xfs_log_recover.c 104 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864
  1. /*
  2. * Copyright (c) 2000-2006 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include "xfs.h"
  19. #include "xfs_fs.h"
  20. #include "xfs_types.h"
  21. #include "xfs_bit.h"
  22. #include "xfs_log.h"
  23. #include "xfs_inum.h"
  24. #include "xfs_trans.h"
  25. #include "xfs_sb.h"
  26. #include "xfs_ag.h"
  27. #include "xfs_mount.h"
  28. #include "xfs_error.h"
  29. #include "xfs_bmap_btree.h"
  30. #include "xfs_alloc_btree.h"
  31. #include "xfs_ialloc_btree.h"
  32. #include "xfs_dinode.h"
  33. #include "xfs_inode.h"
  34. #include "xfs_inode_item.h"
  35. #include "xfs_alloc.h"
  36. #include "xfs_ialloc.h"
  37. #include "xfs_log_priv.h"
  38. #include "xfs_buf_item.h"
  39. #include "xfs_log_recover.h"
  40. #include "xfs_extfree_item.h"
  41. #include "xfs_trans_priv.h"
  42. #include "xfs_quota.h"
  43. #include "xfs_rw.h"
  44. #include "xfs_utils.h"
  45. #include "xfs_trace.h"
  46. STATIC int xlog_find_zeroed(xlog_t *, xfs_daddr_t *);
  47. STATIC int xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t);
  48. #if defined(DEBUG)
  49. STATIC void xlog_recover_check_summary(xlog_t *);
  50. #else
  51. #define xlog_recover_check_summary(log)
  52. #endif
  53. /*
  54. * This structure is used during recovery to record the buf log items which
  55. * have been canceled and should not be replayed.
  56. */
  57. struct xfs_buf_cancel {
  58. xfs_daddr_t bc_blkno;
  59. uint bc_len;
  60. int bc_refcount;
  61. struct list_head bc_list;
  62. };
  63. /*
  64. * Sector aligned buffer routines for buffer create/read/write/access
  65. */
  66. /*
  67. * Verify the given count of basic blocks is valid number of blocks
  68. * to specify for an operation involving the given XFS log buffer.
  69. * Returns nonzero if the count is valid, 0 otherwise.
  70. */
  71. static inline int
  72. xlog_buf_bbcount_valid(
  73. xlog_t *log,
  74. int bbcount)
  75. {
  76. return bbcount > 0 && bbcount <= log->l_logBBsize;
  77. }
  78. /*
  79. * Allocate a buffer to hold log data. The buffer needs to be able
  80. * to map to a range of nbblks basic blocks at any valid (basic
  81. * block) offset within the log.
  82. */
  83. STATIC xfs_buf_t *
  84. xlog_get_bp(
  85. xlog_t *log,
  86. int nbblks)
  87. {
  88. struct xfs_buf *bp;
  89. if (!xlog_buf_bbcount_valid(log, nbblks)) {
  90. xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
  91. nbblks);
  92. XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
  93. return NULL;
  94. }
  95. /*
  96. * We do log I/O in units of log sectors (a power-of-2
  97. * multiple of the basic block size), so we round up the
  98. * requested size to accommodate the basic blocks required
  99. * for complete log sectors.
  100. *
  101. * In addition, the buffer may be used for a non-sector-
  102. * aligned block offset, in which case an I/O of the
  103. * requested size could extend beyond the end of the
  104. * buffer. If the requested size is only 1 basic block it
  105. * will never straddle a sector boundary, so this won't be
  106. * an issue. Nor will this be a problem if the log I/O is
  107. * done in basic blocks (sector size 1). But otherwise we
  108. * extend the buffer by one extra log sector to ensure
  109. * there's space to accommodate this possibility.
  110. */
  111. if (nbblks > 1 && log->l_sectBBsize > 1)
  112. nbblks += log->l_sectBBsize;
  113. nbblks = round_up(nbblks, log->l_sectBBsize);
  114. bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, BBTOB(nbblks), 0);
  115. if (bp)
  116. xfs_buf_unlock(bp);
  117. return bp;
  118. }
  119. STATIC void
  120. xlog_put_bp(
  121. xfs_buf_t *bp)
  122. {
  123. xfs_buf_free(bp);
  124. }
  125. /*
  126. * Return the address of the start of the given block number's data
  127. * in a log buffer. The buffer covers a log sector-aligned region.
  128. */
  129. STATIC xfs_caddr_t
  130. xlog_align(
  131. xlog_t *log,
  132. xfs_daddr_t blk_no,
  133. int nbblks,
  134. xfs_buf_t *bp)
  135. {
  136. xfs_daddr_t offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
  137. ASSERT(BBTOB(offset + nbblks) <= XFS_BUF_SIZE(bp));
  138. return bp->b_addr + BBTOB(offset);
  139. }
  140. /*
  141. * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
  142. */
  143. STATIC int
  144. xlog_bread_noalign(
  145. xlog_t *log,
  146. xfs_daddr_t blk_no,
  147. int nbblks,
  148. xfs_buf_t *bp)
  149. {
  150. int error;
  151. if (!xlog_buf_bbcount_valid(log, nbblks)) {
  152. xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
  153. nbblks);
  154. XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
  155. return EFSCORRUPTED;
  156. }
  157. blk_no = round_down(blk_no, log->l_sectBBsize);
  158. nbblks = round_up(nbblks, log->l_sectBBsize);
  159. ASSERT(nbblks > 0);
  160. ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
  161. XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
  162. XFS_BUF_READ(bp);
  163. XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
  164. xfsbdstrat(log->l_mp, bp);
  165. error = xfs_buf_iowait(bp);
  166. if (error)
  167. xfs_ioerror_alert("xlog_bread", log->l_mp,
  168. bp, XFS_BUF_ADDR(bp));
  169. return error;
  170. }
  171. STATIC int
  172. xlog_bread(
  173. xlog_t *log,
  174. xfs_daddr_t blk_no,
  175. int nbblks,
  176. xfs_buf_t *bp,
  177. xfs_caddr_t *offset)
  178. {
  179. int error;
  180. error = xlog_bread_noalign(log, blk_no, nbblks, bp);
  181. if (error)
  182. return error;
  183. *offset = xlog_align(log, blk_no, nbblks, bp);
  184. return 0;
  185. }
  186. /*
  187. * Read at an offset into the buffer. Returns with the buffer in it's original
  188. * state regardless of the result of the read.
  189. */
  190. STATIC int
  191. xlog_bread_offset(
  192. xlog_t *log,
  193. xfs_daddr_t blk_no, /* block to read from */
  194. int nbblks, /* blocks to read */
  195. xfs_buf_t *bp,
  196. xfs_caddr_t offset)
  197. {
  198. xfs_caddr_t orig_offset = bp->b_addr;
  199. int orig_len = bp->b_buffer_length;
  200. int error, error2;
  201. error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks));
  202. if (error)
  203. return error;
  204. error = xlog_bread_noalign(log, blk_no, nbblks, bp);
  205. /* must reset buffer pointer even on error */
  206. error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len);
  207. if (error)
  208. return error;
  209. return error2;
  210. }
  211. /*
  212. * Write out the buffer at the given block for the given number of blocks.
  213. * The buffer is kept locked across the write and is returned locked.
  214. * This can only be used for synchronous log writes.
  215. */
  216. STATIC int
  217. xlog_bwrite(
  218. xlog_t *log,
  219. xfs_daddr_t blk_no,
  220. int nbblks,
  221. xfs_buf_t *bp)
  222. {
  223. int error;
  224. if (!xlog_buf_bbcount_valid(log, nbblks)) {
  225. xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
  226. nbblks);
  227. XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
  228. return EFSCORRUPTED;
  229. }
  230. blk_no = round_down(blk_no, log->l_sectBBsize);
  231. nbblks = round_up(nbblks, log->l_sectBBsize);
  232. ASSERT(nbblks > 0);
  233. ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
  234. XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
  235. XFS_BUF_ZEROFLAGS(bp);
  236. xfs_buf_hold(bp);
  237. xfs_buf_lock(bp);
  238. XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
  239. error = xfs_bwrite(bp);
  240. if (error) {
  241. xfs_ioerror_alert("xlog_bwrite", log->l_mp,
  242. bp, XFS_BUF_ADDR(bp));
  243. }
  244. xfs_buf_relse(bp);
  245. return error;
  246. }
  247. #ifdef DEBUG
  248. /*
  249. * dump debug superblock and log record information
  250. */
  251. STATIC void
  252. xlog_header_check_dump(
  253. xfs_mount_t *mp,
  254. xlog_rec_header_t *head)
  255. {
  256. xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d\n",
  257. __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
  258. xfs_debug(mp, " log : uuid = %pU, fmt = %d\n",
  259. &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
  260. }
  261. #else
  262. #define xlog_header_check_dump(mp, head)
  263. #endif
  264. /*
  265. * check log record header for recovery
  266. */
  267. STATIC int
  268. xlog_header_check_recover(
  269. xfs_mount_t *mp,
  270. xlog_rec_header_t *head)
  271. {
  272. ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
  273. /*
  274. * IRIX doesn't write the h_fmt field and leaves it zeroed
  275. * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
  276. * a dirty log created in IRIX.
  277. */
  278. if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) {
  279. xfs_warn(mp,
  280. "dirty log written in incompatible format - can't recover");
  281. xlog_header_check_dump(mp, head);
  282. XFS_ERROR_REPORT("xlog_header_check_recover(1)",
  283. XFS_ERRLEVEL_HIGH, mp);
  284. return XFS_ERROR(EFSCORRUPTED);
  285. } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
  286. xfs_warn(mp,
  287. "dirty log entry has mismatched uuid - can't recover");
  288. xlog_header_check_dump(mp, head);
  289. XFS_ERROR_REPORT("xlog_header_check_recover(2)",
  290. XFS_ERRLEVEL_HIGH, mp);
  291. return XFS_ERROR(EFSCORRUPTED);
  292. }
  293. return 0;
  294. }
  295. /*
  296. * read the head block of the log and check the header
  297. */
  298. STATIC int
  299. xlog_header_check_mount(
  300. xfs_mount_t *mp,
  301. xlog_rec_header_t *head)
  302. {
  303. ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
  304. if (uuid_is_nil(&head->h_fs_uuid)) {
  305. /*
  306. * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
  307. * h_fs_uuid is nil, we assume this log was last mounted
  308. * by IRIX and continue.
  309. */
  310. xfs_warn(mp, "nil uuid in log - IRIX style log");
  311. } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
  312. xfs_warn(mp, "log has mismatched uuid - can't recover");
  313. xlog_header_check_dump(mp, head);
  314. XFS_ERROR_REPORT("xlog_header_check_mount",
  315. XFS_ERRLEVEL_HIGH, mp);
  316. return XFS_ERROR(EFSCORRUPTED);
  317. }
  318. return 0;
  319. }
  320. STATIC void
  321. xlog_recover_iodone(
  322. struct xfs_buf *bp)
  323. {
  324. if (bp->b_error) {
  325. /*
  326. * We're not going to bother about retrying
  327. * this during recovery. One strike!
  328. */
  329. xfs_ioerror_alert("xlog_recover_iodone",
  330. bp->b_target->bt_mount, bp,
  331. XFS_BUF_ADDR(bp));
  332. xfs_force_shutdown(bp->b_target->bt_mount,
  333. SHUTDOWN_META_IO_ERROR);
  334. }
  335. bp->b_iodone = NULL;
  336. xfs_buf_ioend(bp, 0);
  337. }
  338. /*
  339. * This routine finds (to an approximation) the first block in the physical
  340. * log which contains the given cycle. It uses a binary search algorithm.
  341. * Note that the algorithm can not be perfect because the disk will not
  342. * necessarily be perfect.
  343. */
  344. STATIC int
  345. xlog_find_cycle_start(
  346. xlog_t *log,
  347. xfs_buf_t *bp,
  348. xfs_daddr_t first_blk,
  349. xfs_daddr_t *last_blk,
  350. uint cycle)
  351. {
  352. xfs_caddr_t offset;
  353. xfs_daddr_t mid_blk;
  354. xfs_daddr_t end_blk;
  355. uint mid_cycle;
  356. int error;
  357. end_blk = *last_blk;
  358. mid_blk = BLK_AVG(first_blk, end_blk);
  359. while (mid_blk != first_blk && mid_blk != end_blk) {
  360. error = xlog_bread(log, mid_blk, 1, bp, &offset);
  361. if (error)
  362. return error;
  363. mid_cycle = xlog_get_cycle(offset);
  364. if (mid_cycle == cycle)
  365. end_blk = mid_blk; /* last_half_cycle == mid_cycle */
  366. else
  367. first_blk = mid_blk; /* first_half_cycle == mid_cycle */
  368. mid_blk = BLK_AVG(first_blk, end_blk);
  369. }
  370. ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
  371. (mid_blk == end_blk && mid_blk-1 == first_blk));
  372. *last_blk = end_blk;
  373. return 0;
  374. }
  375. /*
  376. * Check that a range of blocks does not contain stop_on_cycle_no.
  377. * Fill in *new_blk with the block offset where such a block is
  378. * found, or with -1 (an invalid block number) if there is no such
  379. * block in the range. The scan needs to occur from front to back
  380. * and the pointer into the region must be updated since a later
  381. * routine will need to perform another test.
  382. */
  383. STATIC int
  384. xlog_find_verify_cycle(
  385. xlog_t *log,
  386. xfs_daddr_t start_blk,
  387. int nbblks,
  388. uint stop_on_cycle_no,
  389. xfs_daddr_t *new_blk)
  390. {
  391. xfs_daddr_t i, j;
  392. uint cycle;
  393. xfs_buf_t *bp;
  394. xfs_daddr_t bufblks;
  395. xfs_caddr_t buf = NULL;
  396. int error = 0;
  397. /*
  398. * Greedily allocate a buffer big enough to handle the full
  399. * range of basic blocks we'll be examining. If that fails,
  400. * try a smaller size. We need to be able to read at least
  401. * a log sector, or we're out of luck.
  402. */
  403. bufblks = 1 << ffs(nbblks);
  404. while (!(bp = xlog_get_bp(log, bufblks))) {
  405. bufblks >>= 1;
  406. if (bufblks < log->l_sectBBsize)
  407. return ENOMEM;
  408. }
  409. for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
  410. int bcount;
  411. bcount = min(bufblks, (start_blk + nbblks - i));
  412. error = xlog_bread(log, i, bcount, bp, &buf);
  413. if (error)
  414. goto out;
  415. for (j = 0; j < bcount; j++) {
  416. cycle = xlog_get_cycle(buf);
  417. if (cycle == stop_on_cycle_no) {
  418. *new_blk = i+j;
  419. goto out;
  420. }
  421. buf += BBSIZE;
  422. }
  423. }
  424. *new_blk = -1;
  425. out:
  426. xlog_put_bp(bp);
  427. return error;
  428. }
  429. /*
  430. * Potentially backup over partial log record write.
  431. *
  432. * In the typical case, last_blk is the number of the block directly after
  433. * a good log record. Therefore, we subtract one to get the block number
  434. * of the last block in the given buffer. extra_bblks contains the number
  435. * of blocks we would have read on a previous read. This happens when the
  436. * last log record is split over the end of the physical log.
  437. *
  438. * extra_bblks is the number of blocks potentially verified on a previous
  439. * call to this routine.
  440. */
  441. STATIC int
  442. xlog_find_verify_log_record(
  443. xlog_t *log,
  444. xfs_daddr_t start_blk,
  445. xfs_daddr_t *last_blk,
  446. int extra_bblks)
  447. {
  448. xfs_daddr_t i;
  449. xfs_buf_t *bp;
  450. xfs_caddr_t offset = NULL;
  451. xlog_rec_header_t *head = NULL;
  452. int error = 0;
  453. int smallmem = 0;
  454. int num_blks = *last_blk - start_blk;
  455. int xhdrs;
  456. ASSERT(start_blk != 0 || *last_blk != start_blk);
  457. if (!(bp = xlog_get_bp(log, num_blks))) {
  458. if (!(bp = xlog_get_bp(log, 1)))
  459. return ENOMEM;
  460. smallmem = 1;
  461. } else {
  462. error = xlog_bread(log, start_blk, num_blks, bp, &offset);
  463. if (error)
  464. goto out;
  465. offset += ((num_blks - 1) << BBSHIFT);
  466. }
  467. for (i = (*last_blk) - 1; i >= 0; i--) {
  468. if (i < start_blk) {
  469. /* valid log record not found */
  470. xfs_warn(log->l_mp,
  471. "Log inconsistent (didn't find previous header)");
  472. ASSERT(0);
  473. error = XFS_ERROR(EIO);
  474. goto out;
  475. }
  476. if (smallmem) {
  477. error = xlog_bread(log, i, 1, bp, &offset);
  478. if (error)
  479. goto out;
  480. }
  481. head = (xlog_rec_header_t *)offset;
  482. if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
  483. break;
  484. if (!smallmem)
  485. offset -= BBSIZE;
  486. }
  487. /*
  488. * We hit the beginning of the physical log & still no header. Return
  489. * to caller. If caller can handle a return of -1, then this routine
  490. * will be called again for the end of the physical log.
