xfs_buf.c 44 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949
  1. /*
  2. * Copyright (c) 2000-2005 Silicon Graphics, Inc. All Rights Reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or modify it
  5. * under the terms of version 2 of the GNU General Public License as
  6. * published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it would be useful, but
  9. * WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  11. *
  12. * Further, this software is distributed without any warranty that it is
  13. * free of the rightful claim of any third person regarding infringement
  14. * or the like. Any license provided herein, whether implied or
  15. * otherwise, applies only to this software file. Patent licenses, if
  16. * any, provided herein do not apply to combinations of this program with
  17. * other software, or any other product whatsoever.
  18. *
  19. * You should have received a copy of the GNU General Public License along
  20. * with this program; if not, write the Free Software Foundation, Inc., 59
  21. * Temple Place - Suite 330, Boston MA 02111-1307, USA.
  22. *
  23. * Contact information: Silicon Graphics, Inc., 1600 Amphitheatre Pkwy,
  24. * Mountain View, CA 94043, or:
  25. *
  26. * http://www.sgi.com
  27. *
  28. * For further information regarding this notice, see:
  29. *
  30. * http://oss.sgi.com/projects/GenInfo/SGIGPLNoticeExplan/
  31. */
  32. /*
  33. * The xfs_buf.c code provides an abstract buffer cache model on top
  34. * of the Linux page cache. Cached metadata blocks for a file system
  35. * are hashed to the inode for the block device. xfs_buf.c assembles
  36. * buffers (xfs_buf_t) on demand to aggregate such cached pages for I/O.
  37. *
  38. * Written by Steve Lord, Jim Mostek, Russell Cattelan
  39. * and Rajagopal Ananthanarayanan ("ananth") at SGI.
  40. *
  41. */
  42. #include <linux/stddef.h>
  43. #include <linux/errno.h>
  44. #include <linux/slab.h>
  45. #include <linux/pagemap.h>
  46. #include <linux/init.h>
  47. #include <linux/vmalloc.h>
  48. #include <linux/bio.h>
  49. #include <linux/sysctl.h>
  50. #include <linux/proc_fs.h>
  51. #include <linux/workqueue.h>
  52. #include <linux/percpu.h>
  53. #include <linux/blkdev.h>
  54. #include <linux/hash.h>
  55. #include <linux/kthread.h>
  56. #include "xfs_linux.h"
  57. /*
  58. * File wide globals
  59. */
  60. STATIC kmem_cache_t *pagebuf_zone;
  61. STATIC kmem_shaker_t pagebuf_shake;
  62. STATIC int xfsbufd_wakeup(int, gfp_t);
  63. STATIC void pagebuf_delwri_queue(xfs_buf_t *, int);
  64. STATIC struct workqueue_struct *xfslogd_workqueue;
  65. struct workqueue_struct *xfsdatad_workqueue;
  66. /*
  67. * Pagebuf debugging
  68. */
  69. #ifdef PAGEBUF_TRACE
  70. void
  71. pagebuf_trace(
  72. xfs_buf_t *pb,
  73. char *id,
  74. void *data,
  75. void *ra)
  76. {
  77. ktrace_enter(pagebuf_trace_buf,
  78. pb, id,
  79. (void *)(unsigned long)pb->pb_flags,
  80. (void *)(unsigned long)pb->pb_hold.counter,
  81. (void *)(unsigned long)pb->pb_sema.count.counter,
  82. (void *)current,
  83. data, ra,
  84. (void *)(unsigned long)((pb->pb_file_offset>>32) & 0xffffffff),
  85. (void *)(unsigned long)(pb->pb_file_offset & 0xffffffff),
  86. (void *)(unsigned long)pb->pb_buffer_length,
  87. NULL, NULL, NULL, NULL, NULL);
  88. }
  89. ktrace_t *pagebuf_trace_buf;
  90. #define PAGEBUF_TRACE_SIZE 4096
  91. #define PB_TRACE(pb, id, data) \
  92. pagebuf_trace(pb, id, (void *)data, (void *)__builtin_return_address(0))
  93. #else
  94. #define PB_TRACE(pb, id, data) do { } while (0)
  95. #endif
  96. #ifdef PAGEBUF_LOCK_TRACKING
  97. # define PB_SET_OWNER(pb) ((pb)->pb_last_holder = current->pid)
  98. # define PB_CLEAR_OWNER(pb) ((pb)->pb_last_holder = -1)
  99. # define PB_GET_OWNER(pb) ((pb)->pb_last_holder)
  100. #else
  101. # define PB_SET_OWNER(pb) do { } while (0)
  102. # define PB_CLEAR_OWNER(pb) do { } while (0)
  103. # define PB_GET_OWNER(pb) do { } while (0)
  104. #endif
  105. /*
  106. * Pagebuf allocation / freeing.
  107. */
  108. #define pb_to_gfp(flags) \
  109. ((((flags) & PBF_READ_AHEAD) ? __GFP_NORETRY : \
  110. ((flags) & PBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
  111. #define pb_to_km(flags) \
  112. (((flags) & PBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
  113. #define pagebuf_allocate(flags) \
  114. kmem_zone_alloc(pagebuf_zone, pb_to_km(flags))
  115. #define pagebuf_deallocate(pb) \
  116. kmem_zone_free(pagebuf_zone, (pb));
  117. /*
  118. * Page Region interfaces.
  119. *
  120. * For pages in filesystems where the blocksize is smaller than the
  121. * pagesize, we use the page->private field (long) to hold a bitmap
  122. * of uptodate regions within the page.
  123. *
  124. * Each such region is "bytes per page / bits per long" bytes long.
  125. *
  126. * NBPPR == number-of-bytes-per-page-region
  127. * BTOPR == bytes-to-page-region (rounded up)
  128. * BTOPRT == bytes-to-page-region-truncated (rounded down)
  129. */
  130. #if (BITS_PER_LONG == 32)
  131. #define PRSHIFT (PAGE_CACHE_SHIFT - 5) /* (32 == 1<<5) */
  132. #elif (BITS_PER_LONG == 64)
  133. #define PRSHIFT (PAGE_CACHE_SHIFT - 6) /* (64 == 1<<6) */
  134. #else
  135. #error BITS_PER_LONG must be 32 or 64
  136. #endif
  137. #define NBPPR (PAGE_CACHE_SIZE/BITS_PER_LONG)
  138. #define BTOPR(b) (((unsigned int)(b) + (NBPPR - 1)) >> PRSHIFT)
  139. #define BTOPRT(b) (((unsigned int)(b) >> PRSHIFT))
  140. STATIC unsigned long
  141. page_region_mask(
  142. size_t offset,
  143. size_t length)
  144. {
  145. unsigned long mask;
  146. int first, final;
  147. first = BTOPR(offset);
  148. final = BTOPRT(offset + length - 1);
  149. first = min(first, final);
  150. mask = ~0UL;
  151. mask <<= BITS_PER_LONG - (final - first);
  152. mask >>= BITS_PER_LONG - (final);
  153. ASSERT(offset + length <= PAGE_CACHE_SIZE);
  154. ASSERT((final - first) < BITS_PER_LONG && (final - first) >= 0);
  155. return mask;
  156. }
  157. STATIC inline void
  158. set_page_region(
  159. struct page *page,
  160. size_t offset,
  161. size_t length)
  162. {
  163. set_page_private(page,
  164. page_private(page) | page_region_mask(offset, length));
  165. if (page_private(page) == ~0UL)
  166. SetPageUptodate(page);
  167. }
  168. STATIC inline int
  169. test_page_region(
  170. struct page *page,
  171. size_t offset,
  172. size_t length)
  173. {
  174. unsigned long mask = page_region_mask(offset, length);
  175. return (mask && (page_private(page) & mask) == mask);
  176. }
  177. /*
  178. * Mapping of multi-page buffers into contiguous virtual space
  179. */
  180. typedef struct a_list {
  181. void *vm_addr;
  182. struct a_list *next;
  183. } a_list_t;
  184. STATIC a_list_t *as_free_head;
  185. STATIC int as_list_len;
  186. STATIC DEFINE_SPINLOCK(as_lock);
  187. /*
  188. * Try to batch vunmaps because they are costly.
