fsi.c 27 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252
  1. /*
  2. * Fifo-attached Serial Interface (FSI) support for SH7724
  3. *
  4. * Copyright (C) 2009 Renesas Solutions Corp.
  5. * Kuninori Morimoto <morimoto.kuninori@renesas.com>
  6. *
  7. * Based on ssi.c
  8. * Copyright (c) 2007 Manuel Lauss <mano@roarinelk.homelinux.net>
  9. *
  10. * This program is free software; you can redistribute it and/or modify
  11. * it under the terms of the GNU General Public License version 2 as
  12. * published by the Free Software Foundation.
  13. */
  14. #include <linux/delay.h>
  15. #include <linux/pm_runtime.h>
  16. #include <linux/io.h>
  17. #include <linux/slab.h>
  18. #include <sound/soc.h>
  19. #include <sound/sh_fsi.h>
  20. #define DO_FMT 0x0000
  21. #define DOFF_CTL 0x0004
  22. #define DOFF_ST 0x0008
  23. #define DI_FMT 0x000C
  24. #define DIFF_CTL 0x0010
  25. #define DIFF_ST 0x0014
  26. #define CKG1 0x0018
  27. #define CKG2 0x001C
  28. #define DIDT 0x0020
  29. #define DODT 0x0024
  30. #define MUTE_ST 0x0028
  31. #define OUT_SEL 0x0030
  32. #define REG_END OUT_SEL
  33. #define A_MST_CTLR 0x0180
  34. #define B_MST_CTLR 0x01A0
  35. #define CPU_INT_ST 0x01F4
  36. #define CPU_IEMSK 0x01F8
  37. #define CPU_IMSK 0x01FC
  38. #define INT_ST 0x0200
  39. #define IEMSK 0x0204
  40. #define IMSK 0x0208
  41. #define MUTE 0x020C
  42. #define CLK_RST 0x0210
  43. #define SOFT_RST 0x0214
  44. #define FIFO_SZ 0x0218
  45. #define MREG_START A_MST_CTLR
  46. #define MREG_END FIFO_SZ
  47. /* DO_FMT */
  48. /* DI_FMT */
  49. #define CR_MONO (0x0 << 4)
  50. #define CR_MONO_D (0x1 << 4)
  51. #define CR_PCM (0x2 << 4)
  52. #define CR_I2S (0x3 << 4)
  53. #define CR_TDM (0x4 << 4)
  54. #define CR_TDM_D (0x5 << 4)
  55. #define CR_SPDIF 0x00100120
  56. /* DOFF_CTL */
  57. /* DIFF_CTL */
  58. #define IRQ_HALF 0x00100000
  59. #define FIFO_CLR 0x00000001
  60. /* DOFF_ST */
  61. #define ERR_OVER 0x00000010
  62. #define ERR_UNDER 0x00000001
  63. #define ST_ERR (ERR_OVER | ERR_UNDER)
  64. /* CKG1 */
  65. #define ACKMD_MASK 0x00007000
  66. #define BPFMD_MASK 0x00000700
  67. /* A/B MST_CTLR */
  68. #define BP (1 << 4) /* Fix the signal of Biphase output */
  69. #define SE (1 << 0) /* Fix the master clock */
  70. /* CLK_RST */
  71. #define B_CLK 0x00000010
  72. #define A_CLK 0x00000001
  73. /* INT_ST */
  74. #define INT_B_IN (1 << 12)
  75. #define INT_B_OUT (1 << 8)
  76. #define INT_A_IN (1 << 4)
  77. #define INT_A_OUT (1 << 0)
  78. /* SOFT_RST */
  79. #define PBSR (1 << 12) /* Port B Software Reset */
  80. #define PASR (1 << 8) /* Port A Software Reset */
  81. #define IR (1 << 4) /* Interrupt Reset */
  82. #define FSISR (1 << 0) /* Software Reset */
  83. /* FIFO_SZ */
  84. #define OUT_SZ_MASK 0x7
  85. #define BO_SZ_SHIFT 8
  86. #define AO_SZ_SHIFT 0
  87. #define FSI_RATES SNDRV_PCM_RATE_8000_96000
  88. #define FSI_FMTS (SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S16_LE)
  89. /************************************************************************
  90. struct
  91. ************************************************************************/
  92. struct fsi_priv {
  93. void __iomem *base;
  94. struct snd_pcm_substream *substream;
  95. struct fsi_master *master;
  96. int fifo_max;
  97. int chan;
  98. int byte_offset;
  99. int period_len;
  100. int buffer_len;
  101. int periods;
  102. u32 mst_ctrl;
  103. };
  104. struct fsi_core {
  105. int ver;
  106. u32 int_st;
  107. u32 iemsk;
  108. u32 imsk;
  109. };
  110. struct fsi_master {
  111. void __iomem *base;
  112. int irq;
  113. struct fsi_priv fsia;
  114. struct fsi_priv fsib;
  115. struct fsi_core *core;
  116. struct sh_fsi_platform_info *info;
  117. spinlock_t lock;
  118. };
  119. /************************************************************************
  120. basic read write function
  121. ************************************************************************/
  122. static void __fsi_reg_write(u32 reg, u32 data)
  123. {
  124. /* valid data area is 24bit */
  125. data &= 0x00ffffff;
  126. __raw_writel(data, reg);
  127. }
  128. static u32 __fsi_reg_read(u32 reg)
  129. {
  130. return __raw_readl(reg);
  131. }
  132. static void __fsi_reg_mask_set(u32 reg, u32 mask, u32 data)
