keyboard.c 33 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366
  1. /*
  2. * linux/drivers/char/keyboard.c
  3. *
  4. * Written for linux by Johan Myreen as a translation from
  5. * the assembly version by Linus (with diacriticals added)
  6. *
  7. * Some additional features added by Christoph Niemann (ChN), March 1993
  8. *
  9. * Loadable keymaps by Risto Kankkunen, May 1993
  10. *
  11. * Diacriticals redone & other small changes, aeb@cwi.nl, June 1993
  12. * Added decr/incr_console, dynamic keymaps, Unicode support,
  13. * dynamic function/string keys, led setting, Sept 1994
  14. * `Sticky' modifier keys, 951006.
  15. *
  16. * 11-11-96: SAK should now work in the raw mode (Martin Mares)
  17. *
  18. * Modified to provide 'generic' keyboard support by Hamish Macdonald
  19. * Merge with the m68k keyboard driver and split-off of the PC low-level
  20. * parts by Geert Uytterhoeven, May 1997
  21. *
  22. * 27-05-97: Added support for the Magic SysRq Key (Martin Mares)
  23. * 30-07-98: Dead keys redone, aeb@cwi.nl.
  24. * 21-08-02: Converted to input API, major cleanup. (Vojtech Pavlik)
  25. */
  26. #include <linux/module.h>
  27. #include <linux/sched.h>
  28. #include <linux/tty.h>
  29. #include <linux/tty_flip.h>
  30. #include <linux/mm.h>
  31. #include <linux/string.h>
  32. #include <linux/init.h>
  33. #include <linux/slab.h>
  34. #include <linux/kbd_kern.h>
  35. #include <linux/kbd_diacr.h>
  36. #include <linux/vt_kern.h>
  37. #include <linux/sysrq.h>
  38. #include <linux/input.h>
  39. #include <linux/reboot.h>
  40. static void kbd_disconnect(struct input_handle *handle);
  41. extern void ctrl_alt_del(void);
  42. /*
  43. * Exported functions/variables
  44. */
  45. #define KBD_DEFMODE ((1 << VC_REPEAT) | (1 << VC_META))
  46. /*
  47. * Some laptops take the 789uiojklm,. keys as number pad when NumLock is on.
  48. * This seems a good reason to start with NumLock off. On HIL keyboards
  49. * of PARISC machines however there is no NumLock key and everyone expects the keypad
  50. * to be used for numbers.
  51. */
  52. #if defined(CONFIG_PARISC) && (defined(CONFIG_KEYBOARD_HIL) || defined(CONFIG_KEYBOARD_HIL_OLD))
  53. #define KBD_DEFLEDS (1 << VC_NUMLOCK)
  54. #else
  55. #define KBD_DEFLEDS 0
  56. #endif
  57. #define KBD_DEFLOCK 0
  58. void compute_shiftstate(void);
  59. /*
  60. * Handler Tables.
  61. */
  62. #define K_HANDLERS\
  63. k_self, k_fn, k_spec, k_pad,\
  64. k_dead, k_cons, k_cur, k_shift,\
  65. k_meta, k_ascii, k_lock, k_lowercase,\
  66. k_slock, k_dead2, k_brl, k_ignore
  67. typedef void (k_handler_fn)(struct vc_data *vc, unsigned char value,
  68. char up_flag, struct pt_regs *regs);
  69. static k_handler_fn K_HANDLERS;
  70. static k_handler_fn *k_handler[16] = { K_HANDLERS };
  71. #define FN_HANDLERS\
  72. fn_null, fn_enter, fn_show_ptregs, fn_show_mem,\
  73. fn_show_state, fn_send_intr, fn_lastcons, fn_caps_toggle,\
  74. fn_num, fn_hold, fn_scroll_forw, fn_scroll_back,\
  75. fn_boot_it, fn_caps_on, fn_compose, fn_SAK,\
  76. fn_dec_console, fn_inc_console, fn_spawn_con, fn_bare_num
  77. typedef void (fn_handler_fn)(struct vc_data *vc, struct pt_regs *regs);
  78. static fn_handler_fn FN_HANDLERS;
  79. static fn_handler_fn *fn_handler[] = { FN_HANDLERS };
  80. /*
  81. * Variables exported for vt_ioctl.c
  82. */
  83. /* maximum values each key_handler can handle */
  84. const int max_vals[] = {
  85. 255, ARRAY_SIZE(func_table) - 1, ARRAY_SIZE(fn_handler) - 1, NR_PAD - 1,
  86. NR_DEAD - 1, 255, 3, NR_SHIFT - 1, 255, NR_ASCII - 1, NR_LOCK - 1,
  87. 255, NR_LOCK - 1, 255, NR_BRL - 1
  88. };
  89. const int NR_TYPES = ARRAY_SIZE(max_vals);
  90. struct kbd_struct kbd_table[MAX_NR_CONSOLES];
  91. static struct kbd_struct *kbd = kbd_table;
  92. static struct kbd_struct kbd0;
  93. int spawnpid, spawnsig;
  94. /*
  95. * Variables exported for vt.c
  96. */
  97. int shift_state = 0;
  98. /*
  99. * Internal Data.
  100. */
  101. static struct input_handler kbd_handler;
  102. static unsigned long key_down[NBITS(KEY_MAX)]; /* keyboard key bitmap */
  103. static unsigned char shift_down[NR_SHIFT]; /* shift state counters.. */
  104. static int dead_key_next;
  105. static int npadch = -1; /* -1 or number assembled on pad */
  106. static unsigned int diacr;
  107. static char rep; /* flag telling character repeat */
  108. static unsigned char ledstate = 0xff; /* undefined */
  109. static unsigned char ledioctl;
  110. static struct ledptr {
  111. unsigned int *addr;
  112. unsigned int mask;
  113. unsigned char valid:1;
  114. } ledptrs[3];
  115. /* Simple translation table for the SysRq keys */
  116. #ifdef CONFIG_MAGIC_SYSRQ
  117. unsigned char kbd_sysrq_xlate[KEY_MAX + 1] =
  118. "\000\0331234567890-=\177\t" /* 0x00 - 0x0f */
  119. "qwertyuiop[]\r\000as" /* 0x10 - 0x1f */
  120. "dfghjkl;'`\000\\zxcv" /* 0x20 - 0x2f */
  121. "bnm,./\000*\000 \000\201\202\203\204\205" /* 0x30 - 0x3f */
  122. "\206\207\210\211\212\000\000789-456+1" /* 0x40 - 0x4f */
  123. "230\177\000\000\213\214\000\000\000\000\000\000\000\000\000\000" /* 0x50 - 0x5f */
  124. "\r\000/"; /* 0x60 - 0x6f */
  125. static int sysrq_down;
  126. static int sysrq_alt_use;
  127. #endif
  128. static int sysrq_alt;
  129. /*
  130. * Translation of scancodes to keycodes. We set them on only the first attached
  131. * keyboard - for per-keyboard setting, /dev/input/event is more useful.
