pktcdvd.c 77 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130
  1. /*
  2. * Copyright (C) 2000 Jens Axboe <axboe@suse.de>
  3. * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com>
  4. * Copyright (C) 2006 Thomas Maier <balagi@justmail.de>
  5. *
  6. * May be copied or modified under the terms of the GNU General Public
  7. * License. See linux/COPYING for more information.
  8. *
  9. * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and
  10. * DVD-RAM devices.
  11. *
  12. * Theory of operation:
  13. *
  14. * At the lowest level, there is the standard driver for the CD/DVD device,
  15. * typically ide-cd.c or sr.c. This driver can handle read and write requests,
  16. * but it doesn't know anything about the special restrictions that apply to
  17. * packet writing. One restriction is that write requests must be aligned to
  18. * packet boundaries on the physical media, and the size of a write request
  19. * must be equal to the packet size. Another restriction is that a
  20. * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read
  21. * command, if the previous command was a write.
  22. *
  23. * The purpose of the packet writing driver is to hide these restrictions from
  24. * higher layers, such as file systems, and present a block device that can be
  25. * randomly read and written using 2kB-sized blocks.
  26. *
  27. * The lowest layer in the packet writing driver is the packet I/O scheduler.
  28. * Its data is defined by the struct packet_iosched and includes two bio
  29. * queues with pending read and write requests. These queues are processed
  30. * by the pkt_iosched_process_queue() function. The write requests in this
  31. * queue are already properly aligned and sized. This layer is responsible for
  32. * issuing the flush cache commands and scheduling the I/O in a good order.
  33. *
  34. * The next layer transforms unaligned write requests to aligned writes. This
  35. * transformation requires reading missing pieces of data from the underlying
  36. * block device, assembling the pieces to full packets and queuing them to the
  37. * packet I/O scheduler.
  38. *
  39. * At the top layer there is a custom make_request_fn function that forwards
  40. * read requests directly to the iosched queue and puts write requests in the
  41. * unaligned write queue. A kernel thread performs the necessary read
  42. * gathering to convert the unaligned writes to aligned writes and then feeds
  43. * them to the packet I/O scheduler.
  44. *
  45. *************************************************************************/
  46. #include <linux/pktcdvd.h>
  47. #include <linux/module.h>
  48. #include <linux/types.h>
  49. #include <linux/kernel.h>
  50. #include <linux/kthread.h>
  51. #include <linux/errno.h>
  52. #include <linux/spinlock.h>
  53. #include <linux/file.h>
  54. #include <linux/proc_fs.h>
  55. #include <linux/seq_file.h>
  56. #include <linux/miscdevice.h>
  57. #include <linux/freezer.h>
  58. #include <linux/mutex.h>
  59. #include <scsi/scsi_cmnd.h>
  60. #include <scsi/scsi_ioctl.h>
  61. #include <scsi/scsi.h>
  62. #include <linux/debugfs.h>
  63. #include <linux/device.h>
  64. #include <asm/uaccess.h>
  65. #define DRIVER_NAME "pktcdvd"
  66. #if PACKET_DEBUG
  67. #define DPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
  68. #else
  69. #define DPRINTK(fmt, args...)
  70. #endif
  71. #if PACKET_DEBUG > 1
  72. #define VPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
  73. #else
  74. #define VPRINTK(fmt, args...)
  75. #endif
  76. #define MAX_SPEED 0xffff
  77. #define ZONE(sector, pd) (((sector) + (pd)->offset) & ~((pd)->settings.size - 1))
  78. static struct pktcdvd_device *pkt_devs[MAX_WRITERS];
  79. static struct proc_dir_entry *pkt_proc;
  80. static int pktdev_major;
  81. static int write_congestion_on = PKT_WRITE_CONGESTION_ON;
  82. static int write_congestion_off = PKT_WRITE_CONGESTION_OFF;
  83. static struct mutex ctl_mutex; /* Serialize open/close/setup/teardown */
  84. static mempool_t *psd_pool;
  85. static struct class *class_pktcdvd = NULL; /* /sys/class/pktcdvd */
  86. static struct dentry *pkt_debugfs_root = NULL; /* /debug/pktcdvd */
  87. /* forward declaration */
  88. static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev);
  89. static int pkt_remove_dev(dev_t pkt_dev);
  90. static int pkt_seq_show(struct seq_file *m, void *p);
  91. /*
  92. * create and register a pktcdvd kernel object.
  93. */
  94. static struct pktcdvd_kobj* pkt_kobj_create(struct pktcdvd_device *pd,
  95. const char* name,
  96. struct kobject* parent,
  97. struct kobj_type* ktype)
  98. {
  99. struct pktcdvd_kobj *p;
  100. int error;
  101. p = kzalloc(sizeof(*p), GFP_KERNEL);
  102. if (!p)
  103. return NULL;
  104. p->pd = pd;
  105. error = kobject_init_and_add(&p->kobj, ktype, parent, "%s", name);
  106. if (error) {
  107. kobject_put(&p->kobj);
  108. return NULL;
  109. }
  110. kobject_uevent(&p->kobj, KOBJ_ADD);
  111. return p;
  112. }
  113. /*
  114. * remove a pktcdvd kernel object.
  115. */
  116. static void pkt_kobj_remove(struct pktcdvd_kobj *p)
  117. {
  118. if (p)
  119. kobject_put(&p->kobj);
  120. }
  121. /*
  122. * default release function for pktcdvd kernel objects.
