hugetlb.c 28 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162
  1. /*
  2. * Generic hugetlb support.
  3. * (C) William Irwin, April 2004
  4. */
  5. #include <linux/gfp.h>
  6. #include <linux/list.h>
  7. #include <linux/init.h>
  8. #include <linux/module.h>
  9. #include <linux/mm.h>
  10. #include <linux/sysctl.h>
  11. #include <linux/highmem.h>
  12. #include <linux/nodemask.h>
  13. #include <linux/pagemap.h>
  14. #include <linux/mempolicy.h>
  15. #include <linux/cpuset.h>
  16. #include <linux/mutex.h>
  17. #include <asm/page.h>
  18. #include <asm/pgtable.h>
  19. #include <linux/hugetlb.h>
  20. #include "internal.h"
  21. const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
  22. static unsigned long nr_huge_pages, free_huge_pages, resv_huge_pages;
  23. static unsigned long surplus_huge_pages;
  24. unsigned long max_huge_pages;
  25. static struct list_head hugepage_freelists[MAX_NUMNODES];
  26. static unsigned int nr_huge_pages_node[MAX_NUMNODES];
  27. static unsigned int free_huge_pages_node[MAX_NUMNODES];
  28. static unsigned int surplus_huge_pages_node[MAX_NUMNODES];
  29. static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
  30. unsigned long hugepages_treat_as_movable;
  31. int hugetlb_dynamic_pool;
  32. static int hugetlb_next_nid;
  33. /*
  34. * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
  35. */
  36. static DEFINE_SPINLOCK(hugetlb_lock);
  37. static void clear_huge_page(struct page *page, unsigned long addr)
  38. {
  39. int i;
  40. might_sleep();
  41. for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); i++) {
  42. cond_resched();
  43. clear_user_highpage(page + i, addr + i * PAGE_SIZE);
  44. }
  45. }
  46. static void copy_huge_page(struct page *dst, struct page *src,
  47. unsigned long addr, struct vm_area_struct *vma)
  48. {
  49. int i;
  50. might_sleep();
  51. for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++) {
  52. cond_resched();
  53. copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
  54. }
  55. }
  56. static void enqueue_huge_page(struct page *page)
  57. {
  58. int nid = page_to_nid(page);
  59. list_add(&page->lru, &hugepage_freelists[nid]);
  60. free_huge_pages++;
  61. free_huge_pages_node[nid]++;
  62. }
  63. static struct page *dequeue_huge_page(struct vm_area_struct *vma,
  64. unsigned long address)
  65. {
  66. int nid;
  67. struct page *page = NULL;
  68. struct mempolicy *mpol;
  69. struct zonelist *zonelist = huge_zonelist(vma, address,
  70. htlb_alloc_mask, &mpol);
  71. struct zone **z;
  72. for (z = zonelist->zones; *z; z++) {
  73. nid = zone_to_nid(*z);
  74. if (cpuset_zone_allowed_softwall(*z, htlb_alloc_mask) &&
  75. !list_empty(&hugepage_freelists[nid])) {
  76. page = list_entry(hugepage_freelists[nid].next,
  77. struct page, lru);
  78. list_del(&page->lru);
  79. free_huge_pages--;
  80. free_huge_pages_node[nid]--;
  81. if (vma && vma->vm_flags & VM_MAYSHARE)
  82. resv_huge_pages--;
  83. break;
  84. }
  85. }
  86. mpol_free(mpol); /* unref if mpol !NULL */
  87. return page;
  88. }
  89. static void update_and_free_page(struct page *page)
  90. {
  91. int i;
  92. nr_huge_pages--;
  93. nr_huge_pages_node[page_to_nid(page)]--;
  94. for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
  95. page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
  96. 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
  97. 1 << PG_private | 1<< PG_writeback);
  98. }
  99. set_compound_page_dtor(page, NULL);
  100. set_page_refcounted(page);
  101. __free_pages(page, HUGETLB_PAGE_ORDER);
  102. }
  103. static void free_huge_page(struct page *page)
  104. {
  105. int nid = page_to_nid(page);
  106. struct address_space *mapping;
  107. mapping = (struct address_space *) page_private(page);
  108. BUG_ON(page_count(page));
  109. INIT_LIST_HEAD(&page->lru);
  110. spin_lock(&hugetlb_lock);
  111. if (surplus_huge_pages_node[nid]) {
  112. update_and_free_page(page);
  113. surplus_huge_pages--;
  114. surplus_huge_pages_node[nid]--;
  115. } else {
  116. enqueue_huge_page(page);
  117. }
  118. spin_unlock(&hugetlb_lock);
  119. if (mapping)
  120. hugetlb_put_quota(mapping);
  121. set_page_private(page, 0);
  122. }
  123. /*
  124. * Increment or decrement surplus_huge_pages. Keep node-specific counters
  125. * balanced by operating on them in a round-robin fashion.