  491. */
  492. if (i == -1) {
  493. error = -1;
  494. goto out;
  495. }
  496. /*
  497. * We have the final block of the good log (the first block
  498. * of the log record _before_ the head. So we check the uuid.
  499. */
  500. if ((error = xlog_header_check_mount(log->l_mp, head)))
  501. goto out;
  502. /*
  503. * We may have found a log record header before we expected one.
  504. * last_blk will be the 1st block # with a given cycle #. We may end
  505. * up reading an entire log record. In this case, we don't want to
  506. * reset last_blk. Only when last_blk points in the middle of a log
  507. * record do we update last_blk.
  508. */
  509. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  510. uint h_size = be32_to_cpu(head->h_size);
  511. xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
  512. if (h_size % XLOG_HEADER_CYCLE_SIZE)
  513. xhdrs++;
  514. } else {
  515. xhdrs = 1;
  516. }
  517. if (*last_blk - i + extra_bblks !=
  518. BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
  519. *last_blk = i;
  520. out:
  521. xlog_put_bp(bp);
  522. return error;
  523. }
  524. /*
  525. * Head is defined to be the point of the log where the next log write
  526. * write could go. This means that incomplete LR writes at the end are
  527. * eliminated when calculating the head. We aren't guaranteed that previous
  528. * LR have complete transactions. We only know that a cycle number of
  529. * current cycle number -1 won't be present in the log if we start writing
  530. * from our current block number.
  531. *
  532. * last_blk contains the block number of the first block with a given
  533. * cycle number.
  534. *
  535. * Return: zero if normal, non-zero if error.
  536. */
  537. STATIC int
  538. xlog_find_head(
  539. xlog_t *log,
  540. xfs_daddr_t *return_head_blk)
  541. {
  542. xfs_buf_t *bp;
  543. xfs_caddr_t offset;
  544. xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
  545. int num_scan_bblks;
  546. uint first_half_cycle, last_half_cycle;
  547. uint stop_on_cycle;
  548. int error, log_bbnum = log->l_logBBsize;
  549. /* Is the end of the log device zeroed? */
  550. if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
  551. *return_head_blk = first_blk;
  552. /* Is the whole lot zeroed? */
  553. if (!first_blk) {
  554. /* Linux XFS shouldn't generate totally zeroed logs -
  555. * mkfs etc write a dummy unmount record to a fresh
  556. * log so we can store the uuid in there
  557. */
  558. xfs_warn(log->l_mp, "totally zeroed log");
  559. }
  560. return 0;
  561. } else if (error) {
  562. xfs_warn(log->l_mp, "empty log check failed");
  563. return error;
  564. }
  565. first_blk = 0; /* get cycle # of 1st block */
  566. bp = xlog_get_bp(log, 1);
  567. if (!bp)
  568. return ENOMEM;
  569. error = xlog_bread(log, 0, 1, bp, &offset);
  570. if (error)
  571. goto bp_err;
  572. first_half_cycle = xlog_get_cycle(offset);
  573. last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
  574. error = xlog_bread(log, last_blk, 1, bp, &offset);
  575. if (error)
  576. goto bp_err;
  577. last_half_cycle = xlog_get_cycle(offset);
  578. ASSERT(last_half_cycle != 0);
  579. /*
  580. * If the 1st half cycle number is equal to the last half cycle number,
  581. * then the entire log is stamped with the same cycle number. In this
  582. * case, head_blk can't be set to zero (which makes sense). The below
  583. * math doesn't work out properly with head_blk equal to zero. Instead,
  584. * we set it to log_bbnum which is an invalid block number, but this
  585. * value makes the math correct. If head_blk doesn't changed through
  586. * all the tests below, *head_blk is set to zero at the very end rather
  587. * than log_bbnum. In a sense, log_bbnum and zero are the same block
  588. * in a circular file.
  589. */
  590. if (first_half_cycle == last_half_cycle) {
  591. /*
  592. * In this case we believe that the entire log should have
  593. * cycle number last_half_cycle. We need to scan backwards
  594. * from the end verifying that there are no holes still
  595. * containing last_half_cycle - 1. If we find such a hole,
  596. * then the start of that hole will be the new head. The
  597. * simple case looks like
  598. * x | x ... | x - 1 | x
  599. * Another case that fits this picture would be
  600. * x | x + 1 | x ... | x
  601. * In this case the head really is somewhere at the end of the
  602. * log, as one of the latest writes at the beginning was
  603. * incomplete.
  604. * One more case is
  605. * x | x + 1 | x ... | x - 1 | x
  606. * This is really the combination of the above two cases, and
  607. * the head has to end up at the start of the x-1 hole at the
  608. * end of the log.
  609. *
  610. * In the 256k log case, we will read from the beginning to the
  611. * end of the log and search for cycle numbers equal to x-1.
  612. * We don't worry about the x+1 blocks that we encounter,
  613. * because we know that they cannot be the head since the log
  614. * started with x.
  615. */
  616. head_blk = log_bbnum;
  617. stop_on_cycle = last_half_cycle - 1;
  618. } else {
  619. /*
  620. * In this case we want to find the first block with cycle
  621. * number matching last_half_cycle. We expect the log to be
  622. * some variation on
  623. * x + 1 ... | x ... | x
  624. * The first block with cycle number x (last_half_cycle) will
  625. * be where the new head belongs. First we do a binary search
  626. * for the first occurrence of last_half_cycle. The binary
  627. * search may not be totally accurate, so then we scan back
  628. * from there looking for occurrences of last_half_cycle before
  629. * us. If that backwards scan wraps around the beginning of
  630. * the log, then we look for occurrences of last_half_cycle - 1
  631. * at the end of the log. The cases we're looking for look
  632. * like
  633. * v binary search stopped here
  634. * x + 1 ... | x | x + 1 | x ... | x
  635. * ^ but we want to locate this spot
  636. * or
  637. * <---------> less than scan distance
  638. * x + 1 ... | x ... | x - 1 | x
  639. * ^ we want to locate this spot
  640. */
  641. stop_on_cycle = last_half_cycle;
  642. if ((error = xlog_find_cycle_start(log, bp, first_blk,
  643. &head_blk, last_half_cycle)))
  644. goto bp_err;
  645. }
  646. /*
  647. * Now validate the answer. Scan back some number of maximum possible
  648. * blocks and make sure each one has the expected cycle number. The
  649. * maximum is determined by the total possible amount of buffering
  650. * in the in-core log. The following number can be made tighter if
  651. * we actually look at the block size of the filesystem.
  652. */
  653. num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
  654. if (head_blk >= num_scan_bblks) {
  655. /*
  656. * We are guaranteed that the entire check can be performed
  657. * in one buffer.
  658. */
  659. start_blk = head_blk - num_scan_bblks;
  660. if ((error = xlog_find_verify_cycle(log,
  661. start_blk, num_scan_bblks,
  662. stop_on_cycle, &new_blk)))
  663. goto bp_err;
  664. if (new_blk != -1)
  665. head_blk = new_blk;
  666. } else { /* need to read 2 parts of log */
  667. /*
  668. * We are going to scan backwards in the log in two parts.
  669. * First we scan the physical end of the log. In this part
  670. * of the log, we are looking for blocks with cycle number
  671. * last_half_cycle - 1.
  672. * If we find one, then we know that the log starts there, as
  673. * we've found a hole that didn't get written in going around
  674. * the end of the physical log. The simple case for this is
  675. * x + 1 ... | x ... | x - 1 | x
  676. * <---------> less than scan distance
  677. * If all of the blocks at the end of the log have cycle number
  678. * last_half_cycle, then we check the blocks at the start of
  679. * the log looking for occurrences of last_half_cycle. If we
  680. * find one, then our current estimate for the location of the
  681. * first occurrence of last_half_cycle is wrong and we move
  682. * back to the hole we've found. This case looks like
  683. * x + 1 ... | x | x + 1 | x ...
  684. * ^ binary search stopped here
  685. * Another case we need to handle that only occurs in 256k
  686. * logs is
  687. * x + 1 ... | x ... | x+1 | x ...
  688. * ^ binary search stops here
  689. * In a 256k log, the scan at the end of the log will see the
  690. * x + 1 blocks. We need to skip past those since that is
  691. * certainly not the head of the log. By searching for
  692. * last_half_cycle-1 we accomplish that.
  693. */
  694. ASSERT(head_blk <= INT_MAX &&
  695. (xfs_daddr_t) num_scan_bblks >= head_blk);
  696. start_blk = log_bbnum - (num_scan_bblks - head_blk);
  697. if ((error = xlog_find_verify_cycle(log, start_blk,
  698. num_scan_bblks - (int)head_blk,
  699. (stop_on_cycle - 1), &new_blk)))
  700. goto bp_err;
  701. if (new_blk != -1) {
  702. head_blk = new_blk;
  703. goto validate_head;
  704. }
  705. /*
  706. * Scan beginning of log now. The last part of the physical
  707. * log is good. This scan needs to verify that it doesn't find
  708. * the last_half_cycle.
  709. */
  710. start_blk = 0;
  711. ASSERT(head_blk <= INT_MAX);
  712. if ((error = xlog_find_verify_cycle(log,
  713. start_blk, (int)head_blk,
  714. stop_on_cycle, &new_blk)))
  715. goto bp_err;
  716. if (new_blk != -1)
  717. head_blk = new_blk;
  718. }
  719. validate_head:
  720. /*
  721. * Now we need to make sure head_blk is not pointing to a block in
  722. * the middle of a log record.
  723. */
  724. num_scan_bblks = XLOG_REC_SHIFT(log);
  725. if (head_blk >= num_scan_bblks) {
  726. start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
  727. /* start ptr at last block ptr before head_blk */
  728. if ((error = xlog_find_verify_log_record(log, start_blk,
  729. &head_blk, 0)) == -1) {
  730. error = XFS_ERROR(EIO);
  731. goto bp_err;
  732. } else if (error)
  733. goto bp_err;
  734. } else {
  735. start_blk = 0;
  736. ASSERT(head_blk <= INT_MAX);
  737. if ((error = xlog_find_verify_log_record(log, start_blk,
  738. &head_blk, 0)) == -1) {
  739. /* We hit the beginning of the log during our search */
  740. start_blk = log_bbnum - (num_scan_bblks - head_blk);
  741. new_blk = log_bbnum;
  742. ASSERT(start_blk <= INT_MAX &&
  743. (xfs_daddr_t) log_bbnum-start_blk >= 0);
  744. ASSERT(head_blk <= INT_MAX);
  745. if ((error = xlog_find_verify_log_record(log,
  746. start_blk, &new_blk,
  747. (int)head_blk)) == -1) {
  748. error = XFS_ERROR(EIO);
  749. goto bp_err;
  750. } else if (error)
  751. goto bp_err;
  752. if (new_blk != log_bbnum)
  753. head_blk = new_blk;
  754. } else if (error)
  755. goto bp_err;
  756. }
  757. xlog_put_bp(bp);
  758. if (head_blk == log_bbnum)
  759. *return_head_blk = 0;
  760. else
  761. *return_head_blk = head_blk;
  762. /*
  763. * When returning here, we have a good block number. Bad block
  764. * means that during a previous crash, we didn't have a clean break
  765. * from cycle number N to cycle number N-1. In this case, we need
  766. * to find the first block with cycle number N-1.
  767. */
  768. return 0;
  769. bp_err:
  770. xlog_put_bp(bp);
  771. if (error)
  772. xfs_warn(log->l_mp, "failed to find log head");
  773. return error;
  774. }
  775. /*
  776. * Find the sync block number or the tail of the log.
  777. *
  778. * This will be the block number of the last record to have its
  779. * associated buffers synced to disk. Every log record header has
  780. * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
  781. * to get a sync block number. The only concern is to figure out which
  782. * log record header to believe.
  783. *
  784. * The following algorithm uses the log record header with the largest
  785. * lsn. The entire log record does not need to be valid. We only care
  786. * that the header is valid.
  787. *
  788. * We could speed up search by using current head_blk buffer, but it is not
  789. * available.
  790. */
  791. STATIC int
  792. xlog_find_tail(
  793. xlog_t *log,
  794. xfs_daddr_t *head_blk,
  795. xfs_daddr_t *tail_blk)
  796. {
  797. xlog_rec_header_t *rhead;
  798. xlog_op_header_t *op_head;
  799. xfs_caddr_t offset = NULL;
  800. xfs_buf_t *bp;
  801. int error, i, found;
  802. xfs_daddr_t umount_data_blk;
  803. xfs_daddr_t after_umount_blk;
  804. xfs_lsn_t tail_lsn;
  805. int hblks;
  806. found = 0;
  807. /*
  808. * Find previous log record
  809. */
  810. if ((error = xlog_find_head(log, head_blk)))
  811. return error;
  812. bp = xlog_get_bp(log, 1);
  813. if (!bp)
  814. return ENOMEM;
  815. if (*head_blk == 0) { /* special case */
  816. error = xlog_bread(log, 0, 1, bp, &offset);
  817. if (error)
  818. goto done;
  819. if (xlog_get_cycle(offset) == 0) {
  820. *tail_blk = 0;
  821. /* leave all other log inited values alone */
  822. goto done;
  823. }
  824. }
  825. /*
  826. * Search backwards looking for log record header block
  827. */
  828. ASSERT(*head_blk < INT_MAX);
  829. for (i = (int)(*head_blk) - 1; i >= 0; i--) {
  830. error = xlog_bread(log, i, 1, bp, &offset);
  831. if (error)
  832. goto done;
  833. if (*(__be32 *)offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
  834. found = 1;
  835. break;
  836. }
  837. }
  838. /*
  839. * If we haven't found the log record header block, start looking
  840. * again from the end of the physical log. XXXmiken: There should be
  841. * a check here to make sure we didn't search more than N blocks in
  842. * the previous code.
  843. */
  844. if (!found) {
  845. for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
  846. error = xlog_bread(log, i, 1, bp, &offset);
  847. if (error)
  848. goto done;
  849. if (*(__be32 *)offset ==
  850. cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
  851. found = 2;
  852. break;
  853. }
  854. }
  855. }
  856. if (!found) {
  857. xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
  858. ASSERT(0);
  859. return XFS_ERROR(EIO);
  860. }
  861. /* find blk_no of tail of log */
  862. rhead = (xlog_rec_header_t *)offset;
  863. *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
  864. /*
  865. * Reset log values according to the state of the log when we
  866. * crashed. In the case where head_blk == 0, we bump curr_cycle
  867. * one because the next write starts a new cycle rather than
  868. * continuing the cycle of the last good log record. At this
  869. * point we have guaranteed that all partial log records have been
  870. * accounted for. Therefore, we know that the last good log record
  871. * written was complete and ended exactly on the end boundary
  872. * of the physical log.
  873. */
  874. log->l_prev_block = i;
  875. log->l_curr_block = (int)*head_blk;
  876. log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
  877. if (found == 2)
  878. log->l_curr_cycle++;
  879. atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
  880. atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
  881. xlog_assign_grant_head(&log->l_grant_reserve_head, log->l_curr_cycle,
  882. BBTOB(log->l_curr_block));
  883. xlog_assign_grant_head(&log->l_grant_write_head, log->l_curr_cycle,
  884. BBTOB(log->l_curr_block));
  885. /*
  886. * Look for unmount record. If we find it, then we know there
  887. * was a clean unmount. Since 'i' could be the last block in
  888. * the physical log, we convert to a log block before comparing
  889. * to the head_blk.
  890. *
  891. * Save the current tail lsn to use to pass to
  892. * xlog_clear_stale_blocks() below. We won't want to clear the
  893. * unmount record if there is one, so we pass the lsn of the
  894. * unmount record rather than the block after it.
  895. */
  896. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  897. int h_size = be32_to_cpu(rhead->h_size);
  898. int h_version = be32_to_cpu(rhead->h_version);
  899. if ((h_version & XLOG_VERSION_2) &&
  900. (h_size > XLOG_HEADER_CYCLE_SIZE)) {
  901. hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
  902. if (h_size % XLOG_HEADER_CYCLE_SIZE)
  903. hblks++;
  904. } else {
  905. hblks = 1;
  906. }
  907. } else {
  908. hblks = 1;
  909. }
  910. after_umount_blk = (i + hblks + (int)
  911. BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
  912. tail_lsn = atomic64_read(&log->l_tail_lsn);
  913. if (*head_blk == after_umount_blk &&
  914. be32_to_cpu(rhead->h_num_logops) == 1) {
  915. umount_data_blk = (i + hblks) % log->l_logBBsize;
  916. error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
  917. if (error)
  918. goto done;
  919. op_head = (xlog_op_header_t *)offset;
  920. if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
  921. /*
  922. * Set tail and last sync so that newly written
  923. * log records will point recovery to after the
  924. * current unmount record.
