slab.c 118 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566
  1. /*
  2. * linux/mm/slab.c
  3. * Written by Mark Hemment, 1996/97.
  4. * (markhe@nextd.demon.co.uk)
  5. *
  6. * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
  7. *
  8. * Major cleanup, different bufctl logic, per-cpu arrays
  9. * (c) 2000 Manfred Spraul
  10. *
  11. * Cleanup, make the head arrays unconditional, preparation for NUMA
  12. * (c) 2002 Manfred Spraul
  13. *
  14. * An implementation of the Slab Allocator as described in outline in;
  15. * UNIX Internals: The New Frontiers by Uresh Vahalia
  16. * Pub: Prentice Hall ISBN 0-13-101908-2
  17. * or with a little more detail in;
  18. * The Slab Allocator: An Object-Caching Kernel Memory Allocator
  19. * Jeff Bonwick (Sun Microsystems).
  20. * Presented at: USENIX Summer 1994 Technical Conference
  21. *
  22. * The memory is organized in caches, one cache for each object type.
  23. * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
  24. * Each cache consists out of many slabs (they are small (usually one
  25. * page long) and always contiguous), and each slab contains multiple
  26. * initialized objects.
  27. *
  28. * This means, that your constructor is used only for newly allocated
  29. * slabs and you must pass objects with the same initializations to
  30. * kmem_cache_free.
  31. *
  32. * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
  33. * normal). If you need a special memory type, then must create a new
  34. * cache for that memory type.
  35. *
  36. * In order to reduce fragmentation, the slabs are sorted in 3 groups:
  37. * full slabs with 0 free objects
  38. * partial slabs
  39. * empty slabs with no allocated objects
  40. *
  41. * If partial slabs exist, then new allocations come from these slabs,
  42. * otherwise from empty slabs or new slabs are allocated.
  43. *
  44. * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
  45. * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
  46. *
  47. * Each cache has a short per-cpu head array, most allocs
  48. * and frees go into that array, and if that array overflows, then 1/2
  49. * of the entries in the array are given back into the global cache.
  50. * The head array is strictly LIFO and should improve the cache hit rates.
  51. * On SMP, it additionally reduces the spinlock operations.
  52. *
  53. * The c_cpuarray may not be read with enabled local interrupts -
  54. * it's changed with a smp_call_function().
  55. *
  56. * SMP synchronization:
  57. * constructors and destructors are called without any locking.
  58. * Several members in struct kmem_cache and struct slab never change, they
  59. * are accessed without any locking.
  60. * The per-cpu arrays are never accessed from the wrong cpu, no locking,
  61. * and local interrupts are disabled so slab code is preempt-safe.
  62. * The non-constant members are protected with a per-cache irq spinlock.
  63. *
  64. * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
  65. * in 2000 - many ideas in the current implementation are derived from
  66. * his patch.
  67. *
  68. * Further notes from the original documentation:
  69. *
  70. * 11 April '97. Started multi-threading - markhe
  71. * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
  72. * The sem is only needed when accessing/extending the cache-chain, which
  73. * can never happen inside an interrupt (kmem_cache_create(),
  74. * kmem_cache_shrink() and kmem_cache_reap()).
  75. *
  76. * At present, each engine can be growing a cache. This should be blocked.
  77. *
  78. * 15 March 2005. NUMA slab allocator.
  79. * Shai Fultheim <shai@scalex86.org>.
  80. * Shobhit Dayal <shobhit@calsoftinc.com>
  81. * Alok N Kataria <alokk@calsoftinc.com>
  82. * Christoph Lameter <christoph@lameter.com>
  83. *
  84. * Modified the slab allocator to be node aware on NUMA systems.
  85. * Each node has its own list of partial, free and full slabs.
  86. * All object allocations for a node occur from node specific slab lists.
  87. */
  88. #include <linux/slab.h>
  89. #include <linux/mm.h>
  90. #include <linux/poison.h>
  91. #include <linux/swap.h>
  92. #include <linux/cache.h>
  93. #include <linux/interrupt.h>
  94. #include <linux/init.h>
  95. #include <linux/compiler.h>
  96. #include <linux/cpuset.h>
  97. #include <linux/proc_fs.h>
  98. #include <linux/seq_file.h>
  99. #include <linux/notifier.h>
  100. #include <linux/kallsyms.h>
  101. #include <linux/cpu.h>
  102. #include <linux/sysctl.h>
  103. #include <linux/module.h>
  104. #include <linux/rcupdate.h>
  105. #include <linux/string.h>
  106. #include <linux/uaccess.h>
  107. #include <linux/nodemask.h>
  108. #include <linux/kmemleak.h>
  109. #include <linux/mempolicy.h>
  110. #include <linux/mutex.h>
  111. #include <linux/fault-inject.h>
  112. #include <linux/rtmutex.h>
  113. #include <linux/reciprocal_div.h>
  114. #include <linux/debugobjects.h>
  115. #include <linux/kmemcheck.h>
  116. #include <linux/memory.h>
  117. #include <linux/prefetch.h>
  118. #include <asm/cacheflush.h>
  119. #include <asm/tlbflush.h>
  120. #include <asm/page.h>
  121. /*
  122. * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
  123. * 0 for faster, smaller code (especially in the critical paths).
  124. *
  125. * STATS - 1 to collect stats for /proc/slabinfo.
  126. * 0 for faster, smaller code (especially in the critical paths).
  127. *
  128. * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
  129. */
  130. #ifdef CONFIG_DEBUG_SLAB
  131. #define DEBUG 1
  132. #define STATS 1
  133. #define FORCED_DEBUG 1
  134. #else
  135. #define DEBUG 0
  136. #define STATS 0
  137. #define FORCED_DEBUG 0
  138. #endif
  139. /* Shouldn't this be in a header file somewhere? */
  140. #define BYTES_PER_WORD sizeof(void *)
  141. #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
  142. #ifndef ARCH_KMALLOC_FLAGS
  143. #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
  144. #endif
  145. /* Legal flag mask for kmem_cache_create(). */
  146. #if DEBUG
  147. # define CREATE_MASK (SLAB_RED_ZONE | \
  148. SLAB_POISON | SLAB_HWCACHE_ALIGN | \
  149. SLAB_CACHE_DMA | \
  150. SLAB_STORE_USER | \
  151. SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
  152. SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
  153. SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
  154. #else
  155. # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
  156. SLAB_CACHE_DMA | \
  157. SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
  158. SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
  159. SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
  160. #endif
  161. /*
  162. * kmem_bufctl_t:
  163. *
  164. * Bufctl's are used for linking objs within a slab
  165. * linked offsets.
  166. *
  167. * This implementation relies on "struct page" for locating the cache &
  168. * slab an object belongs to.
  169. * This allows the bufctl structure to be small (one int), but limits
  170. * the number of objects a slab (not a cache) can contain when off-slab
  171. * bufctls are used. The limit is the size of the largest general cache
  172. * that does not use off-slab slabs.
  173. * For 32bit archs with 4 kB pages, is this 56.
  174. * This is not serious, as it is only for large objects, when it is unwise
  175. * to have too many per slab.
  176. * Note: This limit can be raised by introducing a general cache whose size
  177. * is less than 512 (PAGE_SIZE<<3), but greater than 256.
  178. */
  179. typedef unsigned int kmem_bufctl_t;
  180. #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
  181. #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
  182. #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
  183. #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
  184. /*
  185. * struct slab_rcu
  186. *
  187. * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
  188. * arrange for kmem_freepages to be called via RCU. This is useful if
  189. * we need to approach a kernel structure obliquely, from its address
  190. * obtained without the usual locking. We can lock the structure to
  191. * stabilize it and check it's still at the given address, only if we
  192. * can be sure that the memory has not been meanwhile reused for some
  193. * other kind of object (which our subsystem's lock might corrupt).
  194. *
  195. * rcu_read_lock before reading the address, then rcu_read_unlock after
  196. * taking the spinlock within the structure expected at that address.
  197. */
  198. struct slab_rcu {
  199. struct rcu_head head;
  200. struct kmem_cache *cachep;
  201. void *addr;
  202. };
  203. /*
  204. * struct slab
  205. *
  206. * Manages the objs in a slab. Placed either at the beginning of mem allocated
  207. * for a slab, or allocated from an general cache.
  208. * Slabs are chained into three list: fully used, partial, fully free slabs.
  209. */
  210. struct slab {
  211. union {
  212. struct {
  213. struct list_head list;
  214. unsigned long colouroff;
  215. void *s_mem; /* including colour offset */
  216. unsigned int inuse; /* num of objs active in slab */
  217. kmem_bufctl_t free;
  218. unsigned short nodeid;
  219. };
  220. struct slab_rcu __slab_cover_slab_rcu;
  221. };
  222. };
  223. /*
  224. * struct array_cache
  225. *
  226. * Purpose:
  227. * - LIFO ordering, to hand out cache-warm objects from _alloc
  228. * - reduce the number of linked list operations
  229. * - reduce spinlock operations
  230. *
  231. * The limit is stored in the per-cpu structure to reduce the data cache
  232. * footprint.
  233. *
  234. */
  235. struct array_cache {
  236. unsigned int avail;
  237. unsigned int limit;
  238. unsigned int batchcount;
  239. unsigned int touched;
  240. spinlock_t lock;
  241. void *entry[]; /*
  242. * Must have this definition in here for the proper
  243. * alignment of array_cache. Also simplifies accessing
  244. * the entries.
  245. */
  246. };
  247. /*
  248. * bootstrap: The caches do not work without cpuarrays anymore, but the
  249. * cpuarrays are allocated from the generic caches...
  250. */
  251. #define BOOT_CPUCACHE_ENTRIES 1
  252. struct arraycache_init {
  253. struct array_cache cache;
  254. void *entries[BOOT_CPUCACHE_ENTRIES];
  255. };
  256. /*
  257. * The slab lists for all objects.
  258. */
  259. struct kmem_list3 {
  260. struct list_head slabs_partial; /* partial list first, better asm code */
  261. struct list_head slabs_full;
  262. struct list_head slabs_free;
  263. unsigned long free_objects;
  264. unsigned int free_limit;
  265. unsigned int colour_next; /* Per-node cache coloring */
  266. spinlock_t list_lock;
  267. struct array_cache *shared; /* shared per node */
  268. struct array_cache **alien; /* on other nodes */
  269. unsigned long next_reap; /* updated without locking */
  270. int free_touched; /* updated without locking */
  271. };
  272. /*
  273. * Need this for bootstrapping a per node allocator.
  274. */
  275. #define NUM_INIT_LISTS (3 * MAX_NUMNODES)
  276. static struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
  277. #define CACHE_CACHE 0
  278. #define SIZE_AC MAX_NUMNODES
  279. #define SIZE_L3 (2 * MAX_NUMNODES)
  280. static int drain_freelist(struct kmem_cache *cache,
  281. struct kmem_list3 *l3, int tofree);
  282. static void free_block(struct kmem_cache *cachep, void **objpp, int len,
  283. int node);
  284. static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
  285. static void cache_reap(struct work_struct *unused);
  286. /*
  287. * This function must be completely optimized away if a constant is passed to
  288. * it. Mostly the same as what is in linux/slab.h except it returns an index.
  289. */
  290. static __always_inline int index_of(const size_t size)
  291. {
  292. extern void __bad_size(void);
  293. if (__builtin_constant_p(size)) {
  294. int i = 0;
  295. #define CACHE(x) \
  296. if (size <=x) \
  297. return i; \
  298. else \
  299. i++;
  300. #include <linux/kmalloc_sizes.h>
  301. #undef CACHE
  302. __bad_size();
  303. } else
  304. __bad_size();
  305. return 0;
  306. }
  307. static int slab_early_init = 1;
  308. #define INDEX_AC index_of(sizeof(struct arraycache_init))
  309. #define INDEX_L3 index_of(sizeof(struct kmem_list3))
  310. static void kmem_list3_init(struct kmem_list3 *parent)
  311. {
  312. INIT_LIST_HEAD(&parent->slabs_full);
  313. INIT_LIST_HEAD(&parent->slabs_partial);
  314. INIT_LIST_HEAD(&parent->slabs_free);
  315. parent->shared = NULL;
  316. parent->alien = NULL;
  317. parent->colour_next = 0;
  318. spin_lock_init(&parent->list_lock);
  319. parent->free_objects = 0;
  320. parent->free_touched = 0;
  321. }
  322. #define MAKE_LIST(cachep, listp, slab, nodeid) \
  323. do { \
  324. INIT_LIST_HEAD(listp); \
  325. list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
  326. } while (0)
  327. #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
  328. do { \
  329. MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
  330. MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
  331. MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
  332. } while (0)
  333. #define CFLGS_OFF_SLAB (0x80000000UL)
  334. #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
  335. #define BATCHREFILL_LIMIT 16
  336. /*
  337. * Optimization question: fewer reaps means less probability for unnessary
  338. * cpucache drain/refill cycles.
  339. *
  340. * OTOH the cpuarrays can contain lots of objects,
  341. * which could lock up otherwise freeable slabs.
  342. */
  343. #define REAPTIMEOUT_CPUC (2*HZ)
  344. #define REAPTIMEOUT_LIST3 (4*HZ)
  345. #if STATS
  346. #define STATS_INC_ACTIVE(x) ((x)->num_active++)
  347. #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
  348. #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
  349. #define STATS_INC_GROWN(x) ((x)->grown++)
  350. #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
  351. #define STATS_SET_HIGH(x) \
  352. do { \
  353. if ((x)->num_active > (x)->high_mark) \
  354. (x)->high_mark = (x)->num_active; \
  355. } while (0)
  356. #define STATS_INC_ERR(x) ((x)->errors++)
  357. #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
  358. #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
  359. #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
  360. #define STATS_SET_FREEABLE(x, i) \
  361. do { \
  362. if ((x)->max_freeable < i) \
  363. (x)->max_freeable = i; \
  364. } while (0)
  365. #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
  366. #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
  367. #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
  368. #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
  369. #else
  370. #define STATS_INC_ACTIVE(x) do { } while (0)
  371. #define STATS_DEC_ACTIVE(x) do { } while (0)
  372. #define STATS_INC_ALLOCED(x) do { } while (0)
  373. #define STATS_INC_GROWN(x) do { } while (0)
  374. #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
  375. #define STATS_SET_HIGH(x) do { } while (0)
  376. #define STATS_INC_ERR(x) do { } while (0)
  377. #define STATS_INC_NODEALLOCS(x) do { } while (0)
  378. #define STATS_INC_NODEFREES(x) do { } while (0)
  379. #define STATS_INC_ACOVERFLOW(x) do { } while (0)
  380. #define STATS_SET_FREEABLE(x, i) do { } while (0)
  381. #define STATS_INC_ALLOCHIT(x) do { } while (0)
  382. #define STATS_INC_ALLOCMISS(x) do { } while (0)
  383. #define STATS_INC_FREEHIT(x) do { } while (0)
  384. #define STATS_INC_FREEMISS(x) do { } while (0)
  385. #endif
  386. #if DEBUG
  387. /*
  388. * memory layout of objects:
  389. * 0 : objp
  390. * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
  391. * the end of an object is aligned with the end of the real
  392. * allocation. Catches writes behind the end of the allocation.
  393. * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
  394. * redzone word.
  395. * cachep->obj_offset: The real object.
  396. * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
  397. * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
  398. * [BYTES_PER_WORD long]
  399. */
  400. static int obj_offset(struct kmem_cache *cachep)
  401. {
  402. return cachep->obj_offset;
  403. }
  404. static int obj_size(struct kmem_cache *cachep)
  405. {
  406. return cachep->obj_size;
  407. }
  408. static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
  409. {
  410. BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
  411. return (unsigned long long*) (objp + obj_offset(cachep) -
  412. sizeof(unsigned long long));
  413. }
  414. static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
  415. {
  416. BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
  417. if (cachep->flags & SLAB_STORE_USER)
  418. return (unsigned long long *)(objp + cachep->buffer_size -
  419. sizeof(unsigned long long) -
  420. REDZONE_ALIGN);
  421. return (unsigned long long *) (objp + cachep->buffer_size -
  422. sizeof(unsigned long long));
  423. }
  424. static void **dbg_userword(struct kmem_cache *cachep, void *objp)
  425. {
  426. BUG_ON(!(cachep->flags & SLAB_STORE_USER));
  427. return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
  428. }
  429. #else
  430. #define obj_offset(x) 0
  431. #define obj_size(cachep) (cachep->buffer_size)
  432. #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
  433. #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
  434. #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
  435. #endif
  436. #ifdef CONFIG_TRACING
  437. size_t slab_buffer_size(struct kmem_cache *cachep)
  438. {
  439. return cachep->buffer_size;
  440. }
  441. EXPORT_SYMBOL(slab_buffer_size);
  442. #endif
  443. /*
  444. * Do not go above this order unless 0 objects fit into the slab.
  445. */
  446. #define BREAK_GFP_ORDER_HI 1
  447. #define BREAK_GFP_ORDER_LO 0
  448. static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
  449. /*
  450. * Functions for storing/retrieving the cachep and or slab from the page
  451. * allocator. These are used to find the slab an obj belongs to. With kfree(),
  452. * these are used to find the cache which an obj belongs to.
  453. */
  454. static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
  455. {
  456. page->lru.next = (struct list_head *)cache;
  457. }
  458. static inline struct kmem_cache *page_get_cache(struct page *page)
  459. {
  460. page = compound_head(page);
  461. BUG_ON(!PageSlab(page));
  462. return (struct kmem_cache *)page->lru.next;
  463. }
  464. static inline void page_set_slab(struct page *page, struct slab *slab)
  465. {
  466. page->lru.prev = (struct list_head *)slab;
  467. }
  468. static inline struct slab *page_get_slab(struct page *page)
  469. {
  470. BUG_ON(!PageSlab(page));
  471. return (struct slab *)page->lru.prev;
  472. }
  473. static inline struct kmem_cache *virt_to_cache(const void *obj)
  474. {
  475. struct page *page = virt_to_head_page(obj);
  476. return page_get_cache(page);
  477. }
  478. static inline struct slab *virt_to_slab(const void *obj)
  479. {
  480. struct page *page = virt_to_head_page(obj);
  481. return page_get_slab(page);
  482. }
  483. static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
  484. unsigned int idx)
  485. {
  486. return slab->s_mem + cache->buffer_size * idx;
  487. }
  488. /*
  489. * We want to avoid an expensive divide : (offset / cache->buffer_size)
  490. * Using the fact that buffer_size is a constant for a particular cache,
  491. * we can replace (offset / cache->buffer_size) by
  492. * reciprocal_divide(offset, cache->reciprocal_buffer_size)
  493. */
  494. static inline unsigned int obj_to_index(const struct kmem_cache *cache,
  495. const struct slab *slab, void *obj)
  496. {
  497. u32 offset = (obj - slab->s_mem);
  498. return reciprocal_divide(offset, cache->reciprocal_buffer_size);
  499. }
  500. /*
  501. * These are the default caches for kmalloc. Custom caches can have other sizes.
  502. */
  503. struct cache_sizes malloc_sizes[] = {
  504. #define CACHE(x) { .cs_size = (x) },
  505. #include <linux/kmalloc_sizes.h>
  506. CACHE(ULONG_MAX)
  507. #undef CACHE
  508. };
  509. EXPORT_SYMBOL(malloc_sizes);
  510. /* Must match cache_sizes above. Out of line to keep cache footprint low. */
  511. struct cache_names {
  512. char *name;
  513. char *name_dma;
  514. };
  515. static struct cache_names __initdata cache_names[] = {
  516. #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
  517. #include <linux/kmalloc_sizes.h>
  518. {NULL,}
  519. #undef CACHE
  520. };
  521. static struct arraycache_init initarray_cache __initdata =
  522. { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
  523. static struct arraycache_init initarray_generic =
  524. { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
  525. /* internal cache of cache description objs */
  526. static struct kmem_list3 *cache_cache_nodelists[MAX_NUMNODES];
  527. static struct kmem_cache cache_cache = {
  528. .nodelists = cache_cache_nodelists,
  529. .batchcount = 1,
  530. .limit = BOOT_CPUCACHE_ENTRIES,
  531. .shared = 1,
  532. .buffer_size = sizeof(struct kmem_cache),
  533. .name = "kmem_cache",
  534. };
  535. #define BAD_ALIEN_MAGIC 0x01020304ul
  536. /*
  537. * chicken and egg problem: delay the per-cpu array allocation
  538. * until the general caches are up.
  539. */
  540. static enum {
  541. NONE,
  542. PARTIAL_AC,
  543. PARTIAL_L3,
  544. EARLY,
  545. FULL
  546. } g_cpucache_up;
  547. /*
  548. * used by boot code to determine if it can use slab based allocator
  549. */
  550. int slab_is_available(void)
  551. {
  552. return g_cpucache_up >= EARLY;
  553. }
  554. #ifdef CONFIG_LOCKDEP
  555. /*
  556. * Slab sometimes uses the kmalloc slabs to store the slab headers
  557. * for other slabs "off slab".
  558. * The locking for this is tricky in that it nests within the locks
  559. * of all other slabs in a few places; to deal with this special
  560. * locking we put on-slab caches into a separate lock-class.
  561. *
  562. * We set lock class for alien array caches which are up during init.
  563. * The lock annotation will be lost if all cpus of a node goes down and
  564. * then comes back up during hotplug
  565. */
  566. static struct lock_class_key on_slab_l3_key;
  567. static struct lock_class_key on_slab_alc_key;
  568. static void init_node_lock_keys(int q)
  569. {
  570. struct cache_sizes *s = malloc_sizes;
  571. if (g_cpucache_up != FULL)
  572. return;
  573. for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) {
  574. struct array_cache **alc;
  575. struct kmem_list3 *l3;
  576. int r;
  577. l3 = s->cs_cachep->nodelists[q];
  578. if (!l3 || OFF_SLAB(s->cs_cachep))
  579. continue;
  580. lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
  581. alc = l3->alien;
  582. /*
  583. * FIXME: This check for BAD_ALIEN_MAGIC
  584. * should go away when common slab code is taught to
  585. * work even without alien caches.
  586. * Currently, non NUMA code returns BAD_ALIEN_MAGIC
  587. * for alloc_alien_cache,
  588. */
  589. if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
  590. continue;
  591. for_each_node(r) {
  592. if (alc[r])
  593. lockdep_set_class(&alc[r]->lock,
  594. &on_slab_alc_key);
  595. }
  596. }
  597. }
  598. static inline void init_lock_keys(void)
  599. {
  600. int node;
  601. for_each_node(node)
  602. init_node_lock_keys(node);
  603. }
  604. #else
  605. static void init_node_lock_keys(int q)
  606. {
  607. }
  608. static inline void init_lock_keys(void)
  609. {
  610. }
  611. #endif
  612. /*
  613. * Guard access to the cache-chain.
  614. */
  615. static DEFINE_MUTEX(cache_chain_mutex);
  616. static struct list_head cache_chain;
  617. static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
  618. static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
  619. {
  620. return cachep->array[smp_processor_id()];
  621. }
  622. static inline struct kmem_cache *__find_general_cachep(size_t size,
  623. gfp_t gfpflags)
  624. {
  625. struct cache_sizes *csizep = malloc_sizes;
  626. #if DEBUG
  627. /* This happens if someone tries to call
  628. * kmem_cache_create(), or __kmalloc(), before
  629. * the generic caches are initialized.
  630. */
  631. BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
  632. #endif
  633. if (!size)
  634. return ZERO_SIZE_PTR;
  635. while (size > csizep->cs_size)
  636. csizep++;
  637. /*
  638. * Really subtle: The last entry with cs->cs_size==ULONG_MAX
  639. * has cs_{dma,}cachep==NULL. Thus no special case
  640. * for large kmalloc calls required.
  641. */
  642. #ifdef CONFIG_ZONE_DMA
  643. if (unlikely(gfpflags & GFP_DMA))
  644. return csizep->cs_dmacachep;
  645. #endif
  646. return csizep->cs_cachep;
  647. }
  648. static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
  649. {
  650. return __find_general_cachep(size, gfpflags);
  651. }
  652. static size_t slab_mgmt_size(size_t nr_objs, size_t align)
  653. {
  654. return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
  655. }
  656. /*
  657. * Calculate the number of objects and left-over bytes for a given buffer size.
  658. */
  659. static void cache_estimate(unsigned long gfporder, size_t buffer_size,
  660. size_t align, int flags, size_t *left_over,
  661. unsigned int *num)
  662. {
  663. int nr_objs;
  664. size_t mgmt_size;
  665. size_t slab_size = PAGE_SIZE << gfporder;
  666. /*
  667. * The slab management structure can be either off the slab or
  668. * on it. For the latter case, the memory allocated for a
  669. * slab is used for:
  670. *
  671. * - The struct slab
  672. * - One kmem_bufctl_t for each object
  673. * - Padding to respect alignment of @align
  674. * - @buffer_size bytes for each object
  675. *
  676. * If the slab management structure is off the slab, then the
  677. * alignment will already be calculated into the size. Because
  678. * the slabs are all pages aligned, the objects will be at the
  679. * correct alignment when allocated.
  680. */
  681. if (flags & CFLGS_OFF_SLAB) {
  682. mgmt_size = 0;
  683. nr_objs = slab_size / buffer_size;
  684. if (nr_objs > SLAB_LIMIT)
  685. nr_objs = SLAB_LIMIT;
  686. } else {
  687. /*
  688. * Ignore padding for the initial guess. The padding
  689. * is at most @align-1 bytes, and @buffer_size is at
  690. * least @align. In the worst case, this result will
  691. * be one greater than the number of objects that fit
  692. * into the memory allocation when taking the padding
  693. * into account.
  694. */
  695. nr_objs = (slab_size - sizeof(struct slab)) /
  696. (buffer_size + sizeof(kmem_bufctl_t));
  697. /*
  698. * This calculated number will be either the right
  699. * amount, or one greater than what we want.
  700. */
  701. if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
  702. > slab_size)
  703. nr_objs--;
  704. if (nr_objs > SLAB_LIMIT)
  705. nr_objs = SLAB_LIMIT;
  706. mgmt_size = slab_mgmt_size(nr_objs, align);
  707. }
  708. *num = nr_objs;
  709. *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
  710. }
  711. #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
  712. static void __slab_error(const char *function, struct kmem_cache *cachep,
  713. char *msg)
  714. {
  715. printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
  716. function, cachep->name, msg);
  717. dump_stack();
  718. }
  719. /*
  720. * By default on NUMA we use alien caches to stage the freeing of
  721. * objects allocated from other nodes. This causes massive memory
  722. * inefficiencies when using fake NUMA setup to split memory into a
  723. * large number of small nodes, so it can be disabled on the command
  724. * line
  725. */
  726. static int use_alien_caches __read_mostly = 1;
  727. static int __init noaliencache_setup(char *s)
  728. {
  729. use_alien_caches = 0;
  730. return 1;
  731. }
  732. __setup("noaliencache", noaliencache_setup);
  733. #ifdef CONFIG_NUMA
  734. /*
  735. * Special reaping functions for NUMA systems called from cache_reap().
  736. * These take care of doing round robin flushing of alien caches (containing
  737. * objects freed on different nodes from which they were allocated) and the
  738. * flushing of remote pcps by calling drain_node_pages.
  739. */
  740. static DEFINE_PER_CPU(unsigned long, slab_reap_node);
  741. static void init_reap_node(int cpu)
  742. {
  743. int node;
  744. node = next_node(cpu_to_mem(cpu), node_online_map);
  745. if (node == MAX_NUMNODES)
  746. node = first_node(node_online_map);
  747. per_cpu(slab_reap_node, cpu) = node;
  748. }
  749. static void next_reap_node(void)
  750. {
  751. int node = __this_cpu_read(slab_reap_node);
  752. node = next_node(node, node_online_map);
  753. if (unlikely(node >= MAX_NUMNODES))
  754. node = first_node(node_online_map);
  755. __this_cpu_write(slab_reap_node, node);
  756. }
  757. #else
  758. #define init_reap_node(cpu) do { } while (0)
  759. #define next_reap_node(void) do { } while (0)
  760. #endif
  761. /*
  762. * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
  763. * via the workqueue/eventd.
  764. * Add the CPU number into the expiration time to minimize the possibility of
  765. * the CPUs getting into lockstep and contending for the global cache chain
  766. * lock.
  767. */
  768. static void __cpuinit start_cpu_timer(int cpu)
  769. {
  770. struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
  771. /*
  772. * When this gets called from do_initcalls via cpucache_init(),
  773. * init_workqueues() has already run, so keventd will be setup
  774. * at that time.
  775. */
  776. if (keventd_up() && reap_work->work.func == NULL) {
  777. init_reap_node(cpu);
  778. INIT_DELAYED_WORK_DEFERRABLE(reap_work, cache_reap);
  779. schedule_delayed_work_on(cpu, reap_work,
  780. __round_jiffies_relative(HZ, cpu));
  781. }
  782. }
  783. static struct array_cache *alloc_arraycache(int node, int entries,
  784. int batchcount, gfp_t gfp)
  785. {
  786. int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
  787. struct array_cache *nc = NULL;
  788. nc = kmalloc_node(memsize, gfp, node);
  789. /*
  790. * The array_cache structures contain pointers to free object.
  791. * However, when such objects are allocated or transferred to another
  792. * cache the pointers are not cleared and they could be counted as
  793. * valid references during a kmemleak scan. Therefore, kmemleak must
  794. * not scan such objects.
  795. */
  796. kmemleak_no_scan(nc);
  797. if (nc) {
  798. nc->avail = 0;
  799. nc->limit = entries;
  800. nc->batchcount = batchcount;
  801. nc->touched = 0;
  802. spin_lock_init(&nc->lock);
  803. }
  804. return nc;
  805. }
  806. /*
  807. * Transfer objects in one arraycache to another.
  808. * Locking must be handled by the caller.
  809. *
  810. * Return the number of entries transferred.
  811. */
  812. static int transfer_objects(struct array_cache *to,
  813. struct array_cache *from, unsigned int max)
  814. {
  815. /* Figure out how many entries to transfer */
  816. int nr = min3(from->avail, max, to->limit - to->avail);
  817. if (!nr)
  818. return 0;
  819. memcpy(to->entry + to->avail, from->entry + from->avail -nr,
  820. sizeof(void *) *nr);
  821. from->avail -= nr;
  822. to->avail += nr;
  823. return nr;
  824. }
  825. #ifndef CONFIG_NUMA
  826. #define drain_alien_cache(cachep, alien) do { } while (0)
  827. #define reap_alien(cachep, l3) do { } while (0)
  828. static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
  829. {
  830. return (struct array_cache **)BAD_ALIEN_MAGIC;
  831. }
  832. static inline void free_alien_cache(struct array_cache **ac_ptr)
  833. {
  834. }
  835. static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
  836. {
  837. return 0;
  838. }
  839. static inline void *alternate_node_alloc(struct kmem_cache *cachep,
  840. gfp_t flags)
  841. {
  842. return NULL;
  843. }
  844. static inline void *____cache_alloc_node(struct kmem_cache *cachep,
  845. gfp_t flags, int nodeid)
  846. {
  847. return NULL;
  848. }
  849. #else /* CONFIG_NUMA */
  850. static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
  851. static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
  852. static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
  853. {
  854. struct array_cache **ac_ptr;
  855. int memsize = sizeof(void *) * nr_node_ids;
  856. int i;
  857. if (limit > 1)
  858. limit = 12;
  859. ac_ptr = kzalloc_node(memsize, gfp, node);
  860. if (ac_ptr) {
  861. for_each_node(i) {
  862. if (i == node || !node_online(i))
  863. continue;
  864. ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
  865. if (!ac_ptr[i]) {
  866. for (i--; i >= 0; i--)
  867. kfree(ac_ptr[i]);
  868. kfree(ac_ptr);
  869. return NULL;
  870. }
  871. }
  872. }
  873. return ac_ptr;
  874. }
  875. static void free_alien_cache(struct array_cache **ac_ptr)
  876. {
  877. int i;
  878. if (!ac_ptr)
  879. return;
  880. for_each_node(i)
  881. kfree(ac_ptr[i]);
  882. kfree(ac_ptr);
  883. }
  884. static void __drain_alien_cache(struct kmem_cache *cachep,
  885. struct array_cache *ac, int node)
  886. {
  887. struct kmem_list3 *rl3 = cachep->nodelists[node];
  888. if (ac->avail) {
  889. spin_lock(&rl3->list_lock);
  890. /*
  891. * Stuff objects into the remote nodes shared array first.
  892. * That way we could avoid the overhead of putting the objects
  893. * into the free lists and getting them back later.
  894. */
  895. if (rl3->shared)
  896. transfer_objects(rl3->shared, ac, ac->limit);
  897. free_block(cachep, ac->entry, ac->avail, node);
  898. ac->avail = 0;
  899. spin_unlock(&rl3->list_lock);
  900. }
  901. }
  902. /*
  903. * Called from cache_reap() to regularly drain alien caches round robin.
  904. */
  905. static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
  906. {
  907. int node = __this_cpu_read(slab_reap_node);
  908. if (l3->alien) {
  909. struct array_cache *ac = l3->alien[node];
  910. if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
  911. __drain_alien_cache(cachep, ac, node);
  912. spin_unlock_irq(&ac->lock);
  913. }
  914. }
  915. }
  916. static void drain_alien_cache(struct kmem_cache *cachep,
  917. struct array_cache **alien)
  918. {
  919. int i = 0;
  920. struct array_cache *ac;
  921. unsigned long flags;
  922. for_each_online_node(i) {
  923. ac = alien[i];
  924. if (ac) {
  925. spin_lock_irqsave(&ac->lock, flags);
  926. __drain_alien_cache(cachep, ac, i);
  927. spin_unlock_irqrestore(&ac->lock, flags);
  928. }
  929. }
  930. }
  931. static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
  932. {
  933. struct slab *slabp = virt_to_slab(objp);
  934. int nodeid = slabp->nodeid;
  935. struct kmem_list3 *l3;
  936. struct array_cache *alien = NULL;
  937. int node;
  938. node = numa_mem_id();
  939. /*
  940. * Make sure we are not freeing a object from another node to the array
  941. * cache on this cpu.
  942. */
  943. if (likely(slabp->nodeid == node))
  944. return 0;
  945. l3 = cachep->nodelists[node];
  946. STATS_INC_NODEFREES(cachep);
  947. if (l3->alien && l3->alien[nodeid]) {
  948. alien = l3->alien[nodeid];
  949. spin_lock(&alien->lock);
  950. if (unlikely(alien->avail == alien->limit)) {
  951. STATS_INC_ACOVERFLOW(cachep);
  952. __drain_alien_cache(cachep, alien, nodeid);
  953. }
  954. alien->entry[alien->avail++] = objp;
  955. spin_unlock(&alien->lock);
  956. } else {
  957. spin_lock(&(cachep->nodelists[nodeid])->list_lock);
  958. free_block(cachep, &objp, 1, nodeid);
  959. spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
  960. }
  961. return 1;
  962. }
  963. #endif
  964. /*
  965. * Allocates and initializes nodelists for a node on each slab cache, used for
  966. * either memory or cpu hotplug. If memory is being hot-added, the kmem_list3
  967. * will be allocated off-node since memory is not yet online for the new node.
  968. * When hotplugging memory or a cpu, existing nodelists are not replaced if
  969. * already in use.
  970. *
  971. * Must hold cache_chain_mutex.
  972. */
  973. static int init_cache_nodelists_node(int node)
  974. {
  975. struct kmem_cache *cachep;
  976. struct kmem_list3 *l3;
  977. const int memsize = sizeof(struct kmem_list3);
  978. list_for_each_entry(cachep, &cache_chain, next) {
  979. /*
  980. * Set up the size64 kmemlist for cpu before we can
  981. * begin anything. Make sure some other cpu on this
  982. * node has not already allocated this
  983. */
  984. if (!cachep->nodelists[node]) {
  985. l3 = kmalloc_node(memsize, GFP_KERNEL, node);
  986. if (!l3)
  987. return -ENOMEM;
  988. kmem_list3_init(l3);
  989. l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
  990. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  991. /*
  992. * The l3s don't come and go as CPUs come and
  993. * go. cache_chain_mutex is sufficient
  994. * protection here.
  995. */
  996. cachep->nodelists[node] = l3;
  997. }
  998. spin_lock_irq(&cachep->nodelists[node]->list_lock);
  999. cachep->nodelists[node]->free_limit =
  1000. (1 + nr_cpus_node(node)) *
  1001. cachep->batchcount + cachep->num;
  1002. spin_unlock_irq(&cachep->nodelists[node]->list_lock);
  1003. }
  1004. return 0;
  1005. }
  1006. static void __cpuinit cpuup_canceled(long cpu)
  1007. {
  1008. struct kmem_cache *cachep;
  1009. struct kmem_list3 *l3 = NULL;
  1010. int node = cpu_to_mem(cpu);
  1011. const struct cpumask *mask = cpumask_of_node(node);
  1012. list_for_each_entry(cachep, &cache_chain, next) {
  1013. struct array_cache *nc;
  1014. struct array_cache *shared;
  1015. struct array_cache **alien;
  1016. /* cpu is dead; no one can alloc from it. */
  1017. nc = cachep->array[cpu];
  1018. cachep->array[cpu] = NULL;
  1019. l3 = cachep->nodelists[node];
  1020. if (!l3)
  1021. goto free_array_cache;
  1022. spin_lock_irq(&l3->list_lock);
  1023. /* Free limit for this kmem_list3 */
  1024. l3->free_limit -= cachep->batchcount;
  1025. if (nc)
  1026. free_block(cachep, nc->entry, nc->avail, node);
  1027. if (!cpumask_empty(mask)) {
  1028. spin_unlock_irq(&l3->list_lock);
  1029. goto free_array_cache;
  1030. }
  1031. shared = l3->shared;
  1032. if (shared) {
  1033. free_block(cachep, shared->entry,
  1034. shared->avail, node);
  1035. l3->shared = NULL;
  1036. }
  1037. alien = l3->alien;
  1038. l3->alien = NULL;
  1039. spin_unlock_irq(&l3->list_lock);
  1040. kfree(shared);
  1041. if (alien) {
  1042. drain_alien_cache(cachep, alien);
  1043. free_alien_cache(alien);
  1044. }
  1045. free_array_cache:
  1046. kfree(nc);
  1047. }
  1048. /*
  1049. * In the previous loop, all the objects were freed to
  1050. * the respective cache's slabs, now we can go ahead and
  1051. * shrink each nodelist to its limit.
  1052. */
  1053. list_for_each_entry(cachep, &cache_chain, next) {
  1054. l3 = cachep->nodelists[node];
  1055. if (!l3)
  1056. continue;
  1057. drain_freelist(cachep, l3, l3->free_objects);
  1058. }
  1059. }
  1060. static int __cpuinit cpuup_prepare(long cpu)
  1061. {
  1062. struct kmem_cache *cachep;
  1063. struct kmem_list3 *l3 = NULL;
  1064. int node = cpu_to_mem(cpu);
  1065. int err;
  1066. /*
  1067. * We need to do this right in the beginning since
  1068. * alloc_arraycache's are going to use this list.
  1069. * kmalloc_node allows us to add the slab to the right
  1070. * kmem_list3 and not this cpu's kmem_list3
  1071. */
  1072. err = init_cache_nodelists_node(node);
  1073. if (err < 0)
  1074. goto bad;
  1075. /*
  1076. * Now we can go ahead with allocating the shared arrays and
  1077. * array caches
  1078. */
  1079. list_for_each_entry(cachep, &cache_chain, next) {
  1080. struct array_cache *nc;
  1081. struct array_cache *shared = NULL;
  1082. struct array_cache **alien = NULL;
  1083. nc = alloc_arraycache(node, cachep->limit,
  1084. cachep->batchcount, GFP_KERNEL);
  1085. if (!nc)
  1086. goto bad;
  1087. if (cachep->shared) {
  1088. shared = alloc_arraycache(node,
  1089. cachep->shared * cachep->batchcount,
  1090. 0xbaadf00d, GFP_KERNEL);
  1091. if (!shared) {
  1092. kfree(nc);
  1093. goto bad;
  1094. }
  1095. }
  1096. if (use_alien_caches) {
  1097. alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
  1098. if (!alien) {
  1099. kfree(shared);
  1100. kfree(nc);
  1101. goto bad;
  1102. }
  1103. }
  1104. cachep->array[cpu] = nc;
  1105. l3 = cachep->nodelists[node];
  1106. BUG_ON(!l3);
  1107. spin_lock_irq(&l3->list_lock);
  1108. if (!l3->shared) {
  1109. /*
  1110. * We are serialised from CPU_DEAD or
  1111. * CPU_UP_CANCELLED by the cpucontrol lock
  1112. */
  1113. l3->shared = shared;
  1114. shared = NULL;
  1115. }
  1116. #ifdef CONFIG_NUMA
  1117. if (!l3->alien) {
  1118. l3->alien = alien;
  1119. alien = NULL;
  1120. }
  1121. #endif
  1122. spin_unlock_irq(&l3->list_lock);
  1123. kfree(shared);
  1124. free_alien_cache(alien);
  1125. }
  1126. init_node_lock_keys(node);
  1127. return 0;
  1128. bad:
  1129. cpuup_canceled(cpu);
  1130. return -ENOMEM;
  1131. }
  1132. static int __cpuinit cpuup_callback(struct notifier_block *nfb,
  1133. unsigned long action, void *hcpu)
  1134. {
  1135. long cpu = (long)hcpu;
  1136. int err = 0;
  1137. switch (action) {
  1138. case CPU_UP_PREPARE:
  1139. case CPU_UP_PREPARE_FROZEN:
  1140. mutex_lock(&cache_chain_mutex);
  1141. err = cpuup_prepare(cpu);
  1142. mutex_unlock(&cache_chain_mutex);
  1143. break;
  1144. case CPU_ONLINE:
  1145. case CPU_ONLINE_FROZEN:
  1146. start_cpu_timer(cpu);
  1147. break;
  1148. #ifdef CONFIG_HOTPLUG_CPU
  1149. case CPU_DOWN_PREPARE:
  1150. case CPU_DOWN_PREPARE_FROZEN:
  1151. /*
  1152. * Shutdown cache reaper. Note that the cache_chain_mutex is
  1153. * held so that if cache_reap() is invoked it cannot do
  1154. * anything expensive but will only modify reap_work
  1155. * and reschedule the timer.
  1156. */
  1157. cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
  1158. /* Now the cache_reaper is guaranteed to be not running. */
  1159. per_cpu(slab_reap_work, cpu).work.func = NULL;
  1160. break;
  1161. case CPU_DOWN_FAILED:
  1162. case CPU_DOWN_FAILED_FROZEN:
  1163. start_cpu_timer(cpu);
  1164. break;
  1165. case CPU_DEAD:
  1166. case CPU_DEAD_FROZEN:
  1167. /*
  1168. * Even if all the cpus of a node are down, we don't free the
  1169. * kmem_list3 of any cache. This to avoid a race between
  1170. * cpu_down, and a kmalloc allocation from another cpu for
  1171. * memory from the node of the cpu going down. The list3
  1172. * structure is usually allocated from kmem_cache_create() and
  1173. * gets destroyed at kmem_cache_destroy().
  1174. */
  1175. /* fall through */
  1176. #endif
  1177. case CPU_UP_CANCELED:
  1178. case CPU_UP_CANCELED_FROZEN:
  1179. mutex_lock(&cache_chain_mutex);
  1180. cpuup_canceled(cpu);
  1181. mutex_unlock(&cache_chain_mutex);
  1182. break;
  1183. }
  1184. return notifier_from_errno(err);
  1185. }
  1186. static struct notifier_block __cpuinitdata cpucache_notifier = {
  1187. &cpuup_callback, NULL, 0
  1188. };
  1189. #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
  1190. /*
  1191. * Drains freelist for a node on each slab cache, used for memory hot-remove.
  1192. * Returns -EBUSY if all objects cannot be drained so that the node is not
  1193. * removed.
  1194. *
  1195. * Must hold cache_chain_mutex.
  1196. */
  1197. static int __meminit drain_cache_nodelists_node(int node)
  1198. {
  1199. struct kmem_cache *cachep;
  1200. int ret = 0;
  1201. list_for_each_entry(cachep, &cache_chain, next) {
  1202. struct kmem_list3 *l3;
  1203. l3 = cachep->nodelists[node];
  1204. if (!l3)
  1205. continue;
  1206. drain_freelist(cachep, l3, l3->free_objects);
  1207. if (!list_empty(&l3->slabs_full) ||
  1208. !list_empty(&l3->slabs_partial)) {
  1209. ret = -EBUSY;
  1210. break;
  1211. }
  1212. }
  1213. return ret;
  1214. }
  1215. static int __meminit slab_memory_callback(struct notifier_block *self,
  1216. unsigned long action, void *arg)
  1217. {
  1218. struct memory_notify *mnb = arg;
  1219. int ret = 0;
  1220. int nid;
  1221. nid = mnb->status_change_nid;
  1222. if (nid < 0)
  1223. goto out;
  1224. switch (action) {
  1225. case MEM_GOING_ONLINE:
  1226. mutex_lock(&cache_chain_mutex);
  1227. ret = init_cache_nodelists_node(nid);
  1228. mutex_unlock(&cache_chain_mutex);
  1229. break;
  1230. case MEM_GOING_OFFLINE:
  1231. mutex_lock(&cache_chain_mutex);
  1232. ret = drain_cache_nodelists_node(nid);
  1233. mutex_unlock(&cache_chain_mutex);
  1234. break;
  1235. case MEM_ONLINE:
  1236. case MEM_OFFLINE:
  1237. case MEM_CANCEL_ONLINE:
  1238. case MEM_CANCEL_OFFLINE:
  1239. break;
  1240. }
  1241. out:
  1242. return notifier_from_errno(ret);
  1243. }
  1244. #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
  1245. /*
  1246. * swap the static kmem_list3 with kmalloced memory
  1247. */
  1248. static void __init init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
  1249. int nodeid)
  1250. {
  1251. struct kmem_list3 *ptr;
  1252. ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
  1253. BUG_ON(!ptr);
  1254. memcpy(ptr, list, sizeof(struct kmem_list3));
  1255. /*
  1256. * Do not assume that spinlocks can be initialized via memcpy:
  1257. */
  1258. spin_lock_init(&ptr->list_lock);
  1259. MAKE_ALL_LISTS(cachep, ptr, nodeid);
  1260. cachep->nodelists[nodeid] = ptr;
  1261. }
  1262. /*
  1263. * For setting up all the kmem_list3s for cache whose buffer_size is same as
  1264. * size of kmem_list3.
  1265. */
  1266. static void __init set_up_list3s(struct kmem_cache *cachep, int index)
  1267. {
  1268. int node;
  1269. for_each_online_node(node) {
  1270. cachep->nodelists[node] = &initkmem_list3[index + node];
  1271. cachep->nodelists[node]->next_reap = jiffies +
  1272. REAPTIMEOUT_LIST3 +
  1273. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  1274. }
  1275. }
  1276. /*
  1277. * Initialisation. Called after the page allocator have been initialised and
  1278. * before smp_init().
  1279. */
  1280. void __init kmem_cache_init(void)
  1281. {
  1282. size_t left_over;
  1283. struct cache_sizes *sizes;
  1284. struct cache_names *names;
  1285. int i;
  1286. int order;
  1287. int node;
  1288. if (num_possible_nodes() == 1)
  1289. use_alien_caches = 0;
  1290. for (i = 0; i < NUM_INIT_LISTS; i++) {
  1291. kmem_list3_init(&initkmem_list3[i]);
  1292. if (i < MAX_NUMNODES)
  1293. cache_cache.nodelists[i] = NULL;
  1294. }
  1295. set_up_list3s(&cache_cache, CACHE_CACHE);
  1296. /*
  1297. * Fragmentation resistance on low memory - only use bigger
  1298. * page orders on machines with more than 32MB of memory.
  1299. */
  1300. if (totalram_pages > (32 << 20) >> PAGE_SHIFT)
  1301. slab_break_gfp_order = BREAK_GFP_ORDER_HI;
  1302. /* Bootstrap is tricky, because several objects are allocated
  1303. * from caches that do not exist yet:
  1304. * 1) initialize the cache_cache cache: it contains the struct
  1305. * kmem_cache structures of all caches, except cache_cache itself:
  1306. * cache_cache is statically allocated.
  1307. * Initially an __init data area is used for the head array and the
  1308. * kmem_list3 structures, it's replaced with a kmalloc allocated
  1309. * array at the end of the bootstrap.
  1310. * 2) Create the first kmalloc cache.
  1311. * The struct kmem_cache for the new cache is allocated normally.
  1312. * An __init data area is used for the head array.
  1313. * 3) Create the remaining kmalloc caches, with minimally sized
  1314. * head arrays.
  1315. * 4) Replace the __init data head arrays for cache_cache and the first
  1316. * kmalloc cache with kmalloc allocated arrays.
  1317. * 5) Replace the __init data for kmem_list3 for cache_cache and
  1318. * the other cache's with kmalloc allocated memory.
  1319. * 6) Resize the head arrays of the kmalloc caches to their final sizes.
  1320. */
  1321. node = numa_mem_id();
  1322. /* 1) create the cache_cache */
  1323. INIT_LIST_HEAD(&cache_chain);
  1324. list_add(&cache_cache.next, &cache_chain);
  1325. cache_cache.colour_off = cache_line_size();
  1326. cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
  1327. cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
  1328. /*
  1329. * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
  1330. */
  1331. cache_cache.buffer_size = offsetof(struct kmem_cache, array[nr_cpu_ids]) +
  1332. nr_node_ids * sizeof(struct kmem_list3 *);
  1333. #if DEBUG
  1334. cache_cache.obj_size = cache_cache.buffer_size;
  1335. #endif
  1336. cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
  1337. cache_line_size());
  1338. cache_cache.reciprocal_buffer_size =
  1339. reciprocal_value(cache_cache.buffer_size);
  1340. for (order = 0; order < MAX_ORDER; order++) {
  1341. cache_estimate(order, cache_cache.buffer_size,
  1342. cache_line_size(), 0, &left_over, &cache_cache.num);
  1343. if (cache_cache.num)
  1344. break;
  1345. }
  1346. BUG_ON(!cache_cache.num);
  1347. cache_cache.gfporder = order;
  1348. cache_cache.colour = left_over / cache_cache.colour_off;
  1349. cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
  1350. sizeof(struct slab), cache_line_size());
  1351. /* 2+3) create the kmalloc caches */
  1352. sizes = malloc_sizes;
  1353. names = cache_names;
  1354. /*
  1355. * Initialize the caches that provide memory for the array cache and the
  1356. * kmem_list3 structures first. Without this, further allocations will
  1357. * bug.
  1358. */
  1359. sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
  1360. sizes[INDEX_AC].cs_size,
  1361. ARCH_KMALLOC_MINALIGN,
  1362. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1363. NULL);
  1364. if (INDEX_AC != INDEX_L3) {
  1365. sizes[INDEX_L3].cs_cachep =
  1366. kmem_cache_create(names[INDEX_L3].name,
  1367. sizes[INDEX_L3].cs_size,
  1368. ARCH_KMALLOC_MINALIGN,
  1369. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1370. NULL);
  1371. }
  1372. slab_early_init = 0;
  1373. while (sizes->cs_size != ULONG_MAX) {
  1374. /*
  1375. * For performance, all the general caches are L1 aligned.
  1376. * This should be particularly beneficial on SMP boxes, as it
  1377. * eliminates "false sharing".
  1378. * Note for systems short on memory removing the alignment will
  1379. * allow tighter packing of the smaller caches.
  1380. */
  1381. if (!sizes->cs_cachep) {
  1382. sizes->cs_cachep = kmem_cache_create(names->name,
  1383. sizes->cs_size,
  1384. ARCH_KMALLOC_MINALIGN,
  1385. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1386. NULL);
  1387. }
  1388. #ifdef CONFIG_ZONE_DMA
  1389. sizes->cs_dmacachep = kmem_cache_create(
  1390. names->name_dma,
  1391. sizes->cs_size,
  1392. ARCH_KMALLOC_MINALIGN,
  1393. ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
  1394. SLAB_PANIC,
  1395. NULL);
  1396. #endif
  1397. sizes++;
  1398. names++;
  1399. }
  1400. /* 4) Replace the bootstrap head arrays */
  1401. {
  1402. struct array_cache *ptr;
  1403. ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
  1404. BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
  1405. memcpy(ptr, cpu_cache_get(&cache_cache),
  1406. sizeof(struct arraycache_init));
  1407. /*
  1408. * Do not assume that spinlocks can be initialized via memcpy:
  1409. */
  1410. spin_lock_init(&ptr->lock);
  1411. cache_cache.array[smp_processor_id()] = ptr;
  1412. ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
  1413. BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
  1414. != &initarray_generic.cache);
  1415. memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
  1416. sizeof(struct arraycache_init));
  1417. /*
  1418. * Do not assume that spinlocks can be initialized via memcpy:
  1419. */
  1420. spin_lock_init(&ptr->lock);
  1421. malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
  1422. ptr;
  1423. }
  1424. /* 5) Replace the bootstrap kmem_list3's */
  1425. {
  1426. int nid;
  1427. for_each_online_node(nid) {
  1428. init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
  1429. init_list(malloc_sizes[INDEX_AC].cs_cachep,
  1430. &initkmem_list3[SIZE_AC + nid], nid);
  1431. if (INDEX_AC != INDEX_L3) {
  1432. init_list(malloc_sizes[INDEX_L3].cs_cachep,
  1433. &initkmem_list3[SIZE_L3 + nid], nid);
  1434. }
  1435. }
  1436. }
  1437. g_cpucache_up = EARLY;
  1438. }
  1439. void __init kmem_cache_init_late(void)
  1440. {
  1441. struct kmem_cache *cachep;
  1442. /* 6) resize the head arrays to their final sizes */
  1443. mutex_lock(&cache_chain_mutex);
  1444. list_for_each_entry(cachep, &cache_chain, next)
  1445. if (enable_cpucache(cachep, GFP_NOWAIT))
  1446. BUG();
  1447. mutex_unlock(&cache_chain_mutex);
  1448. /* Done! */
  1449. g_cpucache_up = FULL;
  1450. /* Annotate slab for lockdep -- annotate the malloc caches */
  1451. init_lock_keys();
  1452. /*
  1453. * Register a cpu startup notifier callback that initializes
  1454. * cpu_cache_get for all new cpus
  1455. */
  1456. register_cpu_notifier(&cpucache_notifier);
  1457. #ifdef CONFIG_NUMA
  1458. /*
  1459. * Register a memory hotplug callback that initializes and frees
  1460. * nodelists.
  1461. */
  1462. hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
  1463. #endif
  1464. /*
  1465. * The reap timers are started later, with a module init call: That part
  1466. * of the kernel is not yet operational.
  1467. */
  1468. }
  1469. static int __init cpucache_init(void)
  1470. {
  1471. int cpu;
  1472. /*
  1473. * Register the timers that return unneeded pages to the page allocator
  1474. */
  1475. for_each_online_cpu(cpu)
  1476. start_cpu_timer(cpu);
  1477. return 0;
  1478. }
  1479. __initcall(cpucache_init);
  1480. /*
  1481. * Interface to system's page allocator. No need to hold the cache-lock.
  1482. *
  1483. * If we requested dmaable memory, we will get it. Even if we
  1484. * did not request dmaable memory, we might get it, but that
  1485. * would be relatively rare and ignorable.
  1486. */
  1487. static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
  1488. {
  1489. struct page *page;
  1490. int nr_pages;
  1491. int i;
  1492. #ifndef CONFIG_MMU
  1493. /*
  1494. * Nommu uses slab's for process anonymous memory allocations, and thus
  1495. * requires __GFP_COMP to properly refcount higher order allocations
  1496. */
  1497. flags |= __GFP_COMP;
  1498. #endif
  1499. flags |= cachep->gfpflags;
  1500. if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
  1501. flags |= __GFP_RECLAIMABLE;
  1502. page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
  1503. if (!page)
  1504. return NULL;
  1505. nr_pages = (1 << cachep->gfporder);
  1506. if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
  1507. add_zone_page_state(page_zone(page),
  1508. NR_SLAB_RECLAIMABLE, nr_pages);
  1509. else
  1510. add_zone_page_state(page_zone(page),
  1511. NR_SLAB_UNRECLAIMABLE, nr_pages);
  1512. for (i = 0; i < nr_pages; i++)
  1513. __SetPageSlab(page + i);
  1514. if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
  1515. kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
  1516. if (cachep->ctor)
  1517. kmemcheck_mark_uninitialized_pages(page, nr_pages);
  1518. else
  1519. kmemcheck_mark_unallocated_pages(page, nr_pages);
  1520. }
  1521. return page_address(page);
  1522. }
  1523. /*
  1524. * Interface to system's page release.
  1525. */
  1526. static void kmem_freepages(struct kmem_cache *cachep, void *addr)
  1527. {
  1528. unsigned long i = (1 << cachep->gfporder);
  1529. struct page *page = virt_to_page(addr);
  1530. const unsigned long nr_freed = i;
  1531. kmemcheck_free_shadow(page, cachep->gfporder);
  1532. if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
  1533. sub_zone_page_state(page_zone(page),
  1534. NR_SLAB_RECLAIMABLE, nr_freed);
  1535. else
  1536. sub_zone_page_state(page_zone(page),
  1537. NR_SLAB_UNRECLAIMABLE, nr_freed);
  1538. while (i--) {
  1539. BUG_ON(!PageSlab(page));
  1540. __ClearPageSlab(page);
  1541. page++;
  1542. }
  1543. if (current->reclaim_state)
  1544. current->reclaim_state->reclaimed_slab += nr_freed;
  1545. free_pages((unsigned long)addr, cachep->gfporder);
  1546. }
  1547. static void kmem_rcu_free(struct rcu_head *head)
  1548. {
  1549. struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
  1550. struct kmem_cache *cachep = slab_rcu->cachep;
  1551. kmem_freepages(cachep, slab_rcu->addr);
  1552. if (OFF_SLAB(cachep))
  1553. kmem_cache_free(cachep->slabp_cache, slab_rcu);
  1554. }
  1555. #if DEBUG
  1556. #ifdef CONFIG_DEBUG_PAGEALLOC
  1557. static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
  1558. unsigned long caller)
  1559. {
  1560. int size = obj_size(cachep);
  1561. addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
  1562. if (size < 5 * sizeof(unsigned long))
  1563. return;
  1564. *addr++ = 0x12345678;
  1565. *addr++ = caller;
  1566. *addr++ = smp_processor_id();
  1567. size -= 3 * sizeof(unsigned long);
  1568. {
  1569. unsigned long *sptr = &caller;
  1570. unsigned long svalue;
  1571. while (!kstack_end(sptr)) {
  1572. svalue = *sptr++;
  1573. if (kernel_text_address(svalue)) {
  1574. *addr++ = svalue;
  1575. size -= sizeof(unsigned long);
  1576. if (size <= sizeof(unsigned long))
  1577. break;
  1578. }
  1579. }
  1580. }
  1581. *addr++ = 0x87654321;
  1582. }
  1583. #endif
  1584. static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
  1585. {
  1586. int size = obj_size(cachep);
  1587. addr = &((char *)addr)[obj_offset(cachep)];
  1588. memset(addr, val, size);
  1589. *(unsigned char *)(addr + size - 1) = POISON_END;
  1590. }
  1591. static void dump_line(char *data, int offset, int limit)
  1592. {
  1593. int i;
  1594. unsigned char error = 0;
  1595. int bad_count = 0;
  1596. printk(KERN_ERR "%03x:", offset);
  1597. for (i = 0; i < limit; i++) {
  1598. if (data[offset + i] != POISON_FREE) {
  1599. error = data[offset + i];
  1600. bad_count++;
  1601. }
  1602. printk(" %02x", (unsigned char)data[offset + i]);
  1603. }
  1604. printk("\n");
  1605. if (bad_count == 1) {
  1606. error ^= POISON_FREE;
  1607. if (!(error & (error - 1))) {
  1608. printk(KERN_ERR "Single bit error detected. Probably "
  1609. "bad RAM.\n");
  1610. #ifdef CONFIG_X86
  1611. printk(KERN_ERR "Run memtest86+ or a similar memory "
  1612. "test tool.\n");
  1613. #else
  1614. printk(KERN_ERR "Run a memory test tool.\n");
  1615. #endif
  1616. }
  1617. }
  1618. }
  1619. #endif
  1620. #if DEBUG
  1621. static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
  1622. {
  1623. int i, size;
  1624. char *realobj;
  1625. if (cachep->flags & SLAB_RED_ZONE) {
  1626. printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
  1627. *dbg_redzone1(cachep, objp),
  1628. *dbg_redzone2(cachep, objp));
  1629. }
  1630. if (cachep->flags & SLAB_STORE_USER) {
  1631. printk(KERN_ERR "Last user: [<%p>]",
  1632. *dbg_userword(cachep, objp));
  1633. print_symbol("(%s)",
  1634. (unsigned long)*dbg_userword(cachep, objp));
  1635. printk("\n");
  1636. }
  1637. realobj = (char *)objp + obj_offset(cachep);
  1638. size = obj_size(cachep);
  1639. for (i = 0; i < size && lines; i += 16, lines--) {
  1640. int limit;
  1641. limit = 16;
  1642. if (i + limit > size)
  1643. limit = size - i;
  1644. dump_line(realobj, i, limit);
  1645. }
  1646. }
  1647. static void check_poison_obj(struct kmem_cache *cachep, void *objp)
  1648. {
  1649. char *realobj;
  1650. int size, i;
  1651. int lines = 0;
  1652. realobj = (char *)objp + obj_offset(cachep);
  1653. size = obj_size(cachep);
  1654. for (i = 0; i < size; i++) {
  1655. char exp = POISON_FREE;
  1656. if (i == size - 1)
  1657. exp = POISON_END;
  1658. if (realobj[i] != exp) {
  1659. int limit;
  1660. /* Mismatch ! */
  1661. /* Print header */
  1662. if (lines == 0) {
  1663. printk(KERN_ERR
  1664. "Slab corruption: %s start=%p, len=%d\n",
  1665. cachep->name, realobj, size);
  1666. print_objinfo(cachep, objp, 0);
  1667. }
  1668. /* Hexdump the affected line */
  1669. i = (i / 16) * 16;
  1670. limit = 16;
  1671. if (i + limit > size)
  1672. limit = size - i;
  1673. dump_line(realobj, i, limit);
  1674. i += 16;
  1675. lines++;
  1676. /* Limit to 5 lines */
  1677. if (lines > 5)
  1678. break;
  1679. }
  1680. }
  1681. if (lines != 0) {
  1682. /* Print some data about the neighboring objects, if they
  1683. * exist:
  1684. */
  1685. struct slab *slabp = virt_to_slab(objp);
  1686. unsigned int objnr;
  1687. objnr = obj_to_index(cachep, slabp, objp);
  1688. if (objnr) {
  1689. objp = index_to_obj(cachep, slabp, objnr - 1);
  1690. realobj = (char *)objp + obj_offset(cachep);
  1691. printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
  1692. realobj, size);
  1693. print_objinfo(cachep, objp, 2);
  1694. }
  1695. if (objnr + 1 < cachep->num) {
  1696. objp = index_to_obj(cachep, slabp, objnr + 1);
  1697. realobj = (char *)objp + obj_offset(cachep);
  1698. printk(KERN_ERR "Next obj: start=%p, len=%d\n",
  1699. realobj, size);
  1700. print_objinfo(cachep, objp, 2);
  1701. }
  1702. }
  1703. }
  1704. #endif
  1705. #if DEBUG
  1706. static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
  1707. {
  1708. int i;
  1709. for (i = 0; i < cachep->num; i++) {
  1710. void *objp = index_to_obj(cachep, slabp, i);
  1711. if (cachep->flags & SLAB_POISON) {
  1712. #ifdef CONFIG_DEBUG_PAGEALLOC
  1713. if (cachep->buffer_size % PAGE_SIZE == 0 &&
  1714. OFF_SLAB(cachep))
  1715. kernel_map_pages(virt_to_page(objp),
  1716. cachep->buffer_size / PAGE_SIZE, 1);
  1717. else
  1718. check_poison_obj(cachep, objp);
  1719. #else
  1720. check_poison_obj(cachep, objp);
  1721. #endif
  1722. }
  1723. if (cachep->flags & SLAB_RED_ZONE) {
  1724. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
  1725. slab_error(cachep, "start of a freed object "
  1726. "was overwritten");
  1727. if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
  1728. slab_error(cachep, "end of a freed object "
  1729. "was overwritten");
  1730. }
  1731. }
  1732. }
  1733. #else
  1734. static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
  1735. {
  1736. }
  1737. #endif
  1738. /**
  1739. * slab_destroy - destroy and release all objects in a slab
  1740. * @cachep: cache pointer being destroyed
  1741. * @slabp: slab pointer being destroyed
  1742. *
  1743. * Destroy all the objs in a slab, and release the mem back to the system.
  1744. * Before calling the slab must have been unlinked from the cache. The
  1745. * cache-lock is not held/needed.
  1746. */
  1747. static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
  1748. {
  1749. void *addr = slabp->s_mem - slabp->colouroff;
  1750. slab_destroy_debugcheck(cachep, slabp);
  1751. if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
  1752. struct slab_rcu *slab_rcu;
  1753. slab_rcu = (struct slab_rcu *)slabp;
  1754. slab_rcu->cachep = cachep;
  1755. slab_rcu->addr = addr;
  1756. call_rcu(&slab_rcu->head, kmem_rcu_free);
  1757. } else {
  1758. kmem_freepages(cachep, addr);
  1759. if (OFF_SLAB(cachep))
  1760. kmem_cache_free(cachep->slabp_cache, slabp);
  1761. }
  1762. }
  1763. static void __kmem_cache_destroy(struct kmem_cache *cachep)
  1764. {
  1765. int i;
  1766. struct kmem_list3 *l3;
  1767. for_each_online_cpu(i)
  1768. kfree(cachep->array[i]);
  1769. /* NUMA: free the list3 structures */
  1770. for_each_online_node(i) {
  1771. l3 = cachep->nodelists[i];
  1772. if (l3) {
  1773. kfree(l3->shared);
  1774. free_alien_cache(l3->alien);
  1775. kfree(l3);
  1776. }
  1777. }
  1778. kmem_cache_free(&cache_cache, cachep);
  1779. }
  1780. /**
  1781. * calculate_slab_order - calculate size (page order) of slabs
  1782. * @cachep: pointer to the cache that is being created
  1783. * @size: size of objects to be created in this cache.
  1784. * @align: required alignment for the objects.
  1785. * @flags: slab allocation flags
  1786. *
  1787. * Also calculates the number of objects per slab.
  1788. *
  1789. * This could be made much more intelligent. For now, try to avoid using
  1790. * high order pages for slabs. When the gfp() functions are more friendly
  1791. * towards high-order requests, this should be changed.
  1792. */
  1793. static size_t calculate_slab_order(struct kmem_cache *cachep,
  1794. size_t size, size_t align, unsigned long flags)
  1795. {
  1796. unsigned long offslab_limit;
  1797. size_t left_over = 0;
  1798. int gfporder;
  1799. for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
  1800. unsigned int num;
  1801. size_t remainder;
  1802. cache_estimate(gfporder, size, align, flags, &remainder, &num);
  1803. if (!num)
  1804. continue;
  1805. if (flags & CFLGS_OFF_SLAB) {
  1806. /*
  1807. * Max number of objs-per-slab for caches which
  1808. * use off-slab slabs. Needed to avoid a possible
  1809. * looping condition in cache_grow().
  1810. */
  1811. offslab_limit = size - sizeof(struct slab);
  1812. offslab_limit /= sizeof(kmem_bufctl_t);
  1813. if (num > offslab_limit)
  1814. break;
  1815. }
  1816. /* Found something acceptable - save it away */
  1817. cachep->num = num;
  1818. cachep->gfporder = gfporder;
  1819. left_over = remainder;
  1820. /*
  1821. * A VFS-reclaimable slab tends to have most allocations
  1822. * as GFP_NOFS and we really don't want to have to be allocating
  1823. * higher-order pages when we are unable to shrink dcache.
  1824. */
  1825. if (flags & SLAB_RECLAIM_ACCOUNT)
  1826. break;
  1827. /*
  1828. * Large number of objects is good, but very large slabs are
  1829. * currently bad for the gfp()s.
  1830. */
  1831. if (gfporder >= slab_break_gfp_order)
  1832. break;
  1833. /*
  1834. * Acceptable internal fragmentation?
  1835. */
  1836. if (left_over * 8 <= (PAGE_SIZE << gfporder))
  1837. break;
  1838. }
  1839. return left_over;
  1840. }
  1841. static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
  1842. {
  1843. if (g_cpucache_up == FULL)
  1844. return enable_cpucache(cachep, gfp);
  1845. if (g_cpucache_up == NONE) {
  1846. /*
  1847. * Note: the first kmem_cache_create must create the cache
  1848. * that's used by kmalloc(24), otherwise the creation of
  1849. * further caches will BUG().
  1850. */
  1851. cachep->array[smp_processor_id()] = &initarray_generic.cache;
  1852. /*
  1853. * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
  1854. * the first cache, then we need to set up all its list3s,
  1855. * otherwise the creation of further caches will BUG().
  1856. */
  1857. set_up_list3s(cachep, SIZE_AC);
  1858. if (INDEX_AC == INDEX_L3)
  1859. g_cpucache_up = PARTIAL_L3;
  1860. else
  1861. g_cpucache_up = PARTIAL_AC;
  1862. } else {
  1863. cachep->array[smp_processor_id()] =
  1864. kmalloc(sizeof(struct arraycache_init), gfp);
  1865. if (g_cpucache_up == PARTIAL_AC) {
  1866. set_up_list3s(cachep, SIZE_L3);
  1867. g_cpucache_up = PARTIAL_L3;
  1868. } else {
  1869. int node;
  1870. for_each_online_node(node) {
  1871. cachep->nodelists[node] =
  1872. kmalloc_node(sizeof(struct kmem_list3),
  1873. gfp, node);
  1874. BUG_ON(!cachep->nodelists[node]);
  1875. kmem_list3_init(cachep->nodelists[node]);
  1876. }
  1877. }
  1878. }
  1879. cachep->nodelists[numa_mem_id()]->next_reap =
  1880. jiffies + REAPTIMEOUT_LIST3 +
  1881. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  1882. cpu_cache_get(cachep)->avail = 0;
  1883. cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
  1884. cpu_cache_get(cachep)->batchcount = 1;
  1885. cpu_cache_get(cachep)->touched = 0;
  1886. cachep->batchcount = 1;
  1887. cachep->limit = BOOT_CPUCACHE_ENTRIES;
  1888. return 0;
  1889. }
  1890. /**
  1891. * kmem_cache_create - Create a cache.
  1892. * @name: A string which is used in /proc/slabinfo to identify this cache.
  1893. * @size: The size of objects to be created in this cache.
  1894. * @align: The required alignment for the objects.
  1895. * @flags: SLAB flags
  1896. * @ctor: A constructor for the objects.
  1897. *
  1898. * Returns a ptr to the cache on success, NULL on failure.
  1899. * Cannot be called within a int, but can be interrupted.
  1900. * The @ctor is run when new pages are allocated by the cache.
  1901. *
  1902. * @name must be valid until the cache is destroyed. This implies that
  1903. * the module calling this has to destroy the cache before getting unloaded.
  1904. *
  1905. * The flags are
  1906. *
  1907. * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
  1908. * to catch references to uninitialised memory.
  1909. *
  1910. * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
  1911. * for buffer overruns.
  1912. *
  1913. * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
  1914. * cacheline. This can be beneficial if you're counting cycles as closely
  1915. * as davem.
  1916. */
  1917. struct kmem_cache *
  1918. kmem_cache_create (const char *name, size_t size, size_t align,
  1919. unsigned long flags, void (*ctor)(void *))
  1920. {
  1921. size_t left_over, slab_size, ralign;
  1922. struct kmem_cache *cachep = NULL, *pc;
  1923. gfp_t gfp;
  1924. /*
  1925. * Sanity checks... these are all serious usage bugs.
  1926. */
  1927. if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
  1928. size > KMALLOC_MAX_SIZE) {
  1929. printk(KERN_ERR "%s: Early error in slab %s\n", __func__,
  1930. name);
  1931. BUG();
  1932. }
  1933. /*
  1934. * We use cache_chain_mutex to ensure a consistent view of
  1935. * cpu_online_mask as well. Please see cpuup_callback
  1936. */
  1937. if (slab_is_available()) {
  1938. get_online_cpus();
  1939. mutex_lock(&cache_chain_mutex);
  1940. }
  1941. list_for_each_entry(pc, &cache_chain, next) {
  1942. char tmp;
  1943. int res;
  1944. /*
  1945. * This happens when the module gets unloaded and doesn't
  1946. * destroy its slab cache and no-one else reuses the vmalloc
  1947. * area of the module. Print a warning.
  1948. */
  1949. res = probe_kernel_address(pc->name, tmp);
  1950. if (res) {
  1951. printk(KERN_ERR
  1952. "SLAB: cache with size %d has lost its name\n",
  1953. pc->buffer_size);
  1954. continue;
  1955. }
  1956. if (!strcmp(pc->name, name)) {
  1957. printk(KERN_ERR
  1958. "kmem_cache_create: duplicate cache %s\n", name);
  1959. dump_stack();
  1960. goto oops;
  1961. }
  1962. }
  1963. #if DEBUG
  1964. WARN_ON(strchr(name, ' ')); /* It confuses parsers */
  1965. #if FORCED_DEBUG
  1966. /*
  1967. * Enable redzoning and last user accounting, except for caches with
  1968. * large objects, if the increased size would increase the object size
  1969. * above the next power of two: caches with object sizes just above a
  1970. * power of two have a significant amount of internal fragmentation.
  1971. */
  1972. if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
  1973. 2 * sizeof(unsigned long long)))
  1974. flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
  1975. if (!(flags & SLAB_DESTROY_BY_RCU))
  1976. flags |= SLAB_POISON;
  1977. #endif
  1978. if (flags & SLAB_DESTROY_BY_RCU)
  1979. BUG_ON(flags & SLAB_POISON);
  1980. #endif
  1981. /*
  1982. * Always checks flags, a caller might be expecting debug support which
  1983. * isn't available.
  1984. */
  1985. BUG_ON(flags & ~CREATE_MASK);
  1986. /*
  1987. * Check that size is in terms of words. This is needed to avoid
  1988. * unaligned accesses for some archs when redzoning is used, and makes
  1989. * sure any on-slab bufctl's are also correctly aligned.
  1990. */
  1991. if (size & (BYTES_PER_WORD - 1)) {
  1992. size += (BYTES_PER_WORD - 1);
  1993. size &= ~(BYTES_PER_WORD - 1);
  1994. }
  1995. /* calculate the final buffer alignment: */
  1996. /* 1) arch recommendation: can be overridden for debug */
  1997. if (flags & SLAB_HWCACHE_ALIGN) {
  1998. /*
  1999. * Default alignment: as specified by the arch code. Except if
  2000. * an object is really small, then squeeze multiple objects into
  2001. * one cacheline.
  2002. */
  2003. ralign = cache_line_size();
  2004. while (size <= ralign / 2)
  2005. ralign /= 2;
  2006. } else {
  2007. ralign = BYTES_PER_WORD;
  2008. }
  2009. /*
  2010. * Redzoning and user store require word alignment or possibly larger.
  2011. * Note this will be overridden by architecture or caller mandated
  2012. * alignment if either is greater than BYTES_PER_WORD.
  2013. */
  2014. if (flags & SLAB_STORE_USER)
  2015. ralign = BYTES_PER_WORD;
  2016. if (flags & SLAB_RED_ZONE) {
  2017. ralign = REDZONE_ALIGN;
  2018. /* If redzoning, ensure that the second redzone is suitably
  2019. * aligned, by adjusting the object size accordingly. */
  2020. size += REDZONE_ALIGN - 1;
  2021. size &= ~(REDZONE_ALIGN - 1);
  2022. }
  2023. /* 2) arch mandated alignment */
  2024. if (ralign < ARCH_SLAB_MINALIGN) {
  2025. ralign = ARCH_SLAB_MINALIGN;
  2026. }
  2027. /* 3) caller mandated alignment */
  2028. if (ralign < align) {
  2029. ralign = align;
  2030. }
  2031. /* disable debug if necessary */
  2032. if (ralign > __alignof__(unsigned long long))
  2033. flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
  2034. /*
  2035. * 4) Store it.
  2036. */
  2037. align = ralign;
  2038. if (slab_is_available())
  2039. gfp = GFP_KERNEL;
  2040. else
  2041. gfp = GFP_NOWAIT;
  2042. /* Get cache's description obj. */
  2043. cachep = kmem_cache_zalloc(&cache_cache, gfp);
  2044. if (!cachep)
  2045. goto oops;
  2046. cachep->nodelists = (struct kmem_list3 **)&cachep->array[nr_cpu_ids];
  2047. #if DEBUG
  2048. cachep->obj_size = size;
  2049. /*
  2050. * Both debugging options require word-alignment which is calculated
  2051. * into align above.
  2052. */
  2053. if (flags & SLAB_RED_ZONE) {
  2054. /* add space for red zone words */
  2055. cachep->obj_offset += sizeof(unsigned long long);
  2056. size += 2 * sizeof(unsigned long long);
  2057. }
  2058. if (flags & SLAB_STORE_USER) {
  2059. /* user store requires one word storage behind the end of
  2060. * the real object. But if the second red zone needs to be
  2061. * aligned to 64 bits, we must allow that much space.
  2062. */
  2063. if (flags & SLAB_RED_ZONE)
  2064. size += REDZONE_ALIGN;
  2065. else
  2066. size += BYTES_PER_WORD;
  2067. }
  2068. #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
  2069. if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
  2070. && cachep->obj_size > cache_line_size() && ALIGN(size, align) < PAGE_SIZE) {
  2071. cachep->obj_offset += PAGE_SIZE - ALIGN(size, align);
  2072. size = PAGE_SIZE;
  2073. }
  2074. #endif
  2075. #endif
  2076. /*
  2077. * Determine if the slab management is 'on' or 'off' slab.
  2078. * (bootstrapping cannot cope with offslab caches so don't do
  2079. * it too early on. Always use on-slab management when
  2080. * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
  2081. */
  2082. if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
  2083. !(flags & SLAB_NOLEAKTRACE))
  2084. /*
  2085. * Size is large, assume best to place the slab management obj
  2086. * off-slab (should allow better packing of objs).
  2087. */
  2088. flags |= CFLGS_OFF_SLAB;
  2089. size = ALIGN(size, align);
  2090. left_over = calculate_slab_order(cachep, size, align, flags);
  2091. if (!cachep->num) {
  2092. printk(KERN_ERR
  2093. "kmem_cache_create: couldn't create cache %s.\n", name);
  2094. kmem_cache_free(&cache_cache, cachep);
  2095. cachep = NULL;
  2096. goto oops;
  2097. }
  2098. slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
  2099. + sizeof(struct slab), align);
  2100. /*
  2101. * If the slab has been placed off-slab, and we have enough space then
  2102. * move it on-slab. This is at the expense of any extra colouring.
  2103. */
  2104. if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
  2105. flags &= ~CFLGS_OFF_SLAB;
  2106. left_over -= slab_size;
  2107. }
  2108. if (flags & CFLGS_OFF_SLAB) {
  2109. /* really off slab. No need for manual alignment */
  2110. slab_size =
  2111. cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
  2112. #ifdef CONFIG_PAGE_POISONING
  2113. /* If we're going to use the generic kernel_map_pages()
  2114. * poisoning, then it's going to smash the contents of
  2115. * the redzone and userword anyhow, so switch them off.
  2116. */
  2117. if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
  2118. flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
  2119. #endif
  2120. }
  2121. cachep->colour_off = cache_line_size();
  2122. /* Offset must be a multiple of the alignment. */
  2123. if (cachep->colour_off < align)
  2124. cachep->colour_off = align;
  2125. cachep->colour = left_over / cachep->colour_off;
  2126. cachep->slab_size = slab_size;
  2127. cachep->flags = flags;
  2128. cachep->gfpflags = 0;
  2129. if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
  2130. cachep->gfpflags |= GFP_DMA;
  2131. cachep->buffer_size = size;
  2132. cachep->reciprocal_buffer_size = reciprocal_value(size);
  2133. if (flags & CFLGS_OFF_SLAB) {
  2134. cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
  2135. /*
  2136. * This is a possibility for one of the malloc_sizes caches.
  2137. * But since we go off slab only for object size greater than
  2138. * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
  2139. * this should not happen at all.
  2140. * But leave a BUG_ON for some lucky dude.
  2141. */
  2142. BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
  2143. }
  2144. cachep->ctor = ctor;
  2145. cachep->name = name;
  2146. if (setup_cpu_cache(cachep, gfp)) {
  2147. __kmem_cache_destroy(cachep);
  2148. cachep = NULL;
  2149. goto oops;
  2150. }
  2151. /* cache setup completed, link it into the list */
  2152. list_add(&cachep->next, &cache_chain);
  2153. oops:
  2154. if (!cachep && (flags & SLAB_PANIC))
  2155. panic("kmem_cache_create(): failed to create slab `%s'\n",
  2156. name);
  2157. if (slab_is_available()) {
  2158. mutex_unlock(&cache_chain_mutex);
  2159. put_online_cpus();
  2160. }
  2161. return cachep;
  2162. }
  2163. EXPORT_SYMBOL(kmem_cache_create);
  2164. #if DEBUG
  2165. static void check_irq_off(void)
  2166. {
  2167. BUG_ON(!irqs_disabled());
  2168. }
  2169. static void check_irq_on(void)
  2170. {
  2171. BUG_ON(irqs_disabled());
  2172. }
  2173. static void check_spinlock_acquired(struct kmem_cache *cachep)
  2174. {
  2175. #ifdef CONFIG_SMP
  2176. check_irq_off();
  2177. assert_spin_locked(&cachep->nodelists[numa_mem_id()]->list_lock);
  2178. #endif
  2179. }
  2180. static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
  2181. {
  2182. #ifdef CONFIG_SMP
  2183. check_irq_off();
  2184. assert_spin_locked(&cachep->nodelists[node]->list_lock);
  2185. #endif
  2186. }
  2187. #else
  2188. #define check_irq_off() do { } while(0)
  2189. #define check_irq_on() do { } while(0)
  2190. #define check_spinlock_acquired(x) do { } while(0)
  2191. #define check_spinlock_acquired_node(x, y) do { } while(0)
  2192. #endif
  2193. static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
  2194. struct array_cache *ac,
  2195. int force, int node);
  2196. static void do_drain(void *arg)
  2197. {
  2198. struct kmem_cache *cachep = arg;
  2199. struct array_cache *ac;
  2200. int node = numa_mem_id();
  2201. check_irq_off();
  2202. ac = cpu_cache_get(cachep);
  2203. spin_lock(&cachep->nodelists[node]->list_lock);
  2204. free_block(cachep, ac->entry, ac->avail, node);
  2205. spin_unlock(&cachep->nodelists[node]->list_lock);
  2206. ac->avail = 0;
  2207. }
  2208. static void drain_cpu_caches(struct kmem_cache *cachep)
  2209. {
  2210. struct kmem_list3 *l3;
  2211. int node;
  2212. on_each_cpu(do_drain, cachep, 1);
  2213. check_irq_on();
  2214. for_each_online_node(node) {
  2215. l3 = cachep->nodelists[node];
  2216. if (l3 && l3->alien)
  2217. drain_alien_cache(cachep, l3->alien);
  2218. }
  2219. for_each_online_node(node) {
  2220. l3 = cachep->nodelists[node];
  2221. if (l3)
  2222. drain_array(cachep, l3, l3->shared, 1, node);
  2223. }
  2224. }
  2225. /*
  2226. * Remove slabs from the list of free slabs.
  2227. * Specify the number of slabs to drain in tofree.
  2228. *
  2229. * Returns the actual number of slabs released.
  2230. */
  2231. static int drain_freelist(struct kmem_cache *cache,
  2232. struct kmem_list3 *l3, int tofree)
  2233. {
  2234. struct list_head *p;
  2235. int nr_freed;
  2236. struct slab *slabp;
  2237. nr_freed = 0;
  2238. while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
  2239. spin_lock_irq(&l3->list_lock);
  2240. p = l3->slabs_free.prev;
  2241. if (p == &l3->slabs_free) {
  2242. spin_unlock_irq(&l3->list_lock);
  2243. goto out;
  2244. }
  2245. slabp = list_entry(p, struct slab, list);
  2246. #if DEBUG
  2247. BUG_ON(slabp->inuse);
  2248. #endif
  2249. list_del(&slabp->list);
  2250. /*
  2251. * Safe to drop the lock. The slab is no longer linked
  2252. * to the cache.
  2253. */
  2254. l3->free_objects -= cache->num;
  2255. spin_unlock_irq(&l3->list_lock);
  2256. slab_destroy(cache, slabp);
  2257. nr_freed++;
  2258. }
  2259. out:
  2260. return nr_freed;
  2261. }
  2262. /* Called with cache_chain_mutex held to protect against cpu hotplug */
  2263. static int __cache_shrink(struct kmem_cache *cachep)
  2264. {
  2265. int ret = 0, i = 0;
  2266. struct kmem_list3 *l3;
  2267. drain_cpu_caches(cachep);
  2268. check_irq_on();
  2269. for_each_online_node(i) {
  2270. l3 = cachep->nodelists[i];
  2271. if (!l3)
  2272. continue;
  2273. drain_freelist(cachep, l3, l3->free_objects);
  2274. ret += !list_empty(&l3->slabs_full) ||
  2275. !list_empty(&l3->slabs_partial);
  2276. }
  2277. return (ret ? 1 : 0);
  2278. }
  2279. /**
  2280. * kmem_cache_shrink - Shrink a cache.
  2281. * @cachep: The cache to shrink.
  2282. *
  2283. * Releases as many slabs as possible for a cache.
  2284. * To help debugging, a zero exit status indicates all slabs were released.
  2285. */
  2286. int kmem_cache_shrink(struct kmem_cache *cachep)
  2287. {
  2288. int ret;
  2289. BUG_ON(!cachep || in_interrupt());
  2290. get_online_cpus();
  2291. mutex_lock(&cache_chain_mutex);
  2292. ret = __cache_shrink(cachep);
  2293. mutex_unlock(&cache_chain_mutex);
  2294. put_online_cpus();
  2295. return ret;
  2296. }
  2297. EXPORT_SYMBOL(kmem_cache_shrink);
  2298. /**
  2299. * kmem_cache_destroy - delete a cache
  2300. * @cachep: the cache to destroy
  2301. *
  2302. * Remove a &struct kmem_cache object from the slab cache.
  2303. *
  2304. * It is expected this function will be called by a module when it is
  2305. * unloaded. This will remove the cache completely, and avoid a duplicate
  2306. * cache being allocated each time a module is loaded and unloaded, if the
  2307. * module doesn't have persistent in-kernel storage across loads and unloads.
  2308. *
  2309. * The cache must be empty before calling this function.
  2310. *
  2311. * The caller must guarantee that no one will allocate memory from the cache
  2312. * during the kmem_cache_destroy().
  2313. */
  2314. void kmem_cache_destroy(struct kmem_cache *cachep)
  2315. {
  2316. BUG_ON(!cachep || in_interrupt());
  2317. /* Find the cache in the chain of caches. */
  2318. get_online_cpus();
  2319. mutex_lock(&cache_chain_mutex);
  2320. /*
  2321. * the chain is never empty, cache_cache is never destroyed
  2322. */
  2323. list_del(&cachep->next);
  2324. if (__cache_shrink(cachep)) {
  2325. slab_error(cachep, "Can't free all objects");
  2326. list_add(&cachep->next, &cache_chain);
  2327. mutex_unlock(&cache_chain_mutex);
  2328. put_online_cpus();
  2329. return;
  2330. }
  2331. if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
  2332. rcu_barrier();
  2333. __kmem_cache_destroy(cachep);
  2334. mutex_unlock(&cache_chain_mutex);
  2335. put_online_cpus();
  2336. }
  2337. EXPORT_SYMBOL(kmem_cache_destroy);
  2338. /*
  2339. * Get the memory for a slab management obj.
  2340. * For a slab cache when the slab descriptor is off-slab, slab descriptors
  2341. * always come from malloc_sizes caches. The slab descriptor cannot
  2342. * come from the same cache which is getting created because,
  2343. * when we are searching for an appropriate cache for these
  2344. * descriptors in kmem_cache_create, we search through the malloc_sizes array.
  2345. * If we are creating a malloc_sizes cache here it would not be visible to
  2346. * kmem_find_general_cachep till the initialization is complete.
  2347. * Hence we cannot have slabp_cache same as the original cache.
  2348. */
  2349. static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
  2350. int colour_off, gfp_t local_flags,
  2351. int nodeid)
  2352. {
  2353. struct slab *slabp;
  2354. if (OFF_SLAB(cachep)) {
  2355. /* Slab management obj is off-slab. */
  2356. slabp = kmem_cache_alloc_node(cachep->slabp_cache,
  2357. local_flags, nodeid);
  2358. /*
  2359. * If the first object in the slab is leaked (it's allocated
  2360. * but no one has a reference to it), we want to make sure
  2361. * kmemleak does not treat the ->s_mem pointer as a reference
  2362. * to the object. Otherwise we will not report the leak.
  2363. */
  2364. kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
  2365. local_flags);
  2366. if (!slabp)
  2367. return NULL;
  2368. } else {
  2369. slabp = objp + colour_off;
  2370. colour_off += cachep->slab_size;
  2371. }
  2372. slabp->inuse = 0;
  2373. slabp->colouroff = colour_off;
  2374. slabp->s_mem = objp + colour_off;
  2375. slabp->nodeid = nodeid;
  2376. slabp->free = 0;
  2377. return slabp;
  2378. }
  2379. static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
  2380. {
  2381. return (kmem_bufctl_t *) (slabp + 1);
  2382. }
  2383. static void cache_init_objs(struct kmem_cache *cachep,
  2384. struct slab *slabp)
  2385. {
  2386. int i;
  2387. for (i = 0; i < cachep->num; i++) {
  2388. void *objp = index_to_obj(cachep, slabp, i);
  2389. #if DEBUG
  2390. /* need to poison the objs? */
  2391. if (cachep->flags & SLAB_POISON)
  2392. poison_obj(cachep, objp, POISON_FREE);
  2393. if (cachep->flags & SLAB_STORE_USER)
  2394. *dbg_userword(cachep, objp) = NULL;
  2395. if (cachep->flags & SLAB_RED_ZONE) {
  2396. *dbg_redzone1(cachep, objp) = RED_INACTIVE;
  2397. *dbg_redzone2(cachep, objp) = RED_INACTIVE;
  2398. }
  2399. /*
  2400. * Constructors are not allowed to allocate memory from the same
  2401. * cache which they are a constructor for. Otherwise, deadlock.
  2402. * They must also be threaded.
  2403. */
  2404. if (cachep->ctor && !(cachep->flags & SLAB_POISON))
  2405. cachep->ctor(objp + obj_offset(cachep));
  2406. if (cachep->flags & SLAB_RED_ZONE) {
  2407. if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
  2408. slab_error(cachep, "constructor overwrote the"
  2409. " end of an object");
  2410. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
  2411. slab_error(cachep, "constructor overwrote the"
  2412. " start of an object");
  2413. }
  2414. if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
  2415. OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
  2416. kernel_map_pages(virt_to_page(objp),
  2417. cachep->buffer_size / PAGE_SIZE, 0);
  2418. #else
  2419. if (cachep->ctor)
  2420. cachep->ctor(objp);
  2421. #endif
  2422. slab_bufctl(slabp)[i] = i + 1;
  2423. }
  2424. slab_bufctl(slabp)[i - 1] = BUFCTL_END;
  2425. }
  2426. static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
  2427. {
  2428. if (CONFIG_ZONE_DMA_FLAG) {
  2429. if (flags & GFP_DMA)
  2430. BUG_ON(!(cachep->gfpflags & GFP_DMA));
  2431. else
  2432. BUG_ON(cachep->gfpflags & GFP_DMA);
  2433. }
  2434. }
  2435. static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
  2436. int nodeid)
  2437. {
  2438. void *objp = index_to_obj(cachep, slabp, slabp->free);
  2439. kmem_bufctl_t next;
  2440. slabp->inuse++;
  2441. next = slab_bufctl(slabp)[slabp->free];
  2442. #if DEBUG
  2443. slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
  2444. WARN_ON(slabp->nodeid != nodeid);
  2445. #endif
  2446. slabp->free = next;
  2447. return objp;
  2448. }
  2449. static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
  2450. void *objp, int nodeid)
  2451. {
  2452. unsigned int objnr = obj_to_index(cachep, slabp, objp);
  2453. #if DEBUG
  2454. /* Verify that the slab belongs to the intended node */
  2455. WARN_ON(slabp->nodeid != nodeid);
  2456. if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
  2457. printk(KERN_ERR "slab: double free detected in cache "
  2458. "'%s', objp %p\n", cachep->name, objp);
  2459. BUG();
  2460. }
  2461. #endif
  2462. slab_bufctl(slabp)[objnr] = slabp->free;
  2463. slabp->free = objnr;
  2464. slabp->inuse--;
  2465. }
  2466. /*
  2467. * Map pages beginning at addr to the given cache and slab. This is required
  2468. * for the slab allocator to be able to lookup the cache and slab of a
  2469. * virtual address for kfree, ksize, and slab debugging.
  2470. */
  2471. static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
  2472. void *addr)
  2473. {
  2474. int nr_pages;
  2475. struct page *page;
  2476. page = virt_to_page(addr);
  2477. nr_pages = 1;
  2478. if (likely(!PageCompound(page)))
  2479. nr_pages <<= cache->gfporder;
  2480. do {
  2481. page_set_cache(page, cache);
  2482. page_set_slab(page, slab);
  2483. page++;
  2484. } while (--nr_pages);
  2485. }
  2486. /*
  2487. * Grow (by 1) the number of slabs within a cache. This is called by
  2488. * kmem_cache_alloc() when there are no active objs left in a cache.
  2489. */
  2490. static int cache_grow(struct kmem_cache *cachep,
  2491. gfp_t flags, int nodeid, void *objp)
  2492. {
  2493. struct slab *slabp;
  2494. size_t offset;
  2495. gfp_t local_flags;
  2496. struct kmem_list3 *l3;
  2497. /*
  2498. * Be lazy and only check for valid flags here, keeping it out of the
  2499. * critical path in kmem_cache_alloc().
  2500. */
  2501. BUG_ON(flags & GFP_SLAB_BUG_MASK);
  2502. local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
  2503. /* Take the l3 list lock to change the colour_next on this node */
  2504. check_irq_off();
  2505. l3 = cachep->nodelists[nodeid];
  2506. spin_lock(&l3->list_lock);
  2507. /* Get colour for the slab, and cal the next value. */
  2508. offset = l3->colour_next;
  2509. l3->colour_next++;
  2510. if (l3->colour_next >= cachep->colour)
  2511. l3->colour_next = 0;
  2512. spin_unlock(&l3->list_lock);
  2513. offset *= cachep->colour_off;
  2514. if (local_flags & __GFP_WAIT)
  2515. local_irq_enable();
  2516. /*
  2517. * The test for missing atomic flag is performed here, rather than
  2518. * the more obvious place, simply to reduce the critical path length
  2519. * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
  2520. * will eventually be caught here (where it matters).
  2521. */
  2522. kmem_flagcheck(cachep, flags);
  2523. /*
  2524. * Get mem for the objs. Attempt to allocate a physical page from
  2525. * 'nodeid'.
  2526. */
  2527. if (!objp)
  2528. objp = kmem_getpages(cachep, local_flags, nodeid);
  2529. if (!objp)
  2530. goto failed;
  2531. /* Get slab management. */
  2532. slabp = alloc_slabmgmt(cachep, objp, offset,
  2533. local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
  2534. if (!slabp)
  2535. goto opps1;
  2536. slab_map_pages(cachep, slabp, objp);
  2537. cache_init_objs(cachep, slabp);
  2538. if (local_flags & __GFP_WAIT)
  2539. local_irq_disable();
  2540. check_irq_off();
  2541. spin_lock(&l3->list_lock);
  2542. /* Make slab active. */
  2543. list_add_tail(&slabp->list, &(l3->slabs_free));
  2544. STATS_INC_GROWN(cachep);
  2545. l3->free_objects += cachep->num;
  2546. spin_unlock(&l3->list_lock);
  2547. return 1;
  2548. opps1:
  2549. kmem_freepages(cachep, objp);
  2550. failed:
  2551. if (local_flags & __GFP_WAIT)
  2552. local_irq_disable();
  2553. return 0;
  2554. }
  2555. #if DEBUG
  2556. /*
  2557. * Perform extra freeing checks:
  2558. * - detect bad pointers.
  2559. * - POISON/RED_ZONE checking
  2560. */
  2561. static void kfree_debugcheck(const void *objp)
  2562. {
  2563. if (!virt_addr_valid(objp)) {
  2564. printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
  2565. (unsigned long)objp);
  2566. BUG();
  2567. }
  2568. }
  2569. static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
  2570. {
  2571. unsigned long long redzone1, redzone2;
  2572. redzone1 = *dbg_redzone1(cache, obj);
  2573. redzone2 = *dbg_redzone2(cache, obj);
  2574. /*
  2575. * Redzone is ok.
  2576. */
  2577. if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
  2578. return;
  2579. if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
  2580. slab_error(cache, "double free detected");
  2581. else
  2582. slab_error(cache, "memory outside object was overwritten");
  2583. printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
  2584. obj, redzone1, redzone2);
  2585. }
  2586. static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
  2587. void *caller)
  2588. {
  2589. struct page *page;
  2590. unsigned int objnr;
  2591. struct slab *slabp;
  2592. BUG_ON(virt_to_cache(objp) != cachep);
  2593. objp -= obj_offset(cachep);
  2594. kfree_debugcheck(objp);
  2595. page = virt_to_head_page(objp);
  2596. slabp = page_get_slab(page);
  2597. if (cachep->flags & SLAB_RED_ZONE) {
  2598. verify_redzone_free(cachep, objp);
  2599. *dbg_redzone1(cachep, objp) = RED_INACTIVE;
  2600. *dbg_redzone2(cachep, objp) = RED_INACTIVE;
  2601. }
  2602. if (cachep->flags & SLAB_STORE_USER)
  2603. *dbg_userword(cachep, objp) = caller;
  2604. objnr = obj_to_index(cachep, slabp, objp);
  2605. BUG_ON(objnr >= cachep->num);
  2606. BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
  2607. #ifdef CONFIG_DEBUG_SLAB_LEAK
  2608. slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
  2609. #endif
  2610. if (cachep->flags & SLAB_POISON) {
  2611. #ifdef CONFIG_DEBUG_PAGEALLOC
  2612. if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
  2613. store_stackinfo(cachep, objp, (unsigned long)caller);
  2614. kernel_map_pages(virt_to_page(objp),
  2615. cachep->buffer_size / PAGE_SIZE, 0);
  2616. } else {
  2617. poison_obj(cachep, objp, POISON_FREE);
  2618. }
  2619. #else
  2620. poison_obj(cachep, objp, POISON_FREE);
  2621. #endif
  2622. }
  2623. return objp;
  2624. }
  2625. static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
  2626. {
  2627. kmem_bufctl_t i;
  2628. int entries = 0;
  2629. /* Check slab's freelist to see if this obj is there. */
  2630. for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
  2631. entries++;
  2632. if (entries > cachep->num || i >= cachep->num)
  2633. goto bad;
  2634. }
  2635. if (entries != cachep->num - slabp->inuse) {
  2636. bad:
  2637. printk(KERN_ERR "slab: Internal list corruption detected in "
  2638. "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
  2639. cachep->name, cachep->num, slabp, slabp->inuse);
  2640. for (i = 0;
  2641. i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
  2642. i++) {
  2643. if (i % 16 == 0)
  2644. printk("\n%03x:", i);
  2645. printk(" %02x", ((unsigned char *)slabp)[i]);
  2646. }
  2647. printk("\n");
  2648. BUG();
  2649. }
  2650. }
  2651. #else
  2652. #define kfree_debugcheck(x) do { } while(0)
  2653. #define cache_free_debugcheck(x,objp,z) (objp)
  2654. #define check_slabp(x,y) do { } while(0)
  2655. #endif
  2656. static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
  2657. {
  2658. int batchcount;
  2659. struct kmem_list3 *l3;
  2660. struct array_cache *ac;
  2661. int node;
  2662. retry:
  2663. check_irq_off();
  2664. node = numa_mem_id();
  2665. ac = cpu_cache_get(cachep);
  2666. batchcount = ac->batchcount;
  2667. if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
  2668. /*
  2669. * If there was little recent activity on this cache, then
  2670. * perform only a partial refill. Otherwise we could generate
  2671. * refill bouncing.
  2672. */
  2673. batchcount = BATCHREFILL_LIMIT;
  2674. }
  2675. l3 = cachep->nodelists[node];
  2676. BUG_ON(ac->avail > 0 || !l3);
  2677. spin_lock(&l3->list_lock);
  2678. /* See if we can refill from the shared array */
  2679. if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) {
  2680. l3->shared->touched = 1;
  2681. goto alloc_done;
  2682. }
  2683. while (batchcount > 0) {
  2684. struct list_head *entry;
  2685. struct slab *slabp;
  2686. /* Get slab alloc is to come from. */
  2687. entry = l3->slabs_partial.next;
  2688. if (entry == &l3->slabs_partial) {
  2689. l3->free_touched = 1;
  2690. entry = l3->slabs_free.next;
  2691. if (entry == &l3->slabs_free)
  2692. goto must_grow;
  2693. }
  2694. slabp = list_entry(entry, struct slab, list);
  2695. check_slabp(cachep, slabp);
  2696. check_spinlock_acquired(cachep);
  2697. /*
  2698. * The slab was either on partial or free list so
  2699. * there must be at least one object available for
  2700. * allocation.
  2701. */
  2702. BUG_ON(slabp->inuse >= cachep->num);
  2703. while (slabp->inuse < cachep->num && batchcount--) {
  2704. STATS_INC_ALLOCED(cachep);
  2705. STATS_INC_ACTIVE(cachep);
  2706. STATS_SET_HIGH(cachep);
  2707. ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
  2708. node);
  2709. }
  2710. check_slabp(cachep, slabp);
  2711. /* move slabp to correct slabp list: */
  2712. list_del(&slabp->list);
  2713. if (slabp->free == BUFCTL_END)
  2714. list_add(&slabp->list, &l3->slabs_full);
  2715. else
  2716. list_add(&slabp->list, &l3->slabs_partial);
  2717. }
  2718. must_grow:
  2719. l3->free_objects -= ac->avail;
  2720. alloc_done:
  2721. spin_unlock(&l3->list_lock);
  2722. if (unlikely(!ac->avail)) {
  2723. int x;
  2724. x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
  2725. /* cache_grow can reenable interrupts, then ac could change. */
  2726. ac = cpu_cache_get(cachep);
  2727. if (!x && ac->avail == 0) /* no objects in sight? abort */
  2728. return NULL;
  2729. if (!ac->avail) /* objects refilled by interrupt? */
  2730. goto retry;
  2731. }
  2732. ac->touched = 1;
  2733. return ac->entry[--ac->avail];
  2734. }
  2735. static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
  2736. gfp_t flags)
  2737. {
  2738. might_sleep_if(flags & __GFP_WAIT);
  2739. #if DEBUG
  2740. kmem_flagcheck(cachep, flags);
  2741. #endif
  2742. }
  2743. #if DEBUG
  2744. static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
  2745. gfp_t flags, void *objp, void *caller)
  2746. {
  2747. if (!objp)
  2748. return objp;
  2749. if (cachep->flags & SLAB_POISON) {
  2750. #ifdef CONFIG_DEBUG_PAGEALLOC
  2751. if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
  2752. kernel_map_pages(virt_to_page(objp),
  2753. cachep->buffer_size / PAGE_SIZE, 1);
  2754. else
  2755. check_poison_obj(cachep, objp);
  2756. #else
  2757. check_poison_obj(cachep, objp);
  2758. #endif
  2759. poison_obj(cachep, objp, POISON_INUSE);
  2760. }
  2761. if (cachep->flags & SLAB_STORE_USER)
  2762. *dbg_userword(cachep, objp) = caller;
  2763. if (cachep->flags & SLAB_RED_ZONE) {
  2764. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
  2765. *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
  2766. slab_error(cachep, "double free, or memory outside"
  2767. " object was overwritten");
  2768. printk(KERN_ERR
  2769. "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
  2770. objp, *dbg_redzone1(cachep, objp),
  2771. *dbg_redzone2(cachep, objp));
  2772. }
  2773. *dbg_redzone1(cachep, objp) = RED_ACTIVE;
  2774. *dbg_redzone2(cachep, objp) = RED_ACTIVE;
  2775. }
  2776. #ifdef CONFIG_DEBUG_SLAB_LEAK
  2777. {
  2778. struct slab *slabp;
  2779. unsigned objnr;
  2780. slabp = page_get_slab(virt_to_head_page(objp));
  2781. objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
  2782. slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
  2783. }
  2784. #endif
  2785. objp += obj_offset(cachep);
  2786. if (cachep->ctor && cachep->flags & SLAB_POISON)
  2787. cachep->ctor(objp);
  2788. if (ARCH_SLAB_MINALIGN &&
  2789. ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
  2790. printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
  2791. objp, (int)ARCH_SLAB_MINALIGN);
  2792. }
  2793. return objp;
  2794. }
  2795. #else
  2796. #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
  2797. #endif
  2798. static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
  2799. {
  2800. if (cachep == &cache_cache)
  2801. return false;
  2802. return should_failslab(obj_size(cachep), flags, cachep->flags);
  2803. }
  2804. static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
  2805. {
  2806. void *objp;
  2807. struct array_cache *ac;
  2808. check_irq_off();
  2809. ac = cpu_cache_get(cachep);
  2810. if (likely(ac->avail)) {
  2811. STATS_INC_ALLOCHIT(cachep);
  2812. ac->touched = 1;
  2813. objp = ac->entry[--ac->avail];
  2814. } else {
  2815. STATS_INC_ALLOCMISS(cachep);
  2816. objp = cache_alloc_refill(cachep, flags);
  2817. /*
  2818. * the 'ac' may be updated by cache_alloc_refill(),
  2819. * and kmemleak_erase() requires its correct value.
  2820. */
  2821. ac = cpu_cache_get(cachep);
  2822. }
  2823. /*
  2824. * To avoid a false negative, if an object that is in one of the
  2825. * per-CPU caches is leaked, we need to make sure kmemleak doesn't
  2826. * treat the array pointers as a reference to the object.
  2827. */
  2828. if (objp)
  2829. kmemleak_erase(&ac->entry[ac->avail]);
  2830. return objp;
  2831. }
  2832. #ifdef CONFIG_NUMA
  2833. /*
  2834. * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
  2835. *
  2836. * If we are in_interrupt, then process context, including cpusets and
  2837. * mempolicy, may not apply and should not be used for allocation policy.
  2838. */
  2839. static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
  2840. {
  2841. int nid_alloc, nid_here;
  2842. if (in_interrupt() || (flags & __GFP_THISNODE))
  2843. return NULL;
  2844. nid_alloc = nid_here = numa_mem_id();
  2845. get_mems_allowed();
  2846. if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
  2847. nid_alloc = cpuset_slab_spread_node();
  2848. else if (current->mempolicy)
  2849. nid_alloc = slab_node(current->mempolicy);
  2850. put_mems_allowed();
  2851. if (nid_alloc != nid_here)
  2852. return ____cache_alloc_node(cachep, flags, nid_alloc);
  2853. return NULL;
  2854. }
  2855. /*
  2856. * Fallback function if there was no memory available and no objects on a
  2857. * certain node and fall back is permitted. First we scan all the
  2858. * available nodelists for available objects. If that fails then we
  2859. * perform an allocation without specifying a node. This allows the page
  2860. * allocator to do its reclaim / fallback magic. We then insert the
  2861. * slab into the proper nodelist and then allocate from it.
  2862. */
  2863. static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
  2864. {
  2865. struct zonelist *zonelist;
  2866. gfp_t local_flags;
  2867. struct zoneref *z;
  2868. struct zone *zone;
  2869. enum zone_type high_zoneidx = gfp_zone(flags);
  2870. void *obj = NULL;
  2871. int nid;
  2872. if (flags & __GFP_THISNODE)
  2873. return NULL;
  2874. get_mems_allowed();
  2875. zonelist = node_zonelist(slab_node(current->mempolicy), flags);
  2876. local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
  2877. retry:
  2878. /*
  2879. * Look through allowed nodes for objects available
  2880. * from existing per node queues.
  2881. */
  2882. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
  2883. nid = zone_to_nid(zone);
  2884. if (cpuset_zone_allowed_hardwall(zone, flags) &&
  2885. cache->nodelists[nid] &&
  2886. cache->nodelists[nid]->free_objects) {
  2887. obj = ____cache_alloc_node(cache,
  2888. flags | GFP_THISNODE, nid);
  2889. if (obj)
  2890. break;
  2891. }
  2892. }
  2893. if (!obj) {
  2894. /*
  2895. * This allocation will be performed within the constraints
  2896. * of the current cpuset / memory policy requirements.
  2897. * We may trigger various forms of reclaim on the allowed
  2898. * set and go into memory reserves if necessary.
  2899. */
  2900. if (local_flags & __GFP_WAIT)
  2901. local_irq_enable();
  2902. kmem_flagcheck(cache, flags);
  2903. obj = kmem_getpages(cache, local_flags, numa_mem_id());
  2904. if (local_flags & __GFP_WAIT)
  2905. local_irq_disable();
  2906. if (obj) {
  2907. /*
  2908. * Insert into the appropriate per node queues
  2909. */
  2910. nid = page_to_nid(virt_to_page(obj));
  2911. if (cache_grow(cache, flags, nid, obj)) {
  2912. obj = ____cache_alloc_node(cache,
  2913. flags | GFP_THISNODE, nid);
  2914. if (!obj)
  2915. /*
  2916. * Another processor may allocate the
  2917. * objects in the slab since we are
  2918. * not holding any locks.
  2919. */
  2920. goto retry;
  2921. } else {
  2922. /* cache_grow already freed obj */
  2923. obj = NULL;
  2924. }
  2925. }
  2926. }
  2927. put_mems_allowed();
  2928. return obj;
  2929. }
  2930. /*
  2931. * A interface to enable slab creation on nodeid
  2932. */
  2933. static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
  2934. int nodeid)
  2935. {
  2936. struct list_head *entry;
  2937. struct slab *slabp;
  2938. struct kmem_list3 *l3;
  2939. void *obj;
  2940. int x;
  2941. l3 = cachep->nodelists[nodeid];
  2942. BUG_ON(!l3);
  2943. retry:
  2944. check_irq_off();
  2945. spin_lock(&l3->list_lock);
  2946. entry = l3->slabs_partial.next;
  2947. if (entry == &l3->slabs_partial) {
  2948. l3->free_touched = 1;
  2949. entry = l3->slabs_free.next;
  2950. if (entry == &l3->slabs_free)
  2951. goto must_grow;
  2952. }
  2953. slabp = list_entry(entry, struct slab, list);
  2954. check_spinlock_acquired_node(cachep, nodeid);
  2955. check_slabp(cachep, slabp);
  2956. STATS_INC_NODEALLOCS(cachep);
  2957. STATS_INC_ACTIVE(cachep);
  2958. STATS_SET_HIGH(cachep);
  2959. BUG_ON(slabp->inuse == cachep->num);
  2960. obj = slab_get_obj(cachep, slabp, nodeid);
  2961. check_slabp(cachep, slabp);
  2962. l3->free_objects--;
  2963. /* move slabp to correct slabp list: */
  2964. list_del(&slabp->list);
  2965. if (slabp->free == BUFCTL_END)
  2966. list_add(&slabp->list, &l3->slabs_full);
  2967. else
  2968. list_add(&slabp->list, &l3->slabs_partial);
  2969. spin_unlock(&l3->list_lock);
  2970. goto done;
  2971. must_grow:
  2972. spin_unlock(&l3->list_lock);
  2973. x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
  2974. if (x)
  2975. goto retry;
  2976. return fallback_alloc(cachep, flags);
  2977. done:
  2978. return obj;
  2979. }
  2980. /**
  2981. * kmem_cache_alloc_node - Allocate an object on the specified node
  2982. * @cachep: The cache to allocate from.
  2983. * @flags: See kmalloc().
  2984. * @nodeid: node number of the target node.
  2985. * @caller: return address of caller, used for debug information
  2986. *
  2987. * Identical to kmem_cache_alloc but it will allocate memory on the given
  2988. * node, which can improve the performance for cpu bound structures.
  2989. *
  2990. * Fallback to other node is possible if __GFP_THISNODE is not set.
  2991. */
  2992. static __always_inline void *
  2993. __cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
  2994. void *caller)
  2995. {
  2996. unsigned long save_flags;
  2997. void *ptr;
  2998. int slab_node = numa_mem_id();
  2999. flags &= gfp_allowed_mask;
  3000. lockdep_trace_alloc(flags);
  3001. if (slab_should_failslab(cachep, flags))
  3002. return NULL;
  3003. cache_alloc_debugcheck_before(cachep, flags);
  3004. local_irq_save(save_flags);
  3005. if (nodeid == NUMA_NO_NODE)
  3006. nodeid = slab_node;
  3007. if (unlikely(!cachep->nodelists[nodeid])) {
  3008. /* Node not bootstrapped yet */
  3009. ptr = fallback_alloc(cachep, flags);
  3010. goto out;
  3011. }
  3012. if (nodeid == slab_node) {
  3013. /*
  3014. * Use the locally cached objects if possible.
  3015. * However ____cache_alloc does not allow fallback
  3016. * to other nodes. It may fail while we still have
  3017. * objects on other nodes available.
  3018. */
  3019. ptr = ____cache_alloc(cachep, flags);
  3020. if (ptr)
  3021. goto out;
  3022. }
  3023. /* ___cache_alloc_node can fall back to other nodes */
  3024. ptr = ____cache_alloc_node(cachep, flags, nodeid);
  3025. out:
  3026. local_irq_restore(save_flags);
  3027. ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
  3028. kmemleak_alloc_recursive(ptr, obj_size(cachep), 1, cachep->flags,
  3029. flags);
  3030. if (likely(ptr))
  3031. kmemcheck_slab_alloc(cachep, flags, ptr, obj_size(cachep));
  3032. if (unlikely((flags & __GFP_ZERO) && ptr))
  3033. memset(ptr, 0, obj_size(cachep));
  3034. return ptr;
  3035. }
  3036. static __always_inline void *
  3037. __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
  3038. {
  3039. void *objp;
  3040. if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
  3041. objp = alternate_node_alloc(cache, flags);
  3042. if (objp)
  3043. goto out;
  3044. }
  3045. objp = ____cache_alloc(cache, flags);
  3046. /*
  3047. * We may just have run out of memory on the local node.
  3048. * ____cache_alloc_node() knows how to locate memory on other nodes
  3049. */
  3050. if (!objp)
  3051. objp = ____cache_alloc_node(cache, flags, numa_mem_id());
  3052. out:
  3053. return objp;
  3054. }
  3055. #else
  3056. static __always_inline void *
  3057. __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
  3058. {
  3059. return ____cache_alloc(cachep, flags);
  3060. }
  3061. #endif /* CONFIG_NUMA */
  3062. static __always_inline void *
  3063. __cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
  3064. {
  3065. unsigned long save_flags;
  3066. void *objp;
  3067. flags &= gfp_allowed_mask;
  3068. lockdep_trace_alloc(flags);
  3069. if (slab_should_failslab(cachep, flags))
  3070. return NULL;
  3071. cache_alloc_debugcheck_before(cachep, flags);
  3072. local_irq_save(save_flags);
  3073. objp = __do_cache_alloc(cachep, flags);
  3074. local_irq_restore(save_flags);
  3075. objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
  3076. kmemleak_alloc_recursive(objp, obj_size(cachep), 1, cachep->flags,
  3077. flags);
  3078. prefetchw(objp);
  3079. if (likely(objp))
  3080. kmemcheck_slab_alloc(cachep, flags, objp, obj_size(cachep));
  3081. if (unlikely((flags & __GFP_ZERO) && objp))
  3082. memset(objp, 0, obj_size(cachep));
  3083. return objp;
  3084. }
  3085. /*
  3086. * Caller needs to acquire correct kmem_list's list_lock
  3087. */
  3088. static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
  3089. int node)
  3090. {
  3091. int i;
  3092. struct kmem_list3 *l3;
  3093. for (i = 0; i < nr_objects; i++) {
  3094. void *objp = objpp[i];
  3095. struct slab *slabp;
  3096. slabp = virt_to_slab(objp);
  3097. l3 = cachep->nodelists[node];
  3098. list_del(&slabp->list);
  3099. check_spinlock_acquired_node(cachep, node);
  3100. check_slabp(cachep, slabp);
  3101. slab_put_obj(cachep, slabp, objp, node);
  3102. STATS_DEC_ACTIVE(cachep);
  3103. l3->free_objects++;
  3104. check_slabp(cachep, slabp);
  3105. /* fixup slab chains */
  3106. if (slabp->inuse == 0) {
  3107. if (l3->free_objects > l3->free_limit) {
  3108. l3->free_objects -= cachep->num;
  3109. /* No need to drop any previously held
  3110. * lock here, even if we have a off-slab slab
  3111. * descriptor it is guaranteed to come from
  3112. * a different cache, refer to comments before
  3113. * alloc_slabmgmt.
  3114. */
  3115. slab_destroy(cachep, slabp);
  3116. } else {
  3117. list_add(&slabp->list, &l3->slabs_free);
  3118. }
  3119. } else {
  3120. /* Unconditionally move a slab to the end of the
  3121. * partial list on free - maximum time for the
  3122. * other objects to be freed, too.
  3123. */
  3124. list_add_tail(&slabp->list, &l3->slabs_partial);
  3125. }
  3126. }
  3127. }
  3128. static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
  3129. {
  3130. int batchcount;
  3131. struct kmem_list3 *l3;
  3132. int node = numa_mem_id();
  3133. batchcount = ac->batchcount;
  3134. #if DEBUG
  3135. BUG_ON(!batchcount || batchcount > ac->avail);
  3136. #endif
  3137. check_irq_off();
  3138. l3 = cachep->nodelists[node];
  3139. spin_lock(&l3->list_lock);
  3140. if (l3->shared) {
  3141. struct array_cache *shared_array = l3->shared;
  3142. int max = shared_array->limit - shared_array->avail;
  3143. if (max) {
  3144. if (batchcount > max)
  3145. batchcount = max;
  3146. memcpy(&(shared_array->entry[shared_array->avail]),
  3147. ac->entry, sizeof(void *) * batchcount);
  3148. shared_array->avail += batchcount;
  3149. goto free_done;
  3150. }
  3151. }
  3152. free_block(cachep, ac->entry, batchcount, node);
  3153. free_done:
  3154. #if STATS
  3155. {
  3156. int i = 0;
  3157. struct list_head *p;
  3158. p = l3->slabs_free.next;
  3159. while (p != &(l3->slabs_free)) {
  3160. struct slab *slabp;
  3161. slabp = list_entry(p, struct slab, list);
  3162. BUG_ON(slabp->inuse);
  3163. i++;
  3164. p = p->next;
  3165. }
  3166. STATS_SET_FREEABLE(cachep, i);
  3167. }
  3168. #endif
  3169. spin_unlock(&l3->list_lock);
  3170. ac->avail -= batchcount;
  3171. memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
  3172. }
  3173. /*
  3174. * Release an obj back to its cache. If the obj has a constructed state, it must
  3175. * be in this state _before_ it is released. Called with disabled ints.
  3176. */
  3177. static inline void __cache_free(struct kmem_cache *cachep, void *objp,
  3178. void *caller)
  3179. {
  3180. struct array_cache *ac = cpu_cache_get(cachep);
  3181. check_irq_off();
  3182. kmemleak_free_recursive(objp, cachep->flags);
  3183. objp = cache_free_debugcheck(cachep, objp, caller);
  3184. kmemcheck_slab_free(cachep, objp, obj_size(cachep));
  3185. /*
  3186. * Skip calling cache_free_alien() when the platform is not numa.
  3187. * This will avoid cache misses that happen while accessing slabp (which
  3188. * is per page memory reference) to get nodeid. Instead use a global
  3189. * variable to skip the call, which is mostly likely to be present in
  3190. * the cache.
  3191. */
  3192. if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
  3193. return;
  3194. if (likely(ac->avail < ac->limit)) {
  3195. STATS_INC_FREEHIT(cachep);
  3196. ac->entry[ac->avail++] = objp;
  3197. return;
  3198. } else {
  3199. STATS_INC_FREEMISS(cachep);
  3200. cache_flusharray(cachep, ac);
  3201. ac->entry[ac->avail++] = objp;
  3202. }
  3203. }
  3204. /**
  3205. * kmem_cache_alloc - Allocate an object
  3206. * @cachep: The cache to allocate from.
  3207. * @flags: See kmalloc().
  3208. *
  3209. * Allocate an object from this cache. The flags are only relevant
  3210. * if the cache has no available objects.
  3211. */
  3212. void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
  3213. {
  3214. void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
  3215. trace_kmem_cache_alloc(_RET_IP_, ret,
  3216. obj_size(cachep), cachep->buffer_size, flags);
  3217. return ret;
  3218. }
  3219. EXPORT_SYMBOL(kmem_cache_alloc);
  3220. #ifdef CONFIG_TRACING
  3221. void *
  3222. kmem_cache_alloc_trace(size_t size, struct kmem_cache *cachep, gfp_t flags)
  3223. {
  3224. void *ret;
  3225. ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
  3226. trace_kmalloc(_RET_IP_, ret,
  3227. size, slab_buffer_size(cachep), flags);
  3228. return ret;
  3229. }
  3230. EXPORT_SYMBOL(kmem_cache_alloc_trace);
  3231. #endif
  3232. #ifdef CONFIG_NUMA
  3233. void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
  3234. {
  3235. void *ret = __cache_alloc_node(cachep, flags, nodeid,
  3236. __builtin_return_address(0));
  3237. trace_kmem_cache_alloc_node(_RET_IP_, ret,
  3238. obj_size(cachep), cachep->buffer_size,
  3239. flags, nodeid);
  3240. return ret;
  3241. }
  3242. EXPORT_SYMBOL(kmem_cache_alloc_node);
  3243. #ifdef CONFIG_TRACING
  3244. void *kmem_cache_alloc_node_trace(size_t size,
  3245. struct kmem_cache *cachep,
  3246. gfp_t flags,
  3247. int nodeid)
  3248. {
  3249. void *ret;
  3250. ret = __cache_alloc_node(cachep, flags, nodeid,
  3251. __builtin_return_address(0));
  3252. trace_kmalloc_node(_RET_IP_, ret,
  3253. size, slab_buffer_size(cachep),
  3254. flags, nodeid);
  3255. return ret;
  3256. }
  3257. EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
  3258. #endif
  3259. static __always_inline void *
  3260. __do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
  3261. {
  3262. struct kmem_cache *cachep;
  3263. cachep = kmem_find_general_cachep(size, flags);
  3264. if (unlikely(ZERO_OR_NULL_PTR(cachep)))
  3265. return cachep;
  3266. return kmem_cache_alloc_node_trace(size, cachep, flags, node);
  3267. }
  3268. #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
  3269. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  3270. {
  3271. return __do_kmalloc_node(size, flags, node,
  3272. __builtin_return_address(0));
  3273. }
  3274. EXPORT_SYMBOL(__kmalloc_node);
  3275. void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
  3276. int node, unsigned long caller)
  3277. {
  3278. return __do_kmalloc_node(size, flags, node, (void *)caller);
  3279. }
  3280. EXPORT_SYMBOL(__kmalloc_node_track_caller);
  3281. #else
  3282. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  3283. {
  3284. return __do_kmalloc_node(size, flags, node, NULL);
  3285. }
  3286. EXPORT_SYMBOL(__kmalloc_node);
  3287. #endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
  3288. #endif /* CONFIG_NUMA */
  3289. /**
  3290. * __do_kmalloc - allocate memory
  3291. * @size: how many bytes of memory are required.
  3292. * @flags: the type of memory to allocate (see kmalloc).
  3293. * @caller: function caller for debug tracking of the caller
  3294. */
  3295. static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
  3296. void *caller)
  3297. {
  3298. struct kmem_cache *cachep;
  3299. void *ret;
  3300. /* If you want to save a few bytes .text space: replace
  3301. * __ with kmem_.
  3302. * Then kmalloc uses the uninlined functions instead of the inline
  3303. * functions.
  3304. */
  3305. cachep = __find_general_cachep(size, flags);
  3306. if (unlikely(ZERO_OR_NULL_PTR(cachep)))
  3307. return cachep;
  3308. ret = __cache_alloc(cachep, flags, caller);
  3309. trace_kmalloc((unsigned long) caller, ret,
  3310. size, cachep->buffer_size, flags);
  3311. return ret;
  3312. }
  3313. #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
  3314. void *__kmalloc(size_t size, gfp_t flags)
  3315. {
  3316. return __do_kmalloc(size, flags, __builtin_return_address(0));
  3317. }
  3318. EXPORT_SYMBOL(__kmalloc);
  3319. void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
  3320. {
  3321. return __do_kmalloc(size, flags, (void *)caller);
  3322. }
  3323. EXPORT_SYMBOL(__kmalloc_track_caller);
  3324. #else
  3325. void *__kmalloc(size_t size, gfp_t flags)
  3326. {
  3327. return __do_kmalloc(size, flags, NULL);
  3328. }
  3329. EXPORT_SYMBOL(__kmalloc);
  3330. #endif
  3331. /**
  3332. * kmem_cache_free - Deallocate an object
  3333. * @cachep: The cache the allocation was from.
  3334. * @objp: The previously allocated object.
  3335. *
  3336. * Free an object which was previously allocated from this
  3337. * cache.
  3338. */
  3339. void kmem_cache_free(struct kmem_cache *cachep, void *objp)
  3340. {
  3341. unsigned long flags;
  3342. local_irq_save(flags);
  3343. debug_check_no_locks_freed(objp, obj_size(cachep));
  3344. if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
  3345. debug_check_no_obj_freed(objp, obj_size(cachep));
  3346. __cache_free(cachep, objp, __builtin_return_address(0));
  3347. local_irq_restore(flags);
  3348. trace_kmem_cache_free(_RET_IP_, objp);
  3349. }
  3350. EXPORT_SYMBOL(kmem_cache_free);
  3351. /**
  3352. * kfree - free previously allocated memory
  3353. * @objp: pointer returned by kmalloc.
  3354. *
  3355. * If @objp is NULL, no operation is performed.
  3356. *
  3357. * Don't free memory not originally allocated by kmalloc()
  3358. * or you will run into trouble.
  3359. */
  3360. void kfree(const void *objp)
  3361. {
  3362. struct kmem_cache *c;
  3363. unsigned long flags;
  3364. trace_kfree(_RET_IP_, objp);
  3365. if (unlikely(ZERO_OR_NULL_PTR(objp)))
  3366. return;
  3367. local_irq_save(flags);
  3368. kfree_debugcheck(objp);
  3369. c = virt_to_cache(objp);
  3370. debug_check_no_locks_freed(objp, obj_size(c));
  3371. debug_check_no_obj_freed(objp, obj_size(c));
  3372. __cache_free(c, (void *)objp, __builtin_return_address(0));
  3373. local_irq_restore(flags);
  3374. }
  3375. EXPORT_SYMBOL(kfree);
  3376. unsigned int kmem_cache_size(struct kmem_cache *cachep)
  3377. {
  3378. return obj_size(cachep);
  3379. }
  3380. EXPORT_SYMBOL(kmem_cache_size);
  3381. /*
  3382. * This initializes kmem_list3 or resizes various caches for all nodes.
  3383. */
  3384. static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
  3385. {
  3386. int node;
  3387. struct kmem_list3 *l3;
  3388. struct array_cache *new_shared;
  3389. struct array_cache **new_alien = NULL;
  3390. for_each_online_node(node) {
  3391. if (use_alien_caches) {
  3392. new_alien = alloc_alien_cache(node, cachep->limit, gfp);
  3393. if (!new_alien)
  3394. goto fail;
  3395. }
  3396. new_shared = NULL;
  3397. if (cachep->shared) {
  3398. new_shared = alloc_arraycache(node,
  3399. cachep->shared*cachep->batchcount,
  3400. 0xbaadf00d, gfp);
  3401. if (!new_shared) {
  3402. free_alien_cache(new_alien);
  3403. goto fail;
  3404. }
  3405. }
  3406. l3 = cachep->nodelists[node];
  3407. if (l3) {
  3408. struct array_cache *shared = l3->shared;
  3409. spin_lock_irq(&l3->list_lock);
  3410. if (shared)
  3411. free_block(cachep, shared->entry,
  3412. shared->avail, node);
  3413. l3->shared = new_shared;
  3414. if (!l3->alien) {
  3415. l3->alien = new_alien;
  3416. new_alien = NULL;
  3417. }
  3418. l3->free_limit = (1 + nr_cpus_node(node)) *
  3419. cachep->batchcount + cachep->num;
  3420. spin_unlock_irq(&l3->list_lock);
  3421. kfree(shared);
  3422. free_alien_cache(new_alien);
  3423. continue;
  3424. }
  3425. l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
  3426. if (!l3) {
  3427. free_alien_cache(new_alien);
  3428. kfree(new_shared);
  3429. goto fail;
  3430. }
  3431. kmem_list3_init(l3);
  3432. l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
  3433. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  3434. l3->shared = new_shared;
  3435. l3->alien = new_alien;
  3436. l3->free_limit = (1 + nr_cpus_node(node)) *
  3437. cachep->batchcount + cachep->num;
  3438. cachep->nodelists[node] = l3;
  3439. }
  3440. return 0;
  3441. fail:
  3442. if (!cachep->next.next) {
  3443. /* Cache is not active yet. Roll back what we did */
  3444. node--;
  3445. while (node >= 0) {
  3446. if (cachep->nodelists[node]) {
  3447. l3 = cachep->nodelists[node];
  3448. kfree(l3->shared);
  3449. free_alien_cache(l3->alien);
  3450. kfree(l3);
  3451. cachep->nodelists[node] = NULL;
  3452. }
  3453. node--;
  3454. }
  3455. }
  3456. return -ENOMEM;
  3457. }
  3458. struct ccupdate_struct {
  3459. struct kmem_cache *cachep;
  3460. struct array_cache *new[0];
  3461. };
  3462. static void do_ccupdate_local(void *info)
  3463. {
  3464. struct ccupdate_struct *new = info;
  3465. struct array_cache *old;
  3466. check_irq_off();
  3467. old = cpu_cache_get(new->cachep);
  3468. new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
  3469. new->new[smp_processor_id()] = old;
  3470. }
  3471. /* Always called with the cache_chain_mutex held */
  3472. static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
  3473. int batchcount, int shared, gfp_t gfp)
  3474. {
  3475. struct ccupdate_struct *new;
  3476. int i;
  3477. new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
  3478. gfp);
  3479. if (!new)
  3480. return -ENOMEM;
  3481. for_each_online_cpu(i) {
  3482. new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
  3483. batchcount, gfp);
  3484. if (!new->new[i]) {
  3485. for (i--; i >= 0; i--)
  3486. kfree(new->new[i]);
  3487. kfree(new);
  3488. return -ENOMEM;
  3489. }
  3490. }
  3491. new->cachep = cachep;
  3492. on_each_cpu(do_ccupdate_local, (void *)new, 1);
  3493. check_irq_on();
  3494. cachep->batchcount = batchcount;
  3495. cachep->limit = limit;
  3496. cachep->shared = shared;
  3497. for_each_online_cpu(i) {
  3498. struct array_cache *ccold = new->new[i];
  3499. if (!ccold)
  3500. continue;
  3501. spin_lock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
  3502. free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
  3503. spin_unlock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
  3504. kfree(ccold);
  3505. }
  3506. kfree(new);
  3507. return alloc_kmemlist(cachep, gfp);
  3508. }
  3509. /* Called with cache_chain_mutex held always */
  3510. static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
  3511. {
  3512. int err;
  3513. int limit, shared;
  3514. /*
  3515. * The head array serves three purposes:
  3516. * - create a LIFO ordering, i.e. return objects that are cache-warm
  3517. * - reduce the number of spinlock operations.
  3518. * - reduce the number of linked list operations on the slab and
  3519. * bufctl chains: array operations are cheaper.
  3520. * The numbers are guessed, we should auto-tune as described by
  3521. * Bonwick.
  3522. */
  3523. if (cachep->buffer_size > 131072)
  3524. limit = 1;
  3525. else if (cachep->buffer_size > PAGE_SIZE)
  3526. limit = 8;
  3527. else if (cachep->buffer_size > 1024)
  3528. limit = 24;
  3529. else if (cachep->buffer_size > 256)
  3530. limit = 54;
  3531. else
  3532. limit = 120;
  3533. /*
  3534. * CPU bound tasks (e.g. network routing) can exhibit cpu bound
  3535. * allocation behaviour: Most allocs on one cpu, most free operations
  3536. * on another cpu. For these cases, an efficient object passing between
  3537. * cpus is necessary. This is provided by a shared array. The array
  3538. * replaces Bonwick's magazine layer.
  3539. * On uniprocessor, it's functionally equivalent (but less efficient)
  3540. * to a larger limit. Thus disabled by default.
  3541. */
  3542. shared = 0;
  3543. if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
  3544. shared = 8;
  3545. #if DEBUG
  3546. /*
  3547. * With debugging enabled, large batchcount lead to excessively long
  3548. * periods with disabled local interrupts. Limit the batchcount
  3549. */
  3550. if (limit > 32)
  3551. limit = 32;
  3552. #endif
  3553. err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
  3554. if (err)
  3555. printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
  3556. cachep->name, -err);
  3557. return err;
  3558. }
  3559. /*
  3560. * Drain an array if it contains any elements taking the l3 lock only if
  3561. * necessary. Note that the l3 listlock also protects the array_cache
  3562. * if drain_array() is used on the shared array.
  3563. */
  3564. static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
  3565. struct array_cache *ac, int force, int node)
  3566. {
  3567. int tofree;
  3568. if (!ac || !ac->avail)
  3569. return;
  3570. if (ac->touched && !force) {
  3571. ac->touched = 0;
  3572. } else {
  3573. spin_lock_irq(&l3->list_lock);
  3574. if (ac->avail) {
  3575. tofree = force ? ac->avail : (ac->limit + 4) / 5;
  3576. if (tofree > ac->avail)
  3577. tofree = (ac->avail + 1) / 2;
  3578. free_block(cachep, ac->entry, tofree, node);
  3579. ac->avail -= tofree;
  3580. memmove(ac->entry, &(ac->entry[tofree]),
  3581. sizeof(void *) * ac->avail);
  3582. }
  3583. spin_unlock_irq(&l3->list_lock);
  3584. }
  3585. }
  3586. /**
  3587. * cache_reap - Reclaim memory from caches.
  3588. * @w: work descriptor
  3589. *
  3590. * Called from workqueue/eventd every few seconds.
  3591. * Purpose:
  3592. * - clear the per-cpu caches for this CPU.
  3593. * - return freeable pages to the main free memory pool.
  3594. *
  3595. * If we cannot acquire the cache chain mutex then just give up - we'll try
  3596. * again on the next iteration.
  3597. */
  3598. static void cache_reap(struct work_struct *w)
  3599. {
  3600. struct kmem_cache *searchp;
  3601. struct kmem_list3 *l3;
  3602. int node = numa_mem_id();
  3603. struct delayed_work *work = to_delayed_work(w);
  3604. if (!mutex_trylock(&cache_chain_mutex))
  3605. /* Give up. Setup the next iteration. */
  3606. goto out;
  3607. list_for_each_entry(searchp, &cache_chain, next) {
  3608. check_irq_on();
  3609. /*
  3610. * We only take the l3 lock if absolutely necessary and we
  3611. * have established with reasonable certainty that
  3612. * we can do some work if the lock was obtained.
  3613. */
  3614. l3 = searchp->nodelists[node];
  3615. reap_alien(searchp, l3);
  3616. drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
  3617. /*
  3618. * These are racy checks but it does not matter
  3619. * if we skip one check or scan twice.
  3620. */
  3621. if (time_after(l3->next_reap, jiffies))
  3622. goto next;
  3623. l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
  3624. drain_array(searchp, l3, l3->shared, 0, node);
  3625. if (l3->free_touched)
  3626. l3->free_touched = 0;
  3627. else {
  3628. int freed;
  3629. freed = drain_freelist(searchp, l3, (l3->free_limit +
  3630. 5 * searchp->num - 1) / (5 * searchp->num));
  3631. STATS_ADD_REAPED(searchp, freed);
  3632. }
  3633. next:
  3634. cond_resched();
  3635. }
  3636. check_irq_on();
  3637. mutex_unlock(&cache_chain_mutex);
  3638. next_reap_node();
  3639. out:
  3640. /* Set up the next iteration */
  3641. schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
  3642. }
  3643. #ifdef CONFIG_SLABINFO
  3644. static void print_slabinfo_header(struct seq_file *m)
  3645. {
  3646. /*
  3647. * Output format version, so at least we can change it
  3648. * without _too_ many complaints.
  3649. */
  3650. #if STATS
  3651. seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
  3652. #else
  3653. seq_puts(m, "slabinfo - version: 2.1\n");
  3654. #endif
  3655. seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
  3656. "<objperslab> <pagesperslab>");
  3657. seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
  3658. seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
  3659. #if STATS
  3660. seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
  3661. "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
  3662. seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
  3663. #endif
  3664. seq_putc(m, '\n');
  3665. }
  3666. static void *s_start(struct seq_file *m, loff_t *pos)
  3667. {
  3668. loff_t n = *pos;
  3669. mutex_lock(&cache_chain_mutex);
  3670. if (!n)
  3671. print_slabinfo_header(m);
  3672. return seq_list_start(&cache_chain, *pos);
  3673. }
  3674. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  3675. {
  3676. return seq_list_next(p, &cache_chain, pos);
  3677. }
  3678. static void s_stop(struct seq_file *m, void *p)
  3679. {
  3680. mutex_unlock(&cache_chain_mutex);
  3681. }
  3682. static int s_show(struct seq_file *m, void *p)
  3683. {
  3684. struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
  3685. struct slab *slabp;
  3686. unsigned long active_objs;
  3687. unsigned long num_objs;
  3688. unsigned long active_slabs = 0;
  3689. unsigned long num_slabs, free_objects = 0, shared_avail = 0;
  3690. const char *name;
  3691. char *error = NULL;
  3692. int node;
  3693. struct kmem_list3 *l3;
  3694. active_objs = 0;
  3695. num_slabs = 0;
  3696. for_each_online_node(node) {
  3697. l3 = cachep->nodelists[node];
  3698. if (!l3)
  3699. continue;
  3700. check_irq_on();
  3701. spin_lock_irq(&l3->list_lock);
  3702. list_for_each_entry(slabp, &l3->slabs_full, list) {
  3703. if (slabp->inuse != cachep->num && !error)
  3704. error = "slabs_full accounting error";
  3705. active_objs += cachep->num;
  3706. active_slabs++;
  3707. }
  3708. list_for_each_entry(slabp, &l3->slabs_partial, list) {
  3709. if (slabp->inuse == cachep->num && !error)
  3710. error = "slabs_partial inuse accounting error";
  3711. if (!slabp->inuse && !error)
  3712. error = "slabs_partial/inuse accounting error";
  3713. active_objs += slabp->inuse;
  3714. active_slabs++;
  3715. }
  3716. list_for_each_entry(slabp, &l3->slabs_free, list) {
  3717. if (slabp->inuse && !error)
  3718. error = "slabs_free/inuse accounting error";
  3719. num_slabs++;
  3720. }
  3721. free_objects += l3->free_objects;
  3722. if (l3->shared)
  3723. shared_avail += l3->shared->avail;
  3724. spin_unlock_irq(&l3->list_lock);
  3725. }
  3726. num_slabs += active_slabs;
  3727. num_objs = num_slabs * cachep->num;
  3728. if (num_objs - active_objs != free_objects && !error)
  3729. error = "free_objects accounting error";
  3730. name = cachep->name;
  3731. if (error)
  3732. printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
  3733. seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
  3734. name, active_objs, num_objs, cachep->buffer_size,
  3735. cachep->num, (1 << cachep->gfporder));
  3736. seq_printf(m, " : tunables %4u %4u %4u",
  3737. cachep->limit, cachep->batchcount, cachep->shared);
  3738. seq_printf(m, " : slabdata %6lu %6lu %6lu",
  3739. active_slabs, num_slabs, shared_avail);
  3740. #if STATS
  3741. { /* list3 stats */
  3742. unsigned long high = cachep->high_mark;
  3743. unsigned long allocs = cachep->num_allocations;
  3744. unsigned long grown = cachep->grown;
  3745. unsigned long reaped = cachep->reaped;
  3746. unsigned long errors = cachep->errors;
  3747. unsigned long max_freeable = cachep->max_freeable;
  3748. unsigned long node_allocs = cachep->node_allocs;
  3749. unsigned long node_frees = cachep->node_frees;
  3750. unsigned long overflows = cachep->node_overflow;
  3751. seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
  3752. "%4lu %4lu %4lu %4lu %4lu",
  3753. allocs, high, grown,
  3754. reaped, errors, max_freeable, node_allocs,
  3755. node_frees, overflows);
  3756. }
  3757. /* cpu stats */
  3758. {
  3759. unsigned long allochit = atomic_read(&cachep->allochit);
  3760. unsigned long allocmiss = atomic_read(&cachep->allocmiss);
  3761. unsigned long freehit = atomic_read(&cachep->freehit);
  3762. unsigned long freemiss = atomic_read(&cachep->freemiss);
  3763. seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
  3764. allochit, allocmiss, freehit, freemiss);
  3765. }
  3766. #endif
  3767. seq_putc(m, '\n');
  3768. return 0;
  3769. }
  3770. /*
  3771. * slabinfo_op - iterator that generates /proc/slabinfo
  3772. *
  3773. * Output layout:
  3774. * cache-name
  3775. * num-active-objs
  3776. * total-objs
  3777. * object size
  3778. * num-active-slabs
  3779. * total-slabs
  3780. * num-pages-per-slab
  3781. * + further values on SMP and with statistics enabled
  3782. */
  3783. static const struct seq_operations slabinfo_op = {
  3784. .start = s_start,
  3785. .next = s_next,
  3786. .stop = s_stop,
  3787. .show = s_show,
  3788. };
  3789. #define MAX_SLABINFO_WRITE 128
  3790. /**
  3791. * slabinfo_write - Tuning for the slab allocator
  3792. * @file: unused
  3793. * @buffer: user buffer
  3794. * @count: data length
  3795. * @ppos: unused
  3796. */
  3797. static ssize_t slabinfo_write(struct file *file, const char __user *buffer,
  3798. size_t count, loff_t *ppos)
  3799. {
  3800. char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
  3801. int limit, batchcount, shared, res;
  3802. struct kmem_cache *cachep;
  3803. if (count > MAX_SLABINFO_WRITE)
  3804. return -EINVAL;
  3805. if (copy_from_user(&kbuf, buffer, count))
  3806. return -EFAULT;
  3807. kbuf[MAX_SLABINFO_WRITE] = '\0';
  3808. tmp = strchr(kbuf, ' ');
  3809. if (!tmp)
  3810. return -EINVAL;
  3811. *tmp = '\0';
  3812. tmp++;
  3813. if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
  3814. return -EINVAL;
  3815. /* Find the cache in the chain of caches. */
  3816. mutex_lock(&cache_chain_mutex);
  3817. res = -EINVAL;
  3818. list_for_each_entry(cachep, &cache_chain, next) {
  3819. if (!strcmp(cachep->name, kbuf)) {
  3820. if (limit < 1 || batchcount < 1 ||
  3821. batchcount > limit || shared < 0) {
  3822. res = 0;
  3823. } else {
  3824. res = do_tune_cpucache(cachep, limit,
  3825. batchcount, shared,
  3826. GFP_KERNEL);
  3827. }
  3828. break;
  3829. }
  3830. }
  3831. mutex_unlock(&cache_chain_mutex);
  3832. if (res >= 0)
  3833. res = count;
  3834. return res;
  3835. }
  3836. static int slabinfo_open(struct inode *inode, struct file *file)
  3837. {
  3838. return seq_open(file, &slabinfo_op);
  3839. }
  3840. static const struct file_operations proc_slabinfo_operations = {
  3841. .open = slabinfo_open,
  3842. .read = seq_read,
  3843. .write = slabinfo_write,
  3844. .llseek = seq_lseek,
  3845. .release = seq_release,
  3846. };
  3847. #ifdef CONFIG_DEBUG_SLAB_LEAK
  3848. static void *leaks_start(struct seq_file *m, loff_t *pos)
  3849. {
  3850. mutex_lock(&cache_chain_mutex);
  3851. return seq_list_start(&cache_chain, *pos);
  3852. }
  3853. static inline int add_caller(unsigned long *n, unsigned long v)
  3854. {
  3855. unsigned long *p;
  3856. int l;
  3857. if (!v)
  3858. return 1;
  3859. l = n[1];
  3860. p = n + 2;
  3861. while (l) {
  3862. int i = l/2;
  3863. unsigned long *q = p + 2 * i;
  3864. if (*q == v) {
  3865. q[1]++;
  3866. return 1;
  3867. }
  3868. if (*q > v) {
  3869. l = i;
  3870. } else {
  3871. p = q + 2;
  3872. l -= i + 1;
  3873. }
  3874. }
  3875. if (++n[1] == n[0])
  3876. return 0;
  3877. memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
  3878. p[0] = v;
  3879. p[1] = 1;
  3880. return 1;
  3881. }
  3882. static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
  3883. {
  3884. void *p;
  3885. int i;
  3886. if (n[0] == n[1])
  3887. return;
  3888. for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
  3889. if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
  3890. continue;
  3891. if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
  3892. return;
  3893. }
  3894. }
  3895. static void show_symbol(struct seq_file *m, unsigned long address)
  3896. {
  3897. #ifdef CONFIG_KALLSYMS
  3898. unsigned long offset, size;
  3899. char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
  3900. if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
  3901. seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
  3902. if (modname[0])
  3903. seq_printf(m, " [%s]", modname);
  3904. return;
  3905. }
  3906. #endif
  3907. seq_printf(m, "%p", (void *)address);
  3908. }
  3909. static int leaks_show(struct seq_file *m, void *p)
  3910. {
  3911. struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
  3912. struct slab *slabp;
  3913. struct kmem_list3 *l3;
  3914. const char *name;
  3915. unsigned long *n = m->private;
  3916. int node;
  3917. int i;
  3918. if (!(cachep->flags & SLAB_STORE_USER))
  3919. return 0;
  3920. if (!(cachep->flags & SLAB_RED_ZONE))
  3921. return 0;
  3922. /* OK, we can do it */
  3923. n[1] = 0;
  3924. for_each_online_node(node) {
  3925. l3 = cachep->nodelists[node];
  3926. if (!l3)
  3927. continue;
  3928. check_irq_on();
  3929. spin_lock_irq(&l3->list_lock);
  3930. list_for_each_entry(slabp, &l3->slabs_full, list)
  3931. handle_slab(n, cachep, slabp);
  3932. list_for_each_entry(slabp, &l3->slabs_partial, list)
  3933. handle_slab(n, cachep, slabp);
  3934. spin_unlock_irq(&l3->list_lock);
  3935. }
  3936. name = cachep->name;
  3937. if (n[0] == n[1]) {
  3938. /* Increase the buffer size */
  3939. mutex_unlock(&cache_chain_mutex);
  3940. m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
  3941. if (!m->private) {
  3942. /* Too bad, we are really out */
  3943. m->private = n;
  3944. mutex_lock(&cache_chain_mutex);
  3945. return -ENOMEM;
  3946. }
  3947. *(unsigned long *)m->private = n[0] * 2;
  3948. kfree(n);
  3949. mutex_lock(&cache_chain_mutex);
  3950. /* Now make sure this entry will be retried */
  3951. m->count = m->size;
  3952. return 0;
  3953. }
  3954. for (i = 0; i < n[1]; i++) {
  3955. seq_printf(m, "%s: %lu ", name, n[2*i+3]);
  3956. show_symbol(m, n[2*i+2]);
  3957. seq_putc(m, '\n');
  3958. }
  3959. return 0;
  3960. }
  3961. static const struct seq_operations slabstats_op = {
  3962. .start = leaks_start,
  3963. .next = s_next,
  3964. .stop = s_stop,
  3965. .show = leaks_show,
  3966. };
  3967. static int slabstats_open(struct inode *inode, struct file *file)
  3968. {
  3969. unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
  3970. int ret = -ENOMEM;
  3971. if (n) {
  3972. ret = seq_open(file, &slabstats_op);
  3973. if (!ret) {
  3974. struct seq_file *m = file->private_data;
  3975. *n = PAGE_SIZE / (2 * sizeof(unsigned long));
  3976. m->private = n;
  3977. n = NULL;
  3978. }
  3979. kfree(n);
  3980. }
  3981. return ret;
  3982. }
  3983. static const struct file_operations proc_slabstats_operations = {
  3984. .open = slabstats_open,
  3985. .read = seq_read,
  3986. .llseek = seq_lseek,
  3987. .release = seq_release_private,
  3988. };
  3989. #endif
  3990. static int __init slab_proc_init(void)
  3991. {
  3992. proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
  3993. #ifdef CONFIG_DEBUG_SLAB_LEAK
  3994. proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
  3995. #endif
  3996. return 0;
  3997. }
  3998. module_init(slab_proc_init);
  3999. #endif
  4000. /**
  4001. * ksize - get the actual amount of memory allocated for a given object
  4002. * @objp: Pointer to the object
  4003. *
  4004. * kmalloc may internally round up allocations and return more memory
  4005. * than requested. ksize() can be used to determine the actual amount of
  4006. * memory allocated. The caller may use this additional memory, even though
  4007. * a smaller amount of memory was initially specified with the kmalloc call.
  4008. * The caller must guarantee that objp points to a valid object previously
  4009. * allocated with either kmalloc() or kmem_cache_alloc(). The object
  4010. * must not be freed during the duration of the call.
  4011. */
  4012. size_t ksize(const void *objp)
  4013. {
  4014. BUG_ON(!objp);
  4015. if (unlikely(objp == ZERO_SIZE_PTR))
  4016. return 0;
  4017. return obj_size(virt_to_cache(objp));
  4018. }
  4019. EXPORT_SYMBOL(ksize);