mmzone.h 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767
  1. #ifndef _LINUX_MMZONE_H
  2. #define _LINUX_MMZONE_H
  3. #ifdef __KERNEL__
  4. #ifndef __ASSEMBLY__
  5. #include <linux/spinlock.h>
  6. #include <linux/list.h>
  7. #include <linux/wait.h>
  8. #include <linux/cache.h>
  9. #include <linux/threads.h>
  10. #include <linux/numa.h>
  11. #include <linux/init.h>
  12. #include <linux/seqlock.h>
  13. #include <linux/nodemask.h>
  14. #include <asm/atomic.h>
  15. #include <asm/page.h>
  16. /* Free memory management - zoned buddy allocator. */
  17. #ifndef CONFIG_FORCE_MAX_ZONEORDER
  18. #define MAX_ORDER 11
  19. #else
  20. #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
  21. #endif
  22. #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
  23. struct free_area {
  24. struct list_head free_list;
  25. unsigned long nr_free;
  26. };
  27. struct pglist_data;
  28. /*
  29. * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
  30. * So add a wild amount of padding here to ensure that they fall into separate
  31. * cachelines. There are very few zone structures in the machine, so space
  32. * consumption is not a concern here.
  33. */
  34. #if defined(CONFIG_SMP)
  35. struct zone_padding {
  36. char x[0];
  37. } ____cacheline_internodealigned_in_smp;
  38. #define ZONE_PADDING(name) struct zone_padding name;
  39. #else
  40. #define ZONE_PADDING(name)
  41. #endif
  42. enum zone_stat_item {
  43. NR_INACTIVE,
  44. NR_ACTIVE,
  45. NR_ANON_PAGES, /* Mapped anonymous pages */
  46. NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
  47. only modified from process context */
  48. NR_FILE_PAGES,
  49. NR_SLAB_RECLAIMABLE,
  50. NR_SLAB_UNRECLAIMABLE,
  51. NR_PAGETABLE, /* used for pagetables */
  52. NR_FILE_DIRTY,
  53. NR_WRITEBACK,
  54. NR_UNSTABLE_NFS, /* NFS unstable pages */
  55. NR_BOUNCE,
  56. NR_VMSCAN_WRITE,
  57. #ifdef CONFIG_NUMA
  58. NUMA_HIT, /* allocated in intended node */
  59. NUMA_MISS, /* allocated in non intended node */
  60. NUMA_FOREIGN, /* was intended here, hit elsewhere */
  61. NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
  62. NUMA_LOCAL, /* allocation from local node */
  63. NUMA_OTHER, /* allocation from other node */
  64. #endif
  65. NR_VM_ZONE_STAT_ITEMS };
  66. struct per_cpu_pages {
  67. int count; /* number of pages in the list */
  68. int high; /* high watermark, emptying needed */
  69. int batch; /* chunk size for buddy add/remove */
  70. struct list_head list; /* the list of pages */
  71. };
  72. struct per_cpu_pageset {
  73. struct per_cpu_pages pcp[2]; /* 0: hot. 1: cold */
  74. #ifdef CONFIG_SMP
  75. s8 stat_threshold;
  76. s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
  77. #endif
  78. } ____cacheline_aligned_in_smp;
  79. #ifdef CONFIG_NUMA
  80. #define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)])
  81. #else
  82. #define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)])
  83. #endif
  84. enum zone_type {
  85. /*
  86. * ZONE_DMA is used when there are devices that are not able
  87. * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
  88. * carve out the portion of memory that is needed for these devices.
  89. * The range is arch specific.
  90. *
  91. * Some examples
  92. *
  93. * Architecture Limit
  94. * ---------------------------
  95. * parisc, ia64, sparc <4G
  96. * s390 <2G
  97. * arm26 <48M
  98. * arm Various
  99. * alpha Unlimited or 0-16MB.
  100. *
  101. * i386, x86_64 and multiple other arches
  102. * <16M.
  103. */
  104. ZONE_DMA,
  105. #ifdef CONFIG_ZONE_DMA32
  106. /*
  107. * x86_64 needs two ZONE_DMAs because it supports devices that are
  108. * only able to do DMA to the lower 16M but also 32 bit devices that
  109. * can only do DMA areas below 4G.
  110. */
  111. ZONE_DMA32,
  112. #endif
  113. /*
  114. * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
  115. * performed on pages in ZONE_NORMAL if the DMA devices support
  116. * transfers to all addressable memory.