  126. * Returns 1 if an adjustment was made.
  127. */
  128. static int adjust_pool_surplus(int delta)
  129. {
  130. static int prev_nid;
  131. int nid = prev_nid;
  132. int ret = 0;
  133. VM_BUG_ON(delta != -1 && delta != 1);
  134. do {
  135. nid = next_node(nid, node_online_map);
  136. if (nid == MAX_NUMNODES)
  137. nid = first_node(node_online_map);
  138. /* To shrink on this node, there must be a surplus page */
  139. if (delta < 0 && !surplus_huge_pages_node[nid])
  140. continue;
  141. /* Surplus cannot exceed the total number of pages */
  142. if (delta > 0 && surplus_huge_pages_node[nid] >=
  143. nr_huge_pages_node[nid])
  144. continue;
  145. surplus_huge_pages += delta;
  146. surplus_huge_pages_node[nid] += delta;
  147. ret = 1;
  148. break;
  149. } while (nid != prev_nid);
  150. prev_nid = nid;
  151. return ret;
  152. }
  153. static struct page *alloc_fresh_huge_page_node(int nid)
  154. {
  155. struct page *page;
  156. page = alloc_pages_node(nid,
  157. htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|__GFP_NOWARN,
  158. HUGETLB_PAGE_ORDER);
  159. if (page) {
  160. set_compound_page_dtor(page, free_huge_page);
  161. spin_lock(&hugetlb_lock);
  162. nr_huge_pages++;
  163. nr_huge_pages_node[nid]++;
  164. spin_unlock(&hugetlb_lock);
  165. put_page(page); /* free it into the hugepage allocator */
  166. }
  167. return page;
  168. }
  169. static int alloc_fresh_huge_page(void)
  170. {
  171. struct page *page;
  172. int start_nid;
  173. int next_nid;
  174. int ret = 0;
  175. start_nid = hugetlb_next_nid;
  176. do {
  177. page = alloc_fresh_huge_page_node(hugetlb_next_nid);
  178. if (page)
  179. ret = 1;
  180. /*
  181. * Use a helper variable to find the next node and then
  182. * copy it back to hugetlb_next_nid afterwards:
  183. * otherwise there's a window in which a racer might
  184. * pass invalid nid MAX_NUMNODES to alloc_pages_node.
  185. * But we don't need to use a spin_lock here: it really
  186. * doesn't matter if occasionally a racer chooses the
  187. * same nid as we do. Move nid forward in the mask even
  188. * if we just successfully allocated a hugepage so that
  189. * the next caller gets hugepages on the next node.
  190. */
  191. next_nid = next_node(hugetlb_next_nid, node_online_map);
  192. if (next_nid == MAX_NUMNODES)
  193. next_nid = first_node(node_online_map);
  194. hugetlb_next_nid = next_nid;
  195. } while (!page && hugetlb_next_nid != start_nid);
  196. return ret;
  197. }
  198. static struct page *alloc_buddy_huge_page(struct vm_area_struct *vma,
  199. unsigned long address)
  200. {
  201. struct page *page;
  202. /* Check if the dynamic pool is enabled */
  203. if (!hugetlb_dynamic_pool)
  204. return NULL;
  205. page = alloc_pages(htlb_alloc_mask|__GFP_COMP|__GFP_NOWARN,
  206. HUGETLB_PAGE_ORDER);
  207. if (page) {
  208. set_compound_page_dtor(page, free_huge_page);
  209. spin_lock(&hugetlb_lock);
  210. nr_huge_pages++;
  211. nr_huge_pages_node[page_to_nid(page)]++;
  212. surplus_huge_pages++;
  213. surplus_huge_pages_node[page_to_nid(page)]++;
  214. spin_unlock(&hugetlb_lock);
  215. }
  216. return page;
  217. }
  218. /*
  219. * Increase the hugetlb pool such that it can accomodate a reservation
  220. * of size 'delta'.
  221. */
  222. static int gather_surplus_pages(int delta)
  223. {
  224. struct list_head surplus_list;
  225. struct page *page, *tmp;
  226. int ret, i;
  227. int needed, allocated;
  228. needed = (resv_huge_pages + delta) - free_huge_pages;
  229. if (needed <= 0)
  230. return 0;
  231. allocated = 0;
  232. INIT_LIST_HEAD(&surplus_list);
  233. ret = -ENOMEM;
  234. retry:
  235. spin_unlock(&hugetlb_lock);
  236. for (i = 0; i < needed; i++) {
  237. page = alloc_buddy_huge_page(NULL, 0);
  238. if (!page) {
  239. /*
  240. * We were not able to allocate enough pages to
  241. * satisfy the entire reservation so we free what
  242. * we've allocated so far.
