!sched_group_nodes)
  7130. continue;
  7131. for (i = 0; i < nr_node_ids; i++) {
  7132. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  7133. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  7134. if (cpumask_empty(nodemask))
  7135. continue;
  7136. if (sg == NULL)
  7137. continue;
  7138. sg = sg->next;
  7139. next_sg:
  7140. oldsg = sg;
  7141. sg = sg->next;
  7142. kfree(oldsg);
  7143. if (oldsg != sched_group_nodes[i])
  7144. goto next_sg;
  7145. }
  7146. kfree(sched_group_nodes);
  7147. sched_group_nodes_bycpu[cpu] = NULL;
  7148. }
  7149. }
  7150. #else /* !CONFIG_NUMA */
  7151. static void free_sched_groups(const struct cpumask *cpu_map,
  7152. struct cpumask *nodemask)
  7153. {
  7154. }
  7155. #endif /* CONFIG_NUMA */
  7156. /*
  7157. * Initialize sched groups cpu_power.
  7158. *
  7159. * cpu_power indicates the capacity of sched group, which is used while
  7160. * distributing the load between different sched groups in a sched domain.
  7161. * Typically cpu_power for all the groups in a sched domain will be same unless
  7162. * there are asymmetries in the topology. If there are asymmetries, group
  7163. * having more cpu_power will pickup more load compared to the group having
  7164. * less cpu_power.
  7165. */
  7166. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  7167. {
  7168. struct sched_domain *child;
  7169. struct sched_group *group;
  7170. long power;
  7171. int weight;
  7172. WARN_ON(!sd || !sd->groups);
  7173. if (cpu != group_first_cpu(sd->groups))
  7174. return;
  7175. child = sd->child;
  7176. sd->groups->cpu_power = 0;
  7177. if (!child) {
  7178. power = SCHED_LOAD_SCALE;
  7179. weight = cpumask_weight(sched_domain_span(sd));
  7180. /*
  7181. * SMT siblings share the power of a single core.
  7182. * Usually multiple threads get a better yield out of
  7183. * that one core than a single thread would have,
  7184. * reflect that in sd->smt_gain.
  7185. */
  7186. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  7187. power *= sd->smt_gain;
  7188. power /= weight;
  7189. power >>= SCHED_LOAD_SHIFT;
  7190. }
  7191. sd->groups->cpu_power += power;
  7192. return;
  7193. }
  7194. /*
  7195. * Add cpu_power of each child group to this groups cpu_power.
  7196. */
  7197. group = child->groups;
  7198. do {
  7199. sd->groups->cpu_power += group->cpu_power;
  7200. group = group->next;
  7201. } while (group != child->groups);
  7202. }
  7203. /*
  7204. * Initializers for schedule domains
  7205. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  7206. */
  7207. #ifdef CONFIG_SCHED_DEBUG
  7208. # define SD_INIT_NAME(sd, type) sd->name = #type
  7209. #else
  7210. # define SD_INIT_NAME(sd, type) do { } while (0)
  7211. #endif
  7212. #define SD_INIT(sd, type) sd_init_##type(sd)
  7213. #define SD_INIT_FUNC(type) \
  7214. static noinline void sd_init_##type(struct sched_domain *sd) \
  7215. { \
  7216. memset(sd, 0, sizeof(*sd)); \
  7217. *sd = SD_##type##_INIT; \
  7218. sd->level = SD_LV_##type; \
  7219. SD_INIT_NAME(sd, type); \
  7220. }
  7221. SD_INIT_FUNC(CPU)
  7222. #ifdef CONFIG_NUMA
  7223. SD_INIT_FUNC(ALLNODES)
  7224. SD_INIT_FUNC(NODE)
  7225. #endif
  7226. #ifdef CONFIG_SCHED_SMT
  7227. SD_INIT_FUNC(SIBLING)
  7228. #endif
  7229. #ifdef CONFIG_SCHED_MC
  7230. SD_INIT_FUNC(MC)
  7231. #endif
  7232. static int default_relax_domain_level = -1;
  7233. static int __init setup_relax_domain_level(char *str)
  7234. {
  7235. unsigned long val;
  7236. val = simple_strtoul(str, NULL, 0);
  7237. if (val < SD_LV_MAX)
  7238. default_relax_domain_level = val;
  7239. return 1;
  7240. }
  7241. __setup("relax_domain_level=", setup_relax_domain_level);
  7242. static void set_domain_attribute(struct sched_domain *sd,
  7243. struct sched_domain_attr *attr)
  7244. {
  7245. int request;
  7246. if (!attr || attr->relax_domain_level < 0) {
  7247. if (default_relax_domain_level < 0)
  7248. return;
  7249. else
  7250. request = default_relax_domain_level;
  7251. } else
  7252. request = attr->relax_domain_level;
  7253. if (request < sd->level) {
  7254. /* turn off idle balance on this domain */
  7255. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  7256. } else {
  7257. /* turn on idle balance on this domain */
  7258. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  7259. }
  7260. }
  7261. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  7262. const struct cpumask *cpu_map)
  7263. {
  7264. switch (what) {
  7265. case sa_sched_groups:
  7266. free_sched_groups(cpu_map, d->tmpmask); /* fall through */
  7267. d->sched_group_nodes = NULL;
  7268. case sa_rootdomain:
  7269. free_rootdomain(d->rd); /* fall through */
  7270. case sa_tmpmask:
  7271. free_cpumask_var(d->tmpmask); /* fall through */
  7272. case sa_send_covered:
  7273. free_cpumask_var(d->send_covered); /* fall through */
  7274. case sa_this_core_map:
  7275. free_cpumask_var(d->this_core_map); /* fall through */
  7276. case sa_this_sibling_map:
  7277. free_cpumask_var(d->this_sibling_map); /* fall through */
  7278. case sa_nodemask:
  7279. free_cpumask_var(d->nodemask); /* fall through */
  7280. case sa_sched_group_nodes:
  7281. #ifdef CONFIG_NUMA
  7282. kfree(d->sched_group_nodes); /* fall through */
  7283. case sa_notcovered:
  7284. free_cpumask_var(d->notcovered); /* fall through */
  7285. case sa_covered:
  7286. free_cpumask_var(d->covered); /* fall through */
  7287. case sa_domainspan:
  7288. free_cpumask_var(d->domainspan); /* fall through */
  7289. #endif
  7290. case sa_none:
  7291. break;
  7292. }
  7293. }
  7294. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  7295. const struct cpumask *cpu_map)
  7296. {
  7297. #ifdef CONFIG_NUMA
  7298. if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
  7299. return sa_none;
  7300. if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
  7301. return sa_domainspan;
  7302. if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
  7303. return sa_covered;
  7304. /* Allocate the per-node list of sched groups */
  7305. d->sched_group_nodes = kcalloc(nr_node_ids,
  7306. sizeof(struct sched_group *), GFP_KERNEL);
  7307. if (!d->sched_group_nodes) {
  7308. printk(KERN_WARNING "Can not alloc sched group node list\n");
  7309. return sa_notcovered;
  7310. }
  7311. sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
  7312. #endif
  7313. if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
  7314. return sa_sched_group_nodes;
  7315. if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
  7316. return sa_nodemask;
  7317. if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
  7318. return sa_this_sibling_map;
  7319. if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
  7320. return sa_this_core_map;
  7321. if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
  7322. return sa_send_covered;
  7323. d->rd = alloc_rootdomain();
  7324. if (!d->rd) {
  7325. printk(KERN_WARNING "Cannot alloc root domain\n");
  7326. return sa_tmpmask;
  7327. }
  7328. return sa_rootdomain;
  7329. }
  7330. static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
  7331. const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
  7332. {
  7333. struct sched_domain *sd = NULL;
  7334. #ifdef CONFIG_NUMA
  7335. struct sched_domain *parent;
  7336. d->sd_allnodes = 0;
  7337. if (cpumask_weight(cpu_map) >
  7338. SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
  7339. sd = &per_cpu(allnodes_domains, i).sd;
  7340. SD_INIT(sd, ALLNODES);
  7341. set_domain_attribute(sd, attr);
  7342. cpumask_copy(sched_domain_span(sd), cpu_map);
  7343. cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
  7344. d->sd_allnodes = 1;
  7345. }
  7346. parent = sd;
  7347. sd = &per_cpu(node_domains, i).sd;
  7348. SD_INIT(sd, NODE);
  7349. set_domain_attribute(sd, attr);
  7350. sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
  7351. sd->parent = parent;
  7352. if (parent)
  7353. parent->child = sd;
  7354. cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
  7355. #endif
  7356. return sd;
  7357. }
  7358. static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
  7359. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  7360. struct sched_domain *parent, int i)
  7361. {
  7362. struct sched_domain *sd;
  7363. sd = &per_cpu(phys_domains, i).sd;
  7364. SD_INIT(sd, CPU);
  7365. set_domain_attribute(sd, attr);
  7366. cpumask_copy(sched_domain_span(sd), d->nodemask);
  7367. sd->parent = parent;
  7368. if (parent)
  7369. parent->child = sd;
  7370. cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
  7371. return sd;
  7372. }
  7373. static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
  7374. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  7375. struct sched_domain *parent, int i)
  7376. {
  7377. struct sched_domain *sd = parent;
  7378. #ifdef CONFIG_SCHED_MC
  7379. sd = &per_cpu(core_domains, i).sd;
  7380. SD_INIT(sd, MC);
  7381. set_domain_attribute(sd, attr);
  7382. cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
  7383. sd->parent = parent;
  7384. parent->child = sd;
  7385. cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
  7386. #endif
  7387. return sd;
  7388. }
  7389. static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
  7390. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  7391. struct sched_domain *parent, int i)
  7392. {
  7393. struct sched_domain *sd = parent;
  7394. #ifdef CONFIG_SCHED_SMT
  7395. sd = &per_cpu(cpu_domains, i).sd;
  7396. SD_INIT(sd, SIBLING);
  7397. set_domain_attribute(sd, attr);
  7398. cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
  7399. sd->parent = parent;
  7400. parent->child = sd;
  7401. cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
  7402. #endif
  7403. return sd;
  7404. }
  7405. static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
  7406. const struct cpumask *cpu_map, int cpu)
  7407. {
  7408. switch (l) {
  7409. #ifdef CONFIG_SCHED_SMT
  7410. case SD_LV_SIBLING: /* set up CPU (sibling) groups */
  7411. cpumask_and(d->this_sibling_map, cpu_map,
  7412. topology_thread_cpumask(cpu));
  7413. if (cpu == cpumask_first(d->this_sibling_map))
  7414. init_sched_build_groups(d->this_sibling_map, cpu_map,
  7415. &cpu_to_cpu_group,
  7416. d->send_covered, d->tmpmask);
  7417. break;
  7418. #endif
  7419. #ifdef CONFIG_SCHED_MC
  7420. case SD_LV_MC: /* set up multi-core groups */
  7421. cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
  7422. if (cpu == cpumask_first(d->this_core_map))
  7423. init_sched_build_groups(d->this_core_map, cpu_map,
  7424. &cpu_to_core_group,
  7425. d->send_covered, d->tmpmask);
  7426. break;
  7427. #endif
  7428. case SD_LV_CPU: /* set up physical groups */
  7429. cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
  7430. if (!cpumask_empty(d->nodemask))
  7431. init_sched_build_groups(d->nodemask, cpu_map,
  7432. &cpu_to_phys_group,
  7433. d->send_covered, d->tmpmask);
  7434. break;
  7435. #ifdef CONFIG_NUMA
  7436. case SD_LV_ALLNODES:
  7437. init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
  7438. d->send_covered, d->tmpmask);
  7439. break;
  7440. #endif
  7441. default:
  7442. break;
  7443. }
  7444. }
  7445. /*
  7446. * Build sched domains for a given set of cpus and attach the sched domains
  7447. * to the individual cpus
  7448. */
  7449. static int __build_sched_domains(const struct cpumask *cpu_map,
  7450. struct sched_domain_attr *attr)
  7451. {
  7452. enum s_alloc alloc_state = sa_none;
  7453. struct s_data d;
  7454. struct sched_domain *sd;
  7455. int i;
  7456. #ifdef CONFIG_NUMA
  7457. d.sd_allnodes = 0;
  7458. #endif
  7459. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  7460. if (alloc_state != sa_rootdomain)
  7461. goto error;
  7462. alloc_state = sa_sched_groups;
  7463. /*
  7464. * Set up domains for cpus specified by the cpu_map.