  189. */
  190. STATIC void
  191. free_address(
  192. void *addr)
  193. {
  194. a_list_t *aentry;
  195. aentry = kmalloc(sizeof(a_list_t), GFP_ATOMIC & ~__GFP_HIGH);
  196. if (likely(aentry)) {
  197. spin_lock(&as_lock);
  198. aentry->next = as_free_head;
  199. aentry->vm_addr = addr;
  200. as_free_head = aentry;
  201. as_list_len++;
  202. spin_unlock(&as_lock);
  203. } else {
  204. vunmap(addr);
  205. }
  206. }
  207. STATIC void
  208. purge_addresses(void)
  209. {
  210. a_list_t *aentry, *old;
  211. if (as_free_head == NULL)
  212. return;
  213. spin_lock(&as_lock);
  214. aentry = as_free_head;
  215. as_free_head = NULL;
  216. as_list_len = 0;
  217. spin_unlock(&as_lock);
  218. while ((old = aentry) != NULL) {
  219. vunmap(aentry->vm_addr);
  220. aentry = aentry->next;
  221. kfree(old);
  222. }
  223. }
  224. /*
  225. * Internal pagebuf object manipulation
  226. */
  227. STATIC void
  228. _pagebuf_initialize(
  229. xfs_buf_t *pb,
  230. xfs_buftarg_t *target,
  231. loff_t range_base,
  232. size_t range_length,
  233. page_buf_flags_t flags)
  234. {
  235. /*
  236. * We don't want certain flags to appear in pb->pb_flags.
  237. */
  238. flags &= ~(PBF_LOCK|PBF_MAPPED|PBF_DONT_BLOCK|PBF_READ_AHEAD);
  239. memset(pb, 0, sizeof(xfs_buf_t));
  240. atomic_set(&pb->pb_hold, 1);
  241. init_MUTEX_LOCKED(&pb->pb_iodonesema);
  242. INIT_LIST_HEAD(&pb->pb_list);
  243. INIT_LIST_HEAD(&pb->pb_hash_list);
  244. init_MUTEX_LOCKED(&pb->pb_sema); /* held, no waiters */
  245. PB_SET_OWNER(pb);
  246. pb->pb_target = target;
  247. pb->pb_file_offset = range_base;
  248. /*
  249. * Set buffer_length and count_desired to the same value initially.
  250. * I/O routines should use count_desired, which will be the same in
  251. * most cases but may be reset (e.g. XFS recovery).
  252. */
  253. pb->pb_buffer_length = pb->pb_count_desired = range_length;
  254. pb->pb_flags = flags;
  255. pb->pb_bn = XFS_BUF_DADDR_NULL;
  256. atomic_set(&pb->pb_pin_count, 0);
  257. init_waitqueue_head(&pb->pb_waiters);
  258. XFS_STATS_INC(pb_create);
  259. PB_TRACE(pb, "initialize", target);
  260. }
  261. /*
  262. * Allocate a page array capable of holding a specified number
  263. * of pages, and point the page buf at it.
  264. */
  265. STATIC int
  266. _pagebuf_get_pages(
  267. xfs_buf_t *pb,
  268. int page_count,
  269. page_buf_flags_t flags)
  270. {
  271. /* Make sure that we have a page list */
  272. if (pb->pb_pages == NULL) {
  273. pb->pb_offset = page_buf_poff(pb->pb_file_offset);
  274. pb->pb_page_count = page_count;
  275. if (page_count <= PB_PAGES) {
  276. pb->pb_pages = pb->pb_page_array;
  277. } else {
  278. pb->pb_pages = kmem_alloc(sizeof(struct page *) *
  279. page_count, pb_to_km(flags));
  280. if (pb->pb_pages == NULL)
  281. return -ENOMEM;
  282. }
  283. memset(pb->pb_pages, 0, sizeof(struct page *) * page_count);
  284. }
  285. return 0;
  286. }
  287. /*
  288. * Frees pb_pages if it was malloced.
  289. */
  290. STATIC void
  291. _pagebuf_free_pages(
  292. xfs_buf_t *bp)
  293. {
  294. if (bp->pb_pages != bp->pb_page_array) {
  295. kmem_free(bp->pb_pages,
  296. bp->pb_page_count * sizeof(struct page *));
  297. }
  298. }
  299. /*
  300. * Releases the specified buffer.
  301. *
  302. * The modification state of any associated pages is left unchanged.
  303. * The buffer most not be on any hash - use pagebuf_rele instead for
  304. * hashed and refcounted buffers
  305. */
  306. void
  307. pagebuf_free(
  308. xfs_buf_t *bp)
  309. {
  310. PB_TRACE(bp, "free", 0);
  311. ASSERT(list_empty(&bp->pb_hash_list));
  312. if (bp->pb_flags & _PBF_PAGE_CACHE) {
  313. uint i;
  314. if ((bp->pb_flags & PBF_MAPPED) && (bp->pb_page_count > 1))
  315. free_address(bp->pb_addr - bp->pb_offset);
  316. for (i = 0; i < bp->pb_page_count; i++)
  317. page_cache_release(bp->pb_pages[i]);
  318. _pagebuf_free_pages(bp);
  319. } else if (bp->pb_flags & _PBF_KMEM_ALLOC) {
  320. /*
  321. * XXX(hch): bp->pb_count_desired might be incorrect (see
  322. * pagebuf_associate_memory for details), but fortunately
  323. * the Linux version of kmem_free ignores the len argument..
  324. */
  325. kmem_free(bp->pb_addr, bp->pb_count_desired);
  326. _pagebuf_free_pages(bp);
  327. }
  328. pagebuf_deallocate(bp);
  329. }
  330. /*
  331. * Finds all pages for buffer in question and builds it's page list.
  332. */
  333. STATIC int
  334. _pagebuf_lookup_pages(
  335. xfs_buf_t *bp,
  336. uint flags)
  337. {
  338. struct address_space *mapping = bp->pb_target->pbr_mapping;
  339. size_t blocksize = bp->pb_target->pbr_bsize;
  340. size_t size = bp->pb_count_desired;
  341. size_t nbytes, offset;
  342. gfp_t gfp_mask = pb_to_gfp(flags);
  343. unsigned short page_count, i;
  344. pgoff_t first;
  345. loff_t end;
  346. int error;
  347. end = bp->pb_file_offset + bp->pb_buffer_length;
  348. page_count = page_buf_btoc(end) - page_buf_btoct(bp->pb_file_offset);
  349. error = _pagebuf_get_pages(bp, page_count, flags);
  350. if (unlikely(error))
  351. return error;
  352. bp->pb_flags |= _PBF_PAGE_CACHE;
  353. offset = bp->pb_offset;
  354. first = bp->pb_file_offset >> PAGE_CACHE_SHIFT;
  355. for (i = 0; i < bp->pb_page_count; i++) {
  356. struct page *page;
  357. uint retries = 0;
  358. retry:
  359. page = find_or_create_page(mapping, first + i, gfp_mask);
  360. if (unlikely(page == NULL)) {
  361. if (flags & PBF_READ_AHEAD) {
  362. bp->pb_page_count = i;
  363. for (i = 0; i < bp->pb_page_count; i++)
  364. unlock_page(bp->pb_pages[i]);
  365. return -ENOMEM;
  366. }
  367. /*
  368. * This could deadlock.
  369. *
  370. * But until all the XFS lowlevel code is revamped to
  371. * handle buffer allocation failures we can't do much.
  372. */
  373. if (!(++retries % 100))
  374. printk(KERN_ERR
  375. "XFS: possible memory allocation "
  376. "deadlock in %s (mode:0x%x)\n",
  377. __FUNCTION__, gfp_mask);
  378. XFS_STATS_INC(pb_page_retries);
  379. xfsbufd_wakeup(0, gfp_mask);
  380. blk_congestion_wait(WRITE, HZ/50);
  381. goto retry;
  382. }
  383. XFS_STATS_INC(pb_page_found);
  384. nbytes = min_t(size_t, size, PAGE_CACHE_SIZE - offset);
  385. size -= nbytes;
  386. if (!PageUptodate(page)) {
  387. page_count--;
  388. if (blocksize >= PAGE_CACHE_SIZE) {
  389. if (flags & PBF_READ)
  390. bp->pb_locked = 1;
  391. } else if (!PagePrivate(page)) {
  392. if (test_page_region(page, offset, nbytes))
  393. page_count++;
  394. }
  395. }
  396. bp->pb_pages[i] = page;
  397. offset = 0;
  398. }
  399. if (!bp->pb_locked) {
  400. for (i = 0; i < bp->pb_page_count; i++)
  401. unlock_page(bp->pb_pages[i]);
  402. }
  403. if (page_count == bp->pb_page_count)
  404. bp->pb_flags |= PBF_DONE;
  405. PB_TRACE(bp, "lookup_pages", (long)page_count);
  406. return error;
  407. }
  408. /*
  409. * Map buffer into kernel address-space if nessecary.
  410. */
  411. STATIC int
  412. _pagebuf_map_pages(
  413. xfs_buf_t *bp,
  414. uint flags)
  415. {
  416. /* A single page buffer is always mappable */
  417. if (bp->pb_page_count == 1) {
  418. bp->pb_addr = page_address(bp->pb_pages[0]) + bp->pb_offset;
  419. bp->pb_flags |= PBF_MAPPED;
  420. } else if (flags & PBF_MAPPED) {
  421. if (as_list_len > 64)
  422. purge_addresses();
  423. bp->pb_addr = vmap(bp->pb_pages, bp->pb_page_count,
  424. VM_MAP, PAGE_KERNEL);
  425. if (unlikely(bp->pb_addr == NULL))
  426. return -ENOMEM;
  427. bp->pb_addr += bp->pb_offset;
  428. bp->pb_flags |= PBF_MAPPED;
  429. }
  430. return 0;
  431. }
  432. /*
  433. * Finding and Reading Buffers
  434. */
  435. /*
  436. * _pagebuf_find
  437. *
  438. * Looks up, and creates if absent, a lockable buffer for
  439. * a given range of an inode. The buffer is returned
  440. * locked. If other overlapping buffers exist, they are
  441. * released before the new buffer is created and locked,
  442. * which may imply that this call will block until those buffers
  443. * are unlocked. No I/O is implied by this call.