  117. */
  118. ZONE_NORMAL,
  119. #ifdef CONFIG_HIGHMEM
  120. /*
  121. * A memory area that is only addressable by the kernel through
  122. * mapping portions into its own address space. This is for example
  123. * used by i386 to allow the kernel to address the memory beyond
  124. * 900MB. The kernel will set up special mappings (page
  125. * table entries on i386) for each page that the kernel needs to
  126. * access.
  127. */
  128. ZONE_HIGHMEM,
  129. #endif
  130. MAX_NR_ZONES
  131. };
  132. /*
  133. * When a memory allocation must conform to specific limitations (such
  134. * as being suitable for DMA) the caller will pass in hints to the
  135. * allocator in the gfp_mask, in the zone modifier bits. These bits
  136. * are used to select a priority ordered list of memory zones which
  137. * match the requested limits. See gfp_zone() in include/linux/gfp.h
  138. */
  139. #if !defined(CONFIG_ZONE_DMA32) && !defined(CONFIG_HIGHMEM)
  140. #define ZONES_SHIFT 1
  141. #else
  142. #define ZONES_SHIFT 2
  143. #endif
  144. struct zone {
  145. /* Fields commonly accessed by the page allocator */
  146. unsigned long free_pages;
  147. unsigned long pages_min, pages_low, pages_high;
  148. /*
  149. * We don't know if the memory that we're going to allocate will be freeable
  150. * or/and it will be released eventually, so to avoid totally wasting several
  151. * GB of ram we must reserve some of the lower zone memory (otherwise we risk
  152. * to run OOM on the lower zones despite there's tons of freeable ram
  153. * on the higher zones). This array is recalculated at runtime if the
  154. * sysctl_lowmem_reserve_ratio sysctl changes.
  155. */
  156. unsigned long lowmem_reserve[MAX_NR_ZONES];
  157. #ifdef CONFIG_NUMA
  158. int node;
  159. /*
  160. * zone reclaim becomes active if more unmapped pages exist.
  161. */
  162. unsigned long min_unmapped_pages;
  163. unsigned long min_slab_pages;
  164. struct per_cpu_pageset *pageset[NR_CPUS];
  165. #else
  166. struct per_cpu_pageset pageset[NR_CPUS];
  167. #endif
  168. /*
  169. * free areas of different sizes
  170. */
  171. spinlock_t lock;
  172. #ifdef CONFIG_MEMORY_HOTPLUG
  173. /* see spanned/present_pages for more description */
  174. seqlock_t span_seqlock;
  175. #endif
  176. struct free_area free_area[MAX_ORDER];
  177. ZONE_PADDING(_pad1_)
  178. /* Fields commonly accessed by the page reclaim scanner */
  179. spinlock_t lru_lock;
  180. struct list_head active_list;
  181. struct list_head inactive_list;
  182. unsigned long nr_scan_active;
  183. unsigned long nr_scan_inactive;
  184. unsigned long pages_scanned; /* since last reclaim */
  185. int all_unreclaimable; /* All pages pinned */
  186. /* A count of how many reclaimers are scanning this zone */
  187. atomic_t reclaim_in_progress;
  188. /* Zone statistics */
  189. atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
  190. /*
  191. * prev_priority holds the scanning priority for this zone. It is
  192. * defined as the scanning priority at which we achieved our reclaim
  193. * target at the previous try_to_free_pages() or balance_pgdat()
  194. * invokation.
  195. *
  196. * We use prev_priority as a measure of how much stress page reclaim is
  197. * under - it drives the swappiness decision: whether to unmap mapped
  198. * pages.
  199. *
  200. * Access to both this field is quite racy even on uniprocessor. But
  201. * it is expected to average out OK.
  202. */
  203. int prev_priority;
  204. ZONE_PADDING(_pad2_)
  205. /* Rarely used or read-mostly fields */
  206. /*
  207. * wait_table -- the array holding the hash table
  208. * wait_table_hash_nr_entries -- the size of the hash table array
  209. * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
  210. *
  211. * The purpose of all these is to keep track of the people
  212. * waiting for a page to become available and make them
  213. * runnable again when possible. The trouble is that this
  214. * consumes a lot of space, especially when so few things
  215. * wait on pages at a given time. So instead of using
  216. * per-page waitqueues, we use a waitqueue hash table.
  217. *
  218. * The bucket discipline is to sleep on the same queue when
  219. * colliding and wake all in that wait queue when removing.
