fec.c 42 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701
  1. /*
  2. * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
  3. * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
  4. *
  5. * Right now, I am very wasteful with the buffers. I allocate memory
  6. * pages and then divide them into 2K frame buffers. This way I know I
  7. * have buffers large enough to hold one frame within one buffer descriptor.
  8. * Once I get this working, I will use 64 or 128 byte CPM buffers, which
  9. * will be much more memory efficient and will easily handle lots of
  10. * small packets.
  11. *
  12. * Much better multiple PHY support by Magnus Damm.
  13. * Copyright (c) 2000 Ericsson Radio Systems AB.
  14. *
  15. * Support for FEC controller of ColdFire processors.
  16. * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
  17. *
  18. * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
  19. * Copyright (c) 2004-2006 Macq Electronique SA.
  20. *
  21. * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
  22. */
  23. #include <linux/module.h>
  24. #include <linux/kernel.h>
  25. #include <linux/string.h>
  26. #include <linux/ptrace.h>
  27. #include <linux/errno.h>
  28. #include <linux/ioport.h>
  29. #include <linux/slab.h>
  30. #include <linux/interrupt.h>
  31. #include <linux/pci.h>
  32. #include <linux/init.h>
  33. #include <linux/delay.h>
  34. #include <linux/netdevice.h>
  35. #include <linux/etherdevice.h>
  36. #include <linux/skbuff.h>
  37. #include <linux/spinlock.h>
  38. #include <linux/workqueue.h>
  39. #include <linux/bitops.h>
  40. #include <linux/io.h>
  41. #include <linux/irq.h>
  42. #include <linux/clk.h>
  43. #include <linux/platform_device.h>
  44. #include <linux/phy.h>
  45. #include <linux/fec.h>
  46. #include <linux/of.h>
  47. #include <linux/of_device.h>
  48. #include <linux/of_gpio.h>
  49. #include <linux/of_net.h>
  50. #include <asm/cacheflush.h>
  51. #ifndef CONFIG_ARM
  52. #include <asm/coldfire.h>
  53. #include <asm/mcfsim.h>
  54. #endif
  55. #include "fec.h"
  56. #if defined(CONFIG_ARM)
  57. #define FEC_ALIGNMENT 0xf
  58. #else
  59. #define FEC_ALIGNMENT 0x3
  60. #endif
  61. #define DRIVER_NAME "fec"
  62. /* Controller is ENET-MAC */
  63. #define FEC_QUIRK_ENET_MAC (1 << 0)
  64. /* Controller needs driver to swap frame */
  65. #define FEC_QUIRK_SWAP_FRAME (1 << 1)
  66. /* Controller uses gasket */
  67. #define FEC_QUIRK_USE_GASKET (1 << 2)
  68. /* Controller has GBIT support */
  69. #define FEC_QUIRK_HAS_GBIT (1 << 3)
  70. static struct platform_device_id fec_devtype[] = {
  71. {
  72. /* keep it for coldfire */
  73. .name = DRIVER_NAME,
  74. .driver_data = 0,
  75. }, {
  76. .name = "imx25-fec",
  77. .driver_data = FEC_QUIRK_USE_GASKET,
  78. }, {
  79. .name = "imx27-fec",
  80. .driver_data = 0,
  81. }, {
  82. .name = "imx28-fec",
  83. .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME,
  84. }, {
  85. .name = "imx6q-fec",
  86. .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT,
  87. }, {
  88. /* sentinel */
  89. }
  90. };
  91. MODULE_DEVICE_TABLE(platform, fec_devtype);
  92. enum imx_fec_type {
  93. IMX25_FEC = 1, /* runs on i.mx25/50/53 */
  94. IMX27_FEC, /* runs on i.mx27/35/51 */
  95. IMX28_FEC,
  96. IMX6Q_FEC,
  97. };
  98. static const struct of_device_id fec_dt_ids[] = {
  99. { .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
  100. { .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
  101. { .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
  102. { .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
  103. { /* sentinel */ }
  104. };
  105. MODULE_DEVICE_TABLE(of, fec_dt_ids);
  106. static unsigned char macaddr[ETH_ALEN];
  107. module_param_array(macaddr, byte, NULL, 0);
  108. MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
  109. #if defined(CONFIG_M5272)
  110. /*
  111. * Some hardware gets it MAC address out of local flash memory.
  112. * if this is non-zero then assume it is the address to get MAC from.
  113. */
  114. #if defined(CONFIG_NETtel)
  115. #define FEC_FLASHMAC 0xf0006006
  116. #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
  117. #define FEC_FLASHMAC 0xf0006000
  118. #elif defined(CONFIG_CANCam)
  119. #define FEC_FLASHMAC 0xf0020000
  120. #elif defined (CONFIG_M5272C3)
  121. #define FEC_FLASHMAC (0xffe04000 + 4)
  122. #elif defined(CONFIG_MOD5272)
  123. #define FEC_FLASHMAC 0xffc0406b
  124. #else
  125. #define FEC_FLASHMAC 0
  126. #endif
  127. #endif /* CONFIG_M5272 */
  128. /* The number of Tx and Rx buffers. These are allocated from the page
  129. * pool. The code may assume these are power of two, so it it best
  130. * to keep them that size.
  131. * We don't need to allocate pages for the transmitter. We just use
  132. * the skbuffer directly.
  133. */
  134. #define FEC_ENET_RX_PAGES 8
  135. #define FEC_ENET_RX_FRSIZE 2048
  136. #define FEC_ENET_RX_FRPPG (PAGE_SIZE / FEC_ENET_RX_FRSIZE)
  137. #define RX_RING_SIZE (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
  138. #define FEC_ENET_TX_FRSIZE 2048
  139. #define FEC_ENET_TX_FRPPG (PAGE_SIZE / FEC_ENET_TX_FRSIZE)
  140. #define TX_RING_SIZE 16 /* Must be power of two */
  141. #define TX_RING_MOD_MASK 15 /* for this to work */
  142. #if (((RX_RING_SIZE + TX_RING_SIZE) * 8) > PAGE_SIZE)
  143. #error "FEC: descriptor ring size constants too large"
  144. #endif
  145. /* Interrupt events/masks. */
  146. #define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */
  147. #define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */
  148. #define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */
  149. #define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */
  150. #define FEC_ENET_TXF ((uint)0x08000000) /* Full frame transmitted */
  151. #define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */
  152. #define FEC_ENET_RXF ((uint)0x02000000) /* Full frame received */
  153. #define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */
  154. #define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */
  155. #define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */
  156. #define FEC_DEFAULT_IMASK (FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII)
  157. /* The FEC stores dest/src/type, data, and checksum for receive packets.
  158. */
  159. #define PKT_MAXBUF_SIZE 1518
  160. #define PKT_MINBUF_SIZE 64
  161. #define PKT_MAXBLR_SIZE 1520
  162. /* This device has up to three irqs on some platforms */
  163. #define FEC_IRQ_NUM 3
  164. /*
  165. * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
  166. * size bits. Other FEC hardware does not, so we need to take that into
  167. * account when setting it.
  168. */
  169. #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
  170. defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
  171. #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
  172. #else
  173. #define OPT_FRAME_SIZE 0
  174. #endif
  175. /* The FEC buffer descriptors track the ring buffers. The rx_bd_base and
  176. * tx_bd_base always point to the base of the buffer descriptors. The
  177. * cur_rx and cur_tx point to the currently available buffer.