  132. */
  133. int getkeycode(unsigned int scancode)
  134. {
  135. struct list_head *node;
  136. struct input_dev *dev = NULL;
  137. list_for_each(node, &kbd_handler.h_list) {
  138. struct input_handle *handle = to_handle_h(node);
  139. if (handle->dev->keycodesize) {
  140. dev = handle->dev;
  141. break;
  142. }
  143. }
  144. if (!dev)
  145. return -ENODEV;
  146. if (scancode >= dev->keycodemax)
  147. return -EINVAL;
  148. return INPUT_KEYCODE(dev, scancode);
  149. }
  150. int setkeycode(unsigned int scancode, unsigned int keycode)
  151. {
  152. struct list_head *node;
  153. struct input_dev *dev = NULL;
  154. unsigned int i, oldkey;
  155. list_for_each(node, &kbd_handler.h_list) {
  156. struct input_handle *handle = to_handle_h(node);
  157. if (handle->dev->keycodesize) {
  158. dev = handle->dev;
  159. break;
  160. }
  161. }
  162. if (!dev)
  163. return -ENODEV;
  164. if (scancode >= dev->keycodemax)
  165. return -EINVAL;
  166. if (keycode < 0 || keycode > KEY_MAX)
  167. return -EINVAL;
  168. if (dev->keycodesize < sizeof(keycode) && (keycode >> (dev->keycodesize * 8)))
  169. return -EINVAL;
  170. oldkey = SET_INPUT_KEYCODE(dev, scancode, keycode);
  171. clear_bit(oldkey, dev->keybit);
  172. set_bit(keycode, dev->keybit);
  173. for (i = 0; i < dev->keycodemax; i++)
  174. if (INPUT_KEYCODE(dev,i) == oldkey)
  175. set_bit(oldkey, dev->keybit);
  176. return 0;
  177. }
  178. /*
  179. * Making beeps and bells.
  180. */
  181. static void kd_nosound(unsigned long ignored)
  182. {
  183. struct list_head *node;
  184. list_for_each(node,&kbd_handler.h_list) {
  185. struct input_handle *handle = to_handle_h(node);
  186. if (test_bit(EV_SND, handle->dev->evbit)) {
  187. if (test_bit(SND_TONE, handle->dev->sndbit))
  188. input_event(handle->dev, EV_SND, SND_TONE, 0);
  189. if (test_bit(SND_BELL, handle->dev->sndbit))
  190. input_event(handle->dev, EV_SND, SND_BELL, 0);
  191. }
  192. }
  193. }
  194. static DEFINE_TIMER(kd_mksound_timer, kd_nosound, 0, 0);
  195. void kd_mksound(unsigned int hz, unsigned int ticks)
  196. {
  197. struct list_head *node;
  198. del_timer(&kd_mksound_timer);
  199. if (hz) {
  200. list_for_each_prev(node, &kbd_handler.h_list) {
  201. struct input_handle *handle = to_handle_h(node);
  202. if (test_bit(EV_SND, handle->dev->evbit)) {
  203. if (test_bit(SND_TONE, handle->dev->sndbit)) {
  204. input_event(handle->dev, EV_SND, SND_TONE, hz);
  205. break;
  206. }
  207. if (test_bit(SND_BELL, handle->dev->sndbit)) {
  208. input_event(handle->dev, EV_SND, SND_BELL, 1);
  209. break;
  210. }
  211. }
  212. }
  213. if (ticks)
  214. mod_timer(&kd_mksound_timer, jiffies + ticks);
  215. } else
  216. kd_nosound(0);
  217. }
  218. /*
  219. * Setting the keyboard rate.
  220. */
  221. int kbd_rate(struct kbd_repeat *rep)
  222. {
  223. struct list_head *node;
  224. unsigned int d = 0;
  225. unsigned int p = 0;
  226. list_for_each(node,&kbd_handler.h_list) {
  227. struct input_handle *handle = to_handle_h(node);
  228. struct input_dev *dev = handle->dev;
  229. if (test_bit(EV_REP, dev->evbit)) {
  230. if (rep->delay > 0)
  231. input_event(dev, EV_REP, REP_DELAY, rep->delay);
  232. if (rep->period > 0)
  233. input_event(dev, EV_REP, REP_PERIOD, rep->period);
  234. d = dev->rep[REP_DELAY];
  235. p = dev->rep[REP_PERIOD];
  236. }
  237. }
  238. rep->delay = d;
  239. rep->period = p;
  240. return 0;
  241. }
  242. /*
  243. * Helper Functions.