  133. {
  134. u32 val = __fsi_reg_read(reg);
  135. val &= ~mask;
  136. val |= data & mask;
  137. __fsi_reg_write(reg, val);
  138. }
  139. static void fsi_reg_write(struct fsi_priv *fsi, u32 reg, u32 data)
  140. {
  141. if (reg > REG_END) {
  142. pr_err("fsi: register access err (%s)\n", __func__);
  143. return;
  144. }
  145. __fsi_reg_write((u32)(fsi->base + reg), data);
  146. }
  147. static u32 fsi_reg_read(struct fsi_priv *fsi, u32 reg)
  148. {
  149. if (reg > REG_END) {
  150. pr_err("fsi: register access err (%s)\n", __func__);
  151. return 0;
  152. }
  153. return __fsi_reg_read((u32)(fsi->base + reg));
  154. }
  155. static void fsi_reg_mask_set(struct fsi_priv *fsi, u32 reg, u32 mask, u32 data)
  156. {
  157. if (reg > REG_END) {
  158. pr_err("fsi: register access err (%s)\n", __func__);
  159. return;
  160. }
  161. __fsi_reg_mask_set((u32)(fsi->base + reg), mask, data);
  162. }
  163. static void fsi_master_write(struct fsi_master *master, u32 reg, u32 data)
  164. {
  165. unsigned long flags;
  166. if ((reg < MREG_START) ||
  167. (reg > MREG_END)) {
  168. pr_err("fsi: register access err (%s)\n", __func__);
  169. return;
  170. }
  171. spin_lock_irqsave(&master->lock, flags);
  172. __fsi_reg_write((u32)(master->base + reg), data);
  173. spin_unlock_irqrestore(&master->lock, flags);
  174. }
  175. static u32 fsi_master_read(struct fsi_master *master, u32 reg)
  176. {
  177. u32 ret;
  178. unsigned long flags;
  179. if ((reg < MREG_START) ||
  180. (reg > MREG_END)) {
  181. pr_err("fsi: register access err (%s)\n", __func__);
  182. return 0;
  183. }
  184. spin_lock_irqsave(&master->lock, flags);
  185. ret = __fsi_reg_read((u32)(master->base + reg));
  186. spin_unlock_irqrestore(&master->lock, flags);
  187. return ret;
  188. }
  189. static void fsi_master_mask_set(struct fsi_master *master,
  190. u32 reg, u32 mask, u32 data)
  191. {
  192. unsigned long flags;
  193. if ((reg < MREG_START) ||
  194. (reg > MREG_END)) {
  195. pr_err("fsi: register access err (%s)\n", __func__);
  196. return;
  197. }
  198. spin_lock_irqsave(&master->lock, flags);
  199. __fsi_reg_mask_set((u32)(master->base + reg), mask, data);
  200. spin_unlock_irqrestore(&master->lock, flags);
  201. }
  202. /************************************************************************
  203. basic function
  204. ************************************************************************/
  205. static struct fsi_master *fsi_get_master(struct fsi_priv *fsi)
  206. {
  207. return fsi->master;
  208. }
  209. static int fsi_is_port_a(struct fsi_priv *fsi)
  210. {
  211. return fsi->master->base == fsi->base;
  212. }
  213. static struct snd_soc_dai *fsi_get_dai(struct snd_pcm_substream *substream)
  214. {
  215. struct snd_soc_pcm_runtime *rtd = substream->private_data;
  216. return rtd->cpu_dai;
  217. }
  218. static struct fsi_priv *fsi_get_priv(struct snd_pcm_substream *substream)
  219. {
  220. struct snd_soc_dai *dai = fsi_get_dai(substream);
  221. struct fsi_master *master = snd_soc_dai_get_drvdata(dai);
  222. if (dai->id == 0)
  223. return &master->fsia;
  224. else
  225. return &master->fsib;
  226. }
  227. static u32 fsi_get_info_flags(struct fsi_priv *fsi)
  228. {
  229. int is_porta = fsi_is_port_a(fsi);
  230. struct fsi_master *master = fsi_get_master(fsi);
  231. return is_porta ? master->info->porta_flags :
  232. master->info->portb_flags;
  233. }
  234. static int fsi_is_master_mode(struct fsi_priv *fsi, int is_play)
  235. {
  236. u32 mode;
  237. u32 flags = fsi_get_info_flags(fsi);
  238. mode = is_play ? SH_FSI_OUT_SLAVE_MODE : SH_FSI_IN_SLAVE_MODE;
  239. /* return
  240. * 1 : master mode
  241. * 0 : slave mode
  242. */
  243. return (mode & flags) != mode;
  244. }
  245. static u32 fsi_port_ab_io_bit(struct fsi_priv *fsi, int is_play)
  246. {
  247. int is_porta = fsi_is_port_a(fsi);
  248. u32 data;
  249. if (is_porta)
  250. data = is_play ? (1 << 0) : (1 << 4);
  251. else
  252. data = is_play ? (1 << 8) : (1 << 12);
  253. return data;
  254. }
  255. static void fsi_stream_push(struct fsi_priv *fsi,
  256. struct snd_pcm_substream *substream,
  257. u32 buffer_len,
  258. u32 period_len)
  259. {
  260. fsi->substream = substream;
