xfs_inode.c 111 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869
  1. /*
  2. * Copyright (c) 2000-2006 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include <linux/log2.h>
  19. #include "xfs.h"
  20. #include "xfs_fs.h"
  21. #include "xfs_types.h"
  22. #include "xfs_bit.h"
  23. #include "xfs_log.h"
  24. #include "xfs_inum.h"
  25. #include "xfs_trans.h"
  26. #include "xfs_trans_priv.h"
  27. #include "xfs_sb.h"
  28. #include "xfs_ag.h"
  29. #include "xfs_mount.h"
  30. #include "xfs_bmap_btree.h"
  31. #include "xfs_alloc_btree.h"
  32. #include "xfs_ialloc_btree.h"
  33. #include "xfs_attr_sf.h"
  34. #include "xfs_dinode.h"
  35. #include "xfs_inode.h"
  36. #include "xfs_buf_item.h"
  37. #include "xfs_inode_item.h"
  38. #include "xfs_btree.h"
  39. #include "xfs_alloc.h"
  40. #include "xfs_ialloc.h"
  41. #include "xfs_bmap.h"
  42. #include "xfs_error.h"
  43. #include "xfs_utils.h"
  44. #include "xfs_quota.h"
  45. #include "xfs_filestream.h"
  46. #include "xfs_vnodeops.h"
  47. #include "xfs_trace.h"
  48. kmem_zone_t *xfs_ifork_zone;
  49. kmem_zone_t *xfs_inode_zone;
  50. /*
  51. * Used in xfs_itruncate_extents(). This is the maximum number of extents
  52. * freed from a file in a single transaction.
  53. */
  54. #define XFS_ITRUNC_MAX_EXTENTS 2
  55. STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
  56. STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
  57. STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
  58. STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
  59. #ifdef DEBUG
  60. /*
  61. * Make sure that the extents in the given memory buffer
  62. * are valid.
  63. */
  64. STATIC void
  65. xfs_validate_extents(
  66. xfs_ifork_t *ifp,
  67. int nrecs,
  68. xfs_exntfmt_t fmt)
  69. {
  70. xfs_bmbt_irec_t irec;
  71. xfs_bmbt_rec_host_t rec;
  72. int i;
  73. for (i = 0; i < nrecs; i++) {
  74. xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  75. rec.l0 = get_unaligned(&ep->l0);
  76. rec.l1 = get_unaligned(&ep->l1);
  77. xfs_bmbt_get_all(&rec, &irec);
  78. if (fmt == XFS_EXTFMT_NOSTATE)
  79. ASSERT(irec.br_state == XFS_EXT_NORM);
  80. }
  81. }
  82. #else /* DEBUG */
  83. #define xfs_validate_extents(ifp, nrecs, fmt)
  84. #endif /* DEBUG */
  85. /*
  86. * Check that none of the inode's in the buffer have a next
  87. * unlinked field of 0.
  88. */
  89. #if defined(DEBUG)
  90. void
  91. xfs_inobp_check(
  92. xfs_mount_t *mp,
  93. xfs_buf_t *bp)
  94. {
  95. int i;
  96. int j;
  97. xfs_dinode_t *dip;
  98. j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
  99. for (i = 0; i < j; i++) {
  100. dip = (xfs_dinode_t *)xfs_buf_offset(bp,
  101. i * mp->m_sb.sb_inodesize);
  102. if (!dip->di_next_unlinked) {
  103. xfs_alert(mp,
  104. "Detected bogus zero next_unlinked field in incore inode buffer 0x%p.",
  105. bp);
  106. ASSERT(dip->di_next_unlinked);
  107. }
  108. }
  109. }
  110. #endif
  111. /*
  112. * Find the buffer associated with the given inode map
  113. * We do basic validation checks on the buffer once it has been
  114. * retrieved from disk.
  115. */
  116. STATIC int
  117. xfs_imap_to_bp(
  118. xfs_mount_t *mp,
  119. xfs_trans_t *tp,
  120. struct xfs_imap *imap,
  121. xfs_buf_t **bpp,
  122. uint buf_flags,
  123. uint iget_flags)
  124. {
  125. int error;
  126. int i;
  127. int ni;
  128. xfs_buf_t *bp;
  129. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
  130. (int)imap->im_len, buf_flags, &bp);
  131. if (error) {
  132. if (error != EAGAIN) {
  133. xfs_warn(mp,
  134. "%s: xfs_trans_read_buf() returned error %d.",
  135. __func__, error);
  136. } else {
  137. ASSERT(buf_flags & XBF_TRYLOCK);
  138. }
  139. return error;
  140. }
  141. /*
  142. * Validate the magic number and version of every inode in the buffer
  143. * (if DEBUG kernel) or the first inode in the buffer, otherwise.
  144. */
  145. #ifdef DEBUG
  146. ni = BBTOB(imap->im_len) >> mp->m_sb.sb_inodelog;
  147. #else /* usual case */
  148. ni = 1;
  149. #endif
  150. for (i = 0; i < ni; i++) {
  151. int di_ok;
  152. xfs_dinode_t *dip;
  153. dip = (xfs_dinode_t *)xfs_buf_offset(bp,
  154. (i << mp->m_sb.sb_inodelog));
  155. di_ok = dip->di_magic == cpu_to_be16(XFS_DINODE_MAGIC) &&
  156. XFS_DINODE_GOOD_VERSION(dip->di_version);
  157. if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
  158. XFS_ERRTAG_ITOBP_INOTOBP,
  159. XFS_RANDOM_ITOBP_INOTOBP))) {
  160. if (iget_flags & XFS_IGET_UNTRUSTED) {
  161. xfs_trans_brelse(tp, bp);
  162. return XFS_ERROR(EINVAL);
  163. }
  164. XFS_CORRUPTION_ERROR("xfs_imap_to_bp",
  165. XFS_ERRLEVEL_HIGH, mp, dip);
  166. #ifdef DEBUG
  167. xfs_emerg(mp,
  168. "bad inode magic/vsn daddr %lld #%d (magic=%x)",
  169. (unsigned long long)imap->im_blkno, i,
  170. be16_to_cpu(dip->di_magic));
  171. ASSERT(0);
  172. #endif
  173. xfs_trans_brelse(tp, bp);
  174. return XFS_ERROR(EFSCORRUPTED);
  175. }
  176. }
  177. xfs_inobp_check(mp, bp);
  178. /*
  179. * Mark the buffer as an inode buffer now that it looks good
  180. */
  181. XFS_BUF_SET_VTYPE(bp, B_FS_INO);
  182. *bpp = bp;
  183. return 0;
  184. }
  185. /*
  186. * This routine is called to map an inode number within a file
  187. * system to the buffer containing the on-disk version of the
  188. * inode. It returns a pointer to the buffer containing the
  189. * on-disk inode in the bpp parameter, and in the dip parameter
  190. * it returns a pointer to the on-disk inode within that buffer.
  191. *
  192. * If a non-zero error is returned, then the contents of bpp and
  193. * dipp are undefined.
  194. *
  195. * Use xfs_imap() to determine the size and location of the
  196. * buffer to read from disk.
  197. */
  198. int
  199. xfs_inotobp(
  200. xfs_mount_t *mp,
  201. xfs_trans_t *tp,
  202. xfs_ino_t ino,
  203. xfs_dinode_t **dipp,
  204. xfs_buf_t **bpp,
  205. int *offset,
  206. uint imap_flags)
  207. {
  208. struct xfs_imap imap;
  209. xfs_buf_t *bp;
  210. int error;
  211. imap.im_blkno = 0;
  212. error = xfs_imap(mp, tp, ino, &imap, imap_flags);
  213. if (error)
  214. return error;
  215. error = xfs_imap_to_bp(mp, tp, &imap, &bp, XBF_LOCK, imap_flags);
  216. if (error)
  217. return error;
  218. *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
  219. *bpp = bp;
  220. *offset = imap.im_boffset;
  221. return 0;
  222. }
  223. /*
  224. * This routine is called to map an inode to the buffer containing
  225. * the on-disk version of the inode. It returns a pointer to the
  226. * buffer containing the on-disk inode in the bpp parameter, and in
  227. * the dip parameter it returns a pointer to the on-disk inode within
  228. * that buffer.
  229. *
  230. * If a non-zero error is returned, then the contents of bpp and
  231. * dipp are undefined.
  232. *
  233. * The inode is expected to already been mapped to its buffer and read
  234. * in once, thus we can use the mapping information stored in the inode
  235. * rather than calling xfs_imap(). This allows us to avoid the overhead
  236. * of looking at the inode btree for small block file systems
  237. * (see xfs_imap()).
  238. */
  239. int
  240. xfs_itobp(
  241. xfs_mount_t *mp,
  242. xfs_trans_t *tp,
  243. xfs_inode_t *ip,
  244. xfs_dinode_t **dipp,
  245. xfs_buf_t **bpp,
  246. uint buf_flags)
  247. {
  248. xfs_buf_t *bp;
  249. int error;
  250. ASSERT(ip->i_imap.im_blkno != 0);
  251. error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp, buf_flags, 0);
  252. if (error)
  253. return error;
  254. if (!bp) {
  255. ASSERT(buf_flags & XBF_TRYLOCK);
  256. ASSERT(tp == NULL);
  257. *bpp = NULL;
  258. return EAGAIN;
  259. }
  260. *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
  261. *bpp = bp;
  262. return 0;
  263. }
  264. /*
  265. * Move inode type and inode format specific information from the
  266. * on-disk inode to the in-core inode. For fifos, devs, and sockets
  267. * this means set if_rdev to the proper value. For files, directories,
  268. * and symlinks this means to bring in the in-line data or extent
  269. * pointers. For a file in B-tree format, only the root is immediately
  270. * brought in-core. The rest will be in-lined in if_extents when it
  271. * is first referenced (see xfs_iread_extents()).
  272. */
  273. STATIC int
  274. xfs_iformat(
  275. xfs_inode_t *ip,
  276. xfs_dinode_t *dip)
  277. {
  278. xfs_attr_shortform_t *atp;
  279. int size;
  280. int error;
  281. xfs_fsize_t di_size;
  282. ip->i_df.if_ext_max =
  283. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  284. error = 0;
  285. if (unlikely(be32_to_cpu(dip->di_nextents) +
  286. be16_to_cpu(dip->di_anextents) >
  287. be64_to_cpu(dip->di_nblocks))) {
  288. xfs_warn(ip->i_mount,
  289. "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
  290. (unsigned long long)ip->i_ino,
  291. (int)(be32_to_cpu(dip->di_nextents) +
  292. be16_to_cpu(dip->di_anextents)),
  293. (unsigned long long)
  294. be64_to_cpu(dip->di_nblocks));
  295. XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
  296. ip->i_mount, dip);
  297. return XFS_ERROR(EFSCORRUPTED);
  298. }
  299. if (unlikely(dip->di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
  300. xfs_warn(ip->i_mount, "corrupt dinode %Lu, forkoff = 0x%x.",
  301. (unsigned long long)ip->i_ino,
  302. dip->di_forkoff);
  303. XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
  304. ip->i_mount, dip);
  305. return XFS_ERROR(EFSCORRUPTED);
  306. }
  307. if (unlikely((ip->i_d.di_flags & XFS_DIFLAG_REALTIME) &&
  308. !ip->i_mount->m_rtdev_targp)) {
  309. xfs_warn(ip->i_mount,
  310. "corrupt dinode %Lu, has realtime flag set.",
  311. ip->i_ino);
  312. XFS_CORRUPTION_ERROR("xfs_iformat(realtime)",
  313. XFS_ERRLEVEL_LOW, ip->i_mount, dip);
  314. return XFS_ERROR(EFSCORRUPTED);
  315. }
  316. switch (ip->i_d.di_mode & S_IFMT) {
  317. case S_IFIFO:
  318. case S_IFCHR:
  319. case S_IFBLK:
  320. case S_IFSOCK:
  321. if (unlikely(dip->di_format != XFS_DINODE_FMT_DEV)) {
  322. XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
  323. ip->i_mount, dip);
  324. return XFS_ERROR(EFSCORRUPTED);
  325. }
  326. ip->i_d.di_size = 0;
  327. ip->i_size = 0;
  328. ip->i_df.if_u2.if_rdev = xfs_dinode_get_rdev(dip);
  329. break;
  330. case S_IFREG:
  331. case S_IFLNK:
  332. case S_IFDIR:
  333. switch (dip->di_format) {
  334. case XFS_DINODE_FMT_LOCAL:
  335. /*
  336. * no local regular files yet
  337. */
  338. if (unlikely((be16_to_cpu(dip->di_mode) & S_IFMT) == S_IFREG)) {
  339. xfs_warn(ip->i_mount,
  340. "corrupt inode %Lu (local format for regular file).",
  341. (unsigned long long) ip->i_ino);
  342. XFS_CORRUPTION_ERROR("xfs_iformat(4)",
  343. XFS_ERRLEVEL_LOW,
  344. ip->i_mount, dip);
  345. return XFS_ERROR(EFSCORRUPTED);
  346. }
  347. di_size = be64_to_cpu(dip->di_size);
  348. if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
  349. xfs_warn(ip->i_mount,
  350. "corrupt inode %Lu (bad size %Ld for local inode).",
  351. (unsigned long long) ip->i_ino,
  352. (long long) di_size);
  353. XFS_CORRUPTION_ERROR("xfs_iformat(5)",
  354. XFS_ERRLEVEL_LOW,
  355. ip->i_mount, dip);
  356. return XFS_ERROR(EFSCORRUPTED);
  357. }
  358. size = (int)di_size;
  359. error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
  360. break;
  361. case XFS_DINODE_FMT_EXTENTS:
  362. error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
  363. break;
  364. case XFS_DINODE_FMT_BTREE:
  365. error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
  366. break;
  367. default:
  368. XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
  369. ip->i_mount);
  370. return XFS_ERROR(EFSCORRUPTED);
  371. }
  372. break;
  373. default:
  374. XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
  375. return XFS_ERROR(EFSCORRUPTED);
  376. }
  377. if (error) {
  378. return error;
  379. }
  380. if (!XFS_DFORK_Q(dip))
  381. return 0;
  382. ASSERT(ip->i_afp == NULL);
  383. ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP | KM_NOFS);
  384. ip->i_afp->if_ext_max =
  385. XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  386. switch (dip->di_aformat) {
  387. case XFS_DINODE_FMT_LOCAL:
  388. atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
  389. size = be16_to_cpu(atp->hdr.totsize);
  390. if (unlikely(size < sizeof(struct xfs_attr_sf_hdr))) {
  391. xfs_warn(ip->i_mount,
  392. "corrupt inode %Lu (bad attr fork size %Ld).",
  393. (unsigned long long) ip->i_ino,
  394. (long long) size);
  395. XFS_CORRUPTION_ERROR("xfs_iformat(8)",
  396. XFS_ERRLEVEL_LOW,
  397. ip->i_mount, dip);
  398. return XFS_ERROR(EFSCORRUPTED);
  399. }
  400. error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
  401. break;
  402. case XFS_DINODE_FMT_EXTENTS:
  403. error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
  404. break;
  405. case XFS_DINODE_FMT_BTREE:
  406. error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
  407. break;
  408. default:
  409. error = XFS_ERROR(EFSCORRUPTED);
  410. break;
  411. }
  412. if (error) {
  413. kmem_zone_free(xfs_ifork_zone, ip->i_afp);
  414. ip->i_afp = NULL;
  415. xfs_idestroy_fork(ip, XFS_DATA_FORK);
  416. }
  417. return error;
  418. }
  419. /*
  420. * The file is in-lined in the on-disk inode.
  421. * If it fits into if_inline_data, then copy
  422. * it there, otherwise allocate a buffer for it
  423. * and copy the data there. Either way, set
  424. * if_data to point at the data.
  425. * If we allocate a buffer for the data, make
  426. * sure that its size is a multiple of 4 and
  427. * record the real size in i_real_bytes.
  428. */
  429. STATIC int
  430. xfs_iformat_local(
  431. xfs_inode_t *ip,
  432. xfs_dinode_t *dip,
  433. int whichfork,
  434. int size)
  435. {
  436. xfs_ifork_t *ifp;
  437. int real_size;
  438. /*
  439. * If the size is unreasonable, then something
  440. * is wrong and we just bail out rather than crash in
  441. * kmem_alloc() or memcpy() below.
  442. */
  443. if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
  444. xfs_warn(ip->i_mount,
  445. "corrupt inode %Lu (bad size %d for local fork, size = %d).",
  446. (unsigned long long) ip->i_ino, size,
  447. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
  448. XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
  449. ip->i_mount, dip);
  450. return XFS_ERROR(EFSCORRUPTED);
  451. }
  452. ifp = XFS_IFORK_PTR(ip, whichfork);
  453. real_size = 0;
  454. if (size == 0)
  455. ifp->if_u1.if_data = NULL;
  456. else if (size <= sizeof(ifp->if_u2.if_inline_data))
  457. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  458. else {
  459. real_size = roundup(size, 4);
  460. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP | KM_NOFS);
  461. }
  462. ifp->if_bytes = size;
  463. ifp->if_real_bytes = real_size;
  464. if (size)
  465. memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
  466. ifp->if_flags &= ~XFS_IFEXTENTS;
  467. ifp->if_flags |= XFS_IFINLINE;
  468. return 0;
  469. }
  470. /*
  471. * The file consists of a set of extents all
  472. * of which fit into the on-disk inode.
  473. * If there are few enough extents to fit into
  474. * the if_inline_ext, then copy them there.
  475. * Otherwise allocate a buffer for them and copy
  476. * them into it. Either way, set if_extents
  477. * to point at the extents.
  478. */
  479. STATIC int
  480. xfs_iformat_extents(
  481. xfs_inode_t *ip,
  482. xfs_dinode_t *dip,
  483. int whichfork)
  484. {
  485. xfs_bmbt_rec_t *dp;
  486. xfs_ifork_t *ifp;
  487. int nex;
  488. int size;
  489. int i;
  490. ifp = XFS_IFORK_PTR(ip, whichfork);
  491. nex = XFS_DFORK_NEXTENTS(dip, whichfork);
  492. size = nex * (uint)sizeof(xfs_bmbt_rec_t);
  493. /*
  494. * If the number of extents is unreasonable, then something
  495. * is wrong and we just bail out rather than crash in
  496. * kmem_alloc() or memcpy() below.
  497. */
  498. if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
  499. xfs_warn(ip->i_mount, "corrupt inode %Lu ((a)extents = %d).",
  500. (unsigned long long) ip->i_ino, nex);
  501. XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
  502. ip->i_mount, dip);
  503. return XFS_ERROR(EFSCORRUPTED);
  504. }
  505. ifp->if_real_bytes = 0;
  506. if (nex == 0)
  507. ifp->if_u1.if_extents = NULL;
  508. else if (nex <= XFS_INLINE_EXTS)
  509. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  510. else
  511. xfs_iext_add(ifp, 0, nex);
  512. ifp->if_bytes = size;
  513. if (size) {
  514. dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
  515. xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
  516. for (i = 0; i < nex; i++, dp++) {
  517. xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  518. ep->l0 = get_unaligned_be64(&dp->l0);
  519. ep->l1 = get_unaligned_be64(&dp->l1);
  520. }
  521. XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
  522. if (whichfork != XFS_DATA_FORK ||
  523. XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
  524. if (unlikely(xfs_check_nostate_extents(
  525. ifp, 0, nex))) {
  526. XFS_ERROR_REPORT("xfs_iformat_extents(2)",
  527. XFS_ERRLEVEL_LOW,
  528. ip->i_mount);
  529. return XFS_ERROR(EFSCORRUPTED);
  530. }
  531. }
  532. ifp->if_flags |= XFS_IFEXTENTS;
  533. return 0;
  534. }
  535. /*
  536. * The file has too many extents to fit into
  537. * the inode, so they are in B-tree format.
  538. * Allocate a buffer for the root of the B-tree
  539. * and copy the root into it. The i_extents
  540. * field will remain NULL until all of the
  541. * extents are read in (when they are needed).
  542. */
  543. STATIC int
  544. xfs_iformat_btree(
  545. xfs_inode_t *ip,
  546. xfs_dinode_t *dip,
  547. int whichfork)
  548. {
  549. xfs_bmdr_block_t *dfp;
  550. xfs_ifork_t *ifp;
  551. /* REFERENCED */
  552. int nrecs;
  553. int size;
  554. ifp = XFS_IFORK_PTR(ip, whichfork);
  555. dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
  556. size = XFS_BMAP_BROOT_SPACE(dfp);
  557. nrecs = be16_to_cpu(dfp->bb_numrecs);
  558. /*
  559. * blow out if -- fork has less extents than can fit in
  560. * fork (fork shouldn't be a btree format), root btree
  561. * block has more records than can fit into the fork,
  562. * or the number of extents is greater than the number of
  563. * blocks.
  564. */
  565. if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
  566. || XFS_BMDR_SPACE_CALC(nrecs) >
  567. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
  568. || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
  569. xfs_warn(ip->i_mount, "corrupt inode %Lu (btree).",
  570. (unsigned long long) ip->i_ino);
  571. XFS_CORRUPTION_ERROR("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
  572. ip->i_mount, dip);
  573. return XFS_ERROR(EFSCORRUPTED);
  574. }
  575. ifp->if_broot_bytes = size;
  576. ifp->if_broot = kmem_alloc(size, KM_SLEEP | KM_NOFS);
  577. ASSERT(ifp->if_broot != NULL);
  578. /*
  579. * Copy and convert from the on-disk structure
  580. * to the in-memory structure.
  581. */
  582. xfs_bmdr_to_bmbt(ip->i_mount, dfp,
  583. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
  584. ifp->if_broot, size);
  585. ifp->if_flags &= ~XFS_IFEXTENTS;
  586. ifp->if_flags |= XFS_IFBROOT;
  587. return 0;
  588. }
  589. STATIC void
  590. xfs_dinode_from_disk(
  591. xfs_icdinode_t *to,
  592. xfs_dinode_t *from)
  593. {
  594. to->di_magic = be16_to_cpu(from->di_magic);
  595. to->di_mode = be16_to_cpu(from->di_mode);
  596. to->di_version = from ->di_version;
  597. to->di_format = from->di_format;
  598. to->di_onlink = be16_to_cpu(from->di_onlink);
  599. to->di_uid = be32_to_cpu(from->di_uid);
  600. to->di_gid = be32_to_cpu(from->di_gid);
  601. to->di_nlink = be32_to_cpu(from->di_nlink);
  602. to->di_projid_lo = be16_to_cpu(from->di_projid_lo);
  603. to->di_projid_hi = be16_to_cpu(from->di_projid_hi);
  604. memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
  605. to->di_flushiter = be16_to_cpu(from->di_flushiter);
  606. to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
  607. to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
  608. to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
  609. to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
  610. to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
  611. to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
  612. to->di_size = be64_to_cpu(from->di_size);
  613. to->di_nblocks = be64_to_cpu(from->di_nblocks);
  614. to->di_extsize = be32_to_cpu(from->di_extsize);
  615. to->di_nextents = be32_to_cpu(from->di_nextents);
  616. to->di_anextents = be16_to_cpu(from->di_anextents);
  617. to->di_forkoff = from->di_forkoff;
  618. to->di_aformat = from->di_aformat;
  619. to->di_dmevmask = be32_to_cpu(from->di_dmevmask);
  620. to->di_dmstate = be16_to_cpu(from->di_dmstate);
  621. to->di_flags = be16_to_cpu(from->di_flags);
  622. to->di_gen = be32_to_cpu(from->di_gen);
  623. }
  624. void
  625. xfs_dinode_to_disk(
  626. xfs_dinode_t *to,
  627. xfs_icdinode_t *from)
  628. {
  629. to->di_magic = cpu_to_be16(from->di_magic);
  630. to->di_mode = cpu_to_be16(from->di_mode);
  631. to->di_version = from ->di_version;
  632. to->di_format = from->di_format;
  633. to->di_onlink = cpu_to_be16(from->di_onlink);
  634. to->di_uid = cpu_to_be32(from->di_uid);
  635. to->di_gid = cpu_to_be32(from->di_gid);
  636. to->di_nlink = cpu_to_be32(from->di_nlink);
  637. to->di_projid_lo = cpu_to_be16(from->di_projid_lo);
  638. to->di_projid_hi = cpu_to_be16(from->di_projid_hi);
  639. memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
  640. to->di_flushiter = cpu_to_be16(from->di_flushiter);
  641. to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
  642. to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
  643. to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
  644. to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
  645. to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
  646. to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
  647. to->di_size = cpu_to_be64(from->di_size);
  648. to->di_nblocks = cpu_to_be64(from->di_nblocks);
  649. to->di_extsize = cpu_to_be32(from->di_extsize);
  650. to->di_nextents = cpu_to_be32(from->di_nextents);
  651. to->di_anextents = cpu_to_be16(from->di_anextents);
  652. to->di_forkoff = from->di_forkoff;
  653. to->di_aformat = from->di_aformat;
  654. to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
  655. to->di_dmstate = cpu_to_be16(from->di_dmstate);
  656. to->di_flags = cpu_to_be16(from->di_flags);
  657. to->di_gen = cpu_to_be32(from->di_gen);
  658. }
  659. STATIC uint
  660. _xfs_dic2xflags(
  661. __uint16_t di_flags)
  662. {
  663. uint flags = 0;
  664. if (di_flags & XFS_DIFLAG_ANY) {
  665. if (di_flags & XFS_DIFLAG_REALTIME)
  666. flags |= XFS_XFLAG_REALTIME;
  667. if (di_flags & XFS_DIFLAG_PREALLOC)
  668. flags |= XFS_XFLAG_PREALLOC;
  669. if (di_flags & XFS_DIFLAG_IMMUTABLE)
  670. flags |= XFS_XFLAG_IMMUTABLE;
  671. if (di_flags & XFS_DIFLAG_APPEND)
  672. flags |= XFS_XFLAG_APPEND;
  673. if (di_flags & XFS_DIFLAG_SYNC)
  674. flags |= XFS_XFLAG_SYNC;
  675. if (di_flags & XFS_DIFLAG_NOATIME)
  676. flags |= XFS_XFLAG_NOATIME;
  677. if (di_flags & XFS_DIFLAG_NODUMP)
  678. flags |= XFS_XFLAG_NODUMP;
  679. if (di_flags & XFS_DIFLAG_RTINHERIT)
  680. flags |= XFS_XFLAG_RTINHERIT;
  681. if (di_flags & XFS_DIFLAG_PROJINHERIT)
  682. flags |= XFS_XFLAG_PROJINHERIT;
  683. if (di_flags & XFS_DIFLAG_NOSYMLINKS)
  684. flags |= XFS_XFLAG_NOSYMLINKS;
  685. if (di_flags & XFS_DIFLAG_EXTSIZE)
  686. flags |= XFS_XFLAG_EXTSIZE;
  687. if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
  688. flags |= XFS_XFLAG_EXTSZINHERIT;
  689. if (di_flags & XFS_DIFLAG_NODEFRAG)
  690. flags |= XFS_XFLAG_NODEFRAG;
  691. if (di_flags & XFS_DIFLAG_FILESTREAM)
  692. flags |= XFS_XFLAG_FILESTREAM;
  693. }
  694. return flags;
  695. }
  696. uint
  697. xfs_ip2xflags(
  698. xfs_inode_t *ip)
  699. {
  700. xfs_icdinode_t *dic = &ip->i_d;
  701. return _xfs_dic2xflags(dic->di_flags) |
  702. (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
  703. }
  704. uint
  705. xfs_dic2xflags(
  706. xfs_dinode_t *dip)
  707. {
  708. return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
  709. (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
  710. }
  711. /*
  712. * Read the disk inode attributes into the in-core inode structure.
  713. */
  714. int
  715. xfs_iread(
  716. xfs_mount_t *mp,
  717. xfs_trans_t *tp,
  718. xfs_inode_t *ip,
  719. uint iget_flags)
  720. {
  721. xfs_buf_t *bp;
  722. xfs_dinode_t *dip;
  723. int error;
  724. /*
  725. * Fill in the location information in the in-core inode.
  726. */
  727. error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, iget_flags);
  728. if (error)
  729. return error;
  730. /*
  731. * Get pointers to the on-disk inode and the buffer containing it.
  732. */
  733. error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp,
  734. XBF_LOCK, iget_flags);
  735. if (error)
  736. return error;
  737. dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
  738. /*
  739. * If we got something that isn't an inode it means someone
  740. * (nfs or dmi) has a stale handle.
  741. */
  742. if (dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC)) {
  743. #ifdef DEBUG
  744. xfs_alert(mp,
  745. "%s: dip->di_magic (0x%x) != XFS_DINODE_MAGIC (0x%x)",
  746. __func__, be16_to_cpu(dip->di_magic), XFS_DINODE_MAGIC);
  747. #endif /* DEBUG */
  748. error = XFS_ERROR(EINVAL);
  749. goto out_brelse;
  750. }
  751. /*
  752. * If the on-disk inode is already linked to a directory
  753. * entry, copy all of the inode into the in-core inode.
  754. * xfs_iformat() handles copying in the inode format
  755. * specific information.
  756. * Otherwise, just get the truly permanent information.
  757. */
  758. if (dip->di_mode) {
  759. xfs_dinode_from_disk(&ip->i_d, dip);
  760. error = xfs_iformat(ip, dip);
  761. if (error) {
  762. #ifdef DEBUG
  763. xfs_alert(mp, "%s: xfs_iformat() returned error %d",
  764. __func__, error);
  765. #endif /* DEBUG */
  766. goto out_brelse;
  767. }
  768. } else {
  769. ip->i_d.di_magic = be16_to_cpu(dip->di_magic);
  770. ip->i_d.di_version = dip->di_version;
  771. ip->i_d.di_gen = be32_to_cpu(dip->di_gen);
  772. ip->i_d.di_flushiter = be16_to_cpu(dip->di_flushiter);
  773. /*
  774. * Make sure to pull in the mode here as well in
  775. * case the inode is released without being used.
  776. * This ensures that xfs_inactive() will see that
  777. * the inode is already free and not try to mess
  778. * with the uninitialized part of it.
  779. */
  780. ip->i_d.di_mode = 0;
  781. /*
  782. * Initialize the per-fork minima and maxima for a new
  783. * inode here. xfs_iformat will do it for old inodes.
  784. */
  785. ip->i_df.if_ext_max =
  786. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  787. }
  788. /*
  789. * The inode format changed when we moved the link count and
  790. * made it 32 bits long. If this is an old format inode,
  791. * convert it in memory to look like a new one. If it gets
  792. * flushed to disk we will convert back before flushing or
  793. * logging it. We zero out the new projid field and the old link
  794. * count field. We'll handle clearing the pad field (the remains
  795. * of the old uuid field) when we actually convert the inode to
  796. * the new format. We don't change the version number so that we
  797. * can distinguish this from a real new format inode.
  798. */
  799. if (ip->i_d.di_version == 1) {
  800. ip->i_d.di_nlink = ip->i_d.di_onlink;
  801. ip->i_d.di_onlink = 0;
  802. xfs_set_projid(ip, 0);
  803. }
  804. ip->i_delayed_blks = 0;
  805. ip->i_size = ip->i_d.di_size;
  806. /*
  807. * Mark the buffer containing the inode as something to keep
  808. * around for a while. This helps to keep recently accessed
  809. * meta-data in-core longer.
  810. */
  811. xfs_buf_set_ref(bp, XFS_INO_REF);
  812. /*
  813. * Use xfs_trans_brelse() to release the buffer containing the
  814. * on-disk inode, because it was acquired with xfs_trans_read_buf()
  815. * in xfs_itobp() above. If tp is NULL, this is just a normal
  816. * brelse(). If we're within a transaction, then xfs_trans_brelse()
  817. * will only release the buffer if it is not dirty within the
  818. * transaction. It will be OK to release the buffer in this case,
  819. * because inodes on disk are never destroyed and we will be
  820. * locking the new in-core inode before putting it in the hash
  821. * table where other processes can find it. Thus we don't have
  822. * to worry about the inode being changed just because we released
  823. * the buffer.
  824. */
  825. out_brelse:
  826. xfs_trans_brelse(tp, bp);
  827. return error;
  828. }
  829. /*
  830. * Read in extents from a btree-format inode.
  831. * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
  832. */
  833. int
  834. xfs_iread_extents(
  835. xfs_trans_t *tp,
  836. xfs_inode_t *ip,
  837. int whichfork)
  838. {
  839. int error;
  840. xfs_ifork_t *ifp;
  841. xfs_extnum_t nextents;
  842. if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
  843. XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
  844. ip->i_mount);
  845. return XFS_ERROR(EFSCORRUPTED);
  846. }
  847. nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
  848. ifp = XFS_IFORK_PTR(ip, whichfork);
  849. /*
  850. * We know that the size is valid (it's checked in iformat_btree)
  851. */
  852. ifp->if_bytes = ifp->if_real_bytes = 0;
  853. ifp->if_flags |= XFS_IFEXTENTS;
  854. xfs_iext_add(ifp, 0, nextents);
  855. error = xfs_bmap_read_extents(tp, ip, whichfork);
  856. if (error) {
  857. xfs_iext_destroy(ifp);
  858. ifp->if_flags &= ~XFS_IFEXTENTS;
  859. return error;
  860. }
  861. xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
  862. return 0;
  863. }
  864. /*
  865. * Allocate an inode on disk and return a copy of its in-core version.
  866. * The in-core inode is locked exclusively. Set mode, nlink, and rdev
  867. * appropriately within the inode. The uid and gid for the inode are
  868. * set according to the contents of the given cred structure.
  869. *
  870. * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
  871. * has a free inode available, call xfs_iget()
  872. * to obtain the in-core version of the allocated inode. Finally,
  873. * fill in the inode and log its initial contents. In this case,
  874. * ialloc_context would be set to NULL and call_again set to false.
  875. *
  876. * If xfs_dialloc() does not have an available inode,
  877. * it will replenish its supply by doing an allocation. Since we can
  878. * only do one allocation within a transaction without deadlocks, we
  879. * must commit the current transaction before returning the inode itself.
  880. * In this case, therefore, we will set call_again to true and return.
  881. * The caller should then commit the current transaction, start a new
  882. * transaction, and call xfs_ialloc() again to actually get the inode.
  883. *
  884. * To ensure that some other process does not grab the inode that
  885. * was allocated during the first call to xfs_ialloc(), this routine
  886. * also returns the [locked] bp pointing to the head of the freelist
  887. * as ialloc_context. The caller should hold this buffer across
  888. * the commit and pass it back into this routine on the second call.
  889. *
  890. * If we are allocating quota inodes, we do not have a parent inode
  891. * to attach to or associate with (i.e. pip == NULL) because they
  892. * are not linked into the directory structure - they are attached
  893. * directly to the superblock - and so have no parent.
  894. */
  895. int
  896. xfs_ialloc(
  897. xfs_trans_t *tp,
  898. xfs_inode_t *pip,
  899. mode_t mode,
  900. xfs_nlink_t nlink,
  901. xfs_dev_t rdev,
  902. prid_t prid,
  903. int okalloc,
  904. xfs_buf_t **ialloc_context,
  905. boolean_t *call_again,
  906. xfs_inode_t **ipp)
  907. {
  908. xfs_ino_t ino;
  909. xfs_inode_t *ip;
  910. uint flags;
  911. int error;
  912. timespec_t tv;
  913. int filestreams = 0;
  914. /*
  915. * Call the space management code to pick
  916. * the on-disk inode to be allocated.
  917. */
  918. error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
  919. ialloc_context, call_again, &ino);
  920. if (error)
  921. return error;
  922. if (*call_again || ino == NULLFSINO) {
  923. *ipp = NULL;
  924. return 0;
  925. }
  926. ASSERT(*ialloc_context == NULL);
  927. /*
  928. * Get the in-core inode with the lock held exclusively.
  929. * This is because we're setting fields here we need
  930. * to prevent others from looking at until we're done.
  931. */
  932. error = xfs_iget(tp->t_mountp, tp, ino, XFS_IGET_CREATE,
  933. XFS_ILOCK_EXCL, &ip);
  934. if (error)
  935. return error;
  936. ASSERT(ip != NULL);
  937. ip->i_d.di_mode = (__uint16_t)mode;
  938. ip->i_d.di_onlink = 0;
  939. ip->i_d.di_nlink = nlink;
  940. ASSERT(ip->i_d.di_nlink == nlink);
  941. ip->i_d.di_uid = current_fsuid();
  942. ip->i_d.di_gid = current_fsgid();
  943. xfs_set_projid(ip, prid);
  944. memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
  945. /*
  946. * If the superblock version is up to where we support new format
  947. * inodes and this is currently an old format inode, then change
  948. * the inode version number now. This way we only do the conversion
  949. * here rather than here and in the flush/logging code.
  950. */
  951. if (xfs_sb_version_hasnlink(&tp->t_mountp->m_sb) &&
  952. ip->i_d.di_version == 1) {
  953. ip->i_d.di_version = 2;
  954. /*
  955. * We've already zeroed the old link count, the projid field,
  956. * and the pad field.
  957. */
  958. }
  959. /*
  960. * Project ids won't be stored on disk if we are using a version 1 inode.
  961. */
  962. if ((prid != 0) && (ip->i_d.di_version == 1))
  963. xfs_bump_ino_vers2(tp, ip);
  964. if (pip && XFS_INHERIT_GID(pip)) {
  965. ip->i_d.di_gid = pip->i_d.di_gid;
  966. if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
  967. ip->i_d.di_mode |= S_ISGID;
  968. }
  969. }
  970. /*
  971. * If the group ID of the new file does not match the effective group
  972. * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
  973. * (and only if the irix_sgid_inherit compatibility variable is set).
  974. */
  975. if ((irix_sgid_inherit) &&
  976. (ip->i_d.di_mode & S_ISGID) &&
  977. (!in_group_p((gid_t)ip->i_d.di_gid))) {
  978. ip->i_d.di_mode &= ~S_ISGID;
  979. }
  980. ip->i_d.di_size = 0;
  981. ip->i_size = 0;
  982. ip->i_d.di_nextents = 0;
  983. ASSERT(ip->i_d.di_nblocks == 0);
  984. nanotime(&tv);
  985. ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
  986. ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
  987. ip->i_d.di_atime = ip->i_d.di_mtime;
  988. ip->i_d.di_ctime = ip->i_d.di_mtime;
  989. /*
  990. * di_gen will have been taken care of in xfs_iread.
  991. */
  992. ip->i_d.di_extsize = 0;
  993. ip->i_d.di_dmevmask = 0;
  994. ip->i_d.di_dmstate = 0;
  995. ip->i_d.di_flags = 0;
  996. flags = XFS_ILOG_CORE;
  997. switch (mode & S_IFMT) {
  998. case S_IFIFO:
  999. case S_IFCHR:
  1000. case S_IFBLK:
  1001. case S_IFSOCK:
  1002. ip->i_d.di_format = XFS_DINODE_FMT_DEV;
  1003. ip->i_df.if_u2.if_rdev = rdev;
  1004. ip->i_df.if_flags = 0;
  1005. flags |= XFS_ILOG_DEV;
  1006. break;
  1007. case S_IFREG:
  1008. /*
  1009. * we can't set up filestreams until after the VFS inode
  1010. * is set up properly.
  1011. */
  1012. if (pip && xfs_inode_is_filestream(pip))
  1013. filestreams = 1;
  1014. /* fall through */
  1015. case S_IFDIR:
  1016. if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
  1017. uint di_flags = 0;
  1018. if ((mode & S_IFMT) == S_IFDIR) {
  1019. if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
  1020. di_flags |= XFS_DIFLAG_RTINHERIT;
  1021. if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
  1022. di_flags |= XFS_DIFLAG_EXTSZINHERIT;
  1023. ip->i_d.di_extsize = pip->i_d.di_extsize;
  1024. }
  1025. } else if ((mode & S_IFMT) == S_IFREG) {
  1026. if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
  1027. di_flags |= XFS_DIFLAG_REALTIME;
  1028. if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
  1029. di_flags |= XFS_DIFLAG_EXTSIZE;
  1030. ip->i_d.di_extsize = pip->i_d.di_extsize;
  1031. }
  1032. }
  1033. if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
  1034. xfs_inherit_noatime)
  1035. di_flags |= XFS_DIFLAG_NOATIME;
  1036. if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
  1037. xfs_inherit_nodump)
  1038. di_flags |= XFS_DIFLAG_NODUMP;
  1039. if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
  1040. xfs_inherit_sync)
  1041. di_flags |= XFS_DIFLAG_SYNC;
  1042. if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
  1043. xfs_inherit_nosymlinks)
  1044. di_flags |= XFS_DIFLAG_NOSYMLINKS;
  1045. if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
  1046. di_flags |= XFS_DIFLAG_PROJINHERIT;
  1047. if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
  1048. xfs_inherit_nodefrag)
  1049. di_flags |= XFS_DIFLAG_NODEFRAG;
  1050. if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
  1051. di_flags |= XFS_DIFLAG_FILESTREAM;
  1052. ip->i_d.di_flags |= di_flags;
  1053. }
  1054. /* FALLTHROUGH */
  1055. case S_IFLNK:
  1056. ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
  1057. ip->i_df.if_flags = XFS_IFEXTENTS;
  1058. ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
  1059. ip->i_df.if_u1.if_extents = NULL;
  1060. break;
  1061. default:
  1062. ASSERT(0);
  1063. }
  1064. /*
  1065. * Attribute fork settings for new inode.
  1066. */
  1067. ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
  1068. ip->i_d.di_anextents = 0;
  1069. /*
  1070. * Log the new values stuffed into the inode.
  1071. */
  1072. xfs_trans_ijoin_ref(tp, ip, XFS_ILOCK_EXCL);
  1073. xfs_trans_log_inode(tp, ip, flags);
  1074. /* now that we have an i_mode we can setup inode ops and unlock */
  1075. xfs_setup_inode(ip);
  1076. /* now we have set up the vfs inode we can associate the filestream */
  1077. if (filestreams) {
  1078. error = xfs_filestream_associate(pip, ip);
  1079. if (error < 0)
  1080. return -error;
  1081. if (!error)
  1082. xfs_iflags_set(ip, XFS_IFILESTREAM);
  1083. }
  1084. *ipp = ip;
  1085. return 0;
  1086. }
  1087. /*
  1088. * Check to make sure that there are no blocks allocated to the
  1089. * file beyond the size of the file. We don't check this for
  1090. * files with fixed size extents or real time extents, but we
  1091. * at least do it for regular files.
  1092. */
  1093. #ifdef DEBUG
  1094. STATIC void
  1095. xfs_isize_check(
  1096. struct xfs_inode *ip,
  1097. xfs_fsize_t isize)
  1098. {
  1099. struct xfs_mount *mp = ip->i_mount;
  1100. xfs_fileoff_t map_first;
  1101. int nimaps;
  1102. xfs_bmbt_irec_t imaps[2];
  1103. if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
  1104. return;
  1105. if (XFS_IS_REALTIME_INODE(ip))
  1106. return;
  1107. if (ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE)
  1108. return;
  1109. nimaps = 2;
  1110. map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
  1111. /*
  1112. * The filesystem could be shutting down, so bmapi may return
  1113. * an error.
  1114. */
  1115. if (xfs_bmapi(NULL, ip, map_first,
  1116. (XFS_B_TO_FSB(mp,
  1117. (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
  1118. map_first),
  1119. XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
  1120. NULL))
  1121. return;
  1122. ASSERT(nimaps == 1);
  1123. ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
  1124. }
  1125. #else /* DEBUG */
  1126. #define xfs_isize_check(ip, isize)
  1127. #endif /* DEBUG */
  1128. /*
  1129. * Free up the underlying blocks past new_size. The new size must be smaller
  1130. * than the current size. This routine can be used both for the attribute and
  1131. * data fork, and does not modify the inode size, which is left to the caller.
  1132. *
  1133. * The transaction passed to this routine must have made a permanent log
  1134. * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
  1135. * given transaction and start new ones, so make sure everything involved in
  1136. * the transaction is tidy before calling here. Some transaction will be
  1137. * returned to the caller to be committed. The incoming transaction must
  1138. * already include the inode, and both inode locks must be held exclusively.
  1139. * The inode must also be "held" within the transaction. On return the inode
  1140. * will be "held" within the returned transaction. This routine does NOT
  1141. * require any disk space to be reserved for it within the transaction.
  1142. *
  1143. * If we get an error, we must return with the inode locked and linked into the
  1144. * current transaction. This keeps things simple for the higher level code,
  1145. * because it always knows that the inode is locked and held in the transaction
  1146. * that returns to it whether errors occur or not. We don't mark the inode
  1147. * dirty on error so that transactions can be easily aborted if possible.
  1148. */
  1149. int
  1150. xfs_itruncate_extents(
  1151. struct xfs_trans **tpp,
  1152. struct xfs_inode *ip,
  1153. int whichfork,
  1154. xfs_fsize_t new_size)
  1155. {
  1156. struct xfs_mount *mp = ip->i_mount;
  1157. struct xfs_trans *tp = *tpp;
  1158. struct xfs_trans *ntp;
  1159. xfs_bmap_free_t free_list;
  1160. xfs_fsblock_t first_block;
  1161. xfs_fileoff_t first_unmap_block;
  1162. xfs_fileoff_t last_block;
  1163. xfs_filblks_t unmap_len;
  1164. int committed;
  1165. int error = 0;
  1166. int done = 0;
  1167. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
  1168. ASSERT(new_size <= ip->i_size);
  1169. ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
  1170. ASSERT(ip->i_itemp != NULL);
  1171. ASSERT(ip->i_itemp->ili_lock_flags == 0);
  1172. ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
  1173. /*
  1174. * Since it is possible for space to become allocated beyond
  1175. * the end of the file (in a crash where the space is allocated
  1176. * but the inode size is not yet updated), simply remove any
  1177. * blocks which show up between the new EOF and the maximum
  1178. * possible file size. If the first block to be removed is
  1179. * beyond the maximum file size (ie it is the same as last_block),
  1180. * then there is nothing to do.
  1181. */
  1182. first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
  1183. last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
  1184. if (first_unmap_block == last_block)
  1185. return 0;
  1186. ASSERT(first_unmap_block < last_block);
  1187. unmap_len = last_block - first_unmap_block + 1;
  1188. while (!done) {
  1189. xfs_bmap_init(&free_list, &first_block);
  1190. error = xfs_bunmapi(tp, ip,
  1191. first_unmap_block, unmap_len,
  1192. xfs_bmapi_aflag(whichfork),
  1193. XFS_ITRUNC_MAX_EXTENTS,
  1194. &first_block, &free_list,
  1195. &done);
  1196. if (error)
  1197. goto out_bmap_cancel;
  1198. /*
  1199. * Duplicate the transaction that has the permanent
  1200. * reservation and commit the old transaction.
  1201. */
  1202. error = xfs_bmap_finish(&tp, &free_list, &committed);
  1203. if (committed)
  1204. xfs_trans_ijoin(tp, ip);
  1205. if (error)
  1206. goto out_bmap_cancel;
  1207. if (committed) {
  1208. /*
  1209. * Mark the inode dirty so it will be logged and
  1210. * moved forward in the log as part of every commit.
  1211. */
  1212. xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  1213. }
  1214. ntp = xfs_trans_dup(tp);
  1215. error = xfs_trans_commit(tp, 0);
  1216. tp = ntp;
  1217. xfs_trans_ijoin(tp, ip);
  1218. if (error)
  1219. goto out;
  1220. /*
  1221. * Transaction commit worked ok so we can drop the extra ticket
  1222. * reference that we gained in xfs_trans_dup()
  1223. */
  1224. xfs_log_ticket_put(tp->t_ticket);
  1225. error = xfs_trans_reserve(tp, 0,
  1226. XFS_ITRUNCATE_LOG_RES(mp), 0,
  1227. XFS_TRANS_PERM_LOG_RES,
  1228. XFS_ITRUNCATE_LOG_COUNT);
  1229. if (error)
  1230. goto out;
  1231. }
  1232. out:
  1233. *tpp = tp;
  1234. return error;
  1235. out_bmap_cancel:
  1236. /*
  1237. * If the bunmapi call encounters an error, return to the caller where
  1238. * the transaction can be properly aborted. We just need to make sure
  1239. * we're not holding any resources that we were not when we came in.
  1240. */
  1241. xfs_bmap_cancel(&free_list);
  1242. goto out;
  1243. }
  1244. int
  1245. xfs_itruncate_data(
  1246. struct xfs_trans **tpp,
  1247. struct xfs_inode *ip,
  1248. xfs_fsize_t new_size)
  1249. {
  1250. int error;
  1251. trace_xfs_itruncate_data_start(ip, new_size);
  1252. /*
  1253. * The first thing we do is set the size to new_size permanently on
  1254. * disk. This way we don't have to worry about anyone ever being able
  1255. * to look at the data being freed even in the face of a crash.
  1256. * What we're getting around here is the case where we free a block, it
  1257. * is allocated to another file, it is written to, and then we crash.
  1258. * If the new data gets written to the file but the log buffers
  1259. * containing the free and reallocation don't, then we'd end up with
  1260. * garbage in the blocks being freed. As long as we make the new_size
  1261. * permanent before actually freeing any blocks it doesn't matter if
  1262. * they get written to.
  1263. */
  1264. if (ip->i_d.di_nextents > 0) {
  1265. /*
  1266. * If we are not changing the file size then do not update
  1267. * the on-disk file size - we may be called from
  1268. * xfs_inactive_free_eofblocks(). If we update the on-disk
  1269. * file size and then the system crashes before the contents
  1270. * of the file are flushed to disk then the files may be
  1271. * full of holes (ie NULL files bug).
  1272. */
  1273. if (ip->i_size != new_size) {
  1274. ip->i_d.di_size = new_size;
  1275. ip->i_size = new_size;
  1276. xfs_trans_log_inode(*tpp, ip, XFS_ILOG_CORE);
  1277. }
  1278. }
  1279. error = xfs_itruncate_extents(tpp, ip, XFS_DATA_FORK, new_size);
  1280. if (error)
  1281. return error;
  1282. /*
  1283. * If we are not changing the file size then do not update the on-disk
  1284. * file size - we may be called from xfs_inactive_free_eofblocks().
  1285. * If we update the on-disk file size and then the system crashes
  1286. * before the contents of the file are flushed to disk then the files
  1287. * may be full of holes (ie NULL files bug).
  1288. */
  1289. xfs_isize_check(ip, new_size);
  1290. if (ip->i_size != new_size) {
  1291. ip->i_d.di_size = new_size;
  1292. ip->i_size = new_size;
  1293. }
  1294. ASSERT(new_size != 0 || ip->i_delayed_blks == 0);
  1295. ASSERT(new_size != 0 || ip->i_d.di_nextents == 0);
  1296. /*
  1297. * Always re-log the inode so that our permanent transaction can keep
  1298. * on rolling it forward in the log.
  1299. */
  1300. xfs_trans_log_inode(*tpp, ip, XFS_ILOG_CORE);
  1301. trace_xfs_itruncate_data_end(ip, new_size);
  1302. return 0;
  1303. }
  1304. /*
  1305. * This is called when the inode's link count goes to 0.
  1306. * We place the on-disk inode on a list in the AGI. It
  1307. * will be pulled from this list when the inode is freed.
  1308. */
  1309. int
  1310. xfs_iunlink(
  1311. xfs_trans_t *tp,
  1312. xfs_inode_t *ip)
  1313. {
  1314. xfs_mount_t *mp;
  1315. xfs_agi_t *agi;
  1316. xfs_dinode_t *dip;
  1317. xfs_buf_t *agibp;
  1318. xfs_buf_t *ibp;
  1319. xfs_agino_t agino;
  1320. short bucket_index;
  1321. int offset;
  1322. int error;
  1323. ASSERT(ip->i_d.di_nlink == 0);
  1324. ASSERT(ip->i_d.di_mode != 0);
  1325. mp = tp->t_mountp;
  1326. /*
  1327. * Get the agi buffer first. It ensures lock ordering
  1328. * on the list.
  1329. */
  1330. error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
  1331. if (error)
  1332. return error;
  1333. agi = XFS_BUF_TO_AGI(agibp);
  1334. /*
  1335. * Get the index into the agi hash table for the
  1336. * list this inode will go on.
  1337. */
  1338. agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
  1339. ASSERT(agino != 0);
  1340. bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
  1341. ASSERT(agi->agi_unlinked[bucket_index]);
  1342. ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
  1343. if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
  1344. /*
  1345. * There is already another inode in the bucket we need
  1346. * to add ourselves to. Add us at the front of the list.
  1347. * Here we put the head pointer into our next pointer,
  1348. * and then we fall through to point the head at us.
  1349. */
  1350. error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
  1351. if (error)
  1352. return error;
  1353. ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
  1354. dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
  1355. offset = ip->i_imap.im_boffset +
  1356. offsetof(xfs_dinode_t, di_next_unlinked);
  1357. xfs_trans_inode_buf(tp, ibp);
  1358. xfs_trans_log_buf(tp, ibp, offset,
  1359. (offset + sizeof(xfs_agino_t) - 1));
  1360. xfs_inobp_check(mp, ibp);
  1361. }
  1362. /*
  1363. * Point the bucket head pointer at the inode being inserted.
  1364. */
  1365. ASSERT(agino != 0);
  1366. agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
  1367. offset = offsetof(xfs_agi_t, agi_unlinked) +
  1368. (sizeof(xfs_agino_t) * bucket_index);
  1369. xfs_trans_log_buf(tp, agibp, offset,
  1370. (offset + sizeof(xfs_agino_t) - 1));
  1371. return 0;
  1372. }
  1373. /*
  1374. * Pull the on-disk inode from the AGI unlinked list.
  1375. */
  1376. STATIC int
  1377. xfs_iunlink_remove(
  1378. xfs_trans_t *tp,
  1379. xfs_inode_t *ip)
  1380. {
  1381. xfs_ino_t next_ino;
  1382. xfs_mount_t *mp;
  1383. xfs_agi_t *agi;
  1384. xfs_dinode_t *dip;
  1385. xfs_buf_t *agibp;
  1386. xfs_buf_t *ibp;
  1387. xfs_agnumber_t agno;
  1388. xfs_agino_t agino;
  1389. xfs_agino_t next_agino;
  1390. xfs_buf_t *last_ibp;
  1391. xfs_dinode_t *last_dip = NULL;
  1392. short bucket_index;
  1393. int offset, last_offset = 0;
  1394. int error;
  1395. mp = tp->t_mountp;
  1396. agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
  1397. /*
  1398. * Get the agi buffer first. It ensures lock ordering
  1399. * on the list.
  1400. */
  1401. error = xfs_read_agi(mp, tp, agno, &agibp);
  1402. if (error)
  1403. return error;
  1404. agi = XFS_BUF_TO_AGI(agibp);
  1405. /*
  1406. * Get the index into the agi hash table for the
  1407. * list this inode will go on.
  1408. */
  1409. agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
  1410. ASSERT(agino != 0);
  1411. bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
  1412. ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
  1413. ASSERT(agi->agi_unlinked[bucket_index]);
  1414. if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
  1415. /*
  1416. * We're at the head of the list. Get the inode's
  1417. * on-disk buffer to see if there is anyone after us
  1418. * on the list. Only modify our next pointer if it
  1419. * is not already NULLAGINO. This saves us the overhead
  1420. * of dealing with the buffer when there is no need to
  1421. * change it.
  1422. */
  1423. error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
  1424. if (error) {
  1425. xfs_warn(mp, "%s: xfs_itobp() returned error %d.",
  1426. __func__, error);
  1427. return error;
  1428. }
  1429. next_agino = be32_to_cpu(dip->di_next_unlinked);
  1430. ASSERT(next_agino != 0);
  1431. if (next_agino != NULLAGINO) {
  1432. dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
  1433. offset = ip->i_imap.im_boffset +
  1434. offsetof(xfs_dinode_t, di_next_unlinked);
  1435. xfs_trans_inode_buf(tp, ibp);
  1436. xfs_trans_log_buf(tp, ibp, offset,
  1437. (offset + sizeof(xfs_agino_t) - 1));
  1438. xfs_inobp_check(mp, ibp);
  1439. } else {
  1440. xfs_trans_brelse(tp, ibp);
  1441. }
  1442. /*
  1443. * Point the bucket head pointer at the next inode.
  1444. */
  1445. ASSERT(next_agino != 0);
  1446. ASSERT(next_agino != agino);
  1447. agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
  1448. offset = offsetof(xfs_agi_t, agi_unlinked) +
  1449. (sizeof(xfs_agino_t) * bucket_index);
  1450. xfs_trans_log_buf(tp, agibp, offset,
  1451. (offset + sizeof(xfs_agino_t) - 1));
  1452. } else {
  1453. /*
  1454. * We need to search the list for the inode being freed.
  1455. */
  1456. next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
  1457. last_ibp = NULL;
  1458. while (next_agino != agino) {
  1459. /*
  1460. * If the last inode wasn't the one pointing to
  1461. * us, then release its buffer since we're not
  1462. * going to do anything with it.
  1463. */
  1464. if (last_ibp != NULL) {
  1465. xfs_trans_brelse(tp, last_ibp);
  1466. }
  1467. next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
  1468. error = xfs_inotobp(mp, tp, next_ino, &last_dip,
  1469. &last_ibp, &last_offset, 0);
  1470. if (error) {
  1471. xfs_warn(mp,
  1472. "%s: xfs_inotobp() returned error %d.",
  1473. __func__, error);
  1474. return error;
  1475. }
  1476. next_agino = be32_to_cpu(last_dip->di_next_unlinked);
  1477. ASSERT(next_agino != NULLAGINO);
  1478. ASSERT(next_agino != 0);
  1479. }
  1480. /*
  1481. * Now last_ibp points to the buffer previous to us on
  1482. * the unlinked list. Pull us from the list.
  1483. */
  1484. error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
  1485. if (error) {
  1486. xfs_warn(mp, "%s: xfs_itobp(2) returned error %d.",
  1487. __func__, error);
  1488. return error;
  1489. }
  1490. next_agino = be32_to_cpu(dip->di_next_unlinked);
  1491. ASSERT(next_agino != 0);
  1492. ASSERT(next_agino != agino);
  1493. if (next_agino != NULLAGINO) {
  1494. dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
  1495. offset = ip->i_imap.im_boffset +
  1496. offsetof(xfs_dinode_t, di_next_unlinked);
  1497. xfs_trans_inode_buf(tp, ibp);
  1498. xfs_trans_log_buf(tp, ibp, offset,
  1499. (offset + sizeof(xfs_agino_t) - 1));
  1500. xfs_inobp_check(mp, ibp);
  1501. } else {
  1502. xfs_trans_brelse(tp, ibp);
  1503. }
  1504. /*
  1505. * Point the previous inode on the list to the next inode.
  1506. */
  1507. last_dip->di_next_unlinked = cpu_to_be32(next_agino);
  1508. ASSERT(next_agino != 0);
  1509. offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
  1510. xfs_trans_inode_buf(tp, last_ibp);
  1511. xfs_trans_log_buf(tp, last_ibp, offset,
  1512. (offset + sizeof(xfs_agino_t) - 1));
  1513. xfs_inobp_check(mp, last_ibp);
  1514. }
  1515. return 0;
  1516. }
  1517. /*
  1518. * A big issue when freeing the inode cluster is is that we _cannot_ skip any
  1519. * inodes that are in memory - they all must be marked stale and attached to
  1520. * the cluster buffer.
  1521. */
  1522. STATIC void
  1523. xfs_ifree_cluster(
  1524. xfs_inode_t *free_ip,
  1525. xfs_trans_t *tp,
  1526. xfs_ino_t inum)
  1527. {
  1528. xfs_mount_t *mp = free_ip->i_mount;
  1529. int blks_per_cluster;
  1530. int nbufs;
  1531. int ninodes;
  1532. int i, j;
  1533. xfs_daddr_t blkno;
  1534. xfs_buf_t *bp;
  1535. xfs_inode_t *ip;
  1536. xfs_inode_log_item_t *iip;
  1537. xfs_log_item_t *lip;
  1538. struct xfs_perag *pag;
  1539. pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
  1540. if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
  1541. blks_per_cluster = 1;
  1542. ninodes = mp->m_sb.sb_inopblock;
  1543. nbufs = XFS_IALLOC_BLOCKS(mp);
  1544. } else {
  1545. blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
  1546. mp->m_sb.sb_blocksize;
  1547. ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
  1548. nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
  1549. }
  1550. for (j = 0; j < nbufs; j++, inum += ninodes) {
  1551. blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
  1552. XFS_INO_TO_AGBNO(mp, inum));
  1553. /*
  1554. * We obtain and lock the backing buffer first in the process
  1555. * here, as we have to ensure that any dirty inode that we
  1556. * can't get the flush lock on is attached to the buffer.
  1557. * If we scan the in-memory inodes first, then buffer IO can
  1558. * complete before we get a lock on it, and hence we may fail
  1559. * to mark all the active inodes on the buffer stale.
  1560. */
  1561. bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
  1562. mp->m_bsize * blks_per_cluster,
  1563. XBF_LOCK);
  1564. /*
  1565. * Walk the inodes already attached to the buffer and mark them
  1566. * stale. These will all have the flush locks held, so an
  1567. * in-memory inode walk can't lock them. By marking them all
  1568. * stale first, we will not attempt to lock them in the loop
  1569. * below as the XFS_ISTALE flag will be set.
  1570. */
  1571. lip = bp->b_fspriv;
  1572. while (lip) {
  1573. if (lip->li_type == XFS_LI_INODE) {
  1574. iip = (xfs_inode_log_item_t *)lip;
  1575. ASSERT(iip->ili_logged == 1);
  1576. lip->li_cb = xfs_istale_done;
  1577. xfs_trans_ail_copy_lsn(mp->m_ail,
  1578. &iip->ili_flush_lsn,
  1579. &iip->ili_item.li_lsn);
  1580. xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
  1581. }
  1582. lip = lip->li_bio_list;
  1583. }
  1584. /*
  1585. * For each inode in memory attempt to add it to the inode
  1586. * buffer and set it up for being staled on buffer IO
  1587. * completion. This is safe as we've locked out tail pushing
  1588. * and flushing by locking the buffer.
  1589. *
  1590. * We have already marked every inode that was part of a
  1591. * transaction stale above, which means there is no point in
  1592. * even trying to lock them.
  1593. */
  1594. for (i = 0; i < ninodes; i++) {
  1595. retry:
  1596. rcu_read_lock();
  1597. ip = radix_tree_lookup(&pag->pag_ici_root,
  1598. XFS_INO_TO_AGINO(mp, (inum + i)));
  1599. /* Inode not in memory, nothing to do */
  1600. if (!ip) {
  1601. rcu_read_unlock();
  1602. continue;
  1603. }
  1604. /*
  1605. * because this is an RCU protected lookup, we could
  1606. * find a recently freed or even reallocated inode
  1607. * during the lookup. We need to check under the
  1608. * i_flags_lock for a valid inode here. Skip it if it
  1609. * is not valid, the wrong inode or stale.
  1610. */
  1611. spin_lock(&ip->i_flags_lock);
  1612. if (ip->i_ino != inum + i ||
  1613. __xfs_iflags_test(ip, XFS_ISTALE)) {
  1614. spin_unlock(&ip->i_flags_lock);
  1615. rcu_read_unlock();
  1616. continue;
  1617. }
  1618. spin_unlock(&ip->i_flags_lock);
  1619. /*
  1620. * Don't try to lock/unlock the current inode, but we
  1621. * _cannot_ skip the other inodes that we did not find
  1622. * in the list attached to the buffer and are not
  1623. * already marked stale. If we can't lock it, back off
  1624. * and retry.
  1625. */
  1626. if (ip != free_ip &&
  1627. !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
  1628. rcu_read_unlock();
  1629. delay(1);
  1630. goto retry;
  1631. }
  1632. rcu_read_unlock();
  1633. xfs_iflock(ip);
  1634. xfs_iflags_set(ip, XFS_ISTALE);
  1635. /*
  1636. * we don't need to attach clean inodes or those only
  1637. * with unlogged changes (which we throw away, anyway).
  1638. */
  1639. iip = ip->i_itemp;
  1640. if (!iip || xfs_inode_clean(ip)) {
  1641. ASSERT(ip != free_ip);
  1642. ip->i_update_core = 0;
  1643. xfs_ifunlock(ip);
  1644. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  1645. continue;
  1646. }
  1647. iip->ili_last_fields = iip->ili_format.ilf_fields;
  1648. iip->ili_format.ilf_fields = 0;
  1649. iip->ili_logged = 1;
  1650. xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
  1651. &iip->ili_item.li_lsn);
  1652. xfs_buf_attach_iodone(bp, xfs_istale_done,
  1653. &iip->ili_item);
  1654. if (ip != free_ip)
  1655. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  1656. }
  1657. xfs_trans_stale_inode_buf(tp, bp);
  1658. xfs_trans_binval(tp, bp);
  1659. }
  1660. xfs_perag_put(pag);
  1661. }
  1662. /*
  1663. * This is called to return an inode to the inode free list.
  1664. * The inode should already be truncated to 0 length and have
  1665. * no pages associated with it. This routine also assumes that
  1666. * the inode is already a part of the transaction.
  1667. *
  1668. * The on-disk copy of the inode will have been added to the list
  1669. * of unlinked inodes in the AGI. We need to remove the inode from
  1670. * that list atomically with respect to freeing it here.
  1671. */
  1672. int
  1673. xfs_ifree(
  1674. xfs_trans_t *tp,
  1675. xfs_inode_t *ip,
  1676. xfs_bmap_free_t *flist)
  1677. {
  1678. int error;
  1679. int delete;
  1680. xfs_ino_t first_ino;
  1681. xfs_dinode_t *dip;
  1682. xfs_buf_t *ibp;
  1683. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
  1684. ASSERT(ip->i_d.di_nlink == 0);
  1685. ASSERT(ip->i_d.di_nextents == 0);
  1686. ASSERT(ip->i_d.di_anextents == 0);
  1687. ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) ||
  1688. ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
  1689. ASSERT(ip->i_d.di_nblocks == 0);
  1690. /*
  1691. * Pull the on-disk inode from the AGI unlinked list.
  1692. */
  1693. error = xfs_iunlink_remove(tp, ip);
  1694. if (error != 0) {
  1695. return error;
  1696. }
  1697. error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
  1698. if (error != 0) {
  1699. return error;
  1700. }
  1701. ip->i_d.di_mode = 0; /* mark incore inode as free */
  1702. ip->i_d.di_flags = 0;
  1703. ip->i_d.di_dmevmask = 0;
  1704. ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
  1705. ip->i_df.if_ext_max =
  1706. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  1707. ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
  1708. ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
  1709. /*
  1710. * Bump the generation count so no one will be confused
  1711. * by reincarnations of this inode.
  1712. */
  1713. ip->i_d.di_gen++;
  1714. xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  1715. error = xfs_itobp(ip->i_mount, tp, ip, &dip, &ibp, XBF_LOCK);
  1716. if (error)
  1717. return error;
  1718. /*
  1719. * Clear the on-disk di_mode. This is to prevent xfs_bulkstat
  1720. * from picking up this inode when it is reclaimed (its incore state
  1721. * initialzed but not flushed to disk yet). The in-core di_mode is
  1722. * already cleared and a corresponding transaction logged.
  1723. * The hack here just synchronizes the in-core to on-disk
  1724. * di_mode value in advance before the actual inode sync to disk.
  1725. * This is OK because the inode is already unlinked and would never
  1726. * change its di_mode again for this inode generation.
  1727. * This is a temporary hack that would require a proper fix
  1728. * in the future.
  1729. */
  1730. dip->di_mode = 0;
  1731. if (delete) {
  1732. xfs_ifree_cluster(ip, tp, first_ino);
  1733. }
  1734. return 0;
  1735. }
  1736. /*
  1737. * Reallocate the space for if_broot based on the number of records
  1738. * being added or deleted as indicated in rec_diff. Move the records
  1739. * and pointers in if_broot to fit the new size. When shrinking this
  1740. * will eliminate holes between the records and pointers created by
  1741. * the caller. When growing this will create holes to be filled in
  1742. * by the caller.
  1743. *
  1744. * The caller must not request to add more records than would fit in
  1745. * the on-disk inode root. If the if_broot is currently NULL, then
  1746. * if we adding records one will be allocated. The caller must also
  1747. * not request that the number of records go below zero, although
  1748. * it can go to zero.
  1749. *
  1750. * ip -- the inode whose if_broot area is changing
  1751. * ext_diff -- the change in the number of records, positive or negative,
  1752. * requested for the if_broot array.
  1753. */
  1754. void
  1755. xfs_iroot_realloc(
  1756. xfs_inode_t *ip,
  1757. int rec_diff,
  1758. int whichfork)
  1759. {
  1760. struct xfs_mount *mp = ip->i_mount;
  1761. int cur_max;
  1762. xfs_ifork_t *ifp;
  1763. struct xfs_btree_block *new_broot;
  1764. int new_max;
  1765. size_t new_size;
  1766. char *np;
  1767. char *op;
  1768. /*
  1769. * Handle the degenerate case quietly.
  1770. */
  1771. if (rec_diff == 0) {
  1772. return;
  1773. }
  1774. ifp = XFS_IFORK_PTR(ip, whichfork);
  1775. if (rec_diff > 0) {
  1776. /*
  1777. * If there wasn't any memory allocated before, just
  1778. * allocate it now and get out.
  1779. */
  1780. if (ifp->if_broot_bytes == 0) {
  1781. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
  1782. ifp->if_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
  1783. ifp->if_broot_bytes = (int)new_size;
  1784. return;
  1785. }
  1786. /*
  1787. * If there is already an existing if_broot, then we need
  1788. * to realloc() it and shift the pointers to their new
  1789. * location. The records don't change location because
  1790. * they are kept butted up against the btree block header.
  1791. */
  1792. cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
  1793. new_max = cur_max + rec_diff;
  1794. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
  1795. ifp->if_broot = kmem_realloc(ifp->if_broot, new_size,
  1796. (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
  1797. KM_SLEEP | KM_NOFS);
  1798. op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
  1799. ifp->if_broot_bytes);
  1800. np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
  1801. (int)new_size);
  1802. ifp->if_broot_bytes = (int)new_size;
  1803. ASSERT(ifp->if_broot_bytes <=
  1804. XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
  1805. memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
  1806. return;
  1807. }
  1808. /*
  1809. * rec_diff is less than 0. In this case, we are shrinking the
  1810. * if_broot buffer. It must already exist. If we go to zero
  1811. * records, just get rid of the root and clear the status bit.
  1812. */
  1813. ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
  1814. cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
  1815. new_max = cur_max + rec_diff;
  1816. ASSERT(new_max >= 0);
  1817. if (new_max > 0)
  1818. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
  1819. else
  1820. new_size = 0;
  1821. if (new_size > 0) {
  1822. new_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
  1823. /*
  1824. * First copy over the btree block header.
  1825. */
  1826. memcpy(new_broot, ifp->if_broot, XFS_BTREE_LBLOCK_LEN);
  1827. } else {
  1828. new_broot = NULL;
  1829. ifp->if_flags &= ~XFS_IFBROOT;
  1830. }
  1831. /*
  1832. * Only copy the records and pointers if there are any.
  1833. */
  1834. if (new_max > 0) {
  1835. /*
  1836. * First copy the records.
  1837. */
  1838. op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1);
  1839. np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1);
  1840. memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
  1841. /*
  1842. * Then copy the pointers.
  1843. */
  1844. op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
  1845. ifp->if_broot_bytes);
  1846. np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1,
  1847. (int)new_size);
  1848. memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
  1849. }
  1850. kmem_free(ifp->if_broot);
  1851. ifp->if_broot = new_broot;
  1852. ifp->if_broot_bytes = (int)new_size;
  1853. ASSERT(ifp->if_broot_bytes <=
  1854. XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
  1855. return;
  1856. }
  1857. /*
  1858. * This is called when the amount of space needed for if_data
  1859. * is increased or decreased. The change in size is indicated by
  1860. * the number of bytes that need to be added or deleted in the
  1861. * byte_diff parameter.
  1862. *
  1863. * If the amount of space needed has decreased below the size of the
  1864. * inline buffer, then switch to using the inline buffer. Otherwise,
  1865. * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
  1866. * to what is needed.
  1867. *
  1868. * ip -- the inode whose if_data area is changing
  1869. * byte_diff -- the change in the number of bytes, positive or negative,
  1870. * requested for the if_data array.
  1871. */
  1872. void
  1873. xfs_idata_realloc(
  1874. xfs_inode_t *ip,
  1875. int byte_diff,
  1876. int whichfork)
  1877. {
  1878. xfs_ifork_t *ifp;
  1879. int new_size;
  1880. int real_size;
  1881. if (byte_diff == 0) {
  1882. return;
  1883. }
  1884. ifp = XFS_IFORK_PTR(ip, whichfork);
  1885. new_size = (int)ifp->if_bytes + byte_diff;
  1886. ASSERT(new_size >= 0);
  1887. if (new_size == 0) {
  1888. if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  1889. kmem_free(ifp->if_u1.if_data);
  1890. }
  1891. ifp->if_u1.if_data = NULL;
  1892. real_size = 0;
  1893. } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
  1894. /*
  1895. * If the valid extents/data can fit in if_inline_ext/data,
  1896. * copy them from the malloc'd vector and free it.
  1897. */
  1898. if (ifp->if_u1.if_data == NULL) {
  1899. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  1900. } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  1901. ASSERT(ifp->if_real_bytes != 0);
  1902. memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
  1903. new_size);
  1904. kmem_free(ifp->if_u1.if_data);
  1905. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  1906. }
  1907. real_size = 0;
  1908. } else {
  1909. /*
  1910. * Stuck with malloc/realloc.
  1911. * For inline data, the underlying buffer must be
  1912. * a multiple of 4 bytes in size so that it can be
  1913. * logged and stay on word boundaries. We enforce
  1914. * that here.
  1915. */
  1916. real_size = roundup(new_size, 4);
  1917. if (ifp->if_u1.if_data == NULL) {
  1918. ASSERT(ifp->if_real_bytes == 0);
  1919. ifp->if_u1.if_data = kmem_alloc(real_size,
  1920. KM_SLEEP | KM_NOFS);
  1921. } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  1922. /*
  1923. * Only do the realloc if the underlying size
  1924. * is really changing.
  1925. */
  1926. if (ifp->if_real_bytes != real_size) {
  1927. ifp->if_u1.if_data =
  1928. kmem_realloc(ifp->if_u1.if_data,
  1929. real_size,
  1930. ifp->if_real_bytes,
  1931. KM_SLEEP | KM_NOFS);
  1932. }
  1933. } else {
  1934. ASSERT(ifp->if_real_bytes == 0);
  1935. ifp->if_u1.if_data = kmem_alloc(real_size,
  1936. KM_SLEEP | KM_NOFS);
  1937. memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
  1938. ifp->if_bytes);
  1939. }
  1940. }
  1941. ifp->if_real_bytes = real_size;
  1942. ifp->if_bytes = new_size;
  1943. ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
  1944. }
  1945. void
  1946. xfs_idestroy_fork(
  1947. xfs_inode_t *ip,
  1948. int whichfork)
  1949. {
  1950. xfs_ifork_t *ifp;
  1951. ifp = XFS_IFORK_PTR(ip, whichfork);
  1952. if (ifp->if_broot != NULL) {
  1953. kmem_free(ifp->if_broot);
  1954. ifp->if_broot = NULL;
  1955. }
  1956. /*
  1957. * If the format is local, then we can't have an extents
  1958. * array so just look for an inline data array. If we're
  1959. * not local then we may or may not have an extents list,
  1960. * so check and free it up if we do.
  1961. */
  1962. if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
  1963. if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
  1964. (ifp->if_u1.if_data != NULL)) {
  1965. ASSERT(ifp->if_real_bytes != 0);
  1966. kmem_free(ifp->if_u1.if_data);
  1967. ifp->if_u1.if_data = NULL;
  1968. ifp->if_real_bytes = 0;
  1969. }
  1970. } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
  1971. ((ifp->if_flags & XFS_IFEXTIREC) ||
  1972. ((ifp->if_u1.if_extents != NULL) &&
  1973. (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
  1974. ASSERT(ifp->if_real_bytes != 0);
  1975. xfs_iext_destroy(ifp);
  1976. }
  1977. ASSERT(ifp->if_u1.if_extents == NULL ||
  1978. ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
  1979. ASSERT(ifp->if_real_bytes == 0);
  1980. if (whichfork == XFS_ATTR_FORK) {
  1981. kmem_zone_free(xfs_ifork_zone, ip->i_afp);
  1982. ip->i_afp = NULL;
  1983. }
  1984. }
  1985. /*
  1986. * This is called to unpin an inode. The caller must have the inode locked
  1987. * in at least shared mode so that the buffer cannot be subsequently pinned
  1988. * once someone is waiting for it to be unpinned.
  1989. */
  1990. static void
  1991. xfs_iunpin_nowait(
  1992. struct xfs_inode *ip)
  1993. {
  1994. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  1995. trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
  1996. /* Give the log a push to start the unpinning I/O */
  1997. xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
  1998. }
  1999. void
  2000. xfs_iunpin_wait(
  2001. struct xfs_inode *ip)
  2002. {
  2003. if (xfs_ipincount(ip)) {
  2004. xfs_iunpin_nowait(ip);
  2005. wait_event(ip->i_ipin_wait, (xfs_ipincount(ip) == 0));
  2006. }
  2007. }
  2008. /*
  2009. * xfs_iextents_copy()
  2010. *
  2011. * This is called to copy the REAL extents (as opposed to the delayed
  2012. * allocation extents) from the inode into the given buffer. It
  2013. * returns the number of bytes copied into the buffer.
  2014. *
  2015. * If there are no delayed allocation extents, then we can just
  2016. * memcpy() the extents into the buffer. Otherwise, we need to
  2017. * examine each extent in turn and skip those which are delayed.
  2018. */
  2019. int
  2020. xfs_iextents_copy(
  2021. xfs_inode_t *ip,
  2022. xfs_bmbt_rec_t *dp,
  2023. int whichfork)
  2024. {
  2025. int copied;
  2026. int i;
  2027. xfs_ifork_t *ifp;
  2028. int nrecs;
  2029. xfs_fsblock_t start_block;
  2030. ifp = XFS_IFORK_PTR(ip, whichfork);
  2031. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  2032. ASSERT(ifp->if_bytes > 0);
  2033. nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  2034. XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
  2035. ASSERT(nrecs > 0);
  2036. /*
  2037. * There are some delayed allocation extents in the
  2038. * inode, so copy the extents one at a time and skip
  2039. * the delayed ones. There must be at least one
  2040. * non-delayed extent.
  2041. */
  2042. copied = 0;
  2043. for (i = 0; i < nrecs; i++) {
  2044. xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  2045. start_block = xfs_bmbt_get_startblock(ep);
  2046. if (isnullstartblock(start_block)) {
  2047. /*
  2048. * It's a delayed allocation extent, so skip it.
  2049. */
  2050. continue;
  2051. }
  2052. /* Translate to on disk format */
  2053. put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
  2054. put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
  2055. dp++;
  2056. copied++;
  2057. }
  2058. ASSERT(copied != 0);
  2059. xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
  2060. return (copied * (uint)sizeof(xfs_bmbt_rec_t));
  2061. }
  2062. /*
  2063. * Each of the following cases stores data into the same region
  2064. * of the on-disk inode, so only one of them can be valid at
  2065. * any given time. While it is possible to have conflicting formats
  2066. * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
  2067. * in EXTENTS format, this can only happen when the fork has
  2068. * changed formats after being modified but before being flushed.
  2069. * In these cases, the format always takes precedence, because the
  2070. * format indicates the current state of the fork.
  2071. */
  2072. /*ARGSUSED*/
  2073. STATIC void
  2074. xfs_iflush_fork(
  2075. xfs_inode_t *ip,
  2076. xfs_dinode_t *dip,
  2077. xfs_inode_log_item_t *iip,
  2078. int whichfork,
  2079. xfs_buf_t *bp)
  2080. {
  2081. char *cp;
  2082. xfs_ifork_t *ifp;
  2083. xfs_mount_t *mp;
  2084. #ifdef XFS_TRANS_DEBUG
  2085. int first;
  2086. #endif
  2087. static const short brootflag[2] =
  2088. { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
  2089. static const short dataflag[2] =
  2090. { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
  2091. static const short extflag[2] =
  2092. { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
  2093. if (!iip)
  2094. return;
  2095. ifp = XFS_IFORK_PTR(ip, whichfork);
  2096. /*
  2097. * This can happen if we gave up in iformat in an error path,
  2098. * for the attribute fork.
  2099. */
  2100. if (!ifp) {
  2101. ASSERT(whichfork == XFS_ATTR_FORK);
  2102. return;
  2103. }
  2104. cp = XFS_DFORK_PTR(dip, whichfork);
  2105. mp = ip->i_mount;
  2106. switch (XFS_IFORK_FORMAT(ip, whichfork)) {
  2107. case XFS_DINODE_FMT_LOCAL:
  2108. if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
  2109. (ifp->if_bytes > 0)) {
  2110. ASSERT(ifp->if_u1.if_data != NULL);
  2111. ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
  2112. memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
  2113. }
  2114. break;
  2115. case XFS_DINODE_FMT_EXTENTS:
  2116. ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
  2117. !(iip->ili_format.ilf_fields & extflag[whichfork]));
  2118. if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
  2119. (ifp->if_bytes > 0)) {
  2120. ASSERT(xfs_iext_get_ext(ifp, 0));
  2121. ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
  2122. (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
  2123. whichfork);
  2124. }
  2125. break;
  2126. case XFS_DINODE_FMT_BTREE:
  2127. if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
  2128. (ifp->if_broot_bytes > 0)) {
  2129. ASSERT(ifp->if_broot != NULL);
  2130. ASSERT(ifp->if_broot_bytes <=
  2131. (XFS_IFORK_SIZE(ip, whichfork) +
  2132. XFS_BROOT_SIZE_ADJ));
  2133. xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes,
  2134. (xfs_bmdr_block_t *)cp,
  2135. XFS_DFORK_SIZE(dip, mp, whichfork));
  2136. }
  2137. break;
  2138. case XFS_DINODE_FMT_DEV:
  2139. if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
  2140. ASSERT(whichfork == XFS_DATA_FORK);
  2141. xfs_dinode_put_rdev(dip, ip->i_df.if_u2.if_rdev);
  2142. }
  2143. break;
  2144. case XFS_DINODE_FMT_UUID:
  2145. if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
  2146. ASSERT(whichfork == XFS_DATA_FORK);
  2147. memcpy(XFS_DFORK_DPTR(dip),
  2148. &ip->i_df.if_u2.if_uuid,
  2149. sizeof(uuid_t));
  2150. }
  2151. break;
  2152. default:
  2153. ASSERT(0);
  2154. break;
  2155. }
  2156. }
  2157. STATIC int
  2158. xfs_iflush_cluster(
  2159. xfs_inode_t *ip,
  2160. xfs_buf_t *bp)
  2161. {
  2162. xfs_mount_t *mp = ip->i_mount;
  2163. struct xfs_perag *pag;
  2164. unsigned long first_index, mask;
  2165. unsigned long inodes_per_cluster;
  2166. int ilist_size;
  2167. xfs_inode_t **ilist;
  2168. xfs_inode_t *iq;
  2169. int nr_found;
  2170. int clcount = 0;
  2171. int bufwasdelwri;
  2172. int i;
  2173. pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
  2174. inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog;
  2175. ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
  2176. ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
  2177. if (!ilist)
  2178. goto out_put;
  2179. mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
  2180. first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
  2181. rcu_read_lock();
  2182. /* really need a gang lookup range call here */
  2183. nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
  2184. first_index, inodes_per_cluster);
  2185. if (nr_found == 0)
  2186. goto out_free;
  2187. for (i = 0; i < nr_found; i++) {
  2188. iq = ilist[i];
  2189. if (iq == ip)
  2190. continue;
  2191. /*
  2192. * because this is an RCU protected lookup, we could find a
  2193. * recently freed or even reallocated inode during the lookup.
  2194. * We need to check under the i_flags_lock for a valid inode
  2195. * here. Skip it if it is not valid or the wrong inode.
  2196. */
  2197. spin_lock(&ip->i_flags_lock);
  2198. if (!ip->i_ino ||
  2199. (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) {
  2200. spin_unlock(&ip->i_flags_lock);
  2201. continue;
  2202. }
  2203. spin_unlock(&ip->i_flags_lock);
  2204. /*
  2205. * Do an un-protected check to see if the inode is dirty and
  2206. * is a candidate for flushing. These checks will be repeated
  2207. * later after the appropriate locks are acquired.
  2208. */
  2209. if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
  2210. continue;
  2211. /*
  2212. * Try to get locks. If any are unavailable or it is pinned,
  2213. * then this inode cannot be flushed and is skipped.
  2214. */
  2215. if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
  2216. continue;
  2217. if (!xfs_iflock_nowait(iq)) {
  2218. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2219. continue;
  2220. }
  2221. if (xfs_ipincount(iq)) {
  2222. xfs_ifunlock(iq);
  2223. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2224. continue;
  2225. }
  2226. /*
  2227. * arriving here means that this inode can be flushed. First
  2228. * re-check that it's dirty before flushing.
  2229. */
  2230. if (!xfs_inode_clean(iq)) {
  2231. int error;
  2232. error = xfs_iflush_int(iq, bp);
  2233. if (error) {
  2234. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2235. goto cluster_corrupt_out;
  2236. }
  2237. clcount++;
  2238. } else {
  2239. xfs_ifunlock(iq);
  2240. }
  2241. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2242. }
  2243. if (clcount) {
  2244. XFS_STATS_INC(xs_icluster_flushcnt);
  2245. XFS_STATS_ADD(xs_icluster_flushinode, clcount);
  2246. }
  2247. out_free:
  2248. rcu_read_unlock();
  2249. kmem_free(ilist);
  2250. out_put:
  2251. xfs_perag_put(pag);
  2252. return 0;
  2253. cluster_corrupt_out:
  2254. /*
  2255. * Corruption detected in the clustering loop. Invalidate the
  2256. * inode buffer and shut down the filesystem.
  2257. */
  2258. rcu_read_unlock();
  2259. /*
  2260. * Clean up the buffer. If it was B_DELWRI, just release it --
  2261. * brelse can handle it with no problems. If not, shut down the
  2262. * filesystem before releasing the buffer.
  2263. */
  2264. bufwasdelwri = XFS_BUF_ISDELAYWRITE(bp);
  2265. if (bufwasdelwri)
  2266. xfs_buf_relse(bp);
  2267. xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
  2268. if (!bufwasdelwri) {
  2269. /*
  2270. * Just like incore_relse: if we have b_iodone functions,
  2271. * mark the buffer as an error and call them. Otherwise
  2272. * mark it as stale and brelse.
  2273. */
  2274. if (bp->b_iodone) {
  2275. XFS_BUF_UNDONE(bp);
  2276. XFS_BUF_STALE(bp);
  2277. XFS_BUF_ERROR(bp,EIO);
  2278. xfs_buf_ioend(bp, 0);
  2279. } else {
  2280. XFS_BUF_STALE(bp);
  2281. xfs_buf_relse(bp);
  2282. }
  2283. }
  2284. /*
  2285. * Unlocks the flush lock
  2286. */
  2287. xfs_iflush_abort(iq);
  2288. kmem_free(ilist);
  2289. xfs_perag_put(pag);
  2290. return XFS_ERROR(EFSCORRUPTED);
  2291. }
  2292. /*
  2293. * xfs_iflush() will write a modified inode's changes out to the
  2294. * inode's on disk home. The caller must have the inode lock held
  2295. * in at least shared mode and the inode flush completion must be
  2296. * active as well. The inode lock will still be held upon return from
  2297. * the call and the caller is free to unlock it.
  2298. * The inode flush will be completed when the inode reaches the disk.
  2299. * The flags indicate how the inode's buffer should be written out.
  2300. */
  2301. int
  2302. xfs_iflush(
  2303. xfs_inode_t *ip,
  2304. uint flags)
  2305. {
  2306. xfs_inode_log_item_t *iip;
  2307. xfs_buf_t *bp;
  2308. xfs_dinode_t *dip;
  2309. xfs_mount_t *mp;
  2310. int error;
  2311. XFS_STATS_INC(xs_iflush_count);
  2312. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  2313. ASSERT(!completion_done(&ip->i_flush));
  2314. ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
  2315. ip->i_d.di_nextents > ip->i_df.if_ext_max);
  2316. iip = ip->i_itemp;
  2317. mp = ip->i_mount;
  2318. /*
  2319. * We can't flush the inode until it is unpinned, so wait for it if we
  2320. * are allowed to block. We know no one new can pin it, because we are
  2321. * holding the inode lock shared and you need to hold it exclusively to
  2322. * pin the inode.
  2323. *
  2324. * If we are not allowed to block, force the log out asynchronously so
  2325. * that when we come back the inode will be unpinned. If other inodes
  2326. * in the same cluster are dirty, they will probably write the inode
  2327. * out for us if they occur after the log force completes.
  2328. */
  2329. if (!(flags & SYNC_WAIT) && xfs_ipincount(ip)) {
  2330. xfs_iunpin_nowait(ip);
  2331. xfs_ifunlock(ip);
  2332. return EAGAIN;
  2333. }
  2334. xfs_iunpin_wait(ip);
  2335. /*
  2336. * For stale inodes we cannot rely on the backing buffer remaining
  2337. * stale in cache for the remaining life of the stale inode and so
  2338. * xfs_itobp() below may give us a buffer that no longer contains
  2339. * inodes below. We have to check this after ensuring the inode is
  2340. * unpinned so that it is safe to reclaim the stale inode after the
  2341. * flush call.
  2342. */
  2343. if (xfs_iflags_test(ip, XFS_ISTALE)) {
  2344. xfs_ifunlock(ip);
  2345. return 0;
  2346. }
  2347. /*
  2348. * This may have been unpinned because the filesystem is shutting
  2349. * down forcibly. If that's the case we must not write this inode
  2350. * to disk, because the log record didn't make it to disk!
  2351. */
  2352. if (XFS_FORCED_SHUTDOWN(mp)) {
  2353. ip->i_update_core = 0;
  2354. if (iip)
  2355. iip->ili_format.ilf_fields = 0;
  2356. xfs_ifunlock(ip);
  2357. return XFS_ERROR(EIO);
  2358. }
  2359. /*
  2360. * Get the buffer containing the on-disk inode.
  2361. */
  2362. error = xfs_itobp(mp, NULL, ip, &dip, &bp,
  2363. (flags & SYNC_TRYLOCK) ? XBF_TRYLOCK : XBF_LOCK);
  2364. if (error || !bp) {
  2365. xfs_ifunlock(ip);
  2366. return error;
  2367. }
  2368. /*
  2369. * First flush out the inode that xfs_iflush was called with.
  2370. */
  2371. error = xfs_iflush_int(ip, bp);
  2372. if (error)
  2373. goto corrupt_out;
  2374. /*
  2375. * If the buffer is pinned then push on the log now so we won't
  2376. * get stuck waiting in the write for too long.
  2377. */
  2378. if (XFS_BUF_ISPINNED(bp))
  2379. xfs_log_force(mp, 0);
  2380. /*
  2381. * inode clustering:
  2382. * see if other inodes can be gathered into this write
  2383. */
  2384. error = xfs_iflush_cluster(ip, bp);
  2385. if (error)
  2386. goto cluster_corrupt_out;
  2387. if (flags & SYNC_WAIT)
  2388. error = xfs_bwrite(mp, bp);
  2389. else
  2390. xfs_bdwrite(mp, bp);
  2391. return error;
  2392. corrupt_out:
  2393. xfs_buf_relse(bp);
  2394. xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
  2395. cluster_corrupt_out:
  2396. /*
  2397. * Unlocks the flush lock
  2398. */
  2399. xfs_iflush_abort(ip);
  2400. return XFS_ERROR(EFSCORRUPTED);
  2401. }
  2402. STATIC int
  2403. xfs_iflush_int(
  2404. xfs_inode_t *ip,
  2405. xfs_buf_t *bp)
  2406. {
  2407. xfs_inode_log_item_t *iip;
  2408. xfs_dinode_t *dip;
  2409. xfs_mount_t *mp;
  2410. #ifdef XFS_TRANS_DEBUG
  2411. int first;
  2412. #endif
  2413. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  2414. ASSERT(!completion_done(&ip->i_flush));
  2415. ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
  2416. ip->i_d.di_nextents > ip->i_df.if_ext_max);
  2417. iip = ip->i_itemp;
  2418. mp = ip->i_mount;
  2419. /* set *dip = inode's place in the buffer */
  2420. dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
  2421. /*
  2422. * Clear i_update_core before copying out the data.
  2423. * This is for coordination with our timestamp updates
  2424. * that don't hold the inode lock. They will always
  2425. * update the timestamps BEFORE setting i_update_core,
  2426. * so if we clear i_update_core after they set it we
  2427. * are guaranteed to see their updates to the timestamps.
  2428. * I believe that this depends on strongly ordered memory
  2429. * semantics, but we have that. We use the SYNCHRONIZE
  2430. * macro to make sure that the compiler does not reorder
  2431. * the i_update_core access below the data copy below.
  2432. */
  2433. ip->i_update_core = 0;
  2434. SYNCHRONIZE();
  2435. /*
  2436. * Make sure to get the latest timestamps from the Linux inode.
  2437. */
  2438. xfs_synchronize_times(ip);
  2439. if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
  2440. mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
  2441. xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
  2442. "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
  2443. __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
  2444. goto corrupt_out;
  2445. }
  2446. if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
  2447. mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
  2448. xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
  2449. "%s: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
  2450. __func__, ip->i_ino, ip, ip->i_d.di_magic);
  2451. goto corrupt_out;
  2452. }
  2453. if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
  2454. if (XFS_TEST_ERROR(
  2455. (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
  2456. (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
  2457. mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
  2458. xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
  2459. "%s: Bad regular inode %Lu, ptr 0x%p",
  2460. __func__, ip->i_ino, ip);
  2461. goto corrupt_out;
  2462. }
  2463. } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
  2464. if (XFS_TEST_ERROR(
  2465. (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
  2466. (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
  2467. (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
  2468. mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
  2469. xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
  2470. "%s: Bad directory inode %Lu, ptr 0x%p",
  2471. __func__, ip->i_ino, ip);
  2472. goto corrupt_out;
  2473. }
  2474. }
  2475. if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
  2476. ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
  2477. XFS_RANDOM_IFLUSH_5)) {
  2478. xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
  2479. "%s: detected corrupt incore inode %Lu, "
  2480. "total extents = %d, nblocks = %Ld, ptr 0x%p",
  2481. __func__, ip->i_ino,
  2482. ip->i_d.di_nextents + ip->i_d.di_anextents,
  2483. ip->i_d.di_nblocks, ip);
  2484. goto corrupt_out;
  2485. }
  2486. if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
  2487. mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
  2488. xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
  2489. "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
  2490. __func__, ip->i_ino, ip->i_d.di_forkoff, ip);
  2491. goto corrupt_out;
  2492. }
  2493. /*
  2494. * bump the flush iteration count, used to detect flushes which
  2495. * postdate a log record during recovery.
  2496. */
  2497. ip->i_d.di_flushiter++;
  2498. /*
  2499. * Copy the dirty parts of the inode into the on-disk
  2500. * inode. We always copy out the core of the inode,
  2501. * because if the inode is dirty at all the core must
  2502. * be.
  2503. */
  2504. xfs_dinode_to_disk(dip, &ip->i_d);
  2505. /* Wrap, we never let the log put out DI_MAX_FLUSH */
  2506. if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
  2507. ip->i_d.di_flushiter = 0;
  2508. /*
  2509. * If this is really an old format inode and the superblock version
  2510. * has not been updated to support only new format inodes, then
  2511. * convert back to the old inode format. If the superblock version
  2512. * has been updated, then make the conversion permanent.
  2513. */
  2514. ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
  2515. if (ip->i_d.di_version == 1) {
  2516. if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
  2517. /*
  2518. * Convert it back.
  2519. */
  2520. ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
  2521. dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink);
  2522. } else {
  2523. /*
  2524. * The superblock version has already been bumped,
  2525. * so just make the conversion to the new inode
  2526. * format permanent.
  2527. */
  2528. ip->i_d.di_version = 2;
  2529. dip->di_version = 2;
  2530. ip->i_d.di_onlink = 0;
  2531. dip->di_onlink = 0;
  2532. memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
  2533. memset(&(dip->di_pad[0]), 0,
  2534. sizeof(dip->di_pad));
  2535. ASSERT(xfs_get_projid(ip) == 0);
  2536. }
  2537. }
  2538. xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
  2539. if (XFS_IFORK_Q(ip))
  2540. xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
  2541. xfs_inobp_check(mp, bp);
  2542. /*
  2543. * We've recorded everything logged in the inode, so we'd
  2544. * like to clear the ilf_fields bits so we don't log and
  2545. * flush things unnecessarily. However, we can't stop
  2546. * logging all this information until the data we've copied
  2547. * into the disk buffer is written to disk. If we did we might
  2548. * overwrite the copy of the inode in the log with all the
  2549. * data after re-logging only part of it, and in the face of
  2550. * a crash we wouldn't have all the data we need to recover.
  2551. *
  2552. * What we do is move the bits to the ili_last_fields field.
  2553. * When logging the inode, these bits are moved back to the
  2554. * ilf_fields field. In the xfs_iflush_done() routine we
  2555. * clear ili_last_fields, since we know that the information
  2556. * those bits represent is permanently on disk. As long as
  2557. * the flush completes before the inode is logged again, then
  2558. * both ilf_fields and ili_last_fields will be cleared.
  2559. *
  2560. * We can play with the ilf_fields bits here, because the inode
  2561. * lock must be held exclusively in order to set bits there
  2562. * and the flush lock protects the ili_last_fields bits.
  2563. * Set ili_logged so the flush done
  2564. * routine can tell whether or not to look in the AIL.
  2565. * Also, store the current LSN of the inode so that we can tell
  2566. * whether the item has moved in the AIL from xfs_iflush_done().
  2567. * In order to read the lsn we need the AIL lock, because
  2568. * it is a 64 bit value that cannot be read atomically.
  2569. */
  2570. if (iip != NULL && iip->ili_format.ilf_fields != 0) {
  2571. iip->ili_last_fields = iip->ili_format.ilf_fields;
  2572. iip->ili_format.ilf_fields = 0;
  2573. iip->ili_logged = 1;
  2574. xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
  2575. &iip->ili_item.li_lsn);
  2576. /*
  2577. * Attach the function xfs_iflush_done to the inode's
  2578. * buffer. This will remove the inode from the AIL
  2579. * and unlock the inode's flush lock when the inode is
  2580. * completely written to disk.
  2581. */
  2582. xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
  2583. ASSERT(bp->b_fspriv != NULL);
  2584. ASSERT(bp->b_iodone != NULL);
  2585. } else {
  2586. /*
  2587. * We're flushing an inode which is not in the AIL and has
  2588. * not been logged but has i_update_core set. For this
  2589. * case we can use a B_DELWRI flush and immediately drop
  2590. * the inode flush lock because we can avoid the whole
  2591. * AIL state thing. It's OK to drop the flush lock now,
  2592. * because we've already locked the buffer and to do anything
  2593. * you really need both.
  2594. */
  2595. if (iip != NULL) {
  2596. ASSERT(iip->ili_logged == 0);
  2597. ASSERT(iip->ili_last_fields == 0);
  2598. ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
  2599. }
  2600. xfs_ifunlock(ip);
  2601. }
  2602. return 0;
  2603. corrupt_out:
  2604. return XFS_ERROR(EFSCORRUPTED);
  2605. }
  2606. /*
  2607. * Return a pointer to the extent record at file index idx.
  2608. */
  2609. xfs_bmbt_rec_host_t *
  2610. xfs_iext_get_ext(
  2611. xfs_ifork_t *ifp, /* inode fork pointer */
  2612. xfs_extnum_t idx) /* index of target extent */
  2613. {
  2614. ASSERT(idx >= 0);
  2615. ASSERT(idx < ifp->if_bytes / sizeof(xfs_bmbt_rec_t));
  2616. if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
  2617. return ifp->if_u1.if_ext_irec->er_extbuf;
  2618. } else if (ifp->if_flags & XFS_IFEXTIREC) {
  2619. xfs_ext_irec_t *erp; /* irec pointer */
  2620. int erp_idx = 0; /* irec index */
  2621. xfs_extnum_t page_idx = idx; /* ext index in target list */
  2622. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
  2623. return &erp->er_extbuf[page_idx];
  2624. } else if (ifp->if_bytes) {
  2625. return &ifp->if_u1.if_extents[idx];
  2626. } else {
  2627. return NULL;
  2628. }
  2629. }
  2630. /*
  2631. * Insert new item(s) into the extent records for incore inode
  2632. * fork 'ifp'. 'count' new items are inserted at index 'idx'.
  2633. */
  2634. void
  2635. xfs_iext_insert(
  2636. xfs_inode_t *ip, /* incore inode pointer */
  2637. xfs_extnum_t idx, /* starting index of new items */
  2638. xfs_extnum_t count, /* number of inserted items */
  2639. xfs_bmbt_irec_t *new, /* items to insert */
  2640. int state) /* type of extent conversion */
  2641. {
  2642. xfs_ifork_t *ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
  2643. xfs_extnum_t i; /* extent record index */
  2644. trace_xfs_iext_insert(ip, idx, new, state, _RET_IP_);
  2645. ASSERT(ifp->if_flags & XFS_IFEXTENTS);
  2646. xfs_iext_add(ifp, idx, count);
  2647. for (i = idx; i < idx + count; i++, new++)
  2648. xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
  2649. }
  2650. /*
  2651. * This is called when the amount of space required for incore file
  2652. * extents needs to be increased. The ext_diff parameter stores the
  2653. * number of new extents being added and the idx parameter contains
  2654. * the extent index where the new extents will be added. If the new
  2655. * extents are being appended, then we just need to (re)allocate and
  2656. * initialize the space. Otherwise, if the new extents are being
  2657. * inserted into the middle of the existing entries, a bit more work
  2658. * is required to make room for the new extents to be inserted. The
  2659. * caller is responsible for filling in the new extent entries upon
  2660. * return.
  2661. */
  2662. void
  2663. xfs_iext_add(
  2664. xfs_ifork_t *ifp, /* inode fork pointer */
  2665. xfs_extnum_t idx, /* index to begin adding exts */
  2666. int ext_diff) /* number of extents to add */
  2667. {
  2668. int byte_diff; /* new bytes being added */
  2669. int new_size; /* size of extents after adding */
  2670. xfs_extnum_t nextents; /* number of extents in file */
  2671. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  2672. ASSERT((idx >= 0) && (idx <= nextents));
  2673. byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
  2674. new_size = ifp->if_bytes + byte_diff;
  2675. /*
  2676. * If the new number of extents (nextents + ext_diff)
  2677. * fits inside the inode, then continue to use the inline
  2678. * extent buffer.
  2679. */
  2680. if (nextents + ext_diff <= XFS_INLINE_EXTS) {
  2681. if (idx < nextents) {
  2682. memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
  2683. &ifp->if_u2.if_inline_ext[idx],
  2684. (nextents - idx) * sizeof(xfs_bmbt_rec_t));
  2685. memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
  2686. }
  2687. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  2688. ifp->if_real_bytes = 0;
  2689. }
  2690. /*
  2691. * Otherwise use a linear (direct) extent list.
  2692. * If the extents are currently inside the inode,
  2693. * xfs_iext_realloc_direct will switch us from
  2694. * inline to direct extent allocation mode.
  2695. */
  2696. else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
  2697. xfs_iext_realloc_direct(ifp, new_size);
  2698. if (idx < nextents) {
  2699. memmove(&ifp->if_u1.if_extents[idx + ext_diff],
  2700. &ifp->if_u1.if_extents[idx],
  2701. (nextents - idx) * sizeof(xfs_bmbt_rec_t));
  2702. memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
  2703. }
  2704. }
  2705. /* Indirection array */
  2706. else {
  2707. xfs_ext_irec_t *erp;
  2708. int erp_idx = 0;
  2709. int page_idx = idx;
  2710. ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
  2711. if (ifp->if_flags & XFS_IFEXTIREC) {
  2712. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
  2713. } else {
  2714. xfs_iext_irec_init(ifp);
  2715. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  2716. erp = ifp->if_u1.if_ext_irec;
  2717. }
  2718. /* Extents fit in target extent page */
  2719. if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
  2720. if (page_idx < erp->er_extcount) {
  2721. memmove(&erp->er_extbuf[page_idx + ext_diff],
  2722. &erp->er_extbuf[page_idx],
  2723. (erp->er_extcount - page_idx) *
  2724. sizeof(xfs_bmbt_rec_t));
  2725. memset(&erp->er_extbuf[page_idx], 0, byte_diff);
  2726. }
  2727. erp->er_extcount += ext_diff;
  2728. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  2729. }
  2730. /* Insert a new extent page */
  2731. else if (erp) {
  2732. xfs_iext_add_indirect_multi(ifp,
  2733. erp_idx, page_idx, ext_diff);
  2734. }
  2735. /*
  2736. * If extent(s) are being appended to the last page in
  2737. * the indirection array and the new extent(s) don't fit
  2738. * in the page, then erp is NULL and erp_idx is set to
  2739. * the next index needed in the indirection array.
  2740. */
  2741. else {
  2742. int count = ext_diff;
  2743. while (count) {
  2744. erp = xfs_iext_irec_new(ifp, erp_idx);
  2745. erp->er_extcount = count;
  2746. count -= MIN(count, (int)XFS_LINEAR_EXTS);
  2747. if (count) {
  2748. erp_idx++;
  2749. }
  2750. }
  2751. }
  2752. }
  2753. ifp->if_bytes = new_size;
  2754. }
  2755. /*
  2756. * This is called when incore extents are being added to the indirection
  2757. * array and the new extents do not fit in the target extent list. The
  2758. * erp_idx parameter contains the irec index for the target extent list
  2759. * in the indirection array, and the idx parameter contains the extent
  2760. * index within the list. The number of extents being added is stored
  2761. * in the count parameter.
  2762. *
  2763. * |-------| |-------|
  2764. * | | | | idx - number of extents before idx
  2765. * | idx | | count |
  2766. * | | | | count - number of extents being inserted at idx
  2767. * |-------| |-------|
  2768. * | count | | nex2 | nex2 - number of extents after idx + count
  2769. * |-------| |-------|
  2770. */
  2771. void
  2772. xfs_iext_add_indirect_multi(
  2773. xfs_ifork_t *ifp, /* inode fork pointer */
  2774. int erp_idx, /* target extent irec index */
  2775. xfs_extnum_t idx, /* index within target list */
  2776. int count) /* new extents being added */
  2777. {
  2778. int byte_diff; /* new bytes being added */
  2779. xfs_ext_irec_t *erp; /* pointer to irec entry */
  2780. xfs_extnum_t ext_diff; /* number of extents to add */
  2781. xfs_extnum_t ext_cnt; /* new extents still needed */
  2782. xfs_extnum_t nex2; /* extents after idx + count */
  2783. xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
  2784. int nlists; /* number of irec's (lists) */
  2785. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  2786. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  2787. nex2 = erp->er_extcount - idx;
  2788. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  2789. /*
  2790. * Save second part of target extent list
  2791. * (all extents past */
  2792. if (nex2) {
  2793. byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
  2794. nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_NOFS);
  2795. memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
  2796. erp->er_extcount -= nex2;
  2797. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
  2798. memset(&erp->er_extbuf[idx], 0, byte_diff);
  2799. }
  2800. /*
  2801. * Add the new extents to the end of the target
  2802. * list, then allocate new irec record(s) and
  2803. * extent buffer(s) as needed to store the rest
  2804. * of the new extents.
  2805. */
  2806. ext_cnt = count;
  2807. ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
  2808. if (ext_diff) {
  2809. erp->er_extcount += ext_diff;
  2810. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  2811. ext_cnt -= ext_diff;
  2812. }
  2813. while (ext_cnt) {
  2814. erp_idx++;
  2815. erp = xfs_iext_irec_new(ifp, erp_idx);
  2816. ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
  2817. erp->er_extcount = ext_diff;
  2818. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  2819. ext_cnt -= ext_diff;
  2820. }
  2821. /* Add nex2 extents back to indirection array */
  2822. if (nex2) {
  2823. xfs_extnum_t ext_avail;
  2824. int i;
  2825. byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
  2826. ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
  2827. i = 0;
  2828. /*
  2829. * If nex2 extents fit in the current page, append
  2830. * nex2_ep after the new extents.
  2831. */
  2832. if (nex2 <= ext_avail) {
  2833. i = erp->er_extcount;
  2834. }
  2835. /*
  2836. * Otherwise, check if space is available in the
  2837. * next page.
  2838. */
  2839. else if ((erp_idx < nlists - 1) &&
  2840. (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
  2841. ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
  2842. erp_idx++;
  2843. erp++;
  2844. /* Create a hole for nex2 extents */
  2845. memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
  2846. erp->er_extcount * sizeof(xfs_bmbt_rec_t));
  2847. }
  2848. /*
  2849. * Final choice, create a new extent page for
  2850. * nex2 extents.
  2851. */
  2852. else {
  2853. erp_idx++;
  2854. erp = xfs_iext_irec_new(ifp, erp_idx);
  2855. }
  2856. memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
  2857. kmem_free(nex2_ep);
  2858. erp->er_extcount += nex2;
  2859. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
  2860. }
  2861. }
  2862. /*
  2863. * This is called when the amount of space required for incore file
  2864. * extents needs to be decreased. The ext_diff parameter stores the
  2865. * number of extents to be removed and the idx parameter contains
  2866. * the extent index where the extents will be removed from.
  2867. *
  2868. * If the amount of space needed has decreased below the linear
  2869. * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
  2870. * extent array. Otherwise, use kmem_realloc() to adjust the
  2871. * size to what is needed.
  2872. */
  2873. void
  2874. xfs_iext_remove(
  2875. xfs_inode_t *ip, /* incore inode pointer */
  2876. xfs_extnum_t idx, /* index to begin removing exts */
  2877. int ext_diff, /* number of extents to remove */
  2878. int state) /* type of extent conversion */
  2879. {
  2880. xfs_ifork_t *ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
  2881. xfs_extnum_t nextents; /* number of extents in file */
  2882. int new_size; /* size of extents after removal */
  2883. trace_xfs_iext_remove(ip, idx, state, _RET_IP_);
  2884. ASSERT(ext_diff > 0);
  2885. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  2886. new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
  2887. if (new_size == 0) {
  2888. xfs_iext_destroy(ifp);
  2889. } else if (ifp->if_flags & XFS_IFEXTIREC) {
  2890. xfs_iext_remove_indirect(ifp, idx, ext_diff);
  2891. } else if (ifp->if_real_bytes) {
  2892. xfs_iext_remove_direct(ifp, idx, ext_diff);
  2893. } else {
  2894. xfs_iext_remove_inline(ifp, idx, ext_diff);
  2895. }
  2896. ifp->if_bytes = new_size;
  2897. }
  2898. /*
  2899. * This removes ext_diff extents from the inline buffer, beginning
  2900. * at extent index idx.
  2901. */
  2902. void
  2903. xfs_iext_remove_inline(
  2904. xfs_ifork_t *ifp, /* inode fork pointer */
  2905. xfs_extnum_t idx, /* index to begin removing exts */
  2906. int ext_diff) /* number of extents to remove */
  2907. {
  2908. int nextents; /* number of extents in file */
  2909. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  2910. ASSERT(idx < XFS_INLINE_EXTS);
  2911. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  2912. ASSERT(((nextents - ext_diff) > 0) &&
  2913. (nextents - ext_diff) < XFS_INLINE_EXTS);
  2914. if (idx + ext_diff < nextents) {
  2915. memmove(&ifp->if_u2.if_inline_ext[idx],
  2916. &ifp->if_u2.if_inline_ext[idx + ext_diff],
  2917. (nextents - (idx + ext_diff)) *
  2918. sizeof(xfs_bmbt_rec_t));
  2919. memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
  2920. 0, ext_diff * sizeof(xfs_bmbt_rec_t));
  2921. } else {
  2922. memset(&ifp->if_u2.if_inline_ext[idx], 0,
  2923. ext_diff * sizeof(xfs_bmbt_rec_t));
  2924. }
  2925. }
  2926. /*
  2927. * This removes ext_diff extents from a linear (direct) extent list,
  2928. * beginning at extent index idx. If the extents are being removed
  2929. * from the end of the list (ie. truncate) then we just need to re-
  2930. * allocate the list to remove the extra space. Otherwise, if the
  2931. * extents are being removed from the middle of the existing extent
  2932. * entries, then we first need to move the extent records beginning
  2933. * at idx + ext_diff up in the list to overwrite the records being
  2934. * removed, then remove the extra space via kmem_realloc.
  2935. */
  2936. void
  2937. xfs_iext_remove_direct(
  2938. xfs_ifork_t *ifp, /* inode fork pointer */
  2939. xfs_extnum_t idx, /* index to begin removing exts */
  2940. int ext_diff) /* number of extents to remove */
  2941. {
  2942. xfs_extnum_t nextents; /* number of extents in file */
  2943. int new_size; /* size of extents after removal */
  2944. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  2945. new_size = ifp->if_bytes -
  2946. (ext_diff * sizeof(xfs_bmbt_rec_t));
  2947. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  2948. if (new_size == 0) {
  2949. xfs_iext_destroy(ifp);
  2950. return;
  2951. }
  2952. /* Move extents up in the list (if needed) */
  2953. if (idx + ext_diff < nextents) {
  2954. memmove(&ifp->if_u1.if_extents[idx],
  2955. &ifp->if_u1.if_extents[idx + ext_diff],
  2956. (nextents - (idx + ext_diff)) *
  2957. sizeof(xfs_bmbt_rec_t));
  2958. }
  2959. memset(&ifp->if_u1.if_extents[nextents - ext_diff],
  2960. 0, ext_diff * sizeof(xfs_bmbt_rec_t));
  2961. /*
  2962. * Reallocate the direct extent list. If the extents
  2963. * will fit inside the inode then xfs_iext_realloc_direct
  2964. * will switch from direct to inline extent allocation
  2965. * mode for us.
  2966. */
  2967. xfs_iext_realloc_direct(ifp, new_size);
  2968. ifp->if_bytes = new_size;
  2969. }
  2970. /*
  2971. * This is called when incore extents are being removed from the
  2972. * indirection array and the extents being removed span multiple extent
  2973. * buffers. The idx parameter contains the file extent index where we
  2974. * want to begin removing extents, and the count parameter contains
  2975. * how many extents need to be removed.
  2976. *
  2977. * |-------| |-------|
  2978. * | nex1 | | | nex1 - number of extents before idx
  2979. * |-------| | count |
  2980. * | | | | count - number of extents being removed at idx
  2981. * | count | |-------|
  2982. * | | | nex2 | nex2 - number of extents after idx + count
  2983. * |-------| |-------|
  2984. */
  2985. void
  2986. xfs_iext_remove_indirect(
  2987. xfs_ifork_t *ifp, /* inode fork pointer */
  2988. xfs_extnum_t idx, /* index to begin removing extents */
  2989. int count) /* number of extents to remove */
  2990. {
  2991. xfs_ext_irec_t *erp; /* indirection array pointer */
  2992. int erp_idx = 0; /* indirection array index */
  2993. xfs_extnum_t ext_cnt; /* extents left to remove */
  2994. xfs_extnum_t ext_diff; /* extents to remove in current list */
  2995. xfs_extnum_t nex1; /* number of extents before idx */
  2996. xfs_extnum_t nex2; /* extents after idx + count */
  2997. int page_idx = idx; /* index in target extent list */
  2998. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  2999. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
  3000. ASSERT(erp != NULL);
  3001. nex1 = page_idx;
  3002. ext_cnt = count;
  3003. while (ext_cnt) {
  3004. nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
  3005. ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
  3006. /*
  3007. * Check for deletion of entire list;
  3008. * xfs_iext_irec_remove() updates extent offsets.
  3009. */
  3010. if (ext_diff == erp->er_extcount) {
  3011. xfs_iext_irec_remove(ifp, erp_idx);
  3012. ext_cnt -= ext_diff;
  3013. nex1 = 0;
  3014. if (ext_cnt) {
  3015. ASSERT(erp_idx < ifp->if_real_bytes /
  3016. XFS_IEXT_BUFSZ);
  3017. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3018. nex1 = 0;
  3019. continue;
  3020. } else {
  3021. break;
  3022. }
  3023. }
  3024. /* Move extents up (if needed) */
  3025. if (nex2) {
  3026. memmove(&erp->er_extbuf[nex1],
  3027. &erp->er_extbuf[nex1 + ext_diff],
  3028. nex2 * sizeof(xfs_bmbt_rec_t));
  3029. }
  3030. /* Zero out rest of page */
  3031. memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
  3032. ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
  3033. /* Update remaining counters */
  3034. erp->er_extcount -= ext_diff;
  3035. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
  3036. ext_cnt -= ext_diff;
  3037. nex1 = 0;
  3038. erp_idx++;
  3039. erp++;
  3040. }
  3041. ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
  3042. xfs_iext_irec_compact(ifp);
  3043. }
  3044. /*
  3045. * Create, destroy, or resize a linear (direct) block of extents.
  3046. */
  3047. void
  3048. xfs_iext_realloc_direct(
  3049. xfs_ifork_t *ifp, /* inode fork pointer */
  3050. int new_size) /* new size of extents */
  3051. {
  3052. int rnew_size; /* real new size of extents */
  3053. rnew_size = new_size;
  3054. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
  3055. ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
  3056. (new_size != ifp->if_real_bytes)));
  3057. /* Free extent records */
  3058. if (new_size == 0) {
  3059. xfs_iext_destroy(ifp);
  3060. }
  3061. /* Resize direct extent list and zero any new bytes */
  3062. else if (ifp->if_real_bytes) {
  3063. /* Check if extents will fit inside the inode */
  3064. if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
  3065. xfs_iext_direct_to_inline(ifp, new_size /
  3066. (uint)sizeof(xfs_bmbt_rec_t));
  3067. ifp->if_bytes = new_size;
  3068. return;
  3069. }
  3070. if (!is_power_of_2(new_size)){
  3071. rnew_size = roundup_pow_of_two(new_size);
  3072. }
  3073. if (rnew_size != ifp->if_real_bytes) {
  3074. ifp->if_u1.if_extents =
  3075. kmem_realloc(ifp->if_u1.if_extents,
  3076. rnew_size,
  3077. ifp->if_real_bytes, KM_NOFS);
  3078. }
  3079. if (rnew_size > ifp->if_real_bytes) {
  3080. memset(&ifp->if_u1.if_extents[ifp->if_bytes /
  3081. (uint)sizeof(xfs_bmbt_rec_t)], 0,
  3082. rnew_size - ifp->if_real_bytes);
  3083. }
  3084. }
  3085. /*
  3086. * Switch from the inline extent buffer to a direct
  3087. * extent list. Be sure to include the inline extent
  3088. * bytes in new_size.
  3089. */
  3090. else {
  3091. new_size += ifp->if_bytes;
  3092. if (!is_power_of_2(new_size)) {
  3093. rnew_size = roundup_pow_of_two(new_size);
  3094. }
  3095. xfs_iext_inline_to_direct(ifp, rnew_size);
  3096. }
  3097. ifp->if_real_bytes = rnew_size;
  3098. ifp->if_bytes = new_size;
  3099. }
  3100. /*
  3101. * Switch from linear (direct) extent records to inline buffer.
  3102. */
  3103. void
  3104. xfs_iext_direct_to_inline(
  3105. xfs_ifork_t *ifp, /* inode fork pointer */
  3106. xfs_extnum_t nextents) /* number of extents in file */
  3107. {
  3108. ASSERT(ifp->if_flags & XFS_IFEXTENTS);
  3109. ASSERT(nextents <= XFS_INLINE_EXTS);
  3110. /*
  3111. * The inline buffer was zeroed when we switched
  3112. * from inline to direct extent allocation mode,
  3113. * so we don't need to clear it here.
  3114. */
  3115. memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
  3116. nextents * sizeof(xfs_bmbt_rec_t));
  3117. kmem_free(ifp->if_u1.if_extents);
  3118. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  3119. ifp->if_real_bytes = 0;
  3120. }
  3121. /*
  3122. * Switch from inline buffer to linear (direct) extent records.
  3123. * new_size should already be rounded up to the next power of 2
  3124. * by the caller (when appropriate), so use new_size as it is.
  3125. * However, since new_size may be rounded up, we can't update
  3126. * if_bytes here. It is the caller's responsibility to update
  3127. * if_bytes upon return.
  3128. */
  3129. void
  3130. xfs_iext_inline_to_direct(
  3131. xfs_ifork_t *ifp, /* inode fork pointer */
  3132. int new_size) /* number of extents in file */
  3133. {
  3134. ifp->if_u1.if_extents = kmem_alloc(new_size, KM_NOFS);
  3135. memset(ifp->if_u1.if_extents, 0, new_size);
  3136. if (ifp->if_bytes) {
  3137. memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
  3138. ifp->if_bytes);
  3139. memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
  3140. sizeof(xfs_bmbt_rec_t));
  3141. }
  3142. ifp->if_real_bytes = new_size;
  3143. }
  3144. /*
  3145. * Resize an extent indirection array to new_size bytes.
  3146. */
  3147. STATIC void
  3148. xfs_iext_realloc_indirect(
  3149. xfs_ifork_t *ifp, /* inode fork pointer */
  3150. int new_size) /* new indirection array size */
  3151. {
  3152. int nlists; /* number of irec's (ex lists) */
  3153. int size; /* current indirection array size */
  3154. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3155. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3156. size = nlists * sizeof(xfs_ext_irec_t);
  3157. ASSERT(ifp->if_real_bytes);
  3158. ASSERT((new_size >= 0) && (new_size != size));
  3159. if (new_size == 0) {
  3160. xfs_iext_destroy(ifp);
  3161. } else {
  3162. ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
  3163. kmem_realloc(ifp->if_u1.if_ext_irec,
  3164. new_size, size, KM_NOFS);
  3165. }
  3166. }
  3167. /*
  3168. * Switch from indirection array to linear (direct) extent allocations.
  3169. */
  3170. STATIC void
  3171. xfs_iext_indirect_to_direct(
  3172. xfs_ifork_t *ifp) /* inode fork pointer */
  3173. {
  3174. xfs_bmbt_rec_host_t *ep; /* extent record pointer */
  3175. xfs_extnum_t nextents; /* number of extents in file */
  3176. int size; /* size of file extents */
  3177. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3178. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3179. ASSERT(nextents <= XFS_LINEAR_EXTS);
  3180. size = nextents * sizeof(xfs_bmbt_rec_t);
  3181. xfs_iext_irec_compact_pages(ifp);
  3182. ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
  3183. ep = ifp->if_u1.if_ext_irec->er_extbuf;
  3184. kmem_free(ifp->if_u1.if_ext_irec);
  3185. ifp->if_flags &= ~XFS_IFEXTIREC;
  3186. ifp->if_u1.if_extents = ep;
  3187. ifp->if_bytes = size;
  3188. if (nextents < XFS_LINEAR_EXTS) {
  3189. xfs_iext_realloc_direct(ifp, size);
  3190. }
  3191. }
  3192. /*
  3193. * Free incore file extents.
  3194. */
  3195. void
  3196. xfs_iext_destroy(
  3197. xfs_ifork_t *ifp) /* inode fork pointer */
  3198. {
  3199. if (ifp->if_flags & XFS_IFEXTIREC) {
  3200. int erp_idx;
  3201. int nlists;
  3202. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3203. for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
  3204. xfs_iext_irec_remove(ifp, erp_idx);
  3205. }
  3206. ifp->if_flags &= ~XFS_IFEXTIREC;
  3207. } else if (ifp->if_real_bytes) {
  3208. kmem_free(ifp->if_u1.if_extents);
  3209. } else if (ifp->if_bytes) {
  3210. memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
  3211. sizeof(xfs_bmbt_rec_t));
  3212. }
  3213. ifp->if_u1.if_extents = NULL;
  3214. ifp->if_real_bytes = 0;
  3215. ifp->if_bytes = 0;
  3216. }
  3217. /*
  3218. * Return a pointer to the extent record for file system block bno.
  3219. */
  3220. xfs_bmbt_rec_host_t * /* pointer to found extent record */
  3221. xfs_iext_bno_to_ext(
  3222. xfs_ifork_t *ifp, /* inode fork pointer */
  3223. xfs_fileoff_t bno, /* block number to search for */
  3224. xfs_extnum_t *idxp) /* index of target extent */
  3225. {
  3226. xfs_bmbt_rec_host_t *base; /* pointer to first extent */
  3227. xfs_filblks_t blockcount = 0; /* number of blocks in extent */
  3228. xfs_bmbt_rec_host_t *ep = NULL; /* pointer to target extent */
  3229. xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
  3230. int high; /* upper boundary in search */
  3231. xfs_extnum_t idx = 0; /* index of target extent */
  3232. int low; /* lower boundary in search */
  3233. xfs_extnum_t nextents; /* number of file extents */
  3234. xfs_fileoff_t startoff = 0; /* start offset of extent */
  3235. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3236. if (nextents == 0) {
  3237. *idxp = 0;
  3238. return NULL;
  3239. }
  3240. low = 0;
  3241. if (ifp->if_flags & XFS_IFEXTIREC) {
  3242. /* Find target extent list */
  3243. int erp_idx = 0;
  3244. erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
  3245. base = erp->er_extbuf;
  3246. high = erp->er_extcount - 1;
  3247. } else {
  3248. base = ifp->if_u1.if_extents;
  3249. high = nextents - 1;
  3250. }
  3251. /* Binary search extent records */
  3252. while (low <= high) {
  3253. idx = (low + high) >> 1;
  3254. ep = base + idx;
  3255. startoff = xfs_bmbt_get_startoff(ep);
  3256. blockcount = xfs_bmbt_get_blockcount(ep);
  3257. if (bno < startoff) {
  3258. high = idx - 1;
  3259. } else if (bno >= startoff + blockcount) {
  3260. low = idx + 1;
  3261. } else {
  3262. /* Convert back to file-based extent index */
  3263. if (ifp->if_flags & XFS_IFEXTIREC) {
  3264. idx += erp->er_extoff;
  3265. }
  3266. *idxp = idx;
  3267. return ep;
  3268. }
  3269. }
  3270. /* Convert back to file-based extent index */
  3271. if (ifp->if_flags & XFS_IFEXTIREC) {
  3272. idx += erp->er_extoff;
  3273. }
  3274. if (bno >= startoff + blockcount) {
  3275. if (++idx == nextents) {
  3276. ep = NULL;
  3277. } else {
  3278. ep = xfs_iext_get_ext(ifp, idx);
  3279. }
  3280. }
  3281. *idxp = idx;
  3282. return ep;
  3283. }
  3284. /*
  3285. * Return a pointer to the indirection array entry containing the
  3286. * extent record for filesystem block bno. Store the index of the
  3287. * target irec in *erp_idxp.
  3288. */
  3289. xfs_ext_irec_t * /* pointer to found extent record */
  3290. xfs_iext_bno_to_irec(
  3291. xfs_ifork_t *ifp, /* inode fork pointer */
  3292. xfs_fileoff_t bno, /* block number to search for */
  3293. int *erp_idxp) /* irec index of target ext list */
  3294. {
  3295. xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
  3296. xfs_ext_irec_t *erp_next; /* next indirection array entry */
  3297. int erp_idx; /* indirection array index */
  3298. int nlists; /* number of extent irec's (lists) */
  3299. int high; /* binary search upper limit */
  3300. int low; /* binary search lower limit */
  3301. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3302. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3303. erp_idx = 0;
  3304. low = 0;
  3305. high = nlists - 1;
  3306. while (low <= high) {
  3307. erp_idx = (low + high) >> 1;
  3308. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3309. erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
  3310. if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
  3311. high = erp_idx - 1;
  3312. } else if (erp_next && bno >=
  3313. xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
  3314. low = erp_idx + 1;
  3315. } else {
  3316. break;
  3317. }
  3318. }
  3319. *erp_idxp = erp_idx;
  3320. return erp;
  3321. }
  3322. /*
  3323. * Return a pointer to the indirection array entry containing the
  3324. * extent record at file extent index *idxp. Store the index of the
  3325. * target irec in *erp_idxp and store the page index of the target
  3326. * extent record in *idxp.
  3327. */
  3328. xfs_ext_irec_t *
  3329. xfs_iext_idx_to_irec(
  3330. xfs_ifork_t *ifp, /* inode fork pointer */
  3331. xfs_extnum_t *idxp, /* extent index (file -> page) */
  3332. int *erp_idxp, /* pointer to target irec */
  3333. int realloc) /* new bytes were just added */
  3334. {
  3335. xfs_ext_irec_t *prev; /* pointer to previous irec */
  3336. xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
  3337. int erp_idx; /* indirection array index */
  3338. int nlists; /* number of irec's (ex lists) */
  3339. int high; /* binary search upper limit */
  3340. int low; /* binary search lower limit */
  3341. xfs_extnum_t page_idx = *idxp; /* extent index in target list */
  3342. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3343. ASSERT(page_idx >= 0);
  3344. ASSERT(page_idx <= ifp->if_bytes / sizeof(xfs_bmbt_rec_t));
  3345. ASSERT(page_idx < ifp->if_bytes / sizeof(xfs_bmbt_rec_t) || realloc);
  3346. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3347. erp_idx = 0;
  3348. low = 0;
  3349. high = nlists - 1;
  3350. /* Binary search extent irec's */
  3351. while (low <= high) {
  3352. erp_idx = (low + high) >> 1;
  3353. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3354. prev = erp_idx > 0 ? erp - 1 : NULL;
  3355. if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
  3356. realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
  3357. high = erp_idx - 1;
  3358. } else if (page_idx > erp->er_extoff + erp->er_extcount ||
  3359. (page_idx == erp->er_extoff + erp->er_extcount &&
  3360. !realloc)) {
  3361. low = erp_idx + 1;
  3362. } else if (page_idx == erp->er_extoff + erp->er_extcount &&
  3363. erp->er_extcount == XFS_LINEAR_EXTS) {
  3364. ASSERT(realloc);
  3365. page_idx = 0;
  3366. erp_idx++;
  3367. erp = erp_idx < nlists ? erp + 1 : NULL;
  3368. break;
  3369. } else {
  3370. page_idx -= erp->er_extoff;
  3371. break;
  3372. }
  3373. }
  3374. *idxp = page_idx;
  3375. *erp_idxp = erp_idx;
  3376. return(erp);
  3377. }
  3378. /*
  3379. * Allocate and initialize an indirection array once the space needed
  3380. * for incore extents increases above XFS_IEXT_BUFSZ.
  3381. */
  3382. void
  3383. xfs_iext_irec_init(
  3384. xfs_ifork_t *ifp) /* inode fork pointer */
  3385. {
  3386. xfs_ext_irec_t *erp; /* indirection array pointer */
  3387. xfs_extnum_t nextents; /* number of extents in file */
  3388. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  3389. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3390. ASSERT(nextents <= XFS_LINEAR_EXTS);
  3391. erp = kmem_alloc(sizeof(xfs_ext_irec_t), KM_NOFS);
  3392. if (nextents == 0) {
  3393. ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
  3394. } else if (!ifp->if_real_bytes) {
  3395. xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
  3396. } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
  3397. xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
  3398. }
  3399. erp->er_extbuf = ifp->if_u1.if_extents;
  3400. erp->er_extcount = nextents;
  3401. erp->er_extoff = 0;
  3402. ifp->if_flags |= XFS_IFEXTIREC;
  3403. ifp->if_real_bytes = XFS_IEXT_BUFSZ;
  3404. ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
  3405. ifp->if_u1.if_ext_irec = erp;
  3406. return;
  3407. }
  3408. /*
  3409. * Allocate and initialize a new entry in the indirection array.
  3410. */
  3411. xfs_ext_irec_t *
  3412. xfs_iext_irec_new(
  3413. xfs_ifork_t *ifp, /* inode fork pointer */
  3414. int erp_idx) /* index for new irec */
  3415. {
  3416. xfs_ext_irec_t *erp; /* indirection array pointer */
  3417. int i; /* loop counter */
  3418. int nlists; /* number of irec's (ex lists) */
  3419. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3420. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3421. /* Resize indirection array */
  3422. xfs_iext_realloc_indirect(ifp, ++nlists *
  3423. sizeof(xfs_ext_irec_t));
  3424. /*
  3425. * Move records down in the array so the
  3426. * new page can use erp_idx.
  3427. */
  3428. erp = ifp->if_u1.if_ext_irec;
  3429. for (i = nlists - 1; i > erp_idx; i--) {
  3430. memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
  3431. }
  3432. ASSERT(i == erp_idx);
  3433. /* Initialize new extent record */
  3434. erp = ifp->if_u1.if_ext_irec;
  3435. erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
  3436. ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
  3437. memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
  3438. erp[erp_idx].er_extcount = 0;
  3439. erp[erp_idx].er_extoff = erp_idx > 0 ?
  3440. erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
  3441. return (&erp[erp_idx]);
  3442. }
  3443. /*
  3444. * Remove a record from the indirection array.
  3445. */
  3446. void
  3447. xfs_iext_irec_remove(
  3448. xfs_ifork_t *ifp, /* inode fork pointer */
  3449. int erp_idx) /* irec index to remove */
  3450. {
  3451. xfs_ext_irec_t *erp; /* indirection array pointer */
  3452. int i; /* loop counter */
  3453. int nlists; /* number of irec's (ex lists) */
  3454. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3455. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3456. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3457. if (erp->er_extbuf) {
  3458. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
  3459. -erp->er_extcount);
  3460. kmem_free(erp->er_extbuf);
  3461. }
  3462. /* Compact extent records */
  3463. erp = ifp->if_u1.if_ext_irec;
  3464. for (i = erp_idx; i < nlists - 1; i++) {
  3465. memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
  3466. }
  3467. /*
  3468. * Manually free the last extent record from the indirection
  3469. * array. A call to xfs_iext_realloc_indirect() with a size
  3470. * of zero would result in a call to xfs_iext_destroy() which
  3471. * would in turn call this function again, creating a nasty
  3472. * infinite loop.
  3473. */
  3474. if (--nlists) {
  3475. xfs_iext_realloc_indirect(ifp,
  3476. nlists * sizeof(xfs_ext_irec_t));
  3477. } else {
  3478. kmem_free(ifp->if_u1.if_ext_irec);
  3479. }
  3480. ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
  3481. }
  3482. /*
  3483. * This is called to clean up large amounts of unused memory allocated
  3484. * by the indirection array. Before compacting anything though, verify
  3485. * that the indirection array is still needed and switch back to the
  3486. * linear extent list (or even the inline buffer) if possible. The
  3487. * compaction policy is as follows:
  3488. *
  3489. * Full Compaction: Extents fit into a single page (or inline buffer)
  3490. * Partial Compaction: Extents occupy less than 50% of allocated space
  3491. * No Compaction: Extents occupy at least 50% of allocated space
  3492. */
  3493. void
  3494. xfs_iext_irec_compact(
  3495. xfs_ifork_t *ifp) /* inode fork pointer */
  3496. {
  3497. xfs_extnum_t nextents; /* number of extents in file */
  3498. int nlists; /* number of irec's (ex lists) */
  3499. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3500. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3501. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3502. if (nextents == 0) {
  3503. xfs_iext_destroy(ifp);
  3504. } else if (nextents <= XFS_INLINE_EXTS) {
  3505. xfs_iext_indirect_to_direct(ifp);
  3506. xfs_iext_direct_to_inline(ifp, nextents);
  3507. } else if (nextents <= XFS_LINEAR_EXTS) {
  3508. xfs_iext_indirect_to_direct(ifp);
  3509. } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
  3510. xfs_iext_irec_compact_pages(ifp);
  3511. }
  3512. }
  3513. /*
  3514. * Combine extents from neighboring extent pages.
  3515. */
  3516. void
  3517. xfs_iext_irec_compact_pages(
  3518. xfs_ifork_t *ifp) /* inode fork pointer */
  3519. {
  3520. xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
  3521. int erp_idx = 0; /* indirection array index */
  3522. int nlists; /* number of irec's (ex lists) */
  3523. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3524. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3525. while (erp_idx < nlists - 1) {
  3526. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3527. erp_next = erp + 1;
  3528. if (erp_next->er_extcount <=
  3529. (XFS_LINEAR_EXTS - erp->er_extcount)) {
  3530. memcpy(&erp->er_extbuf[erp->er_extcount],
  3531. erp_next->er_extbuf, erp_next->er_extcount *
  3532. sizeof(xfs_bmbt_rec_t));
  3533. erp->er_extcount += erp_next->er_extcount;
  3534. /*
  3535. * Free page before removing extent record
  3536. * so er_extoffs don't get modified in
  3537. * xfs_iext_irec_remove.
  3538. */
  3539. kmem_free(erp_next->er_extbuf);
  3540. erp_next->er_extbuf = NULL;
  3541. xfs_iext_irec_remove(ifp, erp_idx + 1);
  3542. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3543. } else {
  3544. erp_idx++;
  3545. }
  3546. }
  3547. }
  3548. /*
  3549. * This is called to update the er_extoff field in the indirection
  3550. * array when extents have been added or removed from one of the
  3551. * extent lists. erp_idx contains the irec index to begin updating
  3552. * at and ext_diff contains the number of extents that were added
  3553. * or removed.
  3554. */
  3555. void
  3556. xfs_iext_irec_update_extoffs(
  3557. xfs_ifork_t *ifp, /* inode fork pointer */
  3558. int erp_idx, /* irec index to update */
  3559. int ext_diff) /* number of new extents */
  3560. {
  3561. int i; /* loop counter */
  3562. int nlists; /* number of irec's (ex lists */
  3563. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3564. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3565. for (i = erp_idx; i < nlists; i++) {
  3566. ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
  3567. }
  3568. }