  925. */
  926. xlog_assign_atomic_lsn(&log->l_tail_lsn,
  927. log->l_curr_cycle, after_umount_blk);
  928. xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
  929. log->l_curr_cycle, after_umount_blk);
  930. *tail_blk = after_umount_blk;
  931. /*
  932. * Note that the unmount was clean. If the unmount
  933. * was not clean, we need to know this to rebuild the
  934. * superblock counters from the perag headers if we
  935. * have a filesystem using non-persistent counters.
  936. */
  937. log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
  938. }
  939. }
  940. /*
  941. * Make sure that there are no blocks in front of the head
  942. * with the same cycle number as the head. This can happen
  943. * because we allow multiple outstanding log writes concurrently,
  944. * and the later writes might make it out before earlier ones.
  945. *
  946. * We use the lsn from before modifying it so that we'll never
  947. * overwrite the unmount record after a clean unmount.
  948. *
  949. * Do this only if we are going to recover the filesystem
  950. *
  951. * NOTE: This used to say "if (!readonly)"
  952. * However on Linux, we can & do recover a read-only filesystem.
  953. * We only skip recovery if NORECOVERY is specified on mount,
  954. * in which case we would not be here.
  955. *
  956. * But... if the -device- itself is readonly, just skip this.
  957. * We can't recover this device anyway, so it won't matter.
  958. */
  959. if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
  960. error = xlog_clear_stale_blocks(log, tail_lsn);
  961. done:
  962. xlog_put_bp(bp);
  963. if (error)
  964. xfs_warn(log->l_mp, "failed to locate log tail");
  965. return error;
  966. }
  967. /*
  968. * Is the log zeroed at all?
  969. *
  970. * The last binary search should be changed to perform an X block read
  971. * once X becomes small enough. You can then search linearly through
  972. * the X blocks. This will cut down on the number of reads we need to do.
  973. *
  974. * If the log is partially zeroed, this routine will pass back the blkno
  975. * of the first block with cycle number 0. It won't have a complete LR
  976. * preceding it.
  977. *
  978. * Return:
  979. * 0 => the log is completely written to
  980. * -1 => use *blk_no as the first block of the log
  981. * >0 => error has occurred
  982. */
  983. STATIC int
  984. xlog_find_zeroed(
  985. xlog_t *log,
  986. xfs_daddr_t *blk_no)
  987. {
  988. xfs_buf_t *bp;
  989. xfs_caddr_t offset;
  990. uint first_cycle, last_cycle;
  991. xfs_daddr_t new_blk, last_blk, start_blk;
  992. xfs_daddr_t num_scan_bblks;
  993. int error, log_bbnum = log->l_logBBsize;
  994. *blk_no = 0;
  995. /* check totally zeroed log */
  996. bp = xlog_get_bp(log, 1);
  997. if (!bp)
  998. return ENOMEM;
  999. error = xlog_bread(log, 0, 1, bp, &offset);
  1000. if (error)
  1001. goto bp_err;
  1002. first_cycle = xlog_get_cycle(offset);
  1003. if (first_cycle == 0) { /* completely zeroed log */
  1004. *blk_no = 0;
  1005. xlog_put_bp(bp);
  1006. return -1;
  1007. }
  1008. /* check partially zeroed log */
  1009. error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
  1010. if (error)
  1011. goto bp_err;
  1012. last_cycle = xlog_get_cycle(offset);
  1013. if (last_cycle != 0) { /* log completely written to */
  1014. xlog_put_bp(bp);
  1015. return 0;
  1016. } else if (first_cycle != 1) {
  1017. /*
  1018. * If the cycle of the last block is zero, the cycle of
  1019. * the first block must be 1. If it's not, maybe we're
  1020. * not looking at a log... Bail out.
  1021. */
  1022. xfs_warn(log->l_mp,
  1023. "Log inconsistent or not a log (last==0, first!=1)");
  1024. return XFS_ERROR(EINVAL);
  1025. }
  1026. /* we have a partially zeroed log */
  1027. last_blk = log_bbnum-1;
  1028. if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
  1029. goto bp_err;
  1030. /*
  1031. * Validate the answer. Because there is no way to guarantee that
  1032. * the entire log is made up of log records which are the same size,
  1033. * we scan over the defined maximum blocks. At this point, the maximum
  1034. * is not chosen to mean anything special. XXXmiken
  1035. */
  1036. num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
  1037. ASSERT(num_scan_bblks <= INT_MAX);
  1038. if (last_blk < num_scan_bblks)
  1039. num_scan_bblks = last_blk;
  1040. start_blk = last_blk - num_scan_bblks;
  1041. /*
  1042. * We search for any instances of cycle number 0 that occur before
  1043. * our current estimate of the head. What we're trying to detect is
  1044. * 1 ... | 0 | 1 | 0...
  1045. * ^ binary search ends here
  1046. */
  1047. if ((error = xlog_find_verify_cycle(log, start_blk,
  1048. (int)num_scan_bblks, 0, &new_blk)))
  1049. goto bp_err;
  1050. if (new_blk != -1)
  1051. last_blk = new_blk;
  1052. /*
  1053. * Potentially backup over partial log record write. We don't need
  1054. * to search the end of the log because we know it is zero.
  1055. */
  1056. if ((error = xlog_find_verify_log_record(log, start_blk,
  1057. &last_blk, 0)) == -1) {
  1058. error = XFS_ERROR(EIO);
  1059. goto bp_err;
  1060. } else if (error)
  1061. goto bp_err;
  1062. *blk_no = last_blk;
  1063. bp_err:
  1064. xlog_put_bp(bp);
  1065. if (error)
  1066. return error;
  1067. return -1;
  1068. }
  1069. /*
  1070. * These are simple subroutines used by xlog_clear_stale_blocks() below
  1071. * to initialize a buffer full of empty log record headers and write
  1072. * them into the log.
  1073. */
  1074. STATIC void
  1075. xlog_add_record(
  1076. xlog_t *log,
  1077. xfs_caddr_t buf,
  1078. int cycle,
  1079. int block,
  1080. int tail_cycle,
  1081. int tail_block)
  1082. {
  1083. xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
  1084. memset(buf, 0, BBSIZE);
  1085. recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
  1086. recp->h_cycle = cpu_to_be32(cycle);
  1087. recp->h_version = cpu_to_be32(
  1088. xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
  1089. recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
  1090. recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
  1091. recp->h_fmt = cpu_to_be32(XLOG_FMT);
  1092. memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
  1093. }
  1094. STATIC int
  1095. xlog_write_log_records(
  1096. xlog_t *log,
  1097. int cycle,
  1098. int start_block,
  1099. int blocks,
  1100. int tail_cycle,
  1101. int tail_block)
  1102. {
  1103. xfs_caddr_t offset;
  1104. xfs_buf_t *bp;
  1105. int balign, ealign;
  1106. int sectbb = log->l_sectBBsize;
  1107. int end_block = start_block + blocks;
  1108. int bufblks;
  1109. int error = 0;
  1110. int i, j = 0;
  1111. /*
  1112. * Greedily allocate a buffer big enough to handle the full
  1113. * range of basic blocks to be written. If that fails, try
  1114. * a smaller size. We need to be able to write at least a
  1115. * log sector, or we're out of luck.
  1116. */
  1117. bufblks = 1 << ffs(blocks);
  1118. while (!(bp = xlog_get_bp(log, bufblks))) {
  1119. bufblks >>= 1;
  1120. if (bufblks < sectbb)
  1121. return ENOMEM;
  1122. }
  1123. /* We may need to do a read at the start to fill in part of
  1124. * the buffer in the starting sector not covered by the first
  1125. * write below.
  1126. */
  1127. balign = round_down(start_block, sectbb);
  1128. if (balign != start_block) {
  1129. error = xlog_bread_noalign(log, start_block, 1, bp);
  1130. if (error)
  1131. goto out_put_bp;
  1132. j = start_block - balign;
  1133. }
  1134. for (i = start_block; i < end_block; i += bufblks) {
  1135. int bcount, endcount;
  1136. bcount = min(bufblks, end_block - start_block);
  1137. endcount = bcount - j;
  1138. /* We may need to do a read at the end to fill in part of
  1139. * the buffer in the final sector not covered by the write.
  1140. * If this is the same sector as the above read, skip it.
  1141. */
  1142. ealign = round_down(end_block, sectbb);
  1143. if (j == 0 && (start_block + endcount > ealign)) {
  1144. offset = bp->b_addr + BBTOB(ealign - start_block);
  1145. error = xlog_bread_offset(log, ealign, sectbb,
  1146. bp, offset);
  1147. if (error)
  1148. break;
  1149. }
  1150. offset = xlog_align(log, start_block, endcount, bp);
  1151. for (; j < endcount; j++) {
  1152. xlog_add_record(log, offset, cycle, i+j,
  1153. tail_cycle, tail_block);
  1154. offset += BBSIZE;
  1155. }
  1156. error = xlog_bwrite(log, start_block, endcount, bp);
  1157. if (error)
  1158. break;
  1159. start_block += endcount;
  1160. j = 0;
  1161. }
  1162. out_put_bp:
  1163. xlog_put_bp(bp);
  1164. return error;
  1165. }
  1166. /*
  1167. * This routine is called to blow away any incomplete log writes out
  1168. * in front of the log head. We do this so that we won't become confused
  1169. * if we come up, write only a little bit more, and then crash again.
  1170. * If we leave the partial log records out there, this situation could
  1171. * cause us to think those partial writes are valid blocks since they
  1172. * have the current cycle number. We get rid of them by overwriting them
  1173. * with empty log records with the old cycle number rather than the
  1174. * current one.
  1175. *
  1176. * The tail lsn is passed in rather than taken from
  1177. * the log so that we will not write over the unmount record after a
  1178. * clean unmount in a 512 block log. Doing so would leave the log without
  1179. * any valid log records in it until a new one was written. If we crashed
  1180. * during that time we would not be able to recover.
  1181. */
  1182. STATIC int
  1183. xlog_clear_stale_blocks(
  1184. xlog_t *log,
  1185. xfs_lsn_t tail_lsn)
  1186. {
  1187. int tail_cycle, head_cycle;
  1188. int tail_block, head_block;
  1189. int tail_distance, max_distance;
  1190. int distance;
  1191. int error;
  1192. tail_cycle = CYCLE_LSN(tail_lsn);
  1193. tail_block = BLOCK_LSN(tail_lsn);
  1194. head_cycle = log->l_curr_cycle;
  1195. head_block = log->l_curr_block;
  1196. /*
  1197. * Figure out the distance between the new head of the log
  1198. * and the tail. We want to write over any blocks beyond the
  1199. * head that we may have written just before the crash, but
  1200. * we don't want to overwrite the tail of the log.
  1201. */
  1202. if (head_cycle == tail_cycle) {
  1203. /*
  1204. * The tail is behind the head in the physical log,
  1205. * so the distance from the head to the tail is the
  1206. * distance from the head to the end of the log plus
  1207. * the distance from the beginning of the log to the
  1208. * tail.
  1209. */
  1210. if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
  1211. XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
  1212. XFS_ERRLEVEL_LOW, log->l_mp);
  1213. return XFS_ERROR(EFSCORRUPTED);
  1214. }
  1215. tail_distance = tail_block + (log->l_logBBsize - head_block);
  1216. } else {
  1217. /*
  1218. * The head is behind the tail in the physical log,
  1219. * so the distance from the head to the tail is just
  1220. * the tail block minus the head block.
  1221. */
  1222. if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
  1223. XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
  1224. XFS_ERRLEVEL_LOW, log->l_mp);
  1225. return XFS_ERROR(EFSCORRUPTED);
  1226. }
  1227. tail_distance = tail_block - head_block;
  1228. }
  1229. /*
  1230. * If the head is right up against the tail, we can't clear
  1231. * anything.
  1232. */
  1233. if (tail_distance <= 0) {
  1234. ASSERT(tail_distance == 0);
  1235. return 0;
  1236. }
  1237. max_distance = XLOG_TOTAL_REC_SHIFT(log);
  1238. /*
  1239. * Take the smaller of the maximum amount of outstanding I/O
  1240. * we could have and the distance to the tail to clear out.
  1241. * We take the smaller so that we don't overwrite the tail and
  1242. * we don't waste all day writing from the head to the tail
  1243. * for no reason.
  1244. */
  1245. max_distance = MIN(max_distance, tail_distance);
  1246. if ((head_block + max_distance) <= log->l_logBBsize) {
  1247. /*
  1248. * We can stomp all the blocks we need to without
  1249. * wrapping around the end of the log. Just do it
  1250. * in a single write. Use the cycle number of the
  1251. * current cycle minus one so that the log will look like:
  1252. * n ... | n - 1 ...
  1253. */
  1254. error = xlog_write_log_records(log, (head_cycle - 1),
  1255. head_block, max_distance, tail_cycle,
  1256. tail_block);
  1257. if (error)
  1258. return error;
  1259. } else {
  1260. /*
  1261. * We need to wrap around the end of the physical log in
  1262. * order to clear all the blocks. Do it in two separate
  1263. * I/Os. The first write should be from the head to the
  1264. * end of the physical log, and it should use the current
  1265. * cycle number minus one just like above.
  1266. */
  1267. distance = log->l_logBBsize - head_block;
  1268. error = xlog_write_log_records(log, (head_cycle - 1),
  1269. head_block, distance, tail_cycle,
  1270. tail_block);
  1271. if (error)
  1272. return error;
  1273. /*
  1274. * Now write the blocks at the start of the physical log.
  1275. * This writes the remainder of the blocks we want to clear.
  1276. * It uses the current cycle number since we're now on the
  1277. * same cycle as the head so that we get:
  1278. * n ... n ... | n - 1 ...
  1279. * ^^^^^ blocks we're writing
  1280. */
  1281. distance = max_distance - (log->l_logBBsize - head_block);
  1282. error = xlog_write_log_records(log, head_cycle, 0, distance,
  1283. tail_cycle, tail_block);
  1284. if (error)
  1285. return error;
  1286. }
  1287. return 0;
  1288. }
  1289. /******************************************************************************
  1290. *
  1291. * Log recover routines
  1292. *
  1293. ******************************************************************************
  1294. */
  1295. STATIC xlog_recover_t *
  1296. xlog_recover_find_tid(
  1297. struct hlist_head *head,
  1298. xlog_tid_t tid)
  1299. {
  1300. xlog_recover_t *trans;
  1301. struct hlist_node *n;
  1302. hlist_for_each_entry(trans, n, head, r_list) {
  1303. if (trans->r_log_tid == tid)
  1304. return trans;
  1305. }
  1306. return NULL;
  1307. }
  1308. STATIC void
  1309. xlog_recover_new_tid(
  1310. struct hlist_head *head,
  1311. xlog_tid_t tid,
  1312. xfs_lsn_t lsn)
  1313. {
  1314. xlog_recover_t *trans;
  1315. trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
  1316. trans->r_log_tid = tid;
  1317. trans->r_lsn = lsn;
  1318. INIT_LIST_HEAD(&trans->r_itemq);
  1319. INIT_HLIST_NODE(&trans->r_list);
  1320. hlist_add_head(&trans->r_list, head);
  1321. }
  1322. STATIC void
  1323. xlog_recover_add_item(
  1324. struct list_head *head)
  1325. {
  1326. xlog_recover_item_t *item;
  1327. item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
  1328. INIT_LIST_HEAD(&item->ri_list);
  1329. list_add_tail(&item->ri_list, head);
  1330. }
  1331. STATIC int
  1332. xlog_recover_add_to_cont_trans(
  1333. struct log *log,
  1334. xlog_recover_t *trans,
  1335. xfs_caddr_t dp,
  1336. int len)
  1337. {
  1338. xlog_recover_item_t *item;
  1339. xfs_caddr_t ptr, old_ptr;
  1340. int old_len;
  1341. if (list_empty(&trans->r_itemq)) {
  1342. /* finish copying rest of trans header */
  1343. xlog_recover_add_item(&trans->r_itemq);
  1344. ptr = (xfs_caddr_t) &trans->r_theader +
  1345. sizeof(xfs_trans_header_t) - len;
  1346. memcpy(ptr, dp, len); /* d, s, l */
  1347. return 0;
  1348. }
  1349. /* take the tail entry */
  1350. item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
  1351. old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
  1352. old_len = item->ri_buf[item->ri_cnt-1].i_len;
  1353. ptr = kmem_realloc(old_ptr, len+old_len, old_len, 0u);
  1354. memcpy(&ptr[old_len], dp, len); /* d, s, l */
  1355. item->ri_buf[item->ri_cnt-1].i_len += len;
  1356. item->ri_buf[item->ri_cnt-1].i_addr = ptr;
  1357. trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
  1358. return 0;
  1359. }
  1360. /*
  1361. * The next region to add is the start of a new region. It could be
  1362. * a whole region or it could be the first part of a new region. Because
  1363. * of this, the assumption here is that the type and size fields of all
  1364. * format structures fit into the first 32 bits of the structure.