  7465. */
  7466. for_each_cpu(i, cpu_map) {
  7467. cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
  7468. cpu_map);
  7469. sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
  7470. sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
  7471. sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
  7472. sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
  7473. }
  7474. for_each_cpu(i, cpu_map) {
  7475. build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
  7476. build_sched_groups(&d, SD_LV_MC, cpu_map, i);
  7477. }
  7478. /* Set up physical groups */
  7479. for (i = 0; i < nr_node_ids; i++)
  7480. build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
  7481. #ifdef CONFIG_NUMA
  7482. /* Set up node groups */
  7483. if (d.sd_allnodes)
  7484. build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
  7485. for (i = 0; i < nr_node_ids; i++)
  7486. if (build_numa_sched_groups(&d, cpu_map, i))
  7487. goto error;
  7488. #endif
  7489. /* Calculate CPU power for physical packages and nodes */
  7490. #ifdef CONFIG_SCHED_SMT
  7491. for_each_cpu(i, cpu_map) {
  7492. sd = &per_cpu(cpu_domains, i).sd;
  7493. init_sched_groups_power(i, sd);
  7494. }
  7495. #endif
  7496. #ifdef CONFIG_SCHED_MC
  7497. for_each_cpu(i, cpu_map) {
  7498. sd = &per_cpu(core_domains, i).sd;
  7499. init_sched_groups_power(i, sd);
  7500. }
  7501. #endif
  7502. for_each_cpu(i, cpu_map) {
  7503. sd = &per_cpu(phys_domains, i).sd;
  7504. init_sched_groups_power(i, sd);
  7505. }
  7506. #ifdef CONFIG_NUMA
  7507. for (i = 0; i < nr_node_ids; i++)
  7508. init_numa_sched_groups_power(d.sched_group_nodes[i]);
  7509. if (d.sd_allnodes) {
  7510. struct sched_group *sg;
  7511. cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
  7512. d.tmpmask);
  7513. init_numa_sched_groups_power(sg);
  7514. }
  7515. #endif
  7516. /* Attach the domains */
  7517. for_each_cpu(i, cpu_map) {
  7518. #ifdef CONFIG_SCHED_SMT
  7519. sd = &per_cpu(cpu_domains, i).sd;
  7520. #elif defined(CONFIG_SCHED_MC)
  7521. sd = &per_cpu(core_domains, i).sd;
  7522. #else
  7523. sd = &per_cpu(phys_domains, i).sd;
  7524. #endif
  7525. cpu_attach_domain(sd, d.rd, i);
  7526. }
  7527. d.sched_group_nodes = NULL; /* don't free this we still need it */
  7528. __free_domain_allocs(&d, sa_tmpmask, cpu_map);
  7529. return 0;
  7530. error:
  7531. __free_domain_allocs(&d, alloc_state, cpu_map);
  7532. return -ENOMEM;
  7533. }
  7534. static int build_sched_domains(const struct cpumask *cpu_map)
  7535. {
  7536. return __build_sched_domains(cpu_map, NULL);
  7537. }
  7538. static struct cpumask *doms_cur; /* current sched domains */
  7539. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  7540. static struct sched_domain_attr *dattr_cur;
  7541. /* attribues of custom domains in 'doms_cur' */
  7542. /*
  7543. * Special case: If a kmalloc of a doms_cur partition (array of
  7544. * cpumask) fails, then fallback to a single sched domain,
  7545. * as determined by the single cpumask fallback_doms.
  7546. */
  7547. static cpumask_var_t fallback_doms;
  7548. /*
  7549. * arch_update_cpu_topology lets virtualized architectures update the
  7550. * cpu core maps. It is supposed to return 1 if the topology changed
  7551. * or 0 if it stayed the same.
  7552. */
  7553. int __attribute__((weak)) arch_update_cpu_topology(void)
  7554. {
  7555. return 0;
  7556. }
  7557. /*
  7558. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  7559. * For now this just excludes isolated cpus, but could be used to
  7560. * exclude other special cases in the future.
  7561. */
  7562. static int arch_init_sched_domains(const struct cpumask *cpu_map)
  7563. {
  7564. int err;
  7565. arch_update_cpu_topology();
  7566. ndoms_cur = 1;
  7567. doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
  7568. if (!doms_cur)
  7569. doms_cur = fallback_doms;
  7570. cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
  7571. dattr_cur = NULL;
  7572. err = build_sched_domains(doms_cur);
  7573. register_sched_domain_sysctl();
  7574. return err;
  7575. }
  7576. static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
  7577. struct cpumask *tmpmask)
  7578. {
  7579. free_sched_groups(cpu_map, tmpmask);
  7580. }
  7581. /*
  7582. * Detach sched domains from a group of cpus specified in cpu_map
  7583. * These cpus will now be attached to the NULL domain
  7584. */
  7585. static void detach_destroy_domains(const struct cpumask *cpu_map)
  7586. {
  7587. /* Save because hotplug lock held. */
  7588. static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
  7589. int i;
  7590. for_each_cpu(i, cpu_map)
  7591. cpu_attach_domain(NULL, &def_root_domain, i);
  7592. synchronize_sched();
  7593. arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
  7594. }
  7595. /* handle null as "default" */
  7596. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  7597. struct sched_domain_attr *new, int idx_new)
  7598. {
  7599. struct sched_domain_attr tmp;
  7600. /* fast path */
  7601. if (!new && !cur)
  7602. return 1;
  7603. tmp = SD_ATTR_INIT;
  7604. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  7605. new ? (new + idx_new) : &tmp,
  7606. sizeof(struct sched_domain_attr));
  7607. }
  7608. /*
  7609. * Partition sched domains as specified by the 'ndoms_new'
  7610. * cpumasks in the array doms_new[] of cpumasks. This compares
  7611. * doms_new[] to the current sched domain partitioning, doms_cur[].
  7612. * It destroys each deleted domain and builds each new domain.
  7613. *
  7614. * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
  7615. * The masks don't intersect (don't overlap.) We should setup one
  7616. * sched domain for each mask. CPUs not in any of the cpumasks will
  7617. * not be load balanced. If the same cpumask appears both in the
  7618. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  7619. * it as it is.
  7620. *
  7621. * The passed in 'doms_new' should be kmalloc'd. This routine takes
  7622. * ownership of it and will kfree it when done with it. If the caller
  7623. * failed the kmalloc call, then it can pass in doms_new == NULL &&
  7624. * ndoms_new == 1, and partition_sched_domains() will fallback to
  7625. * the single partition 'fallback_doms', it also forces the domains
  7626. * to be rebuilt.
  7627. *
  7628. * If doms_new == NULL it will be replaced with cpu_online_mask.
  7629. * ndoms_new == 0 is a special case for destroying existing domains,
  7630. * and it will not create the default domain.