  123. */
  124. static void pkt_kobj_release(struct kobject *kobj)
  125. {
  126. kfree(to_pktcdvdkobj(kobj));
  127. }
  128. /**********************************************************
  129. *
  130. * sysfs interface for pktcdvd
  131. * by (C) 2006 Thomas Maier <balagi@justmail.de>
  132. *
  133. **********************************************************/
  134. #define DEF_ATTR(_obj,_name,_mode) \
  135. static struct attribute _obj = { .name = _name, .mode = _mode }
  136. /**********************************************************
  137. /sys/class/pktcdvd/pktcdvd[0-7]/
  138. stat/reset
  139. stat/packets_started
  140. stat/packets_finished
  141. stat/kb_written
  142. stat/kb_read
  143. stat/kb_read_gather
  144. write_queue/size
  145. write_queue/congestion_off
  146. write_queue/congestion_on
  147. **********************************************************/
  148. DEF_ATTR(kobj_pkt_attr_st1, "reset", 0200);
  149. DEF_ATTR(kobj_pkt_attr_st2, "packets_started", 0444);
  150. DEF_ATTR(kobj_pkt_attr_st3, "packets_finished", 0444);
  151. DEF_ATTR(kobj_pkt_attr_st4, "kb_written", 0444);
  152. DEF_ATTR(kobj_pkt_attr_st5, "kb_read", 0444);
  153. DEF_ATTR(kobj_pkt_attr_st6, "kb_read_gather", 0444);
  154. static struct attribute *kobj_pkt_attrs_stat[] = {
  155. &kobj_pkt_attr_st1,
  156. &kobj_pkt_attr_st2,
  157. &kobj_pkt_attr_st3,
  158. &kobj_pkt_attr_st4,
  159. &kobj_pkt_attr_st5,
  160. &kobj_pkt_attr_st6,
  161. NULL
  162. };
  163. DEF_ATTR(kobj_pkt_attr_wq1, "size", 0444);
  164. DEF_ATTR(kobj_pkt_attr_wq2, "congestion_off", 0644);
  165. DEF_ATTR(kobj_pkt_attr_wq3, "congestion_on", 0644);
  166. static struct attribute *kobj_pkt_attrs_wqueue[] = {
  167. &kobj_pkt_attr_wq1,
  168. &kobj_pkt_attr_wq2,
  169. &kobj_pkt_attr_wq3,
  170. NULL
  171. };
  172. static ssize_t kobj_pkt_show(struct kobject *kobj,
  173. struct attribute *attr, char *data)
  174. {
  175. struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
  176. int n = 0;
  177. int v;
  178. if (strcmp(attr->name, "packets_started") == 0) {
  179. n = sprintf(data, "%lu\n", pd->stats.pkt_started);
  180. } else if (strcmp(attr->name, "packets_finished") == 0) {
  181. n = sprintf(data, "%lu\n", pd->stats.pkt_ended);
  182. } else if (strcmp(attr->name, "kb_written") == 0) {
  183. n = sprintf(data, "%lu\n", pd->stats.secs_w >> 1);
  184. } else if (strcmp(attr->name, "kb_read") == 0) {
  185. n = sprintf(data, "%lu\n", pd->stats.secs_r >> 1);
  186. } else if (strcmp(attr->name, "kb_read_gather") == 0) {
  187. n = sprintf(data, "%lu\n", pd->stats.secs_rg >> 1);
  188. } else if (strcmp(attr->name, "size") == 0) {
  189. spin_lock(&pd->lock);
  190. v = pd->bio_queue_size;
  191. spin_unlock(&pd->lock);
  192. n = sprintf(data, "%d\n", v);
  193. } else if (strcmp(attr->name, "congestion_off") == 0) {
  194. spin_lock(&pd->lock);
  195. v = pd->write_congestion_off;
  196. spin_unlock(&pd->lock);
  197. n = sprintf(data, "%d\n", v);
  198. } else if (strcmp(attr->name, "congestion_on") == 0) {
  199. spin_lock(&pd->lock);
  200. v = pd->write_congestion_on;
  201. spin_unlock(&pd->lock);
  202. n = sprintf(data, "%d\n", v);
  203. }
  204. return n;
  205. }
  206. static void init_write_congestion_marks(int* lo, int* hi)
  207. {
  208. if (*hi > 0) {
  209. *hi = max(*hi, 500);
  210. *hi = min(*hi, 1000000);
  211. if (*lo <= 0)
  212. *lo = *hi - 100;
  213. else {
  214. *lo = min(*lo, *hi - 100);
  215. *lo = max(*lo, 100);
  216. }
  217. } else {
  218. *hi = -1;
  219. *lo = -1;
  220. }
  221. }
  222. static ssize_t kobj_pkt_store(struct kobject *kobj,
  223. struct attribute *attr,
  224. const char *data, size_t len)
  225. {
  226. struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
  227. int val;
  228. if (strcmp(attr->name, "reset") == 0 && len > 0) {
  229. pd->stats.pkt_started = 0;
  230. pd->stats.pkt_ended = 0;
  231. pd->stats.secs_w = 0;
  232. pd->stats.secs_rg = 0;
  233. pd->stats.secs_r = 0;
  234. } else if (strcmp(attr->name, "congestion_off") == 0
  235. && sscanf(data, "%d", &val) == 1) {
  236. spin_lock(&pd->lock);
  237. pd->write_congestion_off = val;
  238. init_write_congestion_marks(&pd->write_congestion_off,
  239. &pd->write_congestion_on);
  240. spin_unlock(&pd->lock);
  241. } else if (strcmp(attr->name, "congestion_on") == 0
  242. && sscanf(data, "%d", &val) == 1) {
  243. spin_lock(&pd->lock);
  244. pd->write_congestion_on = val;
  245. init_write_congestion_marks(&pd->write_congestion_off,
  246. &pd->write_congestion_on);
  247. spin_unlock(&pd->lock);
  248. }
  249. return len;
  250. }
  251. static struct sysfs_ops kobj_pkt_ops = {
  252. .show = kobj_pkt_show,
  253. .store = kobj_pkt_store
  254. };
  255. static struct kobj_type kobj_pkt_type_stat = {
  256. .release = pkt_kobj_release,
  257. .sysfs_ops = &kobj_pkt_ops,
  258. .default_attrs = kobj_pkt_attrs_stat
  259. };
  260. static struct kobj_type kobj_pkt_type_wqueue = {
  261. .release = pkt_kobj_release,
  262. .sysfs_ops = &kobj_pkt_ops,
  263. .default_attrs = kobj_pkt_attrs_wqueue
  264. };
  265. static void pkt_sysfs_dev_new(struct pktcdvd_device *pd)
  266. {
  267. if (class_pktcdvd) {
  268. pd->dev = device_create(class_pktcdvd, NULL, pd->pkt_dev, "%s", pd->name);
  269. if (IS_ERR(pd->dev))
  270. pd->dev = NULL;
  271. }
  272. if (pd->dev) {
  273. pd->kobj_stat = pkt_kobj_create(pd, "stat",
  274. &pd->dev->kobj,
  275. &kobj_pkt_type_stat);
  276. pd->kobj_wqueue = pkt_kobj_create(pd, "write_queue",
  277. &pd->dev->kobj,
  278. &kobj_pkt_type_wqueue);
  279. }
  280. }
  281. static void pkt_sysfs_dev_remove(struct pktcdvd_device *pd)
  282. {
  283. pkt_kobj_remove(pd->kobj_stat);
  284. pkt_kobj_remove(pd->kobj_wqueue);
  285. if (class_pktcdvd)
  286. device_destroy(class_pktcdvd, pd->pkt_dev);
  287. }
  288. /********************************************************************
  289. /sys/class/pktcdvd/
  290. add map block device
  291. remove unmap packet dev
  292. device_map show mappings
  293. *******************************************************************/
  294. static void class_pktcdvd_release(struct class *cls)
  295. {
  296. kfree(cls);
  297. }
  298. static ssize_t class_pktcdvd_show_map(struct class *c, char *data)
  299. {
  300. int n = 0;
  301. int idx;
  302. mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
  303. for (idx = 0; idx < MAX_WRITERS; idx++) {
  304. struct pktcdvd_device *pd = pkt_devs[idx];
  305. if (!pd)
  306. continue;
  307. n += sprintf(data+n, "%s %u:%u %u:%u\n",
  308. pd->name,
  309. MAJOR(pd->pkt_dev), MINOR(pd->pkt_dev),
  310. MAJOR(pd->bdev->bd_dev),
  311. MINOR(pd->bdev->bd_dev));
  312. }
  313. mutex_unlock(&ctl_mutex);
  314. return n;
  315. }
  316. static ssize_t class_pktcdvd_store_add(struct class *c, const char *buf,
  317. size_t count)
  318. {
  319. unsigned int major, minor;
  320. if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
  321. /* pkt_setup_dev() expects caller to hold reference to self */
  322. if (!try_module_get(THIS_MODULE))
  323. return -ENODEV;
  324. pkt_setup_dev(MKDEV(major, minor), NULL);
  325. module_put(THIS_MODULE);
  326. return count;
  327. }
  328. return -EINVAL;
  329. }
  330. static ssize_t class_pktcdvd_store_remove(struct class *c, const char *buf,
  331. size_t count)
  332. {
  333. unsigned int major, minor;
  334. if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
  335. pkt_remove_dev(MKDEV(major, minor));
  336. return count;
  337. }
  338. return -EINVAL;
  339. }
  340. static struct class_attribute class_pktcdvd_attrs[] = {
  341. __ATTR(add, 0200, NULL, class_pktcdvd_store_add),
  342. __ATTR(remove, 0200, NULL, class_pktcdvd_store_remove),
  343. __ATTR(device_map, 0444, class_pktcdvd_show_map, NULL),
  344. __ATTR_NULL
  345. };
  346. static int pkt_sysfs_init(void)
  347. {
  348. int ret = 0;
  349. /*
  350. * create control files in sysfs
  351. * /sys/class/pktcdvd/...