  444. */
  445. xfs_buf_t *
  446. _pagebuf_find(
  447. xfs_buftarg_t *btp, /* block device target */
  448. loff_t ioff, /* starting offset of range */
  449. size_t isize, /* length of range */
  450. page_buf_flags_t flags, /* PBF_TRYLOCK */
  451. xfs_buf_t *new_pb)/* newly allocated buffer */
  452. {
  453. loff_t range_base;
  454. size_t range_length;
  455. xfs_bufhash_t *hash;
  456. xfs_buf_t *pb, *n;
  457. range_base = (ioff << BBSHIFT);
  458. range_length = (isize << BBSHIFT);
  459. /* Check for IOs smaller than the sector size / not sector aligned */
  460. ASSERT(!(range_length < (1 << btp->pbr_sshift)));
  461. ASSERT(!(range_base & (loff_t)btp->pbr_smask));
  462. hash = &btp->bt_hash[hash_long((unsigned long)ioff, btp->bt_hashshift)];
  463. spin_lock(&hash->bh_lock);
  464. list_for_each_entry_safe(pb, n, &hash->bh_list, pb_hash_list) {
  465. ASSERT(btp == pb->pb_target);
  466. if (pb->pb_file_offset == range_base &&
  467. pb->pb_buffer_length == range_length) {
  468. /*
  469. * If we look at something bring it to the
  470. * front of the list for next time.
  471. */
  472. atomic_inc(&pb->pb_hold);
  473. list_move(&pb->pb_hash_list, &hash->bh_list);
  474. goto found;
  475. }
  476. }
  477. /* No match found */
  478. if (new_pb) {
  479. _pagebuf_initialize(new_pb, btp, range_base,
  480. range_length, flags);
  481. new_pb->pb_hash = hash;
  482. list_add(&new_pb->pb_hash_list, &hash->bh_list);
  483. } else {
  484. XFS_STATS_INC(pb_miss_locked);
  485. }
  486. spin_unlock(&hash->bh_lock);
  487. return new_pb;
  488. found:
  489. spin_unlock(&hash->bh_lock);
  490. /* Attempt to get the semaphore without sleeping,
  491. * if this does not work then we need to drop the
  492. * spinlock and do a hard attempt on the semaphore.
  493. */
  494. if (down_trylock(&pb->pb_sema)) {
  495. if (!(flags & PBF_TRYLOCK)) {
  496. /* wait for buffer ownership */
  497. PB_TRACE(pb, "get_lock", 0);
  498. pagebuf_lock(pb);
  499. XFS_STATS_INC(pb_get_locked_waited);
  500. } else {
  501. /* We asked for a trylock and failed, no need
  502. * to look at file offset and length here, we
  503. * know that this pagebuf at least overlaps our
  504. * pagebuf and is locked, therefore our buffer
  505. * either does not exist, or is this buffer
  506. */
  507. pagebuf_rele(pb);
  508. XFS_STATS_INC(pb_busy_locked);
  509. return (NULL);
  510. }
  511. } else {
  512. /* trylock worked */
  513. PB_SET_OWNER(pb);
  514. }
  515. if (pb->pb_flags & PBF_STALE) {
  516. ASSERT((pb->pb_flags & _PBF_DELWRI_Q) == 0);
  517. pb->pb_flags &= PBF_MAPPED;
  518. }
  519. PB_TRACE(pb, "got_lock", 0);
  520. XFS_STATS_INC(pb_get_locked);
  521. return (pb);
  522. }
  523. /*
  524. * xfs_buf_get_flags assembles a buffer covering the specified range.
  525. *
  526. * Storage in memory for all portions of the buffer will be allocated,
  527. * although backing storage may not be.
  528. */
  529. xfs_buf_t *
  530. xfs_buf_get_flags( /* allocate a buffer */
  531. xfs_buftarg_t *target,/* target for buffer */
  532. loff_t ioff, /* starting offset of range */
  533. size_t isize, /* length of range */
  534. page_buf_flags_t flags) /* PBF_TRYLOCK */
  535. {
  536. xfs_buf_t *pb, *new_pb;
  537. int error = 0, i;
  538. new_pb = pagebuf_allocate(flags);
  539. if (unlikely(!new_pb))
  540. return NULL;
  541. pb = _pagebuf_find(target, ioff, isize, flags, new_pb);
  542. if (pb == new_pb) {
  543. error = _pagebuf_lookup_pages(pb, flags);
  544. if (error)
  545. goto no_buffer;
  546. } else {
  547. pagebuf_deallocate(new_pb);
  548. if (unlikely(pb == NULL))
  549. return NULL;
  550. }
  551. for (i = 0; i < pb->pb_page_count; i++)
  552. mark_page_accessed(pb->pb_pages[i]);
  553. if (!(pb->pb_flags & PBF_MAPPED)) {
  554. error = _pagebuf_map_pages(pb, flags);
  555. if (unlikely(error)) {
  556. printk(KERN_WARNING "%s: failed to map pages\n",
  557. __FUNCTION__);
  558. goto no_buffer;
  559. }
  560. }
  561. XFS_STATS_INC(pb_get);
  562. /*
  563. * Always fill in the block number now, the mapped cases can do
  564. * their own overlay of this later.
  565. */
  566. pb->pb_bn = ioff;
  567. pb->pb_count_desired = pb->pb_buffer_length;
  568. PB_TRACE(pb, "get", (unsigned long)flags);
  569. return pb;
  570. no_buffer:
  571. if (flags & (PBF_LOCK | PBF_TRYLOCK))
  572. pagebuf_unlock(pb);
  573. pagebuf_rele(pb);
  574. return NULL;
  575. }
  576. xfs_buf_t *
  577. xfs_buf_read_flags(
  578. xfs_buftarg_t *target,
  579. loff_t ioff,
  580. size_t isize,
  581. page_buf_flags_t flags)
  582. {
  583. xfs_buf_t *pb;
  584. flags |= PBF_READ;
  585. pb = xfs_buf_get_flags(target, ioff, isize, flags);
  586. if (pb) {
  587. if (!XFS_BUF_ISDONE(pb)) {
  588. PB_TRACE(pb, "read", (unsigned long)flags);
  589. XFS_STATS_INC(pb_get_read);
  590. pagebuf_iostart(pb, flags);
  591. } else if (flags & PBF_ASYNC) {
  592. PB_TRACE(pb, "read_async", (unsigned long)flags);
  593. /*
  594. * Read ahead call which is already satisfied,
  595. * drop the buffer
  596. */
  597. goto no_buffer;
  598. } else {
  599. PB_TRACE(pb, "read_done", (unsigned long)flags);
  600. /* We do not want read in the flags */
  601. pb->pb_flags &= ~PBF_READ;
  602. }
  603. }
  604. return pb;
  605. no_buffer:
  606. if (flags & (PBF_LOCK | PBF_TRYLOCK))
  607. pagebuf_unlock(pb);
  608. pagebuf_rele(pb);
  609. return NULL;
  610. }
  611. /*
  612. * If we are not low on memory then do the readahead in a deadlock
  613. * safe manner.
