ftrace.txt 52 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364
  1. ftrace - Function Tracer
  2. ========================
  3. Copyright 2008 Red Hat Inc.
  4. Author: Steven Rostedt <srostedt@redhat.com>
  5. License: The GNU Free Documentation License, Version 1.2
  6. (dual licensed under the GPL v2)
  7. Reviewers: Elias Oltmanns, Randy Dunlap, Andrew Morton,
  8. John Kacur, and David Teigland.
  9. Written for: 2.6.27-rc1
  10. Introduction
  11. ------------
  12. Ftrace is an internal tracer designed to help out developers and
  13. designers of systems to find what is going on inside the kernel.
  14. It can be used for debugging or analyzing latencies and performance
  15. issues that take place outside of user-space.
  16. Although ftrace is the function tracer, it also includes an
  17. infrastructure that allows for other types of tracing. Some of the
  18. tracers that are currently in ftrace include a tracer to trace
  19. context switches, the time it takes for a high priority task to
  20. run after it was woken up, the time interrupts are disabled, and
  21. more (ftrace allows for tracer plugins, which means that the list of
  22. tracers can always grow).
  23. The File System
  24. ---------------
  25. Ftrace uses the debugfs file system to hold the control files as well
  26. as the files to display output.
  27. To mount the debugfs system:
  28. # mkdir /debug
  29. # mount -t debugfs nodev /debug
  30. (Note: it is more common to mount at /sys/kernel/debug, but for simplicity
  31. this document will use /debug)
  32. That's it! (assuming that you have ftrace configured into your kernel)
  33. After mounting the debugfs, you can see a directory called
  34. "tracing". This directory contains the control and output files
  35. of ftrace. Here is a list of some of the key files:
  36. Note: all time values are in microseconds.
  37. current_tracer : This is used to set or display the current tracer
  38. that is configured.
  39. available_tracers : This holds the different types of tracers that
  40. have been compiled into the kernel. The tracers
  41. listed here can be configured by echoing their name
  42. into current_tracer.
  43. tracing_enabled : This sets or displays whether the current_tracer
  44. is activated and tracing or not. Echo 0 into this
  45. file to disable the tracer or 1 to enable it.
  46. trace : This file holds the output of the trace in a human readable
  47. format (described below).
  48. latency_trace : This file shows the same trace but the information
  49. is organized more to display possible latencies
  50. in the system (described below).
  51. trace_pipe : The output is the same as the "trace" file but this
  52. file is meant to be streamed with live tracing.
  53. Reads from this file will block until new data
  54. is retrieved. Unlike the "trace" and "latency_trace"
  55. files, this file is a consumer. This means reading
  56. from this file causes sequential reads to display
  57. more current data. Once data is read from this
  58. file, it is consumed, and will not be read
  59. again with a sequential read. The "trace" and
  60. "latency_trace" files are static, and if the
  61. tracer is not adding more data, they will display
  62. the same information every time they are read.
  63. iter_ctrl : This file lets the user control the amount of data
  64. that is displayed in one of the above output
  65. files.
  66. trace_max_latency : Some of the tracers record the max latency.
  67. For example, the time interrupts are disabled.
  68. This time is saved in this file. The max trace
  69. will also be stored, and displayed by either
  70. "trace" or "latency_trace". A new max trace will
  71. only be recorded if the latency is greater than
  72. the value in this file. (in microseconds)
  73. trace_entries : This sets or displays the number of trace
  74. entries each CPU buffer can hold. The tracer buffers
  75. are the same size for each CPU. The displayed number
  76. is the size of the CPU buffer and not total size. The
  77. trace buffers are allocated in pages (blocks of memory
  78. that the kernel uses for allocation, usually 4 KB in size).
  79. Since each entry is smaller than a page, if the last
  80. allocated page has room for more entries than were
  81. requested, the rest of the page is used to allocate
  82. entries.
  83. This can only be updated when the current_tracer
  84. is set to "none".
  85. NOTE: It is planned on changing the allocated buffers
  86. from being the number of possible CPUS to
  87. the number of online CPUS.
  88. tracing_cpumask : This is a mask that lets the user only trace
  89. on specified CPUS. The format is a hex string
  90. representing the CPUS.
  91. set_ftrace_filter : When dynamic ftrace is configured in (see the
  92. section below "dynamic ftrace"), the code is dynamically
  93. modified (code text rewrite) to disable calling of the
  94. function profiler (mcount). This lets tracing be configured
  95. in with practically no overhead in performance. This also
  96. has a side effect of enabling or disabling specific functions
  97. to be traced. Echoing names of functions into this file
  98. will limit the trace to only those functions.
  99. set_ftrace_notrace: This has an effect opposite to that of
  100. set_ftrace_filter. Any function that is added here will not
  101. be traced. If a function exists in both set_ftrace_filter
  102. and set_ftrace_notrace, the function will _not_ be traced.
  103. available_filter_functions : When a function is encountered the first
  104. time by the dynamic tracer, it is recorded and
  105. later the call is converted into a nop. This file
  106. lists the functions that have been recorded
  107. by the dynamic tracer and these functions can
  108. be used to set the ftrace filter by the above
  109. "set_ftrace_filter" file. (See the section "dynamic ftrace"
  110. below for more details).
  111. The Tracers
  112. -----------
  113. Here is the list of current tracers that may be configured.
  114. ftrace - function tracer that uses mcount to trace all functions.
  115. sched_switch - traces the context switches between tasks.
  116. irqsoff - traces the areas that disable interrupts and saves
  117. the trace with the longest max latency.
  118. See tracing_max_latency. When a new max is recorded,
  119. it replaces the old trace. It is best to view this
  120. trace via the latency_trace file.
  121. preemptoff - Similar to irqsoff but traces and records the amount of
  122. time for which preemption is disabled.
  123. preemptirqsoff - Similar to irqsoff and preemptoff, but traces and
  124. records the largest time for which irqs and/or preemption
  125. is disabled.
  126. wakeup - Traces and records the max latency that it takes for
  127. the highest priority task to get scheduled after
  128. it has been woken up.
  129. none - This is not a tracer. To remove all tracers from tracing
  130. simply echo "none" into current_tracer.
  131. Examples of using the tracer
  132. ----------------------------
  133. Here are typical examples of using the tracers when controlling them only
  134. with the debugfs interface (without using any user-land utilities).
  135. Output format:
  136. --------------
  137. Here is an example of the output format of the file "trace"
  138. --------
  139. # tracer: ftrace
  140. #
  141. # TASK-PID CPU# TIMESTAMP FUNCTION
  142. # | | | | |
  143. bash-4251 [01] 10152.583854: path_put <-path_walk
  144. bash-4251 [01] 10152.583855: dput <-path_put
  145. bash-4251 [01] 10152.583855: _atomic_dec_and_lock <-dput
  146. --------
  147. A header is printed with the tracer name that is represented by the trace.
  148. In this case the tracer is "ftrace". Then a header showing the format. Task
  149. name "bash", the task PID "4251", the CPU that it was running on
  150. "01", the timestamp in <secs>.<usecs> format, the function name that was
  151. traced "path_put" and the parent function that called this function
  152. "path_walk". The timestamp is the time at which the function was
  153. entered.
  154. The sched_switch tracer also includes tracing of task wakeups and
  155. context switches.