  220. * When something wakes, it must check to be sure its page is
  221. * truly available, a la thundering herd. The cost of a
  222. * collision is great, but given the expected load of the
  223. * table, they should be so rare as to be outweighed by the
  224. * benefits from the saved space.
  225. *
  226. * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
  227. * primary users of these fields, and in mm/page_alloc.c
  228. * free_area_init_core() performs the initialization of them.
  229. */
  230. wait_queue_head_t * wait_table;
  231. unsigned long wait_table_hash_nr_entries;
  232. unsigned long wait_table_bits;
  233. /*
  234. * Discontig memory support fields.
  235. */
  236. struct pglist_data *zone_pgdat;
  237. /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
  238. unsigned long zone_start_pfn;
  239. /*
  240. * zone_start_pfn, spanned_pages and present_pages are all
  241. * protected by span_seqlock. It is a seqlock because it has
  242. * to be read outside of zone->lock, and it is done in the main
  243. * allocator path. But, it is written quite infrequently.
  244. *
  245. * The lock is declared along with zone->lock because it is
  246. * frequently read in proximity to zone->lock. It's good to
  247. * give them a chance of being in the same cacheline.
  248. */
  249. unsigned long spanned_pages; /* total size, including holes */
  250. unsigned long present_pages; /* amount of memory (excluding holes) */
  251. /*
  252. * rarely used fields:
  253. */
  254. const char *name;
  255. } ____cacheline_internodealigned_in_smp;
  256. /*
  257. * The "priority" of VM scanning is how much of the queues we will scan in one
  258. * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
  259. * queues ("queue_length >> 12") during an aging round.
  260. */
  261. #define DEF_PRIORITY 12
  262. /* Maximum number of zones on a zonelist */
  263. #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
  264. #ifdef CONFIG_NUMA
  265. /*
  266. * We cache key information from each zonelist for smaller cache
  267. * footprint when scanning for free pages in get_page_from_freelist().
  268. *
  269. * 1) The BITMAP fullzones tracks which zones in a zonelist have come
  270. * up short of free memory since the last time (last_fullzone_zap)
  271. * we zero'd fullzones.
  272. * 2) The array z_to_n[] maps each zone in the zonelist to its node
  273. * id, so that we can efficiently evaluate whether that node is
  274. * set in the current tasks mems_allowed.
  275. *
  276. * Both fullzones and z_to_n[] are one-to-one with the zonelist,
  277. * indexed by a zones offset in the zonelist zones[] array.
  278. *
  279. * The get_page_from_freelist() routine does two scans. During the
  280. * first scan, we skip zones whose corresponding bit in 'fullzones'
  281. * is set or whose corresponding node in current->mems_allowed (which
  282. * comes from cpusets) is not set. During the second scan, we bypass
  283. * this zonelist_cache, to ensure we look methodically at each zone.
  284. *
  285. * Once per second, we zero out (zap) fullzones, forcing us to
  286. * reconsider nodes that might have regained more free memory.
  287. * The field last_full_zap is the time we last zapped fullzones.
  288. *
  289. * This mechanism reduces the amount of time we waste repeatedly
  290. * reexaming zones for free memory when they just came up low on
  291. * memory momentarilly ago.
  292. *
  293. * The zonelist_cache struct members logically belong in struct
  294. * zonelist. However, the mempolicy zonelists constructed for
  295. * MPOL_BIND are intentionally variable length (and usually much
  296. * shorter). A general purpose mechanism for handling structs with
  297. * multiple variable length members is more mechanism than we want
  298. * here. We resort to some special case hackery instead.
  299. *
  300. * The MPOL_BIND zonelists don't need this zonelist_cache (in good
  301. * part because they are shorter), so we put the fixed length stuff
  302. * at the front of the zonelist struct, ending in a variable length
  303. * zones[], as is needed by MPOL_BIND.
  304. *
  305. * Then we put the optional zonelist cache on the end of the zonelist
  306. * struct. This optional stuff is found by a 'zlcache_ptr' pointer in
  307. * the fixed length portion at the front of the struct. This pointer
  308. * both enables us to find the zonelist cache, and in the case of
  309. * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
  310. * to know that the zonelist cache is not there.
  311. *
  312. * The end result is that struct zonelists come in two flavors:
  313. * 1) The full, fixed length version, shown below, and
  314. * 2) The custom zonelists for MPOL_BIND.
  315. * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
  316. *
  317. * Even though there may be multiple CPU cores on a node modifying
  318. * fullzones or last_full_zap in the same zonelist_cache at the same
  319. * time, we don't lock it. This is just hint data - if it is wrong now
  320. * and then, the allocator will still function, perhaps a bit slower.