  614. */
  615. void
  616. pagebuf_readahead(
  617. xfs_buftarg_t *target,
  618. loff_t ioff,
  619. size_t isize,
  620. page_buf_flags_t flags)
  621. {
  622. struct backing_dev_info *bdi;
  623. bdi = target->pbr_mapping->backing_dev_info;
  624. if (bdi_read_congested(bdi))
  625. return;
  626. flags |= (PBF_TRYLOCK|PBF_ASYNC|PBF_READ_AHEAD);
  627. xfs_buf_read_flags(target, ioff, isize, flags);
  628. }
  629. xfs_buf_t *
  630. pagebuf_get_empty(
  631. size_t len,
  632. xfs_buftarg_t *target)
  633. {
  634. xfs_buf_t *pb;
  635. pb = pagebuf_allocate(0);
  636. if (pb)
  637. _pagebuf_initialize(pb, target, 0, len, 0);
  638. return pb;
  639. }
  640. static inline struct page *
  641. mem_to_page(
  642. void *addr)
  643. {
  644. if (((unsigned long)addr < VMALLOC_START) ||
  645. ((unsigned long)addr >= VMALLOC_END)) {
  646. return virt_to_page(addr);
  647. } else {
  648. return vmalloc_to_page(addr);
  649. }
  650. }
  651. int
  652. pagebuf_associate_memory(
  653. xfs_buf_t *pb,
  654. void *mem,
  655. size_t len)
  656. {
  657. int rval;
  658. int i = 0;
  659. size_t ptr;
  660. size_t end, end_cur;
  661. off_t offset;
  662. int page_count;
  663. page_count = PAGE_CACHE_ALIGN(len) >> PAGE_CACHE_SHIFT;
  664. offset = (off_t) mem - ((off_t)mem & PAGE_CACHE_MASK);
  665. if (offset && (len > PAGE_CACHE_SIZE))
  666. page_count++;
  667. /* Free any previous set of page pointers */
  668. if (pb->pb_pages)
  669. _pagebuf_free_pages(pb);
  670. pb->pb_pages = NULL;
  671. pb->pb_addr = mem;
  672. rval = _pagebuf_get_pages(pb, page_count, 0);
  673. if (rval)
  674. return rval;
  675. pb->pb_offset = offset;
  676. ptr = (size_t) mem & PAGE_CACHE_MASK;
  677. end = PAGE_CACHE_ALIGN((size_t) mem + len);
  678. end_cur = end;
  679. /* set up first page */
  680. pb->pb_pages[0] = mem_to_page(mem);
  681. ptr += PAGE_CACHE_SIZE;
  682. pb->pb_page_count = ++i;
  683. while (ptr < end) {
  684. pb->pb_pages[i] = mem_to_page((void *)ptr);
  685. pb->pb_page_count = ++i;
  686. ptr += PAGE_CACHE_SIZE;
  687. }
  688. pb->pb_locked = 0;
  689. pb->pb_count_desired = pb->pb_buffer_length = len;
  690. pb->pb_flags |= PBF_MAPPED;
  691. return 0;
  692. }
  693. xfs_buf_t *
  694. pagebuf_get_no_daddr(
  695. size_t len,
  696. xfs_buftarg_t *target)
  697. {
  698. size_t malloc_len = len;
  699. xfs_buf_t *bp;
  700. void *data;
  701. int error;
  702. bp = pagebuf_allocate(0);
  703. if (unlikely(bp == NULL))
  704. goto fail;
  705. _pagebuf_initialize(bp, target, 0, len, 0);
  706. try_again:
  707. data = kmem_alloc(malloc_len, KM_SLEEP | KM_MAYFAIL);
  708. if (unlikely(data == NULL))
  709. goto fail_free_buf;
  710. /* check whether alignment matches.. */
  711. if ((__psunsigned_t)data !=
  712. ((__psunsigned_t)data & ~target->pbr_smask)) {
  713. /* .. else double the size and try again */
  714. kmem_free(data, malloc_len);
  715. malloc_len <<= 1;
  716. goto try_again;
  717. }
  718. error = pagebuf_associate_memory(bp, data, len);
  719. if (error)
  720. goto fail_free_mem;
  721. bp->pb_flags |= _PBF_KMEM_ALLOC;
  722. pagebuf_unlock(bp);
  723. PB_TRACE(bp, "no_daddr", data);
  724. return bp;
  725. fail_free_mem:
  726. kmem_free(data, malloc_len);
  727. fail_free_buf:
  728. pagebuf_free(bp);
  729. fail:
  730. return NULL;
  731. }
  732. /*
  733. * pagebuf_hold
  734. *
  735. * Increment reference count on buffer, to hold the buffer concurrently
  736. * with another thread which may release (free) the buffer asynchronously.
  737. *
  738. * Must hold the buffer already to call this function.
  739. */
  740. void
  741. pagebuf_hold(
  742. xfs_buf_t *pb)
  743. {
  744. atomic_inc(&pb->pb_hold);
  745. PB_TRACE(pb, "hold", 0);
  746. }
  747. /*
  748. * pagebuf_rele
  749. *
  750. * pagebuf_rele releases a hold on the specified buffer. If the
  751. * the hold count is 1, pagebuf_rele calls pagebuf_free.
  752. */
  753. void
  754. pagebuf_rele(
  755. xfs_buf_t *pb)
  756. {
  757. xfs_bufhash_t *hash = pb->pb_hash;
  758. PB_TRACE(pb, "rele", pb->pb_relse);
  759. /*
  760. * pagebuf_lookup buffers are not hashed, not delayed write,
  761. * and don't have their own release routines. Special case.
  762. */
  763. if (unlikely(!hash)) {
  764. ASSERT(!pb->pb_relse);
  765. if (atomic_dec_and_test(&pb->pb_hold))
  766. xfs_buf_free(pb);
  767. return;
  768. }
  769. if (atomic_dec_and_lock(&pb->pb_hold, &hash->bh_lock)) {
  770. int do_free = 1;
  771. if (pb->pb_relse) {
  772. atomic_inc(&pb->pb_hold);
  773. spin_unlock(&hash->bh_lock);
  774. (*(pb->pb_relse)) (pb);
  775. spin_lock(&hash->bh_lock);
  776. do_free = 0;
  777. }
  778. if (pb->pb_flags & PBF_FS_MANAGED) {
  779. do_free = 0;
  780. }
  781. if (do_free) {
  782. ASSERT((pb->pb_flags & (PBF_DELWRI|_PBF_DELWRI_Q)) == 0);
  783. list_del_init(&pb->pb_hash_list);
  784. spin_unlock(&hash->bh_lock);
  785. pagebuf_free(pb);
  786. } else {
  787. spin_unlock(&hash->bh_lock);
  788. }
  789. } else {
  790. /*
  791. * Catch reference count leaks
  792. */
  793. ASSERT(atomic_read(&pb->pb_hold) >= 0);
  794. }
  795. }
  796. /*
  797. * Mutual exclusion on buffers. Locking model:
  798. *
  799. * Buffers associated with inodes for which buffer locking
  800. * is not enabled are not protected by semaphores, and are
  801. * assumed to be exclusively owned by the caller. There is a
  802. * spinlock in the buffer, used by the caller when concurrent
  803. * access is possible.
  804. */
  805. /*
  806. * pagebuf_cond_lock
  807. *
  808. * pagebuf_cond_lock locks a buffer object, if it is not already locked.
  809. * Note that this in no way
  810. * locks the underlying pages, so it is only useful for synchronizing
  811. * concurrent use of page buffer objects, not for synchronizing independent
  812. * access to the underlying pages.
  813. */
  814. int
  815. pagebuf_cond_lock( /* lock buffer, if not locked */
  816. /* returns -EBUSY if locked) */
  817. xfs_buf_t *pb)
  818. {
  819. int locked;
  820. locked = down_trylock(&pb->pb_sema) == 0;
  821. if (locked) {
  822. PB_SET_OWNER(pb);
  823. }
  824. PB_TRACE(pb, "cond_lock", (long)locked);
  825. return(locked ? 0 : -EBUSY);
  826. }
  827. #if defined(DEBUG) || defined(XFS_BLI_TRACE)
  828. /*
  829. * pagebuf_lock_value
  830. *
  831. * Return lock value for a pagebuf
  832. */
  833. int
  834. pagebuf_lock_value(
  835. xfs_buf_t *pb)
  836. {
  837. return(atomic_read(&pb->pb_sema.count));
  838. }
  839. #endif
  840. /*
  841. * pagebuf_lock
  842. *
  843. * pagebuf_lock locks a buffer object. Note that this in no way
  844. * locks the underlying pages, so it is only useful for synchronizing
  845. * concurrent use of page buffer objects, not for synchronizing independent
  846. * access to the underlying pages.
  847. */
  848. int
  849. pagebuf_lock(
  850. xfs_buf_t *pb)
  851. {
  852. PB_TRACE(pb, "lock", 0);
  853. if (atomic_read(&pb->pb_io_remaining))
  854. blk_run_address_space(pb->pb_target->pbr_mapping);
  855. down(&pb->pb_sema);
  856. PB_SET_OWNER(pb);
  857. PB_TRACE(pb, "locked", 0);
  858. return 0;
  859. }
  860. /*
  861. * pagebuf_unlock
  862. *
  863. * pagebuf_unlock releases the lock on the buffer object created by
  864. * pagebuf_lock or pagebuf_cond_lock (not any pinning of underlying pages
  865. * created by pagebuf_pin).
  866. *
  867. * If the buffer is marked delwri but is not queued, do so before we
  868. * unlock the buffer as we need to set flags correctly. We also need to
  869. * take a reference for the delwri queue because the unlocker is going to
  870. * drop their's and they don't know we just queued it.
