cfq-iosched.c 94 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742
  1. /*
  2. * CFQ, or complete fairness queueing, disk scheduler.
  3. *
  4. * Based on ideas from a previously unfinished io
  5. * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
  6. *
  7. * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
  8. */
  9. #include <linux/module.h>
  10. #include <linux/slab.h>
  11. #include <linux/blkdev.h>
  12. #include <linux/elevator.h>
  13. #include <linux/jiffies.h>
  14. #include <linux/rbtree.h>
  15. #include <linux/ioprio.h>
  16. #include <linux/blktrace_api.h>
  17. #include "blk.h"
  18. #include "cfq.h"
  19. static struct blkio_policy_type blkio_policy_cfq;
  20. /*
  21. * tunables
  22. */
  23. /* max queue in one round of service */
  24. static const int cfq_quantum = 8;
  25. static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
  26. /* maximum backwards seek, in KiB */
  27. static const int cfq_back_max = 16 * 1024;
  28. /* penalty of a backwards seek */
  29. static const int cfq_back_penalty = 2;
  30. static const int cfq_slice_sync = HZ / 10;
  31. static int cfq_slice_async = HZ / 25;
  32. static const int cfq_slice_async_rq = 2;
  33. static int cfq_slice_idle = HZ / 125;
  34. static int cfq_group_idle = HZ / 125;
  35. static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
  36. static const int cfq_hist_divisor = 4;
  37. /*
  38. * offset from end of service tree
  39. */
  40. #define CFQ_IDLE_DELAY (HZ / 5)
  41. /*
  42. * below this threshold, we consider thinktime immediate
  43. */
  44. #define CFQ_MIN_TT (2)
  45. #define CFQ_SLICE_SCALE (5)
  46. #define CFQ_HW_QUEUE_MIN (5)
  47. #define CFQ_SERVICE_SHIFT 12
  48. #define CFQQ_SEEK_THR (sector_t)(8 * 100)
  49. #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
  50. #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
  51. #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
  52. #define RQ_CIC(rq) icq_to_cic((rq)->elv.icq)
  53. #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elv.priv[0])
  54. #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elv.priv[1])
  55. static struct kmem_cache *cfq_pool;
  56. #define CFQ_PRIO_LISTS IOPRIO_BE_NR
  57. #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
  58. #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
  59. #define sample_valid(samples) ((samples) > 80)
  60. #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
  61. struct cfq_ttime {
  62. unsigned long last_end_request;
  63. unsigned long ttime_total;
  64. unsigned long ttime_samples;
  65. unsigned long ttime_mean;
  66. };
  67. /*
  68. * Most of our rbtree usage is for sorting with min extraction, so
  69. * if we cache the leftmost node we don't have to walk down the tree
  70. * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
  71. * move this into the elevator for the rq sorting as well.
  72. */
  73. struct cfq_rb_root {
  74. struct rb_root rb;
  75. struct rb_node *left;
  76. unsigned count;
  77. unsigned total_weight;
  78. u64 min_vdisktime;
  79. struct cfq_ttime ttime;
  80. };
  81. #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, \
  82. .ttime = {.last_end_request = jiffies,},}
  83. /*
  84. * Per process-grouping structure
  85. */
  86. struct cfq_queue {
  87. /* reference count */
  88. int ref;
  89. /* various state flags, see below */
  90. unsigned int flags;
  91. /* parent cfq_data */
  92. struct cfq_data *cfqd;
  93. /* service_tree member */
  94. struct rb_node rb_node;
  95. /* service_tree key */
  96. unsigned long rb_key;
  97. /* prio tree member */
  98. struct rb_node p_node;
  99. /* prio tree root we belong to, if any */
  100. struct rb_root *p_root;
  101. /* sorted list of pending requests */
  102. struct rb_root sort_list;
  103. /* if fifo isn't expired, next request to serve */
  104. struct request *next_rq;
  105. /* requests queued in sort_list */
  106. int queued[2];
  107. /* currently allocated requests */
  108. int allocated[2];
  109. /* fifo list of requests in sort_list */
  110. struct list_head fifo;
  111. /* time when queue got scheduled in to dispatch first request. */
  112. unsigned long dispatch_start;
  113. unsigned int allocated_slice;
  114. unsigned int slice_dispatch;
  115. /* time when first request from queue completed and slice started. */
  116. unsigned long slice_start;
  117. unsigned long slice_end;
  118. long slice_resid;
  119. /* pending priority requests */
  120. int prio_pending;
  121. /* number of requests that are on the dispatch list or inside driver */
  122. int dispatched;
  123. /* io prio of this group */
  124. unsigned short ioprio, org_ioprio;
  125. unsigned short ioprio_class;
  126. pid_t pid;
  127. u32 seek_history;
  128. sector_t last_request_pos;
  129. struct cfq_rb_root *service_tree;
  130. struct cfq_queue *new_cfqq;
  131. struct cfq_group *cfqg;
  132. /* Number of sectors dispatched from queue in single dispatch round */
  133. unsigned long nr_sectors;
  134. };
  135. /*
  136. * First index in the service_trees.
  137. * IDLE is handled separately, so it has negative index
  138. */
  139. enum wl_prio_t {
  140. BE_WORKLOAD = 0,
  141. RT_WORKLOAD = 1,
  142. IDLE_WORKLOAD = 2,
  143. CFQ_PRIO_NR,
  144. };
  145. /*
  146. * Second index in the service_trees.
  147. */
  148. enum wl_type_t {
  149. ASYNC_WORKLOAD = 0,
  150. SYNC_NOIDLE_WORKLOAD = 1,
  151. SYNC_WORKLOAD = 2
  152. };
  153. /* This is per cgroup per device grouping structure */
  154. struct cfq_group {
  155. /* group service_tree member */
  156. struct rb_node rb_node;
  157. /* group service_tree key */
  158. u64 vdisktime;
  159. unsigned int weight;
  160. unsigned int new_weight;
  161. bool needs_update;
  162. /* number of cfqq currently on this group */
  163. int nr_cfqq;
  164. /*
  165. * Per group busy queues average. Useful for workload slice calc. We
  166. * create the array for each prio class but at run time it is used
  167. * only for RT and BE class and slot for IDLE class remains unused.
  168. * This is primarily done to avoid confusion and a gcc warning.
  169. */
  170. unsigned int busy_queues_avg[CFQ_PRIO_NR];
  171. /*
  172. * rr lists of queues with requests. We maintain service trees for
  173. * RT and BE classes. These trees are subdivided in subclasses
  174. * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
  175. * class there is no subclassification and all the cfq queues go on
  176. * a single tree service_tree_idle.
  177. * Counts are embedded in the cfq_rb_root
  178. */
  179. struct cfq_rb_root service_trees[2][3];
  180. struct cfq_rb_root service_tree_idle;
  181. unsigned long saved_workload_slice;
  182. enum wl_type_t saved_workload;
  183. enum wl_prio_t saved_serving_prio;
  184. /* number of requests that are on the dispatch list or inside driver */
  185. int dispatched;
  186. struct cfq_ttime ttime;
  187. };
  188. struct cfq_io_cq {
  189. struct io_cq icq; /* must be the first member */
  190. struct cfq_queue *cfqq[2];
  191. struct cfq_ttime ttime;
  192. };
  193. /*
  194. * Per block device queue structure
  195. */
  196. struct cfq_data {
  197. struct request_queue *queue;
  198. /* Root service tree for cfq_groups */
  199. struct cfq_rb_root grp_service_tree;
  200. struct cfq_group *root_group;
  201. /*
  202. * The priority currently being served
  203. */
  204. enum wl_prio_t serving_prio;
  205. enum wl_type_t serving_type;
  206. unsigned long workload_expires;
  207. struct cfq_group *serving_group;
  208. /*
  209. * Each priority tree is sorted by next_request position. These
  210. * trees are used when determining if two or more queues are
  211. * interleaving requests (see cfq_close_cooperator).
  212. */
  213. struct rb_root prio_trees[CFQ_PRIO_LISTS];
  214. unsigned int busy_queues;
  215. unsigned int busy_sync_queues;
  216. int rq_in_driver;
  217. int rq_in_flight[2];
  218. /*
  219. * queue-depth detection
  220. */
  221. int rq_queued;
  222. int hw_tag;
  223. /*
  224. * hw_tag can be
  225. * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
  226. * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
  227. * 0 => no NCQ
  228. */
  229. int hw_tag_est_depth;
  230. unsigned int hw_tag_samples;
  231. /*
  232. * idle window management
  233. */
  234. struct timer_list idle_slice_timer;
  235. struct work_struct unplug_work;
  236. struct cfq_queue *active_queue;
  237. struct cfq_io_cq *active_cic;
  238. /*
  239. * async queue for each priority case
  240. */
  241. struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
  242. struct cfq_queue *async_idle_cfqq;
  243. sector_t last_position;
  244. /*
  245. * tunables, see top of file
  246. */
  247. unsigned int cfq_quantum;
  248. unsigned int cfq_fifo_expire[2];
  249. unsigned int cfq_back_penalty;
  250. unsigned int cfq_back_max;
  251. unsigned int cfq_slice[2];
  252. unsigned int cfq_slice_async_rq;
  253. unsigned int cfq_slice_idle;
  254. unsigned int cfq_group_idle;
  255. unsigned int cfq_latency;
  256. /*
  257. * Fallback dummy cfqq for extreme OOM conditions
  258. */
  259. struct cfq_queue oom_cfqq;
  260. unsigned long last_delayed_sync;
  261. };
  262. static inline struct cfq_group *blkg_to_cfqg(struct blkio_group *blkg)
  263. {
  264. return blkg_to_pdata(blkg, &blkio_policy_cfq);
  265. }
  266. static inline struct blkio_group *cfqg_to_blkg(struct cfq_group *cfqg)
  267. {
  268. return pdata_to_blkg(cfqg, &blkio_policy_cfq);
  269. }
  270. static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
  271. static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
  272. enum wl_prio_t prio,
  273. enum wl_type_t type)
  274. {
  275. if (!cfqg)
  276. return NULL;
  277. if (prio == IDLE_WORKLOAD)
  278. return &cfqg->service_tree_idle;
  279. return &cfqg->service_trees[prio][type];
  280. }
  281. enum cfqq_state_flags {
  282. CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
  283. CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
  284. CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
  285. CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
  286. CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
  287. CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
  288. CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
  289. CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
  290. CFQ_CFQQ_FLAG_sync, /* synchronous queue */
  291. CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
  292. CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
  293. CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
  294. CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
  295. };
  296. #define CFQ_CFQQ_FNS(name) \
  297. static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
  298. { \
  299. (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
  300. } \
  301. static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
  302. { \
  303. (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
  304. } \
  305. static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
  306. { \
  307. return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
  308. }
  309. CFQ_CFQQ_FNS(on_rr);
  310. CFQ_CFQQ_FNS(wait_request);
  311. CFQ_CFQQ_FNS(must_dispatch);
  312. CFQ_CFQQ_FNS(must_alloc_slice);
  313. CFQ_CFQQ_FNS(fifo_expire);
  314. CFQ_CFQQ_FNS(idle_window);
  315. CFQ_CFQQ_FNS(prio_changed);
  316. CFQ_CFQQ_FNS(slice_new);
  317. CFQ_CFQQ_FNS(sync);
  318. CFQ_CFQQ_FNS(coop);
  319. CFQ_CFQQ_FNS(split_coop);
  320. CFQ_CFQQ_FNS(deep);
  321. CFQ_CFQQ_FNS(wait_busy);
  322. #undef CFQ_CFQQ_FNS
  323. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  324. #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
  325. blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
  326. cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
  327. blkg_path(cfqg_to_blkg((cfqq)->cfqg)), ##args)
  328. #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
  329. blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
  330. blkg_path(cfqg_to_blkg((cfqg))), ##args) \
  331. #else
  332. #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
  333. blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
  334. #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0)
  335. #endif
  336. #define cfq_log(cfqd, fmt, args...) \
  337. blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
  338. /* Traverses through cfq group service trees */
  339. #define for_each_cfqg_st(cfqg, i, j, st) \
  340. for (i = 0; i <= IDLE_WORKLOAD; i++) \
  341. for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
  342. : &cfqg->service_tree_idle; \
  343. (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
  344. (i == IDLE_WORKLOAD && j == 0); \
  345. j++, st = i < IDLE_WORKLOAD ? \
  346. &cfqg->service_trees[i][j]: NULL) \
  347. static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
  348. struct cfq_ttime *ttime, bool group_idle)
  349. {
  350. unsigned long slice;
  351. if (!sample_valid(ttime->ttime_samples))
  352. return false;
  353. if (group_idle)
  354. slice = cfqd->cfq_group_idle;
  355. else
  356. slice = cfqd->cfq_slice_idle;
  357. return ttime->ttime_mean > slice;
  358. }
  359. static inline bool iops_mode(struct cfq_data *cfqd)
  360. {
  361. /*
  362. * If we are not idling on queues and it is a NCQ drive, parallel
  363. * execution of requests is on and measuring time is not possible
  364. * in most of the cases until and unless we drive shallower queue
  365. * depths and that becomes a performance bottleneck. In such cases
  366. * switch to start providing fairness in terms of number of IOs.
  367. */
  368. if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
  369. return true;
  370. else
  371. return false;
  372. }
  373. static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
  374. {
  375. if (cfq_class_idle(cfqq))
  376. return IDLE_WORKLOAD;
  377. if (cfq_class_rt(cfqq))
  378. return RT_WORKLOAD;
  379. return BE_WORKLOAD;
  380. }
  381. static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
  382. {
  383. if (!cfq_cfqq_sync(cfqq))
  384. return ASYNC_WORKLOAD;
  385. if (!cfq_cfqq_idle_window(cfqq))
  386. return SYNC_NOIDLE_WORKLOAD;
  387. return SYNC_WORKLOAD;
  388. }
  389. static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
  390. struct cfq_data *cfqd,
  391. struct cfq_group *cfqg)
  392. {
  393. if (wl == IDLE_WORKLOAD)
  394. return cfqg->service_tree_idle.count;
  395. return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
  396. + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
  397. + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
  398. }
  399. static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
  400. struct cfq_group *cfqg)
  401. {
  402. return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
  403. + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
  404. }
  405. static void cfq_dispatch_insert(struct request_queue *, struct request *);
  406. static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
  407. struct io_context *, gfp_t);
  408. static inline struct cfq_io_cq *icq_to_cic(struct io_cq *icq)
  409. {
  410. /* cic->icq is the first member, %NULL will convert to %NULL */
  411. return container_of(icq, struct cfq_io_cq, icq);
  412. }
  413. static inline struct cfq_io_cq *cfq_cic_lookup(struct cfq_data *cfqd,
  414. struct io_context *ioc)
  415. {
  416. if (ioc)
  417. return icq_to_cic(ioc_lookup_icq(ioc, cfqd->queue));
  418. return NULL;
  419. }
  420. static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_cq *cic, bool is_sync)
  421. {
  422. return cic->cfqq[is_sync];
  423. }
  424. static inline void cic_set_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq,
  425. bool is_sync)
  426. {
  427. cic->cfqq[is_sync] = cfqq;
  428. }
  429. static inline struct cfq_data *cic_to_cfqd(struct cfq_io_cq *cic)
  430. {
  431. return cic->icq.q->elevator->elevator_data;
  432. }
  433. /*
  434. * We regard a request as SYNC, if it's either a read or has the SYNC bit
  435. * set (in which case it could also be direct WRITE).