  352. */
  353. class_pktcdvd = kzalloc(sizeof(*class_pktcdvd), GFP_KERNEL);
  354. if (!class_pktcdvd)
  355. return -ENOMEM;
  356. class_pktcdvd->name = DRIVER_NAME;
  357. class_pktcdvd->owner = THIS_MODULE;
  358. class_pktcdvd->class_release = class_pktcdvd_release;
  359. class_pktcdvd->class_attrs = class_pktcdvd_attrs;
  360. ret = class_register(class_pktcdvd);
  361. if (ret) {
  362. kfree(class_pktcdvd);
  363. class_pktcdvd = NULL;
  364. printk(DRIVER_NAME": failed to create class pktcdvd\n");
  365. return ret;
  366. }
  367. return 0;
  368. }
  369. static void pkt_sysfs_cleanup(void)
  370. {
  371. if (class_pktcdvd)
  372. class_destroy(class_pktcdvd);
  373. class_pktcdvd = NULL;
  374. }
  375. /********************************************************************
  376. entries in debugfs
  377. /debugfs/pktcdvd[0-7]/
  378. info
  379. *******************************************************************/
  380. static int pkt_debugfs_seq_show(struct seq_file *m, void *p)
  381. {
  382. return pkt_seq_show(m, p);
  383. }
  384. static int pkt_debugfs_fops_open(struct inode *inode, struct file *file)
  385. {
  386. return single_open(file, pkt_debugfs_seq_show, inode->i_private);
  387. }
  388. static const struct file_operations debug_fops = {
  389. .open = pkt_debugfs_fops_open,
  390. .read = seq_read,
  391. .llseek = seq_lseek,
  392. .release = single_release,
  393. .owner = THIS_MODULE,
  394. };
  395. static void pkt_debugfs_dev_new(struct pktcdvd_device *pd)
  396. {
  397. if (!pkt_debugfs_root)
  398. return;
  399. pd->dfs_f_info = NULL;
  400. pd->dfs_d_root = debugfs_create_dir(pd->name, pkt_debugfs_root);
  401. if (IS_ERR(pd->dfs_d_root)) {
  402. pd->dfs_d_root = NULL;
  403. return;
  404. }
  405. pd->dfs_f_info = debugfs_create_file("info", S_IRUGO,
  406. pd->dfs_d_root, pd, &debug_fops);
  407. if (IS_ERR(pd->dfs_f_info)) {
  408. pd->dfs_f_info = NULL;
  409. return;
  410. }
  411. }
  412. static void pkt_debugfs_dev_remove(struct pktcdvd_device *pd)
  413. {
  414. if (!pkt_debugfs_root)
  415. return;
  416. if (pd->dfs_f_info)
  417. debugfs_remove(pd->dfs_f_info);
  418. pd->dfs_f_info = NULL;
  419. if (pd->dfs_d_root)
  420. debugfs_remove(pd->dfs_d_root);
  421. pd->dfs_d_root = NULL;
  422. }
  423. static void pkt_debugfs_init(void)
  424. {
  425. pkt_debugfs_root = debugfs_create_dir(DRIVER_NAME, NULL);
  426. if (IS_ERR(pkt_debugfs_root)) {
  427. pkt_debugfs_root = NULL;
  428. return;
  429. }
  430. }
  431. static void pkt_debugfs_cleanup(void)
  432. {
  433. if (!pkt_debugfs_root)
  434. return;
  435. debugfs_remove(pkt_debugfs_root);
  436. pkt_debugfs_root = NULL;
  437. }
  438. /* ----------------------------------------------------------*/
  439. static void pkt_bio_finished(struct pktcdvd_device *pd)
  440. {
  441. BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0);
  442. if (atomic_dec_and_test(&pd->cdrw.pending_bios)) {
  443. VPRINTK(DRIVER_NAME": queue empty\n");
  444. atomic_set(&pd->iosched.attention, 1);
  445. wake_up(&pd->wqueue);
  446. }
  447. }
  448. static void pkt_bio_destructor(struct bio *bio)
  449. {
  450. kfree(bio->bi_io_vec);
  451. kfree(bio);
  452. }
  453. static struct bio *pkt_bio_alloc(int nr_iovecs)
  454. {
  455. struct bio_vec *bvl = NULL;
  456. struct bio *bio;
  457. bio = kmalloc(sizeof(struct bio), GFP_KERNEL);
  458. if (!bio)
  459. goto no_bio;
  460. bio_init(bio);
  461. bvl = kcalloc(nr_iovecs, sizeof(struct bio_vec), GFP_KERNEL);
  462. if (!bvl)
  463. goto no_bvl;
  464. bio->bi_max_vecs = nr_iovecs;
  465. bio->bi_io_vec = bvl;
  466. bio->bi_destructor = pkt_bio_destructor;
  467. return bio;
  468. no_bvl:
  469. kfree(bio);
  470. no_bio:
  471. return NULL;
  472. }
  473. /*
  474. * Allocate a packet_data struct
  475. */
  476. static struct packet_data *pkt_alloc_packet_data(int frames)
  477. {
  478. int i;
  479. struct packet_data *pkt;
  480. pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL);
  481. if (!pkt)
  482. goto no_pkt;
  483. pkt->frames = frames;
  484. pkt->w_bio = pkt_bio_alloc(frames);
  485. if (!pkt->w_bio)
  486. goto no_bio;
  487. for (i = 0; i < frames / FRAMES_PER_PAGE; i++) {
  488. pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
  489. if (!pkt->pages[i])
  490. goto no_page;
  491. }
  492. spin_lock_init(&pkt->lock);
  493. for (i = 0; i < frames; i++) {
  494. struct bio *bio = pkt_bio_alloc(1);
  495. if (!bio)
  496. goto no_rd_bio;
  497. pkt->r_bios[i] = bio;
  498. }
  499. return pkt;
  500. no_rd_bio:
  501. for (i = 0; i < frames; i++) {
  502. struct bio *bio = pkt->r_bios[i];
  503. if (bio)
  504. bio_put(bio);
  505. }
  506. no_page:
  507. for (i = 0; i < frames / FRAMES_PER_PAGE; i++)