  1365. *
  1366. * This works because all regions must be 32 bit aligned. Therefore, we
  1367. * either have both fields or we have neither field. In the case we have
  1368. * neither field, the data part of the region is zero length. We only have
  1369. * a log_op_header and can throw away the header since a new one will appear
  1370. * later. If we have at least 4 bytes, then we can determine how many regions
  1371. * will appear in the current log item.
  1372. */
  1373. STATIC int
  1374. xlog_recover_add_to_trans(
  1375. struct log *log,
  1376. xlog_recover_t *trans,
  1377. xfs_caddr_t dp,
  1378. int len)
  1379. {
  1380. xfs_inode_log_format_t *in_f; /* any will do */
  1381. xlog_recover_item_t *item;
  1382. xfs_caddr_t ptr;
  1383. if (!len)
  1384. return 0;
  1385. if (list_empty(&trans->r_itemq)) {
  1386. /* we need to catch log corruptions here */
  1387. if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
  1388. xfs_warn(log->l_mp, "%s: bad header magic number",
  1389. __func__);
  1390. ASSERT(0);
  1391. return XFS_ERROR(EIO);
  1392. }
  1393. if (len == sizeof(xfs_trans_header_t))
  1394. xlog_recover_add_item(&trans->r_itemq);
  1395. memcpy(&trans->r_theader, dp, len); /* d, s, l */
  1396. return 0;
  1397. }
  1398. ptr = kmem_alloc(len, KM_SLEEP);
  1399. memcpy(ptr, dp, len);
  1400. in_f = (xfs_inode_log_format_t *)ptr;
  1401. /* take the tail entry */
  1402. item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
  1403. if (item->ri_total != 0 &&
  1404. item->ri_total == item->ri_cnt) {
  1405. /* tail item is in use, get a new one */
  1406. xlog_recover_add_item(&trans->r_itemq);
  1407. item = list_entry(trans->r_itemq.prev,
  1408. xlog_recover_item_t, ri_list);
  1409. }
  1410. if (item->ri_total == 0) { /* first region to be added */
  1411. if (in_f->ilf_size == 0 ||
  1412. in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
  1413. xfs_warn(log->l_mp,
  1414. "bad number of regions (%d) in inode log format",
  1415. in_f->ilf_size);
  1416. ASSERT(0);
  1417. return XFS_ERROR(EIO);
  1418. }
  1419. item->ri_total = in_f->ilf_size;
  1420. item->ri_buf =
  1421. kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
  1422. KM_SLEEP);
  1423. }
  1424. ASSERT(item->ri_total > item->ri_cnt);
  1425. /* Description region is ri_buf[0] */
  1426. item->ri_buf[item->ri_cnt].i_addr = ptr;
  1427. item->ri_buf[item->ri_cnt].i_len = len;
  1428. item->ri_cnt++;
  1429. trace_xfs_log_recover_item_add(log, trans, item, 0);
  1430. return 0;
  1431. }
  1432. /*
  1433. * Sort the log items in the transaction. Cancelled buffers need
  1434. * to be put first so they are processed before any items that might
  1435. * modify the buffers. If they are cancelled, then the modifications
  1436. * don't need to be replayed.
  1437. */
  1438. STATIC int
  1439. xlog_recover_reorder_trans(
  1440. struct log *log,
  1441. xlog_recover_t *trans,
  1442. int pass)
  1443. {
  1444. xlog_recover_item_t *item, *n;
  1445. LIST_HEAD(sort_list);
  1446. list_splice_init(&trans->r_itemq, &sort_list);
  1447. list_for_each_entry_safe(item, n, &sort_list, ri_list) {
  1448. xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
  1449. switch (ITEM_TYPE(item)) {
  1450. case XFS_LI_BUF:
  1451. if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
  1452. trace_xfs_log_recover_item_reorder_head(log,
  1453. trans, item, pass);
  1454. list_move(&item->ri_list, &trans->r_itemq);
  1455. break;
  1456. }
  1457. case XFS_LI_INODE:
  1458. case XFS_LI_DQUOT:
  1459. case XFS_LI_QUOTAOFF:
  1460. case XFS_LI_EFD:
  1461. case XFS_LI_EFI:
  1462. trace_xfs_log_recover_item_reorder_tail(log,
  1463. trans, item, pass);
  1464. list_move_tail(&item->ri_list, &trans->r_itemq);
  1465. break;
  1466. default:
  1467. xfs_warn(log->l_mp,
  1468. "%s: unrecognized type of log operation",
  1469. __func__);
  1470. ASSERT(0);
  1471. return XFS_ERROR(EIO);
  1472. }
  1473. }
  1474. ASSERT(list_empty(&sort_list));
  1475. return 0;
  1476. }
  1477. /*
  1478. * Build up the table of buf cancel records so that we don't replay
  1479. * cancelled data in the second pass. For buffer records that are
  1480. * not cancel records, there is nothing to do here so we just return.
  1481. *
  1482. * If we get a cancel record which is already in the table, this indicates
  1483. * that the buffer was cancelled multiple times. In order to ensure
  1484. * that during pass 2 we keep the record in the table until we reach its
  1485. * last occurrence in the log, we keep a reference count in the cancel
  1486. * record in the table to tell us how many times we expect to see this
  1487. * record during the second pass.
  1488. */
  1489. STATIC int
  1490. xlog_recover_buffer_pass1(
  1491. struct log *log,
  1492. xlog_recover_item_t *item)
  1493. {
  1494. xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
  1495. struct list_head *bucket;
  1496. struct xfs_buf_cancel *bcp;
  1497. /*
  1498. * If this isn't a cancel buffer item, then just return.
  1499. */
  1500. if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
  1501. trace_xfs_log_recover_buf_not_cancel(log, buf_f);
  1502. return 0;
  1503. }
  1504. /*
  1505. * Insert an xfs_buf_cancel record into the hash table of them.
  1506. * If there is already an identical record, bump its reference count.
  1507. */
  1508. bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
  1509. list_for_each_entry(bcp, bucket, bc_list) {
  1510. if (bcp->bc_blkno == buf_f->blf_blkno &&
  1511. bcp->bc_len == buf_f->blf_len) {
  1512. bcp->bc_refcount++;
  1513. trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
  1514. return 0;
  1515. }
  1516. }
  1517. bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP);
  1518. bcp->bc_blkno = buf_f->blf_blkno;
  1519. bcp->bc_len = buf_f->blf_len;
  1520. bcp->bc_refcount = 1;
  1521. list_add_tail(&bcp->bc_list, bucket);
  1522. trace_xfs_log_recover_buf_cancel_add(log, buf_f);
  1523. return 0;
  1524. }
  1525. /*
  1526. * Check to see whether the buffer being recovered has a corresponding
  1527. * entry in the buffer cancel record table. If it does then return 1
  1528. * so that it will be cancelled, otherwise return 0. If the buffer is
  1529. * actually a buffer cancel item (XFS_BLF_CANCEL is set), then decrement
  1530. * the refcount on the entry in the table and remove it from the table
  1531. * if this is the last reference.
  1532. *
  1533. * We remove the cancel record from the table when we encounter its
  1534. * last occurrence in the log so that if the same buffer is re-used
  1535. * again after its last cancellation we actually replay the changes
  1536. * made at that point.
  1537. */
  1538. STATIC int
  1539. xlog_check_buffer_cancelled(
  1540. struct log *log,
  1541. xfs_daddr_t blkno,
  1542. uint len,
  1543. ushort flags)
  1544. {
  1545. struct list_head *bucket;
  1546. struct xfs_buf_cancel *bcp;
  1547. if (log->l_buf_cancel_table == NULL) {
  1548. /*
  1549. * There is nothing in the table built in pass one,
  1550. * so this buffer must not be cancelled.
  1551. */
  1552. ASSERT(!(flags & XFS_BLF_CANCEL));
  1553. return 0;
  1554. }
  1555. /*
  1556. * Search for an entry in the cancel table that matches our buffer.
  1557. */
  1558. bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
  1559. list_for_each_entry(bcp, bucket, bc_list) {
  1560. if (bcp->bc_blkno == blkno && bcp->bc_len == len)
  1561. goto found;
  1562. }
  1563. /*
  1564. * We didn't find a corresponding entry in the table, so return 0 so
  1565. * that the buffer is NOT cancelled.
  1566. */
  1567. ASSERT(!(flags & XFS_BLF_CANCEL));
  1568. return 0;
  1569. found:
  1570. /*
  1571. * We've go a match, so return 1 so that the recovery of this buffer
  1572. * is cancelled. If this buffer is actually a buffer cancel log
  1573. * item, then decrement the refcount on the one in the table and
  1574. * remove it if this is the last reference.
  1575. */
  1576. if (flags & XFS_BLF_CANCEL) {
  1577. if (--bcp->bc_refcount == 0) {
  1578. list_del(&bcp->bc_list);
  1579. kmem_free(bcp);
  1580. }
  1581. }
  1582. return 1;
  1583. }
  1584. /*
  1585. * Perform recovery for a buffer full of inodes. In these buffers, the only
  1586. * data which should be recovered is that which corresponds to the
  1587. * di_next_unlinked pointers in the on disk inode structures. The rest of the
  1588. * data for the inodes is always logged through the inodes themselves rather
  1589. * than the inode buffer and is recovered in xlog_recover_inode_pass2().
  1590. *
  1591. * The only time when buffers full of inodes are fully recovered is when the
  1592. * buffer is full of newly allocated inodes. In this case the buffer will
  1593. * not be marked as an inode buffer and so will be sent to
  1594. * xlog_recover_do_reg_buffer() below during recovery.
  1595. */
  1596. STATIC int
  1597. xlog_recover_do_inode_buffer(
  1598. struct xfs_mount *mp,
  1599. xlog_recover_item_t *item,
  1600. struct xfs_buf *bp,
  1601. xfs_buf_log_format_t *buf_f)
  1602. {
  1603. int i;
  1604. int item_index = 0;
  1605. int bit = 0;
  1606. int nbits = 0;
  1607. int reg_buf_offset = 0;
  1608. int reg_buf_bytes = 0;
  1609. int next_unlinked_offset;
  1610. int inodes_per_buf;
  1611. xfs_agino_t *logged_nextp;
  1612. xfs_agino_t *buffer_nextp;
  1613. trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
  1614. inodes_per_buf = XFS_BUF_COUNT(bp) >> mp->m_sb.sb_inodelog;
  1615. for (i = 0; i < inodes_per_buf; i++) {
  1616. next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
  1617. offsetof(xfs_dinode_t, di_next_unlinked);
  1618. while (next_unlinked_offset >=
  1619. (reg_buf_offset + reg_buf_bytes)) {
  1620. /*
  1621. * The next di_next_unlinked field is beyond
  1622. * the current logged region. Find the next
  1623. * logged region that contains or is beyond
  1624. * the current di_next_unlinked field.
  1625. */
  1626. bit += nbits;
  1627. bit = xfs_next_bit(buf_f->blf_data_map,
  1628. buf_f->blf_map_size, bit);
  1629. /*
  1630. * If there are no more logged regions in the
  1631. * buffer, then we're done.
  1632. */
  1633. if (bit == -1)
  1634. return 0;
  1635. nbits = xfs_contig_bits(buf_f->blf_data_map,
  1636. buf_f->blf_map_size, bit);
  1637. ASSERT(nbits > 0);
  1638. reg_buf_offset = bit << XFS_BLF_SHIFT;
  1639. reg_buf_bytes = nbits << XFS_BLF_SHIFT;
  1640. item_index++;
  1641. }
  1642. /*
  1643. * If the current logged region starts after the current
  1644. * di_next_unlinked field, then move on to the next
  1645. * di_next_unlinked field.
  1646. */
  1647. if (next_unlinked_offset < reg_buf_offset)
  1648. continue;
  1649. ASSERT(item->ri_buf[item_index].i_addr != NULL);
  1650. ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
  1651. ASSERT((reg_buf_offset + reg_buf_bytes) <= XFS_BUF_COUNT(bp));
  1652. /*
  1653. * The current logged region contains a copy of the
  1654. * current di_next_unlinked field. Extract its value
  1655. * and copy it to the buffer copy.
  1656. */
  1657. logged_nextp = item->ri_buf[item_index].i_addr +
  1658. next_unlinked_offset - reg_buf_offset;
  1659. if (unlikely(*logged_nextp == 0)) {
  1660. xfs_alert(mp,
  1661. "Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). "
  1662. "Trying to replay bad (0) inode di_next_unlinked field.",
  1663. item, bp);
  1664. XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
  1665. XFS_ERRLEVEL_LOW, mp);
  1666. return XFS_ERROR(EFSCORRUPTED);
  1667. }
  1668. buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
  1669. next_unlinked_offset);
  1670. *buffer_nextp = *logged_nextp;
  1671. }
  1672. return 0;
  1673. }
  1674. /*
  1675. * Perform a 'normal' buffer recovery. Each logged region of the
  1676. * buffer should be copied over the corresponding region in the
  1677. * given buffer. The bitmap in the buf log format structure indicates
  1678. * where to place the logged data.
  1679. */
  1680. STATIC void
  1681. xlog_recover_do_reg_buffer(
  1682. struct xfs_mount *mp,
  1683. xlog_recover_item_t *item,
  1684. struct xfs_buf *bp,
  1685. xfs_buf_log_format_t *buf_f)
  1686. {
  1687. int i;
  1688. int bit;
  1689. int nbits;
  1690. int error;
  1691. trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
  1692. bit = 0;
  1693. i = 1; /* 0 is the buf format structure */
  1694. while (1) {
  1695. bit = xfs_next_bit(buf_f->blf_data_map,
  1696. buf_f->blf_map_size, bit);
  1697. if (bit == -1)
  1698. break;
  1699. nbits = xfs_contig_bits(buf_f->blf_data_map,
  1700. buf_f->blf_map_size, bit);
  1701. ASSERT(nbits > 0);
  1702. ASSERT(item->ri_buf[i].i_addr != NULL);
  1703. ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
  1704. ASSERT(XFS_BUF_COUNT(bp) >=
  1705. ((uint)bit << XFS_BLF_SHIFT)+(nbits<<XFS_BLF_SHIFT));
  1706. /*
  1707. * Do a sanity check if this is a dquot buffer. Just checking
  1708. * the first dquot in the buffer should do. XXXThis is
  1709. * probably a good thing to do for other buf types also.
  1710. */
  1711. error = 0;
  1712. if (buf_f->blf_flags &
  1713. (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
  1714. if (item->ri_buf[i].i_addr == NULL) {
  1715. xfs_alert(mp,
  1716. "XFS: NULL dquot in %s.", __func__);
  1717. goto next;
  1718. }
  1719. if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
  1720. xfs_alert(mp,
  1721. "XFS: dquot too small (%d) in %s.",
  1722. item->ri_buf[i].i_len, __func__);
  1723. goto next;
  1724. }
  1725. error = xfs_qm_dqcheck(mp, item->ri_buf[i].i_addr,
  1726. -1, 0, XFS_QMOPT_DOWARN,
  1727. "dquot_buf_recover");
  1728. if (error)
  1729. goto next;
  1730. }
  1731. memcpy(xfs_buf_offset(bp,
  1732. (uint)bit << XFS_BLF_SHIFT), /* dest */
  1733. item->ri_buf[i].i_addr, /* source */
  1734. nbits<<XFS_BLF_SHIFT); /* length */
  1735. next:
  1736. i++;
  1737. bit += nbits;
  1738. }
  1739. /* Shouldn't be any more regions */
  1740. ASSERT(i == item->ri_total);
  1741. }
  1742. /*
  1743. * Do some primitive error checking on ondisk dquot data structures.
  1744. */
  1745. int
  1746. xfs_qm_dqcheck(
  1747. struct xfs_mount *mp,
  1748. xfs_disk_dquot_t *ddq,
  1749. xfs_dqid_t id,
  1750. uint type, /* used only when IO_dorepair is true */
  1751. uint flags,
  1752. char *str)
  1753. {
  1754. xfs_dqblk_t *d = (xfs_dqblk_t *)ddq;
  1755. int errs = 0;
  1756. /*
  1757. * We can encounter an uninitialized dquot buffer for 2 reasons:
  1758. * 1. If we crash while deleting the quotainode(s), and those blks got
  1759. * used for user data. This is because we take the path of regular
  1760. * file deletion; however, the size field of quotainodes is never
  1761. * updated, so all the tricks that we play in itruncate_finish
  1762. * don't quite matter.
  1763. *
  1764. * 2. We don't play the quota buffers when there's a quotaoff logitem.
  1765. * But the allocation will be replayed so we'll end up with an
  1766. * uninitialized quota block.
  1767. *
  1768. * This is all fine; things are still consistent, and we haven't lost
  1769. * any quota information. Just don't complain about bad dquot blks.