  178. * The dirty_tx tracks the current buffer that is being sent by the
  179. * controller. The cur_tx and dirty_tx are equal under both completely
  180. * empty and completely full conditions. The empty/ready indicator in
  181. * the buffer descriptor determines the actual condition.
  182. */
  183. struct fec_enet_private {
  184. /* Hardware registers of the FEC device */
  185. void __iomem *hwp;
  186. struct net_device *netdev;
  187. struct clk *clk;
  188. /* The saved address of a sent-in-place packet/buffer, for skfree(). */
  189. unsigned char *tx_bounce[TX_RING_SIZE];
  190. struct sk_buff* tx_skbuff[TX_RING_SIZE];
  191. struct sk_buff* rx_skbuff[RX_RING_SIZE];
  192. ushort skb_cur;
  193. ushort skb_dirty;
  194. /* CPM dual port RAM relative addresses */
  195. dma_addr_t bd_dma;
  196. /* Address of Rx and Tx buffers */
  197. struct bufdesc *rx_bd_base;
  198. struct bufdesc *tx_bd_base;
  199. /* The next free ring entry */
  200. struct bufdesc *cur_rx, *cur_tx;
  201. /* The ring entries to be free()ed */
  202. struct bufdesc *dirty_tx;
  203. uint tx_full;
  204. /* hold while accessing the HW like ringbuffer for tx/rx but not MAC */
  205. spinlock_t hw_lock;
  206. struct platform_device *pdev;
  207. int opened;
  208. /* Phylib and MDIO interface */
  209. struct mii_bus *mii_bus;
  210. struct phy_device *phy_dev;
  211. int mii_timeout;
  212. uint phy_speed;
  213. phy_interface_t phy_interface;
  214. int link;
  215. int full_duplex;
  216. struct completion mdio_done;
  217. };
  218. /* FEC MII MMFR bits definition */
  219. #define FEC_MMFR_ST (1 << 30)
  220. #define FEC_MMFR_OP_READ (2 << 28)
  221. #define FEC_MMFR_OP_WRITE (1 << 28)
  222. #define FEC_MMFR_PA(v) ((v & 0x1f) << 23)
  223. #define FEC_MMFR_RA(v) ((v & 0x1f) << 18)
  224. #define FEC_MMFR_TA (2 << 16)
  225. #define FEC_MMFR_DATA(v) (v & 0xffff)
  226. #define FEC_MII_TIMEOUT 1000 /* us */
  227. /* Transmitter timeout */
  228. #define TX_TIMEOUT (2 * HZ)
  229. static void *swap_buffer(void *bufaddr, int len)
  230. {
  231. int i;
  232. unsigned int *buf = bufaddr;
  233. for (i = 0; i < (len + 3) / 4; i++, buf++)
  234. *buf = cpu_to_be32(*buf);
  235. return bufaddr;
  236. }
  237. static netdev_tx_t
  238. fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
  239. {
  240. struct fec_enet_private *fep = netdev_priv(ndev);
  241. const struct platform_device_id *id_entry =
  242. platform_get_device_id(fep->pdev);
  243. struct bufdesc *bdp;
  244. void *bufaddr;
  245. unsigned short status;
  246. unsigned long flags;
  247. if (!fep->link) {
  248. /* Link is down or autonegotiation is in progress. */
  249. return NETDEV_TX_BUSY;
  250. }
  251. spin_lock_irqsave(&fep->hw_lock, flags);
  252. /* Fill in a Tx ring entry */
  253. bdp = fep->cur_tx;
  254. status = bdp->cbd_sc;
  255. if (status & BD_ENET_TX_READY) {
  256. /* Ooops. All transmit buffers are full. Bail out.
  257. * This should not happen, since ndev->tbusy should be set.
  258. */
  259. printk("%s: tx queue full!.\n", ndev->name);
  260. spin_unlock_irqrestore(&fep->hw_lock, flags);
  261. return NETDEV_TX_BUSY;
  262. }
  263. /* Clear all of the status flags */
  264. status &= ~BD_ENET_TX_STATS;
  265. /* Set buffer length and buffer pointer */
  266. bufaddr = skb->data;
  267. bdp->cbd_datlen = skb->len;
  268. /*
  269. * On some FEC implementations data must be aligned on
  270. * 4-byte boundaries. Use bounce buffers to copy data
  271. * and get it aligned. Ugh.
  272. */
  273. if (((unsigned long) bufaddr) & FEC_ALIGNMENT) {
  274. unsigned int index;
  275. index = bdp - fep->tx_bd_base;
  276. memcpy(fep->tx_bounce[index], skb->data, skb->len);
  277. bufaddr = fep->tx_bounce[index];
  278. }
  279. /*
  280. * Some design made an incorrect assumption on endian mode of
  281. * the system that it's running on. As the result, driver has to
  282. * swap every frame going to and coming from the controller.
  283. */
  284. if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
  285. swap_buffer(bufaddr, skb->len);
  286. /* Save skb pointer */
  287. fep->tx_skbuff[fep->skb_cur] = skb;
  288. ndev->stats.tx_bytes += skb->len;
  289. fep->skb_cur = (fep->skb_cur+1) & TX_RING_MOD_MASK;
  290. /* Push the data cache so the CPM does not get stale memory
  291. * data.
  292. */
  293. bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, bufaddr,
  294. FEC_ENET_TX_FRSIZE, DMA_TO_DEVICE);
  295. /* Send it on its way. Tell FEC it's ready, interrupt when done,
  296. * it's the last BD of the frame, and to put the CRC on the end.
  297. */
  298. status |= (BD_ENET_TX_READY | BD_ENET_TX_INTR
  299. | BD_ENET_TX_LAST | BD_ENET_TX_TC);
  300. bdp->cbd_sc = status;
  301. /* Trigger transmission start */
  302. writel(0, fep->hwp + FEC_X_DES_ACTIVE);
  303. /* If this was the last BD in the ring, start at the beginning again. */
  304. if (status & BD_ENET_TX_WRAP)
  305. bdp = fep->tx_bd_base;
  306. else
  307. bdp++;
  308. if (bdp == fep->dirty_tx) {
  309. fep->tx_full = 1;
  310. netif_stop_queue(ndev);
  311. }
  312. fep->cur_tx = bdp;
  313. skb_tx_timestamp(skb);
  314. spin_unlock_irqrestore(&fep->hw_lock, flags);
  315. return NETDEV_TX_OK;
  316. }
  317. /* This function is called to start or restart the FEC during a link
  318. * change. This only happens when switching between half and full
  319. * duplex.
  320. */
  321. static void
  322. fec_restart(struct net_device *ndev, int duplex)
  323. {
  324. struct fec_enet_private *fep = netdev_priv(ndev);
  325. const struct platform_device_id *id_entry =
  326. platform_get_device_id(fep->pdev);
  327. int i;
  328. u32 temp_mac[2];
  329. u32 rcntl = OPT_FRAME_SIZE | 0x04;
  330. u32 ecntl = 0x2; /* ETHEREN */
  331. /* Whack a reset. We should wait for this. */
  332. writel(1, fep->hwp + FEC_ECNTRL);
  333. udelay(10);
  334. /*
  335. * enet-mac reset will reset mac address registers too,
  336. * so need to reconfigure it.