  244. */
  245. static void put_queue(struct vc_data *vc, int ch)
  246. {
  247. struct tty_struct *tty = vc->vc_tty;
  248. if (tty) {
  249. tty_insert_flip_char(tty, ch, 0);
  250. con_schedule_flip(tty);
  251. }
  252. }
  253. static void puts_queue(struct vc_data *vc, char *cp)
  254. {
  255. struct tty_struct *tty = vc->vc_tty;
  256. if (!tty)
  257. return;
  258. while (*cp) {
  259. tty_insert_flip_char(tty, *cp, 0);
  260. cp++;
  261. }
  262. con_schedule_flip(tty);
  263. }
  264. static void applkey(struct vc_data *vc, int key, char mode)
  265. {
  266. static char buf[] = { 0x1b, 'O', 0x00, 0x00 };
  267. buf[1] = (mode ? 'O' : '[');
  268. buf[2] = key;
  269. puts_queue(vc, buf);
  270. }
  271. /*
  272. * Many other routines do put_queue, but I think either
  273. * they produce ASCII, or they produce some user-assigned
  274. * string, and in both cases we might assume that it is
  275. * in utf-8 already. UTF-8 is defined for words of up to 31 bits,
  276. * but we need only 16 bits here
  277. */
  278. static void to_utf8(struct vc_data *vc, ushort c)
  279. {
  280. if (c < 0x80)
  281. /* 0******* */
  282. put_queue(vc, c);
  283. else if (c < 0x800) {
  284. /* 110***** 10****** */
  285. put_queue(vc, 0xc0 | (c >> 6));
  286. put_queue(vc, 0x80 | (c & 0x3f));
  287. } else {
  288. /* 1110**** 10****** 10****** */
  289. put_queue(vc, 0xe0 | (c >> 12));
  290. put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
  291. put_queue(vc, 0x80 | (c & 0x3f));
  292. }
  293. }
  294. /*
  295. * Called after returning from RAW mode or when changing consoles - recompute
  296. * shift_down[] and shift_state from key_down[] maybe called when keymap is
  297. * undefined, so that shiftkey release is seen
  298. */
  299. void compute_shiftstate(void)
  300. {
  301. unsigned int i, j, k, sym, val;
  302. shift_state = 0;
  303. memset(shift_down, 0, sizeof(shift_down));
  304. for (i = 0; i < ARRAY_SIZE(key_down); i++) {
  305. if (!key_down[i])
  306. continue;
  307. k = i * BITS_PER_LONG;
  308. for (j = 0; j < BITS_PER_LONG; j++, k++) {
  309. if (!test_bit(k, key_down))
  310. continue;
  311. sym = U(key_maps[0][k]);
  312. if (KTYP(sym) != KT_SHIFT && KTYP(sym) != KT_SLOCK)
  313. continue;
  314. val = KVAL(sym);
  315. if (val == KVAL(K_CAPSSHIFT))
  316. val = KVAL(K_SHIFT);
  317. shift_down[val]++;
  318. shift_state |= (1 << val);
  319. }
  320. }
  321. }
  322. /*
  323. * We have a combining character DIACR here, followed by the character CH.
  324. * If the combination occurs in the table, return the corresponding value.
  325. * Otherwise, if CH is a space or equals DIACR, return DIACR.
  326. * Otherwise, conclude that DIACR was not combining after all,
  327. * queue it and return CH.
  328. */
  329. static unsigned int handle_diacr(struct vc_data *vc, unsigned int ch)
  330. {
  331. unsigned int d = diacr;
  332. unsigned int i;
  333. diacr = 0;
  334. if ((d & ~0xff) == BRL_UC_ROW) {
  335. if ((ch & ~0xff) == BRL_UC_ROW)
  336. return d | ch;
  337. } else {
  338. for (i = 0; i < accent_table_size; i++)
  339. if (accent_table[i].diacr == d && accent_table[i].base == ch)
  340. return accent_table[i].result;
  341. }
  342. if (ch == ' ' || ch == (BRL_UC_ROW|0) || ch == d)
  343. return d;
  344. if (kbd->kbdmode == VC_UNICODE)
  345. to_utf8(vc, d);
  346. else if (d < 0x100)
  347. put_queue(vc, d);
  348. return ch;
  349. }
  350. /*
  351. * Special function handlers
  352. */
  353. static void fn_enter(struct vc_data *vc, struct pt_regs *regs)
  354. {
  355. if (diacr) {
  356. if (kbd->kbdmode == VC_UNICODE)
  357. to_utf8(vc, diacr);
  358. else if (diacr < 0x100)
  359. put_queue(vc, diacr);
  360. diacr = 0;
  361. }
  362. put_queue(vc, 13);
  363. if (vc_kbd_mode(kbd, VC_CRLF))
  364. put_queue(vc, 10);
  365. }
  366. static void fn_caps_toggle(struct vc_data *vc, struct pt_regs *regs)
  367. {
  368. if (rep)
  369. return;
  370. chg_vc_kbd_led(kbd, VC_CAPSLOCK);
  371. }
  372. static void fn_caps_on(struct vc_data *vc, struct pt_regs *regs)
  373. {
  374. if (rep)
  375. return;
  376. set_vc_kbd_led(kbd, VC_CAPSLOCK);
  377. }
  378. static void fn_show_ptregs(struct vc_data *vc, struct pt_regs *regs)
  379. {
  380. if (regs)
  381. show_regs(regs);
  382. }
  383. static void fn_hold(struct vc_data *vc, struct pt_regs *regs)
  384. {
  385. struct tty_struct *tty = vc->vc_tty;
  386. if (rep || !tty)
  387. return;
  388. /*
  389. * Note: SCROLLOCK will be set (cleared) by stop_tty (start_tty);
  390. * these routines are also activated by ^S/^Q.
  391. * (And SCROLLOCK can also be set by the ioctl KDSKBLED.)
  392. */
  393. if (tty->stopped)
  394. start_tty(tty);
  395. else
  396. stop_tty(tty);
  397. }
  398. static void fn_num(struct vc_data *vc, struct pt_regs *regs)
  399. {
  400. if (vc_kbd_mode(kbd,VC_APPLIC))
  401. applkey(vc, 'P', 1);
  402. else
  403. fn_bare_num(vc, regs);
  404. }
  405. /*
  406. * Bind this to Shift-NumLock if you work in application keypad mode
  407. * but want to be able to change the NumLock flag.
  408. * Bind this to NumLock if you prefer that the NumLock key always
  409. * changes the NumLock flag.