  7631. *
  7632. * Call with hotplug lock held
  7633. */
  7634. /* FIXME: Change to struct cpumask *doms_new[] */
  7635. void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
  7636. struct sched_domain_attr *dattr_new)
  7637. {
  7638. int i, j, n;
  7639. int new_topology;
  7640. mutex_lock(&sched_domains_mutex);
  7641. /* always unregister in case we don't destroy any domains */
  7642. unregister_sched_domain_sysctl();
  7643. /* Let architecture update cpu core mappings. */
  7644. new_topology = arch_update_cpu_topology();
  7645. n = doms_new ? ndoms_new : 0;
  7646. /* Destroy deleted domains */
  7647. for (i = 0; i < ndoms_cur; i++) {
  7648. for (j = 0; j < n && !new_topology; j++) {
  7649. if (cpumask_equal(&doms_cur[i], &doms_new[j])
  7650. && dattrs_equal(dattr_cur, i, dattr_new, j))
  7651. goto match1;
  7652. }
  7653. /* no match - a current sched domain not in new doms_new[] */
  7654. detach_destroy_domains(doms_cur + i);
  7655. match1:
  7656. ;
  7657. }
  7658. if (doms_new == NULL) {
  7659. ndoms_cur = 0;
  7660. doms_new = fallback_doms;
  7661. cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
  7662. WARN_ON_ONCE(dattr_new);
  7663. }
  7664. /* Build new domains */
  7665. for (i = 0; i < ndoms_new; i++) {
  7666. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  7667. if (cpumask_equal(&doms_new[i], &doms_cur[j])
  7668. && dattrs_equal(dattr_new, i, dattr_cur, j))
  7669. goto match2;
  7670. }
  7671. /* no match - add a new doms_new */
  7672. __build_sched_domains(doms_new + i,
  7673. dattr_new ? dattr_new + i : NULL);
  7674. match2:
  7675. ;
  7676. }
  7677. /* Remember the new sched domains */
  7678. if (doms_cur != fallback_doms)
  7679. kfree(doms_cur);
  7680. kfree(dattr_cur); /* kfree(NULL) is safe */
  7681. doms_cur = doms_new;
  7682. dattr_cur = dattr_new;
  7683. ndoms_cur = ndoms_new;
  7684. register_sched_domain_sysctl();
  7685. mutex_unlock(&sched_domains_mutex);
  7686. }
  7687. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  7688. static void arch_reinit_sched_domains(void)
  7689. {
  7690. get_online_cpus();
  7691. /* Destroy domains first to force the rebuild */
  7692. partition_sched_domains(0, NULL, NULL);
  7693. rebuild_sched_domains();
  7694. put_online_cpus();
  7695. }
  7696. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  7697. {
  7698. unsigned int level = 0;
  7699. if (sscanf(buf, "%u", &level) != 1)
  7700. return -EINVAL;
  7701. /*
  7702. * level is always be positive so don't check for
  7703. * level < POWERSAVINGS_BALANCE_NONE which is 0
  7704. * What happens on 0 or 1 byte write,
  7705. * need to check for count as well?
  7706. */
  7707. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  7708. return -EINVAL;
  7709. if (smt)
  7710. sched_smt_power_savings = level;
  7711. else
  7712. sched_mc_power_savings = level;
  7713. arch_reinit_sched_domains();
  7714. return count;
  7715. }
  7716. #ifdef CONFIG_SCHED_MC
  7717. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  7718. char *page)
  7719. {
  7720. return sprintf(page, "%u\n", sched_mc_power_savings);
  7721. }
  7722. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  7723. const char *buf, size_t count)
  7724. {
  7725. return sched_power_savings_store(buf, count, 0);
  7726. }
  7727. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  7728. sched_mc_power_savings_show,
  7729. sched_mc_power_savings_store);
  7730. #endif
  7731. #ifdef CONFIG_SCHED_SMT
  7732. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  7733. char *page)
  7734. {
  7735. return sprintf(page, "%u\n", sched_smt_power_savings);
  7736. }
  7737. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  7738. const char *buf, size_t count)
  7739. {
  7740. return sched_power_savings_store(buf, count, 1);
  7741. }
  7742. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  7743. sched_smt_power_savings_show,
  7744. sched_smt_power_savings_store);
  7745. #endif
  7746. int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  7747. {
  7748. int err = 0;
  7749. #ifdef CONFIG_SCHED_SMT
  7750. if (smt_capable())
  7751. err = sysfs_create_file(&cls->kset.kobj,
  7752. &attr_sched_smt_power_savings.attr);
  7753. #endif
  7754. #ifdef CONFIG_SCHED_MC
  7755. if (!err && mc_capable())
  7756. err = sysfs_create_file(&cls->kset.kobj,
  7757. &attr_sched_mc_power_savings.attr);
  7758. #endif
  7759. return err;
  7760. }
  7761. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  7762. #ifndef CONFIG_CPUSETS
  7763. /*
  7764. * Add online and remove offline CPUs from the scheduler domains.
  7765. * When cpusets are enabled they take over this function.
  7766. */
  7767. static int update_sched_domains(struct notifier_block *nfb,
  7768. unsigned long action, void *hcpu)
  7769. {
  7770. switch (action) {
  7771. case CPU_ONLINE:
  7772. case CPU_ONLINE_FROZEN:
  7773. case CPU_DEAD:
  7774. case CPU_DEAD_FROZEN:
  7775. partition_sched_domains(1, NULL, NULL);
  7776. return NOTIFY_OK;
  7777. default:
  7778. return NOTIFY_DONE;
  7779. }
  7780. }
  7781. #endif
  7782. static int update_runtime(struct notifier_block *nfb,
  7783. unsigned long action, void *hcpu)
  7784. {
  7785. int cpu = (int)(long)hcpu;
  7786. switch (action) {
  7787. case CPU_DOWN_PREPARE:
  7788. case CPU_DOWN_PREPARE_FROZEN:
  7789. disable_runtime(cpu_rq(cpu));
  7790. return NOTIFY_OK;
  7791. case CPU_DOWN_FAILED:
  7792. case CPU_DOWN_FAILED_FROZEN:
  7793. case CPU_ONLINE:
  7794. case CPU_ONLINE_FROZEN:
  7795. enable_runtime(cpu_rq(cpu));
  7796. return NOTIFY_OK;
  7797. default:
  7798. return NOTIFY_DONE;
  7799. }
  7800. }
  7801. void __init sched_init_smp(void)
  7802. {
  7803. cpumask_var_t non_isolated_cpus;
  7804. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  7805. #if defined(CONFIG_NUMA)
  7806. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  7807. GFP_KERNEL);
  7808. BUG_ON(sched_group_nodes_bycpu == NULL);
  7809. #endif
  7810. get_online_cpus();
  7811. mutex_lock(&sched_domains_mutex);
  7812. arch_init_sched_domains(cpu_online_mask);
  7813. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  7814. if (cpumask_empty(non_isolated_cpus))
  7815. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  7816. mutex_unlock(&sched_domains_mutex);
  7817. put_online_cpus();
  7818. #ifndef CONFIG_CPUSETS
  7819. /* XXX: Theoretical race here - CPU may be hotplugged now */
  7820. hotcpu_notifier(update_sched_domains, 0);
  7821. #endif
  7822. /* RT runtime code needs to handle some hotplug events */
  7823. hotcpu_notifier(update_runtime, 0);
  7824. init_hrtick();
  7825. /* Move init over to a non-isolated CPU */
  7826. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  7827. BUG();
  7828. sched_init_granularity();
  7829. free_cpumask_var(non_isolated_cpus);
  7830. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  7831. init_sched_rt_class();
  7832. }
  7833. #else
  7834. void __init sched_init_smp(void)
  7835. {
  7836. sched_init_granularity();
  7837. }
  7838. #endif /* CONFIG_SMP */
  7839. const_debug unsigned int sysctl_timer_migration = 1;
  7840. int in_sched_functions(unsigned long addr)
  7841. {
  7842. return in_lock_functions(addr) ||
  7843. (addr >= (unsigned long)__sched_text_start
  7844. && addr < (unsigned long)__sched_text_end);
  7845. }
  7846. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  7847. {
  7848. cfs_rq->tasks_timeline = RB_ROOT;
  7849. INIT_LIST_HEAD(&cfs_rq->tasks);
  7850. #ifdef CONFIG_FAIR_GROUP_SCHED
  7851. cfs_rq->rq = rq;
  7852. #endif
  7853. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  7854. }
  7855. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  7856. {
  7857. struct rt_prio_array *array;
  7858. int i;
  7859. array = &rt_rq->active;
  7860. for (i = 0; i < MAX_RT_PRIO; i++) {
  7861. INIT_LIST_HEAD(array->queue + i);
  7862. __clear_bit(i, array->bitmap);
  7863. }
  7864. /* delimiter for bitsearch: */
  7865. __set_bit(MAX_RT_PRIO, array->bitmap);
  7866. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  7867. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  7868. #ifdef CONFIG_SMP
  7869. rt_rq->highest_prio.next = MAX_RT_PRIO;
  7870. #endif
  7871. #endif
  7872. #ifdef CONFIG_SMP
  7873. rt_rq->rt_nr_migratory = 0;
  7874. rt_rq->overloaded = 0;
  7875. plist_head_init(&rt_rq->pushable_tasks, &rq->lock);
  7876. #endif
  7877. rt_rq->rt_time = 0;
  7878. rt_rq->rt_throttled = 0;
  7879. rt_rq->rt_runtime = 0;
  7880. spin_lock_init(&rt_rq->rt_runtime_lock);
  7881. #ifdef CONFIG_RT_GROUP_SCHED
  7882. rt_rq->rt_nr_boosted = 0;
  7883. rt_rq->rq = rq;
  7884. #endif
  7885. }
  7886. #ifdef CONFIG_FAIR_GROUP_SCHED
  7887. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  7888. struct sched_entity *se, int cpu, int add,
  7889. struct sched_entity *parent)
  7890. {
  7891. struct rq *rq = cpu_rq(cpu);
  7892. tg->cfs_rq[cpu] = cfs_rq;
  7893. init_cfs_rq(cfs_rq, rq);
  7894. cfs_rq->tg = tg;
  7895. if (add)
  7896. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  7897. tg->se[cpu] = se;
  7898. /* se could be NULL for init_task_group */
  7899. if (!se)
  7900. return;
  7901. if (!parent)
  7902. se->cfs_rq = &rq->cfs;
  7903. else
  7904. se->cfs_rq = parent->my_q;
  7905. se->my_q = cfs_rq;
  7906. se->load.weight = tg->shares;
  7907. se->load.inv_weight = 0;
  7908. se->parent = parent;
  7909. }
  7910. #endif
  7911. #ifdef CONFIG_RT_GROUP_SCHED
  7912. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  7913. struct sched_rt_entity *rt_se, int cpu, int add,
  7914. struct sched_rt_entity *parent)
  7915. {
  7916. struct rq *rq = cpu_rq(cpu);
  7917. tg->rt_rq[cpu] = rt_rq;
  7918. init_rt_rq(rt_rq, rq);
  7919. rt_rq->tg = tg;
  7920. rt_rq->rt_se = rt_se;
  7921. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  7922. if (add)
  7923. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  7924. tg->rt_se[cpu] = rt_se;
  7925. if (!rt_se)
  7926. return;
  7927. if (!parent)
  7928. rt_se->rt_rq = &rq->rt;
  7929. else
  7930. rt_se->rt_rq = parent->my_q;
  7931. rt_se->my_q = rt_rq;
  7932. rt_se->parent = parent;
  7933. INIT_LIST_HEAD(&rt_se->run_list);
  7934. }
  7935. #endif
  7936. void __init sched_init(void)
  7937. {
  7938. int i, j;
  7939. unsigned long alloc_size = 0, ptr;
  7940. #ifdef CONFIG_FAIR_GROUP_SCHED
  7941. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  7942. #endif
  7943. #ifdef CONFIG_RT_GROUP_SCHED
  7944. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  7945. #endif
  7946. #ifdef CONFIG_USER_SCHED
  7947. alloc_size *= 2;
  7948. #endif
  7949. #ifdef CONFIG_CPUMASK_OFFSTACK
  7950. alloc_size += num_possible_cpus() * cpumask_size();
  7951. #endif
  7952. /*
  7953. * As sched_init() is called before page_alloc is setup,
  7954. * we use alloc_bootmem().