  156. ksoftirqd/1-7 [01] 1453.070013: 7:115:R + 2916:115:S
  157. ksoftirqd/1-7 [01] 1453.070013: 7:115:R + 10:115:S
  158. ksoftirqd/1-7 [01] 1453.070013: 7:115:R ==> 10:115:R
  159. events/1-10 [01] 1453.070013: 10:115:S ==> 2916:115:R
  160. kondemand/1-2916 [01] 1453.070013: 2916:115:S ==> 7:115:R
  161. ksoftirqd/1-7 [01] 1453.070013: 7:115:S ==> 0:140:R
  162. Wake ups are represented by a "+" and the context switches are shown as
  163. "==>". The format is:
  164. Context switches:
  165. Previous task Next Task
  166. <pid>:<prio>:<state> ==> <pid>:<prio>:<state>
  167. Wake ups:
  168. Current task Task waking up
  169. <pid>:<prio>:<state> + <pid>:<prio>:<state>
  170. The prio is the internal kernel priority, which is the inverse of the
  171. priority that is usually displayed by user-space tools. Zero represents
  172. the highest priority (99). Prio 100 starts the "nice" priorities with
  173. 100 being equal to nice -20 and 139 being nice 19. The prio "140" is
  174. reserved for the idle task which is the lowest priority thread (pid 0).
  175. Latency trace format
  176. --------------------
  177. For traces that display latency times, the latency_trace file gives
  178. somewhat more information to see why a latency happened. Here is a typical
  179. trace.
  180. # tracer: irqsoff
  181. #
  182. irqsoff latency trace v1.1.5 on 2.6.26-rc8
  183. --------------------------------------------------------------------
  184. latency: 97 us, #3/3, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2)
  185. -----------------
  186. | task: swapper-0 (uid:0 nice:0 policy:0 rt_prio:0)
  187. -----------------
  188. => started at: apic_timer_interrupt
  189. => ended at: do_softirq
  190. # _------=> CPU#
  191. # / _-----=> irqs-off
  192. # | / _----=> need-resched
  193. # || / _---=> hardirq/softirq
  194. # ||| / _--=> preempt-depth
  195. # |||| /
  196. # ||||| delay
  197. # cmd pid ||||| time | caller
  198. # \ / ||||| \ | /
  199. <idle>-0 0d..1 0us+: trace_hardirqs_off_thunk (apic_timer_interrupt)
  200. <idle>-0 0d.s. 97us : __do_softirq (do_softirq)
  201. <idle>-0 0d.s1 98us : trace_hardirqs_on (do_softirq)
  202. This shows that the current tracer is "irqsoff" tracing the time for which
  203. interrupts were disabled. It gives the trace version and the version
  204. of the kernel upon which this was executed on (2.6.26-rc8). Then it displays
  205. the max latency in microsecs (97 us). The number of trace entries displayed
  206. and the total number recorded (both are three: #3/3). The type of
  207. preemption that was used (PREEMPT). VP, KP, SP, and HP are always zero
  208. and are reserved for later use. #P is the number of online CPUS (#P:2).
  209. The task is the process that was running when the latency occurred.
  210. (swapper pid: 0).
  211. The start and stop (the functions in which the interrupts were disabled and
  212. enabled respectively) that caused the latencies:
  213. apic_timer_interrupt is where the interrupts were disabled.
  214. do_softirq is where they were enabled again.
  215. The next lines after the header are the trace itself. The header
  216. explains which is which.
  217. cmd: The name of the process in the trace.
  218. pid: The PID of that process.
  219. CPU#: The CPU which the process was running on.
  220. irqs-off: 'd' interrupts are disabled. '.' otherwise.
  221. Note: If the architecture does not support a way to
  222. read the irq flags variable, an 'X' will always
  223. be printed here.
  224. need-resched: 'N' task need_resched is set, '.' otherwise.
  225. hardirq/softirq:
  226. 'H' - hard irq occurred inside a softirq.
  227. 'h' - hard irq is running
  228. 's' - soft irq is running
  229. '.' - normal context.
  230. preempt-depth: The level of preempt_disabled
  231. The above is mostly meaningful for kernel developers.
  232. time: This differs from the trace file output. The trace file output
  233. includes an absolute timestamp. The timestamp used by the
  234. latency_trace file is relative to the start of the trace.
  235. delay: This is just to help catch your eye a bit better. And
  236. needs to be fixed to be only relative to the same CPU.
  237. The marks are determined by the difference between this
  238. current trace and the next trace.
  239. '!' - greater than preempt_mark_thresh (default 100)
  240. '+' - greater than 1 microsecond
  241. ' ' - less than or equal to 1 microsecond.
  242. The rest is the same as the 'trace' file.
  243. iter_ctrl
  244. ---------
  245. The iter_ctrl file is used to control what gets printed in the trace
  246. output. To see what is available, simply cat the file:
  247. cat /debug/tracing/iter_ctrl
  248. print-parent nosym-offset nosym-addr noverbose noraw nohex nobin \
  249. noblock nostacktrace nosched-tree
  250. To disable one of the options, echo in the option prepended with "no".
  251. echo noprint-parent > /debug/tracing/iter_ctrl
  252. To enable an option, leave off the "no".
  253. echo sym-offset > /debug/tracing/iter_ctrl
  254. Here are the available options:
  255. print-parent - On function traces, display the calling function
  256. as well as the function being traced.
  257. print-parent:
  258. bash-4000 [01] 1477.606694: simple_strtoul <-strict_strtoul
  259. noprint-parent:
  260. bash-4000 [01] 1477.606694: simple_strtoul
  261. sym-offset - Display not only the function name, but also the offset
  262. in the function. For example, instead of seeing just
  263. "ktime_get", you will see "ktime_get+0xb/0x20".
  264. sym-offset:
  265. bash-4000 [01] 1477.606694: simple_strtoul+0x6/0xa0
  266. sym-addr - this will also display the function address as well as
  267. the function name.
  268. sym-addr:
  269. bash-4000 [01] 1477.606694: simple_strtoul <c0339346>
  270. verbose - This deals with the latency_trace file.
  271. bash 4000 1 0 00000000 00010a95 [58127d26] 1720.415ms \
  272. (+0.000ms): simple_strtoul (strict_strtoul)
  273. raw - This will display raw numbers. This option is best for use with
  274. user applications that can translate the raw numbers better than
  275. having it done in the kernel.
  276. hex - Similar to raw, but the numbers will be in a hexadecimal format.
  277. bin - This will print out the formats in raw binary.
  278. block - TBD (needs update)
  279. stacktrace - This is one of the options that changes the trace itself.
  280. When a trace is recorded, so is the stack of functions.
  281. This allows for back traces of trace sites.
  282. sched-tree - TBD (any users??)
  283. sched_switch
  284. ------------
  285. This tracer simply records schedule switches. Here is an example
  286. of how to use it.
  287. # echo sched_switch > /debug/tracing/current_tracer
  288. # echo 1 > /debug/tracing/tracing_enabled
  289. # sleep 1
  290. # echo 0 > /debug/tracing/tracing_enabled
  291. # cat /debug/tracing/trace
  292. # tracer: sched_switch
  293. #
  294. # TASK-PID CPU# TIMESTAMP FUNCTION
  295. # | | | | |
  296. bash-3997 [01] 240.132281: 3997:120:R + 4055:120:R
  297. bash-3997 [01] 240.132284: 3997:120:R ==> 4055:120:R
  298. sleep-4055 [01] 240.132371: 4055:120:S ==> 3997:120:R
  299. bash-3997 [01] 240.132454: 3997:120:R + 4055:120:S
  300. bash-3997 [01] 240.132457: 3997:120:R ==> 4055:120:R
  301. sleep-4055 [01] 240.132460: 4055:120:D ==> 3997:120:R
  302. bash-3997 [01] 240.132463: 3997:120:R + 4055:120:D
  303. bash-3997 [01] 240.132465: 3997:120:R ==> 4055:120:R
  304. <idle>-0 [00] 240.132589: 0:140:R + 4:115:S
  305. <idle>-0 [00] 240.132591: 0:140:R ==> 4:115:R
  306. ksoftirqd/0-4 [00] 240.132595: 4:115:S ==> 0:140:R
  307. <idle>-0 [00] 240.132598: 0:140:R + 4:115:S
  308. <idle>-0 [00] 240.132599: 0:140:R ==> 4:115:R
  309. ksoftirqd/0-4 [00] 240.132603: 4:115:S ==> 0:140:R
  310. sleep-4055 [01] 240.133058: 4055:120:S ==> 3997:120:R
  311. [...]