  410. */
  411. static void fn_bare_num(struct vc_data *vc, struct pt_regs *regs)
  412. {
  413. if (!rep)
  414. chg_vc_kbd_led(kbd, VC_NUMLOCK);
  415. }
  416. static void fn_lastcons(struct vc_data *vc, struct pt_regs *regs)
  417. {
  418. /* switch to the last used console, ChN */
  419. set_console(last_console);
  420. }
  421. static void fn_dec_console(struct vc_data *vc, struct pt_regs *regs)
  422. {
  423. int i, cur = fg_console;
  424. /* Currently switching? Queue this next switch relative to that. */
  425. if (want_console != -1)
  426. cur = want_console;
  427. for (i = cur - 1; i != cur; i--) {
  428. if (i == -1)
  429. i = MAX_NR_CONSOLES - 1;
  430. if (vc_cons_allocated(i))
  431. break;
  432. }
  433. set_console(i);
  434. }
  435. static void fn_inc_console(struct vc_data *vc, struct pt_regs *regs)
  436. {
  437. int i, cur = fg_console;
  438. /* Currently switching? Queue this next switch relative to that. */
  439. if (want_console != -1)
  440. cur = want_console;
  441. for (i = cur+1; i != cur; i++) {
  442. if (i == MAX_NR_CONSOLES)
  443. i = 0;
  444. if (vc_cons_allocated(i))
  445. break;
  446. }
  447. set_console(i);
  448. }
  449. static void fn_send_intr(struct vc_data *vc, struct pt_regs *regs)
  450. {
  451. struct tty_struct *tty = vc->vc_tty;
  452. if (!tty)
  453. return;
  454. tty_insert_flip_char(tty, 0, TTY_BREAK);
  455. con_schedule_flip(tty);
  456. }
  457. static void fn_scroll_forw(struct vc_data *vc, struct pt_regs *regs)
  458. {
  459. scrollfront(vc, 0);
  460. }
  461. static void fn_scroll_back(struct vc_data *vc, struct pt_regs *regs)
  462. {
  463. scrollback(vc, 0);
  464. }
  465. static void fn_show_mem(struct vc_data *vc, struct pt_regs *regs)
  466. {
  467. show_mem();
  468. }
  469. static void fn_show_state(struct vc_data *vc, struct pt_regs *regs)
  470. {
  471. show_state();
  472. }
  473. static void fn_boot_it(struct vc_data *vc, struct pt_regs *regs)
  474. {
  475. ctrl_alt_del();
  476. }
  477. static void fn_compose(struct vc_data *vc, struct pt_regs *regs)
  478. {
  479. dead_key_next = 1;
  480. }
  481. static void fn_spawn_con(struct vc_data *vc, struct pt_regs *regs)
  482. {
  483. if (spawnpid)
  484. if (kill_proc(spawnpid, spawnsig, 1))
  485. spawnpid = 0;
  486. }
  487. static void fn_SAK(struct vc_data *vc, struct pt_regs *regs)
  488. {
  489. struct tty_struct *tty = vc->vc_tty;
  490. /*
  491. * SAK should also work in all raw modes and reset
  492. * them properly.
  493. */
  494. if (tty)
  495. do_SAK(tty);
  496. reset_vc(vc);
  497. }
  498. static void fn_null(struct vc_data *vc, struct pt_regs *regs)
  499. {
  500. compute_shiftstate();
  501. }
  502. /*
  503. * Special key handlers
  504. */
  505. static void k_ignore(struct vc_data *vc, unsigned char value, char up_flag, struct pt_regs *regs)
  506. {
  507. }
  508. static void k_spec(struct vc_data *vc, unsigned char value, char up_flag, struct pt_regs *regs)
  509. {
  510. if (up_flag)
  511. return;
  512. if (value >= ARRAY_SIZE(fn_handler))
  513. return;
  514. if ((kbd->kbdmode == VC_RAW ||
  515. kbd->kbdmode == VC_MEDIUMRAW) &&
  516. value != KVAL(K_SAK))
  517. return; /* SAK is allowed even in raw mode */
  518. fn_handler[value](vc, regs);
  519. }
  520. static void k_lowercase(struct vc_data *vc, unsigned char value, char up_flag, struct pt_regs *regs)
  521. {
  522. printk(KERN_ERR "keyboard.c: k_lowercase was called - impossible\n");
  523. }
  524. static void k_unicode(struct vc_data *vc, unsigned int value, char up_flag, struct pt_regs *regs)
  525. {
  526. if (up_flag)
  527. return; /* no action, if this is a key release */
  528. if (diacr)
  529. value = handle_diacr(vc, value);
  530. if (dead_key_next) {
  531. dead_key_next = 0;
  532. diacr = value;
  533. return;
  534. }
  535. if (kbd->kbdmode == VC_UNICODE)
  536. to_utf8(vc, value);
  537. else if (value < 0x100)
  538. put_queue(vc, value);
  539. }
  540. /*
  541. * Handle dead key. Note that we now may have several
  542. * dead keys modifying the same character. Very useful
  543. * for Vietnamese.