  243. */
  244. spin_lock(&hugetlb_lock);
  245. needed = 0;
  246. goto free;
  247. }
  248. list_add(&page->lru, &surplus_list);
  249. }
  250. allocated += needed;
  251. /*
  252. * After retaking hugetlb_lock, we need to recalculate 'needed'
  253. * because either resv_huge_pages or free_huge_pages may have changed.
  254. */
  255. spin_lock(&hugetlb_lock);
  256. needed = (resv_huge_pages + delta) - (free_huge_pages + allocated);
  257. if (needed > 0)
  258. goto retry;
  259. /*
  260. * The surplus_list now contains _at_least_ the number of extra pages
  261. * needed to accomodate the reservation. Add the appropriate number
  262. * of pages to the hugetlb pool and free the extras back to the buddy
  263. * allocator.
  264. */
  265. needed += allocated;
  266. ret = 0;
  267. free:
  268. list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
  269. list_del(&page->lru);
  270. if ((--needed) >= 0)
  271. enqueue_huge_page(page);
  272. else {
  273. /*
  274. * Decrement the refcount and free the page using its
  275. * destructor. This must be done with hugetlb_lock
  276. * unlocked which is safe because free_huge_page takes
  277. * hugetlb_lock before deciding how to free the page.
  278. */
  279. spin_unlock(&hugetlb_lock);
  280. put_page(page);
  281. spin_lock(&hugetlb_lock);
  282. }
  283. }
  284. return ret;
  285. }
  286. /*
  287. * When releasing a hugetlb pool reservation, any surplus pages that were
  288. * allocated to satisfy the reservation must be explicitly freed if they were
  289. * never used.
  290. */
  291. void return_unused_surplus_pages(unsigned long unused_resv_pages)
  292. {
  293. static int nid = -1;
  294. struct page *page;
  295. unsigned long nr_pages;
  296. nr_pages = min(unused_resv_pages, surplus_huge_pages);
  297. while (nr_pages) {
  298. nid = next_node(nid, node_online_map);
  299. if (nid == MAX_NUMNODES)
  300. nid = first_node(node_online_map);
  301. if (!surplus_huge_pages_node[nid])
  302. continue;
  303. if (!list_empty(&hugepage_freelists[nid])) {
  304. page = list_entry(hugepage_freelists[nid].next,
  305. struct page, lru);
  306. list_del(&page->lru);
  307. update_and_free_page(page);
  308. free_huge_pages--;
  309. free_huge_pages_node[nid]--;
  310. surplus_huge_pages--;
  311. surplus_huge_pages_node[nid]--;
  312. nr_pages--;
  313. }
  314. }
  315. }
  316. static struct page *alloc_huge_page_shared(struct vm_area_struct *vma,
  317. unsigned long addr)
  318. {
  319. struct page *page;
  320. spin_lock(&hugetlb_lock);
  321. page = dequeue_huge_page(vma, addr);
  322. spin_unlock(&hugetlb_lock);
  323. return page;
  324. }
  325. static struct page *alloc_huge_page_private(struct vm_area_struct *vma,
  326. unsigned long addr)
  327. {
  328. struct page *page = NULL;
  329. spin_lock(&hugetlb_lock);
  330. if (free_huge_pages > resv_huge_pages)
  331. page = dequeue_huge_page(vma, addr);
  332. spin_unlock(&hugetlb_lock);
  333. if (!page)
  334. page = alloc_buddy_huge_page(vma, addr);
  335. return page;
  336. }
  337. static struct page *alloc_huge_page(struct vm_area_struct *vma,
  338. unsigned long addr)
  339. {
  340. struct page *page;
  341. if (vma->vm_flags & VM_MAYSHARE)
  342. page = alloc_huge_page_shared(vma, addr);
  343. else
  344. page = alloc_huge_page_private(vma, addr);
  345. if (page) {
  346. set_page_refcounted(page);
  347. set_page_private(page, (unsigned long) vma->vm_file->f_mapping);
  348. }
  349. return page;
  350. }
  351. static int __init hugetlb_init(void)
  352. {
  353. unsigned long i;
  354. if (HPAGE_SHIFT == 0)
  355. return 0;
  356. for (i = 0; i < MAX_NUMNODES; ++i)
  357. INIT_LIST_HEAD(&hugepage_freelists[i]);
  358. hugetlb_next_nid = first_node(node_online_map);
  359. for (i = 0; i < max_huge_pages; ++i) {
  360. if (!alloc_fresh_huge_page())
  361. break;
  362. }
  363. max_huge_pages = free_huge_pages = nr_huge_pages = i;
  364. printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages);
  365. return 0;
  366. }
  367. module_init(hugetlb_init);
  368. static int __init hugetlb_setup(char *s)
  369. {
  370. if (sscanf(s, "%lu", &max_huge_pages) <= 0)
  371. max_huge_pages = 0;
  372. return 1;
  373. }
  374. __setup("hugepages=", hugetlb_setup);
  375. static unsigned int cpuset_mems_nr(unsigned int *array)
  376. {
  377. int node;