  1770. */
  1771. if (ddq->d_magic != cpu_to_be16(XFS_DQUOT_MAGIC)) {
  1772. if (flags & XFS_QMOPT_DOWARN)
  1773. xfs_alert(mp,
  1774. "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
  1775. str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
  1776. errs++;
  1777. }
  1778. if (ddq->d_version != XFS_DQUOT_VERSION) {
  1779. if (flags & XFS_QMOPT_DOWARN)
  1780. xfs_alert(mp,
  1781. "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
  1782. str, id, ddq->d_version, XFS_DQUOT_VERSION);
  1783. errs++;
  1784. }
  1785. if (ddq->d_flags != XFS_DQ_USER &&
  1786. ddq->d_flags != XFS_DQ_PROJ &&
  1787. ddq->d_flags != XFS_DQ_GROUP) {
  1788. if (flags & XFS_QMOPT_DOWARN)
  1789. xfs_alert(mp,
  1790. "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
  1791. str, id, ddq->d_flags);
  1792. errs++;
  1793. }
  1794. if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
  1795. if (flags & XFS_QMOPT_DOWARN)
  1796. xfs_alert(mp,
  1797. "%s : ondisk-dquot 0x%p, ID mismatch: "
  1798. "0x%x expected, found id 0x%x",
  1799. str, ddq, id, be32_to_cpu(ddq->d_id));
  1800. errs++;
  1801. }
  1802. if (!errs && ddq->d_id) {
  1803. if (ddq->d_blk_softlimit &&
  1804. be64_to_cpu(ddq->d_bcount) >=
  1805. be64_to_cpu(ddq->d_blk_softlimit)) {
  1806. if (!ddq->d_btimer) {
  1807. if (flags & XFS_QMOPT_DOWARN)
  1808. xfs_alert(mp,
  1809. "%s : Dquot ID 0x%x (0x%p) BLK TIMER NOT STARTED",
  1810. str, (int)be32_to_cpu(ddq->d_id), ddq);
  1811. errs++;
  1812. }
  1813. }
  1814. if (ddq->d_ino_softlimit &&
  1815. be64_to_cpu(ddq->d_icount) >=
  1816. be64_to_cpu(ddq->d_ino_softlimit)) {
  1817. if (!ddq->d_itimer) {
  1818. if (flags & XFS_QMOPT_DOWARN)
  1819. xfs_alert(mp,
  1820. "%s : Dquot ID 0x%x (0x%p) INODE TIMER NOT STARTED",
  1821. str, (int)be32_to_cpu(ddq->d_id), ddq);
  1822. errs++;
  1823. }
  1824. }
  1825. if (ddq->d_rtb_softlimit &&
  1826. be64_to_cpu(ddq->d_rtbcount) >=
  1827. be64_to_cpu(ddq->d_rtb_softlimit)) {
  1828. if (!ddq->d_rtbtimer) {
  1829. if (flags & XFS_QMOPT_DOWARN)
  1830. xfs_alert(mp,
  1831. "%s : Dquot ID 0x%x (0x%p) RTBLK TIMER NOT STARTED",
  1832. str, (int)be32_to_cpu(ddq->d_id), ddq);
  1833. errs++;
  1834. }
  1835. }
  1836. }
  1837. if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
  1838. return errs;
  1839. if (flags & XFS_QMOPT_DOWARN)
  1840. xfs_notice(mp, "Re-initializing dquot ID 0x%x", id);
  1841. /*
  1842. * Typically, a repair is only requested by quotacheck.
  1843. */
  1844. ASSERT(id != -1);
  1845. ASSERT(flags & XFS_QMOPT_DQREPAIR);
  1846. memset(d, 0, sizeof(xfs_dqblk_t));
  1847. d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
  1848. d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
  1849. d->dd_diskdq.d_flags = type;
  1850. d->dd_diskdq.d_id = cpu_to_be32(id);
  1851. return errs;
  1852. }
  1853. /*
  1854. * Perform a dquot buffer recovery.
  1855. * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
  1856. * (ie. USR or GRP), then just toss this buffer away; don't recover it.
  1857. * Else, treat it as a regular buffer and do recovery.
  1858. */
  1859. STATIC void
  1860. xlog_recover_do_dquot_buffer(
  1861. xfs_mount_t *mp,
  1862. xlog_t *log,
  1863. xlog_recover_item_t *item,
  1864. xfs_buf_t *bp,
  1865. xfs_buf_log_format_t *buf_f)
  1866. {
  1867. uint type;
  1868. trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
  1869. /*
  1870. * Filesystems are required to send in quota flags at mount time.
  1871. */
  1872. if (mp->m_qflags == 0) {
  1873. return;
  1874. }
  1875. type = 0;
  1876. if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
  1877. type |= XFS_DQ_USER;
  1878. if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
  1879. type |= XFS_DQ_PROJ;
  1880. if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
  1881. type |= XFS_DQ_GROUP;
  1882. /*
  1883. * This type of quotas was turned off, so ignore this buffer
  1884. */
  1885. if (log->l_quotaoffs_flag & type)
  1886. return;
  1887. xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
  1888. }
  1889. /*
  1890. * This routine replays a modification made to a buffer at runtime.
  1891. * There are actually two types of buffer, regular and inode, which
  1892. * are handled differently. Inode buffers are handled differently
  1893. * in that we only recover a specific set of data from them, namely
  1894. * the inode di_next_unlinked fields. This is because all other inode
  1895. * data is actually logged via inode records and any data we replay
  1896. * here which overlaps that may be stale.
  1897. *
  1898. * When meta-data buffers are freed at run time we log a buffer item
  1899. * with the XFS_BLF_CANCEL bit set to indicate that previous copies
  1900. * of the buffer in the log should not be replayed at recovery time.
  1901. * This is so that if the blocks covered by the buffer are reused for
  1902. * file data before we crash we don't end up replaying old, freed
  1903. * meta-data into a user's file.
  1904. *
  1905. * To handle the cancellation of buffer log items, we make two passes
  1906. * over the log during recovery. During the first we build a table of
  1907. * those buffers which have been cancelled, and during the second we
  1908. * only replay those buffers which do not have corresponding cancel
  1909. * records in the table. See xlog_recover_do_buffer_pass[1,2] above
  1910. * for more details on the implementation of the table of cancel records.
  1911. */
  1912. STATIC int
  1913. xlog_recover_buffer_pass2(
  1914. xlog_t *log,
  1915. xlog_recover_item_t *item)
  1916. {
  1917. xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
  1918. xfs_mount_t *mp = log->l_mp;
  1919. xfs_buf_t *bp;
  1920. int error;
  1921. uint buf_flags;
  1922. /*
  1923. * In this pass we only want to recover all the buffers which have
  1924. * not been cancelled and are not cancellation buffers themselves.
  1925. */
  1926. if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
  1927. buf_f->blf_len, buf_f->blf_flags)) {
  1928. trace_xfs_log_recover_buf_cancel(log, buf_f);
  1929. return 0;
  1930. }
  1931. trace_xfs_log_recover_buf_recover(log, buf_f);
  1932. buf_flags = XBF_LOCK;
  1933. if (!(buf_f->blf_flags & XFS_BLF_INODE_BUF))
  1934. buf_flags |= XBF_MAPPED;
  1935. bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
  1936. buf_flags);
  1937. if (!bp)
  1938. return XFS_ERROR(ENOMEM);
  1939. error = bp->b_error;
  1940. if (error) {
  1941. xfs_ioerror_alert("xlog_recover_do..(read#1)", mp,
  1942. bp, buf_f->blf_blkno);
  1943. xfs_buf_relse(bp);
  1944. return error;
  1945. }
  1946. if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
  1947. error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
  1948. } else if (buf_f->blf_flags &
  1949. (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
  1950. xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
  1951. } else {
  1952. xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
  1953. }
  1954. if (error)
  1955. return XFS_ERROR(error);
  1956. /*
  1957. * Perform delayed write on the buffer. Asynchronous writes will be
  1958. * slower when taking into account all the buffers to be flushed.
  1959. *
  1960. * Also make sure that only inode buffers with good sizes stay in
  1961. * the buffer cache. The kernel moves inodes in buffers of 1 block
  1962. * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode
  1963. * buffers in the log can be a different size if the log was generated
  1964. * by an older kernel using unclustered inode buffers or a newer kernel
  1965. * running with a different inode cluster size. Regardless, if the
  1966. * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
  1967. * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
  1968. * the buffer out of the buffer cache so that the buffer won't
  1969. * overlap with future reads of those inodes.
  1970. */
  1971. if (XFS_DINODE_MAGIC ==
  1972. be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
  1973. (XFS_BUF_COUNT(bp) != MAX(log->l_mp->m_sb.sb_blocksize,
  1974. (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
  1975. xfs_buf_stale(bp);
  1976. error = xfs_bwrite(bp);
  1977. } else {
  1978. ASSERT(bp->b_target->bt_mount == mp);
  1979. bp->b_iodone = xlog_recover_iodone;
  1980. xfs_buf_delwri_queue(bp);
  1981. }
  1982. xfs_buf_relse(bp);
  1983. return error;
  1984. }
  1985. STATIC int
  1986. xlog_recover_inode_pass2(
  1987. xlog_t *log,
  1988. xlog_recover_item_t *item)
  1989. {
  1990. xfs_inode_log_format_t *in_f;
  1991. xfs_mount_t *mp = log->l_mp;
  1992. xfs_buf_t *bp;
  1993. xfs_dinode_t *dip;
  1994. int len;
  1995. xfs_caddr_t src;
  1996. xfs_caddr_t dest;
  1997. int error;
  1998. int attr_index;
  1999. uint fields;
  2000. xfs_icdinode_t *dicp;
  2001. int need_free = 0;
  2002. if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
  2003. in_f = item->ri_buf[0].i_addr;
  2004. } else {
  2005. in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP);
  2006. need_free = 1;
  2007. error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
  2008. if (error)
  2009. goto error;
  2010. }
  2011. /*
  2012. * Inode buffers can be freed, look out for it,
  2013. * and do not replay the inode.
  2014. */
  2015. if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
  2016. in_f->ilf_len, 0)) {
  2017. error = 0;
  2018. trace_xfs_log_recover_inode_cancel(log, in_f);
  2019. goto error;
  2020. }
  2021. trace_xfs_log_recover_inode_recover(log, in_f);
  2022. bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len,
  2023. XBF_LOCK);
  2024. if (!bp) {
  2025. error = ENOMEM;
  2026. goto error;
  2027. }
  2028. error = bp->b_error;
  2029. if (error) {
  2030. xfs_ioerror_alert("xlog_recover_do..(read#2)", mp,
  2031. bp, in_f->ilf_blkno);
  2032. xfs_buf_relse(bp);
  2033. goto error;
  2034. }
  2035. ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
  2036. dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset);
  2037. /*
  2038. * Make sure the place we're flushing out to really looks
  2039. * like an inode!
  2040. */
  2041. if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) {
  2042. xfs_buf_relse(bp);
  2043. xfs_alert(mp,
  2044. "%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld",
  2045. __func__, dip, bp, in_f->ilf_ino);
  2046. XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
  2047. XFS_ERRLEVEL_LOW, mp);
  2048. error = EFSCORRUPTED;
  2049. goto error;
  2050. }
  2051. dicp = item->ri_buf[1].i_addr;
  2052. if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
  2053. xfs_buf_relse(bp);
  2054. xfs_alert(mp,
  2055. "%s: Bad inode log record, rec ptr 0x%p, ino %Ld",
  2056. __func__, item, in_f->ilf_ino);
  2057. XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
  2058. XFS_ERRLEVEL_LOW, mp);
  2059. error = EFSCORRUPTED;
  2060. goto error;
  2061. }
  2062. /* Skip replay when the on disk inode is newer than the log one */
  2063. if (dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
  2064. /*
  2065. * Deal with the wrap case, DI_MAX_FLUSH is less
  2066. * than smaller numbers
  2067. */
  2068. if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
  2069. dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
  2070. /* do nothing */
  2071. } else {
  2072. xfs_buf_relse(bp);
  2073. trace_xfs_log_recover_inode_skip(log, in_f);
  2074. error = 0;
  2075. goto error;
  2076. }
  2077. }
  2078. /* Take the opportunity to reset the flush iteration count */
  2079. dicp->di_flushiter = 0;
  2080. if (unlikely(S_ISREG(dicp->di_mode))) {
  2081. if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
  2082. (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
  2083. XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
  2084. XFS_ERRLEVEL_LOW, mp, dicp);
  2085. xfs_buf_relse(bp);
  2086. xfs_alert(mp,
  2087. "%s: Bad regular inode log record, rec ptr 0x%p, "
  2088. "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
  2089. __func__, item, dip, bp, in_f->ilf_ino);
  2090. error = EFSCORRUPTED;
  2091. goto error;
  2092. }
  2093. } else if (unlikely(S_ISDIR(dicp->di_mode))) {
  2094. if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
  2095. (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
  2096. (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
  2097. XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
  2098. XFS_ERRLEVEL_LOW, mp, dicp);
  2099. xfs_buf_relse(bp);
  2100. xfs_alert(mp,
  2101. "%s: Bad dir inode log record, rec ptr 0x%p, "
  2102. "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
  2103. __func__, item, dip, bp, in_f->ilf_ino);
  2104. error = EFSCORRUPTED;
  2105. goto error;
  2106. }
  2107. }
  2108. if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
  2109. XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
  2110. XFS_ERRLEVEL_LOW, mp, dicp);
  2111. xfs_buf_relse(bp);
  2112. xfs_alert(mp,
  2113. "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
  2114. "dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
  2115. __func__, item, dip, bp, in_f->ilf_ino,
  2116. dicp->di_nextents + dicp->di_anextents,
  2117. dicp->di_nblocks);
  2118. error = EFSCORRUPTED;
  2119. goto error;
  2120. }
  2121. if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
  2122. XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
  2123. XFS_ERRLEVEL_LOW, mp, dicp);
  2124. xfs_buf_relse(bp);
  2125. xfs_alert(mp,
  2126. "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
  2127. "dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__,
  2128. item, dip, bp, in_f->ilf_ino, dicp->di_forkoff);
  2129. error = EFSCORRUPTED;
  2130. goto error;
  2131. }
  2132. if (unlikely(item->ri_buf[1].i_len > sizeof(struct xfs_icdinode))) {
  2133. XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
  2134. XFS_ERRLEVEL_LOW, mp, dicp);
  2135. xfs_buf_relse(bp);
  2136. xfs_alert(mp,
  2137. "%s: Bad inode log record length %d, rec ptr 0x%p",
  2138. __func__, item->ri_buf[1].i_len, item);
  2139. error = EFSCORRUPTED;
  2140. goto error;
  2141. }
  2142. /* The core is in in-core format */
  2143. xfs_dinode_to_disk(dip, item->ri_buf[1].i_addr);
  2144. /* the rest is in on-disk format */
  2145. if (item->ri_buf[1].i_len > sizeof(struct xfs_icdinode)) {
  2146. memcpy((xfs_caddr_t) dip + sizeof(struct xfs_icdinode),
  2147. item->ri_buf[1].i_addr + sizeof(struct xfs_icdinode),
  2148. item->ri_buf[1].i_len - sizeof(struct xfs_icdinode));
  2149. }
  2150. fields = in_f->ilf_fields;
  2151. switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
  2152. case XFS_ILOG_DEV:
  2153. xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
  2154. break;
  2155. case XFS_ILOG_UUID:
  2156. memcpy(XFS_DFORK_DPTR(dip),
  2157. &in_f->ilf_u.ilfu_uuid,
  2158. sizeof(uuid_t));
  2159. break;
  2160. }
  2161. if (in_f->ilf_size == 2)
  2162. goto write_inode_buffer;
  2163. len = item->ri_buf[2].i_len;
  2164. src = item->ri_buf[2].i_addr;
  2165. ASSERT(in_f->ilf_size <= 4);
  2166. ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
  2167. ASSERT(!(fields & XFS_ILOG_DFORK) ||
  2168. (len == in_f->ilf_dsize));
  2169. switch (fields & XFS_ILOG_DFORK) {
  2170. case XFS_ILOG_DDATA:
  2171. case XFS_ILOG_DEXT:
  2172. memcpy(XFS_DFORK_DPTR(dip), src, len);
  2173. break;
  2174. case XFS_ILOG_DBROOT:
  2175. xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
  2176. (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
  2177. XFS_DFORK_DSIZE(dip, mp));
  2178. break;
  2179. default:
  2180. /*
  2181. * There are no data fork flags set.
  2182. */
  2183. ASSERT((fields & XFS_ILOG_DFORK) == 0);
  2184. break;
  2185. }
  2186. /*
  2187. * If we logged any attribute data, recover it. There may or
  2188. * may not have been any other non-core data logged in this
  2189. * transaction.