  321. */
  322. struct zonelist_cache {
  323. unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */
  324. DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */
  325. unsigned long last_full_zap; /* when last zap'd (jiffies) */
  326. };
  327. #else
  328. struct zonelist_cache;
  329. #endif
  330. /*
  331. * One allocation request operates on a zonelist. A zonelist
  332. * is a list of zones, the first one is the 'goal' of the
  333. * allocation, the other zones are fallback zones, in decreasing
  334. * priority.
  335. *
  336. * If zlcache_ptr is not NULL, then it is just the address of zlcache,
  337. * as explained above. If zlcache_ptr is NULL, there is no zlcache.
  338. */
  339. struct zonelist {
  340. struct zonelist_cache *zlcache_ptr; // NULL or &zlcache
  341. struct zone *zones[MAX_ZONES_PER_ZONELIST + 1]; // NULL delimited
  342. #ifdef CONFIG_NUMA
  343. struct zonelist_cache zlcache; // optional ...
  344. #endif
  345. };
  346. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  347. struct node_active_region {
  348. unsigned long start_pfn;
  349. unsigned long end_pfn;
  350. int nid;
  351. };
  352. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  353. #ifndef CONFIG_DISCONTIGMEM
  354. /* The array of struct pages - for discontigmem use pgdat->lmem_map */
  355. extern struct page *mem_map;
  356. #endif
  357. /*
  358. * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
  359. * (mostly NUMA machines?) to denote a higher-level memory zone than the
  360. * zone denotes.
  361. *
  362. * On NUMA machines, each NUMA node would have a pg_data_t to describe
  363. * it's memory layout.
  364. *
  365. * Memory statistics and page replacement data structures are maintained on a
  366. * per-zone basis.
  367. */
  368. struct bootmem_data;
  369. typedef struct pglist_data {
  370. struct zone node_zones[MAX_NR_ZONES];
  371. struct zonelist node_zonelists[MAX_NR_ZONES];
  372. int nr_zones;
  373. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  374. struct page *node_mem_map;
  375. #endif
  376. struct bootmem_data *bdata;
  377. #ifdef CONFIG_MEMORY_HOTPLUG
  378. /*
  379. * Must be held any time you expect node_start_pfn, node_present_pages
  380. * or node_spanned_pages stay constant. Holding this will also
  381. * guarantee that any pfn_valid() stays that way.
  382. *
  383. * Nests above zone->lock and zone->size_seqlock.
  384. */
  385. spinlock_t node_size_lock;
  386. #endif
  387. unsigned long node_start_pfn;
  388. unsigned long node_present_pages; /* total number of physical pages */
  389. unsigned long node_spanned_pages; /* total size of physical page
  390. range, including holes */
  391. int node_id;
  392. wait_queue_head_t kswapd_wait;
  393. struct task_struct *kswapd;
  394. int kswapd_max_order;
  395. } pg_data_t;
  396. #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
  397. #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
  398. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  399. #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
  400. #else
  401. #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
  402. #endif
  403. #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
  404. #include <linux/memory_hotplug.h>
  405. void __get_zone_counts(unsigned long *active, unsigned long *inactive,
  406. unsigned long *free, struct pglist_data *pgdat);
  407. void get_zone_counts(unsigned long *active, unsigned long *inactive,
  408. unsigned long *free);
  409. void build_all_zonelists(void);
  410. void wakeup_kswapd(struct zone *zone, int order);
  411. int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  412. int classzone_idx, int alloc_flags);
  413. enum memmap_context {
  414. MEMMAP_EARLY,
  415. MEMMAP_HOTPLUG,
  416. };
  417. extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
  418. unsigned long size,
  419. enum memmap_context context);
  420. #ifdef CONFIG_HAVE_MEMORY_PRESENT
  421. void memory_present(int nid, unsigned long start, unsigned long end);
  422. #else
  423. static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
  424. #endif
  425. #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
  426. unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
  427. #endif
  428. /*
  429. * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
  430. */
  431. #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
  432. static inline int populated_zone(struct zone *zone)
  433. {
  434. return (!!zone->present_pages);
  435. }
  436. static inline int is_highmem_idx(enum zone_type idx)
  437. {
  438. #ifdef CONFIG_HIGHMEM
  439. return (idx == ZONE_HIGHMEM);
  440. #else
  441. return 0;
  442. #endif
  443. }
  444. static inline int is_normal_idx(enum zone_type idx)
  445. {
  446. return (idx == ZONE_NORMAL);
  447. }
  448. /**
  449. * is_highmem - helper function to quickly check if a struct zone is a