  337. */
  338. if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
  339. memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
  340. writel(cpu_to_be32(temp_mac[0]), fep->hwp + FEC_ADDR_LOW);
  341. writel(cpu_to_be32(temp_mac[1]), fep->hwp + FEC_ADDR_HIGH);
  342. }
  343. /* Clear any outstanding interrupt. */
  344. writel(0xffc00000, fep->hwp + FEC_IEVENT);
  345. /* Reset all multicast. */
  346. writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
  347. writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
  348. #ifndef CONFIG_M5272
  349. writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
  350. writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
  351. #endif
  352. /* Set maximum receive buffer size. */
  353. writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE);
  354. /* Set receive and transmit descriptor base. */
  355. writel(fep->bd_dma, fep->hwp + FEC_R_DES_START);
  356. writel((unsigned long)fep->bd_dma + sizeof(struct bufdesc) * RX_RING_SIZE,
  357. fep->hwp + FEC_X_DES_START);
  358. fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
  359. fep->cur_rx = fep->rx_bd_base;
  360. /* Reset SKB transmit buffers. */
  361. fep->skb_cur = fep->skb_dirty = 0;
  362. for (i = 0; i <= TX_RING_MOD_MASK; i++) {
  363. if (fep->tx_skbuff[i]) {
  364. dev_kfree_skb_any(fep->tx_skbuff[i]);
  365. fep->tx_skbuff[i] = NULL;
  366. }
  367. }
  368. /* Enable MII mode */
  369. if (duplex) {
  370. /* FD enable */
  371. writel(0x04, fep->hwp + FEC_X_CNTRL);
  372. } else {
  373. /* No Rcv on Xmit */
  374. rcntl |= 0x02;
  375. writel(0x0, fep->hwp + FEC_X_CNTRL);
  376. }
  377. fep->full_duplex = duplex;
  378. /* Set MII speed */
  379. writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
  380. /*
  381. * The phy interface and speed need to get configured
  382. * differently on enet-mac.
  383. */
  384. if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
  385. /* Enable flow control and length check */
  386. rcntl |= 0x40000000 | 0x00000020;
  387. /* RGMII, RMII or MII */
  388. if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII)
  389. rcntl |= (1 << 6);
  390. else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
  391. rcntl |= (1 << 8);
  392. else
  393. rcntl &= ~(1 << 8);
  394. /* 1G, 100M or 10M */
  395. if (fep->phy_dev) {
  396. if (fep->phy_dev->speed == SPEED_1000)
  397. ecntl |= (1 << 5);
  398. else if (fep->phy_dev->speed == SPEED_100)
  399. rcntl &= ~(1 << 9);
  400. else
  401. rcntl |= (1 << 9);
  402. }
  403. } else {
  404. #ifdef FEC_MIIGSK_ENR
  405. if (id_entry->driver_data & FEC_QUIRK_USE_GASKET) {
  406. /* disable the gasket and wait */
  407. writel(0, fep->hwp + FEC_MIIGSK_ENR);
  408. while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
  409. udelay(1);
  410. /*
  411. * configure the gasket:
  412. * RMII, 50 MHz, no loopback, no echo
  413. * MII, 25 MHz, no loopback, no echo
  414. */
  415. writel((fep->phy_interface == PHY_INTERFACE_MODE_RMII) ?
  416. 1 : 0, fep->hwp + FEC_MIIGSK_CFGR);
  417. /* re-enable the gasket */
  418. writel(2, fep->hwp + FEC_MIIGSK_ENR);
  419. }
  420. #endif
  421. }
  422. writel(rcntl, fep->hwp + FEC_R_CNTRL);
  423. if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
  424. /* enable ENET endian swap */
  425. ecntl |= (1 << 8);
  426. /* enable ENET store and forward mode */
  427. writel(1 << 8, fep->hwp + FEC_X_WMRK);
  428. }
  429. /* And last, enable the transmit and receive processing */
  430. writel(ecntl, fep->hwp + FEC_ECNTRL);
  431. writel(0, fep->hwp + FEC_R_DES_ACTIVE);
  432. /* Enable interrupts we wish to service */
  433. writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
  434. }
  435. static void
  436. fec_stop(struct net_device *ndev)
  437. {
  438. struct fec_enet_private *fep = netdev_priv(ndev);
  439. const struct platform_device_id *id_entry =
  440. platform_get_device_id(fep->pdev);
  441. /* We cannot expect a graceful transmit stop without link !!! */
  442. if (fep->link) {
  443. writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
  444. udelay(10);
  445. if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
  446. printk("fec_stop : Graceful transmit stop did not complete !\n");
  447. }
  448. /* Whack a reset. We should wait for this. */
  449. writel(1, fep->hwp + FEC_ECNTRL);
  450. udelay(10);
  451. writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
  452. writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
  453. /* We have to keep ENET enabled to have MII interrupt stay working */
  454. if (id_entry->driver_data & FEC_QUIRK_ENET_MAC)
  455. writel(2, fep->hwp + FEC_ECNTRL);
  456. }
  457. static void
  458. fec_timeout(struct net_device *ndev)
  459. {
  460. struct fec_enet_private *fep = netdev_priv(ndev);
  461. ndev->stats.tx_errors++;
  462. fec_restart(ndev, fep->full_duplex);
  463. netif_wake_queue(ndev);
  464. }
  465. static void
  466. fec_enet_tx(struct net_device *ndev)
  467. {
  468. struct fec_enet_private *fep;
  469. struct bufdesc *bdp;
  470. unsigned short status;
  471. struct sk_buff *skb;
  472. fep = netdev_priv(ndev);
  473. spin_lock(&fep->hw_lock);
  474. bdp = fep->dirty_tx;
  475. while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
  476. if (bdp == fep->cur_tx && fep->tx_full == 0)
  477. break;
  478. dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
  479. FEC_ENET_TX_FRSIZE, DMA_TO_DEVICE);
  480. bdp->cbd_bufaddr = 0;
  481. skb = fep->tx_skbuff[fep->skb_dirty];
  482. /* Check for errors. */
  483. if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
  484. BD_ENET_TX_RL | BD_ENET_TX_UN |
  485. BD_ENET_TX_CSL)) {
  486. ndev->stats.tx_errors++;
  487. if (status & BD_ENET_TX_HB) /* No heartbeat */
  488. ndev->stats.tx_heartbeat_errors++;
  489. if (status & BD_ENET_TX_LC) /* Late collision */
  490. ndev->stats.tx_window_errors++;
  491. if (status & BD_ENET_TX_RL) /* Retrans limit */
  492. ndev->stats.tx_aborted_errors++;
  493. if (status & BD_ENET_TX_UN) /* Underrun */
  494. ndev->stats.tx_fifo_errors++;
  495. if (status & BD_ENET_TX_CSL) /* Carrier lost */
  496. ndev->stats.tx_carrier_errors++;
  497. } else {
  498. ndev->stats.tx_packets++;
  499. }
  500. if (status & BD_ENET_TX_READY)
  501. printk("HEY! Enet xmit interrupt and TX_READY.\n");
  502. /* Deferred means some collisions occurred during transmit,
  503. * but we eventually sent the packet OK.
  504. */
  505. if (status & BD_ENET_TX_DEF)
  506. ndev->stats.collisions++;
  507. /* Free the sk buffer associated with this last transmit */
  508. dev_kfree_skb_any(skb);
  509. fep->tx_skbuff[fep->skb_dirty] = NULL;
  510. fep->skb_dirty = (fep->skb_dirty + 1) & TX_RING_MOD_MASK;
  511. /* Update pointer to next buffer descriptor to be transmitted */
  512. if (status & BD_ENET_TX_WRAP)
  513. bdp = fep->tx_bd_base;
  514. else
  515. bdp++;
  516. /* Since we have freed up a buffer, the ring is no longer full
  517. */
  518. if (fep->tx_full) {
  519. fep->tx_full = 0;
  520. if (netif_queue_stopped(ndev))
  521. netif_wake_queue(ndev);
  522. }
  523. }
  524. fep->dirty_tx = bdp;
  525. spin_unlock(&fep->hw_lock);
  526. }
  527. /* During a receive, the cur_rx points to the current incoming buffer.