  312. As we have discussed previously about this format, the header shows
  313. the name of the trace and points to the options. The "FUNCTION"
  314. is a misnomer since here it represents the wake ups and context
  315. switches.
  316. The sched_switch file only lists the wake ups (represented with '+')
  317. and context switches ('==>') with the previous task or current task
  318. first followed by the next task or task waking up. The format for both
  319. of these is PID:KERNEL-PRIO:TASK-STATE. Remember that the KERNEL-PRIO
  320. is the inverse of the actual priority with zero (0) being the highest
  321. priority and the nice values starting at 100 (nice -20). Below is
  322. a quick chart to map the kernel priority to user land priorities.
  323. Kernel priority: 0 to 99 ==> user RT priority 99 to 0
  324. Kernel priority: 100 to 139 ==> user nice -20 to 19
  325. Kernel priority: 140 ==> idle task priority
  326. The task states are:
  327. R - running : wants to run, may not actually be running
  328. S - sleep : process is waiting to be woken up (handles signals)
  329. D - disk sleep (uninterruptible sleep) : process must be woken up
  330. (ignores signals)
  331. T - stopped : process suspended
  332. t - traced : process is being traced (with something like gdb)
  333. Z - zombie : process waiting to be cleaned up
  334. X - unknown
  335. ftrace_enabled
  336. --------------
  337. The following tracers (listed below) give different output depending
  338. on whether or not the sysctl ftrace_enabled is set. To set ftrace_enabled,
  339. one can either use the sysctl function or set it via the proc
  340. file system interface.
  341. sysctl kernel.ftrace_enabled=1
  342. or
  343. echo 1 > /proc/sys/kernel/ftrace_enabled
  344. To disable ftrace_enabled simply replace the '1' with '0' in
  345. the above commands.
  346. When ftrace_enabled is set the tracers will also record the functions
  347. that are within the trace. The descriptions of the tracers
  348. will also show an example with ftrace enabled.
  349. irqsoff
  350. -------
  351. When interrupts are disabled, the CPU can not react to any other
  352. external event (besides NMIs and SMIs). This prevents the timer
  353. interrupt from triggering or the mouse interrupt from letting the
  354. kernel know of a new mouse event. The result is a latency with the
  355. reaction time.
  356. The irqsoff tracer tracks the time for which interrupts are disabled.
  357. When a new maximum latency is hit, the tracer saves the trace leading up
  358. to that latency point so that every time a new maximum is reached, the old
  359. saved trace is discarded and the new trace is saved.
  360. To reset the maximum, echo 0 into tracing_max_latency. Here is an
  361. example:
  362. # echo irqsoff > /debug/tracing/current_tracer
  363. # echo 0 > /debug/tracing/tracing_max_latency
  364. # echo 1 > /debug/tracing/tracing_enabled
  365. # ls -ltr
  366. [...]
  367. # echo 0 > /debug/tracing/tracing_enabled
  368. # cat /debug/tracing/latency_trace
  369. # tracer: irqsoff
  370. #
  371. irqsoff latency trace v1.1.5 on 2.6.26
  372. --------------------------------------------------------------------
  373. latency: 12 us, #3/3, CPU#1 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2)
  374. -----------------
  375. | task: bash-3730 (uid:0 nice:0 policy:0 rt_prio:0)
  376. -----------------
  377. => started at: sys_setpgid
  378. => ended at: sys_setpgid
  379. # _------=> CPU#
  380. # / _-----=> irqs-off
  381. # | / _----=> need-resched
  382. # || / _---=> hardirq/softirq
  383. # ||| / _--=> preempt-depth
  384. # |||| /
  385. # ||||| delay
  386. # cmd pid ||||| time | caller
  387. # \ / ||||| \ | /
  388. bash-3730 1d... 0us : _write_lock_irq (sys_setpgid)
  389. bash-3730 1d..1 1us+: _write_unlock_irq (sys_setpgid)
  390. bash-3730 1d..2 14us : trace_hardirqs_on (sys_setpgid)
  391. Here we see that that we had a latency of 12 microsecs (which is
  392. very good). The _write_lock_irq in sys_setpgid disabled interrupts.
  393. The difference between the 12 and the displayed timestamp 14us occurred
  394. because the clock was incremented between the time of recording the max
  395. latency and the time of recording the function that had that latency.
  396. Note the above example had ftrace_enabled not set. If we set the
  397. ftrace_enabled, we get a much larger output:
  398. # tracer: irqsoff
  399. #
  400. irqsoff latency trace v1.1.5 on 2.6.26-rc8
  401. --------------------------------------------------------------------
  402. latency: 50 us, #101/101, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2)
  403. -----------------
  404. | task: ls-4339 (uid:0 nice:0 policy:0 rt_prio:0)
  405. -----------------
  406. => started at: __alloc_pages_internal
  407. => ended at: __alloc_pages_internal
  408. # _------=> CPU#
  409. # / _-----=> irqs-off
  410. # | / _----=> need-resched
  411. # || / _---=> hardirq/softirq
  412. # ||| / _--=> preempt-depth
  413. # |||| /
  414. # ||||| delay
  415. # cmd pid ||||| time | caller
  416. # \ / ||||| \ | /
  417. ls-4339 0...1 0us+: get_page_from_freelist (__alloc_pages_internal)
  418. ls-4339 0d..1 3us : rmqueue_bulk (get_page_from_freelist)
  419. ls-4339 0d..1 3us : _spin_lock (rmqueue_bulk)
  420. ls-4339 0d..1 4us : add_preempt_count (_spin_lock)
  421. ls-4339 0d..2 4us : __rmqueue (rmqueue_bulk)
  422. ls-4339 0d..2 5us : __rmqueue_smallest (__rmqueue)
  423. ls-4339 0d..2 5us : __mod_zone_page_state (__rmqueue_smallest)
  424. ls-4339 0d..2 6us : __rmqueue (rmqueue_bulk)
  425. ls-4339 0d..2 6us : __rmqueue_smallest (__rmqueue)
  426. ls-4339 0d..2 7us : __mod_zone_page_state (__rmqueue_smallest)
  427. ls-4339 0d..2 7us : __rmqueue (rmqueue_bulk)
  428. ls-4339 0d..2 8us : __rmqueue_smallest (__rmqueue)
  429. [...]
  430. ls-4339 0d..2 46us : __rmqueue_smallest (__rmqueue)
  431. ls-4339 0d..2 47us : __mod_zone_page_state (__rmqueue_smallest)
  432. ls-4339 0d..2 47us : __rmqueue (rmqueue_bulk)
  433. ls-4339 0d..2 48us : __rmqueue_smallest (__rmqueue)
  434. ls-4339 0d..2 48us : __mod_zone_page_state (__rmqueue_smallest)
  435. ls-4339 0d..2 49us : _spin_unlock (rmqueue_bulk)
  436. ls-4339 0d..2 49us : sub_preempt_count (_spin_unlock)
  437. ls-4339 0d..1 50us : get_page_from_freelist (__alloc_pages_internal)
  438. ls-4339 0d..2 51us : trace_hardirqs_on (__alloc_pages_internal)
  439. Here we traced a 50 microsecond latency. But we also see all the
  440. functions that were called during that time. Note that by enabling
  441. function tracing, we incur an added overhead. This overhead may
  442. extend the latency times. But nevertheless, this trace has provided
  443. some very helpful debugging information.