  544. */
  545. static void k_deadunicode(struct vc_data *vc, unsigned int value, char up_flag, struct pt_regs *regs)
  546. {
  547. if (up_flag)
  548. return;
  549. diacr = (diacr ? handle_diacr(vc, value) : value);
  550. }
  551. static void k_self(struct vc_data *vc, unsigned char value, char up_flag, struct pt_regs *regs)
  552. {
  553. k_unicode(vc, value, up_flag, regs);
  554. }
  555. static void k_dead2(struct vc_data *vc, unsigned char value, char up_flag, struct pt_regs *regs)
  556. {
  557. k_deadunicode(vc, value, up_flag, regs);
  558. }
  559. /*
  560. * Obsolete - for backwards compatibility only
  561. */
  562. static void k_dead(struct vc_data *vc, unsigned char value, char up_flag, struct pt_regs *regs)
  563. {
  564. static const unsigned char ret_diacr[NR_DEAD] = {'`', '\'', '^', '~', '"', ',' };
  565. value = ret_diacr[value];
  566. k_deadunicode(vc, value, up_flag, regs);
  567. }
  568. static void k_cons(struct vc_data *vc, unsigned char value, char up_flag, struct pt_regs *regs)
  569. {
  570. if (up_flag)
  571. return;
  572. set_console(value);
  573. }
  574. static void k_fn(struct vc_data *vc, unsigned char value, char up_flag, struct pt_regs *regs)
  575. {
  576. unsigned v;
  577. if (up_flag)
  578. return;
  579. v = value;
  580. if (v < ARRAY_SIZE(func_table)) {
  581. if (func_table[value])
  582. puts_queue(vc, func_table[value]);
  583. } else
  584. printk(KERN_ERR "k_fn called with value=%d\n", value);
  585. }
  586. static void k_cur(struct vc_data *vc, unsigned char value, char up_flag, struct pt_regs *regs)
  587. {
  588. static const char *cur_chars = "BDCA";
  589. if (up_flag)
  590. return;
  591. applkey(vc, cur_chars[value], vc_kbd_mode(kbd, VC_CKMODE));
  592. }
  593. static void k_pad(struct vc_data *vc, unsigned char value, char up_flag, struct pt_regs *regs)
  594. {
  595. static const char pad_chars[] = "0123456789+-*/\015,.?()#";
  596. static const char app_map[] = "pqrstuvwxylSRQMnnmPQS";
  597. if (up_flag)
  598. return; /* no action, if this is a key release */
  599. /* kludge... shift forces cursor/number keys */
  600. if (vc_kbd_mode(kbd, VC_APPLIC) && !shift_down[KG_SHIFT]) {
  601. applkey(vc, app_map[value], 1);
  602. return;
  603. }
  604. if (!vc_kbd_led(kbd, VC_NUMLOCK))
  605. switch (value) {
  606. case KVAL(K_PCOMMA):
  607. case KVAL(K_PDOT):
  608. k_fn(vc, KVAL(K_REMOVE), 0, regs);
  609. return;
  610. case KVAL(K_P0):
  611. k_fn(vc, KVAL(K_INSERT), 0, regs);
  612. return;
  613. case KVAL(K_P1):
  614. k_fn(vc, KVAL(K_SELECT), 0, regs);
  615. return;
  616. case KVAL(K_P2):
  617. k_cur(vc, KVAL(K_DOWN), 0, regs);
  618. return;
  619. case KVAL(K_P3):
  620. k_fn(vc, KVAL(K_PGDN), 0, regs);
  621. return;
  622. case KVAL(K_P4):
  623. k_cur(vc, KVAL(K_LEFT), 0, regs);
  624. return;
  625. case KVAL(K_P6):
  626. k_cur(vc, KVAL(K_RIGHT), 0, regs);
  627. return;
  628. case KVAL(K_P7):
  629. k_fn(vc, KVAL(K_FIND), 0, regs);
  630. return;
  631. case KVAL(K_P8):
  632. k_cur(vc, KVAL(K_UP), 0, regs);
  633. return;
  634. case KVAL(K_P9):
  635. k_fn(vc, KVAL(K_PGUP), 0, regs);
  636. return;
  637. case KVAL(K_P5):
  638. applkey(vc, 'G', vc_kbd_mode(kbd, VC_APPLIC));
  639. return;
  640. }
  641. put_queue(vc, pad_chars[value]);
  642. if (value == KVAL(K_PENTER) && vc_kbd_mode(kbd, VC_CRLF))
  643. put_queue(vc, 10);
  644. }
  645. static void k_shift(struct vc_data *vc, unsigned char value, char up_flag, struct pt_regs *regs)
  646. {
  647. int old_state = shift_state;
  648. if (rep)
  649. return;
  650. /*
  651. * Mimic typewriter:
  652. * a CapsShift key acts like Shift but undoes CapsLock
  653. */
  654. if (value == KVAL(K_CAPSSHIFT)) {
  655. value = KVAL(K_SHIFT);
  656. if (!up_flag)
  657. clr_vc_kbd_led(kbd, VC_CAPSLOCK);
  658. }
  659. if (up_flag) {
  660. /*
  661. * handle the case that two shift or control
  662. * keys are depressed simultaneously
  663. */
  664. if (shift_down[value])
  665. shift_down[value]--;
  666. } else
  667. shift_down[value]++;
  668. if (shift_down[value])
  669. shift_state |= (1 << value);
  670. else
  671. shift_state &= ~(1 << value);
  672. /* kludge */
  673. if (up_flag && shift_state != old_state && npadch != -1) {
  674. if (kbd->kbdmode == VC_UNICODE)
  675. to_utf8(vc, npadch & 0xffff);
  676. else
  677. put_queue(vc, npadch & 0xff);
  678. npadch = -1;
  679. }
  680. }
  681. static void k_meta(struct vc_data *vc, unsigned char value, char up_flag, struct pt_regs *regs)
  682. {
  683. if (up_flag)
  684. return;
  685. if (vc_kbd_mode(kbd, VC_META)) {
  686. put_queue(vc, '\033');
  687. put_queue(vc, value);
  688. } else
  689. put_queue(vc, value | 0x80);
  690. }
  691. static void k_ascii(struct vc_data *vc, unsigned char value, char up_flag, struct pt_regs *regs)
  692. {
  693. int base;
  694. if (up_flag)
  695. return;
  696. if (value < 10) {
  697. /* decimal input of code, while Alt depressed */
  698. base = 10;
  699. } else {
  700. /* hexadecimal input of code, while AltGr depressed */
  701. value -= 10;
  702. base = 16;
  703. }
  704. if (npadch == -1)
  705. npadch = value;
  706. else
  707. npadch = npadch * base + value;
  708. }
  709. static void k_lock(struct vc_data *vc, unsigned char value, char up_flag, struct pt_regs *regs)
  710. {
  711. if (up_flag || rep)
  712. return;
  713. chg_vc_kbd_lock(kbd, value);
  714. }
  715. static void k_slock(struct vc_data *vc, unsigned char value, char up_flag, struct pt_regs *regs)
  716. {
