mmu.c 28 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060
  1. /*
  2. * linux/arch/arm/mm/mmu.c
  3. *
  4. * Copyright (C) 1995-2005 Russell King
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #include <linux/module.h>
  11. #include <linux/kernel.h>
  12. #include <linux/errno.h>
  13. #include <linux/init.h>
  14. #include <linux/mman.h>
  15. #include <linux/nodemask.h>
  16. #include <linux/memblock.h>
  17. #include <linux/fs.h>
  18. #include <asm/cputype.h>
  19. #include <asm/sections.h>
  20. #include <asm/cachetype.h>
  21. #include <asm/setup.h>
  22. #include <asm/sizes.h>
  23. #include <asm/smp_plat.h>
  24. #include <asm/tlb.h>
  25. #include <asm/highmem.h>
  26. #include <asm/traps.h>
  27. #include <asm/mach/arch.h>
  28. #include <asm/mach/map.h>
  29. #include "mm.h"
  30. /*
  31. * empty_zero_page is a special page that is used for
  32. * zero-initialized data and COW.
  33. */
  34. struct page *empty_zero_page;
  35. EXPORT_SYMBOL(empty_zero_page);
  36. /*
  37. * The pmd table for the upper-most set of pages.
  38. */
  39. pmd_t *top_pmd;
  40. #define CPOLICY_UNCACHED 0
  41. #define CPOLICY_BUFFERED 1
  42. #define CPOLICY_WRITETHROUGH 2
  43. #define CPOLICY_WRITEBACK 3
  44. #define CPOLICY_WRITEALLOC 4
  45. static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
  46. static unsigned int ecc_mask __initdata = 0;
  47. pgprot_t pgprot_user;
  48. pgprot_t pgprot_kernel;
  49. EXPORT_SYMBOL(pgprot_user);
  50. EXPORT_SYMBOL(pgprot_kernel);
  51. struct cachepolicy {
  52. const char policy[16];
  53. unsigned int cr_mask;
  54. unsigned int pmd;
  55. pteval_t pte;
  56. };
  57. static struct cachepolicy cache_policies[] __initdata = {
  58. {
  59. .policy = "uncached",
  60. .cr_mask = CR_W|CR_C,
  61. .pmd = PMD_SECT_UNCACHED,
  62. .pte = L_PTE_MT_UNCACHED,
  63. }, {
  64. .policy = "buffered",
  65. .cr_mask = CR_C,
  66. .pmd = PMD_SECT_BUFFERED,
  67. .pte = L_PTE_MT_BUFFERABLE,
  68. }, {
  69. .policy = "writethrough",
  70. .cr_mask = 0,
  71. .pmd = PMD_SECT_WT,
  72. .pte = L_PTE_MT_WRITETHROUGH,
  73. }, {
  74. .policy = "writeback",
  75. .cr_mask = 0,
  76. .pmd = PMD_SECT_WB,
  77. .pte = L_PTE_MT_WRITEBACK,
  78. }, {
  79. .policy = "writealloc",
  80. .cr_mask = 0,
  81. .pmd = PMD_SECT_WBWA,
  82. .pte = L_PTE_MT_WRITEALLOC,
  83. }
  84. };
  85. /*
  86. * These are useful for identifying cache coherency
  87. * problems by allowing the cache or the cache and
  88. * writebuffer to be turned off. (Note: the write
  89. * buffer should not be on and the cache off).
  90. */
  91. static int __init early_cachepolicy(char *p)
  92. {
  93. int i;
  94. for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
  95. int len = strlen(cache_policies[i].policy);
  96. if (memcmp(p, cache_policies[i].policy, len) == 0) {
  97. cachepolicy = i;
  98. cr_alignment &= ~cache_policies[i].cr_mask;
  99. cr_no_alignment &= ~cache_policies[i].cr_mask;
  100. break;
  101. }
  102. }
  103. if (i == ARRAY_SIZE(cache_policies))
  104. printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
  105. /*
  106. * This restriction is partly to do with the way we boot; it is
  107. * unpredictable to have memory mapped using two different sets of
  108. * memory attributes (shared, type, and cache attribs). We can not
  109. * change these attributes once the initial assembly has setup the
  110. * page tables.
  111. */
  112. if (cpu_architecture() >= CPU_ARCH_ARMv6) {
  113. printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
  114. cachepolicy = CPOLICY_WRITEBACK;
  115. }
  116. flush_cache_all();
  117. set_cr(cr_alignment);
  118. return 0;
  119. }
  120. early_param("cachepolicy", early_cachepolicy);
  121. static int __init early_nocache(char *__unused)
  122. {
  123. char *p = "buffered";
  124. printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
  125. early_cachepolicy(p);
  126. return 0;
  127. }
  128. early_param("nocache", early_nocache);
  129. static int __init early_nowrite(char *__unused)
  130. {
  131. char *p = "uncached";
  132. printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
  133. early_cachepolicy(p);
  134. return 0;
  135. }
  136. early_param("nowb", early_nowrite);
  137. static int __init early_ecc(char *p)
  138. {
  139. if (memcmp(p, "on", 2) == 0)
  140. ecc_mask = PMD_PROTECTION;
  141. else if (memcmp(p, "off", 3) == 0)
  142. ecc_mask = 0;
  143. return 0;
  144. }
  145. early_param("ecc", early_ecc);
  146. static int __init noalign_setup(char *__unused)
  147. {
  148. cr_alignment &= ~CR_A;
  149. cr_no_alignment &= ~CR_A;
  150. set_cr(cr_alignment);
  151. return 1;
  152. }
  153. __setup("noalign", noalign_setup);
  154. #ifndef CONFIG_SMP
  155. void adjust_cr(unsigned long mask, unsigned long set)
  156. {
  157. unsigned long flags;
  158. mask &= ~CR_A;
  159. set &= mask;
  160. local_irq_save(flags);
  161. cr_no_alignment = (cr_no_alignment & ~mask) | set;
  162. cr_alignment = (cr_alignment & ~mask) | set;
  163. set_cr((get_cr() & ~mask) | set);
  164. local_irq_restore(flags);
  165. }
  166. #endif
  167. #define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
  168. #define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE
  169. static struct mem_type mem_types[] = {
  170. [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */
  171. .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
  172. L_PTE_SHARED,
  173. .prot_l1 = PMD_TYPE_TABLE,
  174. .prot_sect = PROT_SECT_DEVICE | PMD_SECT_S,
  175. .domain = DOMAIN_IO,
  176. },
  177. [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
  178. .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
  179. .prot_l1 = PMD_TYPE_TABLE,
  180. .prot_sect = PROT_SECT_DEVICE,
  181. .domain = DOMAIN_IO,
  182. },
  183. [MT_DEVICE_CACHED] = { /* ioremap_cached */
  184. .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
  185. .prot_l1 = PMD_TYPE_TABLE,
  186. .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB,
  187. .domain = DOMAIN_IO,
  188. },
  189. [MT_DEVICE_WC] = { /* ioremap_wc */
  190. .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
  191. .prot_l1 = PMD_TYPE_TABLE,
  192. .prot_sect = PROT_SECT_DEVICE,
  193. .domain = DOMAIN_IO,
  194. },
  195. [MT_UNCACHED] = {
  196. .prot_pte = PROT_PTE_DEVICE,
  197. .prot_l1 = PMD_TYPE_TABLE,
  198. .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
  199. .domain = DOMAIN_IO,
  200. },
  201. [MT_CACHECLEAN] = {
  202. .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
  203. .domain = DOMAIN_KERNEL,
  204. },
  205. [MT_MINICLEAN] = {
  206. .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
  207. .domain = DOMAIN_KERNEL,
  208. },
  209. [MT_LOW_VECTORS] = {
  210. .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
  211. L_PTE_RDONLY,
  212. .prot_l1 = PMD_TYPE_TABLE,
  213. .domain = DOMAIN_USER,
  214. },
  215. [MT_HIGH_VECTORS] = {
  216. .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
  217. L_PTE_USER | L_PTE_RDONLY,
  218. .prot_l1 = PMD_TYPE_TABLE,
  219. .domain = DOMAIN_USER,
  220. },
  221. [MT_MEMORY] = {
  222. .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
  223. .prot_l1 = PMD_TYPE_TABLE,
  224. .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
  225. .domain = DOMAIN_KERNEL,
  226. },
  227. [MT_ROM] = {
  228. .prot_sect = PMD_TYPE_SECT,
  229. .domain = DOMAIN_KERNEL,
  230. },
  231. [MT_MEMORY_NONCACHED] = {
  232. .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
  233. L_PTE_MT_BUFFERABLE,
  234. .prot_l1 = PMD_TYPE_TABLE,
  235. .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
  236. .domain = DOMAIN_KERNEL,
  237. },
  238. [MT_MEMORY_DTCM] = {
  239. .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
  240. L_PTE_XN,
  241. .prot_l1 = PMD_TYPE_TABLE,
  242. .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
  243. .domain = DOMAIN_KERNEL,
  244. },
  245. [MT_MEMORY_ITCM] = {
  246. .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
  247. .prot_l1 = PMD_TYPE_TABLE,
  248. .domain = DOMAIN_KERNEL,
  249. },
  250. [MT_MEMORY_SO] = {
  251. .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
  252. L_PTE_MT_UNCACHED,
  253. .prot_l1 = PMD_TYPE_TABLE,
  254. .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
  255. PMD_SECT_UNCACHED | PMD_SECT_XN,
  256. .domain = DOMAIN_KERNEL,
  257. },
  258. };
  259. const struct mem_type *get_mem_type(unsigned int type)
  260. {
  261. return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
  262. }
  263. EXPORT_SYMBOL(get_mem_type);
  264. /*
  265. * Adjust the PMD section entries according to the CPU in use.
  266. */
  267. static void __init build_mem_type_table(void)
  268. {
  269. struct cachepolicy *cp;
  270. unsigned int cr = get_cr();
  271. unsigned int user_pgprot, kern_pgprot, vecs_pgprot;
  272. int cpu_arch = cpu_architecture();
  273. int i;
  274. if (cpu_arch < CPU_ARCH_ARMv6) {
  275. #if defined(CONFIG_CPU_DCACHE_DISABLE)
  276. if (cachepolicy > CPOLICY_BUFFERED)
  277. cachepolicy = CPOLICY_BUFFERED;
  278. #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
  279. if (cachepolicy > CPOLICY_WRITETHROUGH)
  280. cachepolicy = CPOLICY_WRITETHROUGH;
  281. #endif
  282. }
  283. if (cpu_arch < CPU_ARCH_ARMv5) {
  284. if (cachepolicy >= CPOLICY_WRITEALLOC)
  285. cachepolicy = CPOLICY_WRITEBACK;
  286. ecc_mask = 0;
  287. }
  288. if (is_smp())
  289. cachepolicy = CPOLICY_WRITEALLOC;
  290. /*
  291. * Strip out features not present on earlier architectures.
  292. * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those
  293. * without extended page tables don't have the 'Shared' bit.
  294. */
  295. if (cpu_arch < CPU_ARCH_ARMv5)
  296. for (i = 0; i < ARRAY_SIZE(mem_types); i++)
  297. mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
  298. if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
  299. for (i = 0; i < ARRAY_SIZE(mem_types); i++)
  300. mem_types[i].prot_sect &= ~PMD_SECT_S;
  301. /*
  302. * ARMv5 and lower, bit 4 must be set for page tables (was: cache
  303. * "update-able on write" bit on ARM610). However, Xscale and
  304. * Xscale3 require this bit to be cleared.
  305. */
  306. if (cpu_is_xscale() || cpu_is_xsc3()) {
  307. for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
  308. mem_types[i].prot_sect &= ~PMD_BIT4;
  309. mem_types[i].prot_l1 &= ~PMD_BIT4;
  310. }
  311. } else if (cpu_arch < CPU_ARCH_ARMv6) {
  312. for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
  313. if (mem_types[i].prot_l1)
  314. mem_types[i].prot_l1 |= PMD_BIT4;
  315. if (mem_types[i].prot_sect)
  316. mem_types[i].prot_sect |= PMD_BIT4;
  317. }
  318. }
  319. /*
  320. * Mark the device areas according to the CPU/architecture.
  321. */
  322. if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
  323. if (!cpu_is_xsc3()) {
  324. /*
  325. * Mark device regions on ARMv6+ as execute-never
  326. * to prevent speculative instruction fetches.
  327. */
  328. mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
  329. mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
  330. mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
  331. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
  332. }
  333. if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
  334. /*
  335. * For ARMv7 with TEX remapping,
  336. * - shared device is SXCB=1100
  337. * - nonshared device is SXCB=0100
  338. * - write combine device mem is SXCB=0001
  339. * (Uncached Normal memory)
  340. */
  341. mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
  342. mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
  343. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
  344. } else if (cpu_is_xsc3()) {
  345. /*
  346. * For Xscale3,
  347. * - shared device is TEXCB=00101
  348. * - nonshared device is TEXCB=01000
  349. * - write combine device mem is TEXCB=00100
  350. * (Inner/Outer Uncacheable in xsc3 parlance)
  351. */
  352. mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
  353. mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
  354. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
  355. } else {
  356. /*
  357. * For ARMv6 and ARMv7 without TEX remapping,
  358. * - shared device is TEXCB=00001
  359. * - nonshared device is TEXCB=01000
  360. * - write combine device mem is TEXCB=00100
  361. * (Uncached Normal in ARMv6 parlance).
  362. */
  363. mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
  364. mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
  365. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
  366. }
  367. } else {
  368. /*
  369. * On others, write combining is "Uncached/Buffered"
  370. */
  371. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
  372. }
  373. /*
  374. * Now deal with the memory-type mappings
  375. */
  376. cp = &cache_policies[cachepolicy];
  377. vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
  378. /*
  379. * Only use write-through for non-SMP systems
  380. */
  381. if (!is_smp() && cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH)
  382. vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte;
  383. /*
  384. * Enable CPU-specific coherency if supported.
  385. * (Only available on XSC3 at the moment.)
  386. */
  387. if (arch_is_coherent() && cpu_is_xsc3()) {
  388. mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
  389. mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
  390. mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
  391. mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
  392. }
  393. /*
  394. * ARMv6 and above have extended page tables.
  395. */
  396. if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
  397. /*
  398. * Mark cache clean areas and XIP ROM read only
  399. * from SVC mode and no access from userspace.
  400. */
  401. mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
  402. mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
  403. mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
  404. if (is_smp()) {
  405. /*
  406. * Mark memory with the "shared" attribute
  407. * for SMP systems
  408. */
  409. user_pgprot |= L_PTE_SHARED;
  410. kern_pgprot |= L_PTE_SHARED;
  411. vecs_pgprot |= L_PTE_SHARED;
  412. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
  413. mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
  414. mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
  415. mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
  416. mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
  417. mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
  418. mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
  419. mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
  420. }
  421. }
  422. /*
  423. * Non-cacheable Normal - intended for memory areas that must
  424. * not cause dirty cache line writebacks when used
  425. */
  426. if (cpu_arch >= CPU_ARCH_ARMv6) {
  427. if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
  428. /* Non-cacheable Normal is XCB = 001 */
  429. mem_types[MT_MEMORY_NONCACHED].prot_sect |=
  430. PMD_SECT_BUFFERED;
  431. } else {
  432. /* For both ARMv6 and non-TEX-remapping ARMv7 */
  433. mem_types[MT_MEMORY_NONCACHED].prot_sect |=
  434. PMD_SECT_TEX(1);
  435. }
  436. } else {
  437. mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
  438. }
  439. for (i = 0; i < 16; i++) {
  440. unsigned long v = pgprot_val(protection_map[i]);
  441. protection_map[i] = __pgprot(v | user_pgprot);
  442. }
  443. mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
  444. mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
  445. pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
  446. pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
  447. L_PTE_DIRTY | kern_pgprot);
  448. mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
  449. mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
  450. mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
  451. mem_types[MT_MEMORY].prot_pte |= kern_pgprot;
  452. mem_types[MT_MEMORY_NONCACHED].prot_sect |= ecc_mask;
  453. mem_types[MT_ROM].prot_sect |= cp->pmd;
  454. switch (cp->pmd) {
  455. case PMD_SECT_WT:
  456. mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
  457. break;
  458. case PMD_SECT_WB:
  459. case PMD_SECT_WBWA:
  460. mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
  461. break;
  462. }
  463. printk("Memory policy: ECC %sabled, Data cache %s\n",
  464. ecc_mask ? "en" : "dis", cp->policy);
  465. for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
  466. struct mem_type *t = &mem_types[i];
  467. if (t->prot_l1)
  468. t->prot_l1 |= PMD_DOMAIN(t->domain);
  469. if (t->prot_sect)
  470. t->prot_sect |= PMD_DOMAIN(t->domain);
  471. }
  472. }
  473. #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
  474. pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
  475. unsigned long size, pgprot_t vma_prot)
  476. {
  477. if (!pfn_valid(pfn))
  478. return pgprot_noncached(vma_prot);
  479. else if (file->f_flags & O_SYNC)
  480. return pgprot_writecombine(vma_prot);
  481. return vma_prot;
  482. }
  483. EXPORT_SYMBOL(phys_mem_access_prot);
  484. #endif
  485. #define vectors_base() (vectors_high() ? 0xffff0000 : 0)
  486. static void __init *early_alloc(unsigned long sz)
  487. {
  488. void *ptr = __va(memblock_alloc(sz, sz));
  489. memset(ptr, 0, sz);
  490. return ptr;
  491. }
  492. static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
  493. {
  494. if (pmd_none(*pmd)) {
  495. pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
  496. __pmd_populate(pmd, __pa(pte), prot);
  497. }
  498. BUG_ON(pmd_bad(*pmd));
  499. return pte_offset_kernel(pmd, addr);
  500. }
  501. static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
  502. unsigned long end, unsigned long pfn,
  503. const struct mem_type *type)
  504. {
  505. pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
  506. do {
  507. set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
  508. pfn++;
  509. } while (pte++, addr += PAGE_SIZE, addr != end);
  510. }
  511. static void __init alloc_init_section(pud_t *pud, unsigned long addr,
  512. unsigned long end, phys_addr_t phys,
  513. const struct mem_type *type)
  514. {
  515. pmd_t *pmd = pmd_offset(pud, addr);
  516. /*
  517. * Try a section mapping - end, addr and phys must all be aligned
  518. * to a section boundary. Note that PMDs refer to the individual
  519. * L1 entries, whereas PGDs refer to a group of L1 entries making
  520. * up one logical pointer to an L2 table.
  521. */
  522. if (((addr | end | phys) & ~SECTION_MASK) == 0) {
  523. pmd_t *p = pmd;
  524. if (addr & SECTION_SIZE)
  525. pmd++;
  526. do {
  527. *pmd = __pmd(phys | type->prot_sect);
  528. phys += SECTION_SIZE;
  529. } while (pmd++, addr += SECTION_SIZE, addr != end);
  530. flush_pmd_entry(p);
  531. } else {
  532. /*
  533. * No need to loop; pte's aren't interested in the
  534. * individual L1 entries.
  535. */
  536. alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
  537. }
  538. }
  539. static void alloc_init_pud(pgd_t *pgd, unsigned long addr, unsigned long end,
  540. unsigned long phys, const struct mem_type *type)
  541. {
  542. pud_t *pud = pud_offset(pgd, addr);
  543. unsigned long next;
  544. do {
  545. next = pud_addr_end(addr, end);
  546. alloc_init_section(pud, addr, next, phys, type);
  547. phys += next - addr;
  548. } while (pud++, addr = next, addr != end);
  549. }
  550. static void __init create_36bit_mapping(struct map_desc *md,
  551. const struct mem_type *type)
  552. {
  553. unsigned long addr, length, end;
  554. phys_addr_t phys;
  555. pgd_t *pgd;
  556. addr = md->virtual;
  557. phys = __pfn_to_phys(md->pfn);
  558. length = PAGE_ALIGN(md->length);
  559. if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
  560. printk(KERN_ERR "MM: CPU does not support supersection "
  561. "mapping for 0x%08llx at 0x%08lx\n",
  562. (long long)__pfn_to_phys((u64)md->pfn), addr);
  563. return;
  564. }
  565. /* N.B. ARMv6 supersections are only defined to work with domain 0.
  566. * Since domain assignments can in fact be arbitrary, the
  567. * 'domain == 0' check below is required to insure that ARMv6
  568. * supersections are only allocated for domain 0 regardless
  569. * of the actual domain assignments in use.
  570. */
  571. if (type->domain) {
  572. printk(KERN_ERR "MM: invalid domain in supersection "
  573. "mapping for 0x%08llx at 0x%08lx\n",
  574. (long long)__pfn_to_phys((u64)md->pfn), addr);
  575. return;
  576. }
  577. if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
  578. printk(KERN_ERR "MM: cannot create mapping for 0x%08llx"
  579. " at 0x%08lx invalid alignment\n",
  580. (long long)__pfn_to_phys((u64)md->pfn), addr);
  581. return;
  582. }
  583. /*
  584. * Shift bits [35:32] of address into bits [23:20] of PMD
  585. * (See ARMv6 spec).
  586. */
  587. phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
  588. pgd = pgd_offset_k(addr);
  589. end = addr + length;
  590. do {
  591. pud_t *pud = pud_offset(pgd, addr);
  592. pmd_t *pmd = pmd_offset(pud, addr);
  593. int i;
  594. for (i = 0; i < 16; i++)
  595. *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
  596. addr += SUPERSECTION_SIZE;
  597. phys += SUPERSECTION_SIZE;
  598. pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
  599. } while (addr != end);
  600. }
  601. /*
  602. * Create the page directory entries and any necessary
  603. * page tables for the mapping specified by `md'. We
  604. * are able to cope here with varying sizes and address
  605. * offsets, and we take full advantage of sections and
  606. * supersections.
  607. */
  608. static void __init create_mapping(struct map_desc *md)
  609. {
  610. unsigned long addr, length, end;
  611. phys_addr_t phys;
  612. const struct mem_type *type;
  613. pgd_t *pgd;
  614. if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
  615. printk(KERN_WARNING "BUG: not creating mapping for 0x%08llx"
  616. " at 0x%08lx in user region\n",
  617. (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
  618. return;
  619. }
  620. if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
  621. md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
  622. printk(KERN_WARNING "BUG: mapping for 0x%08llx"
  623. " at 0x%08lx overlaps vmalloc space\n",
  624. (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
  625. }
  626. type = &mem_types[md->type];
  627. /*
  628. * Catch 36-bit addresses
  629. */
  630. if (md->pfn >= 0x100000) {
  631. create_36bit_mapping(md, type);
  632. return;
  633. }
  634. addr = md->virtual & PAGE_MASK;
  635. phys = __pfn_to_phys(md->pfn);
  636. length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
  637. if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
  638. printk(KERN_WARNING "BUG: map for 0x%08llx at 0x%08lx can not "
  639. "be mapped using pages, ignoring.\n",
  640. (long long)__pfn_to_phys(md->pfn), addr);
  641. return;
  642. }
  643. pgd = pgd_offset_k(addr);
  644. end = addr + length;
  645. do {
  646. unsigned long next = pgd_addr_end(addr, end);
  647. alloc_init_pud(pgd, addr, next, phys, type);
  648. phys += next - addr;
  649. addr = next;
  650. } while (pgd++, addr != end);
  651. }
  652. /*
  653. * Create the architecture specific mappings
  654. */
  655. void __init iotable_init(struct map_desc *io_desc, int nr)
  656. {
  657. int i;
  658. for (i = 0; i < nr; i++)
  659. create_mapping(io_desc + i);
  660. }
  661. static void * __initdata vmalloc_min = (void *)(VMALLOC_END - SZ_128M);
  662. /*
  663. * vmalloc=size forces the vmalloc area to be exactly 'size'
  664. * bytes. This can be used to increase (or decrease) the vmalloc
  665. * area - the default is 128m.
  666. */
  667. static int __init early_vmalloc(char *arg)
  668. {
  669. unsigned long vmalloc_reserve = memparse(arg, NULL);
  670. if (vmalloc_reserve < SZ_16M) {
  671. vmalloc_reserve = SZ_16M;
  672. printk(KERN_WARNING
  673. "vmalloc area too small, limiting to %luMB\n",
  674. vmalloc_reserve >> 20);
  675. }
  676. if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
  677. vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
  678. printk(KERN_WARNING
  679. "vmalloc area is too big, limiting to %luMB\n",
  680. vmalloc_reserve >> 20);
  681. }
  682. vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
  683. return 0;
  684. }
  685. early_param("vmalloc", early_vmalloc);
  686. static phys_addr_t lowmem_limit __initdata = 0;
  687. void __init sanity_check_meminfo(void)
  688. {
  689. int i, j, highmem = 0;
  690. for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
  691. struct membank *bank = &meminfo.bank[j];
  692. *bank = meminfo.bank[i];
  693. #ifdef CONFIG_HIGHMEM
  694. if (__va(bank->start) >= vmalloc_min ||
  695. __va(bank->start) < (void *)PAGE_OFFSET)
  696. highmem = 1;
  697. bank->highmem = highmem;
  698. /*
  699. * Split those memory banks which are partially overlapping
  700. * the vmalloc area greatly simplifying things later.
  701. */
  702. if (__va(bank->start) < vmalloc_min &&
  703. bank->size > vmalloc_min - __va(bank->start)) {
  704. if (meminfo.nr_banks >= NR_BANKS) {
  705. printk(KERN_CRIT "NR_BANKS too low, "
  706. "ignoring high memory\n");
  707. } else {
  708. memmove(bank + 1, bank,
  709. (meminfo.nr_banks - i) * sizeof(*bank));
  710. meminfo.nr_banks++;
  711. i++;
  712. bank[1].size -= vmalloc_min - __va(bank->start);
  713. bank[1].start = __pa(vmalloc_min - 1) + 1;
  714. bank[1].highmem = highmem = 1;
  715. j++;
  716. }
  717. bank->size = vmalloc_min - __va(bank->start);
  718. }
  719. #else
  720. bank->highmem = highmem;
  721. /*
  722. * Check whether this memory bank would entirely overlap
  723. * the vmalloc area.
  724. */
  725. if (__va(bank->start) >= vmalloc_min ||
  726. __va(bank->start) < (void *)PAGE_OFFSET) {
  727. printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
  728. "(vmalloc region overlap).\n",
  729. (unsigned long long)bank->start,
  730. (unsigned long long)bank->start + bank->size - 1);
  731. continue;
  732. }
  733. /*
  734. * Check whether this memory bank would partially overlap
  735. * the vmalloc area.
  736. */
  737. if (__va(bank->start + bank->size) > vmalloc_min ||
  738. __va(bank->start + bank->size) < __va(bank->start)) {
  739. unsigned long newsize = vmalloc_min - __va(bank->start);
  740. printk(KERN_NOTICE "Truncating RAM at %.8llx-%.8llx "
  741. "to -%.8llx (vmalloc region overlap).\n",
  742. (unsigned long long)bank->start,
  743. (unsigned long long)bank->start + bank->size - 1,
  744. (unsigned long long)bank->start + newsize - 1);
  745. bank->size = newsize;
  746. }
  747. #endif
  748. if (!bank->highmem && bank->start + bank->size > lowmem_limit)
  749. lowmem_limit = bank->start + bank->size;
  750. j++;
  751. }
  752. #ifdef CONFIG_HIGHMEM
  753. if (highmem) {
  754. const char *reason = NULL;
  755. if (cache_is_vipt_aliasing()) {
  756. /*
  757. * Interactions between kmap and other mappings
  758. * make highmem support with aliasing VIPT caches
  759. * rather difficult.
  760. */
  761. reason = "with VIPT aliasing cache";
  762. }
  763. if (reason) {
  764. printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
  765. reason);
  766. while (j > 0 && meminfo.bank[j - 1].highmem)
  767. j--;
  768. }
  769. }
  770. #endif
  771. meminfo.nr_banks = j;
  772. memblock_set_current_limit(lowmem_limit);
  773. }
  774. static inline void prepare_page_table(void)
  775. {
  776. unsigned long addr;
  777. phys_addr_t end;
  778. /*
  779. * Clear out all the mappings below the kernel image.
  780. */
  781. for (addr = 0; addr < MODULES_VADDR; addr += PGDIR_SIZE)
  782. pmd_clear(pmd_off_k(addr));
  783. #ifdef CONFIG_XIP_KERNEL
  784. /* The XIP kernel is mapped in the module area -- skip over it */
  785. addr = ((unsigned long)_etext + PGDIR_SIZE - 1) & PGDIR_MASK;
  786. #endif
  787. for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE)
  788. pmd_clear(pmd_off_k(addr));
  789. /*
  790. * Find the end of the first block of lowmem.
  791. */
  792. end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
  793. if (end >= lowmem_limit)
  794. end = lowmem_limit;
  795. /*
  796. * Clear out all the kernel space mappings, except for the first
  797. * memory bank, up to the end of the vmalloc region.
  798. */
  799. for (addr = __phys_to_virt(end);
  800. addr < VMALLOC_END; addr += PGDIR_SIZE)
  801. pmd_clear(pmd_off_k(addr));
  802. }
  803. /*
  804. * Reserve the special regions of memory
  805. */
  806. void __init arm_mm_memblock_reserve(void)
  807. {
  808. /*
  809. * Reserve the page tables. These are already in use,
  810. * and can only be in node 0.
  811. */
  812. memblock_reserve(__pa(swapper_pg_dir), PTRS_PER_PGD * sizeof(pgd_t));
  813. #ifdef CONFIG_SA1111
  814. /*
  815. * Because of the SA1111 DMA bug, we want to preserve our
  816. * precious DMA-able memory...
  817. */
  818. memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
  819. #endif
  820. }
  821. /*
  822. * Set up device the mappings. Since we clear out the page tables for all
  823. * mappings above VMALLOC_END, we will remove any debug device mappings.
  824. * This means you have to be careful how you debug this function, or any
  825. * called function. This means you can't use any function or debugging
  826. * method which may touch any device, otherwise the kernel _will_ crash.
  827. */
  828. static void __init devicemaps_init(struct machine_desc *mdesc)
  829. {
  830. struct map_desc map;
  831. unsigned long addr;
  832. /*
  833. * Allocate the vector page early.
  834. */
  835. vectors_page = early_alloc(PAGE_SIZE);
  836. for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE)
  837. pmd_clear(pmd_off_k(addr));
  838. /*
  839. * Map the kernel if it is XIP.
  840. * It is always first in the modulearea.
  841. */
  842. #ifdef CONFIG_XIP_KERNEL
  843. map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
  844. map.virtual = MODULES_VADDR;
  845. map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
  846. map.type = MT_ROM;
  847. create_mapping(&map);
  848. #endif
  849. /*
  850. * Map the cache flushing regions.
  851. */
  852. #ifdef FLUSH_BASE
  853. map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
  854. map.virtual = FLUSH_BASE;
  855. map.length = SZ_1M;
  856. map.type = MT_CACHECLEAN;
  857. create_mapping(&map);
  858. #endif
  859. #ifdef FLUSH_BASE_MINICACHE
  860. map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
  861. map.virtual = FLUSH_BASE_MINICACHE;
  862. map.length = SZ_1M;
  863. map.type = MT_MINICLEAN;
  864. create_mapping(&map);
  865. #endif
  866. /*
  867. * Create a mapping for the machine vectors at the high-vectors
  868. * location (0xffff0000). If we aren't using high-vectors, also
  869. * create a mapping at the low-vectors virtual address.
  870. */
  871. map.pfn = __phys_to_pfn(virt_to_phys(vectors_page));
  872. map.virtual = 0xffff0000;
  873. map.length = PAGE_SIZE;
  874. map.type = MT_HIGH_VECTORS;
  875. create_mapping(&map);
  876. if (!vectors_high()) {
  877. map.virtual = 0;
  878. map.type = MT_LOW_VECTORS;
  879. create_mapping(&map);
  880. }
  881. /*
  882. * Ask the machine support to map in the statically mapped devices.
  883. */
  884. if (mdesc->map_io)
  885. mdesc->map_io();
  886. /*
  887. * Finally flush the caches and tlb to ensure that we're in a
  888. * consistent state wrt the writebuffer. This also ensures that
  889. * any write-allocated cache lines in the vector page are written
  890. * back. After this point, we can start to touch devices again.
  891. */
  892. local_flush_tlb_all();
  893. flush_cache_all();
  894. }
  895. static void __init kmap_init(void)
  896. {
  897. #ifdef CONFIG_HIGHMEM
  898. pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
  899. PKMAP_BASE, _PAGE_KERNEL_TABLE);
  900. #endif
  901. }
  902. static void __init map_lowmem(void)
  903. {
  904. struct memblock_region *reg;
  905. /* Map all the lowmem memory banks. */
  906. for_each_memblock(memory, reg) {
  907. phys_addr_t start = reg->base;
  908. phys_addr_t end = start + reg->size;
  909. struct map_desc map;
  910. if (end > lowmem_limit)
  911. end = lowmem_limit;
  912. if (start >= end)
  913. break;
  914. map.pfn = __phys_to_pfn(start);
  915. map.virtual = __phys_to_virt(start);
  916. map.length = end - start;
  917. map.type = MT_MEMORY;
  918. create_mapping(&map);
  919. }
  920. }
  921. /*
  922. * paging_init() sets up the page tables, initialises the zone memory
  923. * maps, and sets up the zero page, bad page and bad page tables.
  924. */
  925. void __init paging_init(struct machine_desc *mdesc)
  926. {
  927. void *zero_page;
  928. memblock_set_current_limit(lowmem_limit);
  929. build_mem_type_table();
  930. prepare_page_table();
  931. map_lowmem();
  932. devicemaps_init(mdesc);
  933. kmap_init();
  934. top_pmd = pmd_off_k(0xffff0000);
  935. /* allocate the zero page. */
  936. zero_page = early_alloc(PAGE_SIZE);
  937. bootmem_init();
  938. empty_zero_page = virt_to_page(zero_page);
  939. __flush_dcache_page(NULL, empty_zero_page);
  940. }