  436. */
  437. static inline bool cfq_bio_sync(struct bio *bio)
  438. {
  439. return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
  440. }
  441. /*
  442. * scheduler run of queue, if there are requests pending and no one in the
  443. * driver that will restart queueing
  444. */
  445. static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
  446. {
  447. if (cfqd->busy_queues) {
  448. cfq_log(cfqd, "schedule dispatch");
  449. kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
  450. }
  451. }
  452. /*
  453. * Scale schedule slice based on io priority. Use the sync time slice only
  454. * if a queue is marked sync and has sync io queued. A sync queue with async
  455. * io only, should not get full sync slice length.
  456. */
  457. static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
  458. unsigned short prio)
  459. {
  460. const int base_slice = cfqd->cfq_slice[sync];
  461. WARN_ON(prio >= IOPRIO_BE_NR);
  462. return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
  463. }
  464. static inline int
  465. cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  466. {
  467. return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
  468. }
  469. static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
  470. {
  471. u64 d = delta << CFQ_SERVICE_SHIFT;
  472. d = d * BLKIO_WEIGHT_DEFAULT;
  473. do_div(d, cfqg->weight);
  474. return d;
  475. }
  476. static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
  477. {
  478. s64 delta = (s64)(vdisktime - min_vdisktime);
  479. if (delta > 0)
  480. min_vdisktime = vdisktime;
  481. return min_vdisktime;
  482. }
  483. static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
  484. {
  485. s64 delta = (s64)(vdisktime - min_vdisktime);
  486. if (delta < 0)
  487. min_vdisktime = vdisktime;
  488. return min_vdisktime;
  489. }
  490. static void update_min_vdisktime(struct cfq_rb_root *st)
  491. {
  492. struct cfq_group *cfqg;
  493. if (st->left) {
  494. cfqg = rb_entry_cfqg(st->left);
  495. st->min_vdisktime = max_vdisktime(st->min_vdisktime,
  496. cfqg->vdisktime);
  497. }
  498. }
  499. /*
  500. * get averaged number of queues of RT/BE priority.
  501. * average is updated, with a formula that gives more weight to higher numbers,
  502. * to quickly follows sudden increases and decrease slowly
  503. */
  504. static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
  505. struct cfq_group *cfqg, bool rt)
  506. {
  507. unsigned min_q, max_q;
  508. unsigned mult = cfq_hist_divisor - 1;
  509. unsigned round = cfq_hist_divisor / 2;
  510. unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
  511. min_q = min(cfqg->busy_queues_avg[rt], busy);
  512. max_q = max(cfqg->busy_queues_avg[rt], busy);
  513. cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
  514. cfq_hist_divisor;
  515. return cfqg->busy_queues_avg[rt];
  516. }
  517. static inline unsigned
  518. cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
  519. {
  520. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  521. return cfq_target_latency * cfqg->weight / st->total_weight;
  522. }
  523. static inline unsigned
  524. cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  525. {
  526. unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
  527. if (cfqd->cfq_latency) {
  528. /*
  529. * interested queues (we consider only the ones with the same
  530. * priority class in the cfq group)
  531. */
  532. unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
  533. cfq_class_rt(cfqq));
  534. unsigned sync_slice = cfqd->cfq_slice[1];
  535. unsigned expect_latency = sync_slice * iq;
  536. unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
  537. if (expect_latency > group_slice) {
  538. unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
  539. /* scale low_slice according to IO priority
  540. * and sync vs async */
  541. unsigned low_slice =
  542. min(slice, base_low_slice * slice / sync_slice);
  543. /* the adapted slice value is scaled to fit all iqs
  544. * into the target latency */
  545. slice = max(slice * group_slice / expect_latency,
  546. low_slice);
  547. }
  548. }
  549. return slice;
  550. }
  551. static inline void
  552. cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  553. {
  554. unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
  555. cfqq->slice_start = jiffies;
  556. cfqq->slice_end = jiffies + slice;
  557. cfqq->allocated_slice = slice;
  558. cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
  559. }
  560. /*
  561. * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
  562. * isn't valid until the first request from the dispatch is activated
  563. * and the slice time set.
  564. */
  565. static inline bool cfq_slice_used(struct cfq_queue *cfqq)
  566. {
  567. if (cfq_cfqq_slice_new(cfqq))
  568. return false;
  569. if (time_before(jiffies, cfqq->slice_end))
  570. return false;
  571. return true;
  572. }
  573. /*
  574. * Lifted from AS - choose which of rq1 and rq2 that is best served now.
  575. * We choose the request that is closest to the head right now. Distance
  576. * behind the head is penalized and only allowed to a certain extent.
  577. */
  578. static struct request *
  579. cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
  580. {
  581. sector_t s1, s2, d1 = 0, d2 = 0;
  582. unsigned long back_max;
  583. #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
  584. #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
  585. unsigned wrap = 0; /* bit mask: requests behind the disk head? */
  586. if (rq1 == NULL || rq1 == rq2)
  587. return rq2;
  588. if (rq2 == NULL)
  589. return rq1;
  590. if (rq_is_sync(rq1) != rq_is_sync(rq2))
  591. return rq_is_sync(rq1) ? rq1 : rq2;
  592. if ((rq1->cmd_flags ^ rq2->cmd_flags) & REQ_PRIO)
  593. return rq1->cmd_flags & REQ_PRIO ? rq1 : rq2;
  594. s1 = blk_rq_pos(rq1);
  595. s2 = blk_rq_pos(rq2);
  596. /*
  597. * by definition, 1KiB is 2 sectors
  598. */
  599. back_max = cfqd->cfq_back_max * 2;
  600. /*
  601. * Strict one way elevator _except_ in the case where we allow
  602. * short backward seeks which are biased as twice the cost of a
  603. * similar forward seek.
  604. */
  605. if (s1 >= last)
  606. d1 = s1 - last;
  607. else if (s1 + back_max >= last)
  608. d1 = (last - s1) * cfqd->cfq_back_penalty;
  609. else
  610. wrap |= CFQ_RQ1_WRAP;
  611. if (s2 >= last)
  612. d2 = s2 - last;
  613. else if (s2 + back_max >= last)
  614. d2 = (last - s2) * cfqd->cfq_back_penalty;
  615. else
  616. wrap |= CFQ_RQ2_WRAP;
  617. /* Found required data */
  618. /*
  619. * By doing switch() on the bit mask "wrap" we avoid having to
  620. * check two variables for all permutations: --> faster!
  621. */
  622. switch (wrap) {
  623. case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
  624. if (d1 < d2)
  625. return rq1;
  626. else if (d2 < d1)
  627. return rq2;
  628. else {
  629. if (s1 >= s2)
  630. return rq1;
  631. else
  632. return rq2;
  633. }
  634. case CFQ_RQ2_WRAP:
  635. return rq1;
  636. case CFQ_RQ1_WRAP:
  637. return rq2;
  638. case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
  639. default:
  640. /*
  641. * Since both rqs are wrapped,
  642. * start with the one that's further behind head
  643. * (--> only *one* back seek required),
  644. * since back seek takes more time than forward.
  645. */
  646. if (s1 <= s2)
  647. return rq1;
  648. else
  649. return rq2;
  650. }
  651. }
  652. /*
  653. * The below is leftmost cache rbtree addon
  654. */
  655. static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
  656. {
  657. /* Service tree is empty */
  658. if (!root->count)
  659. return NULL;
  660. if (!root->left)
  661. root->left = rb_first(&root->rb);
  662. if (root->left)
  663. return rb_entry(root->left, struct cfq_queue, rb_node);
  664. return NULL;
  665. }
  666. static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
  667. {
  668. if (!root->left)
  669. root->left = rb_first(&root->rb);
  670. if (root->left)
  671. return rb_entry_cfqg(root->left);
  672. return NULL;
  673. }
  674. static void rb_erase_init(struct rb_node *n, struct rb_root *root)
  675. {
  676. rb_erase(n, root);
  677. RB_CLEAR_NODE(n);
  678. }
  679. static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
  680. {
  681. if (root->left == n)
  682. root->left = NULL;
  683. rb_erase_init(n, &root->rb);
  684. --root->count;
  685. }
  686. /*
  687. * would be nice to take fifo expire time into account as well
  688. */
  689. static struct request *
  690. cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  691. struct request *last)
  692. {
  693. struct rb_node *rbnext = rb_next(&last->rb_node);
  694. struct rb_node *rbprev = rb_prev(&last->rb_node);
  695. struct request *next = NULL, *prev = NULL;
  696. BUG_ON(RB_EMPTY_NODE(&last->rb_node));
  697. if (rbprev)
  698. prev = rb_entry_rq(rbprev);
  699. if (rbnext)
  700. next = rb_entry_rq(rbnext);
  701. else {
  702. rbnext = rb_first(&cfqq->sort_list);
  703. if (rbnext && rbnext != &last->rb_node)
  704. next = rb_entry_rq(rbnext);
  705. }
  706. return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
  707. }
  708. static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
  709. struct cfq_queue *cfqq)
  710. {
  711. /*
  712. * just an approximation, should be ok.
  713. */
  714. return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
  715. cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
  716. }
  717. static inline s64
  718. cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
  719. {
  720. return cfqg->vdisktime - st->min_vdisktime;
  721. }
  722. static void
  723. __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
  724. {
  725. struct rb_node **node = &st->rb.rb_node;
  726. struct rb_node *parent = NULL;
  727. struct cfq_group *__cfqg;
  728. s64 key = cfqg_key(st, cfqg);
  729. int left = 1;
  730. while (*node != NULL) {
  731. parent = *node;
  732. __cfqg = rb_entry_cfqg(parent);
  733. if (key < cfqg_key(st, __cfqg))
  734. node = &parent->rb_left;
  735. else {
  736. node = &parent->rb_right;
  737. left = 0;
  738. }
  739. }
  740. if (left)
  741. st->left = &cfqg->rb_node;
  742. rb_link_node(&cfqg->rb_node, parent, node);
  743. rb_insert_color(&cfqg->rb_node, &st->rb);
  744. }
  745. static void
  746. cfq_update_group_weight(struct cfq_group *cfqg)
  747. {
  748. BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
  749. if (cfqg->needs_update) {
  750. cfqg->weight = cfqg->new_weight;
  751. cfqg->needs_update = false;
  752. }
  753. }
  754. static void
  755. cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
  756. {
  757. BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
  758. cfq_update_group_weight(cfqg);
  759. __cfq_group_service_tree_add(st, cfqg);
  760. st->total_weight += cfqg->weight;
  761. }
  762. static void
  763. cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
  764. {
  765. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  766. struct cfq_group *__cfqg;
  767. struct rb_node *n;
  768. cfqg->nr_cfqq++;
  769. if (!RB_EMPTY_NODE(&cfqg->rb_node))
  770. return;
  771. /*
  772. * Currently put the group at the end. Later implement something
  773. * so that groups get lesser vtime based on their weights, so that
  774. * if group does not loose all if it was not continuously backlogged.
  775. */
  776. n = rb_last(&st->rb);
  777. if (n) {
  778. __cfqg = rb_entry_cfqg(n);
  779. cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
  780. } else
  781. cfqg->vdisktime = st->min_vdisktime;
  782. cfq_group_service_tree_add(st, cfqg);
  783. }
  784. static void
  785. cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
  786. {
  787. st->total_weight -= cfqg->weight;
  788. if (!RB_EMPTY_NODE(&cfqg->rb_node))
  789. cfq_rb_erase(&cfqg->rb_node, st);
  790. }
  791. static void
  792. cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
  793. {
  794. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  795. BUG_ON(cfqg->nr_cfqq < 1);
  796. cfqg->nr_cfqq--;
  797. /* If there are other cfq queues under this group, don't delete it */
  798. if (cfqg->nr_cfqq)
  799. return;
  800. cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
  801. cfq_group_service_tree_del(st, cfqg);
  802. cfqg->saved_workload_slice = 0;
  803. cfq_blkiocg_update_dequeue_stats(cfqg_to_blkg(cfqg),
  804. &blkio_policy_cfq, 1);
  805. }
  806. static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
  807. unsigned int *unaccounted_time)
  808. {
  809. unsigned int slice_used;
  810. /*
  811. * Queue got expired before even a single request completed or
  812. * got expired immediately after first request completion.
  813. */
  814. if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
  815. /*
  816. * Also charge the seek time incurred to the group, otherwise
  817. * if there are mutiple queues in the group, each can dispatch
  818. * a single request on seeky media and cause lots of seek time
  819. * and group will never know it.
  820. */
  821. slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
  822. 1);
  823. } else {
  824. slice_used = jiffies - cfqq->slice_start;
  825. if (slice_used > cfqq->allocated_slice) {
  826. *unaccounted_time = slice_used - cfqq->allocated_slice;
  827. slice_used = cfqq->allocated_slice;
  828. }
  829. if (time_after(cfqq->slice_start, cfqq->dispatch_start))
  830. *unaccounted_time += cfqq->slice_start -
  831. cfqq->dispatch_start;
  832. }
  833. return slice_used;
  834. }
  835. static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
  836. struct cfq_queue *cfqq)
  837. {
  838. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  839. unsigned int used_sl, charge, unaccounted_sl = 0;
  840. int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
  841. - cfqg->service_tree_idle.count;
  842. BUG_ON(nr_sync < 0);
  843. used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
  844. if (iops_mode(cfqd))
  845. charge = cfqq->slice_dispatch;
  846. else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
  847. charge = cfqq->allocated_slice;
  848. /* Can't update vdisktime while group is on service tree */
  849. cfq_group_service_tree_del(st, cfqg);
  850. cfqg->vdisktime += cfq_scale_slice(charge, cfqg);
  851. /* If a new weight was requested, update now, off tree */
  852. cfq_group_service_tree_add(st, cfqg);
  853. /* This group is being expired. Save the context */
  854. if (time_after(cfqd->workload_expires, jiffies)) {
  855. cfqg->saved_workload_slice = cfqd->workload_expires
  856. - jiffies;
  857. cfqg->saved_workload = cfqd->serving_type;
  858. cfqg->saved_serving_prio = cfqd->serving_prio;
  859. } else
  860. cfqg->saved_workload_slice = 0;
  861. cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
  862. st->min_vdisktime);
  863. cfq_log_cfqq(cfqq->cfqd, cfqq,
  864. "sl_used=%u disp=%u charge=%u iops=%u sect=%lu",
  865. used_sl, cfqq->slice_dispatch, charge,
  866. iops_mode(cfqd), cfqq->nr_sectors);
  867. cfq_blkiocg_update_timeslice_used(cfqg_to_blkg(cfqg), &blkio_policy_cfq,
  868. used_sl, unaccounted_sl);
  869. cfq_blkiocg_set_start_empty_time(cfqg_to_blkg(cfqg), &blkio_policy_cfq);
  870. }
  871. /**
  872. * cfq_init_cfqg_base - initialize base part of a cfq_group
  873. * @cfqg: cfq_group to initialize
  874. *
  875. * Initialize the base part which is used whether %CONFIG_CFQ_GROUP_IOSCHED
  876. * is enabled or not.