  717. k_shift(vc, value, up_flag, regs);
  718. if (up_flag || rep)
  719. return;
  720. chg_vc_kbd_slock(kbd, value);
  721. /* try to make Alt, oops, AltGr and such work */
  722. if (!key_maps[kbd->lockstate ^ kbd->slockstate]) {
  723. kbd->slockstate = 0;
  724. chg_vc_kbd_slock(kbd, value);
  725. }
  726. }
  727. /* by default, 300ms interval for combination release */
  728. static unsigned brl_timeout = 300;
  729. MODULE_PARM_DESC(brl_timeout, "Braille keys release delay in ms (0 for commit on first key release)");
  730. module_param(brl_timeout, uint, 0644);
  731. static unsigned brl_nbchords = 1;
  732. MODULE_PARM_DESC(brl_nbchords, "Number of chords that produce a braille pattern (0 for dead chords)");
  733. module_param(brl_nbchords, uint, 0644);
  734. static void k_brlcommit(struct vc_data *vc, unsigned int pattern, char up_flag, struct pt_regs *regs)
  735. {
  736. static unsigned long chords;
  737. static unsigned committed;
  738. if (!brl_nbchords)
  739. k_deadunicode(vc, BRL_UC_ROW | pattern, up_flag, regs);
  740. else {
  741. committed |= pattern;
  742. chords++;
  743. if (chords == brl_nbchords) {
  744. k_unicode(vc, BRL_UC_ROW | committed, up_flag, regs);
  745. chords = 0;
  746. committed = 0;
  747. }
  748. }
  749. }
  750. static void k_brl(struct vc_data *vc, unsigned char value, char up_flag, struct pt_regs *regs)
  751. {
  752. static unsigned pressed,committing;
  753. static unsigned long releasestart;
  754. if (kbd->kbdmode != VC_UNICODE) {
  755. if (!up_flag)
  756. printk("keyboard mode must be unicode for braille patterns\n");
  757. return;
  758. }
  759. if (!value) {
  760. k_unicode(vc, BRL_UC_ROW, up_flag, regs);
  761. return;
  762. }
  763. if (value > 8)
  764. return;
  765. if (up_flag) {
  766. if (brl_timeout) {
  767. if (!committing ||
  768. jiffies - releasestart > (brl_timeout * HZ) / 1000) {
  769. committing = pressed;
  770. releasestart = jiffies;
  771. }
  772. pressed &= ~(1 << (value - 1));
  773. if (!pressed) {
  774. if (committing) {
  775. k_brlcommit(vc, committing, 0, regs);
  776. committing = 0;
  777. }
  778. }
  779. } else {
  780. if (committing) {
  781. k_brlcommit(vc, committing, 0, regs);
  782. committing = 0;
  783. }
  784. pressed &= ~(1 << (value - 1));
  785. }
  786. } else {
  787. pressed |= 1 << (value - 1);
  788. if (!brl_timeout)
  789. committing = pressed;
  790. }
  791. }
  792. /*
  793. * The leds display either (i) the status of NumLock, CapsLock, ScrollLock,
  794. * or (ii) whatever pattern of lights people want to show using KDSETLED,
  795. * or (iii) specified bits of specified words in kernel memory.
  796. */
  797. unsigned char getledstate(void)
  798. {
  799. return ledstate;
  800. }
  801. void setledstate(struct kbd_struct *kbd, unsigned int led)
  802. {
  803. if (!(led & ~7)) {
  804. ledioctl = led;
  805. kbd->ledmode = LED_SHOW_IOCTL;
  806. } else
  807. kbd->ledmode = LED_SHOW_FLAGS;
  808. set_leds();
  809. }
  810. static inline unsigned char getleds(void)
  811. {
  812. struct kbd_struct *kbd = kbd_table + fg_console;
  813. unsigned char leds;
  814. int i;
  815. if (kbd->ledmode == LED_SHOW_IOCTL)
  816. return ledioctl;
  817. leds = kbd->ledflagstate;
  818. if (kbd->ledmode == LED_SHOW_MEM) {
  819. for (i = 0; i < 3; i++)
  820. if (ledptrs[i].valid) {
  821. if (*ledptrs[i].addr & ledptrs[i].mask)
  822. leds |= (1 << i);
  823. else
  824. leds &= ~(1 << i);
  825. }
  826. }
  827. return leds;
  828. }
  829. /*
  830. * This routine is the bottom half of the keyboard interrupt
  831. * routine, and runs with all interrupts enabled. It does
  832. * console changing, led setting and copy_to_cooked, which can
  833. * take a reasonably long time.
  834. *
  835. * Aside from timing (which isn't really that important for
  836. * keyboard interrupts as they happen often), using the software
  837. * interrupt routines for this thing allows us to easily mask
  838. * this when we don't want any of the above to happen.
  839. * This allows for easy and efficient race-condition prevention
  840. * for kbd_start => input_event(dev, EV_LED, ...) => ...
  841. */
  842. static void kbd_bh(unsigned long dummy)
  843. {
  844. struct list_head *node;
  845. unsigned char leds = getleds();
  846. if (leds != ledstate) {
  847. list_for_each(node, &kbd_handler.h_list) {
  848. struct input_handle * handle = to_handle_h(node);
  849. input_event(handle->dev, EV_LED, LED_SCROLLL, !!(leds & 0x01));
  850. input_event(handle->dev, EV_LED, LED_NUML, !!(leds & 0x02));
  851. input_event(handle->dev, EV_LED, LED_CAPSL, !!(leds & 0x04));
  852. input_sync(handle->dev);
  853. }
  854. }
  855. ledstate = leds;
  856. }
  857. DECLARE_TASKLET_DISABLED(keyboard_tasklet, kbd_bh, 0);
  858. #if defined(CONFIG_X86) || defined(CONFIG_IA64) || defined(CONFIG_ALPHA) ||\
  859. defined(CONFIG_MIPS) || defined(CONFIG_PPC) || defined(CONFIG_SPARC) ||\
  860. defined(CONFIG_PARISC) || defined(CONFIG_SUPERH) ||\
  861. (defined(CONFIG_ARM) && defined(CONFIG_KEYBOARD_ATKBD) && !defined(CONFIG_ARCH_RPC))
  862. #define HW_RAW(dev) (test_bit(EV_MSC, dev->evbit) && test_bit(MSC_RAW, dev->mscbit) &&\
  863. ((dev)->id.bustype == BUS_I8042) && ((dev)->id.vendor == 0x0001) && ((dev)->id.product == 0x0001))
  864. static const unsigned short x86_keycodes[256] =
  865. { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
  866. 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
  867. 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