  378. unsigned int nr = 0;
  379. for_each_node_mask(node, cpuset_current_mems_allowed)
  380. nr += array[node];
  381. return nr;
  382. }
  383. #ifdef CONFIG_SYSCTL
  384. #ifdef CONFIG_HIGHMEM
  385. static void try_to_free_low(unsigned long count)
  386. {
  387. int i;
  388. for (i = 0; i < MAX_NUMNODES; ++i) {
  389. struct page *page, *next;
  390. list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) {
  391. if (count >= nr_huge_pages)
  392. return;
  393. if (PageHighMem(page))
  394. continue;
  395. list_del(&page->lru);
  396. update_and_free_page(page);
  397. free_huge_pages--;
  398. free_huge_pages_node[page_to_nid(page)]--;
  399. }
  400. }
  401. }
  402. #else
  403. static inline void try_to_free_low(unsigned long count)
  404. {
  405. }
  406. #endif
  407. #define persistent_huge_pages (nr_huge_pages - surplus_huge_pages)
  408. static unsigned long set_max_huge_pages(unsigned long count)
  409. {
  410. unsigned long min_count, ret;
  411. /*
  412. * Increase the pool size
  413. * First take pages out of surplus state. Then make up the
  414. * remaining difference by allocating fresh huge pages.
  415. */
  416. spin_lock(&hugetlb_lock);
  417. while (surplus_huge_pages && count > persistent_huge_pages) {
  418. if (!adjust_pool_surplus(-1))
  419. break;
  420. }
  421. while (count > persistent_huge_pages) {
  422. int ret;
  423. /*
  424. * If this allocation races such that we no longer need the
  425. * page, free_huge_page will handle it by freeing the page
  426. * and reducing the surplus.
  427. */
  428. spin_unlock(&hugetlb_lock);
  429. ret = alloc_fresh_huge_page();
  430. spin_lock(&hugetlb_lock);
  431. if (!ret)
  432. goto out;
  433. }
  434. /*
  435. * Decrease the pool size
  436. * First return free pages to the buddy allocator (being careful
  437. * to keep enough around to satisfy reservations). Then place
  438. * pages into surplus state as needed so the pool will shrink
  439. * to the desired size as pages become free.
  440. */
  441. min_count = resv_huge_pages + nr_huge_pages - free_huge_pages;
  442. min_count = max(count, min_count);
  443. try_to_free_low(min_count);
  444. while (min_count < persistent_huge_pages) {
  445. struct page *page = dequeue_huge_page(NULL, 0);
  446. if (!page)
  447. break;
  448. update_and_free_page(page);
  449. }
  450. while (count < persistent_huge_pages) {
  451. if (!adjust_pool_surplus(1))
  452. break;
  453. }
  454. out:
  455. ret = persistent_huge_pages;
  456. spin_unlock(&hugetlb_lock);
  457. return ret;
  458. }
  459. int hugetlb_sysctl_handler(struct ctl_table *table, int write,
  460. struct file *file, void __user *buffer,
  461. size_t *length, loff_t *ppos)
  462. {
  463. proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
  464. max_huge_pages = set_max_huge_pages(max_huge_pages);
  465. return 0;
  466. }
  467. int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
  468. struct file *file, void __user *buffer,
  469. size_t *length, loff_t *ppos)
  470. {
  471. proc_dointvec(table, write, file, buffer, length, ppos);
  472. if (hugepages_treat_as_movable)
  473. htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
  474. else
  475. htlb_alloc_mask = GFP_HIGHUSER;
  476. return 0;
  477. }
  478. #endif /* CONFIG_SYSCTL */
  479. int hugetlb_report_meminfo(char *buf)
  480. {
  481. return sprintf(buf,
  482. "HugePages_Total: %5lu\n"
  483. "HugePages_Free: %5lu\n"
  484. "HugePages_Rsvd: %5lu\n"
  485. "HugePages_Surp: %5lu\n"
  486. "Hugepagesize: %5lu kB\n",
  487. nr_huge_pages,
  488. free_huge_pages,
  489. resv_huge_pages,
  490. surplus_huge_pages,
  491. HPAGE_SIZE/1024);
  492. }
  493. int hugetlb_report_node_meminfo(int nid, char *buf)
  494. {
  495. return sprintf(buf,
  496. "Node %d HugePages_Total: %5u\n"
  497. "Node %d HugePages_Free: %5u\n",
  498. nid, nr_huge_pages_node[nid],
  499. nid, free_huge_pages_node[nid]);
  500. }
  501. /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
  502. unsigned long hugetlb_total_pages(void)
  503. {
  504. return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE);
  505. }
  506. /*
  507. * We cannot handle pagefaults against hugetlb pages at all. They cause
  508. * handle_mm_fault() to try to instantiate regular-sized pages in the
  509. * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
  510. * this far.