  508. if (pkt->pages[i])
  509. __free_page(pkt->pages[i]);
  510. bio_put(pkt->w_bio);
  511. no_bio:
  512. kfree(pkt);
  513. no_pkt:
  514. return NULL;
  515. }
  516. /*
  517. * Free a packet_data struct
  518. */
  519. static void pkt_free_packet_data(struct packet_data *pkt)
  520. {
  521. int i;
  522. for (i = 0; i < pkt->frames; i++) {
  523. struct bio *bio = pkt->r_bios[i];
  524. if (bio)
  525. bio_put(bio);
  526. }
  527. for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++)
  528. __free_page(pkt->pages[i]);
  529. bio_put(pkt->w_bio);
  530. kfree(pkt);
  531. }
  532. static void pkt_shrink_pktlist(struct pktcdvd_device *pd)
  533. {
  534. struct packet_data *pkt, *next;
  535. BUG_ON(!list_empty(&pd->cdrw.pkt_active_list));
  536. list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) {
  537. pkt_free_packet_data(pkt);
  538. }
  539. INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
  540. }
  541. static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets)
  542. {
  543. struct packet_data *pkt;
  544. BUG_ON(!list_empty(&pd->cdrw.pkt_free_list));
  545. while (nr_packets > 0) {
  546. pkt = pkt_alloc_packet_data(pd->settings.size >> 2);
  547. if (!pkt) {
  548. pkt_shrink_pktlist(pd);
  549. return 0;
  550. }
  551. pkt->id = nr_packets;
  552. pkt->pd = pd;
  553. list_add(&pkt->list, &pd->cdrw.pkt_free_list);
  554. nr_packets--;
  555. }
  556. return 1;
  557. }
  558. static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node)
  559. {
  560. struct rb_node *n = rb_next(&node->rb_node);
  561. if (!n)
  562. return NULL;
  563. return rb_entry(n, struct pkt_rb_node, rb_node);
  564. }
  565. static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node)
  566. {
  567. rb_erase(&node->rb_node, &pd->bio_queue);
  568. mempool_free(node, pd->rb_pool);
  569. pd->bio_queue_size--;
  570. BUG_ON(pd->bio_queue_size < 0);
  571. }
  572. /*
  573. * Find the first node in the pd->bio_queue rb tree with a starting sector >= s.
  574. */
  575. static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s)
  576. {
  577. struct rb_node *n = pd->bio_queue.rb_node;
  578. struct rb_node *next;
  579. struct pkt_rb_node *tmp;
  580. if (!n) {
  581. BUG_ON(pd->bio_queue_size > 0);
  582. return NULL;
  583. }
  584. for (;;) {
  585. tmp = rb_entry(n, struct pkt_rb_node, rb_node);
  586. if (s <= tmp->bio->bi_sector)
  587. next = n->rb_left;
  588. else
  589. next = n->rb_right;
  590. if (!next)
  591. break;
  592. n = next;
  593. }
  594. if (s > tmp->bio->bi_sector) {
  595. tmp = pkt_rbtree_next(tmp);
  596. if (!tmp)
  597. return NULL;
  598. }
  599. BUG_ON(s > tmp->bio->bi_sector);
  600. return tmp;
  601. }
  602. /*
  603. * Insert a node into the pd->bio_queue rb tree.
  604. */
  605. static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node)
  606. {
  607. struct rb_node **p = &pd->bio_queue.rb_node;
  608. struct rb_node *parent = NULL;
  609. sector_t s = node->bio->bi_sector;
  610. struct pkt_rb_node *tmp;
  611. while (*p) {
  612. parent = *p;
  613. tmp = rb_entry(parent, struct pkt_rb_node, rb_node);
  614. if (s < tmp->bio->bi_sector)
  615. p = &(*p)->rb_left;
  616. else
  617. p = &(*p)->rb_right;
  618. }
  619. rb_link_node(&node->rb_node, parent, p);
  620. rb_insert_color(&node->rb_node, &pd->bio_queue);
  621. pd->bio_queue_size++;
  622. }
  623. /*
  624. * Add a bio to a single linked list defined by its head and tail pointers.
  625. */
  626. static void pkt_add_list_last(struct bio *bio, struct bio **list_head, struct bio **list_tail)
  627. {
  628. bio->bi_next = NULL;
  629. if (*list_tail) {
  630. BUG_ON((*list_head) == NULL);
  631. (*list_tail)->bi_next = bio;
  632. (*list_tail) = bio;
  633. } else {
  634. BUG_ON((*list_head) != NULL);
  635. (*list_head) = bio;
  636. (*list_tail) = bio;
  637. }
  638. }
  639. /*
  640. * Remove and return the first bio from a single linked list defined by its
  641. * head and tail pointers.
  642. */
  643. static inline struct bio *pkt_get_list_first(struct bio **list_head, struct bio **list_tail)
  644. {
  645. struct bio *bio;
  646. if (*list_head == NULL)
  647. return NULL;
  648. bio = *list_head;
  649. *list_head = bio->bi_next;
  650. if (*list_head == NULL)
  651. *list_tail = NULL;
  652. bio->bi_next = NULL;
  653. return bio;
  654. }
  655. /*
  656. * Send a packet_command to the underlying block device and
  657. * wait for completion.
  658. */
  659. static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc)
  660. {
  661. struct request_queue *q = bdev_get_queue(pd->bdev);
  662. struct request *rq;
  663. int ret = 0;
  664. rq = blk_get_request(q, (cgc->data_direction == CGC_DATA_WRITE) ?