  877. */
  878. static void cfq_init_cfqg_base(struct cfq_group *cfqg)
  879. {
  880. struct cfq_rb_root *st;
  881. int i, j;
  882. for_each_cfqg_st(cfqg, i, j, st)
  883. *st = CFQ_RB_ROOT;
  884. RB_CLEAR_NODE(&cfqg->rb_node);
  885. cfqg->ttime.last_end_request = jiffies;
  886. }
  887. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  888. static void cfq_update_blkio_group_weight(struct request_queue *q,
  889. struct blkio_group *blkg,
  890. unsigned int weight)
  891. {
  892. struct cfq_group *cfqg = blkg_to_cfqg(blkg);
  893. cfqg->new_weight = weight;
  894. cfqg->needs_update = true;
  895. }
  896. static void cfq_init_blkio_group(struct blkio_group *blkg)
  897. {
  898. struct cfq_group *cfqg = blkg_to_cfqg(blkg);
  899. cfq_init_cfqg_base(cfqg);
  900. cfqg->weight = blkg->blkcg->weight;
  901. }
  902. /*
  903. * Search for the cfq group current task belongs to. request_queue lock must
  904. * be held.
  905. */
  906. static struct cfq_group *cfq_lookup_create_cfqg(struct cfq_data *cfqd,
  907. struct blkio_cgroup *blkcg)
  908. {
  909. struct request_queue *q = cfqd->queue;
  910. struct cfq_group *cfqg = NULL;
  911. /* avoid lookup for the common case where there's no blkio cgroup */
  912. if (blkcg == &blkio_root_cgroup) {
  913. cfqg = cfqd->root_group;
  914. } else {
  915. struct blkio_group *blkg;
  916. blkg = blkg_lookup_create(blkcg, q, BLKIO_POLICY_PROP, false);
  917. if (!IS_ERR(blkg))
  918. cfqg = blkg_to_cfqg(blkg);
  919. }
  920. return cfqg;
  921. }
  922. static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
  923. {
  924. /* Currently, all async queues are mapped to root group */
  925. if (!cfq_cfqq_sync(cfqq))
  926. cfqg = cfqq->cfqd->root_group;
  927. cfqq->cfqg = cfqg;
  928. /* cfqq reference on cfqg */
  929. blkg_get(cfqg_to_blkg(cfqg));
  930. }
  931. #else /* GROUP_IOSCHED */
  932. static struct cfq_group *cfq_lookup_create_cfqg(struct cfq_data *cfqd,
  933. struct blkio_cgroup *blkcg)
  934. {
  935. return cfqd->root_group;
  936. }
  937. static inline void
  938. cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
  939. cfqq->cfqg = cfqg;
  940. }
  941. #endif /* GROUP_IOSCHED */
  942. /*
  943. * The cfqd->service_trees holds all pending cfq_queue's that have
  944. * requests waiting to be processed. It is sorted in the order that
  945. * we will service the queues.
  946. */
  947. static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  948. bool add_front)
  949. {
  950. struct rb_node **p, *parent;
  951. struct cfq_queue *__cfqq;
  952. unsigned long rb_key;
  953. struct cfq_rb_root *service_tree;
  954. int left;
  955. int new_cfqq = 1;
  956. service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
  957. cfqq_type(cfqq));
  958. if (cfq_class_idle(cfqq)) {
  959. rb_key = CFQ_IDLE_DELAY;
  960. parent = rb_last(&service_tree->rb);
  961. if (parent && parent != &cfqq->rb_node) {
  962. __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
  963. rb_key += __cfqq->rb_key;
  964. } else
  965. rb_key += jiffies;
  966. } else if (!add_front) {
  967. /*
  968. * Get our rb key offset. Subtract any residual slice
  969. * value carried from last service. A negative resid
  970. * count indicates slice overrun, and this should position
  971. * the next service time further away in the tree.
  972. */
  973. rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
  974. rb_key -= cfqq->slice_resid;
  975. cfqq->slice_resid = 0;
  976. } else {
  977. rb_key = -HZ;
  978. __cfqq = cfq_rb_first(service_tree);
  979. rb_key += __cfqq ? __cfqq->rb_key : jiffies;
  980. }
  981. if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
  982. new_cfqq = 0;
  983. /*
  984. * same position, nothing more to do
  985. */
  986. if (rb_key == cfqq->rb_key &&
  987. cfqq->service_tree == service_tree)
  988. return;
  989. cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
  990. cfqq->service_tree = NULL;
  991. }
  992. left = 1;
  993. parent = NULL;
  994. cfqq->service_tree = service_tree;
  995. p = &service_tree->rb.rb_node;
  996. while (*p) {
  997. struct rb_node **n;
  998. parent = *p;
  999. __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
  1000. /*
  1001. * sort by key, that represents service time.
  1002. */
  1003. if (time_before(rb_key, __cfqq->rb_key))
  1004. n = &(*p)->rb_left;
  1005. else {
  1006. n = &(*p)->rb_right;
  1007. left = 0;
  1008. }
  1009. p = n;
  1010. }
  1011. if (left)
  1012. service_tree->left = &cfqq->rb_node;
  1013. cfqq->rb_key = rb_key;
  1014. rb_link_node(&cfqq->rb_node, parent, p);
  1015. rb_insert_color(&cfqq->rb_node, &service_tree->rb);
  1016. service_tree->count++;
  1017. if (add_front || !new_cfqq)
  1018. return;
  1019. cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
  1020. }
  1021. static struct cfq_queue *
  1022. cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
  1023. sector_t sector, struct rb_node **ret_parent,
  1024. struct rb_node ***rb_link)
  1025. {
  1026. struct rb_node **p, *parent;
  1027. struct cfq_queue *cfqq = NULL;
  1028. parent = NULL;
  1029. p = &root->rb_node;
  1030. while (*p) {
  1031. struct rb_node **n;
  1032. parent = *p;
  1033. cfqq = rb_entry(parent, struct cfq_queue, p_node);
  1034. /*
  1035. * Sort strictly based on sector. Smallest to the left,
  1036. * largest to the right.
  1037. */
  1038. if (sector > blk_rq_pos(cfqq->next_rq))
  1039. n = &(*p)->rb_right;
  1040. else if (sector < blk_rq_pos(cfqq->next_rq))
  1041. n = &(*p)->rb_left;
  1042. else
  1043. break;
  1044. p = n;
  1045. cfqq = NULL;
  1046. }
  1047. *ret_parent = parent;
  1048. if (rb_link)
  1049. *rb_link = p;
  1050. return cfqq;
  1051. }
  1052. static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1053. {
  1054. struct rb_node **p, *parent;
  1055. struct cfq_queue *__cfqq;
  1056. if (cfqq->p_root) {
  1057. rb_erase(&cfqq->p_node, cfqq->p_root);
  1058. cfqq->p_root = NULL;
  1059. }
  1060. if (cfq_class_idle(cfqq))
  1061. return;
  1062. if (!cfqq->next_rq)
  1063. return;
  1064. cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
  1065. __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
  1066. blk_rq_pos(cfqq->next_rq), &parent, &p);
  1067. if (!__cfqq) {
  1068. rb_link_node(&cfqq->p_node, parent, p);
  1069. rb_insert_color(&cfqq->p_node, cfqq->p_root);
  1070. } else
  1071. cfqq->p_root = NULL;
  1072. }
  1073. /*
  1074. * Update cfqq's position in the service tree.
  1075. */
  1076. static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1077. {
  1078. /*
  1079. * Resorting requires the cfqq to be on the RR list already.
  1080. */
  1081. if (cfq_cfqq_on_rr(cfqq)) {
  1082. cfq_service_tree_add(cfqd, cfqq, 0);
  1083. cfq_prio_tree_add(cfqd, cfqq);
  1084. }
  1085. }
  1086. /*
  1087. * add to busy list of queues for service, trying to be fair in ordering
  1088. * the pending list according to last request service
  1089. */
  1090. static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1091. {
  1092. cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
  1093. BUG_ON(cfq_cfqq_on_rr(cfqq));
  1094. cfq_mark_cfqq_on_rr(cfqq);
  1095. cfqd->busy_queues++;
  1096. if (cfq_cfqq_sync(cfqq))
  1097. cfqd->busy_sync_queues++;
  1098. cfq_resort_rr_list(cfqd, cfqq);
  1099. }
  1100. /*
  1101. * Called when the cfqq no longer has requests pending, remove it from
  1102. * the service tree.
  1103. */
  1104. static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1105. {
  1106. cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
  1107. BUG_ON(!cfq_cfqq_on_rr(cfqq));
  1108. cfq_clear_cfqq_on_rr(cfqq);
  1109. if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
  1110. cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
  1111. cfqq->service_tree = NULL;
  1112. }
  1113. if (cfqq->p_root) {
  1114. rb_erase(&cfqq->p_node, cfqq->p_root);
  1115. cfqq->p_root = NULL;
  1116. }
  1117. cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
  1118. BUG_ON(!cfqd->busy_queues);
  1119. cfqd->busy_queues--;
  1120. if (cfq_cfqq_sync(cfqq))
  1121. cfqd->busy_sync_queues--;
  1122. }
  1123. /*
  1124. * rb tree support functions
  1125. */
  1126. static void cfq_del_rq_rb(struct request *rq)
  1127. {
  1128. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1129. const int sync = rq_is_sync(rq);
  1130. BUG_ON(!cfqq->queued[sync]);
  1131. cfqq->queued[sync]--;
  1132. elv_rb_del(&cfqq->sort_list, rq);
  1133. if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
  1134. /*
  1135. * Queue will be deleted from service tree when we actually
  1136. * expire it later. Right now just remove it from prio tree
  1137. * as it is empty.
  1138. */
  1139. if (cfqq->p_root) {
  1140. rb_erase(&cfqq->p_node, cfqq->p_root);
  1141. cfqq->p_root = NULL;
  1142. }
  1143. }
  1144. }
  1145. static void cfq_add_rq_rb(struct request *rq)
  1146. {
  1147. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1148. struct cfq_data *cfqd = cfqq->cfqd;
  1149. struct request *prev;
  1150. cfqq->queued[rq_is_sync(rq)]++;
  1151. elv_rb_add(&cfqq->sort_list, rq);
  1152. if (!cfq_cfqq_on_rr(cfqq))
  1153. cfq_add_cfqq_rr(cfqd, cfqq);
  1154. /*
  1155. * check if this request is a better next-serve candidate
  1156. */
  1157. prev = cfqq->next_rq;
  1158. cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
  1159. /*
  1160. * adjust priority tree position, if ->next_rq changes
  1161. */
  1162. if (prev != cfqq->next_rq)
  1163. cfq_prio_tree_add(cfqd, cfqq);
  1164. BUG_ON(!cfqq->next_rq);
  1165. }
  1166. static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
  1167. {
  1168. elv_rb_del(&cfqq->sort_list, rq);
  1169. cfqq->queued[rq_is_sync(rq)]--;
  1170. cfq_blkiocg_update_io_remove_stats(cfqg_to_blkg(RQ_CFQG(rq)),
  1171. &blkio_policy_cfq, rq_data_dir(rq),
  1172. rq_is_sync(rq));
  1173. cfq_add_rq_rb(rq);
  1174. cfq_blkiocg_update_io_add_stats(cfqg_to_blkg(RQ_CFQG(rq)),
  1175. &blkio_policy_cfq,
  1176. cfqg_to_blkg(cfqq->cfqd->serving_group),
  1177. rq_data_dir(rq), rq_is_sync(rq));
  1178. }
  1179. static struct request *
  1180. cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
  1181. {
  1182. struct task_struct *tsk = current;
  1183. struct cfq_io_cq *cic;
  1184. struct cfq_queue *cfqq;
  1185. cic = cfq_cic_lookup(cfqd, tsk->io_context);
  1186. if (!cic)
  1187. return NULL;
  1188. cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
  1189. if (cfqq) {
  1190. sector_t sector = bio->bi_sector + bio_sectors(bio);
  1191. return elv_rb_find(&cfqq->sort_list, sector);
  1192. }
  1193. return NULL;
  1194. }
  1195. static void cfq_activate_request(struct request_queue *q, struct request *rq)
  1196. {
  1197. struct cfq_data *cfqd = q->elevator->elevator_data;
  1198. cfqd->rq_in_driver++;
  1199. cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
  1200. cfqd->rq_in_driver);
  1201. cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
  1202. }
  1203. static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
  1204. {
  1205. struct cfq_data *cfqd = q->elevator->elevator_data;
  1206. WARN_ON(!cfqd->rq_in_driver);
  1207. cfqd->rq_in_driver--;
  1208. cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
  1209. cfqd->rq_in_driver);
  1210. }
  1211. static void cfq_remove_request(struct request *rq)
  1212. {
  1213. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1214. if (cfqq->next_rq == rq)
  1215. cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
  1216. list_del_init(&rq->queuelist);
  1217. cfq_del_rq_rb(rq);
  1218. cfqq->cfqd->rq_queued--;
  1219. cfq_blkiocg_update_io_remove_stats(cfqg_to_blkg(RQ_CFQG(rq)),
  1220. &blkio_policy_cfq, rq_data_dir(rq),
  1221. rq_is_sync(rq));
  1222. if (rq->cmd_flags & REQ_PRIO) {
  1223. WARN_ON(!cfqq->prio_pending);
  1224. cfqq->prio_pending--;
  1225. }
  1226. }
  1227. static int cfq_merge(struct request_queue *q, struct request **req,
  1228. struct bio *bio)
  1229. {
  1230. struct cfq_data *cfqd = q->elevator->elevator_data;
  1231. struct request *__rq;
  1232. __rq = cfq_find_rq_fmerge(cfqd, bio);
  1233. if (__rq && elv_rq_merge_ok(__rq, bio)) {
  1234. *req = __rq;
  1235. return ELEVATOR_FRONT_MERGE;
  1236. }
  1237. return ELEVATOR_NO_MERGE;
  1238. }
  1239. static void cfq_merged_request(struct request_queue *q, struct request *req,
  1240. int type)
  1241. {
  1242. if (type == ELEVATOR_FRONT_MERGE) {
  1243. struct cfq_queue *cfqq = RQ_CFQQ(req);
  1244. cfq_reposition_rq_rb(cfqq, req);
  1245. }
  1246. }
  1247. static void cfq_bio_merged(struct request_queue *q, struct request *req,
  1248. struct bio *bio)
  1249. {
  1250. cfq_blkiocg_update_io_merged_stats(cfqg_to_blkg(RQ_CFQG(req)),
  1251. &blkio_policy_cfq, bio_data_dir(bio),
  1252. cfq_bio_sync(bio));
  1253. }
  1254. static void
  1255. cfq_merged_requests(struct request_queue *q, struct request *rq,
  1256. struct request *next)
  1257. {
  1258. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1259. struct cfq_data *cfqd = q->elevator->elevator_data;
  1260. /*
  1261. * reposition in fifo if next is older than rq
  1262. */
  1263. if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
  1264. time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
  1265. list_move(&rq->queuelist, &next->queuelist);
  1266. rq_set_fifo_time(rq, rq_fifo_time(next));
  1267. }
  1268. if (cfqq->next_rq == next)
  1269. cfqq->next_rq = rq;
  1270. cfq_remove_request(next);
  1271. cfq_blkiocg_update_io_merged_stats(cfqg_to_blkg(RQ_CFQG(rq)),
  1272. &blkio_policy_cfq, rq_data_dir(next),
  1273. rq_is_sync(next));
  1274. cfqq = RQ_CFQQ(next);
  1275. /*
  1276. * all requests of this queue are merged to other queues, delete it
  1277. * from the service tree. If it's the active_queue,
  1278. * cfq_dispatch_requests() will choose to expire it or do idle
  1279. */
  1280. if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list) &&
  1281. cfqq != cfqd->active_queue)
  1282. cfq_del_cfqq_rr(cfqd, cfqq);
  1283. }
  1284. static int cfq_allow_merge(struct request_queue *q, struct request *rq,
  1285. struct bio *bio)
  1286. {
  1287. struct cfq_data *cfqd = q->elevator->elevator_data;
  1288. struct cfq_io_cq *cic;
  1289. struct cfq_queue *cfqq;
  1290. /*
  1291. * Disallow merge of a sync bio into an async request.