  868. 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
  869. 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
  870. 80, 81, 82, 83, 84,118, 86, 87, 88,115,120,119,121,112,123, 92,
  871. 284,285,309,298,312, 91,327,328,329,331,333,335,336,337,338,339,
  872. 367,288,302,304,350, 89,334,326,267,126,268,269,125,347,348,349,
  873. 360,261,262,263,268,376,100,101,321,316,373,286,289,102,351,355,
  874. 103,104,105,275,287,279,306,106,274,107,294,364,358,363,362,361,
  875. 291,108,381,281,290,272,292,305,280, 99,112,257,258,359,113,114,
  876. 264,117,271,374,379,265,266, 93, 94, 95, 85,259,375,260, 90,116,
  877. 377,109,111,277,278,282,283,295,296,297,299,300,301,293,303,307,
  878. 308,310,313,314,315,317,318,319,320,357,322,323,324,325,276,330,
  879. 332,340,365,342,343,344,345,346,356,270,341,368,369,370,371,372 };
  880. #ifdef CONFIG_MAC_EMUMOUSEBTN
  881. extern int mac_hid_mouse_emulate_buttons(int, int, int);
  882. #endif /* CONFIG_MAC_EMUMOUSEBTN */
  883. #ifdef CONFIG_SPARC
  884. static int sparc_l1_a_state = 0;
  885. extern void sun_do_break(void);
  886. #endif
  887. static int emulate_raw(struct vc_data *vc, unsigned int keycode,
  888. unsigned char up_flag)
  889. {
  890. if (keycode > 255 || !x86_keycodes[keycode])
  891. return -1;
  892. switch (keycode) {
  893. case KEY_PAUSE:
  894. put_queue(vc, 0xe1);
  895. put_queue(vc, 0x1d | up_flag);
  896. put_queue(vc, 0x45 | up_flag);
  897. return 0;
  898. case KEY_HANGEUL:
  899. if (!up_flag)
  900. put_queue(vc, 0xf2);
  901. return 0;
  902. case KEY_HANJA:
  903. if (!up_flag)
  904. put_queue(vc, 0xf1);
  905. return 0;
  906. }
  907. if (keycode == KEY_SYSRQ && sysrq_alt) {
  908. put_queue(vc, 0x54 | up_flag);
  909. return 0;
  910. }
  911. if (x86_keycodes[keycode] & 0x100)
  912. put_queue(vc, 0xe0);
  913. put_queue(vc, (x86_keycodes[keycode] & 0x7f) | up_flag);
  914. if (keycode == KEY_SYSRQ) {
  915. put_queue(vc, 0xe0);
  916. put_queue(vc, 0x37 | up_flag);
  917. }
  918. return 0;
  919. }
  920. #else
  921. #define HW_RAW(dev) 0
  922. #warning "Cannot generate rawmode keyboard for your architecture yet."
  923. static int emulate_raw(struct vc_data *vc, unsigned int keycode, unsigned char up_flag)
  924. {
  925. if (keycode > 127)
  926. return -1;
  927. put_queue(vc, keycode | up_flag);
  928. return 0;
  929. }
  930. #endif
  931. static void kbd_rawcode(unsigned char data)
  932. {
  933. struct vc_data *vc = vc_cons[fg_console].d;
  934. kbd = kbd_table + fg_console;
  935. if (kbd->kbdmode == VC_RAW)
  936. put_queue(vc, data);
  937. }
  938. static void kbd_keycode(unsigned int keycode, int down,
  939. int hw_raw, struct pt_regs *regs)
  940. {
  941. struct vc_data *vc = vc_cons[fg_console].d;
  942. unsigned short keysym, *key_map;
  943. unsigned char type, raw_mode;
  944. struct tty_struct *tty;
  945. int shift_final;
  946. tty = vc->vc_tty;
  947. if (tty && (!tty->driver_data)) {
  948. /* No driver data? Strange. Okay we fix it then. */
  949. tty->driver_data = vc;
  950. }
  951. kbd = kbd_table + fg_console;
  952. if (keycode == KEY_LEFTALT || keycode == KEY_RIGHTALT)
  953. sysrq_alt = down ? keycode : 0;
  954. #ifdef CONFIG_SPARC
  955. if (keycode == KEY_STOP)
  956. sparc_l1_a_state = down;
  957. #endif
  958. rep = (down == 2);
  959. #ifdef CONFIG_MAC_EMUMOUSEBTN
  960. if (mac_hid_mouse_emulate_buttons(1, keycode, down))
  961. return;
  962. #endif /* CONFIG_MAC_EMUMOUSEBTN */
  963. if ((raw_mode = (kbd->kbdmode == VC_RAW)) && !hw_raw)
  964. if (emulate_raw(vc, keycode, !down << 7))
  965. if (keycode < BTN_MISC)
  966. printk(KERN_WARNING "keyboard.c: can't emulate rawmode for keycode %d\n", keycode);
  967. #ifdef CONFIG_MAGIC_SYSRQ /* Handle the SysRq Hack */
  968. if (keycode == KEY_SYSRQ && (sysrq_down || (down == 1 && sysrq_alt))) {
  969. if (!sysrq_down) {
  970. sysrq_down = down;
  971. sysrq_alt_use = sysrq_alt;
  972. }
  973. return;
  974. }
  975. if (sysrq_down && !down && keycode == sysrq_alt_use)
  976. sysrq_down = 0;
  977. if (sysrq_down && down && !rep) {
  978. handle_sysrq(kbd_sysrq_xlate[keycode], regs, tty);
  979. return;
  980. }
  981. #endif
  982. #ifdef CONFIG_SPARC
  983. if (keycode == KEY_A && sparc_l1_a_state) {
  984. sparc_l1_a_state = 0;
  985. sun_do_break();
  986. }
  987. #endif
  988. if (kbd->kbdmode == VC_MEDIUMRAW) {
  989. /*
  990. * This is extended medium raw mode, with keys above 127
  991. * encoded as 0, high 7 bits, low 7 bits, with the 0 bearing
  992. * the 'up' flag if needed. 0 is reserved, so this shouldn't
  993. * interfere with anything else. The two bytes after 0 will
  994. * always have the up flag set not to interfere with older
  995. * applications. This allows for 16384 different keycodes,
  996. * which should be enough.
  997. */
  998. if (keycode < 128) {
  999. put_queue(vc, keycode | (!down << 7));
  1000. } else {
  1001. put_queue(vc, !down << 7);
  1002. put_queue(vc, (keycode >> 7) | 0x80);
  1003. put_queue(vc, keycode | 0x80);
  1004. }
  1005. raw_mode = 1;
  1006. }
  1007. if (down)
  1008. set_bit(keycode, key_down);
  1009. else
  1010. clear_bit(keycode, key_down);
  1011. if (rep &&
  1012. (!vc_kbd_mode(kbd, VC_REPEAT) ||
  1013. (tty && !L_ECHO(tty) && tty->driver->chars_in_buffer(tty)))) {
  1014. /*
  1015. * Don't repeat a key if the input buffers are not empty and the
  1016. * characters get aren't echoed locally. This makes key repeat
  1017. * usable with slow applications and under heavy loads.