  7955. */
  7956. if (alloc_size) {
  7957. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  7958. #ifdef CONFIG_FAIR_GROUP_SCHED
  7959. init_task_group.se = (struct sched_entity **)ptr;
  7960. ptr += nr_cpu_ids * sizeof(void **);
  7961. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  7962. ptr += nr_cpu_ids * sizeof(void **);
  7963. #ifdef CONFIG_USER_SCHED
  7964. root_task_group.se = (struct sched_entity **)ptr;
  7965. ptr += nr_cpu_ids * sizeof(void **);
  7966. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  7967. ptr += nr_cpu_ids * sizeof(void **);
  7968. #endif /* CONFIG_USER_SCHED */
  7969. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7970. #ifdef CONFIG_RT_GROUP_SCHED
  7971. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  7972. ptr += nr_cpu_ids * sizeof(void **);
  7973. init_task_group.rt_rq = (struct rt_rq **)ptr;
  7974. ptr += nr_cpu_ids * sizeof(void **);
  7975. #ifdef CONFIG_USER_SCHED
  7976. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  7977. ptr += nr_cpu_ids * sizeof(void **);
  7978. root_task_group.rt_rq = (struct rt_rq **)ptr;
  7979. ptr += nr_cpu_ids * sizeof(void **);
  7980. #endif /* CONFIG_USER_SCHED */
  7981. #endif /* CONFIG_RT_GROUP_SCHED */
  7982. #ifdef CONFIG_CPUMASK_OFFSTACK
  7983. for_each_possible_cpu(i) {
  7984. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  7985. ptr += cpumask_size();
  7986. }
  7987. #endif /* CONFIG_CPUMASK_OFFSTACK */
  7988. }
  7989. #ifdef CONFIG_SMP
  7990. init_defrootdomain();
  7991. #endif
  7992. init_rt_bandwidth(&def_rt_bandwidth,
  7993. global_rt_period(), global_rt_runtime());
  7994. #ifdef CONFIG_RT_GROUP_SCHED
  7995. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  7996. global_rt_period(), global_rt_runtime());
  7997. #ifdef CONFIG_USER_SCHED
  7998. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  7999. global_rt_period(), RUNTIME_INF);
  8000. #endif /* CONFIG_USER_SCHED */
  8001. #endif /* CONFIG_RT_GROUP_SCHED */
  8002. #ifdef CONFIG_GROUP_SCHED
  8003. list_add(&init_task_group.list, &task_groups);
  8004. INIT_LIST_HEAD(&init_task_group.children);
  8005. #ifdef CONFIG_USER_SCHED
  8006. INIT_LIST_HEAD(&root_task_group.children);
  8007. init_task_group.parent = &root_task_group;
  8008. list_add(&init_task_group.siblings, &root_task_group.children);
  8009. #endif /* CONFIG_USER_SCHED */
  8010. #endif /* CONFIG_GROUP_SCHED */
  8011. for_each_possible_cpu(i) {
  8012. struct rq *rq;
  8013. rq = cpu_rq(i);
  8014. spin_lock_init(&rq->lock);
  8015. rq->nr_running = 0;
  8016. rq->calc_load_active = 0;
  8017. rq->calc_load_update = jiffies + LOAD_FREQ;
  8018. init_cfs_rq(&rq->cfs, rq);
  8019. init_rt_rq(&rq->rt, rq);
  8020. #ifdef CONFIG_FAIR_GROUP_SCHED
  8021. init_task_group.shares = init_task_group_load;
  8022. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  8023. #ifdef CONFIG_CGROUP_SCHED
  8024. /*
  8025. * How much cpu bandwidth does init_task_group get?
  8026. *
  8027. * In case of task-groups formed thr' the cgroup filesystem, it
  8028. * gets 100% of the cpu resources in the system. This overall
  8029. * system cpu resource is divided among the tasks of
  8030. * init_task_group and its child task-groups in a fair manner,
  8031. * based on each entity's (task or task-group's) weight
  8032. * (se->load.weight).
  8033. *
  8034. * In other words, if init_task_group has 10 tasks of weight
  8035. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  8036. * then A0's share of the cpu resource is:
  8037. *
  8038. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  8039. *
  8040. * We achieve this by letting init_task_group's tasks sit
  8041. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  8042. */
  8043. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  8044. #elif defined CONFIG_USER_SCHED
  8045. root_task_group.shares = NICE_0_LOAD;
  8046. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
  8047. /*
  8048. * In case of task-groups formed thr' the user id of tasks,
  8049. * init_task_group represents tasks belonging to root user.
  8050. * Hence it forms a sibling of all subsequent groups formed.
  8051. * In this case, init_task_group gets only a fraction of overall
  8052. * system cpu resource, based on the weight assigned to root
  8053. * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
  8054. * by letting tasks of init_task_group sit in a separate cfs_rq
  8055. * (init_tg_cfs_rq) and having one entity represent this group of
  8056. * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
  8057. */
  8058. init_tg_cfs_entry(&init_task_group,
  8059. &per_cpu(init_tg_cfs_rq, i),
  8060. &per_cpu(init_sched_entity, i), i, 1,
  8061. root_task_group.se[i]);
  8062. #endif
  8063. #endif /* CONFIG_FAIR_GROUP_SCHED */
  8064. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  8065. #ifdef CONFIG_RT_GROUP_SCHED
  8066. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  8067. #ifdef CONFIG_CGROUP_SCHED
  8068. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  8069. #elif defined CONFIG_USER_SCHED
  8070. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
  8071. init_tg_rt_entry(&init_task_group,
  8072. &per_cpu(init_rt_rq, i),
  8073. &per_cpu(init_sched_rt_entity, i), i, 1,
  8074. root_task_group.rt_se[i]);
  8075. #endif
  8076. #endif
  8077. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  8078. rq->cpu_load[j] = 0;
  8079. #ifdef CONFIG_SMP
  8080. rq->sd = NULL;
  8081. rq->rd = NULL;
  8082. rq->post_schedule = 0;
  8083. rq->active_balance = 0;
  8084. rq->next_balance = jiffies;
  8085. rq->push_cpu = 0;
  8086. rq->cpu = i;
  8087. rq->online = 0;
  8088. rq->migration_thread = NULL;
  8089. INIT_LIST_HEAD(&rq->migration_queue);
  8090. rq_attach_root(rq, &def_root_domain);
  8091. #endif
  8092. init_rq_hrtick(rq);
  8093. atomic_set(&rq->nr_iowait, 0);
  8094. }
  8095. set_load_weight(&init_task);
  8096. #ifdef CONFIG_PREEMPT_NOTIFIERS
  8097. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  8098. #endif
  8099. #ifdef CONFIG_SMP
  8100. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  8101. #endif
  8102. #ifdef CONFIG_RT_MUTEXES
  8103. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  8104. #endif
  8105. /*
  8106. * The boot idle thread does lazy MMU switching as well:
  8107. */
  8108. atomic_inc(&init_mm.mm_count);
  8109. enter_lazy_tlb(&init_mm, current);
  8110. /*
  8111. * Make us the idle thread. Technically, schedule() should not be
  8112. * called from this thread, however somewhere below it might be,
  8113. * but because we are the idle thread, we just pick up running again
  8114. * when this runqueue becomes "idle".