  871. */
  872. void
  873. pagebuf_unlock( /* unlock buffer */
  874. xfs_buf_t *pb) /* buffer to unlock */
  875. {
  876. if ((pb->pb_flags & (PBF_DELWRI|_PBF_DELWRI_Q)) == PBF_DELWRI) {
  877. atomic_inc(&pb->pb_hold);
  878. pb->pb_flags |= PBF_ASYNC;
  879. pagebuf_delwri_queue(pb, 0);
  880. }
  881. PB_CLEAR_OWNER(pb);
  882. up(&pb->pb_sema);
  883. PB_TRACE(pb, "unlock", 0);
  884. }
  885. /*
  886. * Pinning Buffer Storage in Memory
  887. */
  888. /*
  889. * pagebuf_pin
  890. *
  891. * pagebuf_pin locks all of the memory represented by a buffer in
  892. * memory. Multiple calls to pagebuf_pin and pagebuf_unpin, for
  893. * the same or different buffers affecting a given page, will
  894. * properly count the number of outstanding "pin" requests. The
  895. * buffer may be released after the pagebuf_pin and a different
  896. * buffer used when calling pagebuf_unpin, if desired.
  897. * pagebuf_pin should be used by the file system when it wants be
  898. * assured that no attempt will be made to force the affected
  899. * memory to disk. It does not assure that a given logical page
  900. * will not be moved to a different physical page.
  901. */
  902. void
  903. pagebuf_pin(
  904. xfs_buf_t *pb)
  905. {
  906. atomic_inc(&pb->pb_pin_count);
  907. PB_TRACE(pb, "pin", (long)pb->pb_pin_count.counter);
  908. }
  909. /*
  910. * pagebuf_unpin
  911. *
  912. * pagebuf_unpin reverses the locking of memory performed by
  913. * pagebuf_pin. Note that both functions affected the logical
  914. * pages associated with the buffer, not the buffer itself.
  915. */
  916. void
  917. pagebuf_unpin(
  918. xfs_buf_t *pb)
  919. {
  920. if (atomic_dec_and_test(&pb->pb_pin_count)) {
  921. wake_up_all(&pb->pb_waiters);
  922. }
  923. PB_TRACE(pb, "unpin", (long)pb->pb_pin_count.counter);
  924. }
  925. int
  926. pagebuf_ispin(
  927. xfs_buf_t *pb)
  928. {
  929. return atomic_read(&pb->pb_pin_count);
  930. }
  931. /*
  932. * pagebuf_wait_unpin
  933. *
  934. * pagebuf_wait_unpin waits until all of the memory associated
  935. * with the buffer is not longer locked in memory. It returns
  936. * immediately if none of the affected pages are locked.
  937. */
  938. static inline void
  939. _pagebuf_wait_unpin(
  940. xfs_buf_t *pb)
  941. {
  942. DECLARE_WAITQUEUE (wait, current);
  943. if (atomic_read(&pb->pb_pin_count) == 0)
  944. return;
  945. add_wait_queue(&pb->pb_waiters, &wait);
  946. for (;;) {
  947. set_current_state(TASK_UNINTERRUPTIBLE);
  948. if (atomic_read(&pb->pb_pin_count) == 0)
  949. break;
  950. if (atomic_read(&pb->pb_io_remaining))
  951. blk_run_address_space(pb->pb_target->pbr_mapping);
  952. schedule();
  953. }
  954. remove_wait_queue(&pb->pb_waiters, &wait);
  955. set_current_state(TASK_RUNNING);
  956. }
  957. /*
  958. * Buffer Utility Routines
  959. */
  960. /*
  961. * pagebuf_iodone
  962. *
  963. * pagebuf_iodone marks a buffer for which I/O is in progress
  964. * done with respect to that I/O. The pb_iodone routine, if
  965. * present, will be called as a side-effect.
  966. */
  967. STATIC void
  968. pagebuf_iodone_work(
  969. void *v)
  970. {
  971. xfs_buf_t *bp = (xfs_buf_t *)v;
  972. if (bp->pb_iodone)
  973. (*(bp->pb_iodone))(bp);
  974. else if (bp->pb_flags & PBF_ASYNC)
  975. xfs_buf_relse(bp);
  976. }
  977. void
  978. pagebuf_iodone(
  979. xfs_buf_t *pb,
  980. int schedule)
  981. {
  982. pb->pb_flags &= ~(PBF_READ | PBF_WRITE);
  983. if (pb->pb_error == 0)
  984. pb->pb_flags |= PBF_DONE;
  985. PB_TRACE(pb, "iodone", pb->pb_iodone);
  986. if ((pb->pb_iodone) || (pb->pb_flags & PBF_ASYNC)) {
  987. if (schedule) {
  988. INIT_WORK(&pb->pb_iodone_work, pagebuf_iodone_work, pb);
  989. queue_work(xfslogd_workqueue, &pb->pb_iodone_work);
  990. } else {
  991. pagebuf_iodone_work(pb);
  992. }
  993. } else {
  994. up(&pb->pb_iodonesema);
  995. }
  996. }
  997. /*
  998. * pagebuf_ioerror
  999. *
  1000. * pagebuf_ioerror sets the error code for a buffer.
  1001. */
  1002. void
  1003. pagebuf_ioerror( /* mark/clear buffer error flag */
  1004. xfs_buf_t *pb, /* buffer to mark */
  1005. int error) /* error to store (0 if none) */
  1006. {
  1007. ASSERT(error >= 0 && error <= 0xffff);
  1008. pb->pb_error = (unsigned short)error;
  1009. PB_TRACE(pb, "ioerror", (unsigned long)error);
  1010. }
  1011. /*
  1012. * pagebuf_iostart
  1013. *
  1014. * pagebuf_iostart initiates I/O on a buffer, based on the flags supplied.
  1015. * If necessary, it will arrange for any disk space allocation required,
  1016. * and it will break up the request if the block mappings require it.
  1017. * The pb_iodone routine in the buffer supplied will only be called
  1018. * when all of the subsidiary I/O requests, if any, have been completed.
  1019. * pagebuf_iostart calls the pagebuf_ioinitiate routine or
  1020. * pagebuf_iorequest, if the former routine is not defined, to start
  1021. * the I/O on a given low-level request.
  1022. */
  1023. int
  1024. pagebuf_iostart( /* start I/O on a buffer */
  1025. xfs_buf_t *pb, /* buffer to start */
  1026. page_buf_flags_t flags) /* PBF_LOCK, PBF_ASYNC, PBF_READ, */
  1027. /* PBF_WRITE, PBF_DELWRI, */
  1028. /* PBF_DONT_BLOCK */
  1029. {
  1030. int status = 0;
  1031. PB_TRACE(pb, "iostart", (unsigned long)flags);
  1032. if (flags & PBF_DELWRI) {
  1033. pb->pb_flags &= ~(PBF_READ | PBF_WRITE | PBF_ASYNC);
  1034. pb->pb_flags |= flags & (PBF_DELWRI | PBF_ASYNC);
  1035. pagebuf_delwri_queue(pb, 1);
  1036. return status;
  1037. }
  1038. pb->pb_flags &= ~(PBF_READ | PBF_WRITE | PBF_ASYNC | PBF_DELWRI | \
  1039. PBF_READ_AHEAD | _PBF_RUN_QUEUES);
  1040. pb->pb_flags |= flags & (PBF_READ | PBF_WRITE | PBF_ASYNC | \
  1041. PBF_READ_AHEAD | _PBF_RUN_QUEUES);
  1042. BUG_ON(pb->pb_bn == XFS_BUF_DADDR_NULL);
  1043. /* For writes allow an alternate strategy routine to precede
  1044. * the actual I/O request (which may not be issued at all in
  1045. * a shutdown situation, for example).
  1046. */
  1047. status = (flags & PBF_WRITE) ?
  1048. pagebuf_iostrategy(pb) : pagebuf_iorequest(pb);
  1049. /* Wait for I/O if we are not an async request.
  1050. * Note: async I/O request completion will release the buffer,
  1051. * and that can already be done by this point. So using the
  1052. * buffer pointer from here on, after async I/O, is invalid.