  1018. */
  1019. return;
  1020. }
  1021. shift_final = (shift_state | kbd->slockstate) ^ kbd->lockstate;
  1022. key_map = key_maps[shift_final];
  1023. if (!key_map) {
  1024. compute_shiftstate();
  1025. kbd->slockstate = 0;
  1026. return;
  1027. }
  1028. if (keycode > NR_KEYS)
  1029. if (keycode >= KEY_BRL_DOT1 && keycode <= KEY_BRL_DOT8)
  1030. keysym = K(KT_BRL, keycode - KEY_BRL_DOT1 + 1);
  1031. else
  1032. return;
  1033. else
  1034. keysym = key_map[keycode];
  1035. type = KTYP(keysym);
  1036. if (type < 0xf0) {
  1037. if (down && !raw_mode)
  1038. to_utf8(vc, keysym);
  1039. return;
  1040. }
  1041. type -= 0xf0;
  1042. if (raw_mode && type != KT_SPEC && type != KT_SHIFT)
  1043. return;
  1044. if (type == KT_LETTER) {
  1045. type = KT_LATIN;
  1046. if (vc_kbd_led(kbd, VC_CAPSLOCK)) {
  1047. key_map = key_maps[shift_final ^ (1 << KG_SHIFT)];
  1048. if (key_map)
  1049. keysym = key_map[keycode];
  1050. }
  1051. }
  1052. (*k_handler[type])(vc, keysym & 0xff, !down, regs);
  1053. if (type != KT_SLOCK)
  1054. kbd->slockstate = 0;
  1055. }
  1056. static void kbd_event(struct input_handle *handle, unsigned int event_type,
  1057. unsigned int event_code, int value)
  1058. {
  1059. if (event_type == EV_MSC && event_code == MSC_RAW && HW_RAW(handle->dev))
  1060. kbd_rawcode(value);
  1061. if (event_type == EV_KEY)
  1062. kbd_keycode(event_code, value, HW_RAW(handle->dev), handle->dev->regs);
  1063. tasklet_schedule(&keyboard_tasklet);
  1064. do_poke_blanked_console = 1;
  1065. schedule_console_callback();
  1066. }
  1067. /*
  1068. * When a keyboard (or other input device) is found, the kbd_connect
  1069. * function is called. The function then looks at the device, and if it
  1070. * likes it, it can open it and get events from it. In this (kbd_connect)
  1071. * function, we should decide which VT to bind that keyboard to initially.
  1072. */
  1073. static struct input_handle *kbd_connect(struct input_handler *handler,
  1074. struct input_dev *dev,
  1075. struct input_device_id *id)
  1076. {
  1077. struct input_handle *handle;
  1078. int i;
  1079. for (i = KEY_RESERVED; i < BTN_MISC; i++)
  1080. if (test_bit(i, dev->keybit))
  1081. break;
  1082. if (i == BTN_MISC && !test_bit(EV_SND, dev->evbit))
  1083. return NULL;
  1084. if (!(handle = kmalloc(sizeof(struct input_handle), GFP_KERNEL)))
  1085. return NULL;
  1086. memset(handle, 0, sizeof(struct input_handle));
  1087. handle->dev = dev;
  1088. handle->handler = handler;
  1089. handle->name = "kbd";
  1090. input_open_device(handle);
  1091. return handle;
  1092. }
  1093. static void kbd_disconnect(struct input_handle *handle)
  1094. {
  1095. input_close_device(handle);
  1096. kfree(handle);
  1097. }
  1098. /*
  1099. * Start keyboard handler on the new keyboard by refreshing LED state to
  1100. * match the rest of the system.
  1101. */
  1102. static void kbd_start(struct input_handle *handle)
  1103. {
  1104. unsigned char leds = ledstate;
  1105. tasklet_disable(&keyboard_tasklet);
  1106. if (leds != 0xff) {
  1107. input_event(handle->dev, EV_LED, LED_SCROLLL, !!(leds & 0x01));
  1108. input_event(handle->dev, EV_LED, LED_NUML, !!(leds & 0x02));
  1109. input_event(handle->dev, EV_LED, LED_CAPSL, !!(leds & 0x04));
  1110. input_sync(handle->dev);
  1111. }
  1112. tasklet_enable(&keyboard_tasklet);
  1113. }
  1114. static struct input_device_id kbd_ids[] = {
  1115. {
  1116. .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
  1117. .evbit = { BIT(EV_KEY) },
  1118. },
  1119. {
  1120. .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
  1121. .evbit = { BIT(EV_SND) },
  1122. },
  1123. { }, /* Terminating entry */
  1124. };
  1125. MODULE_DEVICE_TABLE(input, kbd_ids);
  1126. static struct input_handler kbd_handler = {
  1127. .event = kbd_event,
  1128. .connect = kbd_connect,
  1129. .disconnect = kbd_disconnect,
  1130. .start = kbd_start,
  1131. .name = "kbd",
  1132. .id_table = kbd_ids,
  1133. };
  1134. int __init kbd_init(void)
  1135. {
  1136. int i;
  1137. kbd0.ledflagstate = kbd0.default_ledflagstate = KBD_DEFLEDS;
  1138. kbd0.ledmode = LED_SHOW_FLAGS;
  1139. kbd0.lockstate = KBD_DEFLOCK;
  1140. kbd0.slockstate = 0;
  1141. kbd0.modeflags = KBD_DEFMODE;
  1142. kbd0.kbdmode = VC_XLATE;
  1143. for (i = 0 ; i < MAX_NR_CONSOLES ; i++)
  1144. kbd_table[i] = kbd0;
  1145. input_register_handler(&kbd_handler);
  1146. tasklet_enable(&keyboard_tasklet);
  1147. tasklet_schedule(&keyboard_tasklet);
  1148. return 0;
  1149. }