  8115. */
  8116. init_idle(current, smp_processor_id());
  8117. calc_load_update = jiffies + LOAD_FREQ;
  8118. /*
  8119. * During early bootup we pretend to be a normal task:
  8120. */
  8121. current->sched_class = &fair_sched_class;
  8122. /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
  8123. alloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
  8124. #ifdef CONFIG_SMP
  8125. #ifdef CONFIG_NO_HZ
  8126. alloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
  8127. alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
  8128. #endif
  8129. alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  8130. #endif /* SMP */
  8131. perf_counter_init();
  8132. scheduler_running = 1;
  8133. }
  8134. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  8135. static inline int preempt_count_equals(int preempt_offset)
  8136. {
  8137. int nested = preempt_count() & ~PREEMPT_ACTIVE;
  8138. return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
  8139. }
  8140. void __might_sleep(char *file, int line, int preempt_offset)
  8141. {
  8142. #ifdef in_atomic
  8143. static unsigned long prev_jiffy; /* ratelimiting */
  8144. if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
  8145. system_state != SYSTEM_RUNNING || oops_in_progress)
  8146. return;
  8147. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  8148. return;
  8149. prev_jiffy = jiffies;
  8150. printk(KERN_ERR
  8151. "BUG: sleeping function called from invalid context at %s:%d\n",
  8152. file, line);
  8153. printk(KERN_ERR
  8154. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  8155. in_atomic(), irqs_disabled(),
  8156. current->pid, current->comm);
  8157. debug_show_held_locks(current);
  8158. if (irqs_disabled())
  8159. print_irqtrace_events(current);
  8160. dump_stack();
  8161. #endif
  8162. }
  8163. EXPORT_SYMBOL(__might_sleep);
  8164. #endif
  8165. #ifdef CONFIG_MAGIC_SYSRQ
  8166. static void normalize_task(struct rq *rq, struct task_struct *p)
  8167. {
  8168. int on_rq;
  8169. update_rq_clock(rq);
  8170. on_rq = p->se.on_rq;
  8171. if (on_rq)
  8172. deactivate_task(rq, p, 0);
  8173. __setscheduler(rq, p, SCHED_NORMAL, 0);
  8174. if (on_rq) {
  8175. activate_task(rq, p, 0);
  8176. resched_task(rq->curr);
  8177. }
  8178. }
  8179. void normalize_rt_tasks(void)
  8180. {
  8181. struct task_struct *g, *p;
  8182. unsigned long flags;
  8183. struct rq *rq;
  8184. read_lock_irqsave(&tasklist_lock, flags);
  8185. do_each_thread(g, p) {
  8186. /*
  8187. * Only normalize user tasks:
  8188. */
  8189. if (!p->mm)
  8190. continue;
  8191. p->se.exec_start = 0;
  8192. #ifdef CONFIG_SCHEDSTATS
  8193. p->se.wait_start = 0;
  8194. p->se.sleep_start = 0;
  8195. p->se.block_start = 0;
  8196. #endif
  8197. if (!rt_task(p)) {
  8198. /*
  8199. * Renice negative nice level userspace
  8200. * tasks back to 0:
  8201. */
  8202. if (TASK_NICE(p) < 0 && p->mm)
  8203. set_user_nice(p, 0);
  8204. continue;
  8205. }
  8206. spin_lock(&p->pi_lock);
  8207. rq = __task_rq_lock(p);
  8208. normalize_task(rq, p);
  8209. __task_rq_unlock(rq);
  8210. spin_unlock(&p->pi_lock);
  8211. } while_each_thread(g, p);
  8212. read_unlock_irqrestore(&tasklist_lock, flags);
  8213. }
  8214. #endif /* CONFIG_MAGIC_SYSRQ */
  8215. #ifdef CONFIG_IA64
  8216. /*
  8217. * These functions are only useful for the IA64 MCA handling.
  8218. *
  8219. * They can only be called when the whole system has been
  8220. * stopped - every CPU needs to be quiescent, and no scheduling
  8221. * activity can take place. Using them for anything else would
  8222. * be a serious bug, and as a result, they aren't even visible
  8223. * under any other configuration.
  8224. */
  8225. /**
  8226. * curr_task - return the current task for a given cpu.
  8227. * @cpu: the processor in question.
  8228. *
  8229. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  8230. */
  8231. struct task_struct *curr_task(int cpu)
  8232. {
  8233. return cpu_curr(cpu);
  8234. }
  8235. /**
  8236. * set_curr_task - set the current task for a given cpu.
  8237. * @cpu: the processor in question.
  8238. * @p: the task pointer to set.
  8239. *
  8240. * Description: This function must only be used when non-maskable interrupts
  8241. * are serviced on a separate stack. It allows the architecture to switch the
  8242. * notion of the current task on a cpu in a non-blocking manner. This function
  8243. * must be called with all CPU's synchronized, and interrupts disabled, the
  8244. * and caller must save the original value of the current task (see
  8245. * curr_task() above) and restore that value before reenabling interrupts and
  8246. * re-starting the system.
  8247. *
  8248. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  8249. */
  8250. void set_curr_task(int cpu, struct task_struct *p)
  8251. {
  8252. cpu_curr(cpu) = p;
  8253. }
  8254. #endif
  8255. #ifdef CONFIG_FAIR_GROUP_SCHED
  8256. static void free_fair_sched_group(struct task_group *tg)
  8257. {
  8258. int i;
  8259. for_each_possible_cpu(i) {
  8260. if (tg->cfs_rq)
  8261. kfree(tg->cfs_rq[i]);
  8262. if (tg->se)
  8263. kfree(tg->se[i]);
  8264. }
  8265. kfree(tg->cfs_rq);
  8266. kfree(tg->se);
  8267. }
  8268. static
  8269. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  8270. {
  8271. struct cfs_rq *cfs_rq;
  8272. struct sched_entity *se;
  8273. struct rq *rq;
  8274. int i;
  8275. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  8276. if (!tg->cfs_rq)
  8277. goto err;
  8278. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  8279. if (!tg->se)
  8280. goto err;
  8281. tg->shares = NICE_0_LOAD;
  8282. for_each_possible_cpu(i) {
  8283. rq = cpu_rq(i);
  8284. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  8285. GFP_KERNEL, cpu_to_node(i));
  8286. if (!cfs_rq)
  8287. goto err;
  8288. se = kzalloc_node(sizeof(struct sched_entity),
  8289. GFP_KERNEL, cpu_to_node(i));
  8290. if (!se)
  8291. goto err;
  8292. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
  8293. }
  8294. return 1;
  8295. err:
  8296. return 0;
  8297. }
  8298. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  8299. {
  8300. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  8301. &cpu_rq(cpu)->leaf_cfs_rq_list);
  8302. }
  8303. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  8304. {
  8305. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  8306. }
  8307. #else /* !CONFG_FAIR_GROUP_SCHED */
  8308. static inline void free_fair_sched_group(struct task_group *tg)
  8309. {
  8310. }
  8311. static inline
  8312. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  8313. {
  8314. return 1;
  8315. }
  8316. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  8317. {
  8318. }
  8319. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  8320. {
  8321. }
  8322. #endif /* CONFIG_FAIR_GROUP_SCHED */
  8323. #ifdef CONFIG_RT_GROUP_SCHED
  8324. static void free_rt_sched_group(struct task_group *tg)
  8325. {
  8326. int i;
  8327. destroy_rt_bandwidth(&tg->rt_bandwidth);
  8328. for_each_possible_cpu(i) {
  8329. if (tg->rt_rq)
  8330. kfree(tg->rt_rq[i]);
  8331. if (tg->rt_se)
  8332. kfree(tg->rt_se[i]);
  8333. }
  8334. kfree(tg->rt_rq);
  8335. kfree(tg->rt_se);
  8336. }
  8337. static
  8338. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  8339. {
  8340. struct rt_rq *rt_rq;
  8341. struct sched_rt_entity *rt_se;
  8342. struct rq *rq;
  8343. int i;
  8344. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  8345. if (!tg->rt_rq)
  8346. goto err;
  8347. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  8348. if (!tg->rt_se)
  8349. goto err;
  8350. init_rt_bandwidth(&tg->rt_bandwidth,
  8351. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  8352. for_each_possible_cpu(i) {
  8353. rq = cpu_rq(i);
  8354. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  8355. GFP_KERNEL, cpu_to_node(i));
  8356. if (!rt_rq)
  8357. goto err;
  8358. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  8359. GFP_KERNEL, cpu_to_node(i));
  8360. if (!rt_se)
  8361. goto err;
  8362. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
  8363. }
  8364. return 1;
  8365. err:
  8366. return 0;
  8367. }
  8368. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  8369. {
  8370. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  8371. &cpu_rq(cpu)->leaf_rt_rq_list);
  8372. }
  8373. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  8374. {
  8375. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  8376. }
  8377. #else /* !CONFIG_RT_GROUP_SCHED */
  8378. static inline void free_rt_sched_group(struct task_group *tg)
  8379. {
  8380. }
  8381. static inline
  8382. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  8383. {
  8384. return 1;
  8385. }
  8386. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  8387. {
  8388. }
  8389. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  8390. {
  8391. }
  8392. #endif /* CONFIG_RT_GROUP_SCHED */
  8393. #ifdef CONFIG_GROUP_SCHED
  8394. static void free_sched_group(struct task_group *tg)
  8395. {
  8396. free_fair_sched_group(tg);
  8397. free_rt_sched_group(tg);
  8398. kfree(tg);
  8399. }
  8400. /* allocate runqueue etc for a new task group */
  8401. struct task_group *sched_create_group(struct task_group *parent)
  8402. {
  8403. struct task_group *tg;
  8404. unsigned long flags;
  8405. int i;
  8406. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  8407. if (!tg)
  8408. return ERR_PTR(-ENOMEM);
  8409. if (!alloc_fair_sched_group(tg, parent))
  8410. goto err;
  8411. if (!alloc_rt_sched_group(tg, parent))
  8412. goto err;
  8413. spin_lock_irqsave(&task_group_lock, flags);
  8414. for_each_possible_cpu(i) {
  8415. register_fair_sched_group(tg, i);
  8416. register_rt_sched_group(tg, i);
  8417. }
  8418. list_add_rcu(&tg->list, &task_groups);
  8419. WARN_ON(!parent); /* root should already exist */
  8420. tg->parent = parent;
  8421. INIT_LIST_HEAD(&tg->children);
  8422. list_add_rcu(&tg->siblings, &parent->children);
  8423. spin_unlock_irqrestore(&task_group_lock, flags);
  8424. return tg;
  8425. err:
  8426. free_sched_group(tg);
  8427. return ERR_PTR(-ENOMEM);
  8428. }
  8429. /* rcu callback to free various structures associated with a task group */
  8430. static void free_sched_group_rcu(struct rcu_head *rhp)
  8431. {
  8432. /* now it should be safe to free those cfs_rqs */
  8433. free_sched_group(container_of(rhp, struct task_group, rcu));
  8434. }
  8435. /* Destroy runqueue etc associated with a task group */
  8436. void sched_destroy_group(struct task_group *tg)
  8437. {
  8438. unsigned long flags;
  8439. int i;
  8440. spin_lock_irqsave(&task_group_lock, flags);
  8441. for_each_possible_cpu(i) {
  8442. unregister_fair_sched_group(tg, i);
  8443. unregister_rt_sched_group(tg, i);
  8444. }
  8445. list_del_rcu(&tg->list);
  8446. list_del_rcu(&tg->siblings);
  8447. spin_unlock_irqrestore(&task_group_lock, flags);
  8448. /* wait for possible concurrent references to cfs_rqs complete */
  8449. call_rcu(&tg->rcu, free_sched_group_rcu);
  8450. }
  8451. /* change task's runqueue when it moves between groups.