  444. preemptoff
  445. ----------
  446. When preemption is disabled, we may be able to receive interrupts but
  447. the task cannot be preempted and a higher priority task must wait
  448. for preemption to be enabled again before it can preempt a lower
  449. priority task.
  450. The preemptoff tracer traces the places that disable preemption.
  451. Like the irqsoff tracer, it records the maximum latency for which preemption
  452. was disabled. The control of preemptoff tracer is much like the irqsoff
  453. tracer.
  454. # echo preemptoff > /debug/tracing/current_tracer
  455. # echo 0 > /debug/tracing/tracing_max_latency
  456. # echo 1 > /debug/tracing/tracing_enabled
  457. # ls -ltr
  458. [...]
  459. # echo 0 > /debug/tracing/tracing_enabled
  460. # cat /debug/tracing/latency_trace
  461. # tracer: preemptoff
  462. #
  463. preemptoff latency trace v1.1.5 on 2.6.26-rc8
  464. --------------------------------------------------------------------
  465. latency: 29 us, #3/3, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2)
  466. -----------------
  467. | task: sshd-4261 (uid:0 nice:0 policy:0 rt_prio:0)
  468. -----------------
  469. => started at: do_IRQ
  470. => ended at: __do_softirq
  471. # _------=> CPU#
  472. # / _-----=> irqs-off
  473. # | / _----=> need-resched
  474. # || / _---=> hardirq/softirq
  475. # ||| / _--=> preempt-depth
  476. # |||| /
  477. # ||||| delay
  478. # cmd pid ||||| time | caller
  479. # \ / ||||| \ | /
  480. sshd-4261 0d.h. 0us+: irq_enter (do_IRQ)
  481. sshd-4261 0d.s. 29us : _local_bh_enable (__do_softirq)
  482. sshd-4261 0d.s1 30us : trace_preempt_on (__do_softirq)
  483. This has some more changes. Preemption was disabled when an interrupt
  484. came in (notice the 'h'), and was enabled while doing a softirq.
  485. (notice the 's'). But we also see that interrupts have been disabled
  486. when entering the preempt off section and leaving it (the 'd').
  487. We do not know if interrupts were enabled in the mean time.
  488. # tracer: preemptoff
  489. #
  490. preemptoff latency trace v1.1.5 on 2.6.26-rc8
  491. --------------------------------------------------------------------
  492. latency: 63 us, #87/87, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2)
  493. -----------------
  494. | task: sshd-4261 (uid:0 nice:0 policy:0 rt_prio:0)
  495. -----------------
  496. => started at: remove_wait_queue
  497. => ended at: __do_softirq
  498. # _------=> CPU#
  499. # / _-----=> irqs-off
  500. # | / _----=> need-resched
  501. # || / _---=> hardirq/softirq
  502. # ||| / _--=> preempt-depth
  503. # |||| /
  504. # ||||| delay
  505. # cmd pid ||||| time | caller
  506. # \ / ||||| \ | /
  507. sshd-4261 0d..1 0us : _spin_lock_irqsave (remove_wait_queue)
  508. sshd-4261 0d..1 1us : _spin_unlock_irqrestore (remove_wait_queue)
  509. sshd-4261 0d..1 2us : do_IRQ (common_interrupt)
  510. sshd-4261 0d..1 2us : irq_enter (do_IRQ)
  511. sshd-4261 0d..1 2us : idle_cpu (irq_enter)
  512. sshd-4261 0d..1 3us : add_preempt_count (irq_enter)
  513. sshd-4261 0d.h1 3us : idle_cpu (irq_enter)
  514. sshd-4261 0d.h. 4us : handle_fasteoi_irq (do_IRQ)
  515. [...]
  516. sshd-4261 0d.h. 12us : add_preempt_count (_spin_lock)
  517. sshd-4261 0d.h1 12us : ack_ioapic_quirk_irq (handle_fasteoi_irq)
  518. sshd-4261 0d.h1 13us : move_native_irq (ack_ioapic_quirk_irq)
  519. sshd-4261 0d.h1 13us : _spin_unlock (handle_fasteoi_irq)
  520. sshd-4261 0d.h1 14us : sub_preempt_count (_spin_unlock)
  521. sshd-4261 0d.h1 14us : irq_exit (do_IRQ)
  522. sshd-4261 0d.h1 15us : sub_preempt_count (irq_exit)
  523. sshd-4261 0d..2 15us : do_softirq (irq_exit)
  524. sshd-4261 0d... 15us : __do_softirq (do_softirq)
  525. sshd-4261 0d... 16us : __local_bh_disable (__do_softirq)
  526. sshd-4261 0d... 16us+: add_preempt_count (__local_bh_disable)
  527. sshd-4261 0d.s4 20us : add_preempt_count (__local_bh_disable)
  528. sshd-4261 0d.s4 21us : sub_preempt_count (local_bh_enable)
  529. sshd-4261 0d.s5 21us : sub_preempt_count (local_bh_enable)
  530. [...]
  531. sshd-4261 0d.s6 41us : add_preempt_count (__local_bh_disable)
  532. sshd-4261 0d.s6 42us : sub_preempt_count (local_bh_enable)
  533. sshd-4261 0d.s7 42us : sub_preempt_count (local_bh_enable)
  534. sshd-4261 0d.s5 43us : add_preempt_count (__local_bh_disable)
  535. sshd-4261 0d.s5 43us : sub_preempt_count (local_bh_enable_ip)
  536. sshd-4261 0d.s6 44us : sub_preempt_count (local_bh_enable_ip)
  537. sshd-4261 0d.s5 44us : add_preempt_count (__local_bh_disable)
  538. sshd-4261 0d.s5 45us : sub_preempt_count (local_bh_enable)
  539. [...]
  540. sshd-4261 0d.s. 63us : _local_bh_enable (__do_softirq)
  541. sshd-4261 0d.s1 64us : trace_preempt_on (__do_softirq)
  542. The above is an example of the preemptoff trace with ftrace_enabled
  543. set. Here we see that interrupts were disabled the entire time.
  544. The irq_enter code lets us know that we entered an interrupt 'h'.
  545. Before that, the functions being traced still show that it is not
  546. in an interrupt, but we can see from the functions themselves that
  547. this is not the case.
  548. Notice that __do_softirq when called does not have a preempt_count.
  549. It may seem that we missed a preempt enabling. What really happened
  550. is that the preempt count is held on the thread's stack and we
  551. switched to the softirq stack (4K stacks in effect). The code
  552. does not copy the preempt count, but because interrupts are disabled,
  553. we do not need to worry about it. Having a tracer like this is good
  554. for letting people know what really happens inside the kernel.
  555. preemptirqsoff
  556. --------------
  557. Knowing the locations that have interrupts disabled or preemption
  558. disabled for the longest times is helpful. But sometimes we would
  559. like to know when either preemption and/or interrupts are disabled.
  560. Consider the following code:
  561. local_irq_disable();
  562. call_function_with_irqs_off();
  563. preempt_disable();
  564. call_function_with_irqs_and_preemption_off();
  565. local_irq_enable();
  566. call_function_with_preemption_off();
  567. preempt_enable();
  568. The irqsoff tracer will record the total length of
  569. call_function_with_irqs_off() and
  570. call_function_with_irqs_and_preemption_off().
  571. The preemptoff tracer will record the total length of
  572. call_function_with_irqs_and_preemption_off() and
  573. call_function_with_preemption_off().
  574. But neither will trace the time that interrupts and/or preemption
  575. is disabled. This total time is the time that we can not schedule.