  528. * When we update through the ring, if the next incoming buffer has
  529. * not been given to the system, we just set the empty indicator,
  530. * effectively tossing the packet.
  531. */
  532. static void
  533. fec_enet_rx(struct net_device *ndev)
  534. {
  535. struct fec_enet_private *fep = netdev_priv(ndev);
  536. const struct platform_device_id *id_entry =
  537. platform_get_device_id(fep->pdev);
  538. struct bufdesc *bdp;
  539. unsigned short status;
  540. struct sk_buff *skb;
  541. ushort pkt_len;
  542. __u8 *data;
  543. #ifdef CONFIG_M532x
  544. flush_cache_all();
  545. #endif
  546. spin_lock(&fep->hw_lock);
  547. /* First, grab all of the stats for the incoming packet.
  548. * These get messed up if we get called due to a busy condition.
  549. */
  550. bdp = fep->cur_rx;
  551. while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
  552. /* Since we have allocated space to hold a complete frame,
  553. * the last indicator should be set.
  554. */
  555. if ((status & BD_ENET_RX_LAST) == 0)
  556. printk("FEC ENET: rcv is not +last\n");
  557. if (!fep->opened)
  558. goto rx_processing_done;
  559. /* Check for errors. */
  560. if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
  561. BD_ENET_RX_CR | BD_ENET_RX_OV)) {
  562. ndev->stats.rx_errors++;
  563. if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
  564. /* Frame too long or too short. */
  565. ndev->stats.rx_length_errors++;
  566. }
  567. if (status & BD_ENET_RX_NO) /* Frame alignment */
  568. ndev->stats.rx_frame_errors++;
  569. if (status & BD_ENET_RX_CR) /* CRC Error */
  570. ndev->stats.rx_crc_errors++;
  571. if (status & BD_ENET_RX_OV) /* FIFO overrun */
  572. ndev->stats.rx_fifo_errors++;
  573. }
  574. /* Report late collisions as a frame error.
  575. * On this error, the BD is closed, but we don't know what we
  576. * have in the buffer. So, just drop this frame on the floor.
  577. */
  578. if (status & BD_ENET_RX_CL) {
  579. ndev->stats.rx_errors++;
  580. ndev->stats.rx_frame_errors++;
  581. goto rx_processing_done;
  582. }
  583. /* Process the incoming frame. */
  584. ndev->stats.rx_packets++;
  585. pkt_len = bdp->cbd_datlen;
  586. ndev->stats.rx_bytes += pkt_len;
  587. data = (__u8*)__va(bdp->cbd_bufaddr);
  588. dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
  589. FEC_ENET_TX_FRSIZE, DMA_FROM_DEVICE);
  590. if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
  591. swap_buffer(data, pkt_len);
  592. /* This does 16 byte alignment, exactly what we need.
  593. * The packet length includes FCS, but we don't want to
  594. * include that when passing upstream as it messes up
  595. * bridging applications.
  596. */
  597. skb = dev_alloc_skb(pkt_len - 4 + NET_IP_ALIGN);
  598. if (unlikely(!skb)) {
  599. printk("%s: Memory squeeze, dropping packet.\n",
  600. ndev->name);
  601. ndev->stats.rx_dropped++;
  602. } else {
  603. skb_reserve(skb, NET_IP_ALIGN);
  604. skb_put(skb, pkt_len - 4); /* Make room */
  605. skb_copy_to_linear_data(skb, data, pkt_len - 4);
  606. skb->protocol = eth_type_trans(skb, ndev);
  607. if (!skb_defer_rx_timestamp(skb))
  608. netif_rx(skb);
  609. }
  610. bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, data,
  611. FEC_ENET_TX_FRSIZE, DMA_FROM_DEVICE);
  612. rx_processing_done:
  613. /* Clear the status flags for this buffer */
  614. status &= ~BD_ENET_RX_STATS;
  615. /* Mark the buffer empty */
  616. status |= BD_ENET_RX_EMPTY;
  617. bdp->cbd_sc = status;
  618. /* Update BD pointer to next entry */
  619. if (status & BD_ENET_RX_WRAP)
  620. bdp = fep->rx_bd_base;
  621. else
  622. bdp++;
  623. /* Doing this here will keep the FEC running while we process
  624. * incoming frames. On a heavily loaded network, we should be
  625. * able to keep up at the expense of system resources.
  626. */
  627. writel(0, fep->hwp + FEC_R_DES_ACTIVE);
  628. }
  629. fep->cur_rx = bdp;
  630. spin_unlock(&fep->hw_lock);
  631. }
  632. static irqreturn_t
  633. fec_enet_interrupt(int irq, void *dev_id)
  634. {
  635. struct net_device *ndev = dev_id;
  636. struct fec_enet_private *fep = netdev_priv(ndev);
  637. uint int_events;
  638. irqreturn_t ret = IRQ_NONE;
  639. do {
  640. int_events = readl(fep->hwp + FEC_IEVENT);
  641. writel(int_events, fep->hwp + FEC_IEVENT);
  642. if (int_events & FEC_ENET_RXF) {
  643. ret = IRQ_HANDLED;
  644. fec_enet_rx(ndev);
  645. }
  646. /* Transmit OK, or non-fatal error. Update the buffer
  647. * descriptors. FEC handles all errors, we just discover
  648. * them as part of the transmit process.