  1053. */
  1054. if (!status && !(flags & PBF_ASYNC))
  1055. status = pagebuf_iowait(pb);
  1056. return status;
  1057. }
  1058. /*
  1059. * Helper routine for pagebuf_iorequest
  1060. */
  1061. STATIC __inline__ int
  1062. _pagebuf_iolocked(
  1063. xfs_buf_t *pb)
  1064. {
  1065. ASSERT(pb->pb_flags & (PBF_READ|PBF_WRITE));
  1066. if (pb->pb_flags & PBF_READ)
  1067. return pb->pb_locked;
  1068. return 0;
  1069. }
  1070. STATIC __inline__ void
  1071. _pagebuf_iodone(
  1072. xfs_buf_t *pb,
  1073. int schedule)
  1074. {
  1075. if (atomic_dec_and_test(&pb->pb_io_remaining) == 1) {
  1076. pb->pb_locked = 0;
  1077. pagebuf_iodone(pb, schedule);
  1078. }
  1079. }
  1080. STATIC int
  1081. bio_end_io_pagebuf(
  1082. struct bio *bio,
  1083. unsigned int bytes_done,
  1084. int error)
  1085. {
  1086. xfs_buf_t *pb = (xfs_buf_t *)bio->bi_private;
  1087. unsigned int blocksize = pb->pb_target->pbr_bsize;
  1088. struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
  1089. if (bio->bi_size)
  1090. return 1;
  1091. if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
  1092. pb->pb_error = EIO;
  1093. do {
  1094. struct page *page = bvec->bv_page;
  1095. if (unlikely(pb->pb_error)) {
  1096. if (pb->pb_flags & PBF_READ)
  1097. ClearPageUptodate(page);
  1098. SetPageError(page);
  1099. } else if (blocksize == PAGE_CACHE_SIZE) {
  1100. SetPageUptodate(page);
  1101. } else if (!PagePrivate(page) &&
  1102. (pb->pb_flags & _PBF_PAGE_CACHE)) {
  1103. set_page_region(page, bvec->bv_offset, bvec->bv_len);
  1104. }
  1105. if (--bvec >= bio->bi_io_vec)
  1106. prefetchw(&bvec->bv_page->flags);
  1107. if (_pagebuf_iolocked(pb)) {
  1108. unlock_page(page);
  1109. }
  1110. } while (bvec >= bio->bi_io_vec);
  1111. _pagebuf_iodone(pb, 1);
  1112. bio_put(bio);
  1113. return 0;
  1114. }
  1115. STATIC void
  1116. _pagebuf_ioapply(
  1117. xfs_buf_t *pb)
  1118. {
  1119. int i, rw, map_i, total_nr_pages, nr_pages;
  1120. struct bio *bio;
  1121. int offset = pb->pb_offset;
  1122. int size = pb->pb_count_desired;
  1123. sector_t sector = pb->pb_bn;
  1124. unsigned int blocksize = pb->pb_target->pbr_bsize;
  1125. int locking = _pagebuf_iolocked(pb);
  1126. total_nr_pages = pb->pb_page_count;
  1127. map_i = 0;
  1128. if (pb->pb_flags & _PBF_RUN_QUEUES) {
  1129. pb->pb_flags &= ~_PBF_RUN_QUEUES;
  1130. rw = (pb->pb_flags & PBF_READ) ? READ_SYNC : WRITE_SYNC;
  1131. } else {
  1132. rw = (pb->pb_flags & PBF_READ) ? READ : WRITE;
  1133. }
  1134. if (pb->pb_flags & PBF_ORDERED) {
  1135. ASSERT(!(pb->pb_flags & PBF_READ));
  1136. rw = WRITE_BARRIER;
  1137. }
  1138. /* Special code path for reading a sub page size pagebuf in --
  1139. * we populate up the whole page, and hence the other metadata
  1140. * in the same page. This optimization is only valid when the
  1141. * filesystem block size and the page size are equal.
  1142. */
  1143. if ((pb->pb_buffer_length < PAGE_CACHE_SIZE) &&
  1144. (pb->pb_flags & PBF_READ) && locking &&
  1145. (blocksize == PAGE_CACHE_SIZE)) {
  1146. bio = bio_alloc(GFP_NOIO, 1);
  1147. bio->bi_bdev = pb->pb_target->pbr_bdev;
  1148. bio->bi_sector = sector - (offset >> BBSHIFT);
  1149. bio->bi_end_io = bio_end_io_pagebuf;
  1150. bio->bi_private = pb;
  1151. bio_add_page(bio, pb->pb_pages[0], PAGE_CACHE_SIZE, 0);
  1152. size = 0;
  1153. atomic_inc(&pb->pb_io_remaining);
  1154. goto submit_io;
  1155. }
  1156. /* Lock down the pages which we need to for the request */
  1157. if (locking && (pb->pb_flags & PBF_WRITE) && (pb->pb_locked == 0)) {
  1158. for (i = 0; size; i++) {
  1159. int nbytes = PAGE_CACHE_SIZE - offset;
  1160. struct page *page = pb->pb_pages[i];
  1161. if (nbytes > size)
  1162. nbytes = size;
  1163. lock_page(page);
  1164. size -= nbytes;
  1165. offset = 0;
  1166. }
  1167. offset = pb->pb_offset;
  1168. size = pb->pb_count_desired;
  1169. }
  1170. next_chunk:
  1171. atomic_inc(&pb->pb_io_remaining);
  1172. nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
  1173. if (nr_pages > total_nr_pages)
  1174. nr_pages = total_nr_pages;
  1175. bio = bio_alloc(GFP_NOIO, nr_pages);
  1176. bio->bi_bdev = pb->pb_target->pbr_bdev;
  1177. bio->bi_sector = sector;
  1178. bio->bi_end_io = bio_end_io_pagebuf;
  1179. bio->bi_private = pb;
  1180. for (; size && nr_pages; nr_pages--, map_i++) {
  1181. int nbytes = PAGE_CACHE_SIZE - offset;
  1182. if (nbytes > size)
  1183. nbytes = size;
  1184. if (bio_add_page(bio, pb->pb_pages[map_i],
  1185. nbytes, offset) < nbytes)
  1186. break;
  1187. offset = 0;
  1188. sector += nbytes >> BBSHIFT;
  1189. size -= nbytes;
  1190. total_nr_pages--;
  1191. }
  1192. submit_io:
  1193. if (likely(bio->bi_size)) {
  1194. submit_bio(rw, bio);
  1195. if (size)
  1196. goto next_chunk;
  1197. } else {
  1198. bio_put(bio);
  1199. pagebuf_ioerror(pb, EIO);
  1200. }
  1201. }
  1202. /*
  1203. * pagebuf_iorequest -- the core I/O request routine.
  1204. */
  1205. int
  1206. pagebuf_iorequest( /* start real I/O */
  1207. xfs_buf_t *pb) /* buffer to convey to device */
  1208. {
  1209. PB_TRACE(pb, "iorequest", 0);
  1210. if (pb->pb_flags & PBF_DELWRI) {
  1211. pagebuf_delwri_queue(pb, 1);
  1212. return 0;
  1213. }
  1214. if (pb->pb_flags & PBF_WRITE) {
  1215. _pagebuf_wait_unpin(pb);
  1216. }
  1217. pagebuf_hold(pb);
  1218. /* Set the count to 1 initially, this will stop an I/O
  1219. * completion callout which happens before we have started
  1220. * all the I/O from calling pagebuf_iodone too early.
  1221. */
  1222. atomic_set(&pb->pb_io_remaining, 1);
  1223. _pagebuf_ioapply(pb);
  1224. _pagebuf_iodone(pb, 0);
  1225. pagebuf_rele(pb);
  1226. return 0;
  1227. }
  1228. /*
  1229. * pagebuf_iowait
  1230. *
  1231. * pagebuf_iowait waits for I/O to complete on the buffer supplied.
  1232. * It returns immediately if no I/O is pending. In any case, it returns
  1233. * the error code, if any, or 0 if there is no error.
  1234. */
  1235. int
  1236. pagebuf_iowait(
  1237. xfs_buf_t *pb)
  1238. {
  1239. PB_TRACE(pb, "iowait", 0);
  1240. if (atomic_read(&pb->pb_io_remaining))
  1241. blk_run_address_space(pb->pb_target->pbr_mapping);
  1242. down(&pb->pb_iodonesema);
  1243. PB_TRACE(pb, "iowaited", (long)pb->pb_error);
  1244. return pb->pb_error;
  1245. }
  1246. caddr_t
  1247. pagebuf_offset(
  1248. xfs_buf_t *pb,
  1249. size_t offset)
  1250. {
  1251. struct page *page;
  1252. offset += pb->pb_offset;
  1253. page = pb->pb_pages[offset >> PAGE_CACHE_SHIFT];
  1254. return (caddr_t) page_address(page) + (offset & (PAGE_CACHE_SIZE - 1));
  1255. }
  1256. /*
  1257. * pagebuf_iomove
  1258. *
  1259. * Move data into or out of a buffer.
  1260. */
  1261. void
  1262. pagebuf_iomove(
  1263. xfs_buf_t *pb, /* buffer to process */
  1264. size_t boff, /* starting buffer offset */
  1265. size_t bsize, /* length to copy */
  1266. caddr_t data, /* data address */
  1267. page_buf_rw_t mode) /* read/write flag */
  1268. {
  1269. size_t bend, cpoff, csize;
  1270. struct page *page;
  1271. bend = boff + bsize;
  1272. while (boff < bend) {
  1273. page = pb->pb_pages[page_buf_btoct(boff + pb->pb_offset)];
  1274. cpoff = page_buf_poff(boff + pb->pb_offset);
  1275. csize = min_t(size_t,
  1276. PAGE_CACHE_SIZE-cpoff, pb->pb_count_desired-boff);
  1277. ASSERT(((csize + cpoff) <= PAGE_CACHE_SIZE));
  1278. switch (mode) {
  1279. case PBRW_ZERO:
  1280. memset(page_address(page) + cpoff, 0, csize);
  1281. break;
  1282. case PBRW_READ:
  1283. memcpy(data, page_address(page) + cpoff, csize);
  1284. break;
  1285. case PBRW_WRITE:
  1286. memcpy(page_address(page) + cpoff, data, csize);
  1287. }
  1288. boff += csize;
  1289. data += csize;
  1290. }
  1291. }
  1292. /*
  1293. * Handling of buftargs.