  576. To record this time, use the preemptirqsoff tracer.
  577. Again, using this trace is much like the irqsoff and preemptoff tracers.
  578. # echo preemptirqsoff > /debug/tracing/current_tracer
  579. # echo 0 > /debug/tracing/tracing_max_latency
  580. # echo 1 > /debug/tracing/tracing_enabled
  581. # ls -ltr
  582. [...]
  583. # echo 0 > /debug/tracing/tracing_enabled
  584. # cat /debug/tracing/latency_trace
  585. # tracer: preemptirqsoff
  586. #
  587. preemptirqsoff latency trace v1.1.5 on 2.6.26-rc8
  588. --------------------------------------------------------------------
  589. latency: 293 us, #3/3, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2)
  590. -----------------
  591. | task: ls-4860 (uid:0 nice:0 policy:0 rt_prio:0)
  592. -----------------
  593. => started at: apic_timer_interrupt
  594. => ended at: __do_softirq
  595. # _------=> CPU#
  596. # / _-----=> irqs-off
  597. # | / _----=> need-resched
  598. # || / _---=> hardirq/softirq
  599. # ||| / _--=> preempt-depth
  600. # |||| /
  601. # ||||| delay
  602. # cmd pid ||||| time | caller
  603. # \ / ||||| \ | /
  604. ls-4860 0d... 0us!: trace_hardirqs_off_thunk (apic_timer_interrupt)
  605. ls-4860 0d.s. 294us : _local_bh_enable (__do_softirq)
  606. ls-4860 0d.s1 294us : trace_preempt_on (__do_softirq)
  607. The trace_hardirqs_off_thunk is called from assembly on x86 when
  608. interrupts are disabled in the assembly code. Without the function
  609. tracing, we do not know if interrupts were enabled within the preemption
  610. points. We do see that it started with preemption enabled.
  611. Here is a trace with ftrace_enabled set:
  612. # tracer: preemptirqsoff
  613. #
  614. preemptirqsoff latency trace v1.1.5 on 2.6.26-rc8
  615. --------------------------------------------------------------------
  616. latency: 105 us, #183/183, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2)
  617. -----------------
  618. | task: sshd-4261 (uid:0 nice:0 policy:0 rt_prio:0)
  619. -----------------
  620. => started at: write_chan
  621. => ended at: __do_softirq
  622. # _------=> CPU#
  623. # / _-----=> irqs-off
  624. # | / _----=> need-resched
  625. # || / _---=> hardirq/softirq
  626. # ||| / _--=> preempt-depth
  627. # |||| /
  628. # ||||| delay
  629. # cmd pid ||||| time | caller
  630. # \ / ||||| \ | /
  631. ls-4473 0.N.. 0us : preempt_schedule (write_chan)
  632. ls-4473 0dN.1 1us : _spin_lock (schedule)
  633. ls-4473 0dN.1 2us : add_preempt_count (_spin_lock)
  634. ls-4473 0d..2 2us : put_prev_task_fair (schedule)
  635. [...]
  636. ls-4473 0d..2 13us : set_normalized_timespec (ktime_get_ts)
  637. ls-4473 0d..2 13us : __switch_to (schedule)
  638. sshd-4261 0d..2 14us : finish_task_switch (schedule)
  639. sshd-4261 0d..2 14us : _spin_unlock_irq (finish_task_switch)
  640. sshd-4261 0d..1 15us : add_preempt_count (_spin_lock_irqsave)
  641. sshd-4261 0d..2 16us : _spin_unlock_irqrestore (hrtick_set)
  642. sshd-4261 0d..2 16us : do_IRQ (common_interrupt)
  643. sshd-4261 0d..2 17us : irq_enter (do_IRQ)
  644. sshd-4261 0d..2 17us : idle_cpu (irq_enter)
  645. sshd-4261 0d..2 18us : add_preempt_count (irq_enter)
  646. sshd-4261 0d.h2 18us : idle_cpu (irq_enter)
  647. sshd-4261 0d.h. 18us : handle_fasteoi_irq (do_IRQ)
  648. sshd-4261 0d.h. 19us : _spin_lock (handle_fasteoi_irq)
  649. sshd-4261 0d.h. 19us : add_preempt_count (_spin_lock)
  650. sshd-4261 0d.h1 20us : _spin_unlock (handle_fasteoi_irq)
  651. sshd-4261 0d.h1 20us : sub_preempt_count (_spin_unlock)
  652. [...]
  653. sshd-4261 0d.h1 28us : _spin_unlock (handle_fasteoi_irq)
  654. sshd-4261 0d.h1 29us : sub_preempt_count (_spin_unlock)
  655. sshd-4261 0d.h2 29us : irq_exit (do_IRQ)
  656. sshd-4261 0d.h2 29us : sub_preempt_count (irq_exit)
  657. sshd-4261 0d..3 30us : do_softirq (irq_exit)
  658. sshd-4261 0d... 30us : __do_softirq (do_softirq)
  659. sshd-4261 0d... 31us : __local_bh_disable (__do_softirq)
  660. sshd-4261 0d... 31us+: add_preempt_count (__local_bh_disable)
  661. sshd-4261 0d.s4 34us : add_preempt_count (__local_bh_disable)
  662. [...]
  663. sshd-4261 0d.s3 43us : sub_preempt_count (local_bh_enable_ip)
  664. sshd-4261 0d.s4 44us : sub_preempt_count (local_bh_enable_ip)
  665. sshd-4261 0d.s3 44us : smp_apic_timer_interrupt (apic_timer_interrupt)
  666. sshd-4261 0d.s3 45us : irq_enter (smp_apic_timer_interrupt)
  667. sshd-4261 0d.s3 45us : idle_cpu (irq_enter)
  668. sshd-4261 0d.s3 46us : add_preempt_count (irq_enter)
  669. sshd-4261 0d.H3 46us : idle_cpu (irq_enter)
  670. sshd-4261 0d.H3 47us : hrtimer_interrupt (smp_apic_timer_interrupt)
  671. sshd-4261 0d.H3 47us : ktime_get (hrtimer_interrupt)
  672. [...]
  673. sshd-4261 0d.H3 81us : tick_program_event (hrtimer_interrupt)
  674. sshd-4261 0d.H3 82us : ktime_get (tick_program_event)
  675. sshd-4261 0d.H3 82us : ktime_get_ts (ktime_get)
  676. sshd-4261 0d.H3 83us : getnstimeofday (ktime_get_ts)
  677. sshd-4261 0d.H3 83us : set_normalized_timespec (ktime_get_ts)
  678. sshd-4261 0d.H3 84us : clockevents_program_event (tick_program_event)
  679. sshd-4261 0d.H3 84us : lapic_next_event (clockevents_program_event)
  680. sshd-4261 0d.H3 85us : irq_exit (smp_apic_timer_interrupt)
  681. sshd-4261 0d.H3 85us : sub_preempt_count (irq_exit)
  682. sshd-4261 0d.s4 86us : sub_preempt_count (irq_exit)
  683. sshd-4261 0d.s3 86us : add_preempt_count (__local_bh_disable)
  684. [...]
  685. sshd-4261 0d.s1 98us : sub_preempt_count (net_rx_action)
  686. sshd-4261 0d.s. 99us : add_preempt_count (_spin_lock_irq)
  687. sshd-4261 0d.s1 99us+: _spin_unlock_irq (run_timer_softirq)
  688. sshd-4261 0d.s. 104us : _local_bh_enable (__do_softirq)
  689. sshd-4261 0d.s. 104us : sub_preempt_count (_local_bh_enable)
  690. sshd-4261 0d.s. 105us : _local_bh_enable (__do_softirq)
  691. sshd-4261 0d.s1 105us : trace_preempt_on (__do_softirq)
  692. This is a very interesting trace. It started with the preemption of
  693. the ls task. We see that the task had the "need_resched" bit set
  694. via the 'N' in the trace. Interrupts were disabled before the spin_lock
  695. at the beginning of the trace. We see that a schedule took place to run
  696. sshd. When the interrupts were enabled, we took an interrupt.