  665. WRITE : READ, __GFP_WAIT);
  666. if (cgc->buflen) {
  667. if (blk_rq_map_kern(q, rq, cgc->buffer, cgc->buflen, __GFP_WAIT))
  668. goto out;
  669. }
  670. rq->cmd_len = COMMAND_SIZE(cgc->cmd[0]);
  671. memcpy(rq->cmd, cgc->cmd, CDROM_PACKET_SIZE);
  672. if (sizeof(rq->cmd) > CDROM_PACKET_SIZE)
  673. memset(rq->cmd + CDROM_PACKET_SIZE, 0, sizeof(rq->cmd) - CDROM_PACKET_SIZE);
  674. rq->timeout = 60*HZ;
  675. rq->cmd_type = REQ_TYPE_BLOCK_PC;
  676. rq->cmd_flags |= REQ_HARDBARRIER;
  677. if (cgc->quiet)
  678. rq->cmd_flags |= REQ_QUIET;
  679. blk_execute_rq(rq->q, pd->bdev->bd_disk, rq, 0);
  680. if (rq->errors)
  681. ret = -EIO;
  682. out:
  683. blk_put_request(rq);
  684. return ret;
  685. }
  686. /*
  687. * A generic sense dump / resolve mechanism should be implemented across
  688. * all ATAPI + SCSI devices.
  689. */
  690. static void pkt_dump_sense(struct packet_command *cgc)
  691. {
  692. static char *info[9] = { "No sense", "Recovered error", "Not ready",
  693. "Medium error", "Hardware error", "Illegal request",
  694. "Unit attention", "Data protect", "Blank check" };
  695. int i;
  696. struct request_sense *sense = cgc->sense;
  697. printk(DRIVER_NAME":");
  698. for (i = 0; i < CDROM_PACKET_SIZE; i++)
  699. printk(" %02x", cgc->cmd[i]);
  700. printk(" - ");
  701. if (sense == NULL) {
  702. printk("no sense\n");
  703. return;
  704. }
  705. printk("sense %02x.%02x.%02x", sense->sense_key, sense->asc, sense->ascq);
  706. if (sense->sense_key > 8) {
  707. printk(" (INVALID)\n");
  708. return;
  709. }
  710. printk(" (%s)\n", info[sense->sense_key]);
  711. }
  712. /*
  713. * flush the drive cache to media
  714. */
  715. static int pkt_flush_cache(struct pktcdvd_device *pd)
  716. {
  717. struct packet_command cgc;
  718. init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
  719. cgc.cmd[0] = GPCMD_FLUSH_CACHE;
  720. cgc.quiet = 1;
  721. /*
  722. * the IMMED bit -- we default to not setting it, although that
  723. * would allow a much faster close, this is safer
  724. */
  725. #if 0
  726. cgc.cmd[1] = 1 << 1;
  727. #endif
  728. return pkt_generic_packet(pd, &cgc);
  729. }
  730. /*
  731. * speed is given as the normal factor, e.g. 4 for 4x
  732. */
  733. static noinline_for_stack int pkt_set_speed(struct pktcdvd_device *pd,
  734. unsigned write_speed, unsigned read_speed)
  735. {
  736. struct packet_command cgc;
  737. struct request_sense sense;
  738. int ret;
  739. init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
  740. cgc.sense = &sense;
  741. cgc.cmd[0] = GPCMD_SET_SPEED;
  742. cgc.cmd[2] = (read_speed >> 8) & 0xff;
  743. cgc.cmd[3] = read_speed & 0xff;
  744. cgc.cmd[4] = (write_speed >> 8) & 0xff;
  745. cgc.cmd[5] = write_speed & 0xff;
  746. if ((ret = pkt_generic_packet(pd, &cgc)))
  747. pkt_dump_sense(&cgc);
  748. return ret;
  749. }
  750. /*
  751. * Queue a bio for processing by the low-level CD device. Must be called
  752. * from process context.
  753. */
  754. static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio)
  755. {
  756. spin_lock(&pd->iosched.lock);
  757. if (bio_data_dir(bio) == READ) {
  758. pkt_add_list_last(bio, &pd->iosched.read_queue,
  759. &pd->iosched.read_queue_tail);
  760. } else {
  761. pkt_add_list_last(bio, &pd->iosched.write_queue,
  762. &pd->iosched.write_queue_tail);
  763. }
  764. spin_unlock(&pd->iosched.lock);
  765. atomic_set(&pd->iosched.attention, 1);
  766. wake_up(&pd->wqueue);
  767. }
  768. /*
  769. * Process the queued read/write requests. This function handles special
  770. * requirements for CDRW drives:
  771. * - A cache flush command must be inserted before a read request if the
  772. * previous request was a write.
  773. * - Switching between reading and writing is slow, so don't do it more often
  774. * than necessary.
  775. * - Optimize for throughput at the expense of latency. This means that streaming
  776. * writes will never be interrupted by a read, but if the drive has to seek
  777. * before the next write, switch to reading instead if there are any pending
  778. * read requests.
  779. * - Set the read speed according to current usage pattern. When only reading
  780. * from the device, it's best to use the highest possible read speed, but
  781. * when switching often between reading and writing, it's better to have the
  782. * same read and write speeds.
  783. */
  784. static void pkt_iosched_process_queue(struct pktcdvd_device *pd)
  785. {
  786. if (atomic_read(&pd->iosched.attention) == 0)
  787. return;
  788. atomic_set(&pd->iosched.attention, 0);
  789. for (;;) {
  790. struct bio *bio;
  791. int reads_queued, writes_queued;
  792. spin_lock(&pd->iosched.lock);
  793. reads_queued = (pd->iosched.read_queue != NULL);
  794. writes_queued = (pd->iosched.write_queue != NULL);
  795. spin_unlock(&pd->iosched.lock);
  796. if (!reads_queued && !writes_queued)
  797. break;
  798. if (pd->iosched.writing) {
  799. int need_write_seek = 1;
  800. spin_lock(&pd->iosched.lock);
  801. bio = pd->iosched.write_queue;
  802. spin_unlock(&pd->iosched.lock);
  803. if (bio && (bio->bi_sector == pd->iosched.last_write))
  804. need_write_seek = 0;
  805. if (need_write_seek && reads_queued) {
  806. if (atomic_read(&pd->cdrw.pending_bios) > 0) {
  807. VPRINTK(DRIVER_NAME": write, waiting\n");
  808. break;
  809. }
  810. pkt_flush_cache(pd);
  811. pd->iosched.writing = 0;
  812. }
  813. } else {
  814. if (!reads_queued && writes_queued) {
  815. if (atomic_read(&pd->cdrw.pending_bios) > 0) {
  816. VPRINTK(DRIVER_NAME": read, waiting\n");
  817. break;
  818. }
  819. pd->iosched.writing = 1;
  820. }
  821. }
  822. spin_lock(&pd->iosched.lock);
  823. if (pd->iosched.writing) {
  824. bio = pkt_get_list_first(&pd->iosched.write_queue,
  825. &pd->iosched.write_queue_tail);
  826. } else {
  827. bio = pkt_get_list_first(&pd->iosched.read_queue,
  828. &pd->iosched.read_queue_tail);
  829. }
  830. spin_unlock(&pd->iosched.lock);
  831. if (!bio)
  832. continue;
  833. if (bio_data_dir(bio) == READ)
  834. pd->iosched.successive_reads += bio->bi_size >> 10;
  835. else {
  836. pd->iosched.successive_reads = 0;
  837. pd->iosched.last_write = bio->bi_sector + bio_sectors(bio);
  838. }
  839. if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) {
  840. if (pd->read_speed == pd->write_speed) {
  841. pd->read_speed = MAX_SPEED;
  842. pkt_set_speed(pd, pd->write_speed, pd->read_speed);
  843. }
  844. } else {
  845. if (pd->read_speed != pd->write_speed) {
  846. pd->read_speed = pd->write_speed;
  847. pkt_set_speed(pd, pd->write_speed, pd->read_speed);
  848. }
  849. }
  850. atomic_inc(&pd->cdrw.pending_bios);
  851. generic_make_request(bio);
  852. }
  853. }
  854. /*
  855. * Special care is needed if the underlying block device has a small
  856. * max_phys_segments value.