  261. fsi->buffer_len = buffer_len;
  262. fsi->period_len = period_len;
  263. fsi->byte_offset = 0;
  264. fsi->periods = 0;
  265. }
  266. static void fsi_stream_pop(struct fsi_priv *fsi)
  267. {
  268. fsi->substream = NULL;
  269. fsi->buffer_len = 0;
  270. fsi->period_len = 0;
  271. fsi->byte_offset = 0;
  272. fsi->periods = 0;
  273. }
  274. static int fsi_get_fifo_residue(struct fsi_priv *fsi, int is_play)
  275. {
  276. u32 status;
  277. u32 reg = is_play ? DOFF_ST : DIFF_ST;
  278. int residue;
  279. status = fsi_reg_read(fsi, reg);
  280. residue = 0x1ff & (status >> 8);
  281. residue *= fsi->chan;
  282. return residue;
  283. }
  284. static u8 *fsi_dma_get_area(struct fsi_priv *fsi)
  285. {
  286. return fsi->substream->runtime->dma_area + fsi->byte_offset;
  287. }
  288. /************************************************************************
  289. irq function
  290. ************************************************************************/
  291. static void fsi_irq_enable(struct fsi_priv *fsi, int is_play)
  292. {
  293. u32 data = fsi_port_ab_io_bit(fsi, is_play);
  294. struct fsi_master *master = fsi_get_master(fsi);
  295. fsi_master_mask_set(master, master->core->imsk, data, data);
  296. fsi_master_mask_set(master, master->core->iemsk, data, data);
  297. }
  298. static void fsi_irq_disable(struct fsi_priv *fsi, int is_play)
  299. {
  300. u32 data = fsi_port_ab_io_bit(fsi, is_play);
  301. struct fsi_master *master = fsi_get_master(fsi);
  302. fsi_master_mask_set(master, master->core->imsk, data, 0);
  303. fsi_master_mask_set(master, master->core->iemsk, data, 0);
  304. }
  305. static u32 fsi_irq_get_status(struct fsi_master *master)
  306. {
  307. return fsi_master_read(master, master->core->int_st);
  308. }
  309. static void fsi_irq_clear_all_status(struct fsi_master *master)
  310. {
  311. fsi_master_write(master, master->core->int_st, 0);
  312. }
  313. static void fsi_irq_clear_status(struct fsi_priv *fsi)
  314. {
  315. u32 data = 0;
  316. struct fsi_master *master = fsi_get_master(fsi);
  317. data |= fsi_port_ab_io_bit(fsi, 0);
  318. data |= fsi_port_ab_io_bit(fsi, 1);
  319. /* clear interrupt factor */
  320. fsi_master_mask_set(master, master->core->int_st, data, 0);
  321. }
  322. /************************************************************************
  323. SPDIF master clock function
  324. These functions are used later FSI2
  325. ************************************************************************/
  326. static void fsi_spdif_clk_ctrl(struct fsi_priv *fsi, int enable)
  327. {
  328. struct fsi_master *master = fsi_get_master(fsi);
  329. u32 val = BP | SE;
  330. if (master->core->ver < 2) {
  331. pr_err("fsi: register access err (%s)\n", __func__);
  332. return;
  333. }
  334. if (enable)
  335. fsi_master_mask_set(master, fsi->mst_ctrl, val, val);
  336. else
  337. fsi_master_mask_set(master, fsi->mst_ctrl, val, 0);
  338. }
  339. /************************************************************************
  340. ctrl function
  341. ************************************************************************/
  342. static void fsi_clk_ctrl(struct fsi_priv *fsi, int enable)
  343. {
  344. u32 val = fsi_is_port_a(fsi) ? (1 << 0) : (1 << 4);
  345. struct fsi_master *master = fsi_get_master(fsi);
  346. if (enable)
  347. fsi_master_mask_set(master, CLK_RST, val, val);
  348. else
  349. fsi_master_mask_set(master, CLK_RST, val, 0);
  350. }
  351. static void fsi_fifo_init(struct fsi_priv *fsi,
  352. int is_play,
  353. struct snd_soc_dai *dai)
  354. {
  355. struct fsi_master *master = fsi_get_master(fsi);
  356. u32 ctrl, shift, i;
  357. /* get on-chip RAM capacity */
  358. shift = fsi_master_read(master, FIFO_SZ);
  359. shift >>= fsi_is_port_a(fsi) ? AO_SZ_SHIFT : BO_SZ_SHIFT;
  360. shift &= OUT_SZ_MASK;
  361. fsi->fifo_max = 256 << shift;
  362. dev_dbg(dai->dev, "fifo = %d words\n", fsi->fifo_max);
  363. /*
  364. * The maximum number of sample data varies depending
  365. * on the number of channels selected for the format.
  366. *
  367. * FIFOs are used in 4-channel units in 3-channel mode
  368. * and in 8-channel units in 5- to 7-channel mode
  369. * meaning that more FIFOs than the required size of DPRAM
  370. * are used.