  1294. */
  1295. /*
  1296. * Wait for any bufs with callbacks that have been submitted but
  1297. * have not yet returned... walk the hash list for the target.
  1298. */
  1299. void
  1300. xfs_wait_buftarg(
  1301. xfs_buftarg_t *btp)
  1302. {
  1303. xfs_buf_t *bp, *n;
  1304. xfs_bufhash_t *hash;
  1305. uint i;
  1306. for (i = 0; i < (1 << btp->bt_hashshift); i++) {
  1307. hash = &btp->bt_hash[i];
  1308. again:
  1309. spin_lock(&hash->bh_lock);
  1310. list_for_each_entry_safe(bp, n, &hash->bh_list, pb_hash_list) {
  1311. ASSERT(btp == bp->pb_target);
  1312. if (!(bp->pb_flags & PBF_FS_MANAGED)) {
  1313. spin_unlock(&hash->bh_lock);
  1314. /*
  1315. * Catch superblock reference count leaks
  1316. * immediately
  1317. */
  1318. BUG_ON(bp->pb_bn == 0);
  1319. delay(100);
  1320. goto again;
  1321. }
  1322. }
  1323. spin_unlock(&hash->bh_lock);
  1324. }
  1325. }
  1326. /*
  1327. * Allocate buffer hash table for a given target.
  1328. * For devices containing metadata (i.e. not the log/realtime devices)
  1329. * we need to allocate a much larger hash table.
  1330. */
  1331. STATIC void
  1332. xfs_alloc_bufhash(
  1333. xfs_buftarg_t *btp,
  1334. int external)
  1335. {
  1336. unsigned int i;
  1337. btp->bt_hashshift = external ? 3 : 8; /* 8 or 256 buckets */
  1338. btp->bt_hashmask = (1 << btp->bt_hashshift) - 1;
  1339. btp->bt_hash = kmem_zalloc((1 << btp->bt_hashshift) *
  1340. sizeof(xfs_bufhash_t), KM_SLEEP);
  1341. for (i = 0; i < (1 << btp->bt_hashshift); i++) {
  1342. spin_lock_init(&btp->bt_hash[i].bh_lock);
  1343. INIT_LIST_HEAD(&btp->bt_hash[i].bh_list);
  1344. }
  1345. }
  1346. STATIC void
  1347. xfs_free_bufhash(
  1348. xfs_buftarg_t *btp)
  1349. {
  1350. kmem_free(btp->bt_hash,
  1351. (1 << btp->bt_hashshift) * sizeof(xfs_bufhash_t));
  1352. btp->bt_hash = NULL;
  1353. }
  1354. void
  1355. xfs_free_buftarg(
  1356. xfs_buftarg_t *btp,
  1357. int external)
  1358. {
  1359. xfs_flush_buftarg(btp, 1);
  1360. if (external)
  1361. xfs_blkdev_put(btp->pbr_bdev);
  1362. xfs_free_bufhash(btp);
  1363. iput(btp->pbr_mapping->host);
  1364. kmem_free(btp, sizeof(*btp));
  1365. }
  1366. STATIC int
  1367. xfs_setsize_buftarg_flags(
  1368. xfs_buftarg_t *btp,
  1369. unsigned int blocksize,
  1370. unsigned int sectorsize,
  1371. int verbose)
  1372. {
  1373. btp->pbr_bsize = blocksize;
  1374. btp->pbr_sshift = ffs(sectorsize) - 1;
  1375. btp->pbr_smask = sectorsize - 1;
  1376. if (set_blocksize(btp->pbr_bdev, sectorsize)) {
  1377. printk(KERN_WARNING
  1378. "XFS: Cannot set_blocksize to %u on device %s\n",
  1379. sectorsize, XFS_BUFTARG_NAME(btp));
  1380. return EINVAL;
  1381. }
  1382. if (verbose &&
  1383. (PAGE_CACHE_SIZE / BITS_PER_LONG) > sectorsize) {
  1384. printk(KERN_WARNING
  1385. "XFS: %u byte sectors in use on device %s. "
  1386. "This is suboptimal; %u or greater is ideal.\n",
  1387. sectorsize, XFS_BUFTARG_NAME(btp),
  1388. (unsigned int)PAGE_CACHE_SIZE / BITS_PER_LONG);
  1389. }
  1390. return 0;
  1391. }
  1392. /*
  1393. * When allocating the initial buffer target we have not yet
  1394. * read in the superblock, so don't know what sized sectors
  1395. * are being used is at this early stage. Play safe.
  1396. */
  1397. STATIC int
  1398. xfs_setsize_buftarg_early(
  1399. xfs_buftarg_t *btp,
  1400. struct block_device *bdev)
  1401. {
  1402. return xfs_setsize_buftarg_flags(btp,
  1403. PAGE_CACHE_SIZE, bdev_hardsect_size(bdev), 0);
  1404. }
  1405. int
  1406. xfs_setsize_buftarg(
  1407. xfs_buftarg_t *btp,
  1408. unsigned int blocksize,
  1409. unsigned int sectorsize)
  1410. {
  1411. return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
  1412. }
  1413. STATIC int
  1414. xfs_mapping_buftarg(
  1415. xfs_buftarg_t *btp,
  1416. struct block_device *bdev)
  1417. {
  1418. struct backing_dev_info *bdi;
  1419. struct inode *inode;
  1420. struct address_space *mapping;
  1421. static struct address_space_operations mapping_aops = {
  1422. .sync_page = block_sync_page,
  1423. };
  1424. inode = new_inode(bdev->bd_inode->i_sb);
  1425. if (!inode) {
  1426. printk(KERN_WARNING
  1427. "XFS: Cannot allocate mapping inode for device %s\n",
  1428. XFS_BUFTARG_NAME(btp));
  1429. return ENOMEM;
  1430. }
  1431. inode->i_mode = S_IFBLK;
  1432. inode->i_bdev = bdev;
  1433. inode->i_rdev = bdev->bd_dev;
  1434. bdi = blk_get_backing_dev_info(bdev);
  1435. if (!bdi)
  1436. bdi = &default_backing_dev_info;
  1437. mapping = &inode->i_data;
  1438. mapping->a_ops = &mapping_aops;
  1439. mapping->backing_dev_info = bdi;
  1440. mapping_set_gfp_mask(mapping, GFP_NOFS);
  1441. btp->pbr_mapping = mapping;
  1442. return 0;
  1443. }
  1444. xfs_buftarg_t *
  1445. xfs_alloc_buftarg(
  1446. struct block_device *bdev,
  1447. int external)
  1448. {
  1449. xfs_buftarg_t *btp;
  1450. btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
  1451. btp->pbr_dev = bdev->bd_dev;
  1452. btp->pbr_bdev = bdev;
  1453. if (xfs_setsize_buftarg_early(btp, bdev))
  1454. goto error;
  1455. if (xfs_mapping_buftarg(btp, bdev))
  1456. goto error;
  1457. xfs_alloc_bufhash(btp, external);
  1458. return btp;
  1459. error:
  1460. kmem_free(btp, sizeof(*btp));
  1461. return NULL;
  1462. }
  1463. /*
  1464. * Pagebuf delayed write buffer handling
  1465. */
  1466. STATIC LIST_HEAD(pbd_delwrite_queue);
  1467. STATIC DEFINE_SPINLOCK(pbd_delwrite_lock);
  1468. STATIC void
  1469. pagebuf_delwri_queue(
  1470. xfs_buf_t *pb,
  1471. int unlock)
  1472. {
  1473. PB_TRACE(pb, "delwri_q", (long)unlock);
  1474. ASSERT((pb->pb_flags & (PBF_DELWRI|PBF_ASYNC)) ==
  1475. (PBF_DELWRI|PBF_ASYNC));
  1476. spin_lock(&pbd_delwrite_lock);
  1477. /* If already in the queue, dequeue and place at tail */
  1478. if (!list_empty(&pb->pb_list)) {
  1479. ASSERT(pb->pb_flags & _PBF_DELWRI_Q);
  1480. if (unlock) {
  1481. atomic_dec(&pb->pb_hold);
  1482. }
  1483. list_del(&pb->pb_list);
  1484. }
  1485. pb->pb_flags |= _PBF_DELWRI_Q;
  1486. list_add_tail(&pb->pb_list, &pbd_delwrite_queue);
  1487. pb->pb_queuetime = jiffies;
  1488. spin_unlock(&pbd_delwrite_lock);
  1489. if (unlock)
  1490. pagebuf_unlock(pb);
  1491. }