  450. * highmem zone or not. This is an attempt to keep references
  451. * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
  452. * @zone - pointer to struct zone variable
  453. */
  454. static inline int is_highmem(struct zone *zone)
  455. {
  456. #ifdef CONFIG_HIGHMEM
  457. return zone == zone->zone_pgdat->node_zones + ZONE_HIGHMEM;
  458. #else
  459. return 0;
  460. #endif
  461. }
  462. static inline int is_normal(struct zone *zone)
  463. {
  464. return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
  465. }
  466. static inline int is_dma32(struct zone *zone)
  467. {
  468. #ifdef CONFIG_ZONE_DMA32
  469. return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
  470. #else
  471. return 0;
  472. #endif
  473. }
  474. static inline int is_dma(struct zone *zone)
  475. {
  476. return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
  477. }
  478. /* These two functions are used to setup the per zone pages min values */
  479. struct ctl_table;
  480. struct file;
  481. int min_free_kbytes_sysctl_handler(struct ctl_table *, int, struct file *,
  482. void __user *, size_t *, loff_t *);
  483. extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
  484. int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, struct file *,
  485. void __user *, size_t *, loff_t *);
  486. int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, struct file *,
  487. void __user *, size_t *, loff_t *);
  488. int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
  489. struct file *, void __user *, size_t *, loff_t *);
  490. int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
  491. struct file *, void __user *, size_t *, loff_t *);
  492. #include <linux/topology.h>
  493. /* Returns the number of the current Node. */
  494. #ifndef numa_node_id
  495. #define numa_node_id() (cpu_to_node(raw_smp_processor_id()))
  496. #endif
  497. #ifndef CONFIG_NEED_MULTIPLE_NODES
  498. extern struct pglist_data contig_page_data;
  499. #define NODE_DATA(nid) (&contig_page_data)
  500. #define NODE_MEM_MAP(nid) mem_map
  501. #define MAX_NODES_SHIFT 1
  502. #else /* CONFIG_NEED_MULTIPLE_NODES */
  503. #include <asm/mmzone.h>
  504. #endif /* !CONFIG_NEED_MULTIPLE_NODES */
  505. extern struct pglist_data *first_online_pgdat(void);
  506. extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
  507. extern struct zone *next_zone(struct zone *zone);
  508. /**
  509. * for_each_pgdat - helper macro to iterate over all nodes
  510. * @pgdat - pointer to a pg_data_t variable
  511. */
  512. #define for_each_online_pgdat(pgdat) \
  513. for (pgdat = first_online_pgdat(); \
  514. pgdat; \
  515. pgdat = next_online_pgdat(pgdat))
  516. /**
  517. * for_each_zone - helper macro to iterate over all memory zones
  518. * @zone - pointer to struct zone variable
  519. *
  520. * The user only needs to declare the zone variable, for_each_zone
  521. * fills it in.
  522. */
  523. #define for_each_zone(zone) \
  524. for (zone = (first_online_pgdat())->node_zones; \
  525. zone; \
  526. zone = next_zone(zone))
  527. #ifdef CONFIG_SPARSEMEM
  528. #include <asm/sparsemem.h>
  529. #endif
  530. #if BITS_PER_LONG == 32
  531. /*
  532. * with 32 bit page->flags field, we reserve 9 bits for node/zone info.
  533. * there are 4 zones (3 bits) and this leaves 9-3=6 bits for nodes.
  534. */
  535. #define FLAGS_RESERVED 9
  536. #elif BITS_PER_LONG == 64
  537. /*
  538. * with 64 bit flags field, there's plenty of room.
  539. */
  540. #define FLAGS_RESERVED 32
  541. #else
  542. #error BITS_PER_LONG not defined
  543. #endif
  544. #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
  545. !defined(CONFIG_ARCH_POPULATES_NODE_MAP)
  546. #define early_pfn_to_nid(nid) (0UL)
  547. #endif
  548. #ifdef CONFIG_FLATMEM
  549. #define pfn_to_nid(pfn) (0)
  550. #endif
  551. #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
  552. #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
  553. #ifdef CONFIG_SPARSEMEM
  554. /*
  555. * SECTION_SHIFT #bits space required to store a section #
  556. *
  557. * PA_SECTION_SHIFT physical address to/from section number
  558. * PFN_SECTION_SHIFT pfn to/from section number
  559. */
  560. #define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
  561. #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
  562. #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
  563. #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
  564. #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
  565. #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
  566. #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
  567. #error Allocator MAX_ORDER exceeds SECTION_SIZE
  568. #endif
  569. struct page;
  570. struct mem_section {
  571. /*
  572. * This is, logically, a pointer to an array of struct
  573. * pages. However, it is stored with some other magic.