  371. *
  372. * ex) if 256 words of DP-RAM is connected
  373. * 1 channel: 256 (256 x 1 = 256)
  374. * 2 channels: 128 (128 x 2 = 256)
  375. * 3 channels: 64 ( 64 x 3 = 192)
  376. * 4 channels: 64 ( 64 x 4 = 256)
  377. * 5 channels: 32 ( 32 x 5 = 160)
  378. * 6 channels: 32 ( 32 x 6 = 192)
  379. * 7 channels: 32 ( 32 x 7 = 224)
  380. * 8 channels: 32 ( 32 x 8 = 256)
  381. */
  382. for (i = 1; i < fsi->chan; i <<= 1)
  383. fsi->fifo_max >>= 1;
  384. dev_dbg(dai->dev, "%d channel %d store\n", fsi->chan, fsi->fifo_max);
  385. ctrl = is_play ? DOFF_CTL : DIFF_CTL;
  386. /* set interrupt generation factor */
  387. fsi_reg_write(fsi, ctrl, IRQ_HALF);
  388. /* clear FIFO */
  389. fsi_reg_mask_set(fsi, ctrl, FIFO_CLR, FIFO_CLR);
  390. }
  391. static void fsi_soft_all_reset(struct fsi_master *master)
  392. {
  393. /* port AB reset */
  394. fsi_master_mask_set(master, SOFT_RST, PASR | PBSR, 0);
  395. mdelay(10);
  396. /* soft reset */
  397. fsi_master_mask_set(master, SOFT_RST, FSISR, 0);
  398. fsi_master_mask_set(master, SOFT_RST, FSISR, FSISR);
  399. mdelay(10);
  400. }
  401. /* playback interrupt */
  402. static int fsi_data_push(struct fsi_priv *fsi, int startup)
  403. {
  404. struct snd_pcm_runtime *runtime;
  405. struct snd_pcm_substream *substream = NULL;
  406. u32 status;
  407. int send;
  408. int fifo_free;
  409. int width;
  410. u8 *start;
  411. int i, over_period;
  412. if (!fsi ||
  413. !fsi->substream ||
  414. !fsi->substream->runtime)
  415. return -EINVAL;
  416. over_period = 0;
  417. substream = fsi->substream;
  418. runtime = substream->runtime;
  419. /* FSI FIFO has limit.
  420. * So, this driver can not send periods data at a time
  421. */
  422. if (fsi->byte_offset >=
  423. fsi->period_len * (fsi->periods + 1)) {
  424. over_period = 1;
  425. fsi->periods = (fsi->periods + 1) % runtime->periods;
  426. if (0 == fsi->periods)
  427. fsi->byte_offset = 0;
  428. }
  429. /* get 1 channel data width */
  430. width = frames_to_bytes(runtime, 1) / fsi->chan;
  431. /* get send size for alsa */
  432. send = (fsi->buffer_len - fsi->byte_offset) / width;
  433. /* get FIFO free size */
  434. fifo_free = (fsi->fifo_max * fsi->chan) - fsi_get_fifo_residue(fsi, 1);
  435. /* size check */
  436. if (fifo_free < send)
  437. send = fifo_free;
  438. start = fsi_dma_get_area(fsi);
  439. switch (width) {
  440. case 2:
  441. for (i = 0; i < send; i++)
  442. fsi_reg_write(fsi, DODT,
  443. ((u32)*((u16 *)start + i) << 8));
  444. break;
  445. case 4:
  446. for (i = 0; i < send; i++)
  447. fsi_reg_write(fsi, DODT, *((u32 *)start + i));
  448. break;
  449. default:
  450. return -EINVAL;
  451. }
  452. fsi->byte_offset += send * width;
  453. status = fsi_reg_read(fsi, DOFF_ST);
  454. if (!startup) {
  455. struct snd_soc_dai *dai = fsi_get_dai(substream);
  456. if (status & ERR_OVER)
  457. dev_err(dai->dev, "over run\n");
  458. if (status & ERR_UNDER)
  459. dev_err(dai->dev, "under run\n");
  460. }
  461. fsi_reg_write(fsi, DOFF_ST, 0);
  462. fsi_irq_enable(fsi, 1);
  463. if (over_period)
  464. snd_pcm_period_elapsed(substream);
  465. return 0;
  466. }
  467. static int fsi_data_pop(struct fsi_priv *fsi, int startup)
  468. {
  469. struct snd_pcm_runtime *runtime;
  470. struct snd_pcm_substream *substream = NULL;
  471. u32 status;
  472. int free;
  473. int fifo_fill;
  474. int width;
  475. u8 *start;
  476. int i, over_period;
  477. if (!fsi ||
  478. !fsi->substream ||
  479. !fsi->substream->runtime)
  480. return -EINVAL;
  481. over_period = 0;
  482. substream = fsi->substream;
  483. runtime = substream->runtime;
  484. /* FSI FIFO has limit.