  2190. */
  2191. if (in_f->ilf_fields & XFS_ILOG_AFORK) {
  2192. if (in_f->ilf_fields & XFS_ILOG_DFORK) {
  2193. attr_index = 3;
  2194. } else {
  2195. attr_index = 2;
  2196. }
  2197. len = item->ri_buf[attr_index].i_len;
  2198. src = item->ri_buf[attr_index].i_addr;
  2199. ASSERT(len == in_f->ilf_asize);
  2200. switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
  2201. case XFS_ILOG_ADATA:
  2202. case XFS_ILOG_AEXT:
  2203. dest = XFS_DFORK_APTR(dip);
  2204. ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
  2205. memcpy(dest, src, len);
  2206. break;
  2207. case XFS_ILOG_ABROOT:
  2208. dest = XFS_DFORK_APTR(dip);
  2209. xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
  2210. len, (xfs_bmdr_block_t*)dest,
  2211. XFS_DFORK_ASIZE(dip, mp));
  2212. break;
  2213. default:
  2214. xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
  2215. ASSERT(0);
  2216. xfs_buf_relse(bp);
  2217. error = EIO;
  2218. goto error;
  2219. }
  2220. }
  2221. write_inode_buffer:
  2222. ASSERT(bp->b_target->bt_mount == mp);
  2223. bp->b_iodone = xlog_recover_iodone;
  2224. xfs_buf_delwri_queue(bp);
  2225. xfs_buf_relse(bp);
  2226. error:
  2227. if (need_free)
  2228. kmem_free(in_f);
  2229. return XFS_ERROR(error);
  2230. }
  2231. /*
  2232. * Recover QUOTAOFF records. We simply make a note of it in the xlog_t
  2233. * structure, so that we know not to do any dquot item or dquot buffer recovery,
  2234. * of that type.
  2235. */
  2236. STATIC int
  2237. xlog_recover_quotaoff_pass1(
  2238. xlog_t *log,
  2239. xlog_recover_item_t *item)
  2240. {
  2241. xfs_qoff_logformat_t *qoff_f = item->ri_buf[0].i_addr;
  2242. ASSERT(qoff_f);
  2243. /*
  2244. * The logitem format's flag tells us if this was user quotaoff,
  2245. * group/project quotaoff or both.
  2246. */
  2247. if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
  2248. log->l_quotaoffs_flag |= XFS_DQ_USER;
  2249. if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
  2250. log->l_quotaoffs_flag |= XFS_DQ_PROJ;
  2251. if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
  2252. log->l_quotaoffs_flag |= XFS_DQ_GROUP;
  2253. return (0);
  2254. }
  2255. /*
  2256. * Recover a dquot record
  2257. */
  2258. STATIC int
  2259. xlog_recover_dquot_pass2(
  2260. xlog_t *log,
  2261. xlog_recover_item_t *item)
  2262. {
  2263. xfs_mount_t *mp = log->l_mp;
  2264. xfs_buf_t *bp;
  2265. struct xfs_disk_dquot *ddq, *recddq;
  2266. int error;
  2267. xfs_dq_logformat_t *dq_f;
  2268. uint type;
  2269. /*
  2270. * Filesystems are required to send in quota flags at mount time.
  2271. */
  2272. if (mp->m_qflags == 0)
  2273. return (0);
  2274. recddq = item->ri_buf[1].i_addr;
  2275. if (recddq == NULL) {
  2276. xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
  2277. return XFS_ERROR(EIO);
  2278. }
  2279. if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
  2280. xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
  2281. item->ri_buf[1].i_len, __func__);
  2282. return XFS_ERROR(EIO);
  2283. }
  2284. /*
  2285. * This type of quotas was turned off, so ignore this record.
  2286. */
  2287. type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
  2288. ASSERT(type);
  2289. if (log->l_quotaoffs_flag & type)
  2290. return (0);
  2291. /*
  2292. * At this point we know that quota was _not_ turned off.
  2293. * Since the mount flags are not indicating to us otherwise, this
  2294. * must mean that quota is on, and the dquot needs to be replayed.
  2295. * Remember that we may not have fully recovered the superblock yet,
  2296. * so we can't do the usual trick of looking at the SB quota bits.
  2297. *
  2298. * The other possibility, of course, is that the quota subsystem was
  2299. * removed since the last mount - ENOSYS.
  2300. */
  2301. dq_f = item->ri_buf[0].i_addr;
  2302. ASSERT(dq_f);
  2303. error = xfs_qm_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
  2304. "xlog_recover_dquot_pass2 (log copy)");
  2305. if (error)
  2306. return XFS_ERROR(EIO);
  2307. ASSERT(dq_f->qlf_len == 1);
  2308. error = xfs_read_buf(mp, mp->m_ddev_targp,
  2309. dq_f->qlf_blkno,
  2310. XFS_FSB_TO_BB(mp, dq_f->qlf_len),
  2311. 0, &bp);
  2312. if (error) {
  2313. xfs_ioerror_alert("xlog_recover_do..(read#3)", mp,
  2314. bp, dq_f->qlf_blkno);
  2315. return error;
  2316. }
  2317. ASSERT(bp);
  2318. ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
  2319. /*
  2320. * At least the magic num portion should be on disk because this
  2321. * was among a chunk of dquots created earlier, and we did some
  2322. * minimal initialization then.
  2323. */
  2324. error = xfs_qm_dqcheck(mp, ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
  2325. "xlog_recover_dquot_pass2");
  2326. if (error) {
  2327. xfs_buf_relse(bp);
  2328. return XFS_ERROR(EIO);
  2329. }
  2330. memcpy(ddq, recddq, item->ri_buf[1].i_len);
  2331. ASSERT(dq_f->qlf_size == 2);
  2332. ASSERT(bp->b_target->bt_mount == mp);
  2333. bp->b_iodone = xlog_recover_iodone;
  2334. xfs_buf_delwri_queue(bp);
  2335. xfs_buf_relse(bp);
  2336. return (0);
  2337. }
  2338. /*
  2339. * This routine is called to create an in-core extent free intent
  2340. * item from the efi format structure which was logged on disk.
  2341. * It allocates an in-core efi, copies the extents from the format
  2342. * structure into it, and adds the efi to the AIL with the given
  2343. * LSN.
  2344. */
  2345. STATIC int
  2346. xlog_recover_efi_pass2(
  2347. xlog_t *log,
  2348. xlog_recover_item_t *item,
  2349. xfs_lsn_t lsn)
  2350. {
  2351. int error;
  2352. xfs_mount_t *mp = log->l_mp;
  2353. xfs_efi_log_item_t *efip;
  2354. xfs_efi_log_format_t *efi_formatp;
  2355. efi_formatp = item->ri_buf[0].i_addr;
  2356. efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
  2357. if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
  2358. &(efip->efi_format)))) {
  2359. xfs_efi_item_free(efip);
  2360. return error;
  2361. }
  2362. atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
  2363. spin_lock(&log->l_ailp->xa_lock);
  2364. /*
  2365. * xfs_trans_ail_update() drops the AIL lock.
  2366. */
  2367. xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
  2368. return 0;
  2369. }
  2370. /*
  2371. * This routine is called when an efd format structure is found in
  2372. * a committed transaction in the log. It's purpose is to cancel
  2373. * the corresponding efi if it was still in the log. To do this
  2374. * it searches the AIL for the efi with an id equal to that in the
  2375. * efd format structure. If we find it, we remove the efi from the
  2376. * AIL and free it.
  2377. */
  2378. STATIC int
  2379. xlog_recover_efd_pass2(
  2380. xlog_t *log,
  2381. xlog_recover_item_t *item)
  2382. {
  2383. xfs_efd_log_format_t *efd_formatp;
  2384. xfs_efi_log_item_t *efip = NULL;
  2385. xfs_log_item_t *lip;
  2386. __uint64_t efi_id;
  2387. struct xfs_ail_cursor cur;
  2388. struct xfs_ail *ailp = log->l_ailp;
  2389. efd_formatp = item->ri_buf[0].i_addr;
  2390. ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
  2391. ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
  2392. (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
  2393. ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
  2394. efi_id = efd_formatp->efd_efi_id;
  2395. /*
  2396. * Search for the efi with the id in the efd format structure
  2397. * in the AIL.
  2398. */
  2399. spin_lock(&ailp->xa_lock);
  2400. lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
  2401. while (lip != NULL) {
  2402. if (lip->li_type == XFS_LI_EFI) {
  2403. efip = (xfs_efi_log_item_t *)lip;
  2404. if (efip->efi_format.efi_id == efi_id) {
  2405. /*
  2406. * xfs_trans_ail_delete() drops the
  2407. * AIL lock.
  2408. */
  2409. xfs_trans_ail_delete(ailp, lip);
  2410. xfs_efi_item_free(efip);
  2411. spin_lock(&ailp->xa_lock);
  2412. break;
  2413. }
  2414. }
  2415. lip = xfs_trans_ail_cursor_next(ailp, &cur);
  2416. }
  2417. xfs_trans_ail_cursor_done(ailp, &cur);
  2418. spin_unlock(&ailp->xa_lock);
  2419. return 0;
  2420. }
  2421. /*
  2422. * Free up any resources allocated by the transaction
  2423. *
  2424. * Remember that EFIs, EFDs, and IUNLINKs are handled later.
  2425. */
  2426. STATIC void
  2427. xlog_recover_free_trans(
  2428. struct xlog_recover *trans)
  2429. {
  2430. xlog_recover_item_t *item, *n;
  2431. int i;
  2432. list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
  2433. /* Free the regions in the item. */
  2434. list_del(&item->ri_list);
  2435. for (i = 0; i < item->ri_cnt; i++)
  2436. kmem_free(item->ri_buf[i].i_addr);
  2437. /* Free the item itself */
  2438. kmem_free(item->ri_buf);
  2439. kmem_free(item);
  2440. }
  2441. /* Free the transaction recover structure */
  2442. kmem_free(trans);
  2443. }
  2444. STATIC int
  2445. xlog_recover_commit_pass1(
  2446. struct log *log,
  2447. struct xlog_recover *trans,
  2448. xlog_recover_item_t *item)
  2449. {
  2450. trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
  2451. switch (ITEM_TYPE(item)) {
  2452. case XFS_LI_BUF:
  2453. return xlog_recover_buffer_pass1(log, item);
  2454. case XFS_LI_QUOTAOFF:
  2455. return xlog_recover_quotaoff_pass1(log, item);
  2456. case XFS_LI_INODE:
  2457. case XFS_LI_EFI:
  2458. case XFS_LI_EFD:
  2459. case XFS_LI_DQUOT:
  2460. /* nothing to do in pass 1 */
  2461. return 0;
  2462. default:
  2463. xfs_warn(log->l_mp, "%s: invalid item type (%d)",
  2464. __func__, ITEM_TYPE(item));
  2465. ASSERT(0);
  2466. return XFS_ERROR(EIO);
  2467. }
  2468. }
  2469. STATIC int
  2470. xlog_recover_commit_pass2(
  2471. struct log *log,
  2472. struct xlog_recover *trans,
  2473. xlog_recover_item_t *item)
  2474. {
  2475. trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
  2476. switch (ITEM_TYPE(item)) {
  2477. case XFS_LI_BUF:
  2478. return xlog_recover_buffer_pass2(log, item);
  2479. case XFS_LI_INODE:
  2480. return xlog_recover_inode_pass2(log, item);
  2481. case XFS_LI_EFI:
  2482. return xlog_recover_efi_pass2(log, item, trans->r_lsn);
  2483. case XFS_LI_EFD:
  2484. return xlog_recover_efd_pass2(log, item);
  2485. case XFS_LI_DQUOT:
  2486. return xlog_recover_dquot_pass2(log, item);
  2487. case XFS_LI_QUOTAOFF:
  2488. /* nothing to do in pass2 */
  2489. return 0;
  2490. default:
  2491. xfs_warn(log->l_mp, "%s: invalid item type (%d)",
  2492. __func__, ITEM_TYPE(item));
  2493. ASSERT(0);
  2494. return XFS_ERROR(EIO);
  2495. }
  2496. }
  2497. /*
  2498. * Perform the transaction.
  2499. *
  2500. * If the transaction modifies a buffer or inode, do it now. Otherwise,
  2501. * EFIs and EFDs get queued up by adding entries into the AIL for them.
  2502. */
  2503. STATIC int
  2504. xlog_recover_commit_trans(
  2505. struct log *log,
  2506. struct xlog_recover *trans,
  2507. int pass)
  2508. {
  2509. int error = 0;
  2510. xlog_recover_item_t *item;
  2511. hlist_del(&trans->r_list);
  2512. error = xlog_recover_reorder_trans(log, trans, pass);
  2513. if (error)
  2514. return error;
  2515. list_for_each_entry(item, &trans->r_itemq, ri_list) {
  2516. if (pass == XLOG_RECOVER_PASS1)
  2517. error = xlog_recover_commit_pass1(log, trans, item);
  2518. else
  2519. error = xlog_recover_commit_pass2(log, trans, item);
  2520. if (error)
  2521. return error;
  2522. }
  2523. xlog_recover_free_trans(trans);
  2524. return 0;
  2525. }
  2526. STATIC int
  2527. xlog_recover_unmount_trans(
  2528. struct log *log,
  2529. xlog_recover_t *trans)
  2530. {
  2531. /* Do nothing now */
  2532. xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
  2533. return 0;
  2534. }
  2535. /*
  2536. * There are two valid states of the r_state field. 0 indicates that the
  2537. * transaction structure is in a normal state. We have either seen the
  2538. * start of the transaction or the last operation we added was not a partial
  2539. * operation. If the last operation we added to the transaction was a
  2540. * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
  2541. *
  2542. * NOTE: skip LRs with 0 data length.
  2543. */
  2544. STATIC int
  2545. xlog_recover_process_data(
  2546. xlog_t *log,
  2547. struct hlist_head rhash[],
  2548. xlog_rec_header_t *rhead,
  2549. xfs_caddr_t dp,
  2550. int pass)
  2551. {
  2552. xfs_caddr_t lp;
  2553. int num_logops;
  2554. xlog_op_header_t *ohead;
  2555. xlog_recover_t *trans;
  2556. xlog_tid_t tid;
  2557. int error;
  2558. unsigned long hash;
  2559. uint flags;
  2560. lp = dp + be32_to_cpu(rhead->h_len);
  2561. num_logops = be32_to_cpu(rhead->h_num_logops);
  2562. /* check the log format matches our own - else we can't recover */
  2563. if (xlog_header_check_recover(log->l_mp, rhead))
  2564. return (XFS_ERROR(EIO));
  2565. while ((dp < lp) && num_logops) {
  2566. ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
  2567. ohead = (xlog_op_header_t *)dp;
  2568. dp += sizeof(xlog_op_header_t);
  2569. if (ohead->oh_clientid != XFS_TRANSACTION &&
  2570. ohead->oh_clientid != XFS_LOG) {
  2571. xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
  2572. __func__, ohead->oh_clientid);
  2573. ASSERT(0);
  2574. return (XFS_ERROR(EIO));
  2575. }
  2576. tid = be32_to_cpu(ohead->oh_tid);
  2577. hash = XLOG_RHASH(tid);
  2578. trans = xlog_recover_find_tid(&rhash[hash], tid);
  2579. if (trans == NULL) { /* not found; add new tid */
  2580. if (ohead->oh_flags & XLOG_START_TRANS)
  2581. xlog_recover_new_tid(&rhash[hash], tid,
  2582. be64_to_cpu(rhead->h_lsn));
  2583. } else {
  2584. if (dp + be32_to_cpu(ohead->oh_len) > lp) {
  2585. xfs_warn(log->l_mp, "%s: bad length 0x%x",
  2586. __func__, be32_to_cpu(ohead->oh_len));
  2587. WARN_ON(1);
  2588. return (XFS_ERROR(EIO));
  2589. }
  2590. flags = ohead->oh_flags & ~XLOG_END_TRANS;
  2591. if (flags & XLOG_WAS_CONT_TRANS)
  2592. flags &= ~XLOG_CONTINUE_TRANS;
  2593. switch (flags) {
  2594. case XLOG_COMMIT_TRANS:
  2595. error = xlog_recover_commit_trans(log,
  2596. trans, pass);
  2597. break;
  2598. case XLOG_UNMOUNT_TRANS:
  2599. error = xlog_recover_unmount_trans(log, trans);
  2600. break;
  2601. case XLOG_WAS_CONT_TRANS:
  2602. error = xlog_recover_add_to_cont_trans(log,
  2603. trans, dp,
  2604. be32_to_cpu(ohead->oh_len));
  2605. break;
  2606. case XLOG_START_TRANS:
  2607. xfs_warn(log->l_mp, "%s: bad transaction",
  2608. __func__);
  2609. ASSERT(0);
  2610. error = XFS_ERROR(EIO);
  2611. break;
  2612. case 0:
  2613. case XLOG_CONTINUE_TRANS:
  2614. error = xlog_recover_add_to_trans(log, trans,
  2615. dp, be32_to_cpu(ohead->oh_len));
  2616. break;
  2617. default:
  2618. xfs_warn(log->l_mp, "%s: bad flag 0x%x",
  2619. __func__, flags);
  2620. ASSERT(0);
  2621. error = XFS_ERROR(EIO);
  2622. break;
  2623. }
  2624. if (error)
  2625. return error;
  2626. }
  2627. dp += be32_to_cpu(ohead->oh_len);
  2628. num_logops--;
  2629. }
  2630. return 0;
  2631. }
  2632. /*
  2633. * Process an extent free intent item that was recovered from
  2634. * the log. We need to free the extents that it describes.
  2635. */
  2636. STATIC int
  2637. xlog_recover_process_efi(
  2638. xfs_mount_t *mp,
  2639. xfs_efi_log_item_t *efip)
  2640. {
  2641. xfs_efd_log_item_t *efdp;
  2642. xfs_trans_t *tp;
  2643. int i;
  2644. int error = 0;
  2645. xfs_extent_t *extp;
  2646. xfs_fsblock_t startblock_fsb;
  2647. ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags));
  2648. /*
  2649. * First check the validity of the extents described by the
  2650. * EFI. If any are bad, then assume that all are bad and
  2651. * just toss the EFI.
  2652. */
  2653. for (i = 0; i < efip->efi_format.efi_nextents; i++) {
  2654. extp = &(efip->efi_format.efi_extents[i]);
  2655. startblock_fsb = XFS_BB_TO_FSB(mp,
  2656. XFS_FSB_TO_DADDR(mp, extp->ext_start));
  2657. if ((startblock_fsb == 0) ||
  2658. (extp->ext_len == 0) ||
  2659. (startblock_fsb >= mp->m_sb.sb_dblocks) ||
  2660. (extp->ext_len >= mp->m_sb.sb_agblocks)) {
  2661. /*
  2662. * This will pull the EFI from the AIL and
  2663. * free the memory associated with it.
  2664. */
  2665. xfs_efi_release(efip, efip->efi_format.efi_nextents);
  2666. return XFS_ERROR(EIO);
  2667. }
  2668. }
  2669. tp = xfs_trans_alloc(mp, 0);
  2670. error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
  2671. if (error)
  2672. goto abort_error;
  2673. efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
  2674. for (i = 0; i < efip->efi_format.efi_nextents; i++) {
  2675. extp = &(efip->efi_format.efi_extents[i]);
  2676. error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
  2677. if (error)
  2678. goto abort_error;
  2679. xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
  2680. extp->ext_len);
  2681. }
  2682. set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
  2683. error = xfs_trans_commit(tp, 0);
  2684. return error;
  2685. abort_error:
  2686. xfs_trans_cancel(tp, XFS_TRANS_ABORT);
  2687. return error;
  2688. }
  2689. /*
  2690. * When this is called, all of the EFIs which did not have
  2691. * corresponding EFDs should be in the AIL. What we do now
  2692. * is free the extents associated with each one.
  2693. *
  2694. * Since we process the EFIs in normal transactions, they
  2695. * will be removed at some point after the commit. This prevents
  2696. * us from just walking down the list processing each one.
  2697. * We'll use a flag in the EFI to skip those that we've already
  2698. * processed and use the AIL iteration mechanism's generation
  2699. * count to try to speed this up at least a bit.
  2700. *
  2701. * When we start, we know that the EFIs are the only things in
  2702. * the AIL. As we process them, however, other items are added
  2703. * to the AIL. Since everything added to the AIL must come after
  2704. * everything already in the AIL, we stop processing as soon as
  2705. * we see something other than an EFI in the AIL.
  2706. */
  2707. STATIC int
  2708. xlog_recover_process_efis(
  2709. xlog_t *log)
  2710. {
  2711. xfs_log_item_t *lip;
  2712. xfs_efi_log_item_t *efip;
  2713. int error = 0;
  2714. struct xfs_ail_cursor cur;
  2715. struct xfs_ail *ailp;
  2716. ailp = log->l_ailp;
  2717. spin_lock(&ailp->xa_lock);
  2718. lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
  2719. while (lip != NULL) {
  2720. /*
  2721. * We're done when we see something other than an EFI.
  2722. * There should be no EFIs left in the AIL now.
  2723. */
  2724. if (lip->li_type != XFS_LI_EFI) {
  2725. #ifdef DEBUG
  2726. for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
  2727. ASSERT(lip->li_type != XFS_LI_EFI);
  2728. #endif
  2729. break;
  2730. }
  2731. /*
  2732. * Skip EFIs that we've already processed.
  2733. */
  2734. efip = (xfs_efi_log_item_t *)lip;
  2735. if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) {
  2736. lip = xfs_trans_ail_cursor_next(ailp, &cur);
  2737. continue;
  2738. }
  2739. spin_unlock(&ailp->xa_lock);
  2740. error = xlog_recover_process_efi(log->l_mp, efip);
  2741. spin_lock(&ailp->xa_lock);
  2742. if (error)
  2743. goto out;
  2744. lip = xfs_trans_ail_cursor_next(ailp, &cur);
  2745. }
  2746. out:
  2747. xfs_trans_ail_cursor_done(ailp, &cur);
  2748. spin_unlock(&ailp->xa_lock);
  2749. return error;
  2750. }
  2751. /*
  2752. * This routine performs a transaction to null out a bad inode pointer
  2753. * in an agi unlinked inode hash bucket.
  2754. */
  2755. STATIC void
  2756. xlog_recover_clear_agi_bucket(
  2757. xfs_mount_t *mp,
  2758. xfs_agnumber_t agno,
  2759. int bucket)
  2760. {
  2761. xfs_trans_t *tp;
  2762. xfs_agi_t *agi;
  2763. xfs_buf_t *agibp;
  2764. int offset;
  2765. int error;
  2766. tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
  2767. error = xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp),
  2768. 0, 0, 0);
  2769. if (error)
  2770. goto out_abort;
  2771. error = xfs_read_agi(mp, tp, agno, &agibp);
  2772. if (error)
  2773. goto out_abort;
  2774. agi = XFS_BUF_TO_AGI(agibp);
  2775. agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
  2776. offset = offsetof(xfs_agi_t, agi_unlinked) +
  2777. (sizeof(xfs_agino_t) * bucket);
  2778. xfs_trans_log_buf(tp, agibp, offset,
  2779. (offset + sizeof(xfs_agino_t) - 1));
  2780. error = xfs_trans_commit(tp, 0);
  2781. if (error)
  2782. goto out_error;
  2783. return;
  2784. out_abort:
  2785. xfs_trans_cancel(tp, XFS_TRANS_ABORT);
  2786. out_error:
  2787. xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
  2788. return;
  2789. }
  2790. STATIC xfs_agino_t
  2791. xlog_recover_process_one_iunlink(
  2792. struct xfs_mount *mp,
  2793. xfs_agnumber_t agno,
  2794. xfs_agino_t agino,
  2795. int bucket)
  2796. {
  2797. struct xfs_buf *ibp;
  2798. struct xfs_dinode *dip;
  2799. struct xfs_inode *ip;
  2800. xfs_ino_t ino;
  2801. int error;
  2802. ino = XFS_AGINO_TO_INO(mp, agno, agino);
  2803. error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
  2804. if (error)
  2805. goto fail;
  2806. /*
  2807. * Get the on disk inode to find the next inode in the bucket.
  2808. */
  2809. error = xfs_itobp(mp, NULL, ip, &dip, &ibp, XBF_LOCK);
  2810. if (error)
  2811. goto fail_iput;
  2812. ASSERT(ip->i_d.di_nlink == 0);
  2813. ASSERT(ip->i_d.di_mode != 0);
  2814. /* setup for the next pass */
  2815. agino = be32_to_cpu(dip->di_next_unlinked);
  2816. xfs_buf_relse(ibp);
  2817. /*
  2818. * Prevent any DMAPI event from being sent when the reference on
  2819. * the inode is dropped.
  2820. */
  2821. ip->i_d.di_dmevmask = 0;
  2822. IRELE(ip);
  2823. return agino;
  2824. fail_iput:
  2825. IRELE(ip);
  2826. fail:
  2827. /*
  2828. * We can't read in the inode this bucket points to, or this inode
  2829. * is messed up. Just ditch this bucket of inodes. We will lose
  2830. * some inodes and space, but at least we won't hang.
  2831. *
  2832. * Call xlog_recover_clear_agi_bucket() to perform a transaction to
  2833. * clear the inode pointer in the bucket.
  2834. */
  2835. xlog_recover_clear_agi_bucket(mp, agno, bucket);
  2836. return NULLAGINO;
  2837. }
  2838. /*
  2839. * xlog_iunlink_recover
  2840. *
  2841. * This is called during recovery to process any inodes which
  2842. * we unlinked but not freed when the system crashed. These
  2843. * inodes will be on the lists in the AGI blocks. What we do
  2844. * here is scan all the AGIs and fully truncate and free any
  2845. * inodes found on the lists. Each inode is removed from the
  2846. * lists when it has been fully truncated and is freed. The
  2847. * freeing of the inode and its removal from the list must be
  2848. * atomic.
  2849. */
  2850. STATIC void
  2851. xlog_recover_process_iunlinks(
  2852. xlog_t *log)
  2853. {
  2854. xfs_mount_t *mp;
  2855. xfs_agnumber_t agno;
  2856. xfs_agi_t *agi;
  2857. xfs_buf_t *agibp;
  2858. xfs_agino_t agino;
  2859. int bucket;
  2860. int error;
  2861. uint mp_dmevmask;
  2862. mp = log->l_mp;
  2863. /*
  2864. * Prevent any DMAPI event from being sent while in this function.
  2865. */
  2866. mp_dmevmask = mp->m_dmevmask;
  2867. mp->m_dmevmask = 0;
  2868. for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
  2869. /*
  2870. * Find the agi for this ag.
  2871. */
  2872. error = xfs_read_agi(mp, NULL, agno, &agibp);
  2873. if (error) {
  2874. /*
  2875. * AGI is b0rked. Don't process it.
  2876. *
  2877. * We should probably mark the filesystem as corrupt
  2878. * after we've recovered all the ag's we can....
  2879. */
  2880. continue;
  2881. }
  2882. agi = XFS_BUF_TO_AGI(agibp);
  2883. for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
  2884. agino = be32_to_cpu(agi->agi_unlinked[bucket]);
  2885. while (agino != NULLAGINO) {
  2886. /*
  2887. * Release the agi buffer so that it can
  2888. * be acquired in the normal course of the
  2889. * transaction to truncate and free the inode.
  2890. */
  2891. xfs_buf_relse(agibp);
  2892. agino = xlog_recover_process_one_iunlink(mp,
  2893. agno, agino, bucket);
  2894. /*
  2895. * Reacquire the agibuffer and continue around
  2896. * the loop. This should never fail as we know
  2897. * the buffer was good earlier on.
  2898. */
  2899. error = xfs_read_agi(mp, NULL, agno, &agibp);
  2900. ASSERT(error == 0);
  2901. agi = XFS_BUF_TO_AGI(agibp);
  2902. }
  2903. }
  2904. /*
  2905. * Release the buffer for the current agi so we can
  2906. * go on to the next one.
  2907. */
  2908. xfs_buf_relse(agibp);
  2909. }
  2910. mp->m_dmevmask = mp_dmevmask;
  2911. }
  2912. #ifdef DEBUG
  2913. STATIC void
  2914. xlog_pack_data_checksum(
  2915. xlog_t *log,
  2916. xlog_in_core_t *iclog,
  2917. int size)
  2918. {
  2919. int i;
  2920. __be32 *up;
  2921. uint chksum = 0;
  2922. up = (__be32 *)iclog->ic_datap;
  2923. /* divide length by 4 to get # words */
  2924. for (i = 0; i < (size >> 2); i++) {
  2925. chksum ^= be32_to_cpu(*up);
  2926. up++;
  2927. }
  2928. iclog->ic_header.h_chksum = cpu_to_be32(chksum);
  2929. }
  2930. #else
  2931. #define xlog_pack_data_checksum(log, iclog, size)
  2932. #endif
  2933. /*
  2934. * Stamp cycle number in every block
  2935. */
  2936. void
  2937. xlog_pack_data(
  2938. xlog_t *log,
  2939. xlog_in_core_t *iclog,
  2940. int roundoff)
  2941. {
  2942. int i, j, k;
  2943. int size = iclog->ic_offset + roundoff;
  2944. __be32 cycle_lsn;
  2945. xfs_caddr_t dp;
  2946. xlog_pack_data_checksum(log, iclog, size);
  2947. cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
  2948. dp = iclog->ic_datap;
  2949. for (i = 0; i < BTOBB(size) &&
  2950. i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
  2951. iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
  2952. *(__be32 *)dp = cycle_lsn;
  2953. dp += BBSIZE;
  2954. }
  2955. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  2956. xlog_in_core_2_t *xhdr = iclog->ic_data;
  2957. for ( ; i < BTOBB(size); i++) {
  2958. j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
  2959. k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
  2960. xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
  2961. *(__be32 *)dp = cycle_lsn;
  2962. dp += BBSIZE;
  2963. }
  2964. for (i = 1; i < log->l_iclog_heads; i++) {
  2965. xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
  2966. }
  2967. }
  2968. }
  2969. STATIC void
  2970. xlog_unpack_data(
  2971. xlog_rec_header_t *rhead,
  2972. xfs_caddr_t dp,
  2973. xlog_t *log)
  2974. {
  2975. int i, j, k;
  2976. for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
  2977. i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
  2978. *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
  2979. dp += BBSIZE;
  2980. }
  2981. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  2982. xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
  2983. for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
  2984. j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
  2985. k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
  2986. *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
  2987. dp += BBSIZE;
  2988. }
  2989. }
  2990. }
  2991. STATIC int
  2992. xlog_valid_rec_header(
  2993. xlog_t *log,
  2994. xlog_rec_header_t *rhead,
  2995. xfs_daddr_t blkno)
  2996. {
  2997. int hlen;
  2998. if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) {
  2999. XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
  3000. XFS_ERRLEVEL_LOW, log->l_mp);
  3001. return XFS_ERROR(EFSCORRUPTED);
  3002. }
  3003. if (unlikely(
  3004. (!rhead->h_version ||
  3005. (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
  3006. xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
  3007. __func__, be32_to_cpu(rhead->h_version));
  3008. return XFS_ERROR(EIO);
  3009. }
  3010. /* LR body must have data or it wouldn't have been written */
  3011. hlen = be32_to_cpu(rhead->h_len);
  3012. if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
  3013. XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
  3014. XFS_ERRLEVEL_LOW, log->l_mp);
  3015. return XFS_ERROR(EFSCORRUPTED);
  3016. }
  3017. if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
  3018. XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
  3019. XFS_ERRLEVEL_LOW, log->l_mp);
  3020. return XFS_ERROR(EFSCORRUPTED);
  3021. }
  3022. return 0;
  3023. }
  3024. /*
  3025. * Read the log from tail to head and process the log records found.
  3026. * Handle the two cases where the tail and head are in the same cycle
  3027. * and where the active portion of the log wraps around the end of
  3028. * the physical log separately. The pass parameter is passed through
  3029. * to the routines called to process the data and is not looked at
  3030. * here.
  3031. */
  3032. STATIC int
  3033. xlog_do_recovery_pass(
  3034. xlog_t *log,
  3035. xfs_daddr_t head_blk,
  3036. xfs_daddr_t tail_blk,
  3037. int pass)
  3038. {
  3039. xlog_rec_header_t *rhead;
  3040. xfs_daddr_t blk_no;
  3041. xfs_caddr_t offset;
  3042. xfs_buf_t *hbp, *dbp;
  3043. int error = 0, h_size;
  3044. int bblks, split_bblks;
  3045. int hblks, split_hblks, wrapped_hblks;
  3046. struct hlist_head rhash[XLOG_RHASH_SIZE];
  3047. ASSERT(head_blk != tail_blk);
  3048. /*
  3049. * Read the header of the tail block and get the iclog buffer size from
  3050. * h_size. Use this to tell how many sectors make up the log header.
  3051. */
  3052. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  3053. /*
  3054. * When using variable length iclogs, read first sector of
  3055. * iclog header and extract the header size from it. Get a
  3056. * new hbp that is the correct size.