  511. */
  512. static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  513. {
  514. BUG();
  515. return 0;
  516. }
  517. struct vm_operations_struct hugetlb_vm_ops = {
  518. .fault = hugetlb_vm_op_fault,
  519. };
  520. static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
  521. int writable)
  522. {
  523. pte_t entry;
  524. if (writable) {
  525. entry =
  526. pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
  527. } else {
  528. entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot));
  529. }
  530. entry = pte_mkyoung(entry);
  531. entry = pte_mkhuge(entry);
  532. return entry;
  533. }
  534. static void set_huge_ptep_writable(struct vm_area_struct *vma,
  535. unsigned long address, pte_t *ptep)
  536. {
  537. pte_t entry;
  538. entry = pte_mkwrite(pte_mkdirty(*ptep));
  539. if (ptep_set_access_flags(vma, address, ptep, entry, 1)) {
  540. update_mmu_cache(vma, address, entry);
  541. }
  542. }
  543. int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
  544. struct vm_area_struct *vma)
  545. {
  546. pte_t *src_pte, *dst_pte, entry;
  547. struct page *ptepage;
  548. unsigned long addr;
  549. int cow;
  550. cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
  551. for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
  552. src_pte = huge_pte_offset(src, addr);
  553. if (!src_pte)
  554. continue;
  555. dst_pte = huge_pte_alloc(dst, addr);
  556. if (!dst_pte)
  557. goto nomem;
  558. spin_lock(&dst->page_table_lock);
  559. spin_lock(&src->page_table_lock);
  560. if (!pte_none(*src_pte)) {
  561. if (cow)
  562. ptep_set_wrprotect(src, addr, src_pte);
  563. entry = *src_pte;
  564. ptepage = pte_page(entry);
  565. get_page(ptepage);
  566. set_huge_pte_at(dst, addr, dst_pte, entry);
  567. }
  568. spin_unlock(&src->page_table_lock);
  569. spin_unlock(&dst->page_table_lock);
  570. }
  571. return 0;
  572. nomem:
  573. return -ENOMEM;
  574. }
  575. void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
  576. unsigned long end)
  577. {
  578. struct mm_struct *mm = vma->vm_mm;
  579. unsigned long address;
  580. pte_t *ptep;
  581. pte_t pte;
  582. struct page *page;
  583. struct page *tmp;
  584. /*
  585. * A page gathering list, protected by per file i_mmap_lock. The
  586. * lock is used to avoid list corruption from multiple unmapping
  587. * of the same page since we are using page->lru.
  588. */
  589. LIST_HEAD(page_list);
  590. WARN_ON(!is_vm_hugetlb_page(vma));
  591. BUG_ON(start & ~HPAGE_MASK);
  592. BUG_ON(end & ~HPAGE_MASK);
  593. spin_lock(&mm->page_table_lock);
  594. for (address = start; address < end; address += HPAGE_SIZE) {
  595. ptep = huge_pte_offset(mm, address);
  596. if (!ptep)
  597. continue;
  598. if (huge_pmd_unshare(mm, &address, ptep))
  599. continue;
  600. pte = huge_ptep_get_and_clear(mm, address, ptep);
  601. if (pte_none(pte))
  602. continue;
  603. page = pte_page(pte);
  604. if (pte_dirty(pte))
  605. set_page_dirty(page);
  606. list_add(&page->lru, &page_list);
  607. }
  608. spin_unlock(&mm->page_table_lock);
  609. flush_tlb_range(vma, start, end);
  610. list_for_each_entry_safe(page, tmp, &page_list, lru) {
  611. list_del(&page->lru);
  612. put_page(page);
  613. }
  614. }
  615. void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
  616. unsigned long end)
  617. {
  618. /*
  619. * It is undesirable to test vma->vm_file as it should be non-null
  620. * for valid hugetlb area. However, vm_file will be NULL in the error
  621. * cleanup path of do_mmap_pgoff. When hugetlbfs ->mmap method fails,
  622. * do_mmap_pgoff() nullifies vma->vm_file before calling this function
  623. * to clean up. Since no pte has actually been setup, it is safe to
  624. * do nothing in this case.