  649. */
  650. if (int_events & FEC_ENET_TXF) {
  651. ret = IRQ_HANDLED;
  652. fec_enet_tx(ndev);
  653. }
  654. if (int_events & FEC_ENET_MII) {
  655. ret = IRQ_HANDLED;
  656. complete(&fep->mdio_done);
  657. }
  658. } while (int_events);
  659. return ret;
  660. }
  661. /* ------------------------------------------------------------------------- */
  662. static void __inline__ fec_get_mac(struct net_device *ndev)
  663. {
  664. struct fec_enet_private *fep = netdev_priv(ndev);
  665. struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
  666. unsigned char *iap, tmpaddr[ETH_ALEN];
  667. /*
  668. * try to get mac address in following order:
  669. *
  670. * 1) module parameter via kernel command line in form
  671. * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
  672. */
  673. iap = macaddr;
  674. #ifdef CONFIG_OF
  675. /*
  676. * 2) from device tree data
  677. */
  678. if (!is_valid_ether_addr(iap)) {
  679. struct device_node *np = fep->pdev->dev.of_node;
  680. if (np) {
  681. const char *mac = of_get_mac_address(np);
  682. if (mac)
  683. iap = (unsigned char *) mac;
  684. }
  685. }
  686. #endif
  687. /*
  688. * 3) from flash or fuse (via platform data)
  689. */
  690. if (!is_valid_ether_addr(iap)) {
  691. #ifdef CONFIG_M5272
  692. if (FEC_FLASHMAC)
  693. iap = (unsigned char *)FEC_FLASHMAC;
  694. #else
  695. if (pdata)
  696. memcpy(iap, pdata->mac, ETH_ALEN);
  697. #endif
  698. }
  699. /*
  700. * 4) FEC mac registers set by bootloader
  701. */
  702. if (!is_valid_ether_addr(iap)) {
  703. *((unsigned long *) &tmpaddr[0]) =
  704. be32_to_cpu(readl(fep->hwp + FEC_ADDR_LOW));
  705. *((unsigned short *) &tmpaddr[4]) =
  706. be16_to_cpu(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
  707. iap = &tmpaddr[0];
  708. }
  709. memcpy(ndev->dev_addr, iap, ETH_ALEN);
  710. /* Adjust MAC if using macaddr */
  711. if (iap == macaddr)
  712. ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->pdev->id;
  713. }
  714. /* ------------------------------------------------------------------------- */
  715. /*
  716. * Phy section
  717. */
  718. static void fec_enet_adjust_link(struct net_device *ndev)
  719. {
  720. struct fec_enet_private *fep = netdev_priv(ndev);
  721. struct phy_device *phy_dev = fep->phy_dev;
  722. unsigned long flags;
  723. int status_change = 0;
  724. spin_lock_irqsave(&fep->hw_lock, flags);
  725. /* Prevent a state halted on mii error */
  726. if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
  727. phy_dev->state = PHY_RESUMING;
  728. goto spin_unlock;
  729. }
  730. /* Duplex link change */
  731. if (phy_dev->link) {
  732. if (fep->full_duplex != phy_dev->duplex) {
  733. fec_restart(ndev, phy_dev->duplex);
  734. status_change = 1;
  735. }
  736. }
  737. /* Link on or off change */
  738. if (phy_dev->link != fep->link) {
  739. fep->link = phy_dev->link;
  740. if (phy_dev->link)
  741. fec_restart(ndev, phy_dev->duplex);
  742. else
  743. fec_stop(ndev);
  744. status_change = 1;
  745. }
  746. spin_unlock:
  747. spin_unlock_irqrestore(&fep->hw_lock, flags);
  748. if (status_change)
  749. phy_print_status(phy_dev);
  750. }
  751. static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
  752. {
  753. struct fec_enet_private *fep = bus->priv;
  754. unsigned long time_left;
  755. fep->mii_timeout = 0;
  756. init_completion(&fep->mdio_done);
  757. /* start a read op */
  758. writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
  759. FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
  760. FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
  761. /* wait for end of transfer */
  762. time_left = wait_for_completion_timeout(&fep->mdio_done,
  763. usecs_to_jiffies(FEC_MII_TIMEOUT));
  764. if (time_left == 0) {
  765. fep->mii_timeout = 1;
  766. printk(KERN_ERR "FEC: MDIO read timeout\n");
  767. return -ETIMEDOUT;
  768. }
  769. /* return value */
  770. return FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
  771. }
  772. static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
  773. u16 value)
  774. {
  775. struct fec_enet_private *fep = bus->priv;
  776. unsigned long time_left;
  777. fep->mii_timeout = 0;
  778. init_completion(&fep->mdio_done);
  779. /* start a write op */
  780. writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
  781. FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
  782. FEC_MMFR_TA | FEC_MMFR_DATA(value),
  783. fep->hwp + FEC_MII_DATA);
  784. /* wait for end of transfer */
  785. time_left = wait_for_completion_timeout(&fep->mdio_done,
  786. usecs_to_jiffies(FEC_MII_TIMEOUT));
  787. if (time_left == 0) {
  788. fep->mii_timeout = 1;
  789. printk(KERN_ERR "FEC: MDIO write timeout\n");
  790. return -ETIMEDOUT;
  791. }
  792. return 0;
  793. }
  794. static int fec_enet_mdio_reset(struct mii_bus *bus)
  795. {
  796. return 0;
  797. }
  798. static int fec_enet_mii_probe(struct net_device *ndev)
  799. {
  800. struct fec_enet_private *fep = netdev_priv(ndev);
  801. const struct platform_device_id *id_entry =
  802. platform_get_device_id(fep->pdev);
  803. struct phy_device *phy_dev = NULL;
  804. char mdio_bus_id[MII_BUS_ID_SIZE];
  805. char phy_name[MII_BUS_ID_SIZE + 3];
  806. int phy_id;
  807. int dev_id = fep->pdev->id;
  808. fep->phy_dev = NULL;
  809. /* check for attached phy */
  810. for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
  811. if ((fep->mii_bus->phy_mask & (1 << phy_id)))
  812. continue;
  813. if (fep->mii_bus->phy_map[phy_id] == NULL)
  814. continue;
  815. if (fep->mii_bus->phy_map[phy_id]->phy_id == 0)
  816. continue;
  817. if (dev_id--)
  818. continue;
  819. strncpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
  820. break;
  821. }
  822. if (phy_id >= PHY_MAX_ADDR) {
  823. printk(KERN_INFO "%s: no PHY, assuming direct connection "
  824. "to switch\n", ndev->name);
  825. strncpy(mdio_bus_id, "0", MII_BUS_ID_SIZE);
  826. phy_id = 0;
  827. }
  828. snprintf(phy_name, MII_BUS_ID_SIZE, PHY_ID_FMT, mdio_bus_id, phy_id);
  829. phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link, 0,
  830. fep->phy_interface);
  831. if (IS_ERR(phy_dev)) {
  832. printk(KERN_ERR "%s: could not attach to PHY\n", ndev->name);
  833. return PTR_ERR(phy_dev);
  834. }
  835. /* mask with MAC supported features */
  836. if (id_entry->driver_data & FEC_QUIRK_HAS_GBIT)
  837. phy_dev->supported &= PHY_GBIT_FEATURES;
  838. else
  839. phy_dev->supported &= PHY_BASIC_FEATURES;
  840. phy_dev->advertising = phy_dev->supported;
  841. fep->phy_dev = phy_dev;
  842. fep->link = 0;
  843. fep->full_duplex = 0;
  844. printk(KERN_INFO "%s: Freescale FEC PHY driver [%s] "
  845. "(mii_bus:phy_addr=%s, irq=%d)\n", ndev->name,
  846. fep->phy_dev->drv->name, dev_name(&fep->phy_dev->dev),
  847. fep->phy_dev->irq);
  848. return 0;
  849. }
  850. static int fec_enet_mii_init(struct platform_device *pdev)
  851. {
  852. static struct mii_bus *fec0_mii_bus;
  853. struct net_device *ndev = platform_get_drvdata(pdev);
  854. struct fec_enet_private *fep = netdev_priv(ndev);
  855. const struct platform_device_id *id_entry =
  856. platform_get_device_id(fep->pdev);
  857. int err = -ENXIO, i;
  858. /*
  859. * The dual fec interfaces are not equivalent with enet-mac.
  860. * Here are the differences:
  861. *
  862. * - fec0 supports MII & RMII modes while fec1 only supports RMII
  863. * - fec0 acts as the 1588 time master while fec1 is slave
  864. * - external phys can only be configured by fec0
  865. *
  866. * That is to say fec1 can not work independently. It only works
  867. * when fec0 is working. The reason behind this design is that the
  868. * second interface is added primarily for Switch mode.
  869. *
  870. * Because of the last point above, both phys are attached on fec0
  871. * mdio interface in board design, and need to be configured by
  872. * fec0 mii_bus.
  873. */
  874. if ((id_entry->driver_data & FEC_QUIRK_ENET_MAC) && pdev->id > 0) {
  875. /* fec1 uses fec0 mii_bus */
  876. fep->mii_bus = fec0_mii_bus;
  877. return 0;
  878. }
  879. fep->mii_timeout = 0;
  880. /*
  881. * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
  882. *
  883. * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
  884. * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'. The i.MX28
  885. * Reference Manual has an error on this, and gets fixed on i.MX6Q
  886. * document.