  697. On return from the interrupt handler, the softirq ran. We took another
  698. interrupt while running the softirq as we see from the capital 'H'.
  699. wakeup
  700. ------
  701. In a Real-Time environment it is very important to know the wakeup
  702. time it takes for the highest priority task that is woken up to the
  703. time that it executes. This is also known as "schedule latency".
  704. I stress the point that this is about RT tasks. It is also important
  705. to know the scheduling latency of non-RT tasks, but the average
  706. schedule latency is better for non-RT tasks. Tools like
  707. LatencyTop are more appropriate for such measurements.
  708. Real-Time environments are interested in the worst case latency.
  709. That is the longest latency it takes for something to happen, and
  710. not the average. We can have a very fast scheduler that may only
  711. have a large latency once in a while, but that would not work well
  712. with Real-Time tasks. The wakeup tracer was designed to record
  713. the worst case wakeups of RT tasks. Non-RT tasks are not recorded
  714. because the tracer only records one worst case and tracing non-RT
  715. tasks that are unpredictable will overwrite the worst case latency
  716. of RT tasks.
  717. Since this tracer only deals with RT tasks, we will run this slightly
  718. differently than we did with the previous tracers. Instead of performing
  719. an 'ls', we will run 'sleep 1' under 'chrt' which changes the
  720. priority of the task.
  721. # echo wakeup > /debug/tracing/current_tracer
  722. # echo 0 > /debug/tracing/tracing_max_latency
  723. # echo 1 > /debug/tracing/tracing_enabled
  724. # chrt -f 5 sleep 1
  725. # echo 0 > /debug/tracing/tracing_enabled
  726. # cat /debug/tracing/latency_trace
  727. # tracer: wakeup
  728. #
  729. wakeup latency trace v1.1.5 on 2.6.26-rc8
  730. --------------------------------------------------------------------
  731. latency: 4 us, #2/2, CPU#1 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2)
  732. -----------------
  733. | task: sleep-4901 (uid:0 nice:0 policy:1 rt_prio:5)
  734. -----------------
  735. # _------=> CPU#
  736. # / _-----=> irqs-off
  737. # | / _----=> need-resched
  738. # || / _---=> hardirq/softirq
  739. # ||| / _--=> preempt-depth
  740. # |||| /
  741. # ||||| delay
  742. # cmd pid ||||| time | caller
  743. # \ / ||||| \ | /
  744. <idle>-0 1d.h4 0us+: try_to_wake_up (wake_up_process)
  745. <idle>-0 1d..4 4us : schedule (cpu_idle)
  746. Running this on an idle system, we see that it only took 4 microseconds
  747. to perform the task switch. Note, since the trace marker in the
  748. schedule is before the actual "switch", we stop the tracing when
  749. the recorded task is about to schedule in. This may change if
  750. we add a new marker at the end of the scheduler.
  751. Notice that the recorded task is 'sleep' with the PID of 4901 and it
  752. has an rt_prio of 5. This priority is user-space priority and not
  753. the internal kernel priority. The policy is 1 for SCHED_FIFO and 2
  754. for SCHED_RR.
  755. Doing the same with chrt -r 5 and ftrace_enabled set.
  756. # tracer: wakeup
  757. #
  758. wakeup latency trace v1.1.5 on 2.6.26-rc8
  759. --------------------------------------------------------------------
  760. latency: 50 us, #60/60, CPU#1 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2)
  761. -----------------
  762. | task: sleep-4068 (uid:0 nice:0 policy:2 rt_prio:5)
  763. -----------------
  764. # _------=> CPU#
  765. # / _-----=> irqs-off
  766. # | / _----=> need-resched
  767. # || / _---=> hardirq/softirq
  768. # ||| / _--=> preempt-depth
  769. # |||| /
  770. # ||||| delay
  771. # cmd pid ||||| time | caller
  772. # \ / ||||| \ | /
  773. ksoftirq-7 1d.H3 0us : try_to_wake_up (wake_up_process)
  774. ksoftirq-7 1d.H4 1us : sub_preempt_count (marker_probe_cb)
  775. ksoftirq-7 1d.H3 2us : check_preempt_wakeup (try_to_wake_up)
  776. ksoftirq-7 1d.H3 3us : update_curr (check_preempt_wakeup)
  777. ksoftirq-7 1d.H3 4us : calc_delta_mine (update_curr)
  778. ksoftirq-7 1d.H3 5us : __resched_task (check_preempt_wakeup)
  779. ksoftirq-7 1d.H3 6us : task_wake_up_rt (try_to_wake_up)
  780. ksoftirq-7 1d.H3 7us : _spin_unlock_irqrestore (try_to_wake_up)
  781. [...]
  782. ksoftirq-7 1d.H2 17us : irq_exit (smp_apic_timer_interrupt)
  783. ksoftirq-7 1d.H2 18us : sub_preempt_count (irq_exit)
  784. ksoftirq-7 1d.s3 19us : sub_preempt_count (irq_exit)
  785. ksoftirq-7 1..s2 20us : rcu_process_callbacks (__do_softirq)
  786. [...]
  787. ksoftirq-7 1..s2 26us : __rcu_process_callbacks (rcu_process_callbacks)
  788. ksoftirq-7 1d.s2 27us : _local_bh_enable (__do_softirq)
  789. ksoftirq-7 1d.s2 28us : sub_preempt_count (_local_bh_enable)
  790. ksoftirq-7 1.N.3 29us : sub_preempt_count (ksoftirqd)
  791. ksoftirq-7 1.N.2 30us : _cond_resched (ksoftirqd)
  792. ksoftirq-7 1.N.2 31us : __cond_resched (_cond_resched)
  793. ksoftirq-7 1.N.2 32us : add_preempt_count (__cond_resched)
  794. ksoftirq-7 1.N.2 33us : schedule (__cond_resched)
  795. ksoftirq-7 1.N.2 33us : add_preempt_count (schedule)
  796. ksoftirq-7 1.N.3 34us : hrtick_clear (schedule)
  797. ksoftirq-7 1dN.3 35us : _spin_lock (schedule)
  798. ksoftirq-7 1dN.3 36us : add_preempt_count (_spin_lock)
  799. ksoftirq-7 1d..4 37us : put_prev_task_fair (schedule)
  800. ksoftirq-7 1d..4 38us : update_curr (put_prev_task_fair)
  801. [...]
  802. ksoftirq-7 1d..5 47us : _spin_trylock (tracing_record_cmdline)
  803. ksoftirq-7 1d..5 48us : add_preempt_count (_spin_trylock)
  804. ksoftirq-7 1d..6 49us : _spin_unlock (tracing_record_cmdline)
  805. ksoftirq-7 1d..6 49us : sub_preempt_count (_spin_unlock)
  806. ksoftirq-7 1d..4 50us : schedule (__cond_resched)
  807. The interrupt went off while running ksoftirqd. This task runs at
  808. SCHED_OTHER. Why did not we see the 'N' set early? This may be
  809. a harmless bug with x86_32 and 4K stacks. On x86_32 with 4K stacks
  810. configured, the interrupt and softirq run with their own stack.
  811. Some information is held on the top of the task's stack (need_resched
  812. and preempt_count are both stored there). The setting of the NEED_RESCHED
  813. bit is done directly to the task's stack, but the reading of the
  814. NEED_RESCHED is done by looking at the current stack, which in this case
  815. is the stack for the hard interrupt. This hides the fact that NEED_RESCHED
  816. has been set. We do not see the 'N' until we switch back to the task's
  817. assigned stack.