  625. */
  626. if (vma->vm_file) {
  627. spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
  628. __unmap_hugepage_range(vma, start, end);
  629. spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
  630. }
  631. }
  632. static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
  633. unsigned long address, pte_t *ptep, pte_t pte)
  634. {
  635. struct page *old_page, *new_page;
  636. int avoidcopy;
  637. old_page = pte_page(pte);
  638. /* If no-one else is actually using this page, avoid the copy
  639. * and just make the page writable */
  640. avoidcopy = (page_count(old_page) == 1);
  641. if (avoidcopy) {
  642. set_huge_ptep_writable(vma, address, ptep);
  643. return 0;
  644. }
  645. if (hugetlb_get_quota(vma->vm_file->f_mapping))
  646. return VM_FAULT_SIGBUS;
  647. page_cache_get(old_page);
  648. new_page = alloc_huge_page(vma, address);
  649. if (!new_page) {
  650. page_cache_release(old_page);
  651. return VM_FAULT_OOM;
  652. }
  653. spin_unlock(&mm->page_table_lock);
  654. copy_huge_page(new_page, old_page, address, vma);
  655. spin_lock(&mm->page_table_lock);
  656. ptep = huge_pte_offset(mm, address & HPAGE_MASK);
  657. if (likely(pte_same(*ptep, pte))) {
  658. /* Break COW */
  659. set_huge_pte_at(mm, address, ptep,
  660. make_huge_pte(vma, new_page, 1));
  661. /* Make the old page be freed below */
  662. new_page = old_page;
  663. }
  664. page_cache_release(new_page);
  665. page_cache_release(old_page);
  666. return 0;
  667. }
  668. static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
  669. unsigned long address, pte_t *ptep, int write_access)
  670. {
  671. int ret = VM_FAULT_SIGBUS;
  672. unsigned long idx;
  673. unsigned long size;
  674. struct page *page;
  675. struct address_space *mapping;
  676. pte_t new_pte;
  677. mapping = vma->vm_file->f_mapping;
  678. idx = ((address - vma->vm_start) >> HPAGE_SHIFT)
  679. + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
  680. /*
  681. * Use page lock to guard against racing truncation
  682. * before we get page_table_lock.
  683. */
  684. retry:
  685. page = find_lock_page(mapping, idx);
  686. if (!page) {
  687. size = i_size_read(mapping->host) >> HPAGE_SHIFT;
  688. if (idx >= size)
  689. goto out;
  690. if (hugetlb_get_quota(mapping))
  691. goto out;
  692. page = alloc_huge_page(vma, address);
  693. if (!page) {
  694. hugetlb_put_quota(mapping);
  695. ret = VM_FAULT_OOM;
  696. goto out;
  697. }
  698. clear_huge_page(page, address);
  699. if (vma->vm_flags & VM_SHARED) {
  700. int err;
  701. err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
  702. if (err) {
  703. put_page(page);
  704. if (err == -EEXIST)
  705. goto retry;
  706. goto out;
  707. }
  708. } else
  709. lock_page(page);
  710. }
  711. spin_lock(&mm->page_table_lock);
  712. size = i_size_read(mapping->host) >> HPAGE_SHIFT;
  713. if (idx >= size)
  714. goto backout;
  715. ret = 0;
  716. if (!pte_none(*ptep))
  717. goto backout;
  718. new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
  719. && (vma->vm_flags & VM_SHARED)));
  720. set_huge_pte_at(mm, address, ptep, new_pte);
  721. if (write_access && !(vma->vm_flags & VM_SHARED)) {
  722. /* Optimization, do the COW without a second fault */
  723. ret = hugetlb_cow(mm, vma, address, ptep, new_pte);
  724. }
  725. spin_unlock(&mm->page_table_lock);
  726. unlock_page(page);
  727. out:
  728. return ret;
  729. backout:
  730. spin_unlock(&mm->page_table_lock);
  731. unlock_page(page);
  732. put_page(page);
  733. goto out;
  734. }
  735. int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  736. unsigned long address, int write_access)
  737. {
  738. pte_t *ptep;
  739. pte_t entry;
  740. int ret;
  741. static DEFINE_MUTEX(hugetlb_instantiation_mutex);
  742. ptep = huge_pte_alloc(mm, address);
  743. if (!ptep)
  744. return VM_FAULT_OOM;
  745. /*
  746. * Serialize hugepage allocation and instantiation, so that we don't
  747. * get spurious allocation failures if two CPUs race to instantiate
  748. * the same page in the page cache.
