rtmutex-tester.c 8.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436
  1. /*
  2. * RT-Mutex-tester: scriptable tester for rt mutexes
  3. *
  4. * started by Thomas Gleixner:
  5. *
  6. * Copyright (C) 2006, Timesys Corp., Thomas Gleixner <tglx@timesys.com>
  7. *
  8. */
  9. #include <linux/config.h>
  10. #include <linux/kthread.h>
  11. #include <linux/module.h>
  12. #include <linux/sched.h>
  13. #include <linux/smp_lock.h>
  14. #include <linux/spinlock.h>
  15. #include <linux/sysdev.h>
  16. #include <linux/timer.h>
  17. #include "rtmutex.h"
  18. #define MAX_RT_TEST_THREADS 8
  19. #define MAX_RT_TEST_MUTEXES 8
  20. static spinlock_t rttest_lock;
  21. static atomic_t rttest_event;
  22. struct test_thread_data {
  23. int opcode;
  24. int opdata;
  25. int mutexes[MAX_RT_TEST_MUTEXES];
  26. int bkl;
  27. int event;
  28. struct sys_device sysdev;
  29. };
  30. static struct test_thread_data thread_data[MAX_RT_TEST_THREADS];
  31. static task_t *threads[MAX_RT_TEST_THREADS];
  32. static struct rt_mutex mutexes[MAX_RT_TEST_MUTEXES];
  33. enum test_opcodes {
  34. RTTEST_NOP = 0,
  35. RTTEST_SCHEDOT, /* 1 Sched other, data = nice */
  36. RTTEST_SCHEDRT, /* 2 Sched fifo, data = prio */
  37. RTTEST_LOCK, /* 3 Lock uninterruptible, data = lockindex */
  38. RTTEST_LOCKNOWAIT, /* 4 Lock uninterruptible no wait in wakeup, data = lockindex */
  39. RTTEST_LOCKINT, /* 5 Lock interruptible, data = lockindex */
  40. RTTEST_LOCKINTNOWAIT, /* 6 Lock interruptible no wait in wakeup, data = lockindex */
  41. RTTEST_LOCKCONT, /* 7 Continue locking after the wakeup delay */
  42. RTTEST_UNLOCK, /* 8 Unlock, data = lockindex */
  43. RTTEST_LOCKBKL, /* 9 Lock BKL */
  44. RTTEST_UNLOCKBKL, /* 10 Unlock BKL */
  45. RTTEST_SIGNAL, /* 11 Signal other test thread, data = thread id */
  46. RTTEST_RESETEVENT = 98, /* 98 Reset event counter */
  47. RTTEST_RESET = 99, /* 99 Reset all pending operations */
  48. };
  49. static int handle_op(struct test_thread_data *td, int lockwakeup)
  50. {
  51. struct sched_param schedpar;
  52. int i, id, ret = -EINVAL;
  53. switch(td->opcode) {
  54. case RTTEST_NOP:
  55. return 0;
  56. case RTTEST_SCHEDOT:
  57. schedpar.sched_priority = 0;
  58. ret = sched_setscheduler(current, SCHED_NORMAL, &schedpar);
  59. if (!ret)
  60. set_user_nice(current, 0);
  61. return ret;
  62. case RTTEST_SCHEDRT:
  63. schedpar.sched_priority = td->opdata;
  64. return sched_setscheduler(current, SCHED_FIFO, &schedpar);
  65. case RTTEST_LOCKCONT:
  66. td->mutexes[td->opdata] = 1;
  67. td->event = atomic_add_return(1, &rttest_event);
  68. return 0;
  69. case RTTEST_RESET:
  70. for (i = 0; i < MAX_RT_TEST_MUTEXES; i++) {
  71. if (td->mutexes[i] == 4) {
  72. rt_mutex_unlock(&mutexes[i]);
  73. td->mutexes[i] = 0;
  74. }
  75. }
  76. if (!lockwakeup && td->bkl == 4) {
  77. unlock_kernel();
  78. td->bkl = 0;
  79. }
  80. return 0;
  81. case RTTEST_RESETEVENT:
  82. atomic_set(&rttest_event, 0);
  83. return 0;
  84. default:
  85. if (lockwakeup)
  86. return ret;
  87. }
  88. switch(td->opcode) {
  89. case RTTEST_LOCK:
  90. case RTTEST_LOCKNOWAIT:
  91. id = td->opdata;
  92. if (id < 0 || id >= MAX_RT_TEST_MUTEXES)
  93. return ret;
  94. td->mutexes[id] = 1;
  95. td->event = atomic_add_return(1, &rttest_event);
  96. rt_mutex_lock(&mutexes[id]);
  97. td->event = atomic_add_return(1, &rttest_event);
  98. td->mutexes[id] = 4;
  99. return 0;
  100. case RTTEST_LOCKINT:
  101. case RTTEST_LOCKINTNOWAIT:
  102. id = td->opdata;
  103. if (id < 0 || id >= MAX_RT_TEST_MUTEXES)
  104. return ret;
  105. td->mutexes[id] = 1;