  887. */
  888. fep->phy_speed = DIV_ROUND_UP(clk_get_rate(fep->clk), 5000000);
  889. if (id_entry->driver_data & FEC_QUIRK_ENET_MAC)
  890. fep->phy_speed--;
  891. fep->phy_speed <<= 1;
  892. writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
  893. fep->mii_bus = mdiobus_alloc();
  894. if (fep->mii_bus == NULL) {
  895. err = -ENOMEM;
  896. goto err_out;
  897. }
  898. fep->mii_bus->name = "fec_enet_mii_bus";
  899. fep->mii_bus->read = fec_enet_mdio_read;
  900. fep->mii_bus->write = fec_enet_mdio_write;
  901. fep->mii_bus->reset = fec_enet_mdio_reset;
  902. snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%x", pdev->id + 1);
  903. fep->mii_bus->priv = fep;
  904. fep->mii_bus->parent = &pdev->dev;
  905. fep->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
  906. if (!fep->mii_bus->irq) {
  907. err = -ENOMEM;
  908. goto err_out_free_mdiobus;
  909. }
  910. for (i = 0; i < PHY_MAX_ADDR; i++)
  911. fep->mii_bus->irq[i] = PHY_POLL;
  912. if (mdiobus_register(fep->mii_bus))
  913. goto err_out_free_mdio_irq;
  914. /* save fec0 mii_bus */
  915. if (id_entry->driver_data & FEC_QUIRK_ENET_MAC)
  916. fec0_mii_bus = fep->mii_bus;
  917. return 0;
  918. err_out_free_mdio_irq:
  919. kfree(fep->mii_bus->irq);
  920. err_out_free_mdiobus:
  921. mdiobus_free(fep->mii_bus);
  922. err_out:
  923. return err;
  924. }
  925. static void fec_enet_mii_remove(struct fec_enet_private *fep)
  926. {
  927. if (fep->phy_dev)
  928. phy_disconnect(fep->phy_dev);
  929. mdiobus_unregister(fep->mii_bus);
  930. kfree(fep->mii_bus->irq);
  931. mdiobus_free(fep->mii_bus);
  932. }
  933. static int fec_enet_get_settings(struct net_device *ndev,
  934. struct ethtool_cmd *cmd)
  935. {
  936. struct fec_enet_private *fep = netdev_priv(ndev);
  937. struct phy_device *phydev = fep->phy_dev;
  938. if (!phydev)
  939. return -ENODEV;
  940. return phy_ethtool_gset(phydev, cmd);
  941. }
  942. static int fec_enet_set_settings(struct net_device *ndev,
  943. struct ethtool_cmd *cmd)
  944. {
  945. struct fec_enet_private *fep = netdev_priv(ndev);
  946. struct phy_device *phydev = fep->phy_dev;
  947. if (!phydev)
  948. return -ENODEV;
  949. return phy_ethtool_sset(phydev, cmd);
  950. }
  951. static void fec_enet_get_drvinfo(struct net_device *ndev,
  952. struct ethtool_drvinfo *info)
  953. {
  954. struct fec_enet_private *fep = netdev_priv(ndev);
  955. strcpy(info->driver, fep->pdev->dev.driver->name);
  956. strcpy(info->version, "Revision: 1.0");
  957. strcpy(info->bus_info, dev_name(&ndev->dev));
  958. }
  959. static struct ethtool_ops fec_enet_ethtool_ops = {
  960. .get_settings = fec_enet_get_settings,
  961. .set_settings = fec_enet_set_settings,
  962. .get_drvinfo = fec_enet_get_drvinfo,
  963. .get_link = ethtool_op_get_link,
  964. };
  965. static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
  966. {
  967. struct fec_enet_private *fep = netdev_priv(ndev);
  968. struct phy_device *phydev = fep->phy_dev;
  969. if (!netif_running(ndev))
  970. return -EINVAL;
  971. if (!phydev)
  972. return -ENODEV;
  973. return phy_mii_ioctl(phydev, rq, cmd);
  974. }
  975. static void fec_enet_free_buffers(struct net_device *ndev)
  976. {
  977. struct fec_enet_private *fep = netdev_priv(ndev);
  978. int i;
  979. struct sk_buff *skb;
  980. struct bufdesc *bdp;
  981. bdp = fep->rx_bd_base;
  982. for (i = 0; i < RX_RING_SIZE; i++) {
  983. skb = fep->rx_skbuff[i];
  984. if (bdp->cbd_bufaddr)
  985. dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
  986. FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
  987. if (skb)
  988. dev_kfree_skb(skb);
  989. bdp++;
  990. }
  991. bdp = fep->tx_bd_base;
  992. for (i = 0; i < TX_RING_SIZE; i++)
  993. kfree(fep->tx_bounce[i]);
  994. }
  995. static int fec_enet_alloc_buffers(struct net_device *ndev)
  996. {
  997. struct fec_enet_private *fep = netdev_priv(ndev);
  998. int i;
  999. struct sk_buff *skb;
  1000. struct bufdesc *bdp;
  1001. bdp = fep->rx_bd_base;
  1002. for (i = 0; i < RX_RING_SIZE; i++) {
  1003. skb = dev_alloc_skb(FEC_ENET_RX_FRSIZE);
  1004. if (!skb) {
  1005. fec_enet_free_buffers(ndev);
  1006. return -ENOMEM;
  1007. }
  1008. fep->rx_skbuff[i] = skb;
  1009. bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, skb->data,
  1010. FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
  1011. bdp->cbd_sc = BD_ENET_RX_EMPTY;
  1012. bdp++;
  1013. }
  1014. /* Set the last buffer to wrap. */
  1015. bdp--;
  1016. bdp->cbd_sc |= BD_SC_WRAP;
  1017. bdp = fep->tx_bd_base;
  1018. for (i = 0; i < TX_RING_SIZE; i++) {
  1019. fep->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
  1020. bdp->cbd_sc = 0;
  1021. bdp->cbd_bufaddr = 0;
  1022. bdp++;
  1023. }
  1024. /* Set the last buffer to wrap. */
  1025. bdp--;
  1026. bdp->cbd_sc |= BD_SC_WRAP;
  1027. return 0;
  1028. }
  1029. static int
  1030. fec_enet_open(struct net_device *ndev)
  1031. {
  1032. struct fec_enet_private *fep = netdev_priv(ndev);
  1033. int ret;
  1034. /* I should reset the ring buffers here, but I don't yet know
  1035. * a simple way to do that.
  1036. */
  1037. ret = fec_enet_alloc_buffers(ndev);
  1038. if (ret)
  1039. return ret;
  1040. /* Probe and connect to PHY when open the interface */
  1041. ret = fec_enet_mii_probe(ndev);
  1042. if (ret) {
  1043. fec_enet_free_buffers(ndev);
  1044. return ret;
  1045. }
  1046. phy_start(fep->phy_dev);
  1047. netif_start_queue(ndev);
  1048. fep->opened = 1;
  1049. return 0;
  1050. }
  1051. static int
  1052. fec_enet_close(struct net_device *ndev)
  1053. {
  1054. struct fec_enet_private *fep = netdev_priv(ndev);
  1055. /* Don't know what to do yet. */
  1056. fep->opened = 0;
  1057. netif_stop_queue(ndev);
  1058. fec_stop(ndev);
  1059. if (fep->phy_dev) {
  1060. phy_stop(fep->phy_dev);
  1061. phy_disconnect(fep->phy_dev);
  1062. }
  1063. fec_enet_free_buffers(ndev);
  1064. return 0;
  1065. }
  1066. /* Set or clear the multicast filter for this adaptor.