  749. */
  750. mutex_lock(&hugetlb_instantiation_mutex);
  751. entry = *ptep;
  752. if (pte_none(entry)) {
  753. ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
  754. mutex_unlock(&hugetlb_instantiation_mutex);
  755. return ret;
  756. }
  757. ret = 0;
  758. spin_lock(&mm->page_table_lock);
  759. /* Check for a racing update before calling hugetlb_cow */
  760. if (likely(pte_same(entry, *ptep)))
  761. if (write_access && !pte_write(entry))
  762. ret = hugetlb_cow(mm, vma, address, ptep, entry);
  763. spin_unlock(&mm->page_table_lock);
  764. mutex_unlock(&hugetlb_instantiation_mutex);
  765. return ret;
  766. }
  767. int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
  768. struct page **pages, struct vm_area_struct **vmas,
  769. unsigned long *position, int *length, int i,
  770. int write)
  771. {
  772. unsigned long pfn_offset;
  773. unsigned long vaddr = *position;
  774. int remainder = *length;
  775. spin_lock(&mm->page_table_lock);
  776. while (vaddr < vma->vm_end && remainder) {
  777. pte_t *pte;
  778. struct page *page;
  779. /*
  780. * Some archs (sparc64, sh*) have multiple pte_ts to
  781. * each hugepage. We have to make * sure we get the
  782. * first, for the page indexing below to work.
  783. */
  784. pte = huge_pte_offset(mm, vaddr & HPAGE_MASK);
  785. if (!pte || pte_none(*pte)) {
  786. int ret;
  787. spin_unlock(&mm->page_table_lock);
  788. ret = hugetlb_fault(mm, vma, vaddr, write);
  789. spin_lock(&mm->page_table_lock);
  790. if (!(ret & VM_FAULT_ERROR))
  791. continue;
  792. remainder = 0;
  793. if (!i)
  794. i = -EFAULT;
  795. break;
  796. }
  797. pfn_offset = (vaddr & ~HPAGE_MASK) >> PAGE_SHIFT;
  798. page = pte_page(*pte);
  799. same_page:
  800. if (pages) {
  801. get_page(page);
  802. pages[i] = page + pfn_offset;
  803. }
  804. if (vmas)
  805. vmas[i] = vma;
  806. vaddr += PAGE_SIZE;
  807. ++pfn_offset;
  808. --remainder;
  809. ++i;
  810. if (vaddr < vma->vm_end && remainder &&
  811. pfn_offset < HPAGE_SIZE/PAGE_SIZE) {
  812. /*
  813. * We use pfn_offset to avoid touching the pageframes
  814. * of this compound page.
  815. */
  816. goto same_page;
  817. }
  818. }
  819. spin_unlock(&mm->page_table_lock);
  820. *length = remainder;
  821. *position = vaddr;
  822. return i;
  823. }
  824. void hugetlb_change_protection(struct vm_area_struct *vma,
  825. unsigned long address, unsigned long end, pgprot_t newprot)
  826. {
  827. struct mm_struct *mm = vma->vm_mm;
  828. unsigned long start = address;
  829. pte_t *ptep;
  830. pte_t pte;
  831. BUG_ON(address >= end);
  832. flush_cache_range(vma, address, end);
  833. spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
  834. spin_lock(&mm->page_table_lock);
  835. for (; address < end; address += HPAGE_SIZE) {
  836. ptep = huge_pte_offset(mm, address);
  837. if (!ptep)
  838. continue;
  839. if (huge_pmd_unshare(mm, &address, ptep))
  840. continue;
  841. if (!pte_none(*ptep)) {
  842. pte = huge_ptep_get_and_clear(mm, address, ptep);
  843. pte = pte_mkhuge(pte_modify(pte, newprot));
  844. set_huge_pte_at(mm, address, ptep, pte);
  845. }
  846. }
  847. spin_unlock(&mm->page_table_lock);
  848. spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
  849. flush_tlb_range(vma, start, end);
  850. }
  851. struct file_region {
  852. struct list_head link;
  853. long from;
  854. long to;
  855. };
  856. static long region_add(struct list_head *head, long f, long t)
  857. {
  858. struct file_region *rg, *nrg, *trg;
  859. /* Locate the region we are either in or before. */
  860. list_for_each_entry(rg, head, link)
  861. if (f <= rg->to)
  862. break;
  863. /* Round our left edge to the current segment if it encloses us. */
  864. if (f > rg->from)
  865. f = rg->from;
  866. /* Check for and consume any regions we now overlap with. */
  867. nrg = rg;
  868. list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
  869. if (&rg->link == head)
  870. break;
  871. if (rg->from > t)
  872. break;
  873. /* If this area reaches higher then extend our area to
  874. * include it completely. If this is not the first area
  875. * which we intend to reuse, free it. */
  876. if (rg->to > t)
  877. t = rg->to;
  878. if (rg != nrg) {
  879. list_del(&rg->link);
  880. kfree(rg);
  881. }
  882. }
  883. nrg->from = f;
  884. nrg->to = t;
  885. return 0;
  886. }
  887. static long region_chg(struct list_head *head, long f, long t)
  888. {
  889. struct file_region *rg, *nrg;
  890. long chg = 0;
  891. /* Locate the region we are before or in. */
  892. list_for_each_entry(rg, head, link)
  893. if (f <= rg->to)
  894. break;
  895. /* If we are below the current region then a new region is required.