  3057. */
  3058. hbp = xlog_get_bp(log, 1);
  3059. if (!hbp)
  3060. return ENOMEM;
  3061. error = xlog_bread(log, tail_blk, 1, hbp, &offset);
  3062. if (error)
  3063. goto bread_err1;
  3064. rhead = (xlog_rec_header_t *)offset;
  3065. error = xlog_valid_rec_header(log, rhead, tail_blk);
  3066. if (error)
  3067. goto bread_err1;
  3068. h_size = be32_to_cpu(rhead->h_size);
  3069. if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
  3070. (h_size > XLOG_HEADER_CYCLE_SIZE)) {
  3071. hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
  3072. if (h_size % XLOG_HEADER_CYCLE_SIZE)
  3073. hblks++;
  3074. xlog_put_bp(hbp);
  3075. hbp = xlog_get_bp(log, hblks);
  3076. } else {
  3077. hblks = 1;
  3078. }
  3079. } else {
  3080. ASSERT(log->l_sectBBsize == 1);
  3081. hblks = 1;
  3082. hbp = xlog_get_bp(log, 1);
  3083. h_size = XLOG_BIG_RECORD_BSIZE;
  3084. }
  3085. if (!hbp)
  3086. return ENOMEM;
  3087. dbp = xlog_get_bp(log, BTOBB(h_size));
  3088. if (!dbp) {
  3089. xlog_put_bp(hbp);
  3090. return ENOMEM;
  3091. }
  3092. memset(rhash, 0, sizeof(rhash));
  3093. if (tail_blk <= head_blk) {
  3094. for (blk_no = tail_blk; blk_no < head_blk; ) {
  3095. error = xlog_bread(log, blk_no, hblks, hbp, &offset);
  3096. if (error)
  3097. goto bread_err2;
  3098. rhead = (xlog_rec_header_t *)offset;
  3099. error = xlog_valid_rec_header(log, rhead, blk_no);
  3100. if (error)
  3101. goto bread_err2;
  3102. /* blocks in data section */
  3103. bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
  3104. error = xlog_bread(log, blk_no + hblks, bblks, dbp,
  3105. &offset);
  3106. if (error)
  3107. goto bread_err2;
  3108. xlog_unpack_data(rhead, offset, log);
  3109. if ((error = xlog_recover_process_data(log,
  3110. rhash, rhead, offset, pass)))
  3111. goto bread_err2;
  3112. blk_no += bblks + hblks;
  3113. }
  3114. } else {
  3115. /*
  3116. * Perform recovery around the end of the physical log.
  3117. * When the head is not on the same cycle number as the tail,
  3118. * we can't do a sequential recovery as above.
  3119. */
  3120. blk_no = tail_blk;
  3121. while (blk_no < log->l_logBBsize) {
  3122. /*
  3123. * Check for header wrapping around physical end-of-log
  3124. */
  3125. offset = hbp->b_addr;
  3126. split_hblks = 0;
  3127. wrapped_hblks = 0;
  3128. if (blk_no + hblks <= log->l_logBBsize) {
  3129. /* Read header in one read */
  3130. error = xlog_bread(log, blk_no, hblks, hbp,
  3131. &offset);
  3132. if (error)
  3133. goto bread_err2;
  3134. } else {
  3135. /* This LR is split across physical log end */
  3136. if (blk_no != log->l_logBBsize) {
  3137. /* some data before physical log end */
  3138. ASSERT(blk_no <= INT_MAX);
  3139. split_hblks = log->l_logBBsize - (int)blk_no;
  3140. ASSERT(split_hblks > 0);
  3141. error = xlog_bread(log, blk_no,
  3142. split_hblks, hbp,
  3143. &offset);
  3144. if (error)
  3145. goto bread_err2;
  3146. }
  3147. /*
  3148. * Note: this black magic still works with
  3149. * large sector sizes (non-512) only because:
  3150. * - we increased the buffer size originally
  3151. * by 1 sector giving us enough extra space
  3152. * for the second read;
  3153. * - the log start is guaranteed to be sector
  3154. * aligned;
  3155. * - we read the log end (LR header start)
  3156. * _first_, then the log start (LR header end)
  3157. * - order is important.
  3158. */
  3159. wrapped_hblks = hblks - split_hblks;
  3160. error = xlog_bread_offset(log, 0,
  3161. wrapped_hblks, hbp,
  3162. offset + BBTOB(split_hblks));
  3163. if (error)
  3164. goto bread_err2;
  3165. }
  3166. rhead = (xlog_rec_header_t *)offset;
  3167. error = xlog_valid_rec_header(log, rhead,
  3168. split_hblks ? blk_no : 0);
  3169. if (error)
  3170. goto bread_err2;
  3171. bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
  3172. blk_no += hblks;
  3173. /* Read in data for log record */
  3174. if (blk_no + bblks <= log->l_logBBsize) {
  3175. error = xlog_bread(log, blk_no, bblks, dbp,
  3176. &offset);
  3177. if (error)
  3178. goto bread_err2;
  3179. } else {
  3180. /* This log record is split across the
  3181. * physical end of log */
  3182. offset = dbp->b_addr;
  3183. split_bblks = 0;
  3184. if (blk_no != log->l_logBBsize) {
  3185. /* some data is before the physical
  3186. * end of log */
  3187. ASSERT(!wrapped_hblks);
  3188. ASSERT(blk_no <= INT_MAX);
  3189. split_bblks =
  3190. log->l_logBBsize - (int)blk_no;
  3191. ASSERT(split_bblks > 0);
  3192. error = xlog_bread(log, blk_no,
  3193. split_bblks, dbp,
  3194. &offset);
  3195. if (error)
  3196. goto bread_err2;
  3197. }
  3198. /*
  3199. * Note: this black magic still works with
  3200. * large sector sizes (non-512) only because:
  3201. * - we increased the buffer size originally
  3202. * by 1 sector giving us enough extra space
  3203. * for the second read;
  3204. * - the log start is guaranteed to be sector
  3205. * aligned;
  3206. * - we read the log end (LR header start)
  3207. * _first_, then the log start (LR header end)
  3208. * - order is important.
  3209. */
  3210. error = xlog_bread_offset(log, 0,
  3211. bblks - split_bblks, hbp,
  3212. offset + BBTOB(split_bblks));
  3213. if (error)
  3214. goto bread_err2;
  3215. }
  3216. xlog_unpack_data(rhead, offset, log);
  3217. if ((error = xlog_recover_process_data(log, rhash,
  3218. rhead, offset, pass)))
  3219. goto bread_err2;
  3220. blk_no += bblks;
  3221. }
  3222. ASSERT(blk_no >= log->l_logBBsize);
  3223. blk_no -= log->l_logBBsize;
  3224. /* read first part of physical log */
  3225. while (blk_no < head_blk) {
  3226. error = xlog_bread(log, blk_no, hblks, hbp, &offset);
  3227. if (error)
  3228. goto bread_err2;
  3229. rhead = (xlog_rec_header_t *)offset;
  3230. error = xlog_valid_rec_header(log, rhead, blk_no);
  3231. if (error)
  3232. goto bread_err2;
  3233. bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
  3234. error = xlog_bread(log, blk_no+hblks, bblks, dbp,
  3235. &offset);
  3236. if (error)
  3237. goto bread_err2;
  3238. xlog_unpack_data(rhead, offset, log);
  3239. if ((error = xlog_recover_process_data(log, rhash,
  3240. rhead, offset, pass)))
  3241. goto bread_err2;
  3242. blk_no += bblks + hblks;
  3243. }
  3244. }
  3245. bread_err2:
  3246. xlog_put_bp(dbp);
  3247. bread_err1:
  3248. xlog_put_bp(hbp);
  3249. return error;
  3250. }
  3251. /*
  3252. * Do the recovery of the log. We actually do this in two phases.
  3253. * The two passes are necessary in order to implement the function
  3254. * of cancelling a record written into the log. The first pass
  3255. * determines those things which have been cancelled, and the
  3256. * second pass replays log items normally except for those which
  3257. * have been cancelled. The handling of the replay and cancellations
  3258. * takes place in the log item type specific routines.
  3259. *
  3260. * The table of items which have cancel records in the log is allocated
  3261. * and freed at this level, since only here do we know when all of
  3262. * the log recovery has been completed.
  3263. */
  3264. STATIC int
  3265. xlog_do_log_recovery(
  3266. xlog_t *log,
  3267. xfs_daddr_t head_blk,
  3268. xfs_daddr_t tail_blk)
  3269. {
  3270. int error, i;
  3271. ASSERT(head_blk != tail_blk);
  3272. /*
  3273. * First do a pass to find all of the cancelled buf log items.
  3274. * Store them in the buf_cancel_table for use in the second pass.
  3275. */
  3276. log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
  3277. sizeof(struct list_head),
  3278. KM_SLEEP);
  3279. for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
  3280. INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
  3281. error = xlog_do_recovery_pass(log, head_blk, tail_blk,
  3282. XLOG_RECOVER_PASS1);
  3283. if (error != 0) {
  3284. kmem_free(log->l_buf_cancel_table);
  3285. log->l_buf_cancel_table = NULL;
  3286. return error;
  3287. }
  3288. /*
  3289. * Then do a second pass to actually recover the items in the log.
  3290. * When it is complete free the table of buf cancel items.
  3291. */
  3292. error = xlog_do_recovery_pass(log, head_blk, tail_blk,
  3293. XLOG_RECOVER_PASS2);
  3294. #ifdef DEBUG
  3295. if (!error) {
  3296. int i;
  3297. for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
  3298. ASSERT(list_empty(&log->l_buf_cancel_table[i]));
  3299. }
  3300. #endif /* DEBUG */
  3301. kmem_free(log->l_buf_cancel_table);
  3302. log->l_buf_cancel_table = NULL;
  3303. return error;
  3304. }
  3305. /*
  3306. * Do the actual recovery
  3307. */
  3308. STATIC int
  3309. xlog_do_recover(
  3310. xlog_t *log,
  3311. xfs_daddr_t head_blk,
  3312. xfs_daddr_t tail_blk)
  3313. {
  3314. int error;
  3315. xfs_buf_t *bp;
  3316. xfs_sb_t *sbp;
  3317. /*
  3318. * First replay the images in the log.
  3319. */
  3320. error = xlog_do_log_recovery(log, head_blk, tail_blk);
  3321. if (error) {
  3322. return error;
  3323. }
  3324. XFS_bflush(log->l_mp->m_ddev_targp);
  3325. /*
  3326. * If IO errors happened during recovery, bail out.
  3327. */
  3328. if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
  3329. return (EIO);
  3330. }
  3331. /*
  3332. * We now update the tail_lsn since much of the recovery has completed
  3333. * and there may be space available to use. If there were no extent
  3334. * or iunlinks, we can free up the entire log and set the tail_lsn to
  3335. * be the last_sync_lsn. This was set in xlog_find_tail to be the
  3336. * lsn of the last known good LR on disk. If there are extent frees
  3337. * or iunlinks they will have some entries in the AIL; so we look at
  3338. * the AIL to determine how to set the tail_lsn.
  3339. */
  3340. xlog_assign_tail_lsn(log->l_mp);
  3341. /*
  3342. * Now that we've finished replaying all buffer and inode
  3343. * updates, re-read in the superblock.
  3344. */
  3345. bp = xfs_getsb(log->l_mp, 0);
  3346. XFS_BUF_UNDONE(bp);
  3347. ASSERT(!(XFS_BUF_ISWRITE(bp)));
  3348. ASSERT(!(XFS_BUF_ISDELAYWRITE(bp)));
  3349. XFS_BUF_READ(bp);
  3350. XFS_BUF_UNASYNC(bp);
  3351. xfsbdstrat(log->l_mp, bp);
  3352. error = xfs_buf_iowait(bp);
  3353. if (error) {
  3354. xfs_ioerror_alert("xlog_do_recover",
  3355. log->l_mp, bp, XFS_BUF_ADDR(bp));
  3356. ASSERT(0);
  3357. xfs_buf_relse(bp);
  3358. return error;
  3359. }
  3360. /* Convert superblock from on-disk format */
  3361. sbp = &log->l_mp->m_sb;
  3362. xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
  3363. ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
  3364. ASSERT(xfs_sb_good_version(sbp));
  3365. xfs_buf_relse(bp);
  3366. /* We've re-read the superblock so re-initialize per-cpu counters */
  3367. xfs_icsb_reinit_counters(log->l_mp);
  3368. xlog_recover_check_summary(log);
  3369. /* Normal transactions can now occur */
  3370. log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
  3371. return 0;
  3372. }
  3373. /*
  3374. * Perform recovery and re-initialize some log variables in xlog_find_tail.
  3375. *
  3376. * Return error or zero.
  3377. */
  3378. int
  3379. xlog_recover(
  3380. xlog_t *log)
  3381. {
  3382. xfs_daddr_t head_blk, tail_blk;
  3383. int error;
  3384. /* find the tail of the log */
  3385. if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
  3386. return error;
  3387. if (tail_blk != head_blk) {
  3388. /* There used to be a comment here:
  3389. *
  3390. * disallow recovery on read-only mounts. note -- mount
  3391. * checks for ENOSPC and turns it into an intelligent
  3392. * error message.
  3393. * ...but this is no longer true. Now, unless you specify
  3394. * NORECOVERY (in which case this function would never be
  3395. * called), we just go ahead and recover. We do this all
  3396. * under the vfs layer, so we can get away with it unless
  3397. * the device itself is read-only, in which case we fail.
  3398. */
  3399. if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
  3400. return error;
  3401. }
  3402. xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
  3403. log->l_mp->m_logname ? log->l_mp->m_logname
  3404. : "internal");
  3405. error = xlog_do_recover(log, head_blk, tail_blk);
  3406. log->l_flags |= XLOG_RECOVERY_NEEDED;
  3407. }
  3408. return error;
  3409. }
  3410. /*
  3411. * In the first part of recovery we replay inodes and buffers and build
  3412. * up the list of extent free items which need to be processed. Here
  3413. * we process the extent free items and clean up the on disk unlinked
  3414. * inode lists. This is separated from the first part of recovery so
  3415. * that the root and real-time bitmap inodes can be read in from disk in
  3416. * between the two stages. This is necessary so that we can free space
  3417. * in the real-time portion of the file system.
  3418. */
  3419. int
  3420. xlog_recover_finish(
  3421. xlog_t *log)
  3422. {
  3423. /*
  3424. * Now we're ready to do the transactions needed for the
  3425. * rest of recovery. Start with completing all the extent
  3426. * free intent records and then process the unlinked inode
  3427. * lists. At this point, we essentially run in normal mode
  3428. * except that we're still performing recovery actions
  3429. * rather than accepting new requests.
  3430. */
  3431. if (log->l_flags & XLOG_RECOVERY_NEEDED) {
  3432. int error;
  3433. error = xlog_recover_process_efis(log);
  3434. if (error) {
  3435. xfs_alert(log->l_mp, "Failed to recover EFIs");
  3436. return error;
  3437. }
  3438. /*
  3439. * Sync the log to get all the EFIs out of the AIL.
  3440. * This isn't absolutely necessary, but it helps in
  3441. * case the unlink transactions would have problems
  3442. * pushing the EFIs out of the way.
  3443. */
  3444. xfs_log_force(log->l_mp, XFS_LOG_SYNC);
  3445. xlog_recover_process_iunlinks(log);
  3446. xlog_recover_check_summary(log);
  3447. xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
  3448. log->l_mp->m_logname ? log->l_mp->m_logname
  3449. : "internal");
  3450. log->l_flags &= ~XLOG_RECOVERY_NEEDED;
  3451. } else {
  3452. xfs_info(log->l_mp, "Ending clean mount");
  3453. }
  3454. return 0;
  3455. }
  3456. #if defined(DEBUG)
  3457. /*
  3458. * Read all of the agf and agi counters and check that they
  3459. * are consistent with the superblock counters.
  3460. */
  3461. void
  3462. xlog_recover_check_summary(
  3463. xlog_t *log)
  3464. {
  3465. xfs_mount_t *mp;
  3466. xfs_agf_t *agfp;
  3467. xfs_buf_t *agfbp;
  3468. xfs_buf_t *agibp;
  3469. xfs_agnumber_t agno;
  3470. __uint64_t freeblks;
  3471. __uint64_t itotal;
  3472. __uint64_t ifree;
  3473. int error;
  3474. mp = log->l_mp;
  3475. freeblks = 0LL;
  3476. itotal = 0LL;
  3477. ifree = 0LL;
  3478. for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
  3479. error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
  3480. if (error) {
  3481. xfs_alert(mp, "%s agf read failed agno %d error %d",
  3482. __func__, agno, error);
  3483. } else {
  3484. agfp = XFS_BUF_TO_AGF(agfbp);
  3485. freeblks += be32_to_cpu(agfp->agf_freeblks) +
  3486. be32_to_cpu(agfp->agf_flcount);
  3487. xfs_buf_relse(agfbp);
  3488. }
  3489. error = xfs_read_agi(mp, NULL, agno, &agibp);
  3490. if (error) {
  3491. xfs_alert(mp, "%s agi read failed agno %d error %d",
  3492. __func__, agno, error);
  3493. } else {
  3494. struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp);
  3495. itotal += be32_to_cpu(agi->agi_count);
  3496. ifree += be32_to_cpu(agi->agi_freecount);
  3497. xfs_buf_relse(agibp);
  3498. }
  3499. }
  3500. }
  3501. #endif /* DEBUG */