kvm_main.c 72 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "kvm.h"
  18. #include "x86_emulate.h"
  19. #include "segment_descriptor.h"
  20. #include <linux/kvm.h>
  21. #include <linux/module.h>
  22. #include <linux/errno.h>
  23. #include <linux/percpu.h>
  24. #include <linux/gfp.h>
  25. #include <linux/mm.h>
  26. #include <linux/miscdevice.h>
  27. #include <linux/vmalloc.h>
  28. #include <linux/reboot.h>
  29. #include <linux/debugfs.h>
  30. #include <linux/highmem.h>
  31. #include <linux/file.h>
  32. #include <linux/sysdev.h>
  33. #include <linux/cpu.h>
  34. #include <linux/sched.h>
  35. #include <linux/cpumask.h>
  36. #include <linux/smp.h>
  37. #include <linux/anon_inodes.h>
  38. #include <asm/processor.h>
  39. #include <asm/msr.h>
  40. #include <asm/io.h>
  41. #include <asm/uaccess.h>
  42. #include <asm/desc.h>
  43. MODULE_AUTHOR("Qumranet");
  44. MODULE_LICENSE("GPL");
  45. static DEFINE_SPINLOCK(kvm_lock);
  46. static LIST_HEAD(vm_list);
  47. static cpumask_t cpus_hardware_enabled;
  48. struct kvm_arch_ops *kvm_arch_ops;
  49. #define STAT_OFFSET(x) offsetof(struct kvm_vcpu, stat.x)
  50. static struct kvm_stats_debugfs_item {
  51. const char *name;
  52. int offset;
  53. struct dentry *dentry;
  54. } debugfs_entries[] = {
  55. { "pf_fixed", STAT_OFFSET(pf_fixed) },
  56. { "pf_guest", STAT_OFFSET(pf_guest) },
  57. { "tlb_flush", STAT_OFFSET(tlb_flush) },
  58. { "invlpg", STAT_OFFSET(invlpg) },
  59. { "exits", STAT_OFFSET(exits) },
  60. { "io_exits", STAT_OFFSET(io_exits) },
  61. { "mmio_exits", STAT_OFFSET(mmio_exits) },
  62. { "signal_exits", STAT_OFFSET(signal_exits) },
  63. { "irq_window", STAT_OFFSET(irq_window_exits) },
  64. { "halt_exits", STAT_OFFSET(halt_exits) },
  65. { "request_irq", STAT_OFFSET(request_irq_exits) },
  66. { "irq_exits", STAT_OFFSET(irq_exits) },
  67. { "light_exits", STAT_OFFSET(light_exits) },
  68. { "efer_reload", STAT_OFFSET(efer_reload) },
  69. { NULL }
  70. };
  71. static struct dentry *debugfs_dir;
  72. #define MAX_IO_MSRS 256
  73. #define CR0_RESERVED_BITS \
  74. (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
  75. | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
  76. | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
  77. #define CR4_RESERVED_BITS \
  78. (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
  79. | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
  80. | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
  81. | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
  82. #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
  83. #define EFER_RESERVED_BITS 0xfffffffffffff2fe
  84. #ifdef CONFIG_X86_64
  85. // LDT or TSS descriptor in the GDT. 16 bytes.
  86. struct segment_descriptor_64 {
  87. struct segment_descriptor s;
  88. u32 base_higher;
  89. u32 pad_zero;
  90. };
  91. #endif
  92. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  93. unsigned long arg);
  94. unsigned long segment_base(u16 selector)
  95. {
  96. struct descriptor_table gdt;
  97. struct segment_descriptor *d;
  98. unsigned long table_base;
  99. typedef unsigned long ul;
  100. unsigned long v;
  101. if (selector == 0)
  102. return 0;
  103. asm ("sgdt %0" : "=m"(gdt));
  104. table_base = gdt.base;
  105. if (selector & 4) { /* from ldt */
  106. u16 ldt_selector;
  107. asm ("sldt %0" : "=g"(ldt_selector));
  108. table_base = segment_base(ldt_selector);
  109. }
  110. d = (struct segment_descriptor *)(table_base + (selector & ~7));
  111. v = d->base_low | ((ul)d->base_mid << 16) | ((ul)d->base_high << 24);
  112. #ifdef CONFIG_X86_64
  113. if (d->system == 0
  114. && (d->type == 2 || d->type == 9 || d->type == 11))
  115. v |= ((ul)((struct segment_descriptor_64 *)d)->base_higher) << 32;
  116. #endif
  117. return v;
  118. }
  119. EXPORT_SYMBOL_GPL(segment_base);
  120. static inline int valid_vcpu(int n)
  121. {
  122. return likely(n >= 0 && n < KVM_MAX_VCPUS);
  123. }
  124. int kvm_read_guest(struct kvm_vcpu *vcpu, gva_t addr, unsigned long size,
  125. void *dest)
  126. {
  127. unsigned char *host_buf = dest;
  128. unsigned long req_size = size;
  129. while (size) {
  130. hpa_t paddr;
  131. unsigned now;
  132. unsigned offset;
  133. hva_t guest_buf;
  134. paddr = gva_to_hpa(vcpu, addr);
  135. if (is_error_hpa(paddr))
  136. break;
  137. guest_buf = (hva_t)kmap_atomic(
  138. pfn_to_page(paddr >> PAGE_SHIFT),
  139. KM_USER0);
  140. offset = addr & ~PAGE_MASK;
  141. guest_buf |= offset;
  142. now = min(size, PAGE_SIZE - offset);
  143. memcpy(host_buf, (void*)guest_buf, now);
  144. host_buf += now;
  145. addr += now;
  146. size -= now;
  147. kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
  148. }
  149. return req_size - size;
  150. }
  151. EXPORT_SYMBOL_GPL(kvm_read_guest);
  152. int kvm_write_guest(struct kvm_vcpu *vcpu, gva_t addr, unsigned long size,
  153. void *data)
  154. {
  155. unsigned char *host_buf = data;
  156. unsigned long req_size = size;
  157. while (size) {
  158. hpa_t paddr;
  159. unsigned now;
  160. unsigned offset;
  161. hva_t guest_buf;
  162. gfn_t gfn;
  163. paddr = gva_to_hpa(vcpu, addr);
  164. if (is_error_hpa(paddr))
  165. break;
  166. gfn = vcpu->mmu.gva_to_gpa(vcpu, addr) >> PAGE_SHIFT;
  167. mark_page_dirty(vcpu->kvm, gfn);
  168. guest_buf = (hva_t)kmap_atomic(
  169. pfn_to_page(paddr >> PAGE_SHIFT), KM_USER0);
  170. offset = addr & ~PAGE_MASK;
  171. guest_buf |= offset;
  172. now = min(size, PAGE_SIZE - offset);
  173. memcpy((void*)guest_buf, host_buf, now);
  174. host_buf += now;
  175. addr += now;
  176. size -= now;
  177. kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
  178. }
  179. return req_size - size;
  180. }
  181. EXPORT_SYMBOL_GPL(kvm_write_guest);
  182. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  183. {
  184. if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
  185. return;
  186. vcpu->guest_fpu_loaded = 1;
  187. fx_save(vcpu->host_fx_image);
  188. fx_restore(vcpu->guest_fx_image);
  189. }
  190. EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
  191. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  192. {
  193. if (!vcpu->guest_fpu_loaded)
  194. return;
  195. vcpu->guest_fpu_loaded = 0;
  196. fx_save(vcpu->guest_fx_image);
  197. fx_restore(vcpu->host_fx_image);
  198. }
  199. EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
  200. /*
  201. * Switches to specified vcpu, until a matching vcpu_put()
  202. */
  203. static void vcpu_load(struct kvm_vcpu *vcpu)
  204. {
  205. mutex_lock(&vcpu->mutex);
  206. kvm_arch_ops->vcpu_load(vcpu);
  207. }
  208. static void vcpu_put(struct kvm_vcpu *vcpu)
  209. {
  210. kvm_arch_ops->vcpu_put(vcpu);
  211. mutex_unlock(&vcpu->mutex);
  212. }
  213. static void ack_flush(void *_completed)
  214. {
  215. atomic_t *completed = _completed;
  216. atomic_inc(completed);
  217. }
  218. void kvm_flush_remote_tlbs(struct kvm *kvm)
  219. {
  220. int i, cpu, needed;
  221. cpumask_t cpus;
  222. struct kvm_vcpu *vcpu;
  223. atomic_t completed;
  224. atomic_set(&completed, 0);
  225. cpus_clear(cpus);
  226. needed = 0;
  227. for (i = 0; i < kvm->nvcpus; ++i) {
  228. vcpu = &kvm->vcpus[i];
  229. if (test_and_set_bit(KVM_TLB_FLUSH, &vcpu->requests))
  230. continue;
  231. cpu = vcpu->cpu;
  232. if (cpu != -1 && cpu != raw_smp_processor_id())
  233. if (!cpu_isset(cpu, cpus)) {
  234. cpu_set(cpu, cpus);
  235. ++needed;
  236. }
  237. }
  238. /*
  239. * We really want smp_call_function_mask() here. But that's not
  240. * available, so ipi all cpus in parallel and wait for them
  241. * to complete.
  242. */
  243. for (cpu = first_cpu(cpus); cpu != NR_CPUS; cpu = next_cpu(cpu, cpus))
  244. smp_call_function_single(cpu, ack_flush, &completed, 1, 0);
  245. while (atomic_read(&completed) != needed) {
  246. cpu_relax();
  247. barrier();
  248. }
  249. }
  250. static struct kvm *kvm_create_vm(void)
  251. {
  252. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  253. int i;
  254. if (!kvm)
  255. return ERR_PTR(-ENOMEM);
  256. kvm_io_bus_init(&kvm->pio_bus);
  257. spin_lock_init(&kvm->lock);
  258. INIT_LIST_HEAD(&kvm->active_mmu_pages);
  259. kvm_io_bus_init(&kvm->mmio_bus);
  260. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  261. struct kvm_vcpu *vcpu = &kvm->vcpus[i];
  262. mutex_init(&vcpu->mutex);
  263. vcpu->cpu = -1;
  264. vcpu->kvm = kvm;
  265. vcpu->mmu.root_hpa = INVALID_PAGE;
  266. }
  267. spin_lock(&kvm_lock);
  268. list_add(&kvm->vm_list, &vm_list);
  269. spin_unlock(&kvm_lock);
  270. return kvm;
  271. }
  272. static int kvm_dev_open(struct inode *inode, struct file *filp)
  273. {
  274. return 0;
  275. }
  276. /*
  277. * Free any memory in @free but not in @dont.
  278. */
  279. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  280. struct kvm_memory_slot *dont)
  281. {
  282. int i;
  283. if (!dont || free->phys_mem != dont->phys_mem)
  284. if (free->phys_mem) {
  285. for (i = 0; i < free->npages; ++i)
  286. if (free->phys_mem[i])
  287. __free_page(free->phys_mem[i]);
  288. vfree(free->phys_mem);
  289. }
  290. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  291. vfree(free->dirty_bitmap);
  292. free->phys_mem = NULL;
  293. free->npages = 0;
  294. free->dirty_bitmap = NULL;
  295. }
  296. static void kvm_free_physmem(struct kvm *kvm)
  297. {
  298. int i;
  299. for (i = 0; i < kvm->nmemslots; ++i)
  300. kvm_free_physmem_slot(&kvm->memslots[i], NULL);
  301. }
  302. static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
  303. {
  304. int i;
  305. for (i = 0; i < 2; ++i)
  306. if (vcpu->pio.guest_pages[i]) {
  307. __free_page(vcpu->pio.guest_pages[i]);
  308. vcpu->pio.guest_pages[i] = NULL;
  309. }
  310. }
  311. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  312. {
  313. if (!vcpu->vmcs)
  314. return;
  315. vcpu_load(vcpu);
  316. kvm_mmu_unload(vcpu);
  317. vcpu_put(vcpu);
  318. }
  319. static void kvm_free_vcpu(struct kvm_vcpu *vcpu)
  320. {
  321. if (!vcpu->vmcs)
  322. return;
  323. vcpu_load(vcpu);
  324. kvm_mmu_destroy(vcpu);
  325. vcpu_put(vcpu);
  326. kvm_arch_ops->vcpu_free(vcpu);
  327. free_page((unsigned long)vcpu->run);
  328. vcpu->run = NULL;
  329. free_page((unsigned long)vcpu->pio_data);
  330. vcpu->pio_data = NULL;
  331. free_pio_guest_pages(vcpu);
  332. }
  333. static void kvm_free_vcpus(struct kvm *kvm)
  334. {
  335. unsigned int i;
  336. /*
  337. * Unpin any mmu pages first.
  338. */
  339. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  340. kvm_unload_vcpu_mmu(&kvm->vcpus[i]);
  341. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  342. kvm_free_vcpu(&kvm->vcpus[i]);
  343. }
  344. static int kvm_dev_release(struct inode *inode, struct file *filp)
  345. {
  346. return 0;
  347. }
  348. static void kvm_destroy_vm(struct kvm *kvm)
  349. {
  350. spin_lock(&kvm_lock);
  351. list_del(&kvm->vm_list);
  352. spin_unlock(&kvm_lock);
  353. kvm_io_bus_destroy(&kvm->pio_bus);
  354. kvm_io_bus_destroy(&kvm->mmio_bus);
  355. kvm_free_vcpus(kvm);
  356. kvm_free_physmem(kvm);
  357. kfree(kvm);
  358. }
  359. static int kvm_vm_release(struct inode *inode, struct file *filp)
  360. {
  361. struct kvm *kvm = filp->private_data;
  362. kvm_destroy_vm(kvm);
  363. return 0;
  364. }
  365. static void inject_gp(struct kvm_vcpu *vcpu)
  366. {
  367. kvm_arch_ops->inject_gp(vcpu, 0);
  368. }
  369. /*
  370. * Load the pae pdptrs. Return true is they are all valid.
  371. */
  372. static int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  373. {
  374. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  375. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  376. int i;
  377. u64 *pdpt;
  378. int ret;
  379. struct page *page;
  380. u64 pdpte[ARRAY_SIZE(vcpu->pdptrs)];
  381. spin_lock(&vcpu->kvm->lock);
  382. page = gfn_to_page(vcpu->kvm, pdpt_gfn);
  383. if (!page) {
  384. ret = 0;
  385. goto out;
  386. }
  387. pdpt = kmap_atomic(page, KM_USER0);
  388. memcpy(pdpte, pdpt+offset, sizeof(pdpte));
  389. kunmap_atomic(pdpt, KM_USER0);
  390. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  391. if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
  392. ret = 0;
  393. goto out;
  394. }
  395. }
  396. ret = 1;
  397. memcpy(vcpu->pdptrs, pdpte, sizeof(vcpu->pdptrs));
  398. out:
  399. spin_unlock(&vcpu->kvm->lock);
  400. return ret;
  401. }
  402. void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  403. {
  404. if (cr0 & CR0_RESERVED_BITS) {
  405. printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
  406. cr0, vcpu->cr0);
  407. inject_gp(vcpu);
  408. return;
  409. }
  410. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
  411. printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
  412. inject_gp(vcpu);
  413. return;
  414. }
  415. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
  416. printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
  417. "and a clear PE flag\n");
  418. inject_gp(vcpu);
  419. return;
  420. }
  421. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  422. #ifdef CONFIG_X86_64
  423. if ((vcpu->shadow_efer & EFER_LME)) {
  424. int cs_db, cs_l;
  425. if (!is_pae(vcpu)) {
  426. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  427. "in long mode while PAE is disabled\n");
  428. inject_gp(vcpu);
  429. return;
  430. }
  431. kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  432. if (cs_l) {
  433. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  434. "in long mode while CS.L == 1\n");
  435. inject_gp(vcpu);
  436. return;
  437. }
  438. } else
  439. #endif
  440. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->cr3)) {
  441. printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
  442. "reserved bits\n");
  443. inject_gp(vcpu);
  444. return;
  445. }
  446. }
  447. kvm_arch_ops->set_cr0(vcpu, cr0);
  448. vcpu->cr0 = cr0;
  449. spin_lock(&vcpu->kvm->lock);
  450. kvm_mmu_reset_context(vcpu);
  451. spin_unlock(&vcpu->kvm->lock);
  452. return;
  453. }
  454. EXPORT_SYMBOL_GPL(set_cr0);
  455. void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  456. {
  457. set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
  458. }
  459. EXPORT_SYMBOL_GPL(lmsw);
  460. void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  461. {
  462. if (cr4 & CR4_RESERVED_BITS) {
  463. printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
  464. inject_gp(vcpu);
  465. return;
  466. }
  467. if (is_long_mode(vcpu)) {
  468. if (!(cr4 & X86_CR4_PAE)) {
  469. printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
  470. "in long mode\n");
  471. inject_gp(vcpu);
  472. return;
  473. }
  474. } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
  475. && !load_pdptrs(vcpu, vcpu->cr3)) {
  476. printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
  477. inject_gp(vcpu);
  478. return;
  479. }
  480. if (cr4 & X86_CR4_VMXE) {
  481. printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
  482. inject_gp(vcpu);
  483. return;
  484. }
  485. kvm_arch_ops->set_cr4(vcpu, cr4);
  486. spin_lock(&vcpu->kvm->lock);
  487. kvm_mmu_reset_context(vcpu);
  488. spin_unlock(&vcpu->kvm->lock);
  489. }
  490. EXPORT_SYMBOL_GPL(set_cr4);
  491. void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  492. {
  493. if (is_long_mode(vcpu)) {
  494. if (cr3 & CR3_L_MODE_RESERVED_BITS) {
  495. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  496. inject_gp(vcpu);
  497. return;
  498. }
  499. } else {
  500. if (is_pae(vcpu)) {
  501. if (cr3 & CR3_PAE_RESERVED_BITS) {
  502. printk(KERN_DEBUG
  503. "set_cr3: #GP, reserved bits\n");
  504. inject_gp(vcpu);
  505. return;
  506. }
  507. if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
  508. printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
  509. "reserved bits\n");
  510. inject_gp(vcpu);
  511. return;
  512. }
  513. } else {
  514. if (cr3 & CR3_NONPAE_RESERVED_BITS) {
  515. printk(KERN_DEBUG
  516. "set_cr3: #GP, reserved bits\n");
  517. inject_gp(vcpu);
  518. return;
  519. }
  520. }
  521. }
  522. vcpu->cr3 = cr3;
  523. spin_lock(&vcpu->kvm->lock);
  524. /*
  525. * Does the new cr3 value map to physical memory? (Note, we
  526. * catch an invalid cr3 even in real-mode, because it would
  527. * cause trouble later on when we turn on paging anyway.)
  528. *
  529. * A real CPU would silently accept an invalid cr3 and would
  530. * attempt to use it - with largely undefined (and often hard
  531. * to debug) behavior on the guest side.
  532. */
  533. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  534. inject_gp(vcpu);
  535. else
  536. vcpu->mmu.new_cr3(vcpu);
  537. spin_unlock(&vcpu->kvm->lock);
  538. }
  539. EXPORT_SYMBOL_GPL(set_cr3);
  540. void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  541. {
  542. if (cr8 & CR8_RESERVED_BITS) {
  543. printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
  544. inject_gp(vcpu);
  545. return;
  546. }
  547. vcpu->cr8 = cr8;
  548. }
  549. EXPORT_SYMBOL_GPL(set_cr8);
  550. void fx_init(struct kvm_vcpu *vcpu)
  551. {
  552. struct __attribute__ ((__packed__)) fx_image_s {
  553. u16 control; //fcw
  554. u16 status; //fsw
  555. u16 tag; // ftw
  556. u16 opcode; //fop
  557. u64 ip; // fpu ip
  558. u64 operand;// fpu dp
  559. u32 mxcsr;
  560. u32 mxcsr_mask;
  561. } *fx_image;
  562. fx_save(vcpu->host_fx_image);
  563. fpu_init();
  564. fx_save(vcpu->guest_fx_image);
  565. fx_restore(vcpu->host_fx_image);
  566. fx_image = (struct fx_image_s *)vcpu->guest_fx_image;
  567. fx_image->mxcsr = 0x1f80;
  568. memset(vcpu->guest_fx_image + sizeof(struct fx_image_s),
  569. 0, FX_IMAGE_SIZE - sizeof(struct fx_image_s));
  570. }
  571. EXPORT_SYMBOL_GPL(fx_init);
  572. /*
  573. * Allocate some memory and give it an address in the guest physical address
  574. * space.
  575. *
  576. * Discontiguous memory is allowed, mostly for framebuffers.
  577. */
  578. static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  579. struct kvm_memory_region *mem)
  580. {
  581. int r;
  582. gfn_t base_gfn;
  583. unsigned long npages;
  584. unsigned long i;
  585. struct kvm_memory_slot *memslot;
  586. struct kvm_memory_slot old, new;
  587. int memory_config_version;
  588. r = -EINVAL;
  589. /* General sanity checks */
  590. if (mem->memory_size & (PAGE_SIZE - 1))
  591. goto out;
  592. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  593. goto out;
  594. if (mem->slot >= KVM_MEMORY_SLOTS)
  595. goto out;
  596. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  597. goto out;
  598. memslot = &kvm->memslots[mem->slot];
  599. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  600. npages = mem->memory_size >> PAGE_SHIFT;
  601. if (!npages)
  602. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  603. raced:
  604. spin_lock(&kvm->lock);
  605. memory_config_version = kvm->memory_config_version;
  606. new = old = *memslot;
  607. new.base_gfn = base_gfn;
  608. new.npages = npages;
  609. new.flags = mem->flags;
  610. /* Disallow changing a memory slot's size. */
  611. r = -EINVAL;
  612. if (npages && old.npages && npages != old.npages)
  613. goto out_unlock;
  614. /* Check for overlaps */
  615. r = -EEXIST;
  616. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  617. struct kvm_memory_slot *s = &kvm->memslots[i];
  618. if (s == memslot)
  619. continue;
  620. if (!((base_gfn + npages <= s->base_gfn) ||
  621. (base_gfn >= s->base_gfn + s->npages)))
  622. goto out_unlock;
  623. }
  624. /*
  625. * Do memory allocations outside lock. memory_config_version will
  626. * detect any races.
  627. */
  628. spin_unlock(&kvm->lock);
  629. /* Deallocate if slot is being removed */
  630. if (!npages)
  631. new.phys_mem = NULL;
  632. /* Free page dirty bitmap if unneeded */
  633. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  634. new.dirty_bitmap = NULL;
  635. r = -ENOMEM;
  636. /* Allocate if a slot is being created */
  637. if (npages && !new.phys_mem) {
  638. new.phys_mem = vmalloc(npages * sizeof(struct page *));
  639. if (!new.phys_mem)
  640. goto out_free;
  641. memset(new.phys_mem, 0, npages * sizeof(struct page *));
  642. for (i = 0; i < npages; ++i) {
  643. new.phys_mem[i] = alloc_page(GFP_HIGHUSER
  644. | __GFP_ZERO);
  645. if (!new.phys_mem[i])
  646. goto out_free;
  647. set_page_private(new.phys_mem[i],0);
  648. }
  649. }
  650. /* Allocate page dirty bitmap if needed */
  651. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  652. unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
  653. new.dirty_bitmap = vmalloc(dirty_bytes);
  654. if (!new.dirty_bitmap)
  655. goto out_free;
  656. memset(new.dirty_bitmap, 0, dirty_bytes);
  657. }
  658. spin_lock(&kvm->lock);
  659. if (memory_config_version != kvm->memory_config_version) {
  660. spin_unlock(&kvm->lock);
  661. kvm_free_physmem_slot(&new, &old);
  662. goto raced;
  663. }
  664. r = -EAGAIN;
  665. if (kvm->busy)
  666. goto out_unlock;
  667. if (mem->slot >= kvm->nmemslots)
  668. kvm->nmemslots = mem->slot + 1;
  669. *memslot = new;
  670. ++kvm->memory_config_version;
  671. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  672. kvm_flush_remote_tlbs(kvm);
  673. spin_unlock(&kvm->lock);
  674. kvm_free_physmem_slot(&old, &new);
  675. return 0;
  676. out_unlock:
  677. spin_unlock(&kvm->lock);
  678. out_free:
  679. kvm_free_physmem_slot(&new, &old);
  680. out:
  681. return r;
  682. }
  683. /*
  684. * Get (and clear) the dirty memory log for a memory slot.
  685. */
  686. static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  687. struct kvm_dirty_log *log)
  688. {
  689. struct kvm_memory_slot *memslot;
  690. int r, i;
  691. int n;
  692. unsigned long any = 0;
  693. spin_lock(&kvm->lock);
  694. /*
  695. * Prevent changes to guest memory configuration even while the lock
  696. * is not taken.
  697. */
  698. ++kvm->busy;
  699. spin_unlock(&kvm->lock);
  700. r = -EINVAL;
  701. if (log->slot >= KVM_MEMORY_SLOTS)
  702. goto out;
  703. memslot = &kvm->memslots[log->slot];
  704. r = -ENOENT;
  705. if (!memslot->dirty_bitmap)
  706. goto out;
  707. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  708. for (i = 0; !any && i < n/sizeof(long); ++i)
  709. any = memslot->dirty_bitmap[i];
  710. r = -EFAULT;
  711. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  712. goto out;
  713. spin_lock(&kvm->lock);
  714. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  715. kvm_flush_remote_tlbs(kvm);
  716. memset(memslot->dirty_bitmap, 0, n);
  717. spin_unlock(&kvm->lock);
  718. r = 0;
  719. out:
  720. spin_lock(&kvm->lock);
  721. --kvm->busy;
  722. spin_unlock(&kvm->lock);
  723. return r;
  724. }
  725. /*
  726. * Set a new alias region. Aliases map a portion of physical memory into
  727. * another portion. This is useful for memory windows, for example the PC
  728. * VGA region.
  729. */
  730. static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
  731. struct kvm_memory_alias *alias)
  732. {
  733. int r, n;
  734. struct kvm_mem_alias *p;
  735. r = -EINVAL;
  736. /* General sanity checks */
  737. if (alias->memory_size & (PAGE_SIZE - 1))
  738. goto out;
  739. if (alias->guest_phys_addr & (PAGE_SIZE - 1))
  740. goto out;
  741. if (alias->slot >= KVM_ALIAS_SLOTS)
  742. goto out;
  743. if (alias->guest_phys_addr + alias->memory_size
  744. < alias->guest_phys_addr)
  745. goto out;
  746. if (alias->target_phys_addr + alias->memory_size
  747. < alias->target_phys_addr)
  748. goto out;
  749. spin_lock(&kvm->lock);
  750. p = &kvm->aliases[alias->slot];
  751. p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
  752. p->npages = alias->memory_size >> PAGE_SHIFT;
  753. p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
  754. for (n = KVM_ALIAS_SLOTS; n > 0; --n)
  755. if (kvm->aliases[n - 1].npages)
  756. break;
  757. kvm->naliases = n;
  758. kvm_mmu_zap_all(kvm);
  759. spin_unlock(&kvm->lock);
  760. return 0;
  761. out:
  762. return r;
  763. }
  764. static gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  765. {
  766. int i;
  767. struct kvm_mem_alias *alias;
  768. for (i = 0; i < kvm->naliases; ++i) {
  769. alias = &kvm->aliases[i];
  770. if (gfn >= alias->base_gfn
  771. && gfn < alias->base_gfn + alias->npages)
  772. return alias->target_gfn + gfn - alias->base_gfn;
  773. }
  774. return gfn;
  775. }
  776. static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  777. {
  778. int i;
  779. for (i = 0; i < kvm->nmemslots; ++i) {
  780. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  781. if (gfn >= memslot->base_gfn
  782. && gfn < memslot->base_gfn + memslot->npages)
  783. return memslot;
  784. }
  785. return NULL;
  786. }
  787. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  788. {
  789. gfn = unalias_gfn(kvm, gfn);
  790. return __gfn_to_memslot(kvm, gfn);
  791. }
  792. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  793. {
  794. struct kvm_memory_slot *slot;
  795. gfn = unalias_gfn(kvm, gfn);
  796. slot = __gfn_to_memslot(kvm, gfn);
  797. if (!slot)
  798. return NULL;
  799. return slot->phys_mem[gfn - slot->base_gfn];
  800. }
  801. EXPORT_SYMBOL_GPL(gfn_to_page);
  802. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  803. {
  804. int i;
  805. struct kvm_memory_slot *memslot;
  806. unsigned long rel_gfn;
  807. for (i = 0; i < kvm->nmemslots; ++i) {
  808. memslot = &kvm->memslots[i];
  809. if (gfn >= memslot->base_gfn
  810. && gfn < memslot->base_gfn + memslot->npages) {
  811. if (!memslot->dirty_bitmap)
  812. return;
  813. rel_gfn = gfn - memslot->base_gfn;
  814. /* avoid RMW */
  815. if (!test_bit(rel_gfn, memslot->dirty_bitmap))
  816. set_bit(rel_gfn, memslot->dirty_bitmap);
  817. return;
  818. }
  819. }
  820. }
  821. static int emulator_read_std(unsigned long addr,
  822. void *val,
  823. unsigned int bytes,
  824. struct x86_emulate_ctxt *ctxt)
  825. {
  826. struct kvm_vcpu *vcpu = ctxt->vcpu;
  827. void *data = val;
  828. while (bytes) {
  829. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  830. unsigned offset = addr & (PAGE_SIZE-1);
  831. unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
  832. unsigned long pfn;
  833. struct page *page;
  834. void *page_virt;
  835. if (gpa == UNMAPPED_GVA)
  836. return X86EMUL_PROPAGATE_FAULT;
  837. pfn = gpa >> PAGE_SHIFT;
  838. page = gfn_to_page(vcpu->kvm, pfn);
  839. if (!page)
  840. return X86EMUL_UNHANDLEABLE;
  841. page_virt = kmap_atomic(page, KM_USER0);
  842. memcpy(data, page_virt + offset, tocopy);
  843. kunmap_atomic(page_virt, KM_USER0);
  844. bytes -= tocopy;
  845. data += tocopy;
  846. addr += tocopy;
  847. }
  848. return X86EMUL_CONTINUE;
  849. }
  850. static int emulator_write_std(unsigned long addr,
  851. const void *val,
  852. unsigned int bytes,
  853. struct x86_emulate_ctxt *ctxt)
  854. {
  855. printk(KERN_ERR "emulator_write_std: addr %lx n %d\n",
  856. addr, bytes);
  857. return X86EMUL_UNHANDLEABLE;
  858. }
  859. static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
  860. gpa_t addr)
  861. {
  862. /*
  863. * Note that its important to have this wrapper function because
  864. * in the very near future we will be checking for MMIOs against
  865. * the LAPIC as well as the general MMIO bus
  866. */
  867. return kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr);
  868. }
  869. static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
  870. gpa_t addr)
  871. {
  872. return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr);
  873. }
  874. static int emulator_read_emulated(unsigned long addr,
  875. void *val,
  876. unsigned int bytes,
  877. struct x86_emulate_ctxt *ctxt)
  878. {
  879. struct kvm_vcpu *vcpu = ctxt->vcpu;
  880. struct kvm_io_device *mmio_dev;
  881. gpa_t gpa;
  882. if (vcpu->mmio_read_completed) {
  883. memcpy(val, vcpu->mmio_data, bytes);
  884. vcpu->mmio_read_completed = 0;
  885. return X86EMUL_CONTINUE;
  886. } else if (emulator_read_std(addr, val, bytes, ctxt)
  887. == X86EMUL_CONTINUE)
  888. return X86EMUL_CONTINUE;
  889. gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  890. if (gpa == UNMAPPED_GVA)
  891. return X86EMUL_PROPAGATE_FAULT;
  892. /*
  893. * Is this MMIO handled locally?
  894. */
  895. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
  896. if (mmio_dev) {
  897. kvm_iodevice_read(mmio_dev, gpa, bytes, val);
  898. return X86EMUL_CONTINUE;
  899. }
  900. vcpu->mmio_needed = 1;
  901. vcpu->mmio_phys_addr = gpa;
  902. vcpu->mmio_size = bytes;
  903. vcpu->mmio_is_write = 0;
  904. return X86EMUL_UNHANDLEABLE;
  905. }
  906. static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  907. const void *val, int bytes)
  908. {
  909. struct page *page;
  910. void *virt;
  911. if (((gpa + bytes - 1) >> PAGE_SHIFT) != (gpa >> PAGE_SHIFT))
  912. return 0;
  913. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  914. if (!page)
  915. return 0;
  916. mark_page_dirty(vcpu->kvm, gpa >> PAGE_SHIFT);
  917. virt = kmap_atomic(page, KM_USER0);
  918. kvm_mmu_pte_write(vcpu, gpa, val, bytes);
  919. memcpy(virt + offset_in_page(gpa), val, bytes);
  920. kunmap_atomic(virt, KM_USER0);
  921. return 1;
  922. }
  923. static int emulator_write_emulated_onepage(unsigned long addr,
  924. const void *val,
  925. unsigned int bytes,
  926. struct x86_emulate_ctxt *ctxt)
  927. {
  928. struct kvm_vcpu *vcpu = ctxt->vcpu;
  929. struct kvm_io_device *mmio_dev;
  930. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  931. if (gpa == UNMAPPED_GVA) {
  932. kvm_arch_ops->inject_page_fault(vcpu, addr, 2);
  933. return X86EMUL_PROPAGATE_FAULT;
  934. }
  935. if (emulator_write_phys(vcpu, gpa, val, bytes))
  936. return X86EMUL_CONTINUE;
  937. /*
  938. * Is this MMIO handled locally?
  939. */
  940. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
  941. if (mmio_dev) {
  942. kvm_iodevice_write(mmio_dev, gpa, bytes, val);
  943. return X86EMUL_CONTINUE;
  944. }
  945. vcpu->mmio_needed = 1;
  946. vcpu->mmio_phys_addr = gpa;
  947. vcpu->mmio_size = bytes;
  948. vcpu->mmio_is_write = 1;
  949. memcpy(vcpu->mmio_data, val, bytes);
  950. return X86EMUL_CONTINUE;
  951. }
  952. static int emulator_write_emulated(unsigned long addr,
  953. const void *val,
  954. unsigned int bytes,
  955. struct x86_emulate_ctxt *ctxt)
  956. {
  957. /* Crossing a page boundary? */
  958. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  959. int rc, now;
  960. now = -addr & ~PAGE_MASK;
  961. rc = emulator_write_emulated_onepage(addr, val, now, ctxt);
  962. if (rc != X86EMUL_CONTINUE)
  963. return rc;
  964. addr += now;
  965. val += now;
  966. bytes -= now;
  967. }
  968. return emulator_write_emulated_onepage(addr, val, bytes, ctxt);
  969. }
  970. static int emulator_cmpxchg_emulated(unsigned long addr,
  971. const void *old,
  972. const void *new,
  973. unsigned int bytes,
  974. struct x86_emulate_ctxt *ctxt)
  975. {
  976. static int reported;
  977. if (!reported) {
  978. reported = 1;
  979. printk(KERN_WARNING "kvm: emulating exchange as write\n");
  980. }
  981. return emulator_write_emulated(addr, new, bytes, ctxt);
  982. }
  983. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  984. {
  985. return kvm_arch_ops->get_segment_base(vcpu, seg);
  986. }
  987. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  988. {
  989. return X86EMUL_CONTINUE;
  990. }
  991. int emulate_clts(struct kvm_vcpu *vcpu)
  992. {
  993. unsigned long cr0;
  994. cr0 = vcpu->cr0 & ~X86_CR0_TS;
  995. kvm_arch_ops->set_cr0(vcpu, cr0);
  996. return X86EMUL_CONTINUE;
  997. }
  998. int emulator_get_dr(struct x86_emulate_ctxt* ctxt, int dr, unsigned long *dest)
  999. {
  1000. struct kvm_vcpu *vcpu = ctxt->vcpu;
  1001. switch (dr) {
  1002. case 0 ... 3:
  1003. *dest = kvm_arch_ops->get_dr(vcpu, dr);
  1004. return X86EMUL_CONTINUE;
  1005. default:
  1006. printk(KERN_DEBUG "%s: unexpected dr %u\n",
  1007. __FUNCTION__, dr);
  1008. return X86EMUL_UNHANDLEABLE;
  1009. }
  1010. }
  1011. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  1012. {
  1013. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  1014. int exception;
  1015. kvm_arch_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
  1016. if (exception) {
  1017. /* FIXME: better handling */
  1018. return X86EMUL_UNHANDLEABLE;
  1019. }
  1020. return X86EMUL_CONTINUE;
  1021. }
  1022. static void report_emulation_failure(struct x86_emulate_ctxt *ctxt)
  1023. {
  1024. static int reported;
  1025. u8 opcodes[4];
  1026. unsigned long rip = ctxt->vcpu->rip;
  1027. unsigned long rip_linear;
  1028. rip_linear = rip + get_segment_base(ctxt->vcpu, VCPU_SREG_CS);
  1029. if (reported)
  1030. return;
  1031. emulator_read_std(rip_linear, (void *)opcodes, 4, ctxt);
  1032. printk(KERN_ERR "emulation failed but !mmio_needed?"
  1033. " rip %lx %02x %02x %02x %02x\n",
  1034. rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  1035. reported = 1;
  1036. }
  1037. struct x86_emulate_ops emulate_ops = {
  1038. .read_std = emulator_read_std,
  1039. .write_std = emulator_write_std,
  1040. .read_emulated = emulator_read_emulated,
  1041. .write_emulated = emulator_write_emulated,
  1042. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  1043. };
  1044. int emulate_instruction(struct kvm_vcpu *vcpu,
  1045. struct kvm_run *run,
  1046. unsigned long cr2,
  1047. u16 error_code)
  1048. {
  1049. struct x86_emulate_ctxt emulate_ctxt;
  1050. int r;
  1051. int cs_db, cs_l;
  1052. vcpu->mmio_fault_cr2 = cr2;
  1053. kvm_arch_ops->cache_regs(vcpu);
  1054. kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  1055. emulate_ctxt.vcpu = vcpu;
  1056. emulate_ctxt.eflags = kvm_arch_ops->get_rflags(vcpu);
  1057. emulate_ctxt.cr2 = cr2;
  1058. emulate_ctxt.mode = (emulate_ctxt.eflags & X86_EFLAGS_VM)
  1059. ? X86EMUL_MODE_REAL : cs_l
  1060. ? X86EMUL_MODE_PROT64 : cs_db
  1061. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  1062. if (emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
  1063. emulate_ctxt.cs_base = 0;
  1064. emulate_ctxt.ds_base = 0;
  1065. emulate_ctxt.es_base = 0;
  1066. emulate_ctxt.ss_base = 0;
  1067. } else {
  1068. emulate_ctxt.cs_base = get_segment_base(vcpu, VCPU_SREG_CS);
  1069. emulate_ctxt.ds_base = get_segment_base(vcpu, VCPU_SREG_DS);
  1070. emulate_ctxt.es_base = get_segment_base(vcpu, VCPU_SREG_ES);
  1071. emulate_ctxt.ss_base = get_segment_base(vcpu, VCPU_SREG_SS);
  1072. }
  1073. emulate_ctxt.gs_base = get_segment_base(vcpu, VCPU_SREG_GS);
  1074. emulate_ctxt.fs_base = get_segment_base(vcpu, VCPU_SREG_FS);
  1075. vcpu->mmio_is_write = 0;
  1076. r = x86_emulate_memop(&emulate_ctxt, &emulate_ops);
  1077. if ((r || vcpu->mmio_is_write) && run) {
  1078. run->exit_reason = KVM_EXIT_MMIO;
  1079. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  1080. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  1081. run->mmio.len = vcpu->mmio_size;
  1082. run->mmio.is_write = vcpu->mmio_is_write;
  1083. }
  1084. if (r) {
  1085. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  1086. return EMULATE_DONE;
  1087. if (!vcpu->mmio_needed) {
  1088. report_emulation_failure(&emulate_ctxt);
  1089. return EMULATE_FAIL;
  1090. }
  1091. return EMULATE_DO_MMIO;
  1092. }
  1093. kvm_arch_ops->decache_regs(vcpu);
  1094. kvm_arch_ops->set_rflags(vcpu, emulate_ctxt.eflags);
  1095. if (vcpu->mmio_is_write) {
  1096. vcpu->mmio_needed = 0;
  1097. return EMULATE_DO_MMIO;
  1098. }
  1099. return EMULATE_DONE;
  1100. }
  1101. EXPORT_SYMBOL_GPL(emulate_instruction);
  1102. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  1103. {
  1104. if (vcpu->irq_summary)
  1105. return 1;
  1106. vcpu->run->exit_reason = KVM_EXIT_HLT;
  1107. ++vcpu->stat.halt_exits;
  1108. return 0;
  1109. }
  1110. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  1111. int kvm_hypercall(struct kvm_vcpu *vcpu, struct kvm_run *run)
  1112. {
  1113. unsigned long nr, a0, a1, a2, a3, a4, a5, ret;
  1114. kvm_arch_ops->cache_regs(vcpu);
  1115. ret = -KVM_EINVAL;
  1116. #ifdef CONFIG_X86_64
  1117. if (is_long_mode(vcpu)) {
  1118. nr = vcpu->regs[VCPU_REGS_RAX];
  1119. a0 = vcpu->regs[VCPU_REGS_RDI];
  1120. a1 = vcpu->regs[VCPU_REGS_RSI];
  1121. a2 = vcpu->regs[VCPU_REGS_RDX];
  1122. a3 = vcpu->regs[VCPU_REGS_RCX];
  1123. a4 = vcpu->regs[VCPU_REGS_R8];
  1124. a5 = vcpu->regs[VCPU_REGS_R9];
  1125. } else
  1126. #endif
  1127. {
  1128. nr = vcpu->regs[VCPU_REGS_RBX] & -1u;
  1129. a0 = vcpu->regs[VCPU_REGS_RAX] & -1u;
  1130. a1 = vcpu->regs[VCPU_REGS_RCX] & -1u;
  1131. a2 = vcpu->regs[VCPU_REGS_RDX] & -1u;
  1132. a3 = vcpu->regs[VCPU_REGS_RSI] & -1u;
  1133. a4 = vcpu->regs[VCPU_REGS_RDI] & -1u;
  1134. a5 = vcpu->regs[VCPU_REGS_RBP] & -1u;
  1135. }
  1136. switch (nr) {
  1137. default:
  1138. run->hypercall.args[0] = a0;
  1139. run->hypercall.args[1] = a1;
  1140. run->hypercall.args[2] = a2;
  1141. run->hypercall.args[3] = a3;
  1142. run->hypercall.args[4] = a4;
  1143. run->hypercall.args[5] = a5;
  1144. run->hypercall.ret = ret;
  1145. run->hypercall.longmode = is_long_mode(vcpu);
  1146. kvm_arch_ops->decache_regs(vcpu);
  1147. return 0;
  1148. }
  1149. vcpu->regs[VCPU_REGS_RAX] = ret;
  1150. kvm_arch_ops->decache_regs(vcpu);
  1151. return 1;
  1152. }
  1153. EXPORT_SYMBOL_GPL(kvm_hypercall);
  1154. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  1155. {
  1156. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  1157. }
  1158. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  1159. {
  1160. struct descriptor_table dt = { limit, base };
  1161. kvm_arch_ops->set_gdt(vcpu, &dt);
  1162. }
  1163. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  1164. {
  1165. struct descriptor_table dt = { limit, base };
  1166. kvm_arch_ops->set_idt(vcpu, &dt);
  1167. }
  1168. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  1169. unsigned long *rflags)
  1170. {
  1171. lmsw(vcpu, msw);
  1172. *rflags = kvm_arch_ops->get_rflags(vcpu);
  1173. }
  1174. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  1175. {
  1176. kvm_arch_ops->decache_cr4_guest_bits(vcpu);
  1177. switch (cr) {
  1178. case 0:
  1179. return vcpu->cr0;
  1180. case 2:
  1181. return vcpu->cr2;
  1182. case 3:
  1183. return vcpu->cr3;
  1184. case 4:
  1185. return vcpu->cr4;
  1186. default:
  1187. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  1188. return 0;
  1189. }
  1190. }
  1191. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  1192. unsigned long *rflags)
  1193. {
  1194. switch (cr) {
  1195. case 0:
  1196. set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
  1197. *rflags = kvm_arch_ops->get_rflags(vcpu);
  1198. break;
  1199. case 2:
  1200. vcpu->cr2 = val;
  1201. break;
  1202. case 3:
  1203. set_cr3(vcpu, val);
  1204. break;
  1205. case 4:
  1206. set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
  1207. break;
  1208. default:
  1209. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  1210. }
  1211. }
  1212. /*
  1213. * Register the para guest with the host:
  1214. */
  1215. static int vcpu_register_para(struct kvm_vcpu *vcpu, gpa_t para_state_gpa)
  1216. {
  1217. struct kvm_vcpu_para_state *para_state;
  1218. hpa_t para_state_hpa, hypercall_hpa;
  1219. struct page *para_state_page;
  1220. unsigned char *hypercall;
  1221. gpa_t hypercall_gpa;
  1222. printk(KERN_DEBUG "kvm: guest trying to enter paravirtual mode\n");
  1223. printk(KERN_DEBUG ".... para_state_gpa: %08Lx\n", para_state_gpa);
  1224. /*
  1225. * Needs to be page aligned:
  1226. */
  1227. if (para_state_gpa != PAGE_ALIGN(para_state_gpa))
  1228. goto err_gp;
  1229. para_state_hpa = gpa_to_hpa(vcpu, para_state_gpa);
  1230. printk(KERN_DEBUG ".... para_state_hpa: %08Lx\n", para_state_hpa);
  1231. if (is_error_hpa(para_state_hpa))
  1232. goto err_gp;
  1233. mark_page_dirty(vcpu->kvm, para_state_gpa >> PAGE_SHIFT);
  1234. para_state_page = pfn_to_page(para_state_hpa >> PAGE_SHIFT);
  1235. para_state = kmap(para_state_page);
  1236. printk(KERN_DEBUG ".... guest version: %d\n", para_state->guest_version);
  1237. printk(KERN_DEBUG ".... size: %d\n", para_state->size);
  1238. para_state->host_version = KVM_PARA_API_VERSION;
  1239. /*
  1240. * We cannot support guests that try to register themselves
  1241. * with a newer API version than the host supports:
  1242. */
  1243. if (para_state->guest_version > KVM_PARA_API_VERSION) {
  1244. para_state->ret = -KVM_EINVAL;
  1245. goto err_kunmap_skip;
  1246. }
  1247. hypercall_gpa = para_state->hypercall_gpa;
  1248. hypercall_hpa = gpa_to_hpa(vcpu, hypercall_gpa);
  1249. printk(KERN_DEBUG ".... hypercall_hpa: %08Lx\n", hypercall_hpa);
  1250. if (is_error_hpa(hypercall_hpa)) {
  1251. para_state->ret = -KVM_EINVAL;
  1252. goto err_kunmap_skip;
  1253. }
  1254. printk(KERN_DEBUG "kvm: para guest successfully registered.\n");
  1255. vcpu->para_state_page = para_state_page;
  1256. vcpu->para_state_gpa = para_state_gpa;
  1257. vcpu->hypercall_gpa = hypercall_gpa;
  1258. mark_page_dirty(vcpu->kvm, hypercall_gpa >> PAGE_SHIFT);
  1259. hypercall = kmap_atomic(pfn_to_page(hypercall_hpa >> PAGE_SHIFT),
  1260. KM_USER1) + (hypercall_hpa & ~PAGE_MASK);
  1261. kvm_arch_ops->patch_hypercall(vcpu, hypercall);
  1262. kunmap_atomic(hypercall, KM_USER1);
  1263. para_state->ret = 0;
  1264. err_kunmap_skip:
  1265. kunmap(para_state_page);
  1266. return 0;
  1267. err_gp:
  1268. return 1;
  1269. }
  1270. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1271. {
  1272. u64 data;
  1273. switch (msr) {
  1274. case 0xc0010010: /* SYSCFG */
  1275. case 0xc0010015: /* HWCR */
  1276. case MSR_IA32_PLATFORM_ID:
  1277. case MSR_IA32_P5_MC_ADDR:
  1278. case MSR_IA32_P5_MC_TYPE:
  1279. case MSR_IA32_MC0_CTL:
  1280. case MSR_IA32_MCG_STATUS:
  1281. case MSR_IA32_MCG_CAP:
  1282. case MSR_IA32_MC0_MISC:
  1283. case MSR_IA32_MC0_MISC+4:
  1284. case MSR_IA32_MC0_MISC+8:
  1285. case MSR_IA32_MC0_MISC+12:
  1286. case MSR_IA32_MC0_MISC+16:
  1287. case MSR_IA32_UCODE_REV:
  1288. case MSR_IA32_PERF_STATUS:
  1289. case MSR_IA32_EBL_CR_POWERON:
  1290. /* MTRR registers */
  1291. case 0xfe:
  1292. case 0x200 ... 0x2ff:
  1293. data = 0;
  1294. break;
  1295. case 0xcd: /* fsb frequency */
  1296. data = 3;
  1297. break;
  1298. case MSR_IA32_APICBASE:
  1299. data = vcpu->apic_base;
  1300. break;
  1301. case MSR_IA32_MISC_ENABLE:
  1302. data = vcpu->ia32_misc_enable_msr;
  1303. break;
  1304. #ifdef CONFIG_X86_64
  1305. case MSR_EFER:
  1306. data = vcpu->shadow_efer;
  1307. break;
  1308. #endif
  1309. default:
  1310. printk(KERN_ERR "kvm: unhandled rdmsr: 0x%x\n", msr);
  1311. return 1;
  1312. }
  1313. *pdata = data;
  1314. return 0;
  1315. }
  1316. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  1317. /*
  1318. * Reads an msr value (of 'msr_index') into 'pdata'.
  1319. * Returns 0 on success, non-0 otherwise.
  1320. * Assumes vcpu_load() was already called.
  1321. */
  1322. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1323. {
  1324. return kvm_arch_ops->get_msr(vcpu, msr_index, pdata);
  1325. }
  1326. #ifdef CONFIG_X86_64
  1327. static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1328. {
  1329. if (efer & EFER_RESERVED_BITS) {
  1330. printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
  1331. efer);
  1332. inject_gp(vcpu);
  1333. return;
  1334. }
  1335. if (is_paging(vcpu)
  1336. && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
  1337. printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
  1338. inject_gp(vcpu);
  1339. return;
  1340. }
  1341. kvm_arch_ops->set_efer(vcpu, efer);
  1342. efer &= ~EFER_LMA;
  1343. efer |= vcpu->shadow_efer & EFER_LMA;
  1344. vcpu->shadow_efer = efer;
  1345. }
  1346. #endif
  1347. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1348. {
  1349. switch (msr) {
  1350. #ifdef CONFIG_X86_64
  1351. case MSR_EFER:
  1352. set_efer(vcpu, data);
  1353. break;
  1354. #endif
  1355. case MSR_IA32_MC0_STATUS:
  1356. printk(KERN_WARNING "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
  1357. __FUNCTION__, data);
  1358. break;
  1359. case MSR_IA32_MCG_STATUS:
  1360. printk(KERN_WARNING "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
  1361. __FUNCTION__, data);
  1362. break;
  1363. case MSR_IA32_UCODE_REV:
  1364. case MSR_IA32_UCODE_WRITE:
  1365. case 0x200 ... 0x2ff: /* MTRRs */
  1366. break;
  1367. case MSR_IA32_APICBASE:
  1368. vcpu->apic_base = data;
  1369. break;
  1370. case MSR_IA32_MISC_ENABLE:
  1371. vcpu->ia32_misc_enable_msr = data;
  1372. break;
  1373. /*
  1374. * This is the 'probe whether the host is KVM' logic:
  1375. */
  1376. case MSR_KVM_API_MAGIC:
  1377. return vcpu_register_para(vcpu, data);
  1378. default:
  1379. printk(KERN_ERR "kvm: unhandled wrmsr: 0x%x\n", msr);
  1380. return 1;
  1381. }
  1382. return 0;
  1383. }
  1384. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  1385. /*
  1386. * Writes msr value into into the appropriate "register".
  1387. * Returns 0 on success, non-0 otherwise.
  1388. * Assumes vcpu_load() was already called.
  1389. */
  1390. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  1391. {
  1392. return kvm_arch_ops->set_msr(vcpu, msr_index, data);
  1393. }
  1394. void kvm_resched(struct kvm_vcpu *vcpu)
  1395. {
  1396. if (!need_resched())
  1397. return;
  1398. vcpu_put(vcpu);
  1399. cond_resched();
  1400. vcpu_load(vcpu);
  1401. }
  1402. EXPORT_SYMBOL_GPL(kvm_resched);
  1403. void load_msrs(struct vmx_msr_entry *e, int n)
  1404. {
  1405. int i;
  1406. for (i = 0; i < n; ++i)
  1407. wrmsrl(e[i].index, e[i].data);
  1408. }
  1409. EXPORT_SYMBOL_GPL(load_msrs);
  1410. void save_msrs(struct vmx_msr_entry *e, int n)
  1411. {
  1412. int i;
  1413. for (i = 0; i < n; ++i)
  1414. rdmsrl(e[i].index, e[i].data);
  1415. }
  1416. EXPORT_SYMBOL_GPL(save_msrs);
  1417. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  1418. {
  1419. int i;
  1420. u32 function;
  1421. struct kvm_cpuid_entry *e, *best;
  1422. kvm_arch_ops->cache_regs(vcpu);
  1423. function = vcpu->regs[VCPU_REGS_RAX];
  1424. vcpu->regs[VCPU_REGS_RAX] = 0;
  1425. vcpu->regs[VCPU_REGS_RBX] = 0;
  1426. vcpu->regs[VCPU_REGS_RCX] = 0;
  1427. vcpu->regs[VCPU_REGS_RDX] = 0;
  1428. best = NULL;
  1429. for (i = 0; i < vcpu->cpuid_nent; ++i) {
  1430. e = &vcpu->cpuid_entries[i];
  1431. if (e->function == function) {
  1432. best = e;
  1433. break;
  1434. }
  1435. /*
  1436. * Both basic or both extended?
  1437. */
  1438. if (((e->function ^ function) & 0x80000000) == 0)
  1439. if (!best || e->function > best->function)
  1440. best = e;
  1441. }
  1442. if (best) {
  1443. vcpu->regs[VCPU_REGS_RAX] = best->eax;
  1444. vcpu->regs[VCPU_REGS_RBX] = best->ebx;
  1445. vcpu->regs[VCPU_REGS_RCX] = best->ecx;
  1446. vcpu->regs[VCPU_REGS_RDX] = best->edx;
  1447. }
  1448. kvm_arch_ops->decache_regs(vcpu);
  1449. kvm_arch_ops->skip_emulated_instruction(vcpu);
  1450. }
  1451. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  1452. static int pio_copy_data(struct kvm_vcpu *vcpu)
  1453. {
  1454. void *p = vcpu->pio_data;
  1455. void *q;
  1456. unsigned bytes;
  1457. int nr_pages = vcpu->pio.guest_pages[1] ? 2 : 1;
  1458. kvm_arch_ops->vcpu_put(vcpu);
  1459. q = vmap(vcpu->pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
  1460. PAGE_KERNEL);
  1461. if (!q) {
  1462. kvm_arch_ops->vcpu_load(vcpu);
  1463. free_pio_guest_pages(vcpu);
  1464. return -ENOMEM;
  1465. }
  1466. q += vcpu->pio.guest_page_offset;
  1467. bytes = vcpu->pio.size * vcpu->pio.cur_count;
  1468. if (vcpu->pio.in)
  1469. memcpy(q, p, bytes);
  1470. else
  1471. memcpy(p, q, bytes);
  1472. q -= vcpu->pio.guest_page_offset;
  1473. vunmap(q);
  1474. kvm_arch_ops->vcpu_load(vcpu);
  1475. free_pio_guest_pages(vcpu);
  1476. return 0;
  1477. }
  1478. static int complete_pio(struct kvm_vcpu *vcpu)
  1479. {
  1480. struct kvm_pio_request *io = &vcpu->pio;
  1481. long delta;
  1482. int r;
  1483. kvm_arch_ops->cache_regs(vcpu);
  1484. if (!io->string) {
  1485. if (io->in)
  1486. memcpy(&vcpu->regs[VCPU_REGS_RAX], vcpu->pio_data,
  1487. io->size);
  1488. } else {
  1489. if (io->in) {
  1490. r = pio_copy_data(vcpu);
  1491. if (r) {
  1492. kvm_arch_ops->cache_regs(vcpu);
  1493. return r;
  1494. }
  1495. }
  1496. delta = 1;
  1497. if (io->rep) {
  1498. delta *= io->cur_count;
  1499. /*
  1500. * The size of the register should really depend on
  1501. * current address size.
  1502. */
  1503. vcpu->regs[VCPU_REGS_RCX] -= delta;
  1504. }
  1505. if (io->down)
  1506. delta = -delta;
  1507. delta *= io->size;
  1508. if (io->in)
  1509. vcpu->regs[VCPU_REGS_RDI] += delta;
  1510. else
  1511. vcpu->regs[VCPU_REGS_RSI] += delta;
  1512. }
  1513. kvm_arch_ops->decache_regs(vcpu);
  1514. io->count -= io->cur_count;
  1515. io->cur_count = 0;
  1516. if (!io->count)
  1517. kvm_arch_ops->skip_emulated_instruction(vcpu);
  1518. return 0;
  1519. }
  1520. static void kernel_pio(struct kvm_io_device *pio_dev,
  1521. struct kvm_vcpu *vcpu,
  1522. void *pd)
  1523. {
  1524. /* TODO: String I/O for in kernel device */
  1525. if (vcpu->pio.in)
  1526. kvm_iodevice_read(pio_dev, vcpu->pio.port,
  1527. vcpu->pio.size,
  1528. pd);
  1529. else
  1530. kvm_iodevice_write(pio_dev, vcpu->pio.port,
  1531. vcpu->pio.size,
  1532. pd);
  1533. }
  1534. static void pio_string_write(struct kvm_io_device *pio_dev,
  1535. struct kvm_vcpu *vcpu)
  1536. {
  1537. struct kvm_pio_request *io = &vcpu->pio;
  1538. void *pd = vcpu->pio_data;
  1539. int i;
  1540. for (i = 0; i < io->cur_count; i++) {
  1541. kvm_iodevice_write(pio_dev, io->port,
  1542. io->size,
  1543. pd);
  1544. pd += io->size;
  1545. }
  1546. }
  1547. int kvm_setup_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  1548. int size, unsigned long count, int string, int down,
  1549. gva_t address, int rep, unsigned port)
  1550. {
  1551. unsigned now, in_page;
  1552. int i, ret = 0;
  1553. int nr_pages = 1;
  1554. struct page *page;
  1555. struct kvm_io_device *pio_dev;
  1556. vcpu->run->exit_reason = KVM_EXIT_IO;
  1557. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  1558. vcpu->run->io.size = size;
  1559. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  1560. vcpu->run->io.count = count;
  1561. vcpu->run->io.port = port;
  1562. vcpu->pio.count = count;
  1563. vcpu->pio.cur_count = count;
  1564. vcpu->pio.size = size;
  1565. vcpu->pio.in = in;
  1566. vcpu->pio.port = port;
  1567. vcpu->pio.string = string;
  1568. vcpu->pio.down = down;
  1569. vcpu->pio.guest_page_offset = offset_in_page(address);
  1570. vcpu->pio.rep = rep;
  1571. pio_dev = vcpu_find_pio_dev(vcpu, port);
  1572. if (!string) {
  1573. kvm_arch_ops->cache_regs(vcpu);
  1574. memcpy(vcpu->pio_data, &vcpu->regs[VCPU_REGS_RAX], 4);
  1575. kvm_arch_ops->decache_regs(vcpu);
  1576. if (pio_dev) {
  1577. kernel_pio(pio_dev, vcpu, vcpu->pio_data);
  1578. complete_pio(vcpu);
  1579. return 1;
  1580. }
  1581. return 0;
  1582. }
  1583. if (!count) {
  1584. kvm_arch_ops->skip_emulated_instruction(vcpu);
  1585. return 1;
  1586. }
  1587. now = min(count, PAGE_SIZE / size);
  1588. if (!down)
  1589. in_page = PAGE_SIZE - offset_in_page(address);
  1590. else
  1591. in_page = offset_in_page(address) + size;
  1592. now = min(count, (unsigned long)in_page / size);
  1593. if (!now) {
  1594. /*
  1595. * String I/O straddles page boundary. Pin two guest pages
  1596. * so that we satisfy atomicity constraints. Do just one
  1597. * transaction to avoid complexity.
  1598. */
  1599. nr_pages = 2;
  1600. now = 1;
  1601. }
  1602. if (down) {
  1603. /*
  1604. * String I/O in reverse. Yuck. Kill the guest, fix later.
  1605. */
  1606. printk(KERN_ERR "kvm: guest string pio down\n");
  1607. inject_gp(vcpu);
  1608. return 1;
  1609. }
  1610. vcpu->run->io.count = now;
  1611. vcpu->pio.cur_count = now;
  1612. for (i = 0; i < nr_pages; ++i) {
  1613. spin_lock(&vcpu->kvm->lock);
  1614. page = gva_to_page(vcpu, address + i * PAGE_SIZE);
  1615. if (page)
  1616. get_page(page);
  1617. vcpu->pio.guest_pages[i] = page;
  1618. spin_unlock(&vcpu->kvm->lock);
  1619. if (!page) {
  1620. inject_gp(vcpu);
  1621. free_pio_guest_pages(vcpu);
  1622. return 1;
  1623. }
  1624. }
  1625. if (!vcpu->pio.in) {
  1626. /* string PIO write */
  1627. ret = pio_copy_data(vcpu);
  1628. if (ret >= 0 && pio_dev) {
  1629. pio_string_write(pio_dev, vcpu);
  1630. complete_pio(vcpu);
  1631. if (vcpu->pio.count == 0)
  1632. ret = 1;
  1633. }
  1634. } else if (pio_dev)
  1635. printk(KERN_ERR "no string pio read support yet, "
  1636. "port %x size %d count %ld\n",
  1637. port, size, count);
  1638. return ret;
  1639. }
  1640. EXPORT_SYMBOL_GPL(kvm_setup_pio);
  1641. static int kvm_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1642. {
  1643. int r;
  1644. sigset_t sigsaved;
  1645. vcpu_load(vcpu);
  1646. if (vcpu->sigset_active)
  1647. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  1648. /* re-sync apic's tpr */
  1649. vcpu->cr8 = kvm_run->cr8;
  1650. if (vcpu->pio.cur_count) {
  1651. r = complete_pio(vcpu);
  1652. if (r)
  1653. goto out;
  1654. }
  1655. if (vcpu->mmio_needed) {
  1656. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  1657. vcpu->mmio_read_completed = 1;
  1658. vcpu->mmio_needed = 0;
  1659. r = emulate_instruction(vcpu, kvm_run,
  1660. vcpu->mmio_fault_cr2, 0);
  1661. if (r == EMULATE_DO_MMIO) {
  1662. /*
  1663. * Read-modify-write. Back to userspace.
  1664. */
  1665. r = 0;
  1666. goto out;
  1667. }
  1668. }
  1669. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
  1670. kvm_arch_ops->cache_regs(vcpu);
  1671. vcpu->regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
  1672. kvm_arch_ops->decache_regs(vcpu);
  1673. }
  1674. r = kvm_arch_ops->run(vcpu, kvm_run);
  1675. out:
  1676. if (vcpu->sigset_active)
  1677. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  1678. vcpu_put(vcpu);
  1679. return r;
  1680. }
  1681. static int kvm_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu,
  1682. struct kvm_regs *regs)
  1683. {
  1684. vcpu_load(vcpu);
  1685. kvm_arch_ops->cache_regs(vcpu);
  1686. regs->rax = vcpu->regs[VCPU_REGS_RAX];
  1687. regs->rbx = vcpu->regs[VCPU_REGS_RBX];
  1688. regs->rcx = vcpu->regs[VCPU_REGS_RCX];
  1689. regs->rdx = vcpu->regs[VCPU_REGS_RDX];
  1690. regs->rsi = vcpu->regs[VCPU_REGS_RSI];
  1691. regs->rdi = vcpu->regs[VCPU_REGS_RDI];
  1692. regs->rsp = vcpu->regs[VCPU_REGS_RSP];
  1693. regs->rbp = vcpu->regs[VCPU_REGS_RBP];
  1694. #ifdef CONFIG_X86_64
  1695. regs->r8 = vcpu->regs[VCPU_REGS_R8];
  1696. regs->r9 = vcpu->regs[VCPU_REGS_R9];
  1697. regs->r10 = vcpu->regs[VCPU_REGS_R10];
  1698. regs->r11 = vcpu->regs[VCPU_REGS_R11];
  1699. regs->r12 = vcpu->regs[VCPU_REGS_R12];
  1700. regs->r13 = vcpu->regs[VCPU_REGS_R13];
  1701. regs->r14 = vcpu->regs[VCPU_REGS_R14];
  1702. regs->r15 = vcpu->regs[VCPU_REGS_R15];
  1703. #endif
  1704. regs->rip = vcpu->rip;
  1705. regs->rflags = kvm_arch_ops->get_rflags(vcpu);
  1706. /*
  1707. * Don't leak debug flags in case they were set for guest debugging
  1708. */
  1709. if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
  1710. regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  1711. vcpu_put(vcpu);
  1712. return 0;
  1713. }
  1714. static int kvm_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu,
  1715. struct kvm_regs *regs)
  1716. {
  1717. vcpu_load(vcpu);
  1718. vcpu->regs[VCPU_REGS_RAX] = regs->rax;
  1719. vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
  1720. vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
  1721. vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
  1722. vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
  1723. vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
  1724. vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
  1725. vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
  1726. #ifdef CONFIG_X86_64
  1727. vcpu->regs[VCPU_REGS_R8] = regs->r8;
  1728. vcpu->regs[VCPU_REGS_R9] = regs->r9;
  1729. vcpu->regs[VCPU_REGS_R10] = regs->r10;
  1730. vcpu->regs[VCPU_REGS_R11] = regs->r11;
  1731. vcpu->regs[VCPU_REGS_R12] = regs->r12;
  1732. vcpu->regs[VCPU_REGS_R13] = regs->r13;
  1733. vcpu->regs[VCPU_REGS_R14] = regs->r14;
  1734. vcpu->regs[VCPU_REGS_R15] = regs->r15;
  1735. #endif
  1736. vcpu->rip = regs->rip;
  1737. kvm_arch_ops->set_rflags(vcpu, regs->rflags);
  1738. kvm_arch_ops->decache_regs(vcpu);
  1739. vcpu_put(vcpu);
  1740. return 0;
  1741. }
  1742. static void get_segment(struct kvm_vcpu *vcpu,
  1743. struct kvm_segment *var, int seg)
  1744. {
  1745. return kvm_arch_ops->get_segment(vcpu, var, seg);
  1746. }
  1747. static int kvm_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  1748. struct kvm_sregs *sregs)
  1749. {
  1750. struct descriptor_table dt;
  1751. vcpu_load(vcpu);
  1752. get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  1753. get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  1754. get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  1755. get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  1756. get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  1757. get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  1758. get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  1759. get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  1760. kvm_arch_ops->get_idt(vcpu, &dt);
  1761. sregs->idt.limit = dt.limit;
  1762. sregs->idt.base = dt.base;
  1763. kvm_arch_ops->get_gdt(vcpu, &dt);
  1764. sregs->gdt.limit = dt.limit;
  1765. sregs->gdt.base = dt.base;
  1766. kvm_arch_ops->decache_cr4_guest_bits(vcpu);
  1767. sregs->cr0 = vcpu->cr0;
  1768. sregs->cr2 = vcpu->cr2;
  1769. sregs->cr3 = vcpu->cr3;
  1770. sregs->cr4 = vcpu->cr4;
  1771. sregs->cr8 = vcpu->cr8;
  1772. sregs->efer = vcpu->shadow_efer;
  1773. sregs->apic_base = vcpu->apic_base;
  1774. memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
  1775. sizeof sregs->interrupt_bitmap);
  1776. vcpu_put(vcpu);
  1777. return 0;
  1778. }
  1779. static void set_segment(struct kvm_vcpu *vcpu,
  1780. struct kvm_segment *var, int seg)
  1781. {
  1782. return kvm_arch_ops->set_segment(vcpu, var, seg);
  1783. }
  1784. static int kvm_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  1785. struct kvm_sregs *sregs)
  1786. {
  1787. int mmu_reset_needed = 0;
  1788. int i;
  1789. struct descriptor_table dt;
  1790. vcpu_load(vcpu);
  1791. dt.limit = sregs->idt.limit;
  1792. dt.base = sregs->idt.base;
  1793. kvm_arch_ops->set_idt(vcpu, &dt);
  1794. dt.limit = sregs->gdt.limit;
  1795. dt.base = sregs->gdt.base;
  1796. kvm_arch_ops->set_gdt(vcpu, &dt);
  1797. vcpu->cr2 = sregs->cr2;
  1798. mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
  1799. vcpu->cr3 = sregs->cr3;
  1800. vcpu->cr8 = sregs->cr8;
  1801. mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
  1802. #ifdef CONFIG_X86_64
  1803. kvm_arch_ops->set_efer(vcpu, sregs->efer);
  1804. #endif
  1805. vcpu->apic_base = sregs->apic_base;
  1806. kvm_arch_ops->decache_cr4_guest_bits(vcpu);
  1807. mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
  1808. kvm_arch_ops->set_cr0(vcpu, sregs->cr0);
  1809. mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
  1810. kvm_arch_ops->set_cr4(vcpu, sregs->cr4);
  1811. if (!is_long_mode(vcpu) && is_pae(vcpu))
  1812. load_pdptrs(vcpu, vcpu->cr3);
  1813. if (mmu_reset_needed)
  1814. kvm_mmu_reset_context(vcpu);
  1815. memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
  1816. sizeof vcpu->irq_pending);
  1817. vcpu->irq_summary = 0;
  1818. for (i = 0; i < ARRAY_SIZE(vcpu->irq_pending); ++i)
  1819. if (vcpu->irq_pending[i])
  1820. __set_bit(i, &vcpu->irq_summary);
  1821. set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  1822. set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  1823. set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  1824. set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  1825. set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  1826. set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  1827. set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  1828. set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  1829. vcpu_put(vcpu);
  1830. return 0;
  1831. }
  1832. /*
  1833. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  1834. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  1835. *
  1836. * This list is modified at module load time to reflect the
  1837. * capabilities of the host cpu.
  1838. */
  1839. static u32 msrs_to_save[] = {
  1840. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  1841. MSR_K6_STAR,
  1842. #ifdef CONFIG_X86_64
  1843. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  1844. #endif
  1845. MSR_IA32_TIME_STAMP_COUNTER,
  1846. };
  1847. static unsigned num_msrs_to_save;
  1848. static u32 emulated_msrs[] = {
  1849. MSR_IA32_MISC_ENABLE,
  1850. };
  1851. static __init void kvm_init_msr_list(void)
  1852. {
  1853. u32 dummy[2];
  1854. unsigned i, j;
  1855. for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
  1856. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  1857. continue;
  1858. if (j < i)
  1859. msrs_to_save[j] = msrs_to_save[i];
  1860. j++;
  1861. }
  1862. num_msrs_to_save = j;
  1863. }
  1864. /*
  1865. * Adapt set_msr() to msr_io()'s calling convention
  1866. */
  1867. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  1868. {
  1869. return kvm_set_msr(vcpu, index, *data);
  1870. }
  1871. /*
  1872. * Read or write a bunch of msrs. All parameters are kernel addresses.
  1873. *
  1874. * @return number of msrs set successfully.
  1875. */
  1876. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  1877. struct kvm_msr_entry *entries,
  1878. int (*do_msr)(struct kvm_vcpu *vcpu,
  1879. unsigned index, u64 *data))
  1880. {
  1881. int i;
  1882. vcpu_load(vcpu);
  1883. for (i = 0; i < msrs->nmsrs; ++i)
  1884. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  1885. break;
  1886. vcpu_put(vcpu);
  1887. return i;
  1888. }
  1889. /*
  1890. * Read or write a bunch of msrs. Parameters are user addresses.
  1891. *
  1892. * @return number of msrs set successfully.
  1893. */
  1894. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  1895. int (*do_msr)(struct kvm_vcpu *vcpu,
  1896. unsigned index, u64 *data),
  1897. int writeback)
  1898. {
  1899. struct kvm_msrs msrs;
  1900. struct kvm_msr_entry *entries;
  1901. int r, n;
  1902. unsigned size;
  1903. r = -EFAULT;
  1904. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  1905. goto out;
  1906. r = -E2BIG;
  1907. if (msrs.nmsrs >= MAX_IO_MSRS)
  1908. goto out;
  1909. r = -ENOMEM;
  1910. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  1911. entries = vmalloc(size);
  1912. if (!entries)
  1913. goto out;
  1914. r = -EFAULT;
  1915. if (copy_from_user(entries, user_msrs->entries, size))
  1916. goto out_free;
  1917. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  1918. if (r < 0)
  1919. goto out_free;
  1920. r = -EFAULT;
  1921. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  1922. goto out_free;
  1923. r = n;
  1924. out_free:
  1925. vfree(entries);
  1926. out:
  1927. return r;
  1928. }
  1929. /*
  1930. * Translate a guest virtual address to a guest physical address.
  1931. */
  1932. static int kvm_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  1933. struct kvm_translation *tr)
  1934. {
  1935. unsigned long vaddr = tr->linear_address;
  1936. gpa_t gpa;
  1937. vcpu_load(vcpu);
  1938. spin_lock(&vcpu->kvm->lock);
  1939. gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
  1940. tr->physical_address = gpa;
  1941. tr->valid = gpa != UNMAPPED_GVA;
  1942. tr->writeable = 1;
  1943. tr->usermode = 0;
  1944. spin_unlock(&vcpu->kvm->lock);
  1945. vcpu_put(vcpu);
  1946. return 0;
  1947. }
  1948. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  1949. struct kvm_interrupt *irq)
  1950. {
  1951. if (irq->irq < 0 || irq->irq >= 256)
  1952. return -EINVAL;
  1953. vcpu_load(vcpu);
  1954. set_bit(irq->irq, vcpu->irq_pending);
  1955. set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
  1956. vcpu_put(vcpu);
  1957. return 0;
  1958. }
  1959. static int kvm_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
  1960. struct kvm_debug_guest *dbg)
  1961. {
  1962. int r;
  1963. vcpu_load(vcpu);
  1964. r = kvm_arch_ops->set_guest_debug(vcpu, dbg);
  1965. vcpu_put(vcpu);
  1966. return r;
  1967. }
  1968. static struct page *kvm_vcpu_nopage(struct vm_area_struct *vma,
  1969. unsigned long address,
  1970. int *type)
  1971. {
  1972. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  1973. unsigned long pgoff;
  1974. struct page *page;
  1975. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  1976. if (pgoff == 0)
  1977. page = virt_to_page(vcpu->run);
  1978. else if (pgoff == KVM_PIO_PAGE_OFFSET)
  1979. page = virt_to_page(vcpu->pio_data);
  1980. else
  1981. return NOPAGE_SIGBUS;
  1982. get_page(page);
  1983. if (type != NULL)
  1984. *type = VM_FAULT_MINOR;
  1985. return page;
  1986. }
  1987. static struct vm_operations_struct kvm_vcpu_vm_ops = {
  1988. .nopage = kvm_vcpu_nopage,
  1989. };
  1990. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  1991. {
  1992. vma->vm_ops = &kvm_vcpu_vm_ops;
  1993. return 0;
  1994. }
  1995. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  1996. {
  1997. struct kvm_vcpu *vcpu = filp->private_data;
  1998. fput(vcpu->kvm->filp);
  1999. return 0;
  2000. }
  2001. static struct file_operations kvm_vcpu_fops = {
  2002. .release = kvm_vcpu_release,
  2003. .unlocked_ioctl = kvm_vcpu_ioctl,
  2004. .compat_ioctl = kvm_vcpu_ioctl,
  2005. .mmap = kvm_vcpu_mmap,
  2006. };
  2007. /*
  2008. * Allocates an inode for the vcpu.
  2009. */
  2010. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  2011. {
  2012. int fd, r;
  2013. struct inode *inode;
  2014. struct file *file;
  2015. r = anon_inode_getfd(&fd, &inode, &file,
  2016. "kvm-vcpu", &kvm_vcpu_fops, vcpu);
  2017. if (r)
  2018. return r;
  2019. atomic_inc(&vcpu->kvm->filp->f_count);
  2020. return fd;
  2021. }
  2022. /*
  2023. * Creates some virtual cpus. Good luck creating more than one.
  2024. */
  2025. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
  2026. {
  2027. int r;
  2028. struct kvm_vcpu *vcpu;
  2029. struct page *page;
  2030. r = -EINVAL;
  2031. if (!valid_vcpu(n))
  2032. goto out;
  2033. vcpu = &kvm->vcpus[n];
  2034. vcpu->vcpu_id = n;
  2035. mutex_lock(&vcpu->mutex);
  2036. if (vcpu->vmcs) {
  2037. mutex_unlock(&vcpu->mutex);
  2038. return -EEXIST;
  2039. }
  2040. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  2041. r = -ENOMEM;
  2042. if (!page)
  2043. goto out_unlock;
  2044. vcpu->run = page_address(page);
  2045. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  2046. r = -ENOMEM;
  2047. if (!page)
  2048. goto out_free_run;
  2049. vcpu->pio_data = page_address(page);
  2050. vcpu->host_fx_image = (char*)ALIGN((hva_t)vcpu->fx_buf,
  2051. FX_IMAGE_ALIGN);
  2052. vcpu->guest_fx_image = vcpu->host_fx_image + FX_IMAGE_SIZE;
  2053. vcpu->cr0 = 0x10;
  2054. r = kvm_arch_ops->vcpu_create(vcpu);
  2055. if (r < 0)
  2056. goto out_free_vcpus;
  2057. r = kvm_mmu_create(vcpu);
  2058. if (r < 0)
  2059. goto out_free_vcpus;
  2060. kvm_arch_ops->vcpu_load(vcpu);
  2061. r = kvm_mmu_setup(vcpu);
  2062. if (r >= 0)
  2063. r = kvm_arch_ops->vcpu_setup(vcpu);
  2064. vcpu_put(vcpu);
  2065. if (r < 0)
  2066. goto out_free_vcpus;
  2067. r = create_vcpu_fd(vcpu);
  2068. if (r < 0)
  2069. goto out_free_vcpus;
  2070. spin_lock(&kvm_lock);
  2071. if (n >= kvm->nvcpus)
  2072. kvm->nvcpus = n + 1;
  2073. spin_unlock(&kvm_lock);
  2074. return r;
  2075. out_free_vcpus:
  2076. kvm_free_vcpu(vcpu);
  2077. out_free_run:
  2078. free_page((unsigned long)vcpu->run);
  2079. vcpu->run = NULL;
  2080. out_unlock:
  2081. mutex_unlock(&vcpu->mutex);
  2082. out:
  2083. return r;
  2084. }
  2085. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  2086. {
  2087. u64 efer;
  2088. int i;
  2089. struct kvm_cpuid_entry *e, *entry;
  2090. rdmsrl(MSR_EFER, efer);
  2091. entry = NULL;
  2092. for (i = 0; i < vcpu->cpuid_nent; ++i) {
  2093. e = &vcpu->cpuid_entries[i];
  2094. if (e->function == 0x80000001) {
  2095. entry = e;
  2096. break;
  2097. }
  2098. }
  2099. if (entry && (entry->edx & (1 << 20)) && !(efer & EFER_NX)) {
  2100. entry->edx &= ~(1 << 20);
  2101. printk(KERN_INFO "kvm: guest NX capability removed\n");
  2102. }
  2103. }
  2104. static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  2105. struct kvm_cpuid *cpuid,
  2106. struct kvm_cpuid_entry __user *entries)
  2107. {
  2108. int r;
  2109. r = -E2BIG;
  2110. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  2111. goto out;
  2112. r = -EFAULT;
  2113. if (copy_from_user(&vcpu->cpuid_entries, entries,
  2114. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  2115. goto out;
  2116. vcpu->cpuid_nent = cpuid->nent;
  2117. cpuid_fix_nx_cap(vcpu);
  2118. return 0;
  2119. out:
  2120. return r;
  2121. }
  2122. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  2123. {
  2124. if (sigset) {
  2125. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  2126. vcpu->sigset_active = 1;
  2127. vcpu->sigset = *sigset;
  2128. } else
  2129. vcpu->sigset_active = 0;
  2130. return 0;
  2131. }
  2132. /*
  2133. * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
  2134. * we have asm/x86/processor.h
  2135. */
  2136. struct fxsave {
  2137. u16 cwd;
  2138. u16 swd;
  2139. u16 twd;
  2140. u16 fop;
  2141. u64 rip;
  2142. u64 rdp;
  2143. u32 mxcsr;
  2144. u32 mxcsr_mask;
  2145. u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
  2146. #ifdef CONFIG_X86_64
  2147. u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
  2148. #else
  2149. u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
  2150. #endif
  2151. };
  2152. static int kvm_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  2153. {
  2154. struct fxsave *fxsave = (struct fxsave *)vcpu->guest_fx_image;
  2155. vcpu_load(vcpu);
  2156. memcpy(fpu->fpr, fxsave->st_space, 128);
  2157. fpu->fcw = fxsave->cwd;
  2158. fpu->fsw = fxsave->swd;
  2159. fpu->ftwx = fxsave->twd;
  2160. fpu->last_opcode = fxsave->fop;
  2161. fpu->last_ip = fxsave->rip;
  2162. fpu->last_dp = fxsave->rdp;
  2163. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  2164. vcpu_put(vcpu);
  2165. return 0;
  2166. }
  2167. static int kvm_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  2168. {
  2169. struct fxsave *fxsave = (struct fxsave *)vcpu->guest_fx_image;
  2170. vcpu_load(vcpu);
  2171. memcpy(fxsave->st_space, fpu->fpr, 128);
  2172. fxsave->cwd = fpu->fcw;
  2173. fxsave->swd = fpu->fsw;
  2174. fxsave->twd = fpu->ftwx;
  2175. fxsave->fop = fpu->last_opcode;
  2176. fxsave->rip = fpu->last_ip;
  2177. fxsave->rdp = fpu->last_dp;
  2178. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  2179. vcpu_put(vcpu);
  2180. return 0;
  2181. }
  2182. static long kvm_vcpu_ioctl(struct file *filp,
  2183. unsigned int ioctl, unsigned long arg)
  2184. {
  2185. struct kvm_vcpu *vcpu = filp->private_data;
  2186. void __user *argp = (void __user *)arg;
  2187. int r = -EINVAL;
  2188. switch (ioctl) {
  2189. case KVM_RUN:
  2190. r = -EINVAL;
  2191. if (arg)
  2192. goto out;
  2193. r = kvm_vcpu_ioctl_run(vcpu, vcpu->run);
  2194. break;
  2195. case KVM_GET_REGS: {
  2196. struct kvm_regs kvm_regs;
  2197. memset(&kvm_regs, 0, sizeof kvm_regs);
  2198. r = kvm_vcpu_ioctl_get_regs(vcpu, &kvm_regs);
  2199. if (r)
  2200. goto out;
  2201. r = -EFAULT;
  2202. if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
  2203. goto out;
  2204. r = 0;
  2205. break;
  2206. }
  2207. case KVM_SET_REGS: {
  2208. struct kvm_regs kvm_regs;
  2209. r = -EFAULT;
  2210. if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
  2211. goto out;
  2212. r = kvm_vcpu_ioctl_set_regs(vcpu, &kvm_regs);
  2213. if (r)
  2214. goto out;
  2215. r = 0;
  2216. break;
  2217. }
  2218. case KVM_GET_SREGS: {
  2219. struct kvm_sregs kvm_sregs;
  2220. memset(&kvm_sregs, 0, sizeof kvm_sregs);
  2221. r = kvm_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
  2222. if (r)
  2223. goto out;
  2224. r = -EFAULT;
  2225. if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
  2226. goto out;
  2227. r = 0;
  2228. break;
  2229. }
  2230. case KVM_SET_SREGS: {
  2231. struct kvm_sregs kvm_sregs;
  2232. r = -EFAULT;
  2233. if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
  2234. goto out;
  2235. r = kvm_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
  2236. if (r)
  2237. goto out;
  2238. r = 0;
  2239. break;
  2240. }
  2241. case KVM_TRANSLATE: {
  2242. struct kvm_translation tr;
  2243. r = -EFAULT;
  2244. if (copy_from_user(&tr, argp, sizeof tr))
  2245. goto out;
  2246. r = kvm_vcpu_ioctl_translate(vcpu, &tr);
  2247. if (r)
  2248. goto out;
  2249. r = -EFAULT;
  2250. if (copy_to_user(argp, &tr, sizeof tr))
  2251. goto out;
  2252. r = 0;
  2253. break;
  2254. }
  2255. case KVM_INTERRUPT: {
  2256. struct kvm_interrupt irq;
  2257. r = -EFAULT;
  2258. if (copy_from_user(&irq, argp, sizeof irq))
  2259. goto out;
  2260. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  2261. if (r)
  2262. goto out;
  2263. r = 0;
  2264. break;
  2265. }
  2266. case KVM_DEBUG_GUEST: {
  2267. struct kvm_debug_guest dbg;
  2268. r = -EFAULT;
  2269. if (copy_from_user(&dbg, argp, sizeof dbg))
  2270. goto out;
  2271. r = kvm_vcpu_ioctl_debug_guest(vcpu, &dbg);
  2272. if (r)
  2273. goto out;
  2274. r = 0;
  2275. break;
  2276. }
  2277. case KVM_GET_MSRS:
  2278. r = msr_io(vcpu, argp, kvm_get_msr, 1);
  2279. break;
  2280. case KVM_SET_MSRS:
  2281. r = msr_io(vcpu, argp, do_set_msr, 0);
  2282. break;
  2283. case KVM_SET_CPUID: {
  2284. struct kvm_cpuid __user *cpuid_arg = argp;
  2285. struct kvm_cpuid cpuid;
  2286. r = -EFAULT;
  2287. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2288. goto out;
  2289. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  2290. if (r)
  2291. goto out;
  2292. break;
  2293. }
  2294. case KVM_SET_SIGNAL_MASK: {
  2295. struct kvm_signal_mask __user *sigmask_arg = argp;
  2296. struct kvm_signal_mask kvm_sigmask;
  2297. sigset_t sigset, *p;
  2298. p = NULL;
  2299. if (argp) {
  2300. r = -EFAULT;
  2301. if (copy_from_user(&kvm_sigmask, argp,
  2302. sizeof kvm_sigmask))
  2303. goto out;
  2304. r = -EINVAL;
  2305. if (kvm_sigmask.len != sizeof sigset)
  2306. goto out;
  2307. r = -EFAULT;
  2308. if (copy_from_user(&sigset, sigmask_arg->sigset,
  2309. sizeof sigset))
  2310. goto out;
  2311. p = &sigset;
  2312. }
  2313. r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
  2314. break;
  2315. }
  2316. case KVM_GET_FPU: {
  2317. struct kvm_fpu fpu;
  2318. memset(&fpu, 0, sizeof fpu);
  2319. r = kvm_vcpu_ioctl_get_fpu(vcpu, &fpu);
  2320. if (r)
  2321. goto out;
  2322. r = -EFAULT;
  2323. if (copy_to_user(argp, &fpu, sizeof fpu))
  2324. goto out;
  2325. r = 0;
  2326. break;
  2327. }
  2328. case KVM_SET_FPU: {
  2329. struct kvm_fpu fpu;
  2330. r = -EFAULT;
  2331. if (copy_from_user(&fpu, argp, sizeof fpu))
  2332. goto out;
  2333. r = kvm_vcpu_ioctl_set_fpu(vcpu, &fpu);
  2334. if (r)
  2335. goto out;
  2336. r = 0;
  2337. break;
  2338. }
  2339. default:
  2340. ;
  2341. }
  2342. out:
  2343. return r;
  2344. }
  2345. static long kvm_vm_ioctl(struct file *filp,
  2346. unsigned int ioctl, unsigned long arg)
  2347. {
  2348. struct kvm *kvm = filp->private_data;
  2349. void __user *argp = (void __user *)arg;
  2350. int r = -EINVAL;
  2351. switch (ioctl) {
  2352. case KVM_CREATE_VCPU:
  2353. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  2354. if (r < 0)
  2355. goto out;
  2356. break;
  2357. case KVM_SET_MEMORY_REGION: {
  2358. struct kvm_memory_region kvm_mem;
  2359. r = -EFAULT;
  2360. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  2361. goto out;
  2362. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_mem);
  2363. if (r)
  2364. goto out;
  2365. break;
  2366. }
  2367. case KVM_GET_DIRTY_LOG: {
  2368. struct kvm_dirty_log log;
  2369. r = -EFAULT;
  2370. if (copy_from_user(&log, argp, sizeof log))
  2371. goto out;
  2372. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  2373. if (r)
  2374. goto out;
  2375. break;
  2376. }
  2377. case KVM_SET_MEMORY_ALIAS: {
  2378. struct kvm_memory_alias alias;
  2379. r = -EFAULT;
  2380. if (copy_from_user(&alias, argp, sizeof alias))
  2381. goto out;
  2382. r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
  2383. if (r)
  2384. goto out;
  2385. break;
  2386. }
  2387. default:
  2388. ;
  2389. }
  2390. out:
  2391. return r;
  2392. }
  2393. static struct page *kvm_vm_nopage(struct vm_area_struct *vma,
  2394. unsigned long address,
  2395. int *type)
  2396. {
  2397. struct kvm *kvm = vma->vm_file->private_data;
  2398. unsigned long pgoff;
  2399. struct page *page;
  2400. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  2401. page = gfn_to_page(kvm, pgoff);
  2402. if (!page)
  2403. return NOPAGE_SIGBUS;
  2404. get_page(page);
  2405. if (type != NULL)
  2406. *type = VM_FAULT_MINOR;
  2407. return page;
  2408. }
  2409. static struct vm_operations_struct kvm_vm_vm_ops = {
  2410. .nopage = kvm_vm_nopage,
  2411. };
  2412. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  2413. {
  2414. vma->vm_ops = &kvm_vm_vm_ops;
  2415. return 0;
  2416. }
  2417. static struct file_operations kvm_vm_fops = {
  2418. .release = kvm_vm_release,
  2419. .unlocked_ioctl = kvm_vm_ioctl,
  2420. .compat_ioctl = kvm_vm_ioctl,
  2421. .mmap = kvm_vm_mmap,
  2422. };
  2423. static int kvm_dev_ioctl_create_vm(void)
  2424. {
  2425. int fd, r;
  2426. struct inode *inode;
  2427. struct file *file;
  2428. struct kvm *kvm;
  2429. kvm = kvm_create_vm();
  2430. if (IS_ERR(kvm))
  2431. return PTR_ERR(kvm);
  2432. r = anon_inode_getfd(&fd, &inode, &file, "kvm-vm", &kvm_vm_fops, kvm);
  2433. if (r) {
  2434. kvm_destroy_vm(kvm);
  2435. return r;
  2436. }
  2437. kvm->filp = file;
  2438. return fd;
  2439. }
  2440. static long kvm_dev_ioctl(struct file *filp,
  2441. unsigned int ioctl, unsigned long arg)
  2442. {
  2443. void __user *argp = (void __user *)arg;
  2444. long r = -EINVAL;
  2445. switch (ioctl) {
  2446. case KVM_GET_API_VERSION:
  2447. r = -EINVAL;
  2448. if (arg)
  2449. goto out;
  2450. r = KVM_API_VERSION;
  2451. break;
  2452. case KVM_CREATE_VM:
  2453. r = -EINVAL;
  2454. if (arg)
  2455. goto out;
  2456. r = kvm_dev_ioctl_create_vm();
  2457. break;
  2458. case KVM_GET_MSR_INDEX_LIST: {
  2459. struct kvm_msr_list __user *user_msr_list = argp;
  2460. struct kvm_msr_list msr_list;
  2461. unsigned n;
  2462. r = -EFAULT;
  2463. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  2464. goto out;
  2465. n = msr_list.nmsrs;
  2466. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  2467. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  2468. goto out;
  2469. r = -E2BIG;
  2470. if (n < num_msrs_to_save)
  2471. goto out;
  2472. r = -EFAULT;
  2473. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  2474. num_msrs_to_save * sizeof(u32)))
  2475. goto out;
  2476. if (copy_to_user(user_msr_list->indices
  2477. + num_msrs_to_save * sizeof(u32),
  2478. &emulated_msrs,
  2479. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  2480. goto out;
  2481. r = 0;
  2482. break;
  2483. }
  2484. case KVM_CHECK_EXTENSION:
  2485. /*
  2486. * No extensions defined at present.
  2487. */
  2488. r = 0;
  2489. break;
  2490. case KVM_GET_VCPU_MMAP_SIZE:
  2491. r = -EINVAL;
  2492. if (arg)
  2493. goto out;
  2494. r = 2 * PAGE_SIZE;
  2495. break;
  2496. default:
  2497. ;
  2498. }
  2499. out:
  2500. return r;
  2501. }
  2502. static struct file_operations kvm_chardev_ops = {
  2503. .open = kvm_dev_open,
  2504. .release = kvm_dev_release,
  2505. .unlocked_ioctl = kvm_dev_ioctl,
  2506. .compat_ioctl = kvm_dev_ioctl,
  2507. };
  2508. static struct miscdevice kvm_dev = {
  2509. KVM_MINOR,
  2510. "kvm",
  2511. &kvm_chardev_ops,
  2512. };
  2513. /*
  2514. * Make sure that a cpu that is being hot-unplugged does not have any vcpus
  2515. * cached on it.
  2516. */
  2517. static void decache_vcpus_on_cpu(int cpu)
  2518. {
  2519. struct kvm *vm;
  2520. struct kvm_vcpu *vcpu;
  2521. int i;
  2522. spin_lock(&kvm_lock);
  2523. list_for_each_entry(vm, &vm_list, vm_list)
  2524. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  2525. vcpu = &vm->vcpus[i];
  2526. /*
  2527. * If the vcpu is locked, then it is running on some
  2528. * other cpu and therefore it is not cached on the
  2529. * cpu in question.
  2530. *
  2531. * If it's not locked, check the last cpu it executed
  2532. * on.
  2533. */
  2534. if (mutex_trylock(&vcpu->mutex)) {
  2535. if (vcpu->cpu == cpu) {
  2536. kvm_arch_ops->vcpu_decache(vcpu);
  2537. vcpu->cpu = -1;
  2538. }
  2539. mutex_unlock(&vcpu->mutex);
  2540. }
  2541. }
  2542. spin_unlock(&kvm_lock);
  2543. }
  2544. static void hardware_enable(void *junk)
  2545. {
  2546. int cpu = raw_smp_processor_id();
  2547. if (cpu_isset(cpu, cpus_hardware_enabled))
  2548. return;
  2549. cpu_set(cpu, cpus_hardware_enabled);
  2550. kvm_arch_ops->hardware_enable(NULL);
  2551. }
  2552. static void hardware_disable(void *junk)
  2553. {
  2554. int cpu = raw_smp_processor_id();
  2555. if (!cpu_isset(cpu, cpus_hardware_enabled))
  2556. return;
  2557. cpu_clear(cpu, cpus_hardware_enabled);
  2558. decache_vcpus_on_cpu(cpu);
  2559. kvm_arch_ops->hardware_disable(NULL);
  2560. }
  2561. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  2562. void *v)
  2563. {
  2564. int cpu = (long)v;
  2565. switch (val) {
  2566. case CPU_DYING:
  2567. case CPU_DYING_FROZEN:
  2568. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  2569. cpu);
  2570. hardware_disable(NULL);
  2571. break;
  2572. case CPU_UP_CANCELED:
  2573. case CPU_UP_CANCELED_FROZEN:
  2574. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  2575. cpu);
  2576. smp_call_function_single(cpu, hardware_disable, NULL, 0, 1);
  2577. break;
  2578. case CPU_ONLINE:
  2579. case CPU_ONLINE_FROZEN:
  2580. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  2581. cpu);
  2582. smp_call_function_single(cpu, hardware_enable, NULL, 0, 1);
  2583. break;
  2584. }
  2585. return NOTIFY_OK;
  2586. }
  2587. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  2588. void *v)
  2589. {
  2590. if (val == SYS_RESTART) {
  2591. /*
  2592. * Some (well, at least mine) BIOSes hang on reboot if
  2593. * in vmx root mode.
  2594. */
  2595. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  2596. on_each_cpu(hardware_disable, NULL, 0, 1);
  2597. }
  2598. return NOTIFY_OK;
  2599. }
  2600. static struct notifier_block kvm_reboot_notifier = {
  2601. .notifier_call = kvm_reboot,
  2602. .priority = 0,
  2603. };
  2604. void kvm_io_bus_init(struct kvm_io_bus *bus)
  2605. {
  2606. memset(bus, 0, sizeof(*bus));
  2607. }
  2608. void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  2609. {
  2610. int i;
  2611. for (i = 0; i < bus->dev_count; i++) {
  2612. struct kvm_io_device *pos = bus->devs[i];
  2613. kvm_iodevice_destructor(pos);
  2614. }
  2615. }
  2616. struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus, gpa_t addr)
  2617. {
  2618. int i;
  2619. for (i = 0; i < bus->dev_count; i++) {
  2620. struct kvm_io_device *pos = bus->devs[i];
  2621. if (pos->in_range(pos, addr))
  2622. return pos;
  2623. }
  2624. return NULL;
  2625. }
  2626. void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
  2627. {
  2628. BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
  2629. bus->devs[bus->dev_count++] = dev;
  2630. }
  2631. static struct notifier_block kvm_cpu_notifier = {
  2632. .notifier_call = kvm_cpu_hotplug,
  2633. .priority = 20, /* must be > scheduler priority */
  2634. };
  2635. static u64 stat_get(void *_offset)
  2636. {
  2637. unsigned offset = (long)_offset;
  2638. u64 total = 0;
  2639. struct kvm *kvm;
  2640. struct kvm_vcpu *vcpu;
  2641. int i;
  2642. spin_lock(&kvm_lock);
  2643. list_for_each_entry(kvm, &vm_list, vm_list)
  2644. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  2645. vcpu = &kvm->vcpus[i];
  2646. total += *(u32 *)((void *)vcpu + offset);
  2647. }
  2648. spin_unlock(&kvm_lock);
  2649. return total;
  2650. }
  2651. static void stat_set(void *offset, u64 val)
  2652. {
  2653. }
  2654. DEFINE_SIMPLE_ATTRIBUTE(stat_fops, stat_get, stat_set, "%llu\n");
  2655. static __init void kvm_init_debug(void)
  2656. {
  2657. struct kvm_stats_debugfs_item *p;
  2658. debugfs_dir = debugfs_create_dir("kvm", NULL);
  2659. for (p = debugfs_entries; p->name; ++p)
  2660. p->dentry = debugfs_create_file(p->name, 0444, debugfs_dir,
  2661. (void *)(long)p->offset,
  2662. &stat_fops);
  2663. }
  2664. static void kvm_exit_debug(void)
  2665. {
  2666. struct kvm_stats_debugfs_item *p;
  2667. for (p = debugfs_entries; p->name; ++p)
  2668. debugfs_remove(p->dentry);
  2669. debugfs_remove(debugfs_dir);
  2670. }
  2671. static int kvm_suspend(struct sys_device *dev, pm_message_t state)
  2672. {
  2673. hardware_disable(NULL);
  2674. return 0;
  2675. }
  2676. static int kvm_resume(struct sys_device *dev)
  2677. {
  2678. hardware_enable(NULL);
  2679. return 0;
  2680. }
  2681. static struct sysdev_class kvm_sysdev_class = {
  2682. set_kset_name("kvm"),
  2683. .suspend = kvm_suspend,
  2684. .resume = kvm_resume,
  2685. };
  2686. static struct sys_device kvm_sysdev = {
  2687. .id = 0,
  2688. .cls = &kvm_sysdev_class,
  2689. };
  2690. hpa_t bad_page_address;
  2691. int kvm_init_arch(struct kvm_arch_ops *ops, struct module *module)
  2692. {
  2693. int r;
  2694. if (kvm_arch_ops) {
  2695. printk(KERN_ERR "kvm: already loaded the other module\n");
  2696. return -EEXIST;
  2697. }
  2698. if (!ops->cpu_has_kvm_support()) {
  2699. printk(KERN_ERR "kvm: no hardware support\n");
  2700. return -EOPNOTSUPP;
  2701. }
  2702. if (ops->disabled_by_bios()) {
  2703. printk(KERN_ERR "kvm: disabled by bios\n");
  2704. return -EOPNOTSUPP;
  2705. }
  2706. kvm_arch_ops = ops;
  2707. r = kvm_arch_ops->hardware_setup();
  2708. if (r < 0)
  2709. goto out;
  2710. on_each_cpu(hardware_enable, NULL, 0, 1);
  2711. r = register_cpu_notifier(&kvm_cpu_notifier);
  2712. if (r)
  2713. goto out_free_1;
  2714. register_reboot_notifier(&kvm_reboot_notifier);
  2715. r = sysdev_class_register(&kvm_sysdev_class);
  2716. if (r)
  2717. goto out_free_2;
  2718. r = sysdev_register(&kvm_sysdev);
  2719. if (r)
  2720. goto out_free_3;
  2721. kvm_chardev_ops.owner = module;
  2722. r = misc_register(&kvm_dev);
  2723. if (r) {
  2724. printk (KERN_ERR "kvm: misc device register failed\n");
  2725. goto out_free;
  2726. }
  2727. return r;
  2728. out_free:
  2729. sysdev_unregister(&kvm_sysdev);
  2730. out_free_3:
  2731. sysdev_class_unregister(&kvm_sysdev_class);
  2732. out_free_2:
  2733. unregister_reboot_notifier(&kvm_reboot_notifier);
  2734. unregister_cpu_notifier(&kvm_cpu_notifier);
  2735. out_free_1:
  2736. on_each_cpu(hardware_disable, NULL, 0, 1);
  2737. kvm_arch_ops->hardware_unsetup();
  2738. out:
  2739. kvm_arch_ops = NULL;
  2740. return r;
  2741. }
  2742. void kvm_exit_arch(void)
  2743. {
  2744. misc_deregister(&kvm_dev);
  2745. sysdev_unregister(&kvm_sysdev);
  2746. sysdev_class_unregister(&kvm_sysdev_class);
  2747. unregister_reboot_notifier(&kvm_reboot_notifier);
  2748. unregister_cpu_notifier(&kvm_cpu_notifier);
  2749. on_each_cpu(hardware_disable, NULL, 0, 1);
  2750. kvm_arch_ops->hardware_unsetup();
  2751. kvm_arch_ops = NULL;
  2752. }
  2753. static __init int kvm_init(void)
  2754. {
  2755. static struct page *bad_page;
  2756. int r;
  2757. r = kvm_mmu_module_init();
  2758. if (r)
  2759. goto out4;
  2760. kvm_init_debug();
  2761. kvm_init_msr_list();
  2762. if ((bad_page = alloc_page(GFP_KERNEL)) == NULL) {
  2763. r = -ENOMEM;
  2764. goto out;
  2765. }
  2766. bad_page_address = page_to_pfn(bad_page) << PAGE_SHIFT;
  2767. memset(__va(bad_page_address), 0, PAGE_SIZE);
  2768. return 0;
  2769. out:
  2770. kvm_exit_debug();
  2771. kvm_mmu_module_exit();
  2772. out4:
  2773. return r;
  2774. }
  2775. static __exit void kvm_exit(void)
  2776. {
  2777. kvm_exit_debug();
  2778. __free_page(pfn_to_page(bad_page_address >> PAGE_SHIFT));
  2779. kvm_mmu_module_exit();
  2780. }
  2781. module_init(kvm_init)
  2782. module_exit(kvm_exit)
  2783. EXPORT_SYMBOL_GPL(kvm_init_arch);
  2784. EXPORT_SYMBOL_GPL(kvm_exit_arch);