  485. * So, this driver can not send periods data at a time
  486. */
  487. if (fsi->byte_offset >=
  488. fsi->period_len * (fsi->periods + 1)) {
  489. over_period = 1;
  490. fsi->periods = (fsi->periods + 1) % runtime->periods;
  491. if (0 == fsi->periods)
  492. fsi->byte_offset = 0;
  493. }
  494. /* get 1 channel data width */
  495. width = frames_to_bytes(runtime, 1) / fsi->chan;
  496. /* get free space for alsa */
  497. free = (fsi->buffer_len - fsi->byte_offset) / width;
  498. /* get recv size */
  499. fifo_fill = fsi_get_fifo_residue(fsi, 0);
  500. if (free < fifo_fill)
  501. fifo_fill = free;
  502. start = fsi_dma_get_area(fsi);
  503. switch (width) {
  504. case 2:
  505. for (i = 0; i < fifo_fill; i++)
  506. *((u16 *)start + i) =
  507. (u16)(fsi_reg_read(fsi, DIDT) >> 8);
  508. break;
  509. case 4:
  510. for (i = 0; i < fifo_fill; i++)
  511. *((u32 *)start + i) = fsi_reg_read(fsi, DIDT);
  512. break;
  513. default:
  514. return -EINVAL;
  515. }
  516. fsi->byte_offset += fifo_fill * width;
  517. status = fsi_reg_read(fsi, DIFF_ST);
  518. if (!startup) {
  519. struct snd_soc_dai *dai = fsi_get_dai(substream);
  520. if (status & ERR_OVER)
  521. dev_err(dai->dev, "over run\n");
  522. if (status & ERR_UNDER)
  523. dev_err(dai->dev, "under run\n");
  524. }
  525. fsi_reg_write(fsi, DIFF_ST, 0);
  526. fsi_irq_enable(fsi, 0);
  527. if (over_period)
  528. snd_pcm_period_elapsed(substream);
  529. return 0;
  530. }
  531. static irqreturn_t fsi_interrupt(int irq, void *data)
  532. {
  533. struct fsi_master *master = data;
  534. u32 int_st = fsi_irq_get_status(master);
  535. /* clear irq status */
  536. fsi_master_mask_set(master, SOFT_RST, IR, 0);
  537. fsi_master_mask_set(master, SOFT_RST, IR, IR);
  538. if (int_st & INT_A_OUT)
  539. fsi_data_push(&master->fsia, 0);
  540. if (int_st & INT_B_OUT)
  541. fsi_data_push(&master->fsib, 0);
  542. if (int_st & INT_A_IN)
  543. fsi_data_pop(&master->fsia, 0);
  544. if (int_st & INT_B_IN)
  545. fsi_data_pop(&master->fsib, 0);
  546. fsi_irq_clear_all_status(master);
  547. return IRQ_HANDLED;
  548. }
  549. /************************************************************************
  550. dai ops
  551. ************************************************************************/
  552. static int fsi_dai_startup(struct snd_pcm_substream *substream,
  553. struct snd_soc_dai *dai)
  554. {
  555. struct fsi_priv *fsi = fsi_get_priv(substream);
  556. u32 flags = fsi_get_info_flags(fsi);
  557. struct fsi_master *master = fsi_get_master(fsi);
  558. u32 fmt;
  559. u32 reg;
  560. u32 data;
  561. int is_play = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK);
  562. int is_master;
  563. int ret = 0;
  564. pm_runtime_get_sync(dai->dev);
  565. /* CKG1 */
  566. data = is_play ? (1 << 0) : (1 << 4);
  567. is_master = fsi_is_master_mode(fsi, is_play);
  568. if (is_master)
  569. fsi_reg_mask_set(fsi, CKG1, data, data);
  570. else
  571. fsi_reg_mask_set(fsi, CKG1, data, 0);
  572. /* clock inversion (CKG2) */
  573. data = 0;
  574. if (SH_FSI_LRM_INV & flags)
  575. data |= 1 << 12;
  576. if (SH_FSI_BRM_INV & flags)
  577. data |= 1 << 8;
  578. if (SH_FSI_LRS_INV & flags)
  579. data |= 1 << 4;
  580. if (SH_FSI_BRS_INV & flags)
  581. data |= 1 << 0;
  582. fsi_reg_write(fsi, CKG2, data);
  583. /* do fmt, di fmt */
  584. data = 0;
  585. reg = is_play ? DO_FMT : DI_FMT;
  586. fmt = is_play ? SH_FSI_GET_OFMT(flags) : SH_FSI_GET_IFMT(flags);
  587. switch (fmt) {
  588. case SH_FSI_FMT_MONO:
  589. data = CR_MONO;
  590. fsi->chan = 1;
  591. break;
  592. case SH_FSI_FMT_MONO_DELAY:
  593. data = CR_MONO_D;
  594. fsi->chan = 1;
  595. break;
  596. case SH_FSI_FMT_PCM:
  597. data = CR_PCM;
  598. fsi->chan = 2;
  599. break;
  600. case SH_FSI_FMT_I2S:
  601. data = CR_I2S;
  602. fsi->chan = 2;
  603. break;
  604. case SH_FSI_FMT_TDM:
  605. fsi->chan = is_play ?
  606. SH_FSI_GET_CH_O(flags) : SH_FSI_GET_CH_I(flags);
  607. data = CR_TDM | (fsi->chan - 1);
  608. break;
  609. case SH_FSI_FMT_TDM_DELAY:
  610. fsi->chan = is_play ?