  896. * Subtle, allocate a new region at the position but make it zero
  897. * size such that we can guarantee to record the reservation. */
  898. if (&rg->link == head || t < rg->from) {
  899. nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
  900. if (!nrg)
  901. return -ENOMEM;
  902. nrg->from = f;
  903. nrg->to = f;
  904. INIT_LIST_HEAD(&nrg->link);
  905. list_add(&nrg->link, rg->link.prev);
  906. return t - f;
  907. }
  908. /* Round our left edge to the current segment if it encloses us. */
  909. if (f > rg->from)
  910. f = rg->from;
  911. chg = t - f;
  912. /* Check for and consume any regions we now overlap with. */
  913. list_for_each_entry(rg, rg->link.prev, link) {
  914. if (&rg->link == head)
  915. break;
  916. if (rg->from > t)
  917. return chg;
  918. /* We overlap with this area, if it extends futher than
  919. * us then we must extend ourselves. Account for its
  920. * existing reservation. */
  921. if (rg->to > t) {
  922. chg += rg->to - t;
  923. t = rg->to;
  924. }
  925. chg -= rg->to - rg->from;
  926. }
  927. return chg;
  928. }
  929. static long region_truncate(struct list_head *head, long end)
  930. {
  931. struct file_region *rg, *trg;
  932. long chg = 0;
  933. /* Locate the region we are either in or before. */
  934. list_for_each_entry(rg, head, link)
  935. if (end <= rg->to)
  936. break;
  937. if (&rg->link == head)
  938. return 0;
  939. /* If we are in the middle of a region then adjust it. */
  940. if (end > rg->from) {
  941. chg = rg->to - end;
  942. rg->to = end;
  943. rg = list_entry(rg->link.next, typeof(*rg), link);
  944. }
  945. /* Drop any remaining regions. */
  946. list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
  947. if (&rg->link == head)
  948. break;
  949. chg += rg->to - rg->from;
  950. list_del(&rg->link);
  951. kfree(rg);
  952. }
  953. return chg;
  954. }
  955. static int hugetlb_acct_memory(long delta)
  956. {
  957. int ret = -ENOMEM;
  958. spin_lock(&hugetlb_lock);
  959. /*
  960. * When cpuset is configured, it breaks the strict hugetlb page
  961. * reservation as the accounting is done on a global variable. Such
  962. * reservation is completely rubbish in the presence of cpuset because
  963. * the reservation is not checked against page availability for the
  964. * current cpuset. Application can still potentially OOM'ed by kernel
  965. * with lack of free htlb page in cpuset that the task is in.
  966. * Attempt to enforce strict accounting with cpuset is almost
  967. * impossible (or too ugly) because cpuset is too fluid that
  968. * task or memory node can be dynamically moved between cpusets.
  969. *
  970. * The change of semantics for shared hugetlb mapping with cpuset is
  971. * undesirable. However, in order to preserve some of the semantics,
  972. * we fall back to check against current free page availability as
  973. * a best attempt and hopefully to minimize the impact of changing
  974. * semantics that cpuset has.
  975. */
  976. if (delta > 0) {
  977. if (gather_surplus_pages(delta) < 0)
  978. goto out;
  979. if (delta > cpuset_mems_nr(free_huge_pages_node))
  980. goto out;
  981. }
  982. ret = 0;
  983. resv_huge_pages += delta;
  984. if (delta < 0)
  985. return_unused_surplus_pages((unsigned long) -delta);
  986. out:
  987. spin_unlock(&hugetlb_lock);
  988. return ret;
  989. }
  990. int hugetlb_reserve_pages(struct inode *inode, long from, long to)
  991. {
  992. long ret, chg;
  993. chg = region_chg(&inode->i_mapping->private_list, from, to);
  994. if (chg < 0)
  995. return chg;
  996. ret = hugetlb_acct_memory(chg);
  997. if (ret < 0)
  998. return ret;
  999. region_add(&inode->i_mapping->private_list, from, to);
  1000. return 0;
  1001. }
  1002. void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
  1003. {
  1004. long chg = region_truncate(&inode->i_mapping->private_list, offset);
  1005. hugetlb_acct_memory(freed - chg);
  1006. }