  106. td->event = atomic_add_return(1, &rttest_event);
  107. ret = rt_mutex_lock_interruptible(&mutexes[id], 0);
  108. td->event = atomic_add_return(1, &rttest_event);
  109. td->mutexes[id] = ret ? 0 : 4;
  110. return ret ? -EINTR : 0;
  111. case RTTEST_UNLOCK:
  112. id = td->opdata;
  113. if (id < 0 || id >= MAX_RT_TEST_MUTEXES || td->mutexes[id] != 4)
  114. return ret;
  115. td->event = atomic_add_return(1, &rttest_event);
  116. rt_mutex_unlock(&mutexes[id]);
  117. td->event = atomic_add_return(1, &rttest_event);
  118. td->mutexes[id] = 0;
  119. return 0;
  120. case RTTEST_LOCKBKL:
  121. if (td->bkl)
  122. return 0;
  123. td->bkl = 1;
  124. lock_kernel();
  125. td->bkl = 4;
  126. return 0;
  127. case RTTEST_UNLOCKBKL:
  128. if (td->bkl != 4)
  129. break;
  130. unlock_kernel();
  131. td->bkl = 0;
  132. return 0;
  133. default:
  134. break;
  135. }
  136. return ret;
  137. }
  138. /*
  139. * Schedule replacement for rtsem_down(). Only called for threads with
  140. * PF_MUTEX_TESTER set.
  141. *
  142. * This allows us to have finegrained control over the event flow.
  143. *
  144. */
  145. void schedule_rt_mutex_test(struct rt_mutex *mutex)
  146. {
  147. int tid, op, dat;
  148. struct test_thread_data *td;
  149. /* We have to lookup the task */
  150. for (tid = 0; tid < MAX_RT_TEST_THREADS; tid++) {
  151. if (threads[tid] == current)
  152. break;
  153. }
  154. BUG_ON(tid == MAX_RT_TEST_THREADS);
  155. td = &thread_data[tid];
  156. op = td->opcode;
  157. dat = td->opdata;
  158. switch (op) {
  159. case RTTEST_LOCK:
  160. case RTTEST_LOCKINT:
  161. case RTTEST_LOCKNOWAIT:
  162. case RTTEST_LOCKINTNOWAIT:
  163. if (mutex != &mutexes[dat])
  164. break;
  165. if (td->mutexes[dat] != 1)
  166. break;
  167. td->mutexes[dat] = 2;
  168. td->event = atomic_add_return(1, &rttest_event);
  169. break;
  170. case RTTEST_LOCKBKL:
  171. default:
  172. break;
  173. }
  174. schedule();
  175. switch (op) {
  176. case RTTEST_LOCK:
  177. case RTTEST_LOCKINT:
  178. if (mutex != &mutexes[dat])
  179. return;
  180. if (td->mutexes[dat] != 2)
  181. return;
  182. td->mutexes[dat] = 3;
  183. td->event = atomic_add_return(1, &rttest_event);
  184. break;
  185. case RTTEST_LOCKNOWAIT:
  186. case RTTEST_LOCKINTNOWAIT:
  187. if (mutex != &mutexes[dat])
  188. return;
  189. if (td->mutexes[dat] != 2)
  190. return;
  191. td->mutexes[dat] = 1;
  192. td->event = atomic_add_return(1, &rttest_event);
  193. return;
  194. case RTTEST_LOCKBKL:
  195. return;
  196. default:
  197. return;
  198. }
  199. td->opcode = 0;
  200. for (;;) {
  201. set_current_state(TASK_INTERRUPTIBLE);
  202. if (td->opcode > 0) {
  203. int ret;
  204. set_current_state(TASK_RUNNING);
  205. ret = handle_op(td, 1);
  206. set_current_state(TASK_INTERRUPTIBLE);
  207. if (td->opcode == RTTEST_LOCKCONT)
  208. break;
  209. td->opcode = ret;
  210. }
  211. /* Wait for the next command to be executed */
  212. schedule();
  213. }
  214. /* Restore previous command and data */
  215. td->opcode = op;
  216. td->opdata = dat;
  217. }
  218. static int test_func(void *data)
  219. {
  220. struct test_thread_data *td = data;
  221. int ret;
  222. current->flags |= PF_MUTEX_TESTER;
  223. allow_signal(SIGHUP);
  224. for(;;) {
  225. set_current_state(TASK_INTERRUPTIBLE);
  226. if (td->opcode > 0) {
  227. set_current_state(TASK_RUNNING);
  228. ret = handle_op(td, 0);
  229. set_current_state(TASK_INTERRUPTIBLE);
  230. td->opcode = ret;
  231. }
  232. /* Wait for the next command to be executed */
  233. schedule();
  234. if (signal_pending(current))