  611. SH_FSI_GET_CH_O(flags) : SH_FSI_GET_CH_I(flags);
  612. data = CR_TDM_D | (fsi->chan - 1);
  613. break;
  614. case SH_FSI_FMT_SPDIF:
  615. if (master->core->ver < 2) {
  616. dev_err(dai->dev, "This FSI can not use SPDIF\n");
  617. return -EINVAL;
  618. }
  619. data = CR_SPDIF;
  620. fsi->chan = 2;
  621. fsi_spdif_clk_ctrl(fsi, 1);
  622. fsi_reg_mask_set(fsi, OUT_SEL, 0x0010, 0x0010);
  623. break;
  624. default:
  625. dev_err(dai->dev, "unknown format.\n");
  626. return -EINVAL;
  627. }
  628. fsi_reg_write(fsi, reg, data);
  629. /* irq clear */
  630. fsi_irq_disable(fsi, is_play);
  631. fsi_irq_clear_status(fsi);
  632. /* fifo init */
  633. fsi_fifo_init(fsi, is_play, dai);
  634. return ret;
  635. }
  636. static void fsi_dai_shutdown(struct snd_pcm_substream *substream,
  637. struct snd_soc_dai *dai)
  638. {
  639. struct fsi_priv *fsi = fsi_get_priv(substream);
  640. int is_play = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
  641. fsi_irq_disable(fsi, is_play);
  642. fsi_clk_ctrl(fsi, 0);
  643. pm_runtime_put_sync(dai->dev);
  644. }
  645. static int fsi_dai_trigger(struct snd_pcm_substream *substream, int cmd,
  646. struct snd_soc_dai *dai)
  647. {
  648. struct fsi_priv *fsi = fsi_get_priv(substream);
  649. struct snd_pcm_runtime *runtime = substream->runtime;
  650. int is_play = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
  651. int ret = 0;
  652. switch (cmd) {
  653. case SNDRV_PCM_TRIGGER_START:
  654. fsi_stream_push(fsi, substream,
  655. frames_to_bytes(runtime, runtime->buffer_size),
  656. frames_to_bytes(runtime, runtime->period_size));
  657. ret = is_play ? fsi_data_push(fsi, 1) : fsi_data_pop(fsi, 1);
  658. break;
  659. case SNDRV_PCM_TRIGGER_STOP:
  660. fsi_irq_disable(fsi, is_play);
  661. fsi_stream_pop(fsi);
  662. break;
  663. }
  664. return ret;
  665. }
  666. static int fsi_dai_hw_params(struct snd_pcm_substream *substream,
  667. struct snd_pcm_hw_params *params,
  668. struct snd_soc_dai *dai)
  669. {
  670. struct fsi_priv *fsi = fsi_get_priv(substream);
  671. struct fsi_master *master = fsi_get_master(fsi);
  672. int (*set_rate)(int is_porta, int rate) = master->info->set_rate;
  673. int fsi_ver = master->core->ver;
  674. int is_play = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK);
  675. int ret;
  676. /* if slave mode, set_rate is not needed */
  677. if (!fsi_is_master_mode(fsi, is_play))
  678. return 0;
  679. /* it is error if no set_rate */
  680. if (!set_rate)
  681. return -EIO;
  682. ret = set_rate(fsi_is_port_a(fsi), params_rate(params));
  683. if (ret > 0) {
  684. u32 data = 0;
  685. switch (ret & SH_FSI_ACKMD_MASK) {
  686. default:
  687. /* FALL THROUGH */
  688. case SH_FSI_ACKMD_512:
  689. data |= (0x0 << 12);
  690. break;
  691. case SH_FSI_ACKMD_256:
  692. data |= (0x1 << 12);
  693. break;
  694. case SH_FSI_ACKMD_128:
  695. data |= (0x2 << 12);
  696. break;
  697. case SH_FSI_ACKMD_64:
  698. data |= (0x3 << 12);
  699. break;
  700. case SH_FSI_ACKMD_32:
  701. if (fsi_ver < 2)
  702. dev_err(dai->dev, "unsupported ACKMD\n");
  703. else
  704. data |= (0x4 << 12);
  705. break;
  706. }
  707. switch (ret & SH_FSI_BPFMD_MASK) {
  708. default:
  709. /* FALL THROUGH */
  710. case SH_FSI_BPFMD_32:
  711. data |= (0x0 << 8);
  712. break;
  713. case SH_FSI_BPFMD_64:
  714. data |= (0x1 << 8);
  715. break;
  716. case SH_FSI_BPFMD_128:
  717. data |= (0x2 << 8);
  718. break;
  719. case SH_FSI_BPFMD_256:
  720. data |= (0x3 << 8);
  721. break;
  722. case SH_FSI_BPFMD_512:
  723. data |= (0x4 << 8);
  724. break;
  725. case SH_FSI_BPFMD_16:
  726. if (fsi_ver < 2)
  727. dev_err(dai->dev, "unsupported ACKMD\n");
  728. else
  729. data |= (0x7 << 8);
  730. break;
  731. }
  732. fsi_reg_mask_set(fsi, CKG1, (ACKMD_MASK | BPFMD_MASK) , data);
  733. udelay(10);
  734. fsi_clk_ctrl(fsi, 1);
  735. ret = 0;
  736. }
  737. return ret;
  738. }
  739. static struct snd_soc_dai_ops fsi_dai_ops = {
  740. .startup = fsi_dai_startup,
  741. .shutdown = fsi_dai_shutdown,
  742. .trigger = fsi_dai_trigger,
  743. .hw_params = fsi_dai_hw_params,
  744. };
  745. /************************************************************************
  746. pcm ops
  747. ************************************************************************/