  8452. * The caller of this function should have put the task in its new group
  8453. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  8454. * reflect its new group.
  8455. */
  8456. void sched_move_task(struct task_struct *tsk)
  8457. {
  8458. int on_rq, running;
  8459. unsigned long flags;
  8460. struct rq *rq;
  8461. rq = task_rq_lock(tsk, &flags);
  8462. update_rq_clock(rq);
  8463. running = task_current(rq, tsk);
  8464. on_rq = tsk->se.on_rq;
  8465. if (on_rq)
  8466. dequeue_task(rq, tsk, 0);
  8467. if (unlikely(running))
  8468. tsk->sched_class->put_prev_task(rq, tsk);
  8469. set_task_rq(tsk, task_cpu(tsk));
  8470. #ifdef CONFIG_FAIR_GROUP_SCHED
  8471. if (tsk->sched_class->moved_group)
  8472. tsk->sched_class->moved_group(tsk);
  8473. #endif
  8474. if (unlikely(running))
  8475. tsk->sched_class->set_curr_task(rq);
  8476. if (on_rq)
  8477. enqueue_task(rq, tsk, 0);
  8478. task_rq_unlock(rq, &flags);
  8479. }
  8480. #endif /* CONFIG_GROUP_SCHED */
  8481. #ifdef CONFIG_FAIR_GROUP_SCHED
  8482. static void __set_se_shares(struct sched_entity *se, unsigned long shares)
  8483. {
  8484. struct cfs_rq *cfs_rq = se->cfs_rq;
  8485. int on_rq;
  8486. on_rq = se->on_rq;
  8487. if (on_rq)
  8488. dequeue_entity(cfs_rq, se, 0);
  8489. se->load.weight = shares;
  8490. se->load.inv_weight = 0;
  8491. if (on_rq)
  8492. enqueue_entity(cfs_rq, se, 0);
  8493. }
  8494. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  8495. {
  8496. struct cfs_rq *cfs_rq = se->cfs_rq;
  8497. struct rq *rq = cfs_rq->rq;
  8498. unsigned long flags;
  8499. spin_lock_irqsave(&rq->lock, flags);
  8500. __set_se_shares(se, shares);
  8501. spin_unlock_irqrestore(&rq->lock, flags);
  8502. }
  8503. static DEFINE_MUTEX(shares_mutex);
  8504. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  8505. {
  8506. int i;
  8507. unsigned long flags;
  8508. /*
  8509. * We can't change the weight of the root cgroup.
  8510. */
  8511. if (!tg->se[0])
  8512. return -EINVAL;
  8513. if (shares < MIN_SHARES)
  8514. shares = MIN_SHARES;
  8515. else if (shares > MAX_SHARES)
  8516. shares = MAX_SHARES;
  8517. mutex_lock(&shares_mutex);
  8518. if (tg->shares == shares)
  8519. goto done;
  8520. spin_lock_irqsave(&task_group_lock, flags);
  8521. for_each_possible_cpu(i)
  8522. unregister_fair_sched_group(tg, i);
  8523. list_del_rcu(&tg->siblings);
  8524. spin_unlock_irqrestore(&task_group_lock, flags);
  8525. /* wait for any ongoing reference to this group to finish */
  8526. synchronize_sched();
  8527. /*
  8528. * Now we are free to modify the group's share on each cpu
  8529. * w/o tripping rebalance_share or load_balance_fair.
  8530. */
  8531. tg->shares = shares;
  8532. for_each_possible_cpu(i) {
  8533. /*
  8534. * force a rebalance
  8535. */
  8536. cfs_rq_set_shares(tg->cfs_rq[i], 0);
  8537. set_se_shares(tg->se[i], shares);
  8538. }
  8539. /*
  8540. * Enable load balance activity on this group, by inserting it back on
  8541. * each cpu's rq->leaf_cfs_rq_list.
  8542. */
  8543. spin_lock_irqsave(&task_group_lock, flags);
  8544. for_each_possible_cpu(i)
  8545. register_fair_sched_group(tg, i);
  8546. list_add_rcu(&tg->siblings, &tg->parent->children);
  8547. spin_unlock_irqrestore(&task_group_lock, flags);
  8548. done:
  8549. mutex_unlock(&shares_mutex);
  8550. return 0;
  8551. }
  8552. unsigned long sched_group_shares(struct task_group *tg)
  8553. {
  8554. return tg->shares;
  8555. }
  8556. #endif
  8557. #ifdef CONFIG_RT_GROUP_SCHED
  8558. /*
  8559. * Ensure that the real time constraints are schedulable.
  8560. */
  8561. static DEFINE_MUTEX(rt_constraints_mutex);
  8562. static unsigned long to_ratio(u64 period, u64 runtime)
  8563. {
  8564. if (runtime == RUNTIME_INF)
  8565. return 1ULL << 20;
  8566. return div64_u64(runtime << 20, period);
  8567. }
  8568. /* Must be called with tasklist_lock held */
  8569. static inline int tg_has_rt_tasks(struct task_group *tg)
  8570. {
  8571. struct task_struct *g, *p;
  8572. do_each_thread(g, p) {
  8573. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  8574. return 1;
  8575. } while_each_thread(g, p);
  8576. return 0;
  8577. }
  8578. struct rt_schedulable_data {
  8579. struct task_group *tg;
  8580. u64 rt_period;
  8581. u64 rt_runtime;
  8582. };
  8583. static int tg_schedulable(struct task_group *tg, void *data)
  8584. {
  8585. struct rt_schedulable_data *d = data;
  8586. struct task_group *child;
  8587. unsigned long total, sum = 0;
  8588. u64 period, runtime;
  8589. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8590. runtime = tg->rt_bandwidth.rt_runtime;
  8591. if (tg == d->tg) {
  8592. period = d->rt_period;
  8593. runtime = d->rt_runtime;
  8594. }
  8595. #ifdef CONFIG_USER_SCHED
  8596. if (tg == &root_task_group) {
  8597. period = global_rt_period();
  8598. runtime = global_rt_runtime();
  8599. }
  8600. #endif
  8601. /*
  8602. * Cannot have more runtime than the period.
  8603. */
  8604. if (runtime > period && runtime != RUNTIME_INF)
  8605. return -EINVAL;
  8606. /*
  8607. * Ensure we don't starve existing RT tasks.
  8608. */
  8609. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  8610. return -EBUSY;
  8611. total = to_ratio(period, runtime);
  8612. /*
  8613. * Nobody can have more than the global setting allows.
  8614. */
  8615. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  8616. return -EINVAL;
  8617. /*
  8618. * The sum of our children's runtime should not exceed our own.