  574. * (see sparse.c::sparse_init_one_section())
  575. *
  576. * Additionally during early boot we encode node id of
  577. * the location of the section here to guide allocation.
  578. * (see sparse.c::memory_present())
  579. *
  580. * Making it a UL at least makes someone do a cast
  581. * before using it wrong.
  582. */
  583. unsigned long section_mem_map;
  584. };
  585. #ifdef CONFIG_SPARSEMEM_EXTREME
  586. #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
  587. #else
  588. #define SECTIONS_PER_ROOT 1
  589. #endif
  590. #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
  591. #define NR_SECTION_ROOTS (NR_MEM_SECTIONS / SECTIONS_PER_ROOT)
  592. #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
  593. #ifdef CONFIG_SPARSEMEM_EXTREME
  594. extern struct mem_section *mem_section[NR_SECTION_ROOTS];
  595. #else
  596. extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
  597. #endif
  598. static inline struct mem_section *__nr_to_section(unsigned long nr)
  599. {
  600. if (!mem_section[SECTION_NR_TO_ROOT(nr)])
  601. return NULL;
  602. return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
  603. }
  604. extern int __section_nr(struct mem_section* ms);
  605. /*
  606. * We use the lower bits of the mem_map pointer to store
  607. * a little bit of information. There should be at least
  608. * 3 bits here due to 32-bit alignment.
  609. */
  610. #define SECTION_MARKED_PRESENT (1UL<<0)
  611. #define SECTION_HAS_MEM_MAP (1UL<<1)
  612. #define SECTION_MAP_LAST_BIT (1UL<<2)
  613. #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
  614. #define SECTION_NID_SHIFT 2
  615. static inline struct page *__section_mem_map_addr(struct mem_section *section)
  616. {
  617. unsigned long map = section->section_mem_map;
  618. map &= SECTION_MAP_MASK;
  619. return (struct page *)map;
  620. }
  621. static inline int valid_section(struct mem_section *section)
  622. {
  623. return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
  624. }
  625. static inline int section_has_mem_map(struct mem_section *section)
  626. {
  627. return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
  628. }
  629. static inline int valid_section_nr(unsigned long nr)
  630. {
  631. return valid_section(__nr_to_section(nr));
  632. }
  633. static inline struct mem_section *__pfn_to_section(unsigned long pfn)
  634. {
  635. return __nr_to_section(pfn_to_section_nr(pfn));
  636. }
  637. static inline int pfn_valid(unsigned long pfn)
  638. {
  639. if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
  640. return 0;
  641. return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
  642. }
  643. /*
  644. * These are _only_ used during initialisation, therefore they
  645. * can use __initdata ... They could have names to indicate
  646. * this restriction.
  647. */
  648. #ifdef CONFIG_NUMA
  649. #define pfn_to_nid(pfn) \
  650. ({ \
  651. unsigned long __pfn_to_nid_pfn = (pfn); \
  652. page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
  653. })
  654. #else
  655. #define pfn_to_nid(pfn) (0)
  656. #endif
  657. #define early_pfn_valid(pfn) pfn_valid(pfn)
  658. void sparse_init(void);
  659. #else
  660. #define sparse_init() do {} while (0)
  661. #define sparse_index_init(_sec, _nid) do {} while (0)
  662. #endif /* CONFIG_SPARSEMEM */
  663. #ifdef CONFIG_NODES_SPAN_OTHER_NODES
  664. #define early_pfn_in_nid(pfn, nid) (early_pfn_to_nid(pfn) == (nid))
  665. #else
  666. #define early_pfn_in_nid(pfn, nid) (1)
  667. #endif
  668. #ifndef early_pfn_valid
  669. #define early_pfn_valid(pfn) (1)
  670. #endif
  671. void memory_present(int nid, unsigned long start, unsigned long end);
  672. unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
  673. #endif /* !__ASSEMBLY__ */
  674. #endif /* __KERNEL__ */
  675. #endif /* _LINUX_MMZONE_H */