  748. static struct snd_pcm_hardware fsi_pcm_hardware = {
  749. .info = SNDRV_PCM_INFO_INTERLEAVED |
  750. SNDRV_PCM_INFO_MMAP |
  751. SNDRV_PCM_INFO_MMAP_VALID |
  752. SNDRV_PCM_INFO_PAUSE,
  753. .formats = FSI_FMTS,
  754. .rates = FSI_RATES,
  755. .rate_min = 8000,
  756. .rate_max = 192000,
  757. .channels_min = 1,
  758. .channels_max = 2,
  759. .buffer_bytes_max = 64 * 1024,
  760. .period_bytes_min = 32,
  761. .period_bytes_max = 8192,
  762. .periods_min = 1,
  763. .periods_max = 32,
  764. .fifo_size = 256,
  765. };
  766. static int fsi_pcm_open(struct snd_pcm_substream *substream)
  767. {
  768. struct snd_pcm_runtime *runtime = substream->runtime;
  769. int ret = 0;
  770. snd_soc_set_runtime_hwparams(substream, &fsi_pcm_hardware);
  771. ret = snd_pcm_hw_constraint_integer(runtime,
  772. SNDRV_PCM_HW_PARAM_PERIODS);
  773. return ret;
  774. }
  775. static int fsi_hw_params(struct snd_pcm_substream *substream,
  776. struct snd_pcm_hw_params *hw_params)
  777. {
  778. return snd_pcm_lib_malloc_pages(substream,
  779. params_buffer_bytes(hw_params));
  780. }
  781. static int fsi_hw_free(struct snd_pcm_substream *substream)
  782. {
  783. return snd_pcm_lib_free_pages(substream);
  784. }
  785. static snd_pcm_uframes_t fsi_pointer(struct snd_pcm_substream *substream)
  786. {
  787. struct snd_pcm_runtime *runtime = substream->runtime;
  788. struct fsi_priv *fsi = fsi_get_priv(substream);
  789. long location;
  790. location = (fsi->byte_offset - 1);
  791. if (location < 0)
  792. location = 0;
  793. return bytes_to_frames(runtime, location);
  794. }
  795. static struct snd_pcm_ops fsi_pcm_ops = {
  796. .open = fsi_pcm_open,
  797. .ioctl = snd_pcm_lib_ioctl,
  798. .hw_params = fsi_hw_params,
  799. .hw_free = fsi_hw_free,
  800. .pointer = fsi_pointer,
  801. };
  802. /************************************************************************
  803. snd_soc_platform
  804. ************************************************************************/
  805. #define PREALLOC_BUFFER (32 * 1024)
  806. #define PREALLOC_BUFFER_MAX (32 * 1024)
  807. static void fsi_pcm_free(struct snd_pcm *pcm)
  808. {
  809. snd_pcm_lib_preallocate_free_for_all(pcm);
  810. }
  811. static int fsi_pcm_new(struct snd_card *card,
  812. struct snd_soc_dai *dai,
  813. struct snd_pcm *pcm)
  814. {
  815. /*
  816. * dont use SNDRV_DMA_TYPE_DEV, since it will oops the SH kernel
  817. * in MMAP mode (i.e. aplay -M)
  818. */
  819. return snd_pcm_lib_preallocate_pages_for_all(
  820. pcm,
  821. SNDRV_DMA_TYPE_CONTINUOUS,
  822. snd_dma_continuous_data(GFP_KERNEL),
  823. PREALLOC_BUFFER, PREALLOC_BUFFER_MAX);
  824. }
  825. /************************************************************************
  826. alsa struct
  827. ************************************************************************/
  828. static struct snd_soc_dai_driver fsi_soc_dai[] = {
  829. {
  830. .name = "fsia-dai",
  831. .playback = {
  832. .rates = FSI_RATES,
  833. .formats = FSI_FMTS,
  834. .channels_min = 1,
  835. .channels_max = 8,
  836. },
  837. .capture = {
  838. .rates = FSI_RATES,
  839. .formats = FSI_FMTS,
  840. .channels_min = 1,
  841. .channels_max = 8,
  842. },
  843. .ops = &fsi_dai_ops,
  844. },
  845. {
  846. .name = "fsib-dai",
  847. .playback = {
  848. .rates = FSI_RATES,
  849. .formats = FSI_FMTS,
  850. .channels_min = 1,
  851. .channels_max = 8,
  852. },
  853. .capture = {
  854. .rates = FSI_RATES,
  855. .formats = FSI_FMTS,
  856. .channels_min = 1,
  857. .channels_max = 8,
  858. },
  859. .ops = &fsi_dai_ops,
  860. },
  861. };
  862. static struct snd_soc_platform_driver fsi_soc_platform = {
  863. .ops = &fsi_pcm_ops,
  864. .pcm_new = fsi_pcm_new,
  865. .pcm_free = fsi_pcm_free,
  866. };
  867. /************************************************************************
  868. platform function
  869. ************************************************************************/
  870. static int fsi_probe(struct platform_device *pdev)
  871. {
  872. struct fsi_master *master;
  873. const struct platform_device_id *id_entry;
  874. struct resource *res;
  875. unsigned int irq;
  876. int ret;
  877. id_entry = pdev->id_entry;
  878. if (!id_entry) {
  879. dev_err(&pdev->dev, "unknown fsi device\n");