  1067. * Skeleton taken from sunlance driver.
  1068. * The CPM Ethernet implementation allows Multicast as well as individual
  1069. * MAC address filtering. Some of the drivers check to make sure it is
  1070. * a group multicast address, and discard those that are not. I guess I
  1071. * will do the same for now, but just remove the test if you want
  1072. * individual filtering as well (do the upper net layers want or support
  1073. * this kind of feature?).
  1074. */
  1075. #define HASH_BITS 6 /* #bits in hash */
  1076. #define CRC32_POLY 0xEDB88320
  1077. static void set_multicast_list(struct net_device *ndev)
  1078. {
  1079. struct fec_enet_private *fep = netdev_priv(ndev);
  1080. struct netdev_hw_addr *ha;
  1081. unsigned int i, bit, data, crc, tmp;
  1082. unsigned char hash;
  1083. if (ndev->flags & IFF_PROMISC) {
  1084. tmp = readl(fep->hwp + FEC_R_CNTRL);
  1085. tmp |= 0x8;
  1086. writel(tmp, fep->hwp + FEC_R_CNTRL);
  1087. return;
  1088. }
  1089. tmp = readl(fep->hwp + FEC_R_CNTRL);
  1090. tmp &= ~0x8;
  1091. writel(tmp, fep->hwp + FEC_R_CNTRL);
  1092. if (ndev->flags & IFF_ALLMULTI) {
  1093. /* Catch all multicast addresses, so set the
  1094. * filter to all 1's
  1095. */
  1096. writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
  1097. writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
  1098. return;
  1099. }
  1100. /* Clear filter and add the addresses in hash register
  1101. */
  1102. writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
  1103. writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
  1104. netdev_for_each_mc_addr(ha, ndev) {
  1105. /* calculate crc32 value of mac address */
  1106. crc = 0xffffffff;
  1107. for (i = 0; i < ndev->addr_len; i++) {
  1108. data = ha->addr[i];
  1109. for (bit = 0; bit < 8; bit++, data >>= 1) {
  1110. crc = (crc >> 1) ^
  1111. (((crc ^ data) & 1) ? CRC32_POLY : 0);
  1112. }
  1113. }
  1114. /* only upper 6 bits (HASH_BITS) are used
  1115. * which point to specific bit in he hash registers
  1116. */
  1117. hash = (crc >> (32 - HASH_BITS)) & 0x3f;
  1118. if (hash > 31) {
  1119. tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
  1120. tmp |= 1 << (hash - 32);
  1121. writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
  1122. } else {
  1123. tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW);
  1124. tmp |= 1 << hash;
  1125. writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
  1126. }
  1127. }
  1128. }
  1129. /* Set a MAC change in hardware. */
  1130. static int
  1131. fec_set_mac_address(struct net_device *ndev, void *p)
  1132. {
  1133. struct fec_enet_private *fep = netdev_priv(ndev);
  1134. struct sockaddr *addr = p;
  1135. if (!is_valid_ether_addr(addr->sa_data))
  1136. return -EADDRNOTAVAIL;
  1137. memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
  1138. writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
  1139. (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
  1140. fep->hwp + FEC_ADDR_LOW);
  1141. writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
  1142. fep->hwp + FEC_ADDR_HIGH);
  1143. return 0;
  1144. }
  1145. static const struct net_device_ops fec_netdev_ops = {
  1146. .ndo_open = fec_enet_open,
  1147. .ndo_stop = fec_enet_close,
  1148. .ndo_start_xmit = fec_enet_start_xmit,
  1149. .ndo_set_rx_mode = set_multicast_list,
  1150. .ndo_change_mtu = eth_change_mtu,
  1151. .ndo_validate_addr = eth_validate_addr,
  1152. .ndo_tx_timeout = fec_timeout,
  1153. .ndo_set_mac_address = fec_set_mac_address,
  1154. .ndo_do_ioctl = fec_enet_ioctl,
  1155. };
  1156. /*
  1157. * XXX: We need to clean up on failure exits here.
  1158. *
  1159. */
  1160. static int fec_enet_init(struct net_device *ndev)
  1161. {
  1162. struct fec_enet_private *fep = netdev_priv(ndev);
  1163. struct bufdesc *cbd_base;
  1164. struct bufdesc *bdp;
  1165. int i;
  1166. /* Allocate memory for buffer descriptors. */
  1167. cbd_base = dma_alloc_coherent(NULL, PAGE_SIZE, &fep->bd_dma,
  1168. GFP_KERNEL);
  1169. if (!cbd_base) {
  1170. printk("FEC: allocate descriptor memory failed?\n");
  1171. return -ENOMEM;
  1172. }
  1173. spin_lock_init(&fep->hw_lock);
  1174. fep->netdev = ndev;
  1175. /* Get the Ethernet address */
  1176. fec_get_mac(ndev);
  1177. /* Set receive and transmit descriptor base. */
  1178. fep->rx_bd_base = cbd_base;
  1179. fep->tx_bd_base = cbd_base + RX_RING_SIZE;
  1180. /* The FEC Ethernet specific entries in the device structure */
  1181. ndev->watchdog_timeo = TX_TIMEOUT;
  1182. ndev->netdev_ops = &fec_netdev_ops;
  1183. ndev->ethtool_ops = &fec_enet_ethtool_ops;
  1184. /* Initialize the receive buffer descriptors. */
  1185. bdp = fep->rx_bd_base;
  1186. for (i = 0; i < RX_RING_SIZE; i++) {
  1187. /* Initialize the BD for every fragment in the page. */
  1188. bdp->cbd_sc = 0;
  1189. bdp++;
  1190. }
  1191. /* Set the last buffer to wrap */
  1192. bdp--;
  1193. bdp->cbd_sc |= BD_SC_WRAP;
  1194. /* ...and the same for transmit */
  1195. bdp = fep->tx_bd_base;
  1196. for (i = 0; i < TX_RING_SIZE; i++) {
  1197. /* Initialize the BD for every fragment in the page. */
  1198. bdp->cbd_sc = 0;
  1199. bdp->cbd_bufaddr = 0;
  1200. bdp++;
  1201. }
  1202. /* Set the last buffer to wrap */
  1203. bdp--;
  1204. bdp->cbd_sc |= BD_SC_WRAP;
  1205. fec_restart(ndev, 0);
  1206. return 0;
  1207. }
  1208. #ifdef CONFIG_OF
  1209. static int __devinit fec_get_phy_mode_dt(struct platform_device *pdev)
  1210. {
  1211. struct device_node *np = pdev->dev.of_node;
  1212. if (np)
  1213. return of_get_phy_mode(np);
  1214. return -ENODEV;
  1215. }
  1216. static void __devinit fec_reset_phy(struct platform_device *pdev)
  1217. {
  1218. int err, phy_reset;
  1219. struct device_node *np = pdev->dev.of_node;
  1220. if (!np)
  1221. return;
  1222. phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
  1223. err = gpio_request_one(phy_reset, GPIOF_OUT_INIT_LOW, "phy-reset");
  1224. if (err) {
  1225. pr_debug("FEC: failed to get gpio phy-reset: %d\n", err);
  1226. return;
  1227. }
  1228. msleep(1);
  1229. gpio_set_value(phy_reset, 1);
  1230. }
  1231. #else /* CONFIG_OF */
  1232. static inline int fec_get_phy_mode_dt(struct platform_device *pdev)
  1233. {
  1234. return -ENODEV;
  1235. }
  1236. static inline void fec_reset_phy(struct platform_device *pdev)
  1237. {
  1238. /*
  1239. * In case of platform probe, the reset has been done
  1240. * by machine code.