  857. */
  858. static int pkt_set_segment_merging(struct pktcdvd_device *pd, struct request_queue *q)
  859. {
  860. if ((pd->settings.size << 9) / CD_FRAMESIZE <= q->max_phys_segments) {
  861. /*
  862. * The cdrom device can handle one segment/frame
  863. */
  864. clear_bit(PACKET_MERGE_SEGS, &pd->flags);
  865. return 0;
  866. } else if ((pd->settings.size << 9) / PAGE_SIZE <= q->max_phys_segments) {
  867. /*
  868. * We can handle this case at the expense of some extra memory
  869. * copies during write operations
  870. */
  871. set_bit(PACKET_MERGE_SEGS, &pd->flags);
  872. return 0;
  873. } else {
  874. printk(DRIVER_NAME": cdrom max_phys_segments too small\n");
  875. return -EIO;
  876. }
  877. }
  878. /*
  879. * Copy CD_FRAMESIZE bytes from src_bio into a destination page
  880. */
  881. static void pkt_copy_bio_data(struct bio *src_bio, int seg, int offs, struct page *dst_page, int dst_offs)
  882. {
  883. unsigned int copy_size = CD_FRAMESIZE;
  884. while (copy_size > 0) {
  885. struct bio_vec *src_bvl = bio_iovec_idx(src_bio, seg);
  886. void *vfrom = kmap_atomic(src_bvl->bv_page, KM_USER0) +
  887. src_bvl->bv_offset + offs;
  888. void *vto = page_address(dst_page) + dst_offs;
  889. int len = min_t(int, copy_size, src_bvl->bv_len - offs);
  890. BUG_ON(len < 0);
  891. memcpy(vto, vfrom, len);
  892. kunmap_atomic(vfrom, KM_USER0);
  893. seg++;
  894. offs = 0;
  895. dst_offs += len;
  896. copy_size -= len;
  897. }
  898. }
  899. /*
  900. * Copy all data for this packet to pkt->pages[], so that
  901. * a) The number of required segments for the write bio is minimized, which
  902. * is necessary for some scsi controllers.
  903. * b) The data can be used as cache to avoid read requests if we receive a
  904. * new write request for the same zone.
  905. */
  906. static void pkt_make_local_copy(struct packet_data *pkt, struct bio_vec *bvec)
  907. {
  908. int f, p, offs;
  909. /* Copy all data to pkt->pages[] */
  910. p = 0;
  911. offs = 0;
  912. for (f = 0; f < pkt->frames; f++) {
  913. if (bvec[f].bv_page != pkt->pages[p]) {
  914. void *vfrom = kmap_atomic(bvec[f].bv_page, KM_USER0) + bvec[f].bv_offset;
  915. void *vto = page_address(pkt->pages[p]) + offs;
  916. memcpy(vto, vfrom, CD_FRAMESIZE);
  917. kunmap_atomic(vfrom, KM_USER0);
  918. bvec[f].bv_page = pkt->pages[p];
  919. bvec[f].bv_offset = offs;
  920. } else {
  921. BUG_ON(bvec[f].bv_offset != offs);
  922. }
  923. offs += CD_FRAMESIZE;
  924. if (offs >= PAGE_SIZE) {
  925. offs = 0;
  926. p++;
  927. }
  928. }
  929. }
  930. static void pkt_end_io_read(struct bio *bio, int err)
  931. {
  932. struct packet_data *pkt = bio->bi_private;
  933. struct pktcdvd_device *pd = pkt->pd;
  934. BUG_ON(!pd);
  935. VPRINTK("pkt_end_io_read: bio=%p sec0=%llx sec=%llx err=%d\n", bio,
  936. (unsigned long long)pkt->sector, (unsigned long long)bio->bi_sector, err);
  937. if (err)
  938. atomic_inc(&pkt->io_errors);
  939. if (atomic_dec_and_test(&pkt->io_wait)) {
  940. atomic_inc(&pkt->run_sm);
  941. wake_up(&pd->wqueue);
  942. }
  943. pkt_bio_finished(pd);
  944. }
  945. static void pkt_end_io_packet_write(struct bio *bio, int err)
  946. {
  947. struct packet_data *pkt = bio->bi_private;
  948. struct pktcdvd_device *pd = pkt->pd;
  949. BUG_ON(!pd);
  950. VPRINTK("pkt_end_io_packet_write: id=%d, err=%d\n", pkt->id, err);
  951. pd->stats.pkt_ended++;
  952. pkt_bio_finished(pd);
  953. atomic_dec(&pkt->io_wait);
  954. atomic_inc(&pkt->run_sm);
  955. wake_up(&pd->wqueue);
  956. }
  957. /*
  958. * Schedule reads for the holes in a packet
  959. */
  960. static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt)
  961. {
  962. int frames_read = 0;
  963. struct bio *bio;
  964. int f;
  965. char written[PACKET_MAX_SIZE];
  966. BUG_ON(!pkt->orig_bios);
  967. atomic_set(&pkt->io_wait, 0);
  968. atomic_set(&pkt->io_errors, 0);
  969. /*
  970. * Figure out which frames we need to read before we can write.
  971. */
  972. memset(written, 0, sizeof(written));
  973. spin_lock(&pkt->lock);
  974. for (bio = pkt->orig_bios; bio; bio = bio->bi_next) {
  975. int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
  976. int num_frames = bio->bi_size / CD_FRAMESIZE;
  977. pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9);
  978. BUG_ON(first_frame < 0);
  979. BUG_ON(first_frame + num_frames > pkt->frames);
  980. for (f = first_frame; f < first_frame + num_frames; f++)
  981. written[f] = 1;
  982. }
  983. spin_unlock(&pkt->lock);
  984. if (pkt->cache_valid) {
  985. VPRINTK("pkt_gather_data: zone %llx cached\n",
  986. (unsigned long long)pkt->sector);
  987. goto out_account;
  988. }
  989. /*
  990. * Schedule reads for missing parts of the packet.