  818. ftrace
  819. ------
  820. ftrace is not only the name of the tracing infrastructure, but it
  821. is also a name of one of the tracers. The tracer is the function
  822. tracer. Enabling the function tracer can be done from the
  823. debug file system. Make sure the ftrace_enabled is set otherwise
  824. this tracer is a nop.
  825. # sysctl kernel.ftrace_enabled=1
  826. # echo ftrace > /debug/tracing/current_tracer
  827. # echo 1 > /debug/tracing/tracing_enabled
  828. # usleep 1
  829. # echo 0 > /debug/tracing/tracing_enabled
  830. # cat /debug/tracing/trace
  831. # tracer: ftrace
  832. #
  833. # TASK-PID CPU# TIMESTAMP FUNCTION
  834. # | | | | |
  835. bash-4003 [00] 123.638713: finish_task_switch <-schedule
  836. bash-4003 [00] 123.638714: _spin_unlock_irq <-finish_task_switch
  837. bash-4003 [00] 123.638714: sub_preempt_count <-_spin_unlock_irq
  838. bash-4003 [00] 123.638715: hrtick_set <-schedule
  839. bash-4003 [00] 123.638715: _spin_lock_irqsave <-hrtick_set
  840. bash-4003 [00] 123.638716: add_preempt_count <-_spin_lock_irqsave
  841. bash-4003 [00] 123.638716: _spin_unlock_irqrestore <-hrtick_set
  842. bash-4003 [00] 123.638717: sub_preempt_count <-_spin_unlock_irqrestore
  843. bash-4003 [00] 123.638717: hrtick_clear <-hrtick_set
  844. bash-4003 [00] 123.638718: sub_preempt_count <-schedule
  845. bash-4003 [00] 123.638718: sub_preempt_count <-preempt_schedule
  846. bash-4003 [00] 123.638719: wait_for_completion <-__stop_machine_run
  847. bash-4003 [00] 123.638719: wait_for_common <-wait_for_completion
  848. bash-4003 [00] 123.638720: _spin_lock_irq <-wait_for_common
  849. bash-4003 [00] 123.638720: add_preempt_count <-_spin_lock_irq
  850. [...]
  851. Note: ftrace uses ring buffers to store the above entries. The newest data
  852. may overwrite the oldest data. Sometimes using echo to stop the trace
  853. is not sufficient because the tracing could have overwritten the data
  854. that you wanted to record. For this reason, it is sometimes better to
  855. disable tracing directly from a program. This allows you to stop the
  856. tracing at the point that you hit the part that you are interested in.
  857. To disable the tracing directly from a C program, something like following
  858. code snippet can be used:
  859. int trace_fd;
  860. [...]
  861. int main(int argc, char *argv[]) {
  862. [...]
  863. trace_fd = open("/debug/tracing/tracing_enabled", O_WRONLY);
  864. [...]
  865. if (condition_hit()) {
  866. write(trace_fd, "0", 1);
  867. }
  868. [...]
  869. }
  870. Note: Here we hard coded the path name. The debugfs mount is not
  871. guaranteed to be at /debug (and is more commonly at /sys/kernel/debug).
  872. For simple one time traces, the above is sufficent. For anything else,
  873. a search through /proc/mounts may be needed to find where the debugfs
  874. file-system is mounted.
  875. dynamic ftrace
  876. --------------
  877. If CONFIG_DYNAMIC_FTRACE is set, the system will run with
  878. virtually no overhead when function tracing is disabled. The way
  879. this works is the mcount function call (placed at the start of
  880. every kernel function, produced by the -pg switch in gcc), starts
  881. of pointing to a simple return. (Enabling FTRACE will include the
  882. -pg switch in the compiling of the kernel.)
  883. When dynamic ftrace is initialized, it calls kstop_machine to make
  884. the machine act like a uniprocessor so that it can freely modify code
  885. without worrying about other processors executing that same code. At
  886. initialization, the mcount calls are changed to call a "record_ip"
  887. function. After this, the first time a kernel function is called,
  888. it has the calling address saved in a hash table.
  889. Later on the ftraced kernel thread is awoken and will again call
  890. kstop_machine if new functions have been recorded. The ftraced thread
  891. will change all calls to mcount to "nop". Just calling mcount
  892. and having mcount return has shown a 10% overhead. By converting
  893. it to a nop, there is no measurable overhead to the system.
  894. One special side-effect to the recording of the functions being
  895. traced is that we can now selectively choose which functions we
  896. wish to trace and which ones we want the mcount calls to remain as
  897. nops.
  898. Two files are used, one for enabling and one for disabling the tracing
  899. of specified functions. They are:
  900. set_ftrace_filter
  901. and
  902. set_ftrace_notrace
  903. A list of available functions that you can add to these files is listed
  904. in:
  905. available_filter_functions
  906. # cat /debug/tracing/available_filter_functions
  907. put_prev_task_idle
  908. kmem_cache_create
  909. pick_next_task_rt
  910. get_online_cpus
  911. pick_next_task_fair
  912. mutex_lock
  913. [...]
  914. If I am only interested in sys_nanosleep and hrtimer_interrupt:
  915. # echo sys_nanosleep hrtimer_interrupt \
  916. > /debug/tracing/set_ftrace_filter
  917. # echo ftrace > /debug/tracing/current_tracer
  918. # echo 1 > /debug/tracing/tracing_enabled
  919. # usleep 1
  920. # echo 0 > /debug/tracing/tracing_enabled
  921. # cat /debug/tracing/trace
  922. # tracer: ftrace
  923. #
  924. # TASK-PID CPU# TIMESTAMP FUNCTION
  925. # | | | | |
  926. usleep-4134 [00] 1317.070017: hrtimer_interrupt <-smp_apic_timer_interrupt
  927. usleep-4134 [00] 1317.070111: sys_nanosleep <-syscall_call
  928. <idle>-0 [00] 1317.070115: hrtimer_interrupt <-smp_apic_timer_interrupt
  929. To see which functions are being traced, you can cat the file:
  930. # cat /debug/tracing/set_ftrace_filter
  931. hrtimer_interrupt
  932. sys_nanosleep
  933. Perhaps this is not enough. The filters also allow simple wild cards.
  934. Only the following are currently available
  935. <match>* - will match functions that begin with <match>
  936. *<match> - will match functions that end with <match>
  937. *<match>* - will match functions that have <match> in it
  938. These are the only wild cards which are supported.
  939. <match>*<match> will not work.
  940. # echo hrtimer_* > /debug/tracing/set_ftrace_filter
  941. Produces:
  942. # tracer: ftrace
  943. #
  944. # TASK-PID CPU# TIMESTAMP FUNCTION
  945. # | | | | |
  946. bash-4003 [00] 1480.611794: hrtimer_init <-copy_process
  947. bash-4003 [00] 1480.611941: hrtimer_start <-hrtick_set
  948. bash-4003 [00] 1480.611956: hrtimer_cancel <-hrtick_clear
  949. bash-4003 [00] 1480.611956: hrtimer_try_to_cancel <-hrtimer_cancel
  950. <idle>-0 [00] 1480.612019: hrtimer_get_next_event <-get_next_timer_interrupt
  951. <idle>-0 [00] 1480.612025: hrtimer_get_next_event <-get_next_timer_interrupt
  952. <idle>-0 [00] 1480.612032: hrtimer_get_next_event <-get_next_timer_interrupt
  953. <idle>-0 [00] 1480.612037: hrtimer_get_next_event <-get_next_timer_interrupt
  954. <idle>-0 [00] 1480.612382: hrtimer_get_next_event <-get_next_timer_interrupt