  1241. */
  1242. }
  1243. #endif /* CONFIG_OF */
  1244. static int __devinit
  1245. fec_probe(struct platform_device *pdev)
  1246. {
  1247. struct fec_enet_private *fep;
  1248. struct fec_platform_data *pdata;
  1249. struct net_device *ndev;
  1250. int i, irq, ret = 0;
  1251. struct resource *r;
  1252. const struct of_device_id *of_id;
  1253. of_id = of_match_device(fec_dt_ids, &pdev->dev);
  1254. if (of_id)
  1255. pdev->id_entry = of_id->data;
  1256. r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1257. if (!r)
  1258. return -ENXIO;
  1259. r = request_mem_region(r->start, resource_size(r), pdev->name);
  1260. if (!r)
  1261. return -EBUSY;
  1262. /* Init network device */
  1263. ndev = alloc_etherdev(sizeof(struct fec_enet_private));
  1264. if (!ndev) {
  1265. ret = -ENOMEM;
  1266. goto failed_alloc_etherdev;
  1267. }
  1268. SET_NETDEV_DEV(ndev, &pdev->dev);
  1269. /* setup board info structure */
  1270. fep = netdev_priv(ndev);
  1271. fep->hwp = ioremap(r->start, resource_size(r));
  1272. fep->pdev = pdev;
  1273. if (!fep->hwp) {
  1274. ret = -ENOMEM;
  1275. goto failed_ioremap;
  1276. }
  1277. platform_set_drvdata(pdev, ndev);
  1278. ret = fec_get_phy_mode_dt(pdev);
  1279. if (ret < 0) {
  1280. pdata = pdev->dev.platform_data;
  1281. if (pdata)
  1282. fep->phy_interface = pdata->phy;
  1283. else
  1284. fep->phy_interface = PHY_INTERFACE_MODE_MII;
  1285. } else {
  1286. fep->phy_interface = ret;
  1287. }
  1288. fec_reset_phy(pdev);
  1289. for (i = 0; i < FEC_IRQ_NUM; i++) {
  1290. irq = platform_get_irq(pdev, i);
  1291. if (i && irq < 0)
  1292. break;
  1293. ret = request_irq(irq, fec_enet_interrupt, IRQF_DISABLED, pdev->name, ndev);
  1294. if (ret) {
  1295. while (--i >= 0) {
  1296. irq = platform_get_irq(pdev, i);
  1297. free_irq(irq, ndev);
  1298. }
  1299. goto failed_irq;
  1300. }
  1301. }
  1302. fep->clk = clk_get(&pdev->dev, "fec_clk");
  1303. if (IS_ERR(fep->clk)) {
  1304. ret = PTR_ERR(fep->clk);
  1305. goto failed_clk;
  1306. }
  1307. clk_enable(fep->clk);
  1308. ret = fec_enet_init(ndev);
  1309. if (ret)
  1310. goto failed_init;
  1311. ret = fec_enet_mii_init(pdev);
  1312. if (ret)
  1313. goto failed_mii_init;
  1314. /* Carrier starts down, phylib will bring it up */
  1315. netif_carrier_off(ndev);
  1316. ret = register_netdev(ndev);
  1317. if (ret)
  1318. goto failed_register;
  1319. return 0;
  1320. failed_register:
  1321. fec_enet_mii_remove(fep);
  1322. failed_mii_init:
  1323. failed_init:
  1324. clk_disable(fep->clk);
  1325. clk_put(fep->clk);
  1326. failed_clk:
  1327. for (i = 0; i < FEC_IRQ_NUM; i++) {
  1328. irq = platform_get_irq(pdev, i);
  1329. if (irq > 0)
  1330. free_irq(irq, ndev);
  1331. }
  1332. failed_irq:
  1333. iounmap(fep->hwp);
  1334. failed_ioremap:
  1335. free_netdev(ndev);
  1336. failed_alloc_etherdev:
  1337. release_mem_region(r->start, resource_size(r));
  1338. return ret;
  1339. }
  1340. static int __devexit
  1341. fec_drv_remove(struct platform_device *pdev)
  1342. {
  1343. struct net_device *ndev = platform_get_drvdata(pdev);
  1344. struct fec_enet_private *fep = netdev_priv(ndev);
  1345. struct resource *r;
  1346. fec_stop(ndev);
  1347. fec_enet_mii_remove(fep);
  1348. clk_disable(fep->clk);
  1349. clk_put(fep->clk);
  1350. iounmap(fep->hwp);
  1351. unregister_netdev(ndev);
  1352. free_netdev(ndev);
  1353. r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1354. BUG_ON(!r);
  1355. release_mem_region(r->start, resource_size(r));
  1356. platform_set_drvdata(pdev, NULL);
  1357. return 0;
  1358. }
  1359. #ifdef CONFIG_PM
  1360. static int
  1361. fec_suspend(struct device *dev)
  1362. {
  1363. struct net_device *ndev = dev_get_drvdata(dev);
  1364. struct fec_enet_private *fep = netdev_priv(ndev);
  1365. if (netif_running(ndev)) {
  1366. fec_stop(ndev);
  1367. netif_device_detach(ndev);
  1368. }
  1369. clk_disable(fep->clk);
  1370. return 0;
  1371. }
  1372. static int
  1373. fec_resume(struct device *dev)
  1374. {
  1375. struct net_device *ndev = dev_get_drvdata(dev);
  1376. struct fec_enet_private *fep = netdev_priv(ndev);
  1377. clk_enable(fep->clk);
  1378. if (netif_running(ndev)) {
  1379. fec_restart(ndev, fep->full_duplex);
  1380. netif_device_attach(ndev);
  1381. }
  1382. return 0;
  1383. }
  1384. static const struct dev_pm_ops fec_pm_ops = {
  1385. .suspend = fec_suspend,
  1386. .resume = fec_resume,
  1387. .freeze = fec_suspend,
  1388. .thaw = fec_resume,
  1389. .poweroff = fec_suspend,
  1390. .restore = fec_resume,
  1391. };
  1392. #endif
  1393. static struct platform_driver fec_driver = {
  1394. .driver = {
  1395. .name = DRIVER_NAME,
  1396. .owner = THIS_MODULE,
  1397. #ifdef CONFIG_PM
  1398. .pm = &fec_pm_ops,
  1399. #endif
  1400. .of_match_table = fec_dt_ids,
  1401. },
  1402. .id_table = fec_devtype,
  1403. .probe = fec_probe,
  1404. .remove = __devexit_p(fec_drv_remove),
  1405. };
  1406. static int __init
  1407. fec_enet_module_init(void)
  1408. {
  1409. printk(KERN_INFO "FEC Ethernet Driver\n");
  1410. return platform_driver_register(&fec_driver);
  1411. }
  1412. static void __exit
  1413. fec_enet_cleanup(void)
  1414. {
  1415. platform_driver_unregister(&fec_driver);
  1416. }
  1417. module_exit(fec_enet_cleanup);
  1418. module_init(fec_enet_module_init);
  1419. MODULE_LICENSE("GPL");