  1492. void
  1493. pagebuf_delwri_dequeue(
  1494. xfs_buf_t *pb)
  1495. {
  1496. int dequeued = 0;
  1497. spin_lock(&pbd_delwrite_lock);
  1498. if ((pb->pb_flags & PBF_DELWRI) && !list_empty(&pb->pb_list)) {
  1499. ASSERT(pb->pb_flags & _PBF_DELWRI_Q);
  1500. list_del_init(&pb->pb_list);
  1501. dequeued = 1;
  1502. }
  1503. pb->pb_flags &= ~(PBF_DELWRI|_PBF_DELWRI_Q);
  1504. spin_unlock(&pbd_delwrite_lock);
  1505. if (dequeued)
  1506. pagebuf_rele(pb);
  1507. PB_TRACE(pb, "delwri_dq", (long)dequeued);
  1508. }
  1509. STATIC void
  1510. pagebuf_runall_queues(
  1511. struct workqueue_struct *queue)
  1512. {
  1513. flush_workqueue(queue);
  1514. }
  1515. /* Defines for pagebuf daemon */
  1516. STATIC struct task_struct *xfsbufd_task;
  1517. STATIC int xfsbufd_force_flush;
  1518. STATIC int xfsbufd_force_sleep;
  1519. STATIC int
  1520. xfsbufd_wakeup(
  1521. int priority,
  1522. gfp_t mask)
  1523. {
  1524. if (xfsbufd_force_sleep)
  1525. return 0;
  1526. xfsbufd_force_flush = 1;
  1527. barrier();
  1528. wake_up_process(xfsbufd_task);
  1529. return 0;
  1530. }
  1531. STATIC int
  1532. xfsbufd(
  1533. void *data)
  1534. {
  1535. struct list_head tmp;
  1536. unsigned long age;
  1537. xfs_buftarg_t *target;
  1538. xfs_buf_t *pb, *n;
  1539. current->flags |= PF_MEMALLOC;
  1540. INIT_LIST_HEAD(&tmp);
  1541. do {
  1542. if (unlikely(freezing(current))) {
  1543. xfsbufd_force_sleep = 1;
  1544. refrigerator();
  1545. } else {
  1546. xfsbufd_force_sleep = 0;
  1547. }
  1548. schedule_timeout_interruptible
  1549. (xfs_buf_timer_centisecs * msecs_to_jiffies(10));
  1550. age = xfs_buf_age_centisecs * msecs_to_jiffies(10);
  1551. spin_lock(&pbd_delwrite_lock);
  1552. list_for_each_entry_safe(pb, n, &pbd_delwrite_queue, pb_list) {
  1553. PB_TRACE(pb, "walkq1", (long)pagebuf_ispin(pb));
  1554. ASSERT(pb->pb_flags & PBF_DELWRI);
  1555. if (!pagebuf_ispin(pb) && !pagebuf_cond_lock(pb)) {
  1556. if (!xfsbufd_force_flush &&
  1557. time_before(jiffies,
  1558. pb->pb_queuetime + age)) {
  1559. pagebuf_unlock(pb);
  1560. break;
  1561. }
  1562. pb->pb_flags &= ~(PBF_DELWRI|_PBF_DELWRI_Q);
  1563. pb->pb_flags |= PBF_WRITE;
  1564. list_move(&pb->pb_list, &tmp);
  1565. }
  1566. }
  1567. spin_unlock(&pbd_delwrite_lock);
  1568. while (!list_empty(&tmp)) {
  1569. pb = list_entry(tmp.next, xfs_buf_t, pb_list);
  1570. target = pb->pb_target;
  1571. list_del_init(&pb->pb_list);
  1572. pagebuf_iostrategy(pb);
  1573. blk_run_address_space(target->pbr_mapping);
  1574. }
  1575. if (as_list_len > 0)
  1576. purge_addresses();
  1577. xfsbufd_force_flush = 0;
  1578. } while (!kthread_should_stop());
  1579. return 0;
  1580. }
  1581. /*
  1582. * Go through all incore buffers, and release buffers if they belong to
  1583. * the given device. This is used in filesystem error handling to
  1584. * preserve the consistency of its metadata.
  1585. */
  1586. int
  1587. xfs_flush_buftarg(
  1588. xfs_buftarg_t *target,
  1589. int wait)
  1590. {
  1591. struct list_head tmp;
  1592. xfs_buf_t *pb, *n;
  1593. int pincount = 0;
  1594. pagebuf_runall_queues(xfsdatad_workqueue);
  1595. pagebuf_runall_queues(xfslogd_workqueue);
  1596. INIT_LIST_HEAD(&tmp);
  1597. spin_lock(&pbd_delwrite_lock);
  1598. list_for_each_entry_safe(pb, n, &pbd_delwrite_queue, pb_list) {
  1599. if (pb->pb_target != target)
  1600. continue;
  1601. ASSERT(pb->pb_flags & (PBF_DELWRI|_PBF_DELWRI_Q));
  1602. PB_TRACE(pb, "walkq2", (long)pagebuf_ispin(pb));
  1603. if (pagebuf_ispin(pb)) {
  1604. pincount++;
  1605. continue;
  1606. }
  1607. list_move(&pb->pb_list, &tmp);
  1608. }
  1609. spin_unlock(&pbd_delwrite_lock);
  1610. /*
  1611. * Dropped the delayed write list lock, now walk the temporary list
  1612. */
  1613. list_for_each_entry_safe(pb, n, &tmp, pb_list) {
  1614. pagebuf_lock(pb);
  1615. pb->pb_flags &= ~(PBF_DELWRI|_PBF_DELWRI_Q);
  1616. pb->pb_flags |= PBF_WRITE;
  1617. if (wait)
  1618. pb->pb_flags &= ~PBF_ASYNC;
  1619. else
  1620. list_del_init(&pb->pb_list);
  1621. pagebuf_iostrategy(pb);
  1622. }
  1623. /*
  1624. * Remaining list items must be flushed before returning
  1625. */
  1626. while (!list_empty(&tmp)) {
  1627. pb = list_entry(tmp.next, xfs_buf_t, pb_list);
  1628. list_del_init(&pb->pb_list);
  1629. xfs_iowait(pb);
  1630. xfs_buf_relse(pb);
  1631. }
  1632. if (wait)
  1633. blk_run_address_space(target->pbr_mapping);
  1634. return pincount;
  1635. }
  1636. int __init
  1637. pagebuf_init(void)
  1638. {
  1639. int error = -ENOMEM;
  1640. #ifdef PAGEBUF_TRACE
  1641. pagebuf_trace_buf = ktrace_alloc(PAGEBUF_TRACE_SIZE, KM_SLEEP);
  1642. #endif
  1643. pagebuf_zone = kmem_zone_init(sizeof(xfs_buf_t), "xfs_buf");
  1644. if (!pagebuf_zone)
  1645. goto out_free_trace_buf;
  1646. xfslogd_workqueue = create_workqueue("xfslogd");
  1647. if (!xfslogd_workqueue)
  1648. goto out_free_buf_zone;
  1649. xfsdatad_workqueue = create_workqueue("xfsdatad");
  1650. if (!xfsdatad_workqueue)
  1651. goto out_destroy_xfslogd_workqueue;
  1652. xfsbufd_task = kthread_run(xfsbufd, NULL, "xfsbufd");
  1653. if (IS_ERR(xfsbufd_task)) {
  1654. error = PTR_ERR(xfsbufd_task);
  1655. goto out_destroy_xfsdatad_workqueue;
  1656. }
  1657. pagebuf_shake = kmem_shake_register(xfsbufd_wakeup);
  1658. if (!pagebuf_shake)
  1659. goto out_stop_xfsbufd;
  1660. return 0;
  1661. out_stop_xfsbufd:
  1662. kthread_stop(xfsbufd_task);
  1663. out_destroy_xfsdatad_workqueue:
  1664. destroy_workqueue(xfsdatad_workqueue);
  1665. out_destroy_xfslogd_workqueue:
  1666. destroy_workqueue(xfslogd_workqueue);
  1667. out_free_buf_zone:
  1668. kmem_zone_destroy(pagebuf_zone);
  1669. out_free_trace_buf:
  1670. #ifdef PAGEBUF_TRACE
  1671. ktrace_free(pagebuf_trace_buf);
  1672. #endif
  1673. return error;
  1674. }
  1675. void
  1676. pagebuf_terminate(void)
  1677. {
  1678. kmem_shake_deregister(pagebuf_shake);
  1679. kthread_stop(xfsbufd_task);
  1680. destroy_workqueue(xfsdatad_workqueue);
  1681. destroy_workqueue(xfslogd_workqueue);
  1682. kmem_zone_destroy(pagebuf_zone);
  1683. #ifdef PAGEBUF_TRACE
  1684. ktrace_free(pagebuf_trace_buf);
  1685. #endif
  1686. }