  880. return -ENODEV;
  881. }
  882. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  883. irq = platform_get_irq(pdev, 0);
  884. if (!res || (int)irq <= 0) {
  885. dev_err(&pdev->dev, "Not enough FSI platform resources.\n");
  886. ret = -ENODEV;
  887. goto exit;
  888. }
  889. master = kzalloc(sizeof(*master), GFP_KERNEL);
  890. if (!master) {
  891. dev_err(&pdev->dev, "Could not allocate master\n");
  892. ret = -ENOMEM;
  893. goto exit;
  894. }
  895. master->base = ioremap_nocache(res->start, resource_size(res));
  896. if (!master->base) {
  897. ret = -ENXIO;
  898. dev_err(&pdev->dev, "Unable to ioremap FSI registers.\n");
  899. goto exit_kfree;
  900. }
  901. /* master setting */
  902. master->irq = irq;
  903. master->info = pdev->dev.platform_data;
  904. master->core = (struct fsi_core *)id_entry->driver_data;
  905. spin_lock_init(&master->lock);
  906. /* FSI A setting */
  907. master->fsia.base = master->base;
  908. master->fsia.master = master;
  909. master->fsia.mst_ctrl = A_MST_CTLR;
  910. /* FSI B setting */
  911. master->fsib.base = master->base + 0x40;
  912. master->fsib.master = master;
  913. master->fsib.mst_ctrl = B_MST_CTLR;
  914. pm_runtime_enable(&pdev->dev);
  915. pm_runtime_resume(&pdev->dev);
  916. dev_set_drvdata(&pdev->dev, master);
  917. fsi_soft_all_reset(master);
  918. ret = request_irq(irq, &fsi_interrupt, IRQF_DISABLED,
  919. id_entry->name, master);
  920. if (ret) {
  921. dev_err(&pdev->dev, "irq request err\n");
  922. goto exit_iounmap;
  923. }
  924. ret = snd_soc_register_platform(&pdev->dev, &fsi_soc_platform);
  925. if (ret < 0) {
  926. dev_err(&pdev->dev, "cannot snd soc register\n");
  927. goto exit_free_irq;
  928. }
  929. return snd_soc_register_dais(&pdev->dev, fsi_soc_dai, ARRAY_SIZE(fsi_soc_dai));
  930. exit_free_irq:
  931. free_irq(irq, master);
  932. exit_iounmap:
  933. iounmap(master->base);
  934. pm_runtime_disable(&pdev->dev);
  935. exit_kfree:
  936. kfree(master);
  937. master = NULL;
  938. exit:
  939. return ret;
  940. }
  941. static int fsi_remove(struct platform_device *pdev)
  942. {
  943. struct fsi_master *master;
  944. master = dev_get_drvdata(&pdev->dev);
  945. snd_soc_unregister_dais(&pdev->dev, ARRAY_SIZE(fsi_soc_dai));
  946. snd_soc_unregister_platform(&pdev->dev);
  947. pm_runtime_disable(&pdev->dev);
  948. free_irq(master->irq, master);
  949. iounmap(master->base);
  950. kfree(master);
  951. return 0;
  952. }
  953. static int fsi_runtime_nop(struct device *dev)
  954. {
  955. /* Runtime PM callback shared between ->runtime_suspend()
  956. * and ->runtime_resume(). Simply returns success.
  957. *
  958. * This driver re-initializes all registers after
  959. * pm_runtime_get_sync() anyway so there is no need
  960. * to save and restore registers here.
  961. */
  962. return 0;
  963. }
  964. static struct dev_pm_ops fsi_pm_ops = {
  965. .runtime_suspend = fsi_runtime_nop,
  966. .runtime_resume = fsi_runtime_nop,
  967. };
  968. static struct fsi_core fsi1_core = {
  969. .ver = 1,
  970. /* Interrupt */
  971. .int_st = INT_ST,
  972. .iemsk = IEMSK,
  973. .imsk = IMSK,
  974. };
  975. static struct fsi_core fsi2_core = {
  976. .ver = 2,
  977. /* Interrupt */
  978. .int_st = CPU_INT_ST,
  979. .iemsk = CPU_IEMSK,
  980. .imsk = CPU_IMSK,
  981. };
  982. static struct platform_device_id fsi_id_table[] = {
  983. { "sh_fsi", (kernel_ulong_t)&fsi1_core },
  984. { "sh_fsi2", (kernel_ulong_t)&fsi2_core },
  985. };
  986. MODULE_DEVICE_TABLE(platform, fsi_id_table);
  987. static struct platform_driver fsi_driver = {
  988. .driver = {
  989. .name = "fsi-pcm-audio",
  990. .pm = &fsi_pm_ops,
  991. },
  992. .probe = fsi_probe,
  993. .remove = fsi_remove,
  994. .id_table = fsi_id_table,
  995. };
  996. static int __init fsi_mobile_init(void)
  997. {
  998. return platform_driver_register(&fsi_driver);
  999. }
  1000. static void __exit fsi_mobile_exit(void)
  1001. {
  1002. platform_driver_unregister(&fsi_driver);
  1003. }
  1004. module_init(fsi_mobile_init);
  1005. module_exit(fsi_mobile_exit);
  1006. MODULE_LICENSE("GPL");
  1007. MODULE_DESCRIPTION("SuperH onchip FSI audio driver");
  1008. MODULE_AUTHOR("Kuninori Morimoto <morimoto.kuninori@renesas.com>");