  235. flush_signals(current);
  236. if(kthread_should_stop())
  237. break;
  238. }
  239. return 0;
  240. }
  241. /**
  242. * sysfs_test_command - interface for test commands
  243. * @dev: thread reference
  244. * @buf: command for actual step
  245. * @count: length of buffer
  246. *
  247. * command syntax:
  248. *
  249. * opcode:data
  250. */
  251. static ssize_t sysfs_test_command(struct sys_device *dev, const char *buf,
  252. size_t count)
  253. {
  254. struct test_thread_data *td;
  255. char cmdbuf[32];
  256. int op, dat, tid;
  257. td = container_of(dev, struct test_thread_data, sysdev);
  258. tid = td->sysdev.id;
  259. /* strings from sysfs write are not 0 terminated! */
  260. if (count >= sizeof(cmdbuf))
  261. return -EINVAL;
  262. /* strip of \n: */
  263. if (buf[count-1] == '\n')
  264. count--;
  265. if (count < 1)
  266. return -EINVAL;
  267. memcpy(cmdbuf, buf, count);
  268. cmdbuf[count] = 0;
  269. if (sscanf(cmdbuf, "%d:%d", &op, &dat) != 2)
  270. return -EINVAL;
  271. switch (op) {
  272. case RTTEST_SIGNAL:
  273. send_sig(SIGHUP, threads[tid], 0);
  274. break;
  275. default:
  276. if (td->opcode > 0)
  277. return -EBUSY;
  278. td->opdata = dat;
  279. td->opcode = op;
  280. wake_up_process(threads[tid]);
  281. }
  282. return count;
  283. }
  284. /**
  285. * sysfs_test_status - sysfs interface for rt tester
  286. * @dev: thread to query
  287. * @buf: char buffer to be filled with thread status info
  288. */
  289. static ssize_t sysfs_test_status(struct sys_device *dev, char *buf)
  290. {
  291. struct test_thread_data *td;
  292. char *curr = buf;
  293. task_t *tsk;
  294. int i;
  295. td = container_of(dev, struct test_thread_data, sysdev);
  296. tsk = threads[td->sysdev.id];
  297. spin_lock(&rttest_lock);
  298. curr += sprintf(curr,
  299. "O: %4d, E:%8d, S: 0x%08lx, P: %4d, N: %4d, B: %p, K: %d, M:",
  300. td->opcode, td->event, tsk->state,
  301. (MAX_RT_PRIO - 1) - tsk->prio,
  302. (MAX_RT_PRIO - 1) - tsk->normal_prio,
  303. tsk->pi_blocked_on, td->bkl);
  304. for (i = MAX_RT_TEST_MUTEXES - 1; i >=0 ; i--)
  305. curr += sprintf(curr, "%d", td->mutexes[i]);
  306. spin_unlock(&rttest_lock);
  307. curr += sprintf(curr, ", T: %p, R: %p\n", tsk,
  308. mutexes[td->sysdev.id].owner);
  309. return curr - buf;
  310. }
  311. static SYSDEV_ATTR(status, 0600, sysfs_test_status, NULL);
  312. static SYSDEV_ATTR(command, 0600, NULL, sysfs_test_command);
  313. static struct sysdev_class rttest_sysclass = {
  314. set_kset_name("rttest"),
  315. };
  316. static int init_test_thread(int id)
  317. {
  318. thread_data[id].sysdev.cls = &rttest_sysclass;
  319. thread_data[id].sysdev.id = id;
  320. threads[id] = kthread_run(test_func, &thread_data[id], "rt-test-%d", id);
  321. if (IS_ERR(threads[id]))
  322. return PTR_ERR(threads[id]);
  323. return sysdev_register(&thread_data[id].sysdev);
  324. }
  325. static int init_rttest(void)
  326. {
  327. int ret, i;
  328. spin_lock_init(&rttest_lock);
  329. for (i = 0; i < MAX_RT_TEST_MUTEXES; i++)
  330. rt_mutex_init(&mutexes[i]);
  331. ret = sysdev_class_register(&rttest_sysclass);
  332. if (ret)
  333. return ret;
  334. for (i = 0; i < MAX_RT_TEST_THREADS; i++) {
  335. ret = init_test_thread(i);
  336. if (ret)
  337. break;
  338. ret = sysdev_create_file(&thread_data[i].sysdev, &attr_status);
  339. if (ret)
  340. break;
  341. ret = sysdev_create_file(&thread_data[i].sysdev, &attr_command);
  342. if (ret)
  343. break;
  344. }
  345. printk("Initializing RT-Tester: %s\n", ret ? "Failed" : "OK" );
  346. return ret;
  347. }
  348. device_initcall(init_rttest);