  8619. */
  8620. list_for_each_entry_rcu(child, &tg->children, siblings) {
  8621. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  8622. runtime = child->rt_bandwidth.rt_runtime;
  8623. if (child == d->tg) {
  8624. period = d->rt_period;
  8625. runtime = d->rt_runtime;
  8626. }
  8627. sum += to_ratio(period, runtime);
  8628. }
  8629. if (sum > total)
  8630. return -EINVAL;
  8631. return 0;
  8632. }
  8633. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  8634. {
  8635. struct rt_schedulable_data data = {
  8636. .tg = tg,
  8637. .rt_period = period,
  8638. .rt_runtime = runtime,
  8639. };
  8640. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  8641. }
  8642. static int tg_set_bandwidth(struct task_group *tg,
  8643. u64 rt_period, u64 rt_runtime)
  8644. {
  8645. int i, err = 0;
  8646. mutex_lock(&rt_constraints_mutex);
  8647. read_lock(&tasklist_lock);
  8648. err = __rt_schedulable(tg, rt_period, rt_runtime);
  8649. if (err)
  8650. goto unlock;
  8651. spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  8652. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  8653. tg->rt_bandwidth.rt_runtime = rt_runtime;
  8654. for_each_possible_cpu(i) {
  8655. struct rt_rq *rt_rq = tg->rt_rq[i];
  8656. spin_lock(&rt_rq->rt_runtime_lock);
  8657. rt_rq->rt_runtime = rt_runtime;
  8658. spin_unlock(&rt_rq->rt_runtime_lock);
  8659. }
  8660. spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  8661. unlock:
  8662. read_unlock(&tasklist_lock);
  8663. mutex_unlock(&rt_constraints_mutex);
  8664. return err;
  8665. }
  8666. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  8667. {
  8668. u64 rt_runtime, rt_period;
  8669. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8670. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  8671. if (rt_runtime_us < 0)
  8672. rt_runtime = RUNTIME_INF;
  8673. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  8674. }
  8675. long sched_group_rt_runtime(struct task_group *tg)
  8676. {
  8677. u64 rt_runtime_us;
  8678. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  8679. return -1;
  8680. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  8681. do_div(rt_runtime_us, NSEC_PER_USEC);
  8682. return rt_runtime_us;
  8683. }
  8684. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  8685. {
  8686. u64 rt_runtime, rt_period;
  8687. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  8688. rt_runtime = tg->rt_bandwidth.rt_runtime;
  8689. if (rt_period == 0)
  8690. return -EINVAL;
  8691. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  8692. }
  8693. long sched_group_rt_period(struct task_group *tg)
  8694. {
  8695. u64 rt_period_us;
  8696. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8697. do_div(rt_period_us, NSEC_PER_USEC);
  8698. return rt_period_us;
  8699. }
  8700. static int sched_rt_global_constraints(void)
  8701. {
  8702. u64 runtime, period;
  8703. int ret = 0;
  8704. if (sysctl_sched_rt_period <= 0)
  8705. return -EINVAL;
  8706. runtime = global_rt_runtime();
  8707. period = global_rt_period();
  8708. /*
  8709. * Sanity check on the sysctl variables.
  8710. */
  8711. if (runtime > period && runtime != RUNTIME_INF)
  8712. return -EINVAL;
  8713. mutex_lock(&rt_constraints_mutex);
  8714. read_lock(&tasklist_lock);
  8715. ret = __rt_schedulable(NULL, 0, 0);
  8716. read_unlock(&tasklist_lock);
  8717. mutex_unlock(&rt_constraints_mutex);
  8718. return ret;
  8719. }
  8720. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  8721. {
  8722. /* Don't accept realtime tasks when there is no way for them to run */
  8723. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  8724. return 0;
  8725. return 1;
  8726. }
  8727. #else /* !CONFIG_RT_GROUP_SCHED */
  8728. static int sched_rt_global_constraints(void)
  8729. {
  8730. unsigned long flags;
  8731. int i;
  8732. if (sysctl_sched_rt_period <= 0)
  8733. return -EINVAL;
  8734. /*
  8735. * There's always some RT tasks in the root group
  8736. * -- migration, kstopmachine etc..
  8737. */
  8738. if (sysctl_sched_rt_runtime == 0)
  8739. return -EBUSY;
  8740. spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  8741. for_each_possible_cpu(i) {
  8742. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  8743. spin_lock(&rt_rq->rt_runtime_lock);
  8744. rt_rq->rt_runtime = global_rt_runtime();
  8745. spin_unlock(&rt_rq->rt_runtime_lock);
  8746. }
  8747. spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  8748. return 0;
  8749. }
  8750. #endif /* CONFIG_RT_GROUP_SCHED */
  8751. int sched_rt_handler(struct ctl_table *table, int write,
  8752. struct file *filp, void __user *buffer, size_t *lenp,
  8753. loff_t *ppos)
  8754. {
  8755. int ret;
  8756. int old_period, old_runtime;
  8757. static DEFINE_MUTEX(mutex);
  8758. mutex_lock(&mutex);
  8759. old_period = sysctl_sched_rt_period;
  8760. old_runtime = sysctl_sched_rt_runtime;
  8761. ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
  8762. if (!ret && write) {
  8763. ret = sched_rt_global_constraints();
  8764. if (ret) {
  8765. sysctl_sched_rt_period = old_period;
  8766. sysctl_sched_rt_runtime = old_runtime;
  8767. } else {
  8768. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  8769. def_rt_bandwidth.rt_period =
  8770. ns_to_ktime(global_rt_period());
  8771. }
  8772. }
  8773. mutex_unlock(&mutex);
  8774. return ret;
  8775. }
  8776. #ifdef CONFIG_CGROUP_SCHED
  8777. /* return corresponding task_group object of a cgroup */
  8778. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  8779. {
  8780. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  8781. struct task_group, css);
  8782. }
  8783. static struct cgroup_subsys_state *
  8784. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8785. {
  8786. struct task_group *tg, *parent;
  8787. if (!cgrp->parent) {
  8788. /* This is early initialization for the top cgroup */
  8789. return &init_task_group.css;
  8790. }
  8791. parent = cgroup_tg(cgrp->parent);
  8792. tg = sched_create_group(parent);
  8793. if (IS_ERR(tg))
  8794. return ERR_PTR(-ENOMEM);
  8795. return &tg->css;
  8796. }
  8797. static void
  8798. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8799. {
  8800. struct task_group *tg = cgroup_tg(cgrp);
  8801. sched_destroy_group(tg);
  8802. }
  8803. static int
  8804. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  8805. struct task_struct *tsk)
  8806. {
  8807. #ifdef CONFIG_RT_GROUP_SCHED
  8808. if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
  8809. return -EINVAL;
  8810. #else
  8811. /* We don't support RT-tasks being in separate groups */
  8812. if (tsk->sched_class != &fair_sched_class)
  8813. return -EINVAL;
  8814. #endif
  8815. return 0;
  8816. }
  8817. static void
  8818. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  8819. struct cgroup *old_cont, struct task_struct *tsk)
  8820. {
  8821. sched_move_task(tsk);
  8822. }
  8823. #ifdef CONFIG_FAIR_GROUP_SCHED
  8824. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  8825. u64 shareval)
  8826. {
  8827. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  8828. }
  8829. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  8830. {
  8831. struct task_group *tg = cgroup_tg(cgrp);
  8832. return (u64) tg->shares;
  8833. }
  8834. #endif /* CONFIG_FAIR_GROUP_SCHED */
  8835. #ifdef CONFIG_RT_GROUP_SCHED
  8836. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  8837. s64 val)
  8838. {
  8839. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  8840. }
  8841. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  8842. {
  8843. return sched_group_rt_runtime(cgroup_tg(cgrp));
  8844. }
  8845. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  8846. u64 rt_period_us)
  8847. {
  8848. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  8849. }
  8850. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  8851. {
  8852. return sched_group_rt_period(cgroup_tg(cgrp));
  8853. }
  8854. #endif /* CONFIG_RT_GROUP_SCHED */
  8855. static struct cftype cpu_files[] = {
  8856. #ifdef CONFIG_FAIR_GROUP_SCHED
  8857. {
  8858. .name = "shares",
  8859. .read_u64 = cpu_shares_read_u64,
  8860. .write_u64 = cpu_shares_write_u64,
  8861. },
  8862. #endif
  8863. #ifdef CONFIG_RT_GROUP_SCHED
  8864. {
  8865. .name = "rt_runtime_us",
  8866. .read_s64 = cpu_rt_runtime_read,
  8867. .write_s64 = cpu_rt_runtime_write,
  8868. },
  8869. {
  8870. .name = "rt_period_us",
  8871. .read_u64 = cpu_rt_period_read_uint,
  8872. .write_u64 = cpu_rt_period_write_uint,
  8873. },
  8874. #endif
  8875. };
  8876. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  8877. {
  8878. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  8879. }
  8880. struct cgroup_subsys cpu_cgroup_subsys = {
  8881. .name = "cpu",
  8882. .create = cpu_cgroup_create,
  8883. .destroy = cpu_cgroup_destroy,
  8884. .can_attach = cpu_cgroup_can_attach,
  8885. .attach = cpu_cgroup_attach,
  8886. .populate = cpu_cgroup_populate,
  8887. .subsys_id = cpu_cgroup_subsys_id,
  8888. .early_init = 1,
  8889. };
  8890. #endif /* CONFIG_CGROUP_SCHED */
  8891. #ifdef CONFIG_CGROUP_CPUACCT
  8892. /*
  8893. * CPU accounting code for task groups.
  8894. *
  8895. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  8896. * (balbir@in.ibm.com).