  991. */
  992. for (f = 0; f < pkt->frames; f++) {
  993. struct bio_vec *vec;
  994. int p, offset;
  995. if (written[f])
  996. continue;
  997. bio = pkt->r_bios[f];
  998. vec = bio->bi_io_vec;
  999. bio_init(bio);
  1000. bio->bi_max_vecs = 1;
  1001. bio->bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9);
  1002. bio->bi_bdev = pd->bdev;
  1003. bio->bi_end_io = pkt_end_io_read;
  1004. bio->bi_private = pkt;
  1005. bio->bi_io_vec = vec;
  1006. bio->bi_destructor = pkt_bio_destructor;
  1007. p = (f * CD_FRAMESIZE) / PAGE_SIZE;
  1008. offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
  1009. VPRINTK("pkt_gather_data: Adding frame %d, page:%p offs:%d\n",
  1010. f, pkt->pages[p], offset);
  1011. if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset))
  1012. BUG();
  1013. atomic_inc(&pkt->io_wait);
  1014. bio->bi_rw = READ;
  1015. pkt_queue_bio(pd, bio);
  1016. frames_read++;
  1017. }
  1018. out_account:
  1019. VPRINTK("pkt_gather_data: need %d frames for zone %llx\n",
  1020. frames_read, (unsigned long long)pkt->sector);
  1021. pd->stats.pkt_started++;
  1022. pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9);
  1023. }
  1024. /*
  1025. * Find a packet matching zone, or the least recently used packet if
  1026. * there is no match.
  1027. */
  1028. static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone)
  1029. {
  1030. struct packet_data *pkt;
  1031. list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) {
  1032. if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) {
  1033. list_del_init(&pkt->list);
  1034. if (pkt->sector != zone)
  1035. pkt->cache_valid = 0;
  1036. return pkt;
  1037. }
  1038. }
  1039. BUG();
  1040. return NULL;
  1041. }
  1042. static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt)
  1043. {
  1044. if (pkt->cache_valid) {
  1045. list_add(&pkt->list, &pd->cdrw.pkt_free_list);
  1046. } else {
  1047. list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list);
  1048. }
  1049. }
  1050. /*
  1051. * recover a failed write, query for relocation if possible
  1052. *
  1053. * returns 1 if recovery is possible, or 0 if not
  1054. *
  1055. */
  1056. static int pkt_start_recovery(struct packet_data *pkt)
  1057. {
  1058. /*
  1059. * FIXME. We need help from the file system to implement
  1060. * recovery handling.
  1061. */
  1062. return 0;
  1063. #if 0
  1064. struct request *rq = pkt->rq;
  1065. struct pktcdvd_device *pd = rq->rq_disk->private_data;
  1066. struct block_device *pkt_bdev;
  1067. struct super_block *sb = NULL;
  1068. unsigned long old_block, new_block;
  1069. sector_t new_sector;
  1070. pkt_bdev = bdget(kdev_t_to_nr(pd->pkt_dev));
  1071. if (pkt_bdev) {
  1072. sb = get_super(pkt_bdev);
  1073. bdput(pkt_bdev);
  1074. }
  1075. if (!sb)
  1076. return 0;
  1077. if (!sb->s_op || !sb->s_op->relocate_blocks)
  1078. goto out;
  1079. old_block = pkt->sector / (CD_FRAMESIZE >> 9);
  1080. if (sb->s_op->relocate_blocks(sb, old_block, &new_block))
  1081. goto out;
  1082. new_sector = new_block * (CD_FRAMESIZE >> 9);
  1083. pkt->sector = new_sector;
  1084. pkt->bio->bi_sector = new_sector;
  1085. pkt->bio->bi_next = NULL;
  1086. pkt->bio->bi_flags = 1 << BIO_UPTODATE;
  1087. pkt->bio->bi_idx = 0;
  1088. BUG_ON(pkt->bio->bi_rw != (1 << BIO_RW));
  1089. BUG_ON(pkt->bio->bi_vcnt != pkt->frames);
  1090. BUG_ON(pkt->bio->bi_size != pkt->frames * CD_FRAMESIZE);
  1091. BUG_ON(pkt->bio->bi_end_io != pkt_end_io_packet_write);
  1092. BUG_ON(pkt->bio->bi_private != pkt);
  1093. drop_super(sb);
  1094. return 1;
  1095. out:
  1096. drop_super(sb);
  1097. return 0;
  1098. #endif
  1099. }
  1100. static inline void pkt_set_state(struct packet_data *pkt, enum packet_data_state state)
  1101. {
  1102. #if PACKET_DEBUG > 1
  1103. static const char *state_name[] = {
  1104. "IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED"
  1105. };
  1106. enum packet_data_state old_state = pkt->state;
  1107. VPRINTK("pkt %2d : s=%6llx %s -> %s\n", pkt->id, (unsigned long long)pkt->sector,
  1108. state_name[old_state], state_name[state]);
  1109. #endif
  1110. pkt->state = state;
  1111. }
  1112. /*
  1113. * Scan the work queue to see if we can start a new packet.
  1114. * returns non-zero if any work was done.
  1115. */
  1116. static int pkt_handle_queue(struct pktcdvd_device *pd)
  1117. {
  1118. struct packet_data *pkt, *p;
  1119. struct bio *bio = NULL;
  1120. sector_t zone = 0; /* Suppress gcc warning */
  1121. struct pkt_rb_node *node, *first_node;
  1122. struct rb_node *n;
  1123. int wakeup;
  1124. VPRINTK("handle_queue\n");
  1125. atomic_set(&pd->scan_queue, 0);
  1126. if (list_empty(&pd->cdrw.pkt_free_list)) {
  1127. VPRINTK("handle_queue: no pkt\n");
  1128. return 0;
  1129. }
  1130. /*
  1131. * Try to find a zone we are not already working on.
  1132. */
  1133. spin_lock(&pd->lock);
  1134. first_node = pkt_rbtree_find(pd, pd->current_sector);
  1135. if (!first_node) {
  1136. n = rb_first(&pd->bio_queue);
  1137. if (n)
  1138. first_node = rb_entry(n, struct pkt_rb_node, rb_node);
  1139. }
  1140. node = first_node;
  1141. while (node) {
  1142. bio = node->bio;
  1143. zone = ZONE(bio->bi_sector, pd);
  1144. list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) {
  1145. if (p->sector == zone) {
  1146. bio = NULL;
  1147. goto try_next_bio;
  1148. }
  1149. }
  1150. break;
  1151. try_next_bio:
  1152. node = pkt_rbtree_next(node);
  1153. if (!node) {
  1154. n = rb_first(&pd->bio_queue);
  1155. if (n)
  1156. node = rb_entry(n, struct pkt_rb_node, rb_node);
  1157. }
  1158. if (node == first_node)
  1159. node = NULL;
  1160. }
  1161. spin_unlock(&pd->lock);
  1162. if (!bio) {
  1163. VPRINTK("handle_queue: no bio\n");
  1164. return 0;
  1165. }
  1166. pkt = pkt_get_packet_data(pd, zone);
  1167. pd->current_sector = zone + pd->settings.size;
  1168. pkt->sector = zone;
  1169. BUG_ON(pkt->frames != pd->settings.size >> 2);
  1170. pkt->write_size = 0;
  1171. /*
  1172. * Scan work queue for bios in the same zone and link them
  1173. * to this packet.
  1174. */
  1175. spin_lock(&pd->lock);
  1176. VPRINTK("pkt_handle_queue: looking for zone %llx\n", (unsigned long long)zone);
  1177. while ((node = pkt_rbtree_find(pd, zone)) != NULL) {
  1178. bio = node->bio;
  1179. VPRINTK("pkt_handle_queue: found zone=%llx\n",
  1180. (unsigned long long)ZONE(bio->bi_sector, pd));
  1181. if (ZONE(bio->bi_sector, pd) != zone)
  1182. break;
  1183. pkt_rbtree_erase(pd, node);
  1184. spin_lock(&pkt->lock);
  1185. pkt_add_list_last(bio, &pkt->orig_bios, &pkt->orig_bios_tail);
  1186. pkt->write_size += bio->bi_size / CD_FRAMESIZE;
  1187. spin_unlock(&pkt->lock);
  1188. }
  1189. /* check write congestion marks, and if bio_queue_size is
  1190. below, wake up any waiters */
  1191. wakeup = (pd->write_congestion_on > 0
  1192. && pd->bio_queue_size <= pd->write_congestion_off);
  1193. spin_unlock(&pd->lock);
  1194. if (wakeup)
  1195. clear_bdi_congested(&pd->disk->queue->backing_dev_info, WRITE);
  1196. pkt->sleep_time = max(PACKET_WAIT_TIME, 1);
  1197. pkt_set_state(pkt, PACKET_WAITING_STATE);
  1198. atomic_set(&pkt->run_sm, 1);
  1199. spin_lock(&pd->cdrw.active_list_lock);
  1200. list_add(&pkt->list, &pd->cdrw.pkt_active_list);
  1201. spin_unlock(&pd->cdrw.active_list_lock);
  1202. return 1;
  1203. }
  1204. /*
  1205. * Assemble a bio to write one packet and queue the bio for processing
  1206. * by the underlying block device.
  1207. */
  1208. static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt)
  1209. {
  1210. struct bio *bio;
  1211. int f;
  1212. int frames_write;
  1213. struct bio_vec *bvec = pkt->w_bio->bi_io_vec;
  1214. for (f = 0; f < pkt->frames; f++) {
  1215. bvec[f].bv_page = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE];
  1216. bvec[f].bv_offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
  1217. }
  1218. /*
  1219. * Fill-in bvec with data from orig_bios.
  1220. */
  1221. frames_write = 0;
  1222. spin_lock(&pkt->lock);
  1223. for (bio = pkt->orig_bios; bio; bio = bio->bi_next) {
  1224. int segment = bio->bi_idx;
  1225. int src_offs = 0;
  1226. int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
  1227. int num_frames = bio->bi_size / CD_FRAMESIZE;
  1228. BUG_ON(first_frame < 0);
  1229. BUG_ON(first_frame + num_frames > pkt->frames);
  1230. for (f = first_frame; f < first_frame + num_frames; f++) {
  1231. struct bio_vec *src_bvl = bio_iovec_idx(bio, segment);
  1232. while (src_offs >= src_bvl->bv_len) {
  1233. src_offs -= src_bvl->bv_len;
  1234. segment++;
  1235. BUG_ON(segment >= bio->bi_vcnt);
  1236. src_bvl = bio_iovec_idx(bio, segment);
  1237. }
  1238. if (src_bvl->bv_len - src_offs >= CD_FRAMESIZE) {
  1239. bvec[f].bv_page = src_bvl->bv_page;
  1240. bvec[f].bv_offset = src_bvl->bv_offset + src_offs;
  1241. } else {
  1242. pkt_copy_bio_data(bio, segment, src_offs,
  1243. bvec[f].bv_page, bvec[f].bv_offset);
  1244. }
  1245. src_offs += CD_FRAMESIZE;
  1246. frames_write++;
  1247. }
  1248. }
  1249. pkt_set_state(pkt, PACKET_WRITE_WAIT_STATE);
  1250. spin_unlock(&pkt->lock);
  1251. VPRINTK("pkt_start_write: Writing %d frames for zone %llx\n",
  1252. frames_write, (unsigned long long)pkt->sector);
  1253. BUG_ON(frames_write != pkt->write_size);
  1254. if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames)) {
  1255. pkt_make_local_copy(pkt, bvec);
  1256. pkt->cache_valid = 1;
  1257. } else {
  1258. pkt->cache_valid = 0;
  1259. }
  1260. /* Start the write request */
  1261. bio_init(pkt->w_bio);
  1262. pkt->w_bio->bi_max_vecs = PACKET_MAX_SIZE;
  1263. pkt->w_bio->bi_sector = pkt->sector;
  1264. pkt->w_bio->bi_bdev = pd->bdev;
  1265. pkt->w_bio->bi_end_io = pkt_end_io_packet_write;
  1266. pkt->w_bio->bi_private = pkt;
  1267. pkt->w_bio->bi_io_vec = bvec;
  1268. pkt->w_bio->bi_destructor = pkt_bio_destructor;
  1269. for (f = 0; f < pkt->frames; f++)
  1270. if (!bio_add_page(pkt->w_bio, bvec[f].bv_page, CD_FRAMESIZE, bvec[f].bv_offset))
  1271. BUG();
  1272. VPRINTK(DRIVER_NAME": vcnt=%d\n", pkt->w_bio->bi_vcnt);
  1273. atomic_set(&pkt->io_wait, 1);
  1274. pkt->w_bio->bi_rw = WRITE;
  1275. pkt_queue_bio(pd, pkt->w_bio);
  1276. }
  1277. static void pkt_finish_packet(struct packet_data *pkt, int uptodate)
  1278. {
  1279. struct bio *bio, *next;
  1280. if (!uptodate)
  1281. pkt->cache_valid = 0;
  1282. /* Finish all bios corresponding to this packet */
  1283. bio = pkt->orig_bios;
  1284. while (bio) {
  1285. next = bio->bi_next;
  1286. bio->bi_next = NULL;
  1287. bio_endio(bio, uptodate ? 0 : -EIO);
  1288. bio = next;
  1289. }
  1290. pkt->orig_bios = pkt->orig_bios_tail = NULL;
  1291. }
  1292. static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt)
  1293. {
  1294. int uptodate;
  1295. VPRINTK("run_state_machine: pkt %d\n", pkt->id);
  1296. for (;;) {
  1297. switch (pkt->state) {
  1298. case PACKET_WAITING_STATE:
  1299. