vmx.c 85 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "irq.h"
  18. #include "vmx.h"
  19. #include "mmu.h"
  20. #include <linux/kvm_host.h>
  21. #include <linux/module.h>
  22. #include <linux/kernel.h>
  23. #include <linux/mm.h>
  24. #include <linux/highmem.h>
  25. #include <linux/sched.h>
  26. #include <linux/moduleparam.h>
  27. #include "kvm_cache_regs.h"
  28. #include "x86.h"
  29. #include <asm/io.h>
  30. #include <asm/desc.h>
  31. #define __ex(x) __kvm_handle_fault_on_reboot(x)
  32. MODULE_AUTHOR("Qumranet");
  33. MODULE_LICENSE("GPL");
  34. static int bypass_guest_pf = 1;
  35. module_param(bypass_guest_pf, bool, 0);
  36. static int enable_vpid = 1;
  37. module_param(enable_vpid, bool, 0);
  38. static int flexpriority_enabled = 1;
  39. module_param(flexpriority_enabled, bool, 0);
  40. static int enable_ept = 1;
  41. module_param(enable_ept, bool, 0);
  42. struct vmcs {
  43. u32 revision_id;
  44. u32 abort;
  45. char data[0];
  46. };
  47. struct vcpu_vmx {
  48. struct kvm_vcpu vcpu;
  49. struct list_head local_vcpus_link;
  50. int launched;
  51. u8 fail;
  52. u32 idt_vectoring_info;
  53. struct kvm_msr_entry *guest_msrs;
  54. struct kvm_msr_entry *host_msrs;
  55. int nmsrs;
  56. int save_nmsrs;
  57. int msr_offset_efer;
  58. #ifdef CONFIG_X86_64
  59. int msr_offset_kernel_gs_base;
  60. #endif
  61. struct vmcs *vmcs;
  62. struct {
  63. int loaded;
  64. u16 fs_sel, gs_sel, ldt_sel;
  65. int gs_ldt_reload_needed;
  66. int fs_reload_needed;
  67. int guest_efer_loaded;
  68. } host_state;
  69. struct {
  70. struct {
  71. bool pending;
  72. u8 vector;
  73. unsigned rip;
  74. } irq;
  75. } rmode;
  76. int vpid;
  77. };
  78. static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
  79. {
  80. return container_of(vcpu, struct vcpu_vmx, vcpu);
  81. }
  82. static int init_rmode(struct kvm *kvm);
  83. static u64 construct_eptp(unsigned long root_hpa);
  84. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  85. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  86. static DEFINE_PER_CPU(struct list_head, vcpus_on_cpu);
  87. static struct page *vmx_io_bitmap_a;
  88. static struct page *vmx_io_bitmap_b;
  89. static struct page *vmx_msr_bitmap;
  90. static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
  91. static DEFINE_SPINLOCK(vmx_vpid_lock);
  92. static struct vmcs_config {
  93. int size;
  94. int order;
  95. u32 revision_id;
  96. u32 pin_based_exec_ctrl;
  97. u32 cpu_based_exec_ctrl;
  98. u32 cpu_based_2nd_exec_ctrl;
  99. u32 vmexit_ctrl;
  100. u32 vmentry_ctrl;
  101. } vmcs_config;
  102. struct vmx_capability {
  103. u32 ept;
  104. u32 vpid;
  105. } vmx_capability;
  106. #define VMX_SEGMENT_FIELD(seg) \
  107. [VCPU_SREG_##seg] = { \
  108. .selector = GUEST_##seg##_SELECTOR, \
  109. .base = GUEST_##seg##_BASE, \
  110. .limit = GUEST_##seg##_LIMIT, \
  111. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  112. }
  113. static struct kvm_vmx_segment_field {
  114. unsigned selector;
  115. unsigned base;
  116. unsigned limit;
  117. unsigned ar_bytes;
  118. } kvm_vmx_segment_fields[] = {
  119. VMX_SEGMENT_FIELD(CS),
  120. VMX_SEGMENT_FIELD(DS),
  121. VMX_SEGMENT_FIELD(ES),
  122. VMX_SEGMENT_FIELD(FS),
  123. VMX_SEGMENT_FIELD(GS),
  124. VMX_SEGMENT_FIELD(SS),
  125. VMX_SEGMENT_FIELD(TR),
  126. VMX_SEGMENT_FIELD(LDTR),
  127. };
  128. /*
  129. * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
  130. * away by decrementing the array size.
  131. */
  132. static const u32 vmx_msr_index[] = {
  133. #ifdef CONFIG_X86_64
  134. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
  135. #endif
  136. MSR_EFER, MSR_K6_STAR,
  137. };
  138. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  139. static void load_msrs(struct kvm_msr_entry *e, int n)
  140. {
  141. int i;
  142. for (i = 0; i < n; ++i)
  143. wrmsrl(e[i].index, e[i].data);
  144. }
  145. static void save_msrs(struct kvm_msr_entry *e, int n)
  146. {
  147. int i;
  148. for (i = 0; i < n; ++i)
  149. rdmsrl(e[i].index, e[i].data);
  150. }
  151. static inline int is_page_fault(u32 intr_info)
  152. {
  153. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  154. INTR_INFO_VALID_MASK)) ==
  155. (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  156. }
  157. static inline int is_no_device(u32 intr_info)
  158. {
  159. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  160. INTR_INFO_VALID_MASK)) ==
  161. (INTR_TYPE_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
  162. }
  163. static inline int is_invalid_opcode(u32 intr_info)
  164. {
  165. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  166. INTR_INFO_VALID_MASK)) ==
  167. (INTR_TYPE_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
  168. }
  169. static inline int is_external_interrupt(u32 intr_info)
  170. {
  171. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  172. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  173. }
  174. static inline int cpu_has_vmx_msr_bitmap(void)
  175. {
  176. return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS);
  177. }
  178. static inline int cpu_has_vmx_tpr_shadow(void)
  179. {
  180. return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW);
  181. }
  182. static inline int vm_need_tpr_shadow(struct kvm *kvm)
  183. {
  184. return ((cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm)));
  185. }
  186. static inline int cpu_has_secondary_exec_ctrls(void)
  187. {
  188. return (vmcs_config.cpu_based_exec_ctrl &
  189. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS);
  190. }
  191. static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
  192. {
  193. return flexpriority_enabled
  194. && (vmcs_config.cpu_based_2nd_exec_ctrl &
  195. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
  196. }
  197. static inline int cpu_has_vmx_invept_individual_addr(void)
  198. {
  199. return (!!(vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT));
  200. }
  201. static inline int cpu_has_vmx_invept_context(void)
  202. {
  203. return (!!(vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT));
  204. }
  205. static inline int cpu_has_vmx_invept_global(void)
  206. {
  207. return (!!(vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT));
  208. }
  209. static inline int cpu_has_vmx_ept(void)
  210. {
  211. return (vmcs_config.cpu_based_2nd_exec_ctrl &
  212. SECONDARY_EXEC_ENABLE_EPT);
  213. }
  214. static inline int vm_need_ept(void)
  215. {
  216. return (cpu_has_vmx_ept() && enable_ept);
  217. }
  218. static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
  219. {
  220. return ((cpu_has_vmx_virtualize_apic_accesses()) &&
  221. (irqchip_in_kernel(kvm)));
  222. }
  223. static inline int cpu_has_vmx_vpid(void)
  224. {
  225. return (vmcs_config.cpu_based_2nd_exec_ctrl &
  226. SECONDARY_EXEC_ENABLE_VPID);
  227. }
  228. static inline int cpu_has_virtual_nmis(void)
  229. {
  230. return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
  231. }
  232. static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
  233. {
  234. int i;
  235. for (i = 0; i < vmx->nmsrs; ++i)
  236. if (vmx->guest_msrs[i].index == msr)
  237. return i;
  238. return -1;
  239. }
  240. static inline void __invvpid(int ext, u16 vpid, gva_t gva)
  241. {
  242. struct {
  243. u64 vpid : 16;
  244. u64 rsvd : 48;
  245. u64 gva;
  246. } operand = { vpid, 0, gva };
  247. asm volatile (__ex(ASM_VMX_INVVPID)
  248. /* CF==1 or ZF==1 --> rc = -1 */
  249. "; ja 1f ; ud2 ; 1:"
  250. : : "a"(&operand), "c"(ext) : "cc", "memory");
  251. }
  252. static inline void __invept(int ext, u64 eptp, gpa_t gpa)
  253. {
  254. struct {
  255. u64 eptp, gpa;
  256. } operand = {eptp, gpa};
  257. asm volatile (__ex(ASM_VMX_INVEPT)
  258. /* CF==1 or ZF==1 --> rc = -1 */
  259. "; ja 1f ; ud2 ; 1:\n"
  260. : : "a" (&operand), "c" (ext) : "cc", "memory");
  261. }
  262. static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
  263. {
  264. int i;
  265. i = __find_msr_index(vmx, msr);
  266. if (i >= 0)
  267. return &vmx->guest_msrs[i];
  268. return NULL;
  269. }
  270. static void vmcs_clear(struct vmcs *vmcs)
  271. {
  272. u64 phys_addr = __pa(vmcs);
  273. u8 error;
  274. asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
  275. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  276. : "cc", "memory");
  277. if (error)
  278. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  279. vmcs, phys_addr);
  280. }
  281. static void __vcpu_clear(void *arg)
  282. {
  283. struct vcpu_vmx *vmx = arg;
  284. int cpu = raw_smp_processor_id();
  285. if (vmx->vcpu.cpu == cpu)
  286. vmcs_clear(vmx->vmcs);
  287. if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
  288. per_cpu(current_vmcs, cpu) = NULL;
  289. rdtscll(vmx->vcpu.arch.host_tsc);
  290. list_del(&vmx->local_vcpus_link);
  291. vmx->vcpu.cpu = -1;
  292. vmx->launched = 0;
  293. }
  294. static void vcpu_clear(struct vcpu_vmx *vmx)
  295. {
  296. if (vmx->vcpu.cpu == -1)
  297. return;
  298. smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 1);
  299. }
  300. static inline void vpid_sync_vcpu_all(struct vcpu_vmx *vmx)
  301. {
  302. if (vmx->vpid == 0)
  303. return;
  304. __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
  305. }
  306. static inline void ept_sync_global(void)
  307. {
  308. if (cpu_has_vmx_invept_global())
  309. __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
  310. }
  311. static inline void ept_sync_context(u64 eptp)
  312. {
  313. if (vm_need_ept()) {
  314. if (cpu_has_vmx_invept_context())
  315. __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
  316. else
  317. ept_sync_global();
  318. }
  319. }
  320. static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
  321. {
  322. if (vm_need_ept()) {
  323. if (cpu_has_vmx_invept_individual_addr())
  324. __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
  325. eptp, gpa);
  326. else
  327. ept_sync_context(eptp);
  328. }
  329. }
  330. static unsigned long vmcs_readl(unsigned long field)
  331. {
  332. unsigned long value;
  333. asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX)
  334. : "=a"(value) : "d"(field) : "cc");
  335. return value;
  336. }
  337. static u16 vmcs_read16(unsigned long field)
  338. {
  339. return vmcs_readl(field);
  340. }
  341. static u32 vmcs_read32(unsigned long field)
  342. {
  343. return vmcs_readl(field);
  344. }
  345. static u64 vmcs_read64(unsigned long field)
  346. {
  347. #ifdef CONFIG_X86_64
  348. return vmcs_readl(field);
  349. #else
  350. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  351. #endif
  352. }
  353. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  354. {
  355. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  356. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  357. dump_stack();
  358. }
  359. static void vmcs_writel(unsigned long field, unsigned long value)
  360. {
  361. u8 error;
  362. asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
  363. : "=q"(error) : "a"(value), "d"(field) : "cc");
  364. if (unlikely(error))
  365. vmwrite_error(field, value);
  366. }
  367. static void vmcs_write16(unsigned long field, u16 value)
  368. {
  369. vmcs_writel(field, value);
  370. }
  371. static void vmcs_write32(unsigned long field, u32 value)
  372. {
  373. vmcs_writel(field, value);
  374. }
  375. static void vmcs_write64(unsigned long field, u64 value)
  376. {
  377. vmcs_writel(field, value);
  378. #ifndef CONFIG_X86_64
  379. asm volatile ("");
  380. vmcs_writel(field+1, value >> 32);
  381. #endif
  382. }
  383. static void vmcs_clear_bits(unsigned long field, u32 mask)
  384. {
  385. vmcs_writel(field, vmcs_readl(field) & ~mask);
  386. }
  387. static void vmcs_set_bits(unsigned long field, u32 mask)
  388. {
  389. vmcs_writel(field, vmcs_readl(field) | mask);
  390. }
  391. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  392. {
  393. u32 eb;
  394. eb = (1u << PF_VECTOR) | (1u << UD_VECTOR);
  395. if (!vcpu->fpu_active)
  396. eb |= 1u << NM_VECTOR;
  397. if (vcpu->guest_debug.enabled)
  398. eb |= 1u << DB_VECTOR;
  399. if (vcpu->arch.rmode.active)
  400. eb = ~0;
  401. if (vm_need_ept())
  402. eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
  403. vmcs_write32(EXCEPTION_BITMAP, eb);
  404. }
  405. static void reload_tss(void)
  406. {
  407. /*
  408. * VT restores TR but not its size. Useless.
  409. */
  410. struct descriptor_table gdt;
  411. struct desc_struct *descs;
  412. kvm_get_gdt(&gdt);
  413. descs = (void *)gdt.base;
  414. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  415. load_TR_desc();
  416. }
  417. static void load_transition_efer(struct vcpu_vmx *vmx)
  418. {
  419. int efer_offset = vmx->msr_offset_efer;
  420. u64 host_efer = vmx->host_msrs[efer_offset].data;
  421. u64 guest_efer = vmx->guest_msrs[efer_offset].data;
  422. u64 ignore_bits;
  423. if (efer_offset < 0)
  424. return;
  425. /*
  426. * NX is emulated; LMA and LME handled by hardware; SCE meaninless
  427. * outside long mode
  428. */
  429. ignore_bits = EFER_NX | EFER_SCE;
  430. #ifdef CONFIG_X86_64
  431. ignore_bits |= EFER_LMA | EFER_LME;
  432. /* SCE is meaningful only in long mode on Intel */
  433. if (guest_efer & EFER_LMA)
  434. ignore_bits &= ~(u64)EFER_SCE;
  435. #endif
  436. if ((guest_efer & ~ignore_bits) == (host_efer & ~ignore_bits))
  437. return;
  438. vmx->host_state.guest_efer_loaded = 1;
  439. guest_efer &= ~ignore_bits;
  440. guest_efer |= host_efer & ignore_bits;
  441. wrmsrl(MSR_EFER, guest_efer);
  442. vmx->vcpu.stat.efer_reload++;
  443. }
  444. static void reload_host_efer(struct vcpu_vmx *vmx)
  445. {
  446. if (vmx->host_state.guest_efer_loaded) {
  447. vmx->host_state.guest_efer_loaded = 0;
  448. load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
  449. }
  450. }
  451. static void vmx_save_host_state(struct kvm_vcpu *vcpu)
  452. {
  453. struct vcpu_vmx *vmx = to_vmx(vcpu);
  454. if (vmx->host_state.loaded)
  455. return;
  456. vmx->host_state.loaded = 1;
  457. /*
  458. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  459. * allow segment selectors with cpl > 0 or ti == 1.
  460. */
  461. vmx->host_state.ldt_sel = kvm_read_ldt();
  462. vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
  463. vmx->host_state.fs_sel = kvm_read_fs();
  464. if (!(vmx->host_state.fs_sel & 7)) {
  465. vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
  466. vmx->host_state.fs_reload_needed = 0;
  467. } else {
  468. vmcs_write16(HOST_FS_SELECTOR, 0);
  469. vmx->host_state.fs_reload_needed = 1;
  470. }
  471. vmx->host_state.gs_sel = kvm_read_gs();
  472. if (!(vmx->host_state.gs_sel & 7))
  473. vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
  474. else {
  475. vmcs_write16(HOST_GS_SELECTOR, 0);
  476. vmx->host_state.gs_ldt_reload_needed = 1;
  477. }
  478. #ifdef CONFIG_X86_64
  479. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  480. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  481. #else
  482. vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
  483. vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
  484. #endif
  485. #ifdef CONFIG_X86_64
  486. if (is_long_mode(&vmx->vcpu))
  487. save_msrs(vmx->host_msrs +
  488. vmx->msr_offset_kernel_gs_base, 1);
  489. #endif
  490. load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  491. load_transition_efer(vmx);
  492. }
  493. static void __vmx_load_host_state(struct vcpu_vmx *vmx)
  494. {
  495. unsigned long flags;
  496. if (!vmx->host_state.loaded)
  497. return;
  498. ++vmx->vcpu.stat.host_state_reload;
  499. vmx->host_state.loaded = 0;
  500. if (vmx->host_state.fs_reload_needed)
  501. kvm_load_fs(vmx->host_state.fs_sel);
  502. if (vmx->host_state.gs_ldt_reload_needed) {
  503. kvm_load_ldt(vmx->host_state.ldt_sel);
  504. /*
  505. * If we have to reload gs, we must take care to
  506. * preserve our gs base.
  507. */
  508. local_irq_save(flags);
  509. kvm_load_gs(vmx->host_state.gs_sel);
  510. #ifdef CONFIG_X86_64
  511. wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
  512. #endif
  513. local_irq_restore(flags);
  514. }
  515. reload_tss();
  516. save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  517. load_msrs(vmx->host_msrs, vmx->save_nmsrs);
  518. reload_host_efer(vmx);
  519. }
  520. static void vmx_load_host_state(struct vcpu_vmx *vmx)
  521. {
  522. preempt_disable();
  523. __vmx_load_host_state(vmx);
  524. preempt_enable();
  525. }
  526. /*
  527. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  528. * vcpu mutex is already taken.
  529. */
  530. static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  531. {
  532. struct vcpu_vmx *vmx = to_vmx(vcpu);
  533. u64 phys_addr = __pa(vmx->vmcs);
  534. u64 tsc_this, delta, new_offset;
  535. if (vcpu->cpu != cpu) {
  536. vcpu_clear(vmx);
  537. kvm_migrate_timers(vcpu);
  538. vpid_sync_vcpu_all(vmx);
  539. local_irq_disable();
  540. list_add(&vmx->local_vcpus_link,
  541. &per_cpu(vcpus_on_cpu, cpu));
  542. local_irq_enable();
  543. }
  544. if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
  545. u8 error;
  546. per_cpu(current_vmcs, cpu) = vmx->vmcs;
  547. asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
  548. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  549. : "cc");
  550. if (error)
  551. printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
  552. vmx->vmcs, phys_addr);
  553. }
  554. if (vcpu->cpu != cpu) {
  555. struct descriptor_table dt;
  556. unsigned long sysenter_esp;
  557. vcpu->cpu = cpu;
  558. /*
  559. * Linux uses per-cpu TSS and GDT, so set these when switching
  560. * processors.
  561. */
  562. vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
  563. kvm_get_gdt(&dt);
  564. vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
  565. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  566. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  567. /*
  568. * Make sure the time stamp counter is monotonous.
  569. */
  570. rdtscll(tsc_this);
  571. if (tsc_this < vcpu->arch.host_tsc) {
  572. delta = vcpu->arch.host_tsc - tsc_this;
  573. new_offset = vmcs_read64(TSC_OFFSET) + delta;
  574. vmcs_write64(TSC_OFFSET, new_offset);
  575. }
  576. }
  577. }
  578. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  579. {
  580. __vmx_load_host_state(to_vmx(vcpu));
  581. }
  582. static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
  583. {
  584. if (vcpu->fpu_active)
  585. return;
  586. vcpu->fpu_active = 1;
  587. vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
  588. if (vcpu->arch.cr0 & X86_CR0_TS)
  589. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  590. update_exception_bitmap(vcpu);
  591. }
  592. static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
  593. {
  594. if (!vcpu->fpu_active)
  595. return;
  596. vcpu->fpu_active = 0;
  597. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  598. update_exception_bitmap(vcpu);
  599. }
  600. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  601. {
  602. return vmcs_readl(GUEST_RFLAGS);
  603. }
  604. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  605. {
  606. if (vcpu->arch.rmode.active)
  607. rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  608. vmcs_writel(GUEST_RFLAGS, rflags);
  609. }
  610. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  611. {
  612. unsigned long rip;
  613. u32 interruptibility;
  614. rip = kvm_rip_read(vcpu);
  615. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  616. kvm_rip_write(vcpu, rip);
  617. /*
  618. * We emulated an instruction, so temporary interrupt blocking
  619. * should be removed, if set.
  620. */
  621. interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  622. if (interruptibility & 3)
  623. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
  624. interruptibility & ~3);
  625. vcpu->arch.interrupt_window_open = 1;
  626. }
  627. static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
  628. bool has_error_code, u32 error_code)
  629. {
  630. struct vcpu_vmx *vmx = to_vmx(vcpu);
  631. if (has_error_code)
  632. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  633. if (vcpu->arch.rmode.active) {
  634. vmx->rmode.irq.pending = true;
  635. vmx->rmode.irq.vector = nr;
  636. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  637. if (nr == BP_VECTOR)
  638. vmx->rmode.irq.rip++;
  639. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  640. nr | INTR_TYPE_SOFT_INTR
  641. | (has_error_code ? INTR_INFO_DELIVER_CODE_MASK : 0)
  642. | INTR_INFO_VALID_MASK);
  643. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  644. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  645. return;
  646. }
  647. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  648. nr | INTR_TYPE_EXCEPTION
  649. | (has_error_code ? INTR_INFO_DELIVER_CODE_MASK : 0)
  650. | INTR_INFO_VALID_MASK);
  651. }
  652. static bool vmx_exception_injected(struct kvm_vcpu *vcpu)
  653. {
  654. return false;
  655. }
  656. /*
  657. * Swap MSR entry in host/guest MSR entry array.
  658. */
  659. #ifdef CONFIG_X86_64
  660. static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
  661. {
  662. struct kvm_msr_entry tmp;
  663. tmp = vmx->guest_msrs[to];
  664. vmx->guest_msrs[to] = vmx->guest_msrs[from];
  665. vmx->guest_msrs[from] = tmp;
  666. tmp = vmx->host_msrs[to];
  667. vmx->host_msrs[to] = vmx->host_msrs[from];
  668. vmx->host_msrs[from] = tmp;
  669. }
  670. #endif
  671. /*
  672. * Set up the vmcs to automatically save and restore system
  673. * msrs. Don't touch the 64-bit msrs if the guest is in legacy
  674. * mode, as fiddling with msrs is very expensive.
  675. */
  676. static void setup_msrs(struct vcpu_vmx *vmx)
  677. {
  678. int save_nmsrs;
  679. vmx_load_host_state(vmx);
  680. save_nmsrs = 0;
  681. #ifdef CONFIG_X86_64
  682. if (is_long_mode(&vmx->vcpu)) {
  683. int index;
  684. index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
  685. if (index >= 0)
  686. move_msr_up(vmx, index, save_nmsrs++);
  687. index = __find_msr_index(vmx, MSR_LSTAR);
  688. if (index >= 0)
  689. move_msr_up(vmx, index, save_nmsrs++);
  690. index = __find_msr_index(vmx, MSR_CSTAR);
  691. if (index >= 0)
  692. move_msr_up(vmx, index, save_nmsrs++);
  693. index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
  694. if (index >= 0)
  695. move_msr_up(vmx, index, save_nmsrs++);
  696. /*
  697. * MSR_K6_STAR is only needed on long mode guests, and only
  698. * if efer.sce is enabled.
  699. */
  700. index = __find_msr_index(vmx, MSR_K6_STAR);
  701. if ((index >= 0) && (vmx->vcpu.arch.shadow_efer & EFER_SCE))
  702. move_msr_up(vmx, index, save_nmsrs++);
  703. }
  704. #endif
  705. vmx->save_nmsrs = save_nmsrs;
  706. #ifdef CONFIG_X86_64
  707. vmx->msr_offset_kernel_gs_base =
  708. __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
  709. #endif
  710. vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
  711. }
  712. /*
  713. * reads and returns guest's timestamp counter "register"
  714. * guest_tsc = host_tsc + tsc_offset -- 21.3
  715. */
  716. static u64 guest_read_tsc(void)
  717. {
  718. u64 host_tsc, tsc_offset;
  719. rdtscll(host_tsc);
  720. tsc_offset = vmcs_read64(TSC_OFFSET);
  721. return host_tsc + tsc_offset;
  722. }
  723. /*
  724. * writes 'guest_tsc' into guest's timestamp counter "register"
  725. * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
  726. */
  727. static void guest_write_tsc(u64 guest_tsc)
  728. {
  729. u64 host_tsc;
  730. rdtscll(host_tsc);
  731. vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
  732. }
  733. /*
  734. * Reads an msr value (of 'msr_index') into 'pdata'.
  735. * Returns 0 on success, non-0 otherwise.
  736. * Assumes vcpu_load() was already called.
  737. */
  738. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  739. {
  740. u64 data;
  741. struct kvm_msr_entry *msr;
  742. if (!pdata) {
  743. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  744. return -EINVAL;
  745. }
  746. switch (msr_index) {
  747. #ifdef CONFIG_X86_64
  748. case MSR_FS_BASE:
  749. data = vmcs_readl(GUEST_FS_BASE);
  750. break;
  751. case MSR_GS_BASE:
  752. data = vmcs_readl(GUEST_GS_BASE);
  753. break;
  754. case MSR_EFER:
  755. return kvm_get_msr_common(vcpu, msr_index, pdata);
  756. #endif
  757. case MSR_IA32_TIME_STAMP_COUNTER:
  758. data = guest_read_tsc();
  759. break;
  760. case MSR_IA32_SYSENTER_CS:
  761. data = vmcs_read32(GUEST_SYSENTER_CS);
  762. break;
  763. case MSR_IA32_SYSENTER_EIP:
  764. data = vmcs_readl(GUEST_SYSENTER_EIP);
  765. break;
  766. case MSR_IA32_SYSENTER_ESP:
  767. data = vmcs_readl(GUEST_SYSENTER_ESP);
  768. break;
  769. default:
  770. msr = find_msr_entry(to_vmx(vcpu), msr_index);
  771. if (msr) {
  772. data = msr->data;
  773. break;
  774. }
  775. return kvm_get_msr_common(vcpu, msr_index, pdata);
  776. }
  777. *pdata = data;
  778. return 0;
  779. }
  780. /*
  781. * Writes msr value into into the appropriate "register".
  782. * Returns 0 on success, non-0 otherwise.
  783. * Assumes vcpu_load() was already called.
  784. */
  785. static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  786. {
  787. struct vcpu_vmx *vmx = to_vmx(vcpu);
  788. struct kvm_msr_entry *msr;
  789. int ret = 0;
  790. switch (msr_index) {
  791. #ifdef CONFIG_X86_64
  792. case MSR_EFER:
  793. vmx_load_host_state(vmx);
  794. ret = kvm_set_msr_common(vcpu, msr_index, data);
  795. break;
  796. case MSR_FS_BASE:
  797. vmcs_writel(GUEST_FS_BASE, data);
  798. break;
  799. case MSR_GS_BASE:
  800. vmcs_writel(GUEST_GS_BASE, data);
  801. break;
  802. #endif
  803. case MSR_IA32_SYSENTER_CS:
  804. vmcs_write32(GUEST_SYSENTER_CS, data);
  805. break;
  806. case MSR_IA32_SYSENTER_EIP:
  807. vmcs_writel(GUEST_SYSENTER_EIP, data);
  808. break;
  809. case MSR_IA32_SYSENTER_ESP:
  810. vmcs_writel(GUEST_SYSENTER_ESP, data);
  811. break;
  812. case MSR_IA32_TIME_STAMP_COUNTER:
  813. guest_write_tsc(data);
  814. break;
  815. case MSR_P6_PERFCTR0:
  816. case MSR_P6_PERFCTR1:
  817. case MSR_P6_EVNTSEL0:
  818. case MSR_P6_EVNTSEL1:
  819. /*
  820. * Just discard all writes to the performance counters; this
  821. * should keep both older linux and windows 64-bit guests
  822. * happy
  823. */
  824. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: 0x%x data 0x%llx\n", msr_index, data);
  825. break;
  826. default:
  827. vmx_load_host_state(vmx);
  828. msr = find_msr_entry(vmx, msr_index);
  829. if (msr) {
  830. msr->data = data;
  831. break;
  832. }
  833. ret = kvm_set_msr_common(vcpu, msr_index, data);
  834. }
  835. return ret;
  836. }
  837. static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
  838. {
  839. __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
  840. switch (reg) {
  841. case VCPU_REGS_RSP:
  842. vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  843. break;
  844. case VCPU_REGS_RIP:
  845. vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
  846. break;
  847. default:
  848. break;
  849. }
  850. }
  851. static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
  852. {
  853. unsigned long dr7 = 0x400;
  854. int old_singlestep;
  855. old_singlestep = vcpu->guest_debug.singlestep;
  856. vcpu->guest_debug.enabled = dbg->enabled;
  857. if (vcpu->guest_debug.enabled) {
  858. int i;
  859. dr7 |= 0x200; /* exact */
  860. for (i = 0; i < 4; ++i) {
  861. if (!dbg->breakpoints[i].enabled)
  862. continue;
  863. vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
  864. dr7 |= 2 << (i*2); /* global enable */
  865. dr7 |= 0 << (i*4+16); /* execution breakpoint */
  866. }
  867. vcpu->guest_debug.singlestep = dbg->singlestep;
  868. } else
  869. vcpu->guest_debug.singlestep = 0;
  870. if (old_singlestep && !vcpu->guest_debug.singlestep) {
  871. unsigned long flags;
  872. flags = vmcs_readl(GUEST_RFLAGS);
  873. flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  874. vmcs_writel(GUEST_RFLAGS, flags);
  875. }
  876. update_exception_bitmap(vcpu);
  877. vmcs_writel(GUEST_DR7, dr7);
  878. return 0;
  879. }
  880. static int vmx_get_irq(struct kvm_vcpu *vcpu)
  881. {
  882. if (!vcpu->arch.interrupt.pending)
  883. return -1;
  884. return vcpu->arch.interrupt.nr;
  885. }
  886. static __init int cpu_has_kvm_support(void)
  887. {
  888. unsigned long ecx = cpuid_ecx(1);
  889. return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
  890. }
  891. static __init int vmx_disabled_by_bios(void)
  892. {
  893. u64 msr;
  894. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  895. return (msr & (IA32_FEATURE_CONTROL_LOCKED_BIT |
  896. IA32_FEATURE_CONTROL_VMXON_ENABLED_BIT))
  897. == IA32_FEATURE_CONTROL_LOCKED_BIT;
  898. /* locked but not enabled */
  899. }
  900. static void hardware_enable(void *garbage)
  901. {
  902. int cpu = raw_smp_processor_id();
  903. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  904. u64 old;
  905. INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu, cpu));
  906. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  907. if ((old & (IA32_FEATURE_CONTROL_LOCKED_BIT |
  908. IA32_FEATURE_CONTROL_VMXON_ENABLED_BIT))
  909. != (IA32_FEATURE_CONTROL_LOCKED_BIT |
  910. IA32_FEATURE_CONTROL_VMXON_ENABLED_BIT))
  911. /* enable and lock */
  912. wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
  913. IA32_FEATURE_CONTROL_LOCKED_BIT |
  914. IA32_FEATURE_CONTROL_VMXON_ENABLED_BIT);
  915. write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
  916. asm volatile (ASM_VMX_VMXON_RAX
  917. : : "a"(&phys_addr), "m"(phys_addr)
  918. : "memory", "cc");
  919. }
  920. static void vmclear_local_vcpus(void)
  921. {
  922. int cpu = raw_smp_processor_id();
  923. struct vcpu_vmx *vmx, *n;
  924. list_for_each_entry_safe(vmx, n, &per_cpu(vcpus_on_cpu, cpu),
  925. local_vcpus_link)
  926. __vcpu_clear(vmx);
  927. }
  928. static void hardware_disable(void *garbage)
  929. {
  930. vmclear_local_vcpus();
  931. asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
  932. write_cr4(read_cr4() & ~X86_CR4_VMXE);
  933. }
  934. static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
  935. u32 msr, u32 *result)
  936. {
  937. u32 vmx_msr_low, vmx_msr_high;
  938. u32 ctl = ctl_min | ctl_opt;
  939. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  940. ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
  941. ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
  942. /* Ensure minimum (required) set of control bits are supported. */
  943. if (ctl_min & ~ctl)
  944. return -EIO;
  945. *result = ctl;
  946. return 0;
  947. }
  948. static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
  949. {
  950. u32 vmx_msr_low, vmx_msr_high;
  951. u32 min, opt, min2, opt2;
  952. u32 _pin_based_exec_control = 0;
  953. u32 _cpu_based_exec_control = 0;
  954. u32 _cpu_based_2nd_exec_control = 0;
  955. u32 _vmexit_control = 0;
  956. u32 _vmentry_control = 0;
  957. min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
  958. opt = PIN_BASED_VIRTUAL_NMIS;
  959. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
  960. &_pin_based_exec_control) < 0)
  961. return -EIO;
  962. min = CPU_BASED_HLT_EXITING |
  963. #ifdef CONFIG_X86_64
  964. CPU_BASED_CR8_LOAD_EXITING |
  965. CPU_BASED_CR8_STORE_EXITING |
  966. #endif
  967. CPU_BASED_CR3_LOAD_EXITING |
  968. CPU_BASED_CR3_STORE_EXITING |
  969. CPU_BASED_USE_IO_BITMAPS |
  970. CPU_BASED_MOV_DR_EXITING |
  971. CPU_BASED_USE_TSC_OFFSETING;
  972. opt = CPU_BASED_TPR_SHADOW |
  973. CPU_BASED_USE_MSR_BITMAPS |
  974. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  975. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  976. &_cpu_based_exec_control) < 0)
  977. return -EIO;
  978. #ifdef CONFIG_X86_64
  979. if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
  980. _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
  981. ~CPU_BASED_CR8_STORE_EXITING;
  982. #endif
  983. if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
  984. min2 = 0;
  985. opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
  986. SECONDARY_EXEC_WBINVD_EXITING |
  987. SECONDARY_EXEC_ENABLE_VPID |
  988. SECONDARY_EXEC_ENABLE_EPT;
  989. if (adjust_vmx_controls(min2, opt2,
  990. MSR_IA32_VMX_PROCBASED_CTLS2,
  991. &_cpu_based_2nd_exec_control) < 0)
  992. return -EIO;
  993. }
  994. #ifndef CONFIG_X86_64
  995. if (!(_cpu_based_2nd_exec_control &
  996. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
  997. _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
  998. #endif
  999. if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
  1000. /* CR3 accesses don't need to cause VM Exits when EPT enabled */
  1001. min &= ~(CPU_BASED_CR3_LOAD_EXITING |
  1002. CPU_BASED_CR3_STORE_EXITING);
  1003. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  1004. &_cpu_based_exec_control) < 0)
  1005. return -EIO;
  1006. rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
  1007. vmx_capability.ept, vmx_capability.vpid);
  1008. }
  1009. min = 0;
  1010. #ifdef CONFIG_X86_64
  1011. min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
  1012. #endif
  1013. opt = 0;
  1014. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
  1015. &_vmexit_control) < 0)
  1016. return -EIO;
  1017. min = opt = 0;
  1018. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
  1019. &_vmentry_control) < 0)
  1020. return -EIO;
  1021. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  1022. /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
  1023. if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
  1024. return -EIO;
  1025. #ifdef CONFIG_X86_64
  1026. /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
  1027. if (vmx_msr_high & (1u<<16))
  1028. return -EIO;
  1029. #endif
  1030. /* Require Write-Back (WB) memory type for VMCS accesses. */
  1031. if (((vmx_msr_high >> 18) & 15) != 6)
  1032. return -EIO;
  1033. vmcs_conf->size = vmx_msr_high & 0x1fff;
  1034. vmcs_conf->order = get_order(vmcs_config.size);
  1035. vmcs_conf->revision_id = vmx_msr_low;
  1036. vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
  1037. vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
  1038. vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
  1039. vmcs_conf->vmexit_ctrl = _vmexit_control;
  1040. vmcs_conf->vmentry_ctrl = _vmentry_control;
  1041. return 0;
  1042. }
  1043. static struct vmcs *alloc_vmcs_cpu(int cpu)
  1044. {
  1045. int node = cpu_to_node(cpu);
  1046. struct page *pages;
  1047. struct vmcs *vmcs;
  1048. pages = alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
  1049. if (!pages)
  1050. return NULL;
  1051. vmcs = page_address(pages);
  1052. memset(vmcs, 0, vmcs_config.size);
  1053. vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
  1054. return vmcs;
  1055. }
  1056. static struct vmcs *alloc_vmcs(void)
  1057. {
  1058. return alloc_vmcs_cpu(raw_smp_processor_id());
  1059. }
  1060. static void free_vmcs(struct vmcs *vmcs)
  1061. {
  1062. free_pages((unsigned long)vmcs, vmcs_config.order);
  1063. }
  1064. static void free_kvm_area(void)
  1065. {
  1066. int cpu;
  1067. for_each_online_cpu(cpu)
  1068. free_vmcs(per_cpu(vmxarea, cpu));
  1069. }
  1070. static __init int alloc_kvm_area(void)
  1071. {
  1072. int cpu;
  1073. for_each_online_cpu(cpu) {
  1074. struct vmcs *vmcs;
  1075. vmcs = alloc_vmcs_cpu(cpu);
  1076. if (!vmcs) {
  1077. free_kvm_area();
  1078. return -ENOMEM;
  1079. }
  1080. per_cpu(vmxarea, cpu) = vmcs;
  1081. }
  1082. return 0;
  1083. }
  1084. static __init int hardware_setup(void)
  1085. {
  1086. if (setup_vmcs_config(&vmcs_config) < 0)
  1087. return -EIO;
  1088. if (boot_cpu_has(X86_FEATURE_NX))
  1089. kvm_enable_efer_bits(EFER_NX);
  1090. return alloc_kvm_area();
  1091. }
  1092. static __exit void hardware_unsetup(void)
  1093. {
  1094. free_kvm_area();
  1095. }
  1096. static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
  1097. {
  1098. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1099. if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
  1100. vmcs_write16(sf->selector, save->selector);
  1101. vmcs_writel(sf->base, save->base);
  1102. vmcs_write32(sf->limit, save->limit);
  1103. vmcs_write32(sf->ar_bytes, save->ar);
  1104. } else {
  1105. u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
  1106. << AR_DPL_SHIFT;
  1107. vmcs_write32(sf->ar_bytes, 0x93 | dpl);
  1108. }
  1109. }
  1110. static void enter_pmode(struct kvm_vcpu *vcpu)
  1111. {
  1112. unsigned long flags;
  1113. vcpu->arch.rmode.active = 0;
  1114. vmcs_writel(GUEST_TR_BASE, vcpu->arch.rmode.tr.base);
  1115. vmcs_write32(GUEST_TR_LIMIT, vcpu->arch.rmode.tr.limit);
  1116. vmcs_write32(GUEST_TR_AR_BYTES, vcpu->arch.rmode.tr.ar);
  1117. flags = vmcs_readl(GUEST_RFLAGS);
  1118. flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
  1119. flags |= (vcpu->arch.rmode.save_iopl << IOPL_SHIFT);
  1120. vmcs_writel(GUEST_RFLAGS, flags);
  1121. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
  1122. (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
  1123. update_exception_bitmap(vcpu);
  1124. fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
  1125. fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
  1126. fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
  1127. fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
  1128. vmcs_write16(GUEST_SS_SELECTOR, 0);
  1129. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  1130. vmcs_write16(GUEST_CS_SELECTOR,
  1131. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  1132. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  1133. }
  1134. static gva_t rmode_tss_base(struct kvm *kvm)
  1135. {
  1136. if (!kvm->arch.tss_addr) {
  1137. gfn_t base_gfn = kvm->memslots[0].base_gfn +
  1138. kvm->memslots[0].npages - 3;
  1139. return base_gfn << PAGE_SHIFT;
  1140. }
  1141. return kvm->arch.tss_addr;
  1142. }
  1143. static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
  1144. {
  1145. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1146. save->selector = vmcs_read16(sf->selector);
  1147. save->base = vmcs_readl(sf->base);
  1148. save->limit = vmcs_read32(sf->limit);
  1149. save->ar = vmcs_read32(sf->ar_bytes);
  1150. vmcs_write16(sf->selector, save->base >> 4);
  1151. vmcs_write32(sf->base, save->base & 0xfffff);
  1152. vmcs_write32(sf->limit, 0xffff);
  1153. vmcs_write32(sf->ar_bytes, 0xf3);
  1154. }
  1155. static void enter_rmode(struct kvm_vcpu *vcpu)
  1156. {
  1157. unsigned long flags;
  1158. vcpu->arch.rmode.active = 1;
  1159. vcpu->arch.rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
  1160. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  1161. vcpu->arch.rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
  1162. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  1163. vcpu->arch.rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1164. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1165. flags = vmcs_readl(GUEST_RFLAGS);
  1166. vcpu->arch.rmode.save_iopl
  1167. = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
  1168. flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  1169. vmcs_writel(GUEST_RFLAGS, flags);
  1170. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
  1171. update_exception_bitmap(vcpu);
  1172. vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
  1173. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  1174. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  1175. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  1176. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  1177. if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
  1178. vmcs_writel(GUEST_CS_BASE, 0xf0000);
  1179. vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
  1180. fix_rmode_seg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
  1181. fix_rmode_seg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
  1182. fix_rmode_seg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
  1183. fix_rmode_seg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
  1184. kvm_mmu_reset_context(vcpu);
  1185. init_rmode(vcpu->kvm);
  1186. }
  1187. #ifdef CONFIG_X86_64
  1188. static void enter_lmode(struct kvm_vcpu *vcpu)
  1189. {
  1190. u32 guest_tr_ar;
  1191. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1192. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  1193. printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
  1194. __func__);
  1195. vmcs_write32(GUEST_TR_AR_BYTES,
  1196. (guest_tr_ar & ~AR_TYPE_MASK)
  1197. | AR_TYPE_BUSY_64_TSS);
  1198. }
  1199. vcpu->arch.shadow_efer |= EFER_LMA;
  1200. find_msr_entry(to_vmx(vcpu), MSR_EFER)->data |= EFER_LMA | EFER_LME;
  1201. vmcs_write32(VM_ENTRY_CONTROLS,
  1202. vmcs_read32(VM_ENTRY_CONTROLS)
  1203. | VM_ENTRY_IA32E_MODE);
  1204. }
  1205. static void exit_lmode(struct kvm_vcpu *vcpu)
  1206. {
  1207. vcpu->arch.shadow_efer &= ~EFER_LMA;
  1208. vmcs_write32(VM_ENTRY_CONTROLS,
  1209. vmcs_read32(VM_ENTRY_CONTROLS)
  1210. & ~VM_ENTRY_IA32E_MODE);
  1211. }
  1212. #endif
  1213. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  1214. {
  1215. vpid_sync_vcpu_all(to_vmx(vcpu));
  1216. if (vm_need_ept())
  1217. ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
  1218. }
  1219. static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  1220. {
  1221. vcpu->arch.cr4 &= KVM_GUEST_CR4_MASK;
  1222. vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
  1223. }
  1224. static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
  1225. {
  1226. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  1227. if (!load_pdptrs(vcpu, vcpu->arch.cr3)) {
  1228. printk(KERN_ERR "EPT: Fail to load pdptrs!\n");
  1229. return;
  1230. }
  1231. vmcs_write64(GUEST_PDPTR0, vcpu->arch.pdptrs[0]);
  1232. vmcs_write64(GUEST_PDPTR1, vcpu->arch.pdptrs[1]);
  1233. vmcs_write64(GUEST_PDPTR2, vcpu->arch.pdptrs[2]);
  1234. vmcs_write64(GUEST_PDPTR3, vcpu->arch.pdptrs[3]);
  1235. }
  1236. }
  1237. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
  1238. static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
  1239. unsigned long cr0,
  1240. struct kvm_vcpu *vcpu)
  1241. {
  1242. if (!(cr0 & X86_CR0_PG)) {
  1243. /* From paging/starting to nonpaging */
  1244. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1245. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
  1246. (CPU_BASED_CR3_LOAD_EXITING |
  1247. CPU_BASED_CR3_STORE_EXITING));
  1248. vcpu->arch.cr0 = cr0;
  1249. vmx_set_cr4(vcpu, vcpu->arch.cr4);
  1250. *hw_cr0 |= X86_CR0_PE | X86_CR0_PG;
  1251. *hw_cr0 &= ~X86_CR0_WP;
  1252. } else if (!is_paging(vcpu)) {
  1253. /* From nonpaging to paging */
  1254. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1255. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
  1256. ~(CPU_BASED_CR3_LOAD_EXITING |
  1257. CPU_BASED_CR3_STORE_EXITING));
  1258. vcpu->arch.cr0 = cr0;
  1259. vmx_set_cr4(vcpu, vcpu->arch.cr4);
  1260. if (!(vcpu->arch.cr0 & X86_CR0_WP))
  1261. *hw_cr0 &= ~X86_CR0_WP;
  1262. }
  1263. }
  1264. static void ept_update_paging_mode_cr4(unsigned long *hw_cr4,
  1265. struct kvm_vcpu *vcpu)
  1266. {
  1267. if (!is_paging(vcpu)) {
  1268. *hw_cr4 &= ~X86_CR4_PAE;
  1269. *hw_cr4 |= X86_CR4_PSE;
  1270. } else if (!(vcpu->arch.cr4 & X86_CR4_PAE))
  1271. *hw_cr4 &= ~X86_CR4_PAE;
  1272. }
  1273. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  1274. {
  1275. unsigned long hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) |
  1276. KVM_VM_CR0_ALWAYS_ON;
  1277. vmx_fpu_deactivate(vcpu);
  1278. if (vcpu->arch.rmode.active && (cr0 & X86_CR0_PE))
  1279. enter_pmode(vcpu);
  1280. if (!vcpu->arch.rmode.active && !(cr0 & X86_CR0_PE))
  1281. enter_rmode(vcpu);
  1282. #ifdef CONFIG_X86_64
  1283. if (vcpu->arch.shadow_efer & EFER_LME) {
  1284. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
  1285. enter_lmode(vcpu);
  1286. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
  1287. exit_lmode(vcpu);
  1288. }
  1289. #endif
  1290. if (vm_need_ept())
  1291. ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
  1292. vmcs_writel(CR0_READ_SHADOW, cr0);
  1293. vmcs_writel(GUEST_CR0, hw_cr0);
  1294. vcpu->arch.cr0 = cr0;
  1295. if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
  1296. vmx_fpu_activate(vcpu);
  1297. }
  1298. static u64 construct_eptp(unsigned long root_hpa)
  1299. {
  1300. u64 eptp;
  1301. /* TODO write the value reading from MSR */
  1302. eptp = VMX_EPT_DEFAULT_MT |
  1303. VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
  1304. eptp |= (root_hpa & PAGE_MASK);
  1305. return eptp;
  1306. }
  1307. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  1308. {
  1309. unsigned long guest_cr3;
  1310. u64 eptp;
  1311. guest_cr3 = cr3;
  1312. if (vm_need_ept()) {
  1313. eptp = construct_eptp(cr3);
  1314. vmcs_write64(EPT_POINTER, eptp);
  1315. ept_sync_context(eptp);
  1316. ept_load_pdptrs(vcpu);
  1317. guest_cr3 = is_paging(vcpu) ? vcpu->arch.cr3 :
  1318. VMX_EPT_IDENTITY_PAGETABLE_ADDR;
  1319. }
  1320. vmx_flush_tlb(vcpu);
  1321. vmcs_writel(GUEST_CR3, guest_cr3);
  1322. if (vcpu->arch.cr0 & X86_CR0_PE)
  1323. vmx_fpu_deactivate(vcpu);
  1324. }
  1325. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  1326. {
  1327. unsigned long hw_cr4 = cr4 | (vcpu->arch.rmode.active ?
  1328. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
  1329. vcpu->arch.cr4 = cr4;
  1330. if (vm_need_ept())
  1331. ept_update_paging_mode_cr4(&hw_cr4, vcpu);
  1332. vmcs_writel(CR4_READ_SHADOW, cr4);
  1333. vmcs_writel(GUEST_CR4, hw_cr4);
  1334. }
  1335. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1336. {
  1337. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1338. struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
  1339. vcpu->arch.shadow_efer = efer;
  1340. if (!msr)
  1341. return;
  1342. if (efer & EFER_LMA) {
  1343. vmcs_write32(VM_ENTRY_CONTROLS,
  1344. vmcs_read32(VM_ENTRY_CONTROLS) |
  1345. VM_ENTRY_IA32E_MODE);
  1346. msr->data = efer;
  1347. } else {
  1348. vmcs_write32(VM_ENTRY_CONTROLS,
  1349. vmcs_read32(VM_ENTRY_CONTROLS) &
  1350. ~VM_ENTRY_IA32E_MODE);
  1351. msr->data = efer & ~EFER_LME;
  1352. }
  1353. setup_msrs(vmx);
  1354. }
  1355. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1356. {
  1357. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1358. return vmcs_readl(sf->base);
  1359. }
  1360. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  1361. struct kvm_segment *var, int seg)
  1362. {
  1363. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1364. u32 ar;
  1365. var->base = vmcs_readl(sf->base);
  1366. var->limit = vmcs_read32(sf->limit);
  1367. var->selector = vmcs_read16(sf->selector);
  1368. ar = vmcs_read32(sf->ar_bytes);
  1369. if (ar & AR_UNUSABLE_MASK)
  1370. ar = 0;
  1371. var->type = ar & 15;
  1372. var->s = (ar >> 4) & 1;
  1373. var->dpl = (ar >> 5) & 3;
  1374. var->present = (ar >> 7) & 1;
  1375. var->avl = (ar >> 12) & 1;
  1376. var->l = (ar >> 13) & 1;
  1377. var->db = (ar >> 14) & 1;
  1378. var->g = (ar >> 15) & 1;
  1379. var->unusable = (ar >> 16) & 1;
  1380. }
  1381. static int vmx_get_cpl(struct kvm_vcpu *vcpu)
  1382. {
  1383. struct kvm_segment kvm_seg;
  1384. if (!(vcpu->arch.cr0 & X86_CR0_PE)) /* if real mode */
  1385. return 0;
  1386. if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
  1387. return 3;
  1388. vmx_get_segment(vcpu, &kvm_seg, VCPU_SREG_CS);
  1389. return kvm_seg.selector & 3;
  1390. }
  1391. static u32 vmx_segment_access_rights(struct kvm_segment *var)
  1392. {
  1393. u32 ar;
  1394. if (var->unusable)
  1395. ar = 1 << 16;
  1396. else {
  1397. ar = var->type & 15;
  1398. ar |= (var->s & 1) << 4;
  1399. ar |= (var->dpl & 3) << 5;
  1400. ar |= (var->present & 1) << 7;
  1401. ar |= (var->avl & 1) << 12;
  1402. ar |= (var->l & 1) << 13;
  1403. ar |= (var->db & 1) << 14;
  1404. ar |= (var->g & 1) << 15;
  1405. }
  1406. if (ar == 0) /* a 0 value means unusable */
  1407. ar = AR_UNUSABLE_MASK;
  1408. return ar;
  1409. }
  1410. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  1411. struct kvm_segment *var, int seg)
  1412. {
  1413. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1414. u32 ar;
  1415. if (vcpu->arch.rmode.active && seg == VCPU_SREG_TR) {
  1416. vcpu->arch.rmode.tr.selector = var->selector;
  1417. vcpu->arch.rmode.tr.base = var->base;
  1418. vcpu->arch.rmode.tr.limit = var->limit;
  1419. vcpu->arch.rmode.tr.ar = vmx_segment_access_rights(var);
  1420. return;
  1421. }
  1422. vmcs_writel(sf->base, var->base);
  1423. vmcs_write32(sf->limit, var->limit);
  1424. vmcs_write16(sf->selector, var->selector);
  1425. if (vcpu->arch.rmode.active && var->s) {
  1426. /*
  1427. * Hack real-mode segments into vm86 compatibility.
  1428. */
  1429. if (var->base == 0xffff0000 && var->selector == 0xf000)
  1430. vmcs_writel(sf->base, 0xf0000);
  1431. ar = 0xf3;
  1432. } else
  1433. ar = vmx_segment_access_rights(var);
  1434. vmcs_write32(sf->ar_bytes, ar);
  1435. }
  1436. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  1437. {
  1438. u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
  1439. *db = (ar >> 14) & 1;
  1440. *l = (ar >> 13) & 1;
  1441. }
  1442. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1443. {
  1444. dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
  1445. dt->base = vmcs_readl(GUEST_IDTR_BASE);
  1446. }
  1447. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1448. {
  1449. vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
  1450. vmcs_writel(GUEST_IDTR_BASE, dt->base);
  1451. }
  1452. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1453. {
  1454. dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
  1455. dt->base = vmcs_readl(GUEST_GDTR_BASE);
  1456. }
  1457. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1458. {
  1459. vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
  1460. vmcs_writel(GUEST_GDTR_BASE, dt->base);
  1461. }
  1462. static int init_rmode_tss(struct kvm *kvm)
  1463. {
  1464. gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  1465. u16 data = 0;
  1466. int ret = 0;
  1467. int r;
  1468. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1469. if (r < 0)
  1470. goto out;
  1471. data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  1472. r = kvm_write_guest_page(kvm, fn++, &data, 0x66, sizeof(u16));
  1473. if (r < 0)
  1474. goto out;
  1475. r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
  1476. if (r < 0)
  1477. goto out;
  1478. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1479. if (r < 0)
  1480. goto out;
  1481. data = ~0;
  1482. r = kvm_write_guest_page(kvm, fn, &data,
  1483. RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
  1484. sizeof(u8));
  1485. if (r < 0)
  1486. goto out;
  1487. ret = 1;
  1488. out:
  1489. return ret;
  1490. }
  1491. static int init_rmode_identity_map(struct kvm *kvm)
  1492. {
  1493. int i, r, ret;
  1494. pfn_t identity_map_pfn;
  1495. u32 tmp;
  1496. if (!vm_need_ept())
  1497. return 1;
  1498. if (unlikely(!kvm->arch.ept_identity_pagetable)) {
  1499. printk(KERN_ERR "EPT: identity-mapping pagetable "
  1500. "haven't been allocated!\n");
  1501. return 0;
  1502. }
  1503. if (likely(kvm->arch.ept_identity_pagetable_done))
  1504. return 1;
  1505. ret = 0;
  1506. identity_map_pfn = VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT;
  1507. r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
  1508. if (r < 0)
  1509. goto out;
  1510. /* Set up identity-mapping pagetable for EPT in real mode */
  1511. for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
  1512. tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
  1513. _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
  1514. r = kvm_write_guest_page(kvm, identity_map_pfn,
  1515. &tmp, i * sizeof(tmp), sizeof(tmp));
  1516. if (r < 0)
  1517. goto out;
  1518. }
  1519. kvm->arch.ept_identity_pagetable_done = true;
  1520. ret = 1;
  1521. out:
  1522. return ret;
  1523. }
  1524. static void seg_setup(int seg)
  1525. {
  1526. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1527. vmcs_write16(sf->selector, 0);
  1528. vmcs_writel(sf->base, 0);
  1529. vmcs_write32(sf->limit, 0xffff);
  1530. vmcs_write32(sf->ar_bytes, 0x93);
  1531. }
  1532. static int alloc_apic_access_page(struct kvm *kvm)
  1533. {
  1534. struct kvm_userspace_memory_region kvm_userspace_mem;
  1535. int r = 0;
  1536. down_write(&kvm->slots_lock);
  1537. if (kvm->arch.apic_access_page)
  1538. goto out;
  1539. kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
  1540. kvm_userspace_mem.flags = 0;
  1541. kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
  1542. kvm_userspace_mem.memory_size = PAGE_SIZE;
  1543. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1544. if (r)
  1545. goto out;
  1546. down_read(&current->mm->mmap_sem);
  1547. kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
  1548. up_read(&current->mm->mmap_sem);
  1549. out:
  1550. up_write(&kvm->slots_lock);
  1551. return r;
  1552. }
  1553. static int alloc_identity_pagetable(struct kvm *kvm)
  1554. {
  1555. struct kvm_userspace_memory_region kvm_userspace_mem;
  1556. int r = 0;
  1557. down_write(&kvm->slots_lock);
  1558. if (kvm->arch.ept_identity_pagetable)
  1559. goto out;
  1560. kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
  1561. kvm_userspace_mem.flags = 0;
  1562. kvm_userspace_mem.guest_phys_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
  1563. kvm_userspace_mem.memory_size = PAGE_SIZE;
  1564. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1565. if (r)
  1566. goto out;
  1567. down_read(&current->mm->mmap_sem);
  1568. kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
  1569. VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT);
  1570. up_read(&current->mm->mmap_sem);
  1571. out:
  1572. up_write(&kvm->slots_lock);
  1573. return r;
  1574. }
  1575. static void allocate_vpid(struct vcpu_vmx *vmx)
  1576. {
  1577. int vpid;
  1578. vmx->vpid = 0;
  1579. if (!enable_vpid || !cpu_has_vmx_vpid())
  1580. return;
  1581. spin_lock(&vmx_vpid_lock);
  1582. vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
  1583. if (vpid < VMX_NR_VPIDS) {
  1584. vmx->vpid = vpid;
  1585. __set_bit(vpid, vmx_vpid_bitmap);
  1586. }
  1587. spin_unlock(&vmx_vpid_lock);
  1588. }
  1589. static void vmx_disable_intercept_for_msr(struct page *msr_bitmap, u32 msr)
  1590. {
  1591. void *va;
  1592. if (!cpu_has_vmx_msr_bitmap())
  1593. return;
  1594. /*
  1595. * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
  1596. * have the write-low and read-high bitmap offsets the wrong way round.
  1597. * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
  1598. */
  1599. va = kmap(msr_bitmap);
  1600. if (msr <= 0x1fff) {
  1601. __clear_bit(msr, va + 0x000); /* read-low */
  1602. __clear_bit(msr, va + 0x800); /* write-low */
  1603. } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
  1604. msr &= 0x1fff;
  1605. __clear_bit(msr, va + 0x400); /* read-high */
  1606. __clear_bit(msr, va + 0xc00); /* write-high */
  1607. }
  1608. kunmap(msr_bitmap);
  1609. }
  1610. /*
  1611. * Sets up the vmcs for emulated real mode.
  1612. */
  1613. static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
  1614. {
  1615. u32 host_sysenter_cs;
  1616. u32 junk;
  1617. unsigned long a;
  1618. struct descriptor_table dt;
  1619. int i;
  1620. unsigned long kvm_vmx_return;
  1621. u32 exec_control;
  1622. /* I/O */
  1623. vmcs_write64(IO_BITMAP_A, page_to_phys(vmx_io_bitmap_a));
  1624. vmcs_write64(IO_BITMAP_B, page_to_phys(vmx_io_bitmap_b));
  1625. if (cpu_has_vmx_msr_bitmap())
  1626. vmcs_write64(MSR_BITMAP, page_to_phys(vmx_msr_bitmap));
  1627. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  1628. /* Control */
  1629. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  1630. vmcs_config.pin_based_exec_ctrl);
  1631. exec_control = vmcs_config.cpu_based_exec_ctrl;
  1632. if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
  1633. exec_control &= ~CPU_BASED_TPR_SHADOW;
  1634. #ifdef CONFIG_X86_64
  1635. exec_control |= CPU_BASED_CR8_STORE_EXITING |
  1636. CPU_BASED_CR8_LOAD_EXITING;
  1637. #endif
  1638. }
  1639. if (!vm_need_ept())
  1640. exec_control |= CPU_BASED_CR3_STORE_EXITING |
  1641. CPU_BASED_CR3_LOAD_EXITING;
  1642. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
  1643. if (cpu_has_secondary_exec_ctrls()) {
  1644. exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
  1645. if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  1646. exec_control &=
  1647. ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  1648. if (vmx->vpid == 0)
  1649. exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
  1650. if (!vm_need_ept())
  1651. exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
  1652. vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
  1653. }
  1654. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
  1655. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
  1656. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  1657. vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
  1658. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  1659. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  1660. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  1661. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1662. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1663. vmcs_write16(HOST_FS_SELECTOR, kvm_read_fs()); /* 22.2.4 */
  1664. vmcs_write16(HOST_GS_SELECTOR, kvm_read_gs()); /* 22.2.4 */
  1665. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1666. #ifdef CONFIG_X86_64
  1667. rdmsrl(MSR_FS_BASE, a);
  1668. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  1669. rdmsrl(MSR_GS_BASE, a);
  1670. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  1671. #else
  1672. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  1673. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  1674. #endif
  1675. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  1676. kvm_get_idt(&dt);
  1677. vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
  1678. asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
  1679. vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
  1680. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
  1681. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
  1682. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
  1683. rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
  1684. vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
  1685. rdmsrl(MSR_IA32_SYSENTER_ESP, a);
  1686. vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
  1687. rdmsrl(MSR_IA32_SYSENTER_EIP, a);
  1688. vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
  1689. for (i = 0; i < NR_VMX_MSR; ++i) {
  1690. u32 index = vmx_msr_index[i];
  1691. u32 data_low, data_high;
  1692. u64 data;
  1693. int j = vmx->nmsrs;
  1694. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  1695. continue;
  1696. if (wrmsr_safe(index, data_low, data_high) < 0)
  1697. continue;
  1698. data = data_low | ((u64)data_high << 32);
  1699. vmx->host_msrs[j].index = index;
  1700. vmx->host_msrs[j].reserved = 0;
  1701. vmx->host_msrs[j].data = data;
  1702. vmx->guest_msrs[j] = vmx->host_msrs[j];
  1703. ++vmx->nmsrs;
  1704. }
  1705. vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
  1706. /* 22.2.1, 20.8.1 */
  1707. vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
  1708. vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
  1709. vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
  1710. return 0;
  1711. }
  1712. static int init_rmode(struct kvm *kvm)
  1713. {
  1714. if (!init_rmode_tss(kvm))
  1715. return 0;
  1716. if (!init_rmode_identity_map(kvm))
  1717. return 0;
  1718. return 1;
  1719. }
  1720. static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
  1721. {
  1722. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1723. u64 msr;
  1724. int ret;
  1725. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
  1726. down_read(&vcpu->kvm->slots_lock);
  1727. if (!init_rmode(vmx->vcpu.kvm)) {
  1728. ret = -ENOMEM;
  1729. goto out;
  1730. }
  1731. vmx->vcpu.arch.rmode.active = 0;
  1732. vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
  1733. kvm_set_cr8(&vmx->vcpu, 0);
  1734. msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  1735. if (vmx->vcpu.vcpu_id == 0)
  1736. msr |= MSR_IA32_APICBASE_BSP;
  1737. kvm_set_apic_base(&vmx->vcpu, msr);
  1738. fx_init(&vmx->vcpu);
  1739. /*
  1740. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  1741. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  1742. */
  1743. if (vmx->vcpu.vcpu_id == 0) {
  1744. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  1745. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  1746. } else {
  1747. vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
  1748. vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
  1749. }
  1750. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  1751. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  1752. seg_setup(VCPU_SREG_DS);
  1753. seg_setup(VCPU_SREG_ES);
  1754. seg_setup(VCPU_SREG_FS);
  1755. seg_setup(VCPU_SREG_GS);
  1756. seg_setup(VCPU_SREG_SS);
  1757. vmcs_write16(GUEST_TR_SELECTOR, 0);
  1758. vmcs_writel(GUEST_TR_BASE, 0);
  1759. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  1760. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1761. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  1762. vmcs_writel(GUEST_LDTR_BASE, 0);
  1763. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  1764. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  1765. vmcs_write32(GUEST_SYSENTER_CS, 0);
  1766. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  1767. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  1768. vmcs_writel(GUEST_RFLAGS, 0x02);
  1769. if (vmx->vcpu.vcpu_id == 0)
  1770. kvm_rip_write(vcpu, 0xfff0);
  1771. else
  1772. kvm_rip_write(vcpu, 0);
  1773. kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
  1774. /* todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0 */
  1775. vmcs_writel(GUEST_DR7, 0x400);
  1776. vmcs_writel(GUEST_GDTR_BASE, 0);
  1777. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  1778. vmcs_writel(GUEST_IDTR_BASE, 0);
  1779. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  1780. vmcs_write32(GUEST_ACTIVITY_STATE, 0);
  1781. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  1782. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  1783. guest_write_tsc(0);
  1784. /* Special registers */
  1785. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  1786. setup_msrs(vmx);
  1787. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  1788. if (cpu_has_vmx_tpr_shadow()) {
  1789. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
  1790. if (vm_need_tpr_shadow(vmx->vcpu.kvm))
  1791. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
  1792. page_to_phys(vmx->vcpu.arch.apic->regs_page));
  1793. vmcs_write32(TPR_THRESHOLD, 0);
  1794. }
  1795. if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  1796. vmcs_write64(APIC_ACCESS_ADDR,
  1797. page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
  1798. if (vmx->vpid != 0)
  1799. vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
  1800. vmx->vcpu.arch.cr0 = 0x60000010;
  1801. vmx_set_cr0(&vmx->vcpu, vmx->vcpu.arch.cr0); /* enter rmode */
  1802. vmx_set_cr4(&vmx->vcpu, 0);
  1803. vmx_set_efer(&vmx->vcpu, 0);
  1804. vmx_fpu_activate(&vmx->vcpu);
  1805. update_exception_bitmap(&vmx->vcpu);
  1806. vpid_sync_vcpu_all(vmx);
  1807. ret = 0;
  1808. out:
  1809. up_read(&vcpu->kvm->slots_lock);
  1810. return ret;
  1811. }
  1812. static void vmx_inject_irq(struct kvm_vcpu *vcpu, int irq)
  1813. {
  1814. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1815. KVMTRACE_1D(INJ_VIRQ, vcpu, (u32)irq, handler);
  1816. if (vcpu->arch.rmode.active) {
  1817. vmx->rmode.irq.pending = true;
  1818. vmx->rmode.irq.vector = irq;
  1819. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  1820. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1821. irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
  1822. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  1823. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  1824. return;
  1825. }
  1826. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1827. irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  1828. }
  1829. static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
  1830. {
  1831. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1832. INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
  1833. }
  1834. static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
  1835. {
  1836. int word_index = __ffs(vcpu->arch.irq_summary);
  1837. int bit_index = __ffs(vcpu->arch.irq_pending[word_index]);
  1838. int irq = word_index * BITS_PER_LONG + bit_index;
  1839. clear_bit(bit_index, &vcpu->arch.irq_pending[word_index]);
  1840. if (!vcpu->arch.irq_pending[word_index])
  1841. clear_bit(word_index, &vcpu->arch.irq_summary);
  1842. vmx_inject_irq(vcpu, irq);
  1843. }
  1844. static void do_interrupt_requests(struct kvm_vcpu *vcpu,
  1845. struct kvm_run *kvm_run)
  1846. {
  1847. u32 cpu_based_vm_exec_control;
  1848. vcpu->arch.interrupt_window_open =
  1849. ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  1850. (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
  1851. if (vcpu->arch.interrupt_window_open &&
  1852. vcpu->arch.irq_summary &&
  1853. !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
  1854. /*
  1855. * If interrupts enabled, and not blocked by sti or mov ss. Good.
  1856. */
  1857. kvm_do_inject_irq(vcpu);
  1858. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  1859. if (!vcpu->arch.interrupt_window_open &&
  1860. (vcpu->arch.irq_summary || kvm_run->request_interrupt_window))
  1861. /*
  1862. * Interrupts blocked. Wait for unblock.
  1863. */
  1864. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  1865. else
  1866. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  1867. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  1868. }
  1869. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
  1870. {
  1871. int ret;
  1872. struct kvm_userspace_memory_region tss_mem = {
  1873. .slot = 8,
  1874. .guest_phys_addr = addr,
  1875. .memory_size = PAGE_SIZE * 3,
  1876. .flags = 0,
  1877. };
  1878. ret = kvm_set_memory_region(kvm, &tss_mem, 0);
  1879. if (ret)
  1880. return ret;
  1881. kvm->arch.tss_addr = addr;
  1882. return 0;
  1883. }
  1884. static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
  1885. {
  1886. struct kvm_guest_debug *dbg = &vcpu->guest_debug;
  1887. set_debugreg(dbg->bp[0], 0);
  1888. set_debugreg(dbg->bp[1], 1);
  1889. set_debugreg(dbg->bp[2], 2);
  1890. set_debugreg(dbg->bp[3], 3);
  1891. if (dbg->singlestep) {
  1892. unsigned long flags;
  1893. flags = vmcs_readl(GUEST_RFLAGS);
  1894. flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
  1895. vmcs_writel(GUEST_RFLAGS, flags);
  1896. }
  1897. }
  1898. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  1899. int vec, u32 err_code)
  1900. {
  1901. /*
  1902. * Instruction with address size override prefix opcode 0x67
  1903. * Cause the #SS fault with 0 error code in VM86 mode.
  1904. */
  1905. if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
  1906. if (emulate_instruction(vcpu, NULL, 0, 0, 0) == EMULATE_DONE)
  1907. return 1;
  1908. /*
  1909. * Forward all other exceptions that are valid in real mode.
  1910. * FIXME: Breaks guest debugging in real mode, needs to be fixed with
  1911. * the required debugging infrastructure rework.
  1912. */
  1913. switch (vec) {
  1914. case DE_VECTOR:
  1915. case DB_VECTOR:
  1916. case BP_VECTOR:
  1917. case OF_VECTOR:
  1918. case BR_VECTOR:
  1919. case UD_VECTOR:
  1920. case DF_VECTOR:
  1921. case SS_VECTOR:
  1922. case GP_VECTOR:
  1923. case MF_VECTOR:
  1924. kvm_queue_exception(vcpu, vec);
  1925. return 1;
  1926. }
  1927. return 0;
  1928. }
  1929. static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1930. {
  1931. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1932. u32 intr_info, error_code;
  1933. unsigned long cr2, rip;
  1934. u32 vect_info;
  1935. enum emulation_result er;
  1936. vect_info = vmx->idt_vectoring_info;
  1937. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  1938. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  1939. !is_page_fault(intr_info))
  1940. printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
  1941. "intr info 0x%x\n", __func__, vect_info, intr_info);
  1942. if (!irqchip_in_kernel(vcpu->kvm) && is_external_interrupt(vect_info)) {
  1943. int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
  1944. set_bit(irq, vcpu->arch.irq_pending);
  1945. set_bit(irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
  1946. }
  1947. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) /* nmi */
  1948. return 1; /* already handled by vmx_vcpu_run() */
  1949. if (is_no_device(intr_info)) {
  1950. vmx_fpu_activate(vcpu);
  1951. return 1;
  1952. }
  1953. if (is_invalid_opcode(intr_info)) {
  1954. er = emulate_instruction(vcpu, kvm_run, 0, 0, EMULTYPE_TRAP_UD);
  1955. if (er != EMULATE_DONE)
  1956. kvm_queue_exception(vcpu, UD_VECTOR);
  1957. return 1;
  1958. }
  1959. error_code = 0;
  1960. rip = kvm_rip_read(vcpu);
  1961. if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
  1962. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  1963. if (is_page_fault(intr_info)) {
  1964. /* EPT won't cause page fault directly */
  1965. if (vm_need_ept())
  1966. BUG();
  1967. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  1968. KVMTRACE_3D(PAGE_FAULT, vcpu, error_code, (u32)cr2,
  1969. (u32)((u64)cr2 >> 32), handler);
  1970. if (vcpu->arch.interrupt.pending || vcpu->arch.exception.pending)
  1971. kvm_mmu_unprotect_page_virt(vcpu, cr2);
  1972. return kvm_mmu_page_fault(vcpu, cr2, error_code);
  1973. }
  1974. if (vcpu->arch.rmode.active &&
  1975. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  1976. error_code)) {
  1977. if (vcpu->arch.halt_request) {
  1978. vcpu->arch.halt_request = 0;
  1979. return kvm_emulate_halt(vcpu);
  1980. }
  1981. return 1;
  1982. }
  1983. if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) ==
  1984. (INTR_TYPE_EXCEPTION | 1)) {
  1985. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  1986. return 0;
  1987. }
  1988. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  1989. kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
  1990. kvm_run->ex.error_code = error_code;
  1991. return 0;
  1992. }
  1993. static int handle_external_interrupt(struct kvm_vcpu *vcpu,
  1994. struct kvm_run *kvm_run)
  1995. {
  1996. ++vcpu->stat.irq_exits;
  1997. KVMTRACE_1D(INTR, vcpu, vmcs_read32(VM_EXIT_INTR_INFO), handler);
  1998. return 1;
  1999. }
  2000. static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2001. {
  2002. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  2003. return 0;
  2004. }
  2005. static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2006. {
  2007. unsigned long exit_qualification;
  2008. int size, down, in, string, rep;
  2009. unsigned port;
  2010. ++vcpu->stat.io_exits;
  2011. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2012. string = (exit_qualification & 16) != 0;
  2013. if (string) {
  2014. if (emulate_instruction(vcpu,
  2015. kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
  2016. return 0;
  2017. return 1;
  2018. }
  2019. size = (exit_qualification & 7) + 1;
  2020. in = (exit_qualification & 8) != 0;
  2021. down = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
  2022. rep = (exit_qualification & 32) != 0;
  2023. port = exit_qualification >> 16;
  2024. return kvm_emulate_pio(vcpu, kvm_run, in, size, port);
  2025. }
  2026. static void
  2027. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  2028. {
  2029. /*
  2030. * Patch in the VMCALL instruction:
  2031. */
  2032. hypercall[0] = 0x0f;
  2033. hypercall[1] = 0x01;
  2034. hypercall[2] = 0xc1;
  2035. }
  2036. static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2037. {
  2038. unsigned long exit_qualification;
  2039. int cr;
  2040. int reg;
  2041. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2042. cr = exit_qualification & 15;
  2043. reg = (exit_qualification >> 8) & 15;
  2044. switch ((exit_qualification >> 4) & 3) {
  2045. case 0: /* mov to cr */
  2046. KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr,
  2047. (u32)kvm_register_read(vcpu, reg),
  2048. (u32)((u64)kvm_register_read(vcpu, reg) >> 32),
  2049. handler);
  2050. switch (cr) {
  2051. case 0:
  2052. kvm_set_cr0(vcpu, kvm_register_read(vcpu, reg));
  2053. skip_emulated_instruction(vcpu);
  2054. return 1;
  2055. case 3:
  2056. kvm_set_cr3(vcpu, kvm_register_read(vcpu, reg));
  2057. skip_emulated_instruction(vcpu);
  2058. return 1;
  2059. case 4:
  2060. kvm_set_cr4(vcpu, kvm_register_read(vcpu, reg));
  2061. skip_emulated_instruction(vcpu);
  2062. return 1;
  2063. case 8:
  2064. kvm_set_cr8(vcpu, kvm_register_read(vcpu, reg));
  2065. skip_emulated_instruction(vcpu);
  2066. if (irqchip_in_kernel(vcpu->kvm))
  2067. return 1;
  2068. kvm_run->exit_reason = KVM_EXIT_SET_TPR;
  2069. return 0;
  2070. };
  2071. break;
  2072. case 2: /* clts */
  2073. vmx_fpu_deactivate(vcpu);
  2074. vcpu->arch.cr0 &= ~X86_CR0_TS;
  2075. vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
  2076. vmx_fpu_activate(vcpu);
  2077. KVMTRACE_0D(CLTS, vcpu, handler);
  2078. skip_emulated_instruction(vcpu);
  2079. return 1;
  2080. case 1: /*mov from cr*/
  2081. switch (cr) {
  2082. case 3:
  2083. kvm_register_write(vcpu, reg, vcpu->arch.cr3);
  2084. KVMTRACE_3D(CR_READ, vcpu, (u32)cr,
  2085. (u32)kvm_register_read(vcpu, reg),
  2086. (u32)((u64)kvm_register_read(vcpu, reg) >> 32),
  2087. handler);
  2088. skip_emulated_instruction(vcpu);
  2089. return 1;
  2090. case 8:
  2091. kvm_register_write(vcpu, reg, kvm_get_cr8(vcpu));
  2092. KVMTRACE_2D(CR_READ, vcpu, (u32)cr,
  2093. (u32)kvm_register_read(vcpu, reg), handler);
  2094. skip_emulated_instruction(vcpu);
  2095. return 1;
  2096. }
  2097. break;
  2098. case 3: /* lmsw */
  2099. kvm_lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
  2100. skip_emulated_instruction(vcpu);
  2101. return 1;
  2102. default:
  2103. break;
  2104. }
  2105. kvm_run->exit_reason = 0;
  2106. pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
  2107. (int)(exit_qualification >> 4) & 3, cr);
  2108. return 0;
  2109. }
  2110. static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2111. {
  2112. unsigned long exit_qualification;
  2113. unsigned long val;
  2114. int dr, reg;
  2115. /*
  2116. * FIXME: this code assumes the host is debugging the guest.
  2117. * need to deal with guest debugging itself too.
  2118. */
  2119. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2120. dr = exit_qualification & 7;
  2121. reg = (exit_qualification >> 8) & 15;
  2122. if (exit_qualification & 16) {
  2123. /* mov from dr */
  2124. switch (dr) {
  2125. case 6:
  2126. val = 0xffff0ff0;
  2127. break;
  2128. case 7:
  2129. val = 0x400;
  2130. break;
  2131. default:
  2132. val = 0;
  2133. }
  2134. kvm_register_write(vcpu, reg, val);
  2135. KVMTRACE_2D(DR_READ, vcpu, (u32)dr, (u32)val, handler);
  2136. } else {
  2137. /* mov to dr */
  2138. }
  2139. skip_emulated_instruction(vcpu);
  2140. return 1;
  2141. }
  2142. static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2143. {
  2144. kvm_emulate_cpuid(vcpu);
  2145. return 1;
  2146. }
  2147. static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2148. {
  2149. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2150. u64 data;
  2151. if (vmx_get_msr(vcpu, ecx, &data)) {
  2152. kvm_inject_gp(vcpu, 0);
  2153. return 1;
  2154. }
  2155. KVMTRACE_3D(MSR_READ, vcpu, ecx, (u32)data, (u32)(data >> 32),
  2156. handler);
  2157. /* FIXME: handling of bits 32:63 of rax, rdx */
  2158. vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
  2159. vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  2160. skip_emulated_instruction(vcpu);
  2161. return 1;
  2162. }
  2163. static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2164. {
  2165. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2166. u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
  2167. | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
  2168. KVMTRACE_3D(MSR_WRITE, vcpu, ecx, (u32)data, (u32)(data >> 32),
  2169. handler);
  2170. if (vmx_set_msr(vcpu, ecx, data) != 0) {
  2171. kvm_inject_gp(vcpu, 0);
  2172. return 1;
  2173. }
  2174. skip_emulated_instruction(vcpu);
  2175. return 1;
  2176. }
  2177. static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu,
  2178. struct kvm_run *kvm_run)
  2179. {
  2180. return 1;
  2181. }
  2182. static int handle_interrupt_window(struct kvm_vcpu *vcpu,
  2183. struct kvm_run *kvm_run)
  2184. {
  2185. u32 cpu_based_vm_exec_control;
  2186. /* clear pending irq */
  2187. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2188. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  2189. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2190. KVMTRACE_0D(PEND_INTR, vcpu, handler);
  2191. /*
  2192. * If the user space waits to inject interrupts, exit as soon as
  2193. * possible
  2194. */
  2195. if (kvm_run->request_interrupt_window &&
  2196. !vcpu->arch.irq_summary) {
  2197. kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  2198. ++vcpu->stat.irq_window_exits;
  2199. return 0;
  2200. }
  2201. return 1;
  2202. }
  2203. static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2204. {
  2205. skip_emulated_instruction(vcpu);
  2206. return kvm_emulate_halt(vcpu);
  2207. }
  2208. static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2209. {
  2210. skip_emulated_instruction(vcpu);
  2211. kvm_emulate_hypercall(vcpu);
  2212. return 1;
  2213. }
  2214. static int handle_wbinvd(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2215. {
  2216. skip_emulated_instruction(vcpu);
  2217. /* TODO: Add support for VT-d/pass-through device */
  2218. return 1;
  2219. }
  2220. static int handle_apic_access(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2221. {
  2222. u64 exit_qualification;
  2223. enum emulation_result er;
  2224. unsigned long offset;
  2225. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  2226. offset = exit_qualification & 0xffful;
  2227. er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
  2228. if (er != EMULATE_DONE) {
  2229. printk(KERN_ERR
  2230. "Fail to handle apic access vmexit! Offset is 0x%lx\n",
  2231. offset);
  2232. return -ENOTSUPP;
  2233. }
  2234. return 1;
  2235. }
  2236. static int handle_task_switch(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2237. {
  2238. unsigned long exit_qualification;
  2239. u16 tss_selector;
  2240. int reason;
  2241. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2242. reason = (u32)exit_qualification >> 30;
  2243. tss_selector = exit_qualification;
  2244. return kvm_task_switch(vcpu, tss_selector, reason);
  2245. }
  2246. static int handle_ept_violation(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2247. {
  2248. u64 exit_qualification;
  2249. enum emulation_result er;
  2250. gpa_t gpa;
  2251. unsigned long hva;
  2252. int gla_validity;
  2253. int r;
  2254. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  2255. if (exit_qualification & (1 << 6)) {
  2256. printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
  2257. return -ENOTSUPP;
  2258. }
  2259. gla_validity = (exit_qualification >> 7) & 0x3;
  2260. if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
  2261. printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
  2262. printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
  2263. (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
  2264. (long unsigned int)vmcs_read64(GUEST_LINEAR_ADDRESS));
  2265. printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
  2266. (long unsigned int)exit_qualification);
  2267. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  2268. kvm_run->hw.hardware_exit_reason = 0;
  2269. return -ENOTSUPP;
  2270. }
  2271. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  2272. hva = gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT);
  2273. if (!kvm_is_error_hva(hva)) {
  2274. r = kvm_mmu_page_fault(vcpu, gpa & PAGE_MASK, 0);
  2275. if (r < 0) {
  2276. printk(KERN_ERR "EPT: Not enough memory!\n");
  2277. return -ENOMEM;
  2278. }
  2279. return 1;
  2280. } else {
  2281. /* must be MMIO */
  2282. er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
  2283. if (er == EMULATE_FAIL) {
  2284. printk(KERN_ERR
  2285. "EPT: Fail to handle EPT violation vmexit!er is %d\n",
  2286. er);
  2287. printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
  2288. (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
  2289. (long unsigned int)vmcs_read64(GUEST_LINEAR_ADDRESS));
  2290. printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
  2291. (long unsigned int)exit_qualification);
  2292. return -ENOTSUPP;
  2293. } else if (er == EMULATE_DO_MMIO)
  2294. return 0;
  2295. }
  2296. return 1;
  2297. }
  2298. static int handle_nmi_window(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2299. {
  2300. u32 cpu_based_vm_exec_control;
  2301. /* clear pending NMI */
  2302. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2303. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
  2304. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2305. ++vcpu->stat.nmi_window_exits;
  2306. return 1;
  2307. }
  2308. /*
  2309. * The exit handlers return 1 if the exit was handled fully and guest execution
  2310. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  2311. * to be done to userspace and return 0.
  2312. */
  2313. static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
  2314. struct kvm_run *kvm_run) = {
  2315. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  2316. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  2317. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  2318. [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
  2319. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  2320. [EXIT_REASON_CR_ACCESS] = handle_cr,
  2321. [EXIT_REASON_DR_ACCESS] = handle_dr,
  2322. [EXIT_REASON_CPUID] = handle_cpuid,
  2323. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  2324. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  2325. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  2326. [EXIT_REASON_HLT] = handle_halt,
  2327. [EXIT_REASON_VMCALL] = handle_vmcall,
  2328. [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
  2329. [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
  2330. [EXIT_REASON_WBINVD] = handle_wbinvd,
  2331. [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
  2332. [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
  2333. };
  2334. static const int kvm_vmx_max_exit_handlers =
  2335. ARRAY_SIZE(kvm_vmx_exit_handlers);
  2336. /*
  2337. * The guest has exited. See if we can fix it or if we need userspace
  2338. * assistance.
  2339. */
  2340. static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
  2341. {
  2342. u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
  2343. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2344. u32 vectoring_info = vmx->idt_vectoring_info;
  2345. KVMTRACE_3D(VMEXIT, vcpu, exit_reason, (u32)kvm_rip_read(vcpu),
  2346. (u32)((u64)kvm_rip_read(vcpu) >> 32), entryexit);
  2347. /* Access CR3 don't cause VMExit in paging mode, so we need
  2348. * to sync with guest real CR3. */
  2349. if (vm_need_ept() && is_paging(vcpu)) {
  2350. vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
  2351. ept_load_pdptrs(vcpu);
  2352. }
  2353. if (unlikely(vmx->fail)) {
  2354. kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  2355. kvm_run->fail_entry.hardware_entry_failure_reason
  2356. = vmcs_read32(VM_INSTRUCTION_ERROR);
  2357. return 0;
  2358. }
  2359. if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
  2360. (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
  2361. exit_reason != EXIT_REASON_EPT_VIOLATION))
  2362. printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
  2363. "exit reason is 0x%x\n", __func__, exit_reason);
  2364. if (exit_reason < kvm_vmx_max_exit_handlers
  2365. && kvm_vmx_exit_handlers[exit_reason])
  2366. return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
  2367. else {
  2368. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  2369. kvm_run->hw.hardware_exit_reason = exit_reason;
  2370. }
  2371. return 0;
  2372. }
  2373. static void update_tpr_threshold(struct kvm_vcpu *vcpu)
  2374. {
  2375. int max_irr, tpr;
  2376. if (!vm_need_tpr_shadow(vcpu->kvm))
  2377. return;
  2378. if (!kvm_lapic_enabled(vcpu) ||
  2379. ((max_irr = kvm_lapic_find_highest_irr(vcpu)) == -1)) {
  2380. vmcs_write32(TPR_THRESHOLD, 0);
  2381. return;
  2382. }
  2383. tpr = (kvm_lapic_get_cr8(vcpu) & 0x0f) << 4;
  2384. vmcs_write32(TPR_THRESHOLD, (max_irr > tpr) ? tpr >> 4 : max_irr >> 4);
  2385. }
  2386. static void enable_irq_window(struct kvm_vcpu *vcpu)
  2387. {
  2388. u32 cpu_based_vm_exec_control;
  2389. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2390. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  2391. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2392. }
  2393. static void enable_nmi_window(struct kvm_vcpu *vcpu)
  2394. {
  2395. u32 cpu_based_vm_exec_control;
  2396. if (!cpu_has_virtual_nmis())
  2397. return;
  2398. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2399. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
  2400. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2401. }
  2402. static int vmx_nmi_enabled(struct kvm_vcpu *vcpu)
  2403. {
  2404. u32 guest_intr = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  2405. return !(guest_intr & (GUEST_INTR_STATE_NMI |
  2406. GUEST_INTR_STATE_MOV_SS |
  2407. GUEST_INTR_STATE_STI));
  2408. }
  2409. static int vmx_irq_enabled(struct kvm_vcpu *vcpu)
  2410. {
  2411. u32 guest_intr = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  2412. return (!(guest_intr & (GUEST_INTR_STATE_MOV_SS |
  2413. GUEST_INTR_STATE_STI)) &&
  2414. (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF));
  2415. }
  2416. static void enable_intr_window(struct kvm_vcpu *vcpu)
  2417. {
  2418. if (vcpu->arch.nmi_pending)
  2419. enable_nmi_window(vcpu);
  2420. else if (kvm_cpu_has_interrupt(vcpu))
  2421. enable_irq_window(vcpu);
  2422. }
  2423. static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
  2424. {
  2425. u32 exit_intr_info;
  2426. u32 idt_vectoring_info;
  2427. bool unblock_nmi;
  2428. u8 vector;
  2429. int type;
  2430. bool idtv_info_valid;
  2431. u32 error;
  2432. exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  2433. if (cpu_has_virtual_nmis()) {
  2434. unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
  2435. vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
  2436. /*
  2437. * SDM 3: 25.7.1.2
  2438. * Re-set bit "block by NMI" before VM entry if vmexit caused by
  2439. * a guest IRET fault.
  2440. */
  2441. if (unblock_nmi && vector != DF_VECTOR)
  2442. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  2443. GUEST_INTR_STATE_NMI);
  2444. }
  2445. idt_vectoring_info = vmx->idt_vectoring_info;
  2446. idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
  2447. vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
  2448. type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
  2449. if (vmx->vcpu.arch.nmi_injected) {
  2450. /*
  2451. * SDM 3: 25.7.1.2
  2452. * Clear bit "block by NMI" before VM entry if a NMI delivery
  2453. * faulted.
  2454. */
  2455. if (idtv_info_valid && type == INTR_TYPE_NMI_INTR)
  2456. vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
  2457. GUEST_INTR_STATE_NMI);
  2458. else
  2459. vmx->vcpu.arch.nmi_injected = false;
  2460. }
  2461. kvm_clear_exception_queue(&vmx->vcpu);
  2462. if (idtv_info_valid && type == INTR_TYPE_EXCEPTION) {
  2463. if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
  2464. error = vmcs_read32(IDT_VECTORING_ERROR_CODE);
  2465. kvm_queue_exception_e(&vmx->vcpu, vector, error);
  2466. } else
  2467. kvm_queue_exception(&vmx->vcpu, vector);
  2468. vmx->idt_vectoring_info = 0;
  2469. }
  2470. kvm_clear_interrupt_queue(&vmx->vcpu);
  2471. if (idtv_info_valid && type == INTR_TYPE_EXT_INTR) {
  2472. kvm_queue_interrupt(&vmx->vcpu, vector);
  2473. vmx->idt_vectoring_info = 0;
  2474. }
  2475. }
  2476. static void vmx_intr_assist(struct kvm_vcpu *vcpu)
  2477. {
  2478. u32 intr_info_field;
  2479. update_tpr_threshold(vcpu);
  2480. intr_info_field = vmcs_read32(VM_ENTRY_INTR_INFO_FIELD);
  2481. if (cpu_has_virtual_nmis()) {
  2482. if (vcpu->arch.nmi_pending && !vcpu->arch.nmi_injected) {
  2483. if (vmx_nmi_enabled(vcpu)) {
  2484. vcpu->arch.nmi_pending = false;
  2485. vcpu->arch.nmi_injected = true;
  2486. } else {
  2487. enable_intr_window(vcpu);
  2488. return;
  2489. }
  2490. }
  2491. if (vcpu->arch.nmi_injected) {
  2492. vmx_inject_nmi(vcpu);
  2493. enable_intr_window(vcpu);
  2494. return;
  2495. }
  2496. }
  2497. if (!vcpu->arch.interrupt.pending && kvm_cpu_has_interrupt(vcpu)) {
  2498. if (vmx_irq_enabled(vcpu))
  2499. kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu));
  2500. else
  2501. enable_irq_window(vcpu);
  2502. }
  2503. if (vcpu->arch.interrupt.pending) {
  2504. vmx_inject_irq(vcpu, vcpu->arch.interrupt.nr);
  2505. kvm_timer_intr_post(vcpu, vcpu->arch.interrupt.nr);
  2506. }
  2507. }
  2508. /*
  2509. * Failure to inject an interrupt should give us the information
  2510. * in IDT_VECTORING_INFO_FIELD. However, if the failure occurs
  2511. * when fetching the interrupt redirection bitmap in the real-mode
  2512. * tss, this doesn't happen. So we do it ourselves.
  2513. */
  2514. static void fixup_rmode_irq(struct vcpu_vmx *vmx)
  2515. {
  2516. vmx->rmode.irq.pending = 0;
  2517. if (kvm_rip_read(&vmx->vcpu) + 1 != vmx->rmode.irq.rip)
  2518. return;
  2519. kvm_rip_write(&vmx->vcpu, vmx->rmode.irq.rip);
  2520. if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
  2521. vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
  2522. vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
  2523. return;
  2524. }
  2525. vmx->idt_vectoring_info =
  2526. VECTORING_INFO_VALID_MASK
  2527. | INTR_TYPE_EXT_INTR
  2528. | vmx->rmode.irq.vector;
  2529. }
  2530. #ifdef CONFIG_X86_64
  2531. #define R "r"
  2532. #define Q "q"
  2533. #else
  2534. #define R "e"
  2535. #define Q "l"
  2536. #endif
  2537. static void vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2538. {
  2539. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2540. u32 intr_info;
  2541. if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
  2542. vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
  2543. if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
  2544. vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
  2545. /*
  2546. * Loading guest fpu may have cleared host cr0.ts
  2547. */
  2548. vmcs_writel(HOST_CR0, read_cr0());
  2549. asm(
  2550. /* Store host registers */
  2551. "push %%"R"dx; push %%"R"bp;"
  2552. "push %%"R"cx \n\t"
  2553. __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
  2554. /* Check if vmlaunch of vmresume is needed */
  2555. "cmpl $0, %c[launched](%0) \n\t"
  2556. /* Load guest registers. Don't clobber flags. */
  2557. "mov %c[cr2](%0), %%"R"ax \n\t"
  2558. "mov %%"R"ax, %%cr2 \n\t"
  2559. "mov %c[rax](%0), %%"R"ax \n\t"
  2560. "mov %c[rbx](%0), %%"R"bx \n\t"
  2561. "mov %c[rdx](%0), %%"R"dx \n\t"
  2562. "mov %c[rsi](%0), %%"R"si \n\t"
  2563. "mov %c[rdi](%0), %%"R"di \n\t"
  2564. "mov %c[rbp](%0), %%"R"bp \n\t"
  2565. #ifdef CONFIG_X86_64
  2566. "mov %c[r8](%0), %%r8 \n\t"
  2567. "mov %c[r9](%0), %%r9 \n\t"
  2568. "mov %c[r10](%0), %%r10 \n\t"
  2569. "mov %c[r11](%0), %%r11 \n\t"
  2570. "mov %c[r12](%0), %%r12 \n\t"
  2571. "mov %c[r13](%0), %%r13 \n\t"
  2572. "mov %c[r14](%0), %%r14 \n\t"
  2573. "mov %c[r15](%0), %%r15 \n\t"
  2574. #endif
  2575. "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
  2576. /* Enter guest mode */
  2577. "jne .Llaunched \n\t"
  2578. __ex(ASM_VMX_VMLAUNCH) "\n\t"
  2579. "jmp .Lkvm_vmx_return \n\t"
  2580. ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
  2581. ".Lkvm_vmx_return: "
  2582. /* Save guest registers, load host registers, keep flags */
  2583. "xchg %0, (%%"R"sp) \n\t"
  2584. "mov %%"R"ax, %c[rax](%0) \n\t"
  2585. "mov %%"R"bx, %c[rbx](%0) \n\t"
  2586. "push"Q" (%%"R"sp); pop"Q" %c[rcx](%0) \n\t"
  2587. "mov %%"R"dx, %c[rdx](%0) \n\t"
  2588. "mov %%"R"si, %c[rsi](%0) \n\t"
  2589. "mov %%"R"di, %c[rdi](%0) \n\t"
  2590. "mov %%"R"bp, %c[rbp](%0) \n\t"
  2591. #ifdef CONFIG_X86_64
  2592. "mov %%r8, %c[r8](%0) \n\t"
  2593. "mov %%r9, %c[r9](%0) \n\t"
  2594. "mov %%r10, %c[r10](%0) \n\t"
  2595. "mov %%r11, %c[r11](%0) \n\t"
  2596. "mov %%r12, %c[r12](%0) \n\t"
  2597. "mov %%r13, %c[r13](%0) \n\t"
  2598. "mov %%r14, %c[r14](%0) \n\t"
  2599. "mov %%r15, %c[r15](%0) \n\t"
  2600. #endif
  2601. "mov %%cr2, %%"R"ax \n\t"
  2602. "mov %%"R"ax, %c[cr2](%0) \n\t"
  2603. "pop %%"R"bp; pop %%"R"bp; pop %%"R"dx \n\t"
  2604. "setbe %c[fail](%0) \n\t"
  2605. : : "c"(vmx), "d"((unsigned long)HOST_RSP),
  2606. [launched]"i"(offsetof(struct vcpu_vmx, launched)),
  2607. [fail]"i"(offsetof(struct vcpu_vmx, fail)),
  2608. [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
  2609. [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
  2610. [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
  2611. [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
  2612. [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
  2613. [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
  2614. [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
  2615. #ifdef CONFIG_X86_64
  2616. [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
  2617. [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
  2618. [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
  2619. [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
  2620. [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
  2621. [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
  2622. [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
  2623. [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
  2624. #endif
  2625. [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
  2626. : "cc", "memory"
  2627. , R"bx", R"di", R"si"
  2628. #ifdef CONFIG_X86_64
  2629. , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
  2630. #endif
  2631. );
  2632. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
  2633. vcpu->arch.regs_dirty = 0;
  2634. vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  2635. if (vmx->rmode.irq.pending)
  2636. fixup_rmode_irq(vmx);
  2637. vcpu->arch.interrupt_window_open =
  2638. (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  2639. (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)) == 0;
  2640. asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
  2641. vmx->launched = 1;
  2642. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  2643. /* We need to handle NMIs before interrupts are enabled */
  2644. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200 &&
  2645. (intr_info & INTR_INFO_VALID_MASK)) {
  2646. KVMTRACE_0D(NMI, vcpu, handler);
  2647. asm("int $2");
  2648. }
  2649. vmx_complete_interrupts(vmx);
  2650. }
  2651. #undef R
  2652. #undef Q
  2653. static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
  2654. {
  2655. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2656. if (vmx->vmcs) {
  2657. vcpu_clear(vmx);
  2658. free_vmcs(vmx->vmcs);
  2659. vmx->vmcs = NULL;
  2660. }
  2661. }
  2662. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  2663. {
  2664. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2665. spin_lock(&vmx_vpid_lock);
  2666. if (vmx->vpid != 0)
  2667. __clear_bit(vmx->vpid, vmx_vpid_bitmap);
  2668. spin_unlock(&vmx_vpid_lock);
  2669. vmx_free_vmcs(vcpu);
  2670. kfree(vmx->host_msrs);
  2671. kfree(vmx->guest_msrs);
  2672. kvm_vcpu_uninit(vcpu);
  2673. kmem_cache_free(kvm_vcpu_cache, vmx);
  2674. }
  2675. static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
  2676. {
  2677. int err;
  2678. struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  2679. int cpu;
  2680. if (!vmx)
  2681. return ERR_PTR(-ENOMEM);
  2682. allocate_vpid(vmx);
  2683. err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
  2684. if (err)
  2685. goto free_vcpu;
  2686. vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2687. if (!vmx->guest_msrs) {
  2688. err = -ENOMEM;
  2689. goto uninit_vcpu;
  2690. }
  2691. vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2692. if (!vmx->host_msrs)
  2693. goto free_guest_msrs;
  2694. vmx->vmcs = alloc_vmcs();
  2695. if (!vmx->vmcs)
  2696. goto free_msrs;
  2697. vmcs_clear(vmx->vmcs);
  2698. cpu = get_cpu();
  2699. vmx_vcpu_load(&vmx->vcpu, cpu);
  2700. err = vmx_vcpu_setup(vmx);
  2701. vmx_vcpu_put(&vmx->vcpu);
  2702. put_cpu();
  2703. if (err)
  2704. goto free_vmcs;
  2705. if (vm_need_virtualize_apic_accesses(kvm))
  2706. if (alloc_apic_access_page(kvm) != 0)
  2707. goto free_vmcs;
  2708. if (vm_need_ept())
  2709. if (alloc_identity_pagetable(kvm) != 0)
  2710. goto free_vmcs;
  2711. return &vmx->vcpu;
  2712. free_vmcs:
  2713. free_vmcs(vmx->vmcs);
  2714. free_msrs:
  2715. kfree(vmx->host_msrs);
  2716. free_guest_msrs:
  2717. kfree(vmx->guest_msrs);
  2718. uninit_vcpu:
  2719. kvm_vcpu_uninit(&vmx->vcpu);
  2720. free_vcpu:
  2721. kmem_cache_free(kvm_vcpu_cache, vmx);
  2722. return ERR_PTR(err);
  2723. }
  2724. static void __init vmx_check_processor_compat(void *rtn)
  2725. {
  2726. struct vmcs_config vmcs_conf;
  2727. *(int *)rtn = 0;
  2728. if (setup_vmcs_config(&vmcs_conf) < 0)
  2729. *(int *)rtn = -EIO;
  2730. if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
  2731. printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
  2732. smp_processor_id());
  2733. *(int *)rtn = -EIO;
  2734. }
  2735. }
  2736. static int get_ept_level(void)
  2737. {
  2738. return VMX_EPT_DEFAULT_GAW + 1;
  2739. }
  2740. static struct kvm_x86_ops vmx_x86_ops = {
  2741. .cpu_has_kvm_support = cpu_has_kvm_support,
  2742. .disabled_by_bios = vmx_disabled_by_bios,
  2743. .hardware_setup = hardware_setup,
  2744. .hardware_unsetup = hardware_unsetup,
  2745. .check_processor_compatibility = vmx_check_processor_compat,
  2746. .hardware_enable = hardware_enable,
  2747. .hardware_disable = hardware_disable,
  2748. .cpu_has_accelerated_tpr = cpu_has_vmx_virtualize_apic_accesses,
  2749. .vcpu_create = vmx_create_vcpu,
  2750. .vcpu_free = vmx_free_vcpu,
  2751. .vcpu_reset = vmx_vcpu_reset,
  2752. .prepare_guest_switch = vmx_save_host_state,
  2753. .vcpu_load = vmx_vcpu_load,
  2754. .vcpu_put = vmx_vcpu_put,
  2755. .set_guest_debug = set_guest_debug,
  2756. .guest_debug_pre = kvm_guest_debug_pre,
  2757. .get_msr = vmx_get_msr,
  2758. .set_msr = vmx_set_msr,
  2759. .get_segment_base = vmx_get_segment_base,
  2760. .get_segment = vmx_get_segment,
  2761. .set_segment = vmx_set_segment,
  2762. .get_cpl = vmx_get_cpl,
  2763. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  2764. .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
  2765. .set_cr0 = vmx_set_cr0,
  2766. .set_cr3 = vmx_set_cr3,
  2767. .set_cr4 = vmx_set_cr4,
  2768. .set_efer = vmx_set_efer,
  2769. .get_idt = vmx_get_idt,
  2770. .set_idt = vmx_set_idt,
  2771. .get_gdt = vmx_get_gdt,
  2772. .set_gdt = vmx_set_gdt,
  2773. .cache_reg = vmx_cache_reg,
  2774. .get_rflags = vmx_get_rflags,
  2775. .set_rflags = vmx_set_rflags,
  2776. .tlb_flush = vmx_flush_tlb,
  2777. .run = vmx_vcpu_run,
  2778. .handle_exit = kvm_handle_exit,
  2779. .skip_emulated_instruction = skip_emulated_instruction,
  2780. .patch_hypercall = vmx_patch_hypercall,
  2781. .get_irq = vmx_get_irq,
  2782. .set_irq = vmx_inject_irq,
  2783. .queue_exception = vmx_queue_exception,
  2784. .exception_injected = vmx_exception_injected,
  2785. .inject_pending_irq = vmx_intr_assist,
  2786. .inject_pending_vectors = do_interrupt_requests,
  2787. .set_tss_addr = vmx_set_tss_addr,
  2788. .get_tdp_level = get_ept_level,
  2789. };
  2790. static int __init vmx_init(void)
  2791. {
  2792. void *va;
  2793. int r;
  2794. vmx_io_bitmap_a = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  2795. if (!vmx_io_bitmap_a)
  2796. return -ENOMEM;
  2797. vmx_io_bitmap_b = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  2798. if (!vmx_io_bitmap_b) {
  2799. r = -ENOMEM;
  2800. goto out;
  2801. }
  2802. vmx_msr_bitmap = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  2803. if (!vmx_msr_bitmap) {
  2804. r = -ENOMEM;
  2805. goto out1;
  2806. }
  2807. /*
  2808. * Allow direct access to the PC debug port (it is often used for I/O
  2809. * delays, but the vmexits simply slow things down).
  2810. */
  2811. va = kmap(vmx_io_bitmap_a);
  2812. memset(va, 0xff, PAGE_SIZE);
  2813. clear_bit(0x80, va);
  2814. kunmap(vmx_io_bitmap_a);
  2815. va = kmap(vmx_io_bitmap_b);
  2816. memset(va, 0xff, PAGE_SIZE);
  2817. kunmap(vmx_io_bitmap_b);
  2818. va = kmap(vmx_msr_bitmap);
  2819. memset(va, 0xff, PAGE_SIZE);
  2820. kunmap(vmx_msr_bitmap);
  2821. set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
  2822. r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
  2823. if (r)
  2824. goto out2;
  2825. vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_FS_BASE);
  2826. vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_GS_BASE);
  2827. vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_CS);
  2828. vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_ESP);
  2829. vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_EIP);
  2830. if (vm_need_ept()) {
  2831. bypass_guest_pf = 0;
  2832. kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK |
  2833. VMX_EPT_WRITABLE_MASK |
  2834. VMX_EPT_DEFAULT_MT << VMX_EPT_MT_EPTE_SHIFT);
  2835. kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
  2836. VMX_EPT_EXECUTABLE_MASK);
  2837. kvm_enable_tdp();
  2838. } else
  2839. kvm_disable_tdp();
  2840. if (bypass_guest_pf)
  2841. kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
  2842. ept_sync_global();
  2843. return 0;
  2844. out2:
  2845. __free_page(vmx_msr_bitmap);
  2846. out1:
  2847. __free_page(vmx_io_bitmap_b);
  2848. out:
  2849. __free_page(vmx_io_bitmap_a);
  2850. return r;
  2851. }
  2852. static void __exit vmx_exit(void)
  2853. {
  2854. __free_page(vmx_msr_bitmap);
  2855. __free_page(vmx_io_bitmap_b);
  2856. __free_page(vmx_io_bitmap_a);
  2857. kvm_exit();
  2858. }
  2859. module_init(vmx_init)
  2860. module_exit(vmx_exit)