  8897. */
  8898. /* track cpu usage of a group of tasks and its child groups */
  8899. struct cpuacct {
  8900. struct cgroup_subsys_state css;
  8901. /* cpuusage holds pointer to a u64-type object on every cpu */
  8902. u64 *cpuusage;
  8903. struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
  8904. struct cpuacct *parent;
  8905. };
  8906. struct cgroup_subsys cpuacct_subsys;
  8907. /* return cpu accounting group corresponding to this container */
  8908. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  8909. {
  8910. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  8911. struct cpuacct, css);
  8912. }
  8913. /* return cpu accounting group to which this task belongs */
  8914. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  8915. {
  8916. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  8917. struct cpuacct, css);
  8918. }
  8919. /* create a new cpu accounting group */
  8920. static struct cgroup_subsys_state *cpuacct_create(
  8921. struct cgroup_subsys *ss, struct cgroup *cgrp)
  8922. {
  8923. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  8924. int i;
  8925. if (!ca)
  8926. goto out;
  8927. ca->cpuusage = alloc_percpu(u64);
  8928. if (!ca->cpuusage)
  8929. goto out_free_ca;
  8930. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  8931. if (percpu_counter_init(&ca->cpustat[i], 0))
  8932. goto out_free_counters;
  8933. if (cgrp->parent)
  8934. ca->parent = cgroup_ca(cgrp->parent);
  8935. return &ca->css;
  8936. out_free_counters:
  8937. while (--i >= 0)
  8938. percpu_counter_destroy(&ca->cpustat[i]);
  8939. free_percpu(ca->cpuusage);
  8940. out_free_ca:
  8941. kfree(ca);
  8942. out:
  8943. return ERR_PTR(-ENOMEM);
  8944. }
  8945. /* destroy an existing cpu accounting group */
  8946. static void
  8947. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8948. {
  8949. struct cpuacct *ca = cgroup_ca(cgrp);
  8950. int i;
  8951. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  8952. percpu_counter_destroy(&ca->cpustat[i]);
  8953. free_percpu(ca->cpuusage);
  8954. kfree(ca);
  8955. }
  8956. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  8957. {
  8958. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  8959. u64 data;
  8960. #ifndef CONFIG_64BIT
  8961. /*
  8962. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  8963. */
  8964. spin_lock_irq(&cpu_rq(cpu)->lock);
  8965. data = *cpuusage;
  8966. spin_unlock_irq(&cpu_rq(cpu)->lock);
  8967. #else
  8968. data = *cpuusage;
  8969. #endif
  8970. return data;
  8971. }
  8972. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  8973. {
  8974. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  8975. #ifndef CONFIG_64BIT
  8976. /*
  8977. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  8978. */
  8979. spin_lock_irq(&cpu_rq(cpu)->lock);
  8980. *cpuusage = val;
  8981. spin_unlock_irq(&cpu_rq(cpu)->lock);
  8982. #else
  8983. *cpuusage = val;
  8984. #endif
  8985. }
  8986. /* return total cpu usage (in nanoseconds) of a group */
  8987. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  8988. {
  8989. struct cpuacct *ca = cgroup_ca(cgrp);
  8990. u64 totalcpuusage = 0;
  8991. int i;
  8992. for_each_present_cpu(i)
  8993. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  8994. return totalcpuusage;
  8995. }
  8996. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  8997. u64 reset)
  8998. {
  8999. struct cpuacct *ca = cgroup_ca(cgrp);
  9000. int err = 0;
  9001. int i;
  9002. if (reset) {
  9003. err = -EINVAL;
  9004. goto out;
  9005. }
  9006. for_each_present_cpu(i)
  9007. cpuacct_cpuusage_write(ca, i, 0);
  9008. out:
  9009. return err;
  9010. }
  9011. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  9012. struct seq_file *m)
  9013. {
  9014. struct cpuacct *ca = cgroup_ca(cgroup);
  9015. u64 percpu;
  9016. int i;
  9017. for_each_present_cpu(i) {
  9018. percpu = cpuacct_cpuusage_read(ca, i);
  9019. seq_printf(m, "%llu ", (unsigned long long) percpu);
  9020. }
  9021. seq_printf(m, "\n");
  9022. return 0;
  9023. }
  9024. static const char *cpuacct_stat_desc[] = {
  9025. [CPUACCT_STAT_USER] = "user",
  9026. [CPUACCT_STAT_SYSTEM] = "system",
  9027. };
  9028. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  9029. struct cgroup_map_cb *cb)
  9030. {
  9031. struct cpuacct *ca = cgroup_ca(cgrp);
  9032. int i;
  9033. for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
  9034. s64 val = percpu_counter_read(&ca->cpustat[i]);
  9035. val = cputime64_to_clock_t(val);
  9036. cb->fill(cb, cpuacct_stat_desc[i], val);
  9037. }
  9038. return 0;
  9039. }
  9040. static struct cftype files[] = {
  9041. {
  9042. .name = "usage",
  9043. .read_u64 = cpuusage_read,
  9044. .write_u64 = cpuusage_write,
  9045. },
  9046. {
  9047. .name = "usage_percpu",
  9048. .read_seq_string = cpuacct_percpu_seq_read,
  9049. },
  9050. {
  9051. .name = "stat",
  9052. .read_map = cpuacct_stats_show,
  9053. },
  9054. };
  9055. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  9056. {
  9057. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  9058. }
  9059. /*
  9060. * charge this task's execution time to its accounting group.
  9061. *
  9062. * called with rq->lock held.
  9063. */
  9064. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  9065. {
  9066. struct cpuacct *ca;
  9067. int cpu;
  9068. if (unlikely(!cpuacct_subsys.active))
  9069. return;
  9070. cpu = task_cpu(tsk);
  9071. rcu_read_lock();
  9072. ca = task_ca(tsk);
  9073. for (; ca; ca = ca->parent) {
  9074. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  9075. *cpuusage += cputime;
  9076. }
  9077. rcu_read_unlock();
  9078. }
  9079. /*
  9080. * Charge the system/user time to the task's accounting group.
  9081. */
  9082. static void cpuacct_update_stats(struct task_struct *tsk,
  9083. enum cpuacct_stat_index idx, cputime_t val)
  9084. {
  9085. struct cpuacct *ca;
  9086. if (unlikely(!cpuacct_subsys.active))
  9087. return;
  9088. rcu_read_lock();
  9089. ca = task_ca(tsk);
  9090. do {
  9091. percpu_counter_add(&ca->cpustat[idx], val);
  9092. ca = ca->parent;
  9093. } while (ca);
  9094. rcu_read_unlock();
  9095. }
  9096. struct cgroup_subsys cpuacct_subsys = {
  9097. .name = "cpuacct",
  9098. .create = cpuacct_create,
  9099. .destroy = cpuacct_destroy,
  9100. .populate = cpuacct_populate,
  9101. .subsys_id = cpuacct_subsys_id,
  9102. };
  9103. #endif /* CONFIG_CGROUP_CPUACCT */
  9104. #ifndef CONFIG_SMP
  9105. int rcu_expedited_torture_stats(char *page)
  9106. {
  9107. return 0;
  9108. }
  9109. EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
  9110. void synchronize_sched_expedited(void)
  9111. {
  9112. }
  9113. EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
  9114. #else /* #ifndef CONFIG_SMP */
  9115. static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
  9116. static DEFINE_MUTEX(rcu_sched_expedited_mutex);
  9117. #define RCU_EXPEDITED_STATE_POST -2
  9118. #define RCU_EXPEDITED_STATE_IDLE -1
  9119. static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
  9120. int rcu_expedited_torture_stats(char *page)
  9121. {
  9122. int cnt = 0;
  9123. int cpu;
  9124. cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
  9125. for_each_online_cpu(cpu) {
  9126. cnt += sprintf(&page[cnt], " %d:%d",
  9127. cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
  9128. }
  9129. cnt += sprintf(&page[cnt], "\n");
  9130. return cnt;
  9131. }
  9132. EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
  9133. static long synchronize_sched_expedited_count;
  9134. /*
  9135. * Wait for an rcu-sched grace period to elapse, but use "big hammer"
  9136. * approach to force grace period to end quickly. This consumes
  9137. * significant time on all CPUs, and is thus not recommended for
  9138. * any sort of common-case code.
  9139. *
  9140. * Note that it is illegal to call this function while holding any
  9141. * lock that is acquired by a CPU-hotplug notifier. Failing to
  9142. * observe this restriction will result in deadlock.
  9143. */
  9144. void synchronize_sched_expedited(void)
  9145. {
  9146. int cpu;
  9147. unsigned long flags;
  9148. bool need_full_sync = 0;
  9149. struct rq *rq;
  9150. struct migration_req *req;
  9151. long snap;
  9152. int trycount = 0;
  9153. smp_mb(); /* ensure prior mod happens before capturing snap. */
  9154. snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
  9155. get_online_cpus();
  9156. while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
  9157. put_online_cpus();
  9158. if (trycount++ < 10)
  9159. udelay(trycount * num_online_cpus());
  9160. else {
  9161. synchronize_sched();
  9162. return;
  9163. }
  9164. if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
  9165. smp_mb(); /* ensure test happens before caller kfree */
  9166. return;
  9167. }
  9168. get_online_cpus();
  9169. }
  9170. rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
  9171. for_each_online_cpu(cpu) {
  9172. rq = cpu_rq(cpu);
  9173. req = &per_cpu(rcu_migration_req, cpu);
  9174. init_completion(&req->done);
  9175. req->task = NULL;
  9176. req->dest_cpu = RCU_MIGRATION_NEED_QS;
  9177. spin_lock_irqsave(&rq->lock, flags);
  9178. list_add(&req->list, &rq->migration_queue);
  9179. spin_unlock_irqrestore(&rq->lock, flags);
  9180. wake_up_process(rq->migration_thread);
  9181. }
  9182. for_each_online_cpu(cpu) {
  9183. rcu_expedited_state = cpu;
  9184. req = &per_cpu(rcu_migration_req, cpu);
  9185. rq = cpu_rq(cpu);
  9186. wait_for_completion(&req->done);
  9187. spin_lock_irqsave(&rq->lock, flags);
  9188. if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
  9189. need_full_sync = 1;
  9190. req->dest_cpu = RCU_MIGRATION_IDLE;
  9191. spin_unlock_irqrestore(&rq->lock, flags);
  9192. }
  9193. rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
  9194. mutex_unlock(&rcu_sched_expedited_mutex);
  9195. put_online_cpus();
  9196. if (need_full_sync)
  9197. synchronize_sched();
  9198. }
  9199. EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
  9200. #endif /* #else #ifndef CONFIG_SMP */