  955. Notice that we lost the sys_nanosleep.
  956. # cat /debug/tracing/set_ftrace_filter
  957. hrtimer_run_queues
  958. hrtimer_run_pending
  959. hrtimer_init
  960. hrtimer_cancel
  961. hrtimer_try_to_cancel
  962. hrtimer_forward
  963. hrtimer_start
  964. hrtimer_reprogram
  965. hrtimer_force_reprogram
  966. hrtimer_get_next_event
  967. hrtimer_interrupt
  968. hrtimer_nanosleep
  969. hrtimer_wakeup
  970. hrtimer_get_remaining
  971. hrtimer_get_res
  972. hrtimer_init_sleeper
  973. This is because the '>' and '>>' act just like they do in bash.
  974. To rewrite the filters, use '>'
  975. To append to the filters, use '>>'
  976. To clear out a filter so that all functions will be recorded again:
  977. # echo > /debug/tracing/set_ftrace_filter
  978. # cat /debug/tracing/set_ftrace_filter
  979. #
  980. Again, now we want to append.
  981. # echo sys_nanosleep > /debug/tracing/set_ftrace_filter
  982. # cat /debug/tracing/set_ftrace_filter
  983. sys_nanosleep
  984. # echo hrtimer_* >> /debug/tracing/set_ftrace_filter
  985. # cat /debug/tracing/set_ftrace_filter
  986. hrtimer_run_queues
  987. hrtimer_run_pending
  988. hrtimer_init
  989. hrtimer_cancel
  990. hrtimer_try_to_cancel
  991. hrtimer_forward
  992. hrtimer_start
  993. hrtimer_reprogram
  994. hrtimer_force_reprogram
  995. hrtimer_get_next_event
  996. hrtimer_interrupt
  997. sys_nanosleep
  998. hrtimer_nanosleep
  999. hrtimer_wakeup
  1000. hrtimer_get_remaining
  1001. hrtimer_get_res
  1002. hrtimer_init_sleeper
  1003. The set_ftrace_notrace prevents those functions from being traced.
  1004. # echo '*preempt*' '*lock*' > /debug/tracing/set_ftrace_notrace
  1005. Produces:
  1006. # tracer: ftrace
  1007. #
  1008. # TASK-PID CPU# TIMESTAMP FUNCTION
  1009. # | | | | |
  1010. bash-4043 [01] 115.281644: finish_task_switch <-schedule
  1011. bash-4043 [01] 115.281645: hrtick_set <-schedule
  1012. bash-4043 [01] 115.281645: hrtick_clear <-hrtick_set
  1013. bash-4043 [01] 115.281646: wait_for_completion <-__stop_machine_run
  1014. bash-4043 [01] 115.281647: wait_for_common <-wait_for_completion
  1015. bash-4043 [01] 115.281647: kthread_stop <-stop_machine_run
  1016. bash-4043 [01] 115.281648: init_waitqueue_head <-kthread_stop
  1017. bash-4043 [01] 115.281648: wake_up_process <-kthread_stop
  1018. bash-4043 [01] 115.281649: try_to_wake_up <-wake_up_process
  1019. We can see that there's no more lock or preempt tracing.
  1020. ftraced
  1021. -------
  1022. As mentioned above, when dynamic ftrace is configured in, a kernel
  1023. thread wakes up once a second and checks to see if there are mcount
  1024. calls that need to be converted into nops. If there are not any, then
  1025. it simply goes back to sleep. But if there are some, it will call
  1026. kstop_machine to convert the calls to nops.
  1027. There may be a case in which you do not want this added latency.
  1028. Perhaps you are doing some audio recording and this activity might
  1029. cause skips in the playback. There is an interface to disable
  1030. and enable the "ftraced" kernel thread.
  1031. # echo 0 > /debug/tracing/ftraced_enabled
  1032. This will disable the calling of kstop_machine to update the
  1033. mcount calls to nops. Remember that there is a large overhead
  1034. to calling mcount. Without this kernel thread, that overhead will
  1035. exist.
  1036. If there are recorded calls to mcount, any write to the ftraced_enabled
  1037. file will cause the kstop_machine to run. This means that a
  1038. user can manually perform the updates when they want to by simply
  1039. echoing a '0' into the ftraced_enabled file.
  1040. The updates are also done at the beginning of enabling a tracer
  1041. that uses ftrace function recording.
  1042. trace_pipe
  1043. ----------
  1044. The trace_pipe outputs the same content as the trace file, but the effect
  1045. on the tracing is different. Every read from trace_pipe is consumed.
  1046. This means that subsequent reads will be different. The trace
  1047. is live.
  1048. # echo ftrace > /debug/tracing/current_tracer
  1049. # cat /debug/tracing/trace_pipe > /tmp/trace.out &
  1050. [1] 4153
  1051. # echo 1 > /debug/tracing/tracing_enabled
  1052. # usleep 1
  1053. # echo 0 > /debug/tracing/tracing_enabled
  1054. # cat /debug/tracing/trace
  1055. # tracer: ftrace
  1056. #
  1057. # TASK-PID CPU# TIMESTAMP FUNCTION
  1058. # | | | | |
  1059. #
  1060. # cat /tmp/trace.out
  1061. bash-4043 [00] 41.267106: finish_task_switch <-schedule
  1062. bash-4043 [00] 41.267106: hrtick_set <-schedule
  1063. bash-4043 [00] 41.267107: hrtick_clear <-hrtick_set
  1064. bash-4043 [00] 41.267108: wait_for_completion <-__stop_machine_run
  1065. bash-4043 [00] 41.267108: wait_for_common <-wait_for_completion
  1066. bash-4043 [00] 41.267109: kthread_stop <-stop_machine_run
  1067. bash-4043 [00] 41.267109: init_waitqueue_head <-kthread_stop
  1068. bash-4043 [00] 41.267110: wake_up_process <-kthread_stop
  1069. bash-4043 [00] 41.267110: try_to_wake_up <-wake_up_process
  1070. bash-4043 [00] 41.267111: select_task_rq_rt <-try_to_wake_up
  1071. Note, reading the trace_pipe file will block until more input is added.
  1072. By changing the tracer, trace_pipe will issue an EOF. We needed
  1073. to set the ftrace tracer _before_ cating the trace_pipe file.
  1074. trace entries
  1075. -------------
  1076. Having too much or not enough data can be troublesome in diagnosing
  1077. an issue in the kernel. The file trace_entries is used to modify
  1078. the size of the internal trace buffers. The number listed
  1079. is the number of entries that can be recorded per CPU. To know
  1080. the full size, multiply the number of possible CPUS with the
  1081. number of entries.
  1082. # cat /debug/tracing/trace_entries
  1083. 65620
  1084. Note, to modify this, you must have tracing completely disabled. To do that,
  1085. echo "none" into the current_tracer. If the current_tracer is not set
  1086. to "none", an EINVAL error will be returned.
  1087. # echo none > /debug/tracing/current_tracer
  1088. # echo 100000 > /debug/tracing/trace_entries
  1089. # cat /debug/tracing/trace_entries
  1090. 100045
  1091. Notice that we echoed in 100,000 but the size is 100,045. The entries
  1092. are held in individual pages. It allocates the number of pages it takes
  1093. to fulfill the request. If more entries may fit on the last page
  1094. then they will be added.
  1095. # echo 1 > /debug/tracing/trace_entries
  1096. # cat /debug/tracing/trace_entries
  1097. 85
  1098. This shows us that 85 entries can fit in a single page.
  1099. The number of pages which will be allocated is limited to a percentage
  1100. of available memory. Allocating too much will produce an error.
  1101. # echo 1000000000000 > /debug/tracing/trace_entries
  1102. -bash: echo: write error: Cannot allocate memory
  1103. # cat /debug/tracing/trace_entries
  1104. 85