  1292. */
  1293. if (cfq_bio_sync(bio) && !rq_is_sync(rq))
  1294. return false;
  1295. /*
  1296. * Lookup the cfqq that this bio will be queued with and allow
  1297. * merge only if rq is queued there.
  1298. */
  1299. cic = cfq_cic_lookup(cfqd, current->io_context);
  1300. if (!cic)
  1301. return false;
  1302. cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
  1303. return cfqq == RQ_CFQQ(rq);
  1304. }
  1305. static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1306. {
  1307. del_timer(&cfqd->idle_slice_timer);
  1308. cfq_blkiocg_update_idle_time_stats(cfqg_to_blkg(cfqq->cfqg),
  1309. &blkio_policy_cfq);
  1310. }
  1311. static void __cfq_set_active_queue(struct cfq_data *cfqd,
  1312. struct cfq_queue *cfqq)
  1313. {
  1314. if (cfqq) {
  1315. cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
  1316. cfqd->serving_prio, cfqd->serving_type);
  1317. cfq_blkiocg_update_avg_queue_size_stats(cfqg_to_blkg(cfqq->cfqg),
  1318. &blkio_policy_cfq);
  1319. cfqq->slice_start = 0;
  1320. cfqq->dispatch_start = jiffies;
  1321. cfqq->allocated_slice = 0;
  1322. cfqq->slice_end = 0;
  1323. cfqq->slice_dispatch = 0;
  1324. cfqq->nr_sectors = 0;
  1325. cfq_clear_cfqq_wait_request(cfqq);
  1326. cfq_clear_cfqq_must_dispatch(cfqq);
  1327. cfq_clear_cfqq_must_alloc_slice(cfqq);
  1328. cfq_clear_cfqq_fifo_expire(cfqq);
  1329. cfq_mark_cfqq_slice_new(cfqq);
  1330. cfq_del_timer(cfqd, cfqq);
  1331. }
  1332. cfqd->active_queue = cfqq;
  1333. }
  1334. /*
  1335. * current cfqq expired its slice (or was too idle), select new one
  1336. */
  1337. static void
  1338. __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1339. bool timed_out)
  1340. {
  1341. cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
  1342. if (cfq_cfqq_wait_request(cfqq))
  1343. cfq_del_timer(cfqd, cfqq);
  1344. cfq_clear_cfqq_wait_request(cfqq);
  1345. cfq_clear_cfqq_wait_busy(cfqq);
  1346. /*
  1347. * If this cfqq is shared between multiple processes, check to
  1348. * make sure that those processes are still issuing I/Os within
  1349. * the mean seek distance. If not, it may be time to break the
  1350. * queues apart again.
  1351. */
  1352. if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
  1353. cfq_mark_cfqq_split_coop(cfqq);
  1354. /*
  1355. * store what was left of this slice, if the queue idled/timed out
  1356. */
  1357. if (timed_out) {
  1358. if (cfq_cfqq_slice_new(cfqq))
  1359. cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
  1360. else
  1361. cfqq->slice_resid = cfqq->slice_end - jiffies;
  1362. cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
  1363. }
  1364. cfq_group_served(cfqd, cfqq->cfqg, cfqq);
  1365. if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
  1366. cfq_del_cfqq_rr(cfqd, cfqq);
  1367. cfq_resort_rr_list(cfqd, cfqq);
  1368. if (cfqq == cfqd->active_queue)
  1369. cfqd->active_queue = NULL;
  1370. if (cfqd->active_cic) {
  1371. put_io_context(cfqd->active_cic->icq.ioc);
  1372. cfqd->active_cic = NULL;
  1373. }
  1374. }
  1375. static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
  1376. {
  1377. struct cfq_queue *cfqq = cfqd->active_queue;
  1378. if (cfqq)
  1379. __cfq_slice_expired(cfqd, cfqq, timed_out);
  1380. }
  1381. /*
  1382. * Get next queue for service. Unless we have a queue preemption,
  1383. * we'll simply select the first cfqq in the service tree.
  1384. */
  1385. static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
  1386. {
  1387. struct cfq_rb_root *service_tree =
  1388. service_tree_for(cfqd->serving_group, cfqd->serving_prio,
  1389. cfqd->serving_type);
  1390. if (!cfqd->rq_queued)
  1391. return NULL;
  1392. /* There is nothing to dispatch */
  1393. if (!service_tree)
  1394. return NULL;
  1395. if (RB_EMPTY_ROOT(&service_tree->rb))
  1396. return NULL;
  1397. return cfq_rb_first(service_tree);
  1398. }
  1399. static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
  1400. {
  1401. struct cfq_group *cfqg;
  1402. struct cfq_queue *cfqq;
  1403. int i, j;
  1404. struct cfq_rb_root *st;
  1405. if (!cfqd->rq_queued)
  1406. return NULL;
  1407. cfqg = cfq_get_next_cfqg(cfqd);
  1408. if (!cfqg)
  1409. return NULL;
  1410. for_each_cfqg_st(cfqg, i, j, st)
  1411. if ((cfqq = cfq_rb_first(st)) != NULL)
  1412. return cfqq;
  1413. return NULL;
  1414. }
  1415. /*
  1416. * Get and set a new active queue for service.
  1417. */
  1418. static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
  1419. struct cfq_queue *cfqq)
  1420. {
  1421. if (!cfqq)
  1422. cfqq = cfq_get_next_queue(cfqd);
  1423. __cfq_set_active_queue(cfqd, cfqq);
  1424. return cfqq;
  1425. }
  1426. static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
  1427. struct request *rq)
  1428. {
  1429. if (blk_rq_pos(rq) >= cfqd->last_position)
  1430. return blk_rq_pos(rq) - cfqd->last_position;
  1431. else
  1432. return cfqd->last_position - blk_rq_pos(rq);
  1433. }
  1434. static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1435. struct request *rq)
  1436. {
  1437. return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
  1438. }
  1439. static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
  1440. struct cfq_queue *cur_cfqq)
  1441. {
  1442. struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
  1443. struct rb_node *parent, *node;
  1444. struct cfq_queue *__cfqq;
  1445. sector_t sector = cfqd->last_position;
  1446. if (RB_EMPTY_ROOT(root))
  1447. return NULL;
  1448. /*
  1449. * First, if we find a request starting at the end of the last
  1450. * request, choose it.
  1451. */
  1452. __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
  1453. if (__cfqq)
  1454. return __cfqq;
  1455. /*
  1456. * If the exact sector wasn't found, the parent of the NULL leaf
  1457. * will contain the closest sector.
  1458. */
  1459. __cfqq = rb_entry(parent, struct cfq_queue, p_node);
  1460. if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
  1461. return __cfqq;
  1462. if (blk_rq_pos(__cfqq->next_rq) < sector)
  1463. node = rb_next(&__cfqq->p_node);
  1464. else
  1465. node = rb_prev(&__cfqq->p_node);
  1466. if (!node)
  1467. return NULL;
  1468. __cfqq = rb_entry(node, struct cfq_queue, p_node);
  1469. if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
  1470. return __cfqq;
  1471. return NULL;
  1472. }
  1473. /*
  1474. * cfqd - obvious
  1475. * cur_cfqq - passed in so that we don't decide that the current queue is
  1476. * closely cooperating with itself.
  1477. *
  1478. * So, basically we're assuming that that cur_cfqq has dispatched at least
  1479. * one request, and that cfqd->last_position reflects a position on the disk
  1480. * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
  1481. * assumption.
  1482. */
  1483. static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
  1484. struct cfq_queue *cur_cfqq)
  1485. {
  1486. struct cfq_queue *cfqq;
  1487. if (cfq_class_idle(cur_cfqq))
  1488. return NULL;
  1489. if (!cfq_cfqq_sync(cur_cfqq))
  1490. return NULL;
  1491. if (CFQQ_SEEKY(cur_cfqq))
  1492. return NULL;
  1493. /*
  1494. * Don't search priority tree if it's the only queue in the group.
  1495. */
  1496. if (cur_cfqq->cfqg->nr_cfqq == 1)
  1497. return NULL;
  1498. /*
  1499. * We should notice if some of the queues are cooperating, eg
  1500. * working closely on the same area of the disk. In that case,
  1501. * we can group them together and don't waste time idling.
  1502. */
  1503. cfqq = cfqq_close(cfqd, cur_cfqq);
  1504. if (!cfqq)
  1505. return NULL;
  1506. /* If new queue belongs to different cfq_group, don't choose it */
  1507. if (cur_cfqq->cfqg != cfqq->cfqg)
  1508. return NULL;
  1509. /*
  1510. * It only makes sense to merge sync queues.
  1511. */
  1512. if (!cfq_cfqq_sync(cfqq))
  1513. return NULL;
  1514. if (CFQQ_SEEKY(cfqq))
  1515. return NULL;
  1516. /*
  1517. * Do not merge queues of different priority classes
  1518. */
  1519. if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
  1520. return NULL;
  1521. return cfqq;
  1522. }
  1523. /*
  1524. * Determine whether we should enforce idle window for this queue.
  1525. */
  1526. static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1527. {
  1528. enum wl_prio_t prio = cfqq_prio(cfqq);
  1529. struct cfq_rb_root *service_tree = cfqq->service_tree;
  1530. BUG_ON(!service_tree);
  1531. BUG_ON(!service_tree->count);
  1532. if (!cfqd->cfq_slice_idle)
  1533. return false;
  1534. /* We never do for idle class queues. */
  1535. if (prio == IDLE_WORKLOAD)
  1536. return false;
  1537. /* We do for queues that were marked with idle window flag. */
  1538. if (cfq_cfqq_idle_window(cfqq) &&
  1539. !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
  1540. return true;
  1541. /*
  1542. * Otherwise, we do only if they are the last ones
  1543. * in their service tree.
  1544. */
  1545. if (service_tree->count == 1 && cfq_cfqq_sync(cfqq) &&
  1546. !cfq_io_thinktime_big(cfqd, &service_tree->ttime, false))
  1547. return true;
  1548. cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
  1549. service_tree->count);
  1550. return false;
  1551. }
  1552. static void cfq_arm_slice_timer(struct cfq_data *cfqd)
  1553. {
  1554. struct cfq_queue *cfqq = cfqd->active_queue;
  1555. struct cfq_io_cq *cic;
  1556. unsigned long sl, group_idle = 0;
  1557. /*
  1558. * SSD device without seek penalty, disable idling. But only do so
  1559. * for devices that support queuing, otherwise we still have a problem
  1560. * with sync vs async workloads.
  1561. */
  1562. if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
  1563. return;
  1564. WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
  1565. WARN_ON(cfq_cfqq_slice_new(cfqq));
  1566. /*
  1567. * idle is disabled, either manually or by past process history
  1568. */
  1569. if (!cfq_should_idle(cfqd, cfqq)) {
  1570. /* no queue idling. Check for group idling */
  1571. if (cfqd->cfq_group_idle)
  1572. group_idle = cfqd->cfq_group_idle;
  1573. else
  1574. return;
  1575. }
  1576. /*
  1577. * still active requests from this queue, don't idle
  1578. */
  1579. if (cfqq->dispatched)
  1580. return;
  1581. /*
  1582. * task has exited, don't wait
  1583. */
  1584. cic = cfqd->active_cic;
  1585. if (!cic || !atomic_read(&cic->icq.ioc->nr_tasks))
  1586. return;
  1587. /*
  1588. * If our average think time is larger than the remaining time
  1589. * slice, then don't idle. This avoids overrunning the allotted
  1590. * time slice.
  1591. */
  1592. if (sample_valid(cic->ttime.ttime_samples) &&
  1593. (cfqq->slice_end - jiffies < cic->ttime.ttime_mean)) {
  1594. cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%lu",
  1595. cic->ttime.ttime_mean);
  1596. return;
  1597. }
  1598. /* There are other queues in the group, don't do group idle */
  1599. if (group_idle && cfqq->cfqg->nr_cfqq > 1)
  1600. return;
  1601. cfq_mark_cfqq_wait_request(cfqq);
  1602. if (group_idle)
  1603. sl = cfqd->cfq_group_idle;
  1604. else
  1605. sl = cfqd->cfq_slice_idle;
  1606. mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
  1607. cfq_blkiocg_update_set_idle_time_stats(cfqg_to_blkg(cfqq->cfqg),
  1608. &blkio_policy_cfq);
  1609. cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
  1610. group_idle ? 1 : 0);
  1611. }
  1612. /*
  1613. * Move request from internal lists to the request queue dispatch list.
  1614. */
  1615. static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
  1616. {
  1617. struct cfq_data *cfqd = q->elevator->elevator_data;
  1618. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1619. cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
  1620. cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
  1621. cfq_remove_request(rq);
  1622. cfqq->dispatched++;
  1623. (RQ_CFQG(rq))->dispatched++;
  1624. elv_dispatch_sort(q, rq);
  1625. cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
  1626. cfqq->nr_sectors += blk_rq_sectors(rq);
  1627. cfq_blkiocg_update_dispatch_stats(cfqg_to_blkg(cfqq->cfqg),
  1628. &blkio_policy_cfq, blk_rq_bytes(rq),
  1629. rq_data_dir(rq), rq_is_sync(rq));
  1630. }
  1631. /*
  1632. * return expired entry, or NULL to just start from scratch in rbtree
  1633. */
  1634. static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
  1635. {
  1636. struct request *rq = NULL;
  1637. if (cfq_cfqq_fifo_expire(cfqq))
  1638. return NULL;
  1639. cfq_mark_cfqq_fifo_expire(cfqq);
  1640. if (list_empty(&cfqq->fifo))
  1641. return NULL;
  1642. rq = rq_entry_fifo(cfqq->fifo.next);
  1643. if (time_before(jiffies, rq_fifo_time(rq)))
  1644. rq = NULL;
  1645. cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
  1646. return rq;
  1647. }
  1648. static inline int
  1649. cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1650. {
  1651. const int base_rq = cfqd->cfq_slice_async_rq;
  1652. WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
  1653. return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
  1654. }
  1655. /*
  1656. * Must be called with the queue_lock held.
  1657. */
  1658. static int cfqq_process_refs(struct cfq_queue *cfqq)
  1659. {
  1660. int process_refs, io_refs;
  1661. io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
  1662. process_refs = cfqq->ref - io_refs;
  1663. BUG_ON(process_refs < 0);
  1664. return process_refs;
  1665. }
  1666. static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
  1667. {
  1668. int process_refs, new_process_refs;
  1669. struct cfq_queue *__cfqq;
  1670. /*
  1671. * If there are no process references on the new_cfqq, then it is
  1672. * unsafe to follow the ->new_cfqq chain as other cfqq's in the
  1673. * chain may have dropped their last reference (not just their
  1674. * last process reference).
  1675. */
  1676. if (!cfqq_process_refs(new_cfqq))
  1677. return;
  1678. /* Avoid a circular list and skip interim queue merges */
  1679. while ((__cfqq = new_cfqq->new_cfqq)) {
  1680. if (__cfqq == cfqq)
  1681. return;
  1682. new_cfqq = __cfqq;
  1683. }
  1684. process_refs = cfqq_process_refs(cfqq);
  1685. new_process_refs = cfqq_process_refs(new_cfqq);
  1686. /*
  1687. * If the process for the cfqq has gone away, there is no
  1688. * sense in merging the queues.
  1689. */
  1690. if (process_refs == 0 || new_process_refs == 0)
  1691. return;
  1692. /*
  1693. * Merge in the direction of the lesser amount of work.
  1694. */
  1695. if (new_process_refs >= process_refs) {
  1696. cfqq->new_cfqq = new_cfqq;
  1697. new_cfqq->ref += process_refs;
  1698. } else {
  1699. new_cfqq->new_cfqq = cfqq;
  1700. cfqq->ref += new_process_refs;
  1701. }
  1702. }
  1703. static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
  1704. struct cfq_group *cfqg, enum wl_prio_t prio)
  1705. {
  1706. struct cfq_queue *queue;
  1707. int i;
  1708. bool key_valid = false;
  1709. unsigned long lowest_key = 0;
  1710. enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
  1711. for (i = 0; i <= SYNC_WORKLOAD; ++i) {
  1712. /* select the one with lowest rb_key */
  1713. queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
  1714. if (queue &&
  1715. (!key_valid || time_before(queue->rb_key, lowest_key))) {
  1716. lowest_key = queue->rb_key;
  1717. cur_best = i;
  1718. key_valid = true;
  1719. }
  1720. }
  1721. return cur_best;
  1722. }
  1723. static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
  1724. {
  1725. unsigned slice;
  1726. unsigned count;
  1727. struct cfq_rb_root *st;
  1728. unsigned group_slice;
  1729. enum wl_prio_t original_prio = cfqd->serving_prio;
  1730. /* Choose next priority. RT > BE > IDLE */
  1731. if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
  1732. cfqd->serving_prio = RT_WORKLOAD;
  1733. else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
  1734. cfqd->serving_prio = BE_WORKLOAD;
  1735. else {
  1736. cfqd->serving_prio = IDLE_WORKLOAD;
  1737. cfqd->workload_expires = jiffies + 1;
  1738. return;
  1739. }
  1740. if (original_prio != cfqd->serving_prio)
  1741. goto new_workload;
  1742. /*
  1743. * For RT and BE, we have to choose also the type
  1744. * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
  1745. * expiration time
  1746. */
  1747. st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
  1748. count = st->count;
  1749. /*
  1750. * check workload expiration, and that we still have other queues ready
  1751. */
  1752. if (count && !time_after(jiffies, cfqd->workload_expires))
  1753. return;
  1754. new_workload:
  1755. /* otherwise select new workload type */
  1756. cfqd->serving_type =
  1757. cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
  1758. st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
  1759. count = st->count;
  1760. /*
  1761. * the workload slice is computed as a fraction of target latency
  1762. * proportional to the number of queues in that workload, over
  1763. * all the queues in the same priority class
  1764. */
  1765. group_slice = cfq_group_slice(cfqd, cfqg);
  1766. slice = group_slice * count /
  1767. max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
  1768. cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
  1769. if (cfqd->serving_type == ASYNC_WORKLOAD) {
  1770. unsigned int tmp;
  1771. /*
  1772. * Async queues are currently system wide. Just taking
  1773. * proportion of queues with-in same group will lead to higher
  1774. * async ratio system wide as generally root group is going
  1775. * to have higher weight. A more accurate thing would be to
  1776. * calculate system wide asnc/sync ratio.
  1777. */
  1778. tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
  1779. tmp = tmp/cfqd->busy_queues;
  1780. slice = min_t(unsigned, slice, tmp);
  1781. /* async workload slice is scaled down according to
  1782. * the sync/async slice ratio. */
  1783. slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
  1784. } else
  1785. /* sync workload slice is at least 2 * cfq_slice_idle */
  1786. slice = max(slice, 2 * cfqd->cfq_slice_idle);
  1787. slice = max_t(unsigned, slice, CFQ_MIN_TT);
  1788. cfq_log(cfqd, "workload slice:%d", slice);
  1789. cfqd->workload_expires = jiffies + slice;
  1790. }
  1791. static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
  1792. {
  1793. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  1794. struct cfq_group *cfqg;
  1795. if (RB_EMPTY_ROOT(&st->rb))
  1796. return NULL;
  1797. cfqg = cfq_rb_first_group(st);
  1798. update_min_vdisktime(st);
  1799. return cfqg;
  1800. }
  1801. static void cfq_choose_cfqg(struct cfq_data *cfqd)
  1802. {
  1803. struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
  1804. cfqd->serving_group = cfqg;
  1805. /* Restore the workload type data */
  1806. if (cfqg->saved_workload_slice) {
  1807. cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
  1808. cfqd->serving_type = cfqg->saved_workload;
  1809. cfqd->serving_prio = cfqg->saved_serving_prio;
  1810. } else
  1811. cfqd->workload_expires = jiffies - 1;
  1812. choose_service_tree(cfqd, cfqg);
  1813. }
  1814. /*
  1815. * Select a queue for service. If we have a current active queue,
  1816. * check whether to continue servicing it, or retrieve and set a new one.
  1817. */
  1818. static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
  1819. {
  1820. struct cfq_queue *cfqq, *new_cfqq = NULL;
  1821. cfqq = cfqd->active_queue;
  1822. if (!cfqq)
  1823. goto new_queue;
  1824. if (!cfqd->rq_queued)
  1825. return NULL;
  1826. /*
  1827. * We were waiting for group to get backlogged. Expire the queue
  1828. */
  1829. if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
  1830. goto expire;
  1831. /*
  1832. * The active queue has run out of time, expire it and select new.
  1833. */
  1834. if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
  1835. /*
  1836. * If slice had not expired at the completion of last request
  1837. * we might not have turned on wait_busy flag. Don't expire
  1838. * the queue yet. Allow the group to get backlogged.
  1839. *
  1840. * The very fact that we have used the slice, that means we
  1841. * have been idling all along on this queue and it should be
  1842. * ok to wait for this request to complete.
  1843. */
  1844. if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
  1845. && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
  1846. cfqq = NULL;
  1847. goto keep_queue;
  1848. } else
  1849. goto check_group_idle;
  1850. }
  1851. /*
  1852. * The active queue has requests and isn't expired, allow it to
  1853. * dispatch.
  1854. */
  1855. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  1856. goto keep_queue;
  1857. /*
  1858. * If another queue has a request waiting within our mean seek
  1859. * distance, let it run. The expire code will check for close
  1860. * cooperators and put the close queue at the front of the service
  1861. * tree. If possible, merge the expiring queue with the new cfqq.
  1862. */
  1863. new_cfqq = cfq_close_cooperator(cfqd, cfqq);
  1864. if (new_cfqq) {
  1865. if (!cfqq->new_cfqq)
  1866. cfq_setup_merge(cfqq, new_cfqq);
  1867. goto expire;
  1868. }
  1869. /*
  1870. * No requests pending. If the active queue still has requests in
  1871. * flight or is idling for a new request, allow either of these
  1872. * conditions to happen (or time out) before selecting a new queue.
  1873. */
  1874. if (timer_pending(&cfqd->idle_slice_timer)) {
  1875. cfqq = NULL;
  1876. goto keep_queue;
  1877. }
  1878. /*
  1879. * This is a deep seek queue, but the device is much faster than
  1880. * the queue can deliver, don't idle
  1881. **/
  1882. if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
  1883. (cfq_cfqq_slice_new(cfqq) ||
  1884. (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
  1885. cfq_clear_cfqq_deep(cfqq);
  1886. cfq_clear_cfqq_idle_window(cfqq);
  1887. }
  1888. if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
  1889. cfqq = NULL;
  1890. goto keep_queue;
  1891. }
  1892. /*
  1893. * If group idle is enabled and there are requests dispatched from
  1894. * this group, wait for requests to complete.
  1895. */
  1896. check_group_idle:
  1897. if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1 &&
  1898. cfqq->cfqg->dispatched &&
  1899. !cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true)) {
  1900. cfqq = NULL;
  1901. goto keep_queue;
  1902. }
  1903. expire:
  1904. cfq_slice_expired(cfqd, 0);
  1905. new_queue:
  1906. /*
  1907. * Current queue expired. Check if we have to switch to a new
  1908. * service tree
  1909. */
  1910. if (!new_cfqq)
  1911. cfq_choose_cfqg(cfqd);
  1912. cfqq = cfq_set_active_queue(cfqd, new_cfqq);
  1913. keep_queue:
  1914. return cfqq;
  1915. }
  1916. static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
  1917. {
  1918. int dispatched = 0;
  1919. while (cfqq->next_rq) {
  1920. cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
  1921. dispatched++;
  1922. }
  1923. BUG_ON(!list_empty(&cfqq->fifo));
  1924. /* By default cfqq is not expired if it is empty. Do it explicitly */
  1925. __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
  1926. return dispatched;
  1927. }
  1928. /*
  1929. * Drain our current requests. Used for barriers and when switching
  1930. * io schedulers on-the-fly.
  1931. */
  1932. static int cfq_forced_dispatch(struct cfq_data *cfqd)
  1933. {
  1934. struct cfq_queue *cfqq;
  1935. int dispatched = 0;
  1936. /* Expire the timeslice of the current active queue first */
  1937. cfq_slice_expired(cfqd, 0);
  1938. while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
  1939. __cfq_set_active_queue(cfqd, cfqq);
  1940. dispatched += __cfq_forced_dispatch_cfqq(cfqq);
  1941. }
  1942. BUG_ON(cfqd->busy_queues);
  1943. cfq_log(cfqd, "forced_dispatch=%d", dispatched);
  1944. return dispatched;
  1945. }
  1946. static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
  1947. struct cfq_queue *cfqq)
  1948. {
  1949. /* the queue hasn't finished any request, can't estimate */
  1950. if (cfq_cfqq_slice_new(cfqq))
  1951. return true;
  1952. if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
  1953. cfqq->slice_end))
  1954. return true;
  1955. return false;
  1956. }
  1957. static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1958. {
  1959. unsigned int max_dispatch;
  1960. /*
  1961. * Drain async requests before we start sync IO
  1962. */
  1963. if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
  1964. return false;
  1965. /*
  1966. * If this is an async queue and we have sync IO in flight, let it wait
  1967. */
  1968. if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
  1969. return false;
  1970. max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
  1971. if (cfq_class_idle(cfqq))
  1972. max_dispatch = 1;
  1973. /*
  1974. * Does this cfqq already have too much IO in flight?
  1975. */
  1976. if (cfqq->dispatched >= max_dispatch) {
  1977. bool promote_sync = false;
  1978. /*
  1979. * idle queue must always only have a single IO in flight
  1980. */
  1981. if (cfq_class_idle(cfqq))
  1982. return false;
  1983. /*
  1984. * If there is only one sync queue
  1985. * we can ignore async queue here and give the sync
  1986. * queue no dispatch limit. The reason is a sync queue can
  1987. * preempt async queue, limiting the sync queue doesn't make
  1988. * sense. This is useful for aiostress test.
  1989. */
  1990. if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
  1991. promote_sync = true;
  1992. /*
  1993. * We have other queues, don't allow more IO from this one
  1994. */
  1995. if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
  1996. !promote_sync)
  1997. return false;
  1998. /*
  1999. * Sole queue user, no limit
  2000. */
  2001. if (cfqd->busy_queues == 1 || promote_sync)
  2002. max_dispatch = -1;
  2003. else
  2004. /*
  2005. * Normally we start throttling cfqq when cfq_quantum/2
  2006. * requests have been dispatched. But we can drive
  2007. * deeper queue depths at the beginning of slice
  2008. * subjected to upper limit of cfq_quantum.
  2009. * */
  2010. max_dispatch = cfqd->cfq_quantum;
  2011. }
  2012. /*
  2013. * Async queues must wait a bit before being allowed dispatch.
  2014. * We also ramp up the dispatch depth gradually for async IO,
  2015. * based on the last sync IO we serviced
  2016. */
  2017. if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
  2018. unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
  2019. unsigned int depth;
  2020. depth = last_sync / cfqd->cfq_slice[1];
  2021. if (!depth && !cfqq->dispatched)
  2022. depth = 1;
  2023. if (depth < max_dispatch)
  2024. max_dispatch = depth;
  2025. }
  2026. /*
  2027. * If we're below the current max, allow a dispatch
  2028. */
  2029. return cfqq->dispatched < max_dispatch;
  2030. }
  2031. /*
  2032. * Dispatch a request from cfqq, moving them to the request queue
  2033. * dispatch list.
  2034. */
  2035. static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2036. {
  2037. struct request *rq;
  2038. BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
  2039. if (!cfq_may_dispatch(cfqd, cfqq))
  2040. return false;
  2041. /*
  2042. * follow expired path, else get first next available
  2043. */
  2044. rq = cfq_check_fifo(cfqq);
  2045. if (!rq)
  2046. rq = cfqq->next_rq;
  2047. /*
  2048. * insert request into driver dispatch list
  2049. */
  2050. cfq_dispatch_insert(cfqd->queue, rq);
  2051. if (!cfqd->active_cic) {
  2052. struct cfq_io_cq *cic = RQ_CIC(rq);
  2053. atomic_long_inc(&cic->icq.ioc->refcount);
  2054. cfqd->active_cic = cic;
  2055. }
  2056. return true;
  2057. }
  2058. /*
  2059. * Find the cfqq that we need to service and move a request from that to the
  2060. * dispatch list
  2061. */
  2062. static int cfq_dispatch_requests(struct request_queue *q, int force)
  2063. {
  2064. struct cfq_data *cfqd = q->elevator->elevator_data;
  2065. struct cfq_queue *cfqq;
  2066. if (!cfqd->busy_queues)
  2067. return 0;
  2068. if (unlikely(force))
  2069. return cfq_forced_dispatch(cfqd);
  2070. cfqq = cfq_select_queue(cfqd);
  2071. if (!cfqq)
  2072. return 0;
  2073. /*
  2074. * Dispatch a request from this cfqq, if it is allowed
  2075. */
  2076. if (!cfq_dispatch_request(cfqd, cfqq))
  2077. return 0;
  2078. cfqq->slice_dispatch++;
  2079. cfq_clear_cfqq_must_dispatch(cfqq);
  2080. /*
  2081. * expire an async queue immediately if it has used up its slice. idle
  2082. * queue always expire after 1 dispatch round.
  2083. */
  2084. if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
  2085. cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
  2086. cfq_class_idle(cfqq))) {
  2087. cfqq->slice_end = jiffies + 1;
  2088. cfq_slice_expired(cfqd, 0);
  2089. }
  2090. cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
  2091. return 1;
  2092. }
  2093. /*
  2094. * task holds one reference to the queue, dropped when task exits. each rq
  2095. * in-flight on this queue also holds a reference, dropped when rq is freed.
  2096. *
  2097. * Each cfq queue took a reference on the parent group. Drop it now.
  2098. * queue lock must be held here.
  2099. */
  2100. static void cfq_put_queue(struct cfq_queue *cfqq)
  2101. {
  2102. struct cfq_data *cfqd = cfqq->cfqd;
  2103. struct cfq_group *cfqg;
  2104. BUG_ON(cfqq->ref <= 0);
  2105. cfqq->ref--;
  2106. if (cfqq->ref)
  2107. return;
  2108. cfq_log_cfqq(cfqd, cfqq, "put_queue");
  2109. BUG_ON(rb_first(&cfqq->sort_list));
  2110. BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
  2111. cfqg = cfqq->cfqg;
  2112. if (unlikely(cfqd->active_queue == cfqq)) {
  2113. __cfq_slice_expired(cfqd, cfqq, 0);
  2114. cfq_schedule_dispatch(cfqd);
  2115. }
  2116. BUG_ON(cfq_cfqq_on_rr(cfqq));
  2117. kmem_cache_free(cfq_pool, cfqq);
  2118. blkg_put(cfqg_to_blkg(cfqg));
  2119. }
  2120. static void cfq_put_cooperator(struct cfq_queue *cfqq)
  2121. {
  2122. struct cfq_queue *__cfqq, *next;
  2123. /*
  2124. * If this queue was scheduled to merge with another queue, be
  2125. * sure to drop the reference taken on that queue (and others in
  2126. * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
  2127. */
  2128. __cfqq = cfqq->new_cfqq;
  2129. while (__cfqq) {
  2130. if (__cfqq == cfqq) {
  2131. WARN(1, "cfqq->new_cfqq loop detected\n");
  2132. break;
  2133. }
  2134. next = __cfqq->new_cfqq;
  2135. cfq_put_queue(__cfqq);
  2136. __cfqq = next;
  2137. }
  2138. }
  2139. static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2140. {
  2141. if (unlikely(cfqq == cfqd->active_queue)) {
  2142. __cfq_slice_expired(cfqd, cfqq, 0);
  2143. cfq_schedule_dispatch(cfqd);
  2144. }
  2145. cfq_put_cooperator(cfqq);
  2146. cfq_put_queue(cfqq);
  2147. }
  2148. static void cfq_init_icq(struct io_cq *icq)
  2149. {
  2150. struct cfq_io_cq *cic = icq_to_cic(icq);
  2151. cic->ttime.last_end_request = jiffies;
  2152. }
  2153. static void cfq_exit_icq(struct io_cq *icq)
  2154. {
  2155. struct cfq_io_cq *cic = icq_to_cic(icq);
  2156. struct cfq_data *cfqd = cic_to_cfqd(cic);
  2157. if (cic->cfqq[BLK_RW_ASYNC]) {
  2158. cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
  2159. cic->cfqq[BLK_RW_ASYNC] = NULL;
  2160. }
  2161. if (cic->cfqq[BLK_RW_SYNC]) {
  2162. cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
  2163. cic->cfqq[BLK_RW_SYNC] = NULL;
  2164. }
  2165. }
  2166. static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
  2167. {
  2168. struct task_struct *tsk = current;
  2169. int ioprio_class;
  2170. if (!cfq_cfqq_prio_changed(cfqq))
  2171. return;
  2172. ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
  2173. switch (ioprio_class) {
  2174. default:
  2175. printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
  2176. case IOPRIO_CLASS_NONE:
  2177. /*
  2178. * no prio set, inherit CPU scheduling settings
  2179. */
  2180. cfqq->ioprio = task_nice_ioprio(tsk);
  2181. cfqq->ioprio_class = task_nice_ioclass(tsk);
  2182. break;
  2183. case IOPRIO_CLASS_RT:
  2184. cfqq->ioprio = task_ioprio(ioc);
  2185. cfqq->ioprio_class = IOPRIO_CLASS_RT;
  2186. break;
  2187. case IOPRIO_CLASS_BE:
  2188. cfqq->ioprio = task_ioprio(ioc);
  2189. cfqq->ioprio_class = IOPRIO_CLASS_BE;
  2190. break;
  2191. case IOPRIO_CLASS_IDLE:
  2192. cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
  2193. cfqq->ioprio = 7;
  2194. cfq_clear_cfqq_idle_window(cfqq);
  2195. break;
  2196. }
  2197. /*
  2198. * keep track of original prio settings in case we have to temporarily
  2199. * elevate the priority of this queue
  2200. */
  2201. cfqq->org_ioprio = cfqq->ioprio;
  2202. cfq_clear_cfqq_prio_changed(cfqq);
  2203. }
  2204. static void changed_ioprio(struct cfq_io_cq *cic)
  2205. {
  2206. struct cfq_data *cfqd = cic_to_cfqd(cic);
  2207. struct cfq_queue *cfqq;
  2208. if (unlikely(!cfqd))
  2209. return;
  2210. cfqq = cic->cfqq[BLK_RW_ASYNC];
  2211. if (cfqq) {
  2212. struct cfq_queue *new_cfqq;
  2213. new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->icq.ioc,
  2214. GFP_ATOMIC);
  2215. if (new_cfqq) {
  2216. cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
  2217. cfq_put_queue(cfqq);
  2218. }
  2219. }
  2220. cfqq = cic->cfqq[BLK_RW_SYNC];
  2221. if (cfqq)
  2222. cfq_mark_cfqq_prio_changed(cfqq);
  2223. }
  2224. static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2225. pid_t pid, bool is_sync)
  2226. {
  2227. RB_CLEAR_NODE(&cfqq->rb_node);
  2228. RB_CLEAR_NODE(&cfqq->p_node);
  2229. INIT_LIST_HEAD(&cfqq->fifo);
  2230. cfqq->ref = 0;
  2231. cfqq->cfqd = cfqd;
  2232. cfq_mark_cfqq_prio_changed(cfqq);
  2233. if (is_sync) {
  2234. if (!cfq_class_idle(cfqq))
  2235. cfq_mark_cfqq_idle_window(cfqq);
  2236. cfq_mark_cfqq_sync(cfqq);
  2237. }
  2238. cfqq->pid = pid;
  2239. }
  2240. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  2241. static void changed_cgroup(struct cfq_io_cq *cic)
  2242. {
  2243. struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
  2244. struct cfq_data *cfqd = cic_to_cfqd(cic);
  2245. struct request_queue *q;
  2246. if (unlikely(!cfqd))
  2247. return;
  2248. q = cfqd->queue;
  2249. if (sync_cfqq) {
  2250. /*
  2251. * Drop reference to sync queue. A new sync queue will be
  2252. * assigned in new group upon arrival of a fresh request.
  2253. */
  2254. cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
  2255. cic_set_cfqq(cic, NULL, 1);
  2256. cfq_put_queue(sync_cfqq);
  2257. }
  2258. }
  2259. #endif /* CONFIG_CFQ_GROUP_IOSCHED */
  2260. static struct cfq_queue *
  2261. cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
  2262. struct io_context *ioc, gfp_t gfp_mask)
  2263. {
  2264. struct blkio_cgroup *blkcg;
  2265. struct cfq_queue *cfqq, *new_cfqq = NULL;
  2266. struct cfq_io_cq *cic;
  2267. struct cfq_group *cfqg;
  2268. retry:
  2269. rcu_read_lock();
  2270. blkcg = task_blkio_cgroup(current);
  2271. cfqg = cfq_lookup_create_cfqg(cfqd, blkcg);
  2272. cic = cfq_cic_lookup(cfqd, ioc);
  2273. /* cic always exists here */
  2274. cfqq = cic_to_cfqq(cic, is_sync);
  2275. /*
  2276. * Always try a new alloc if we fell back to the OOM cfqq
  2277. * originally, since it should just be a temporary situation.
  2278. */
  2279. if (!cfqq || cfqq == &cfqd->oom_cfqq) {
  2280. cfqq = NULL;
  2281. if (new_cfqq) {
  2282. cfqq = new_cfqq;
  2283. new_cfqq = NULL;
  2284. } else if (gfp_mask & __GFP_WAIT) {
  2285. rcu_read_unlock();
  2286. spin_unlock_irq(cfqd->queue->queue_lock);
  2287. new_cfqq = kmem_cache_alloc_node(cfq_pool,
  2288. gfp_mask | __GFP_ZERO,
  2289. cfqd->queue->node);
  2290. spin_lock_irq(cfqd->queue->queue_lock);
  2291. if (new_cfqq)
  2292. goto retry;
  2293. } else {
  2294. cfqq = kmem_cache_alloc_node(cfq_pool,
  2295. gfp_mask | __GFP_ZERO,
  2296. cfqd->queue->node);
  2297. }
  2298. if (cfqq) {
  2299. cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
  2300. cfq_init_prio_data(cfqq, ioc);
  2301. cfq_link_cfqq_cfqg(cfqq, cfqg);
  2302. cfq_log_cfqq(cfqd, cfqq, "alloced");
  2303. } else
  2304. cfqq = &cfqd->oom_cfqq;
  2305. }
  2306. if (new_cfqq)
  2307. kmem_cache_free(cfq_pool, new_cfqq);
  2308. rcu_read_unlock();
  2309. return cfqq;
  2310. }
  2311. static struct cfq_queue **
  2312. cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
  2313. {
  2314. switch (ioprio_class) {
  2315. case IOPRIO_CLASS_RT:
  2316. return &cfqd->async_cfqq[0][ioprio];
  2317. case IOPRIO_CLASS_BE:
  2318. return &cfqd->async_cfqq[1][ioprio];
  2319. case IOPRIO_CLASS_IDLE:
  2320. return &cfqd->async_idle_cfqq;
  2321. default:
  2322. BUG();
  2323. }
  2324. }
  2325. static struct cfq_queue *
  2326. cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
  2327. gfp_t gfp_mask)
  2328. {
  2329. const int ioprio = task_ioprio(ioc);
  2330. const int ioprio_class = task_ioprio_class(ioc);
  2331. struct cfq_queue **async_cfqq = NULL;
  2332. struct cfq_queue *cfqq = NULL;
  2333. if (!is_sync) {
  2334. async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
  2335. cfqq = *async_cfqq;
  2336. }
  2337. if (!cfqq)
  2338. cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
  2339. /*
  2340. * pin the queue now that it's allocated, scheduler exit will prune it
  2341. */
  2342. if (!is_sync && !(*async_cfqq)) {
  2343. cfqq->ref++;
  2344. *async_cfqq = cfqq;
  2345. }
  2346. cfqq->ref++;
  2347. return cfqq;
  2348. }
  2349. static void
  2350. __cfq_update_io_thinktime(struct cfq_ttime *ttime, unsigned long slice_idle)
  2351. {
  2352. unsigned long elapsed = jiffies - ttime->last_end_request;
  2353. elapsed = min(elapsed, 2UL * slice_idle);
  2354. ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
  2355. ttime->ttime_total = (7*ttime->ttime_total + 256*elapsed) / 8;
  2356. ttime->ttime_mean = (ttime->ttime_total + 128) / ttime->ttime_samples;
  2357. }
  2358. static void
  2359. cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2360. struct cfq_io_cq *cic)
  2361. {
  2362. if (cfq_cfqq_sync(cfqq)) {
  2363. __cfq_update_io_thinktime(&cic->ttime, cfqd->cfq_slice_idle);
  2364. __cfq_update_io_thinktime(&cfqq->service_tree->ttime,
  2365. cfqd->cfq_slice_idle);
  2366. }
  2367. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  2368. __cfq_update_io_thinktime(&cfqq->cfqg->ttime, cfqd->cfq_group_idle);
  2369. #endif
  2370. }
  2371. static void
  2372. cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2373. struct request *rq)
  2374. {
  2375. sector_t sdist = 0;
  2376. sector_t n_sec = blk_rq_sectors(rq);
  2377. if (cfqq->last_request_pos) {
  2378. if (cfqq->last_request_pos < blk_rq_pos(rq))
  2379. sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
  2380. else
  2381. sdist = cfqq->last_request_pos - blk_rq_pos(rq);
  2382. }
  2383. cfqq->seek_history <<= 1;
  2384. if (blk_queue_nonrot(cfqd->queue))
  2385. cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
  2386. else
  2387. cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
  2388. }
  2389. /*
  2390. * Disable idle window if the process thinks too long or seeks so much that
  2391. * it doesn't matter
  2392. */
  2393. static void
  2394. cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2395. struct cfq_io_cq *cic)
  2396. {
  2397. int old_idle, enable_idle;
  2398. /*
  2399. * Don't idle for async or idle io prio class
  2400. */
  2401. if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
  2402. return;
  2403. enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
  2404. if (cfqq->queued[0] + cfqq->queued[1] >= 4)
  2405. cfq_mark_cfqq_deep(cfqq);
  2406. if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
  2407. enable_idle = 0;
  2408. else if (!atomic_read(&cic->icq.ioc->nr_tasks) ||
  2409. !cfqd->cfq_slice_idle ||
  2410. (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
  2411. enable_idle = 0;
  2412. else if (sample_valid(cic->ttime.ttime_samples)) {
  2413. if (cic->ttime.ttime_mean > cfqd->cfq_slice_idle)
  2414. enable_idle = 0;
  2415. else
  2416. enable_idle = 1;
  2417. }
  2418. if (old_idle != enable_idle) {
  2419. cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
  2420. if (enable_idle)
  2421. cfq_mark_cfqq_idle_window(cfqq);
  2422. else
  2423. cfq_clear_cfqq_idle_window(cfqq);
  2424. }
  2425. }
  2426. /*
  2427. * Check if new_cfqq should preempt the currently active queue. Return 0 for
  2428. * no or if we aren't sure, a 1 will cause a preempt.
  2429. */
  2430. static bool
  2431. cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
  2432. struct request *rq)
  2433. {
  2434. struct cfq_queue *cfqq;
  2435. cfqq = cfqd->active_queue;
  2436. if (!cfqq)
  2437. return false;
  2438. if (cfq_class_idle(new_cfqq))
  2439. return false;
  2440. if (cfq_class_idle(cfqq))
  2441. return true;
  2442. /*
  2443. * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
  2444. */
  2445. if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
  2446. return false;
  2447. /*
  2448. * if the new request is sync, but the currently running queue is
  2449. * not, let the sync request have priority.
  2450. */
  2451. if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
  2452. return true;
  2453. if (new_cfqq->cfqg != cfqq->cfqg)
  2454. return false;
  2455. if (cfq_slice_used(cfqq))
  2456. return true;
  2457. /* Allow preemption only if we are idling on sync-noidle tree */
  2458. if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
  2459. cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
  2460. new_cfqq->service_tree->count == 2 &&
  2461. RB_EMPTY_ROOT(&cfqq->sort_list))
  2462. return true;
  2463. /*
  2464. * So both queues are sync. Let the new request get disk time if
  2465. * it's a metadata request and the current queue is doing regular IO.
  2466. */
  2467. if ((rq->cmd_flags & REQ_PRIO) && !cfqq->prio_pending)
  2468. return true;
  2469. /*
  2470. * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
  2471. */
  2472. if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
  2473. return true;
  2474. /* An idle queue should not be idle now for some reason */
  2475. if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
  2476. return true;
  2477. if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
  2478. return false;
  2479. /*
  2480. * if this request is as-good as one we would expect from the
  2481. * current cfqq, let it preempt
  2482. */
  2483. if (cfq_rq_close(cfqd, cfqq, rq))
  2484. return true;
  2485. return false;
  2486. }
  2487. /*
  2488. * cfqq preempts the active queue. if we allowed preempt with no slice left,
  2489. * let it have half of its nominal slice.
  2490. */
  2491. static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2492. {
  2493. enum wl_type_t old_type = cfqq_type(cfqd->active_queue);
  2494. cfq_log_cfqq(cfqd, cfqq, "preempt");
  2495. cfq_slice_expired(cfqd, 1);
  2496. /*
  2497. * workload type is changed, don't save slice, otherwise preempt
  2498. * doesn't happen
  2499. */
  2500. if (old_type != cfqq_type(cfqq))
  2501. cfqq->cfqg->saved_workload_slice = 0;
  2502. /*
  2503. * Put the new queue at the front of the of the current list,
  2504. * so we know that it will be selected next.
  2505. */
  2506. BUG_ON(!cfq_cfqq_on_rr(cfqq));
  2507. cfq_service_tree_add(cfqd, cfqq, 1);
  2508. cfqq->slice_end = 0;
  2509. cfq_mark_cfqq_slice_new(cfqq);
  2510. }
  2511. /*
  2512. * Called when a new fs request (rq) is added (to cfqq). Check if there's
  2513. * something we should do about it
  2514. */
  2515. static void
  2516. cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2517. struct request *rq)
  2518. {
  2519. struct cfq_io_cq *cic = RQ_CIC(rq);
  2520. cfqd->rq_queued++;
  2521. if (rq->cmd_flags & REQ_PRIO)
  2522. cfqq->prio_pending++;
  2523. cfq_update_io_thinktime(cfqd, cfqq, cic);
  2524. cfq_update_io_seektime(cfqd, cfqq, rq);
  2525. cfq_update_idle_window(cfqd, cfqq, cic);
  2526. cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
  2527. if (cfqq == cfqd->active_queue) {
  2528. /*
  2529. * Remember that we saw a request from this process, but
  2530. * don't start queuing just yet. Otherwise we risk seeing lots
  2531. * of tiny requests, because we disrupt the normal plugging
  2532. * and merging. If the request is already larger than a single
  2533. * page, let it rip immediately. For that case we assume that
  2534. * merging is already done. Ditto for a busy system that
  2535. * has other work pending, don't risk delaying until the
  2536. * idle timer unplug to continue working.
  2537. */
  2538. if (cfq_cfqq_wait_request(cfqq)) {
  2539. if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
  2540. cfqd->busy_queues > 1) {
  2541. cfq_del_timer(cfqd, cfqq);
  2542. cfq_clear_cfqq_wait_request(cfqq);
  2543. __blk_run_queue(cfqd->queue);
  2544. } else {
  2545. cfq_blkiocg_update_idle_time_stats(
  2546. cfqg_to_blkg(cfqq->cfqg),
  2547. &blkio_policy_cfq);
  2548. cfq_mark_cfqq_must_dispatch(cfqq);
  2549. }
  2550. }
  2551. } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
  2552. /*
  2553. * not the active queue - expire current slice if it is
  2554. * idle and has expired it's mean thinktime or this new queue
  2555. * has some old slice time left and is of higher priority or
  2556. * this new queue is RT and the current one is BE
  2557. */
  2558. cfq_preempt_queue(cfqd, cfqq);
  2559. __blk_run_queue(cfqd->queue);
  2560. }
  2561. }
  2562. static void cfq_insert_request(struct request_queue *q, struct request *rq)
  2563. {
  2564. struct cfq_data *cfqd = q->elevator->elevator_data;
  2565. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  2566. cfq_log_cfqq(cfqd, cfqq, "insert_request");
  2567. cfq_init_prio_data(cfqq, RQ_CIC(rq)->icq.ioc);
  2568. rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
  2569. list_add_tail(&rq->queuelist, &cfqq->fifo);
  2570. cfq_add_rq_rb(rq);
  2571. cfq_blkiocg_update_io_add_stats(cfqg_to_blkg(RQ_CFQG(rq)),
  2572. &blkio_policy_cfq,
  2573. cfqg_to_blkg(cfqd->serving_group),
  2574. rq_data_dir(rq), rq_is_sync(rq));
  2575. cfq_rq_enqueued(cfqd, cfqq, rq);
  2576. }
  2577. /*
  2578. * Update hw_tag based on peak queue depth over 50 samples under
  2579. * sufficient load.
  2580. */
  2581. static void cfq_update_hw_tag(struct cfq_data *cfqd)
  2582. {
  2583. struct cfq_queue *cfqq = cfqd->active_queue;
  2584. if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
  2585. cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
  2586. if (cfqd->hw_tag == 1)
  2587. return;
  2588. if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
  2589. cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
  2590. return;
  2591. /*
  2592. * If active queue hasn't enough requests and can idle, cfq might not
  2593. * dispatch sufficient requests to hardware. Don't zero hw_tag in this
  2594. * case
  2595. */
  2596. if (cfqq && cfq_cfqq_idle_window(cfqq) &&
  2597. cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
  2598. CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
  2599. return;
  2600. if (cfqd->hw_tag_samples++ < 50)
  2601. return;
  2602. if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
  2603. cfqd->hw_tag = 1;
  2604. else
  2605. cfqd->hw_tag = 0;
  2606. }
  2607. static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2608. {
  2609. struct cfq_io_cq *cic = cfqd->active_cic;
  2610. /* If the queue already has requests, don't wait */
  2611. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  2612. return false;
  2613. /* If there are other queues in the group, don't wait */
  2614. if (cfqq->cfqg->nr_cfqq > 1)
  2615. return false;
  2616. /* the only queue in the group, but think time is big */
  2617. if (cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true))
  2618. return false;
  2619. if (cfq_slice_used(cfqq))
  2620. return true;
  2621. /* if slice left is less than think time, wait busy */
  2622. if (cic && sample_valid(cic->ttime.ttime_samples)
  2623. && (cfqq->slice_end - jiffies < cic->ttime.ttime_mean))
  2624. return true;
  2625. /*
  2626. * If think times is less than a jiffy than ttime_mean=0 and above
  2627. * will not be true. It might happen that slice has not expired yet
  2628. * but will expire soon (4-5 ns) during select_queue(). To cover the
  2629. * case where think time is less than a jiffy, mark the queue wait
  2630. * busy if only 1 jiffy is left in the slice.
  2631. */
  2632. if (cfqq->slice_end - jiffies == 1)
  2633. return true;
  2634. return false;
  2635. }
  2636. static void cfq_completed_request(struct request_queue *q, struct request *rq)
  2637. {
  2638. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  2639. struct cfq_data *cfqd = cfqq->cfqd;
  2640. const int sync = rq_is_sync(rq);
  2641. unsigned long now;
  2642. now = jiffies;
  2643. cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
  2644. !!(rq->cmd_flags & REQ_NOIDLE));
  2645. cfq_update_hw_tag(cfqd);
  2646. WARN_ON(!cfqd->rq_in_driver);
  2647. WARN_ON(!cfqq->dispatched);
  2648. cfqd->rq_in_driver--;
  2649. cfqq->dispatched--;
  2650. (RQ_CFQG(rq))->dispatched--;
  2651. cfq_blkiocg_update_completion_stats(cfqg_to_blkg(cfqq->cfqg),
  2652. &blkio_policy_cfq, rq_start_time_ns(rq),
  2653. rq_io_start_time_ns(rq), rq_data_dir(rq),
  2654. rq_is_sync(rq));
  2655. cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
  2656. if (sync) {
  2657. struct cfq_rb_root *service_tree;
  2658. RQ_CIC(rq)->ttime.last_end_request = now;
  2659. if (cfq_cfqq_on_rr(cfqq))
  2660. service_tree = cfqq->service_tree;
  2661. else
  2662. service_tree = service_tree_for(cfqq->cfqg,
  2663. cfqq_prio(cfqq), cfqq_type(cfqq));
  2664. service_tree->ttime.last_end_request = now;
  2665. if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
  2666. cfqd->last_delayed_sync = now;
  2667. }
  2668. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  2669. cfqq->cfqg->ttime.last_end_request = now;
  2670. #endif
  2671. /*
  2672. * If this is the active queue, check if it needs to be expired,
  2673. * or if we want to idle in case it has no pending requests.
  2674. */
  2675. if (cfqd->active_queue == cfqq) {
  2676. const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
  2677. if (cfq_cfqq_slice_new(cfqq)) {
  2678. cfq_set_prio_slice(cfqd, cfqq);
  2679. cfq_clear_cfqq_slice_new(cfqq);
  2680. }
  2681. /*
  2682. * Should we wait for next request to come in before we expire
  2683. * the queue.
  2684. */
  2685. if (cfq_should_wait_busy(cfqd, cfqq)) {
  2686. unsigned long extend_sl = cfqd->cfq_slice_idle;
  2687. if (!cfqd->cfq_slice_idle)
  2688. extend_sl = cfqd->cfq_group_idle;
  2689. cfqq->slice_end = jiffies + extend_sl;
  2690. cfq_mark_cfqq_wait_busy(cfqq);
  2691. cfq_log_cfqq(cfqd, cfqq, "will busy wait");
  2692. }
  2693. /*
  2694. * Idling is not enabled on:
  2695. * - expired queues
  2696. * - idle-priority queues
  2697. * - async queues
  2698. * - queues with still some requests queued
  2699. * - when there is a close cooperator
  2700. */
  2701. if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
  2702. cfq_slice_expired(cfqd, 1);
  2703. else if (sync && cfqq_empty &&
  2704. !cfq_close_cooperator(cfqd, cfqq)) {
  2705. cfq_arm_slice_timer(cfqd);
  2706. }
  2707. }
  2708. if (!cfqd->rq_in_driver)
  2709. cfq_schedule_dispatch(cfqd);
  2710. }
  2711. static inline int __cfq_may_queue(struct cfq_queue *cfqq)
  2712. {
  2713. if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
  2714. cfq_mark_cfqq_must_alloc_slice(cfqq);
  2715. return ELV_MQUEUE_MUST;
  2716. }
  2717. return ELV_MQUEUE_MAY;
  2718. }
  2719. static int cfq_may_queue(struct request_queue *q, int rw)
  2720. {
  2721. struct cfq_data *cfqd = q->elevator->elevator_data;
  2722. struct task_struct *tsk = current;
  2723. struct cfq_io_cq *cic;
  2724. struct cfq_queue *cfqq;
  2725. /*
  2726. * don't force setup of a queue from here, as a call to may_queue
  2727. * does not necessarily imply that a request actually will be queued.
  2728. * so just lookup a possibly existing queue, or return 'may queue'
  2729. * if that fails
  2730. */
  2731. cic = cfq_cic_lookup(cfqd, tsk->io_context);
  2732. if (!cic)
  2733. return ELV_MQUEUE_MAY;
  2734. cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
  2735. if (cfqq) {
  2736. cfq_init_prio_data(cfqq, cic->icq.ioc);
  2737. return __cfq_may_queue(cfqq);
  2738. }
  2739. return ELV_MQUEUE_MAY;
  2740. }
  2741. /*
  2742. * queue lock held here
  2743. */
  2744. static void cfq_put_request(struct request *rq)
  2745. {
  2746. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  2747. if (cfqq) {
  2748. const int rw = rq_data_dir(rq);
  2749. BUG_ON(!cfqq->allocated[rw]);
  2750. cfqq->allocated[rw]--;
  2751. /* Put down rq reference on cfqg */
  2752. blkg_put(cfqg_to_blkg(RQ_CFQG(rq)));
  2753. rq->elv.priv[0] = NULL;
  2754. rq->elv.priv[1] = NULL;
  2755. cfq_put_queue(cfqq);
  2756. }
  2757. }
  2758. static struct cfq_queue *
  2759. cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_cq *cic,
  2760. struct cfq_queue *cfqq)
  2761. {
  2762. cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
  2763. cic_set_cfqq(cic, cfqq->new_cfqq, 1);
  2764. cfq_mark_cfqq_coop(cfqq->new_cfqq);
  2765. cfq_put_queue(cfqq);
  2766. return cic_to_cfqq(cic, 1);
  2767. }
  2768. /*
  2769. * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
  2770. * was the last process referring to said cfqq.
  2771. */
  2772. static struct cfq_queue *
  2773. split_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq)
  2774. {
  2775. if (cfqq_process_refs(cfqq) == 1) {
  2776. cfqq->pid = current->pid;
  2777. cfq_clear_cfqq_coop(cfqq);
  2778. cfq_clear_cfqq_split_coop(cfqq);
  2779. return cfqq;
  2780. }
  2781. cic_set_cfqq(cic, NULL, 1);
  2782. cfq_put_cooperator(cfqq);
  2783. cfq_put_queue(cfqq);
  2784. return NULL;
  2785. }
  2786. /*
  2787. * Allocate cfq data structures associated with this request.
  2788. */
  2789. static int
  2790. cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
  2791. {
  2792. struct cfq_data *cfqd = q->elevator->elevator_data;
  2793. struct cfq_io_cq *cic = icq_to_cic(rq->elv.icq);
  2794. const int rw = rq_data_dir(rq);
  2795. const bool is_sync = rq_is_sync(rq);
  2796. struct cfq_queue *cfqq;
  2797. unsigned int changed;
  2798. might_sleep_if(gfp_mask & __GFP_WAIT);
  2799. spin_lock_irq(q->queue_lock);
  2800. /* handle changed notifications */
  2801. changed = icq_get_changed(&cic->icq);
  2802. if (unlikely(changed & ICQ_IOPRIO_CHANGED))
  2803. changed_ioprio(cic);
  2804. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  2805. if (unlikely(changed & ICQ_CGROUP_CHANGED))
  2806. changed_cgroup(cic);
  2807. #endif
  2808. new_queue:
  2809. cfqq = cic_to_cfqq(cic, is_sync);
  2810. if (!cfqq || cfqq == &cfqd->oom_cfqq) {
  2811. cfqq = cfq_get_queue(cfqd, is_sync, cic->icq.ioc, gfp_mask);
  2812. cic_set_cfqq(cic, cfqq, is_sync);
  2813. } else {
  2814. /*
  2815. * If the queue was seeky for too long, break it apart.
  2816. */
  2817. if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
  2818. cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
  2819. cfqq = split_cfqq(cic, cfqq);
  2820. if (!cfqq)
  2821. goto new_queue;
  2822. }
  2823. /*
  2824. * Check to see if this queue is scheduled to merge with
  2825. * another, closely cooperating queue. The merging of
  2826. * queues happens here as it must be done in process context.
  2827. * The reference on new_cfqq was taken in merge_cfqqs.
  2828. */
  2829. if (cfqq->new_cfqq)
  2830. cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
  2831. }
  2832. cfqq->allocated[rw]++;
  2833. cfqq->ref++;
  2834. blkg_get(cfqg_to_blkg(cfqq->cfqg));
  2835. rq->elv.priv[0] = cfqq;
  2836. rq->elv.priv[1] = cfqq->cfqg;
  2837. spin_unlock_irq(q->queue_lock);
  2838. return 0;
  2839. }
  2840. static void cfq_kick_queue(struct work_struct *work)
  2841. {
  2842. struct cfq_data *cfqd =
  2843. container_of(work, struct cfq_data, unplug_work);
  2844. struct request_queue *q = cfqd->queue;
  2845. spin_lock_irq(q->queue_lock);
  2846. __blk_run_queue(cfqd->queue);
  2847. spin_unlock_irq(q->queue_lock);
  2848. }
  2849. /*
  2850. * Timer running if the active_queue is currently idling inside its time slice
  2851. */
  2852. static void cfq_idle_slice_timer(unsigned long data)
  2853. {
  2854. struct cfq_data *cfqd = (struct cfq_data *) data;
  2855. struct cfq_queue *cfqq;
  2856. unsigned long flags;
  2857. int timed_out = 1;
  2858. cfq_log(cfqd, "idle timer fired");
  2859. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  2860. cfqq = cfqd->active_queue;
  2861. if (cfqq) {
  2862. timed_out = 0;
  2863. /*
  2864. * We saw a request before the queue expired, let it through
  2865. */
  2866. if (cfq_cfqq_must_dispatch(cfqq))
  2867. goto out_kick;
  2868. /*
  2869. * expired
  2870. */
  2871. if (cfq_slice_used(cfqq))
  2872. goto expire;
  2873. /*
  2874. * only expire and reinvoke request handler, if there are
  2875. * other queues with pending requests
  2876. */
  2877. if (!cfqd->busy_queues)
  2878. goto out_cont;
  2879. /*
  2880. * not expired and it has a request pending, let it dispatch
  2881. */
  2882. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  2883. goto out_kick;
  2884. /*
  2885. * Queue depth flag is reset only when the idle didn't succeed
  2886. */
  2887. cfq_clear_cfqq_deep(cfqq);
  2888. }
  2889. expire:
  2890. cfq_slice_expired(cfqd, timed_out);
  2891. out_kick:
  2892. cfq_schedule_dispatch(cfqd);
  2893. out_cont:
  2894. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  2895. }
  2896. static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
  2897. {
  2898. del_timer_sync(&cfqd->idle_slice_timer);
  2899. cancel_work_sync(&cfqd->unplug_work);
  2900. }
  2901. static void cfq_put_async_queues(struct cfq_data *cfqd)
  2902. {
  2903. int i;
  2904. for (i = 0; i < IOPRIO_BE_NR; i++) {
  2905. if (cfqd->async_cfqq[0][i])
  2906. cfq_put_queue(cfqd->async_cfqq[0][i]);
  2907. if (cfqd->async_cfqq[1][i])
  2908. cfq_put_queue(cfqd->async_cfqq[1][i]);
  2909. }
  2910. if (cfqd->async_idle_cfqq)
  2911. cfq_put_queue(cfqd->async_idle_cfqq);
  2912. }
  2913. static void cfq_exit_queue(struct elevator_queue *e)
  2914. {
  2915. struct cfq_data *cfqd = e->elevator_data;
  2916. struct request_queue *q = cfqd->queue;
  2917. cfq_shutdown_timer_wq(cfqd);
  2918. spin_lock_irq(q->queue_lock);
  2919. if (cfqd->active_queue)
  2920. __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
  2921. cfq_put_async_queues(cfqd);
  2922. spin_unlock_irq(q->queue_lock);
  2923. cfq_shutdown_timer_wq(cfqd);
  2924. #ifndef CONFIG_CFQ_GROUP_IOSCHED
  2925. kfree(cfqd->root_group);
  2926. #endif
  2927. update_root_blkg_pd(q, BLKIO_POLICY_PROP);
  2928. kfree(cfqd);
  2929. }
  2930. static int cfq_init_queue(struct request_queue *q)
  2931. {
  2932. struct cfq_data *cfqd;
  2933. struct blkio_group *blkg __maybe_unused;
  2934. int i;
  2935. cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
  2936. if (!cfqd)
  2937. return -ENOMEM;
  2938. cfqd->queue = q;
  2939. q->elevator->elevator_data = cfqd;
  2940. /* Init root service tree */
  2941. cfqd->grp_service_tree = CFQ_RB_ROOT;
  2942. /* Init root group and prefer root group over other groups by default */
  2943. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  2944. rcu_read_lock();
  2945. spin_lock_irq(q->queue_lock);
  2946. blkg = blkg_lookup_create(&blkio_root_cgroup, q, BLKIO_POLICY_PROP,
  2947. true);
  2948. if (!IS_ERR(blkg))
  2949. cfqd->root_group = blkg_to_cfqg(blkg);
  2950. spin_unlock_irq(q->queue_lock);
  2951. rcu_read_unlock();
  2952. #else
  2953. cfqd->root_group = kzalloc_node(sizeof(*cfqd->root_group),
  2954. GFP_KERNEL, cfqd->queue->node);
  2955. if (cfqd->root_group)
  2956. cfq_init_cfqg_base(cfqd->root_group);
  2957. #endif
  2958. if (!cfqd->root_group) {
  2959. kfree(cfqd);
  2960. return -ENOMEM;
  2961. }
  2962. cfqd->root_group->weight = 2*BLKIO_WEIGHT_DEFAULT;
  2963. /*
  2964. * Not strictly needed (since RB_ROOT just clears the node and we
  2965. * zeroed cfqd on alloc), but better be safe in case someone decides
  2966. * to add magic to the rb code
  2967. */
  2968. for (i = 0; i < CFQ_PRIO_LISTS; i++)
  2969. cfqd->prio_trees[i] = RB_ROOT;
  2970. /*
  2971. * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
  2972. * Grab a permanent reference to it, so that the normal code flow
  2973. * will not attempt to free it. oom_cfqq is linked to root_group
  2974. * but shouldn't hold a reference as it'll never be unlinked. Lose
  2975. * the reference from linking right away.
  2976. */
  2977. cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
  2978. cfqd->oom_cfqq.ref++;
  2979. spin_lock_irq(q->queue_lock);
  2980. cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, cfqd->root_group);
  2981. blkg_put(cfqg_to_blkg(cfqd->root_group));
  2982. spin_unlock_irq(q->queue_lock);
  2983. init_timer(&cfqd->idle_slice_timer);
  2984. cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
  2985. cfqd->idle_slice_timer.data = (unsigned long) cfqd;
  2986. INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
  2987. cfqd->cfq_quantum = cfq_quantum;
  2988. cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
  2989. cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
  2990. cfqd->cfq_back_max = cfq_back_max;
  2991. cfqd->cfq_back_penalty = cfq_back_penalty;
  2992. cfqd->cfq_slice[0] = cfq_slice_async;
  2993. cfqd->cfq_slice[1] = cfq_slice_sync;
  2994. cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
  2995. cfqd->cfq_slice_idle = cfq_slice_idle;
  2996. cfqd->cfq_group_idle = cfq_group_idle;
  2997. cfqd->cfq_latency = 1;
  2998. cfqd->hw_tag = -1;
  2999. /*
  3000. * we optimistically start assuming sync ops weren't delayed in last
  3001. * second, in order to have larger depth for async operations.
  3002. */
  3003. cfqd->last_delayed_sync = jiffies - HZ;
  3004. return 0;
  3005. }
  3006. /*
  3007. * sysfs parts below -->
  3008. */
  3009. static ssize_t
  3010. cfq_var_show(unsigned int var, char *page)
  3011. {
  3012. return sprintf(page, "%d\n", var);
  3013. }
  3014. static ssize_t
  3015. cfq_var_store(unsigned int *var, const char *page, size_t count)
  3016. {
  3017. char *p = (char *) page;
  3018. *var = simple_strtoul(p, &p, 10);
  3019. return count;
  3020. }
  3021. #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
  3022. static ssize_t __FUNC(struct elevator_queue *e, char *page) \
  3023. { \
  3024. struct cfq_data *cfqd = e->elevator_data; \
  3025. unsigned int __data = __VAR; \
  3026. if (__CONV) \
  3027. __data = jiffies_to_msecs(__data); \
  3028. return cfq_var_show(__data, (page)); \
  3029. }
  3030. SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
  3031. SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
  3032. SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
  3033. SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
  3034. SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
  3035. SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
  3036. SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
  3037. SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
  3038. SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
  3039. SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
  3040. SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
  3041. #undef SHOW_FUNCTION
  3042. #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
  3043. static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
  3044. { \
  3045. struct cfq_data *cfqd = e->elevator_data; \
  3046. unsigned int __data; \
  3047. int ret = cfq_var_store(&__data, (page), count); \
  3048. if (__data < (MIN)) \
  3049. __data = (MIN); \
  3050. else if (__data > (MAX)) \
  3051. __data = (MAX); \
  3052. if (__CONV) \
  3053. *(__PTR) = msecs_to_jiffies(__data); \
  3054. else \
  3055. *(__PTR) = __data; \
  3056. return ret; \
  3057. }
  3058. STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
  3059. STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
  3060. UINT_MAX, 1);
  3061. STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
  3062. UINT_MAX, 1);
  3063. STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
  3064. STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
  3065. UINT_MAX, 0);
  3066. STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
  3067. STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
  3068. STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
  3069. STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
  3070. STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
  3071. UINT_MAX, 0);
  3072. STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
  3073. #undef STORE_FUNCTION
  3074. #define CFQ_ATTR(name) \
  3075. __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
  3076. static struct elv_fs_entry cfq_attrs[] = {
  3077. CFQ_ATTR(quantum),
  3078. CFQ_ATTR(fifo_expire_sync),
  3079. CFQ_ATTR(fifo_expire_async),
  3080. CFQ_ATTR(back_seek_max),
  3081. CFQ_ATTR(back_seek_penalty),
  3082. CFQ_ATTR(slice_sync),
  3083. CFQ_ATTR(slice_async),
  3084. CFQ_ATTR(slice_async_rq),
  3085. CFQ_ATTR(slice_idle),
  3086. CFQ_ATTR(group_idle),
  3087. CFQ_ATTR(low_latency),
  3088. __ATTR_NULL
  3089. };
  3090. static struct elevator_type iosched_cfq = {
  3091. .ops = {
  3092. .elevator_merge_fn = cfq_merge,
  3093. .elevator_merged_fn = cfq_merged_request,
  3094. .elevator_merge_req_fn = cfq_merged_requests,
  3095. .elevator_allow_merge_fn = cfq_allow_merge,
  3096. .elevator_bio_merged_fn = cfq_bio_merged,
  3097. .elevator_dispatch_fn = cfq_dispatch_requests,
  3098. .elevator_add_req_fn = cfq_insert_request,
  3099. .elevator_activate_req_fn = cfq_activate_request,
  3100. .elevator_deactivate_req_fn = cfq_deactivate_request,
  3101. .elevator_completed_req_fn = cfq_completed_request,
  3102. .elevator_former_req_fn = elv_rb_former_request,
  3103. .elevator_latter_req_fn = elv_rb_latter_request,
  3104. .elevator_init_icq_fn = cfq_init_icq,
  3105. .elevator_exit_icq_fn = cfq_exit_icq,
  3106. .elevator_set_req_fn = cfq_set_request,
  3107. .elevator_put_req_fn = cfq_put_request,
  3108. .elevator_may_queue_fn = cfq_may_queue,
  3109. .elevator_init_fn = cfq_init_queue,
  3110. .elevator_exit_fn = cfq_exit_queue,
  3111. },
  3112. .icq_size = sizeof(struct cfq_io_cq),
  3113. .icq_align = __alignof__(struct cfq_io_cq),
  3114. .elevator_attrs = cfq_attrs,
  3115. .elevator_name = "cfq",
  3116. .elevator_owner = THIS_MODULE,
  3117. };
  3118. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3119. static struct blkio_policy_type blkio_policy_cfq = {
  3120. .ops = {
  3121. .blkio_init_group_fn = cfq_init_blkio_group,
  3122. .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
  3123. },
  3124. .plid = BLKIO_POLICY_PROP,
  3125. .pdata_size = sizeof(struct cfq_group),
  3126. };
  3127. #endif
  3128. static int __init cfq_init(void)
  3129. {
  3130. int ret;
  3131. /*
  3132. * could be 0 on HZ < 1000 setups
  3133. */
  3134. if (!cfq_slice_async)
  3135. cfq_slice_async = 1;
  3136. if (!cfq_slice_idle)
  3137. cfq_slice_idle = 1;
  3138. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3139. if (!cfq_group_idle)
  3140. cfq_group_idle = 1;
  3141. #else
  3142. cfq_group_idle = 0;
  3143. #endif
  3144. cfq_pool = KMEM_CACHE(cfq_queue, 0);
  3145. if (!cfq_pool)
  3146. return -ENOMEM;
  3147. ret = elv_register(&iosched_cfq);
  3148. if (ret) {
  3149. kmem_cache_destroy(cfq_pool);
  3150. return ret;
  3151. }
  3152. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3153. blkio_policy_register(&blkio_policy_cfq);
  3154. #endif
  3155. return 0;
  3156. }
  3157. static void __exit cfq_exit(void)
  3158. {
  3159. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3160. blkio_policy_unregister(&blkio_policy_cfq);
  3161. #endif
  3162. elv_unregister(&iosched_cfq);
  3163. kmem_cache_destroy(cfq_pool);
  3164. }
  3165. module_init(cfq_init);
  3166. module_exit(cfq_exit);
  3167. MODULE_AUTHOR("Jens Axboe");
  3168. MODULE_LICENSE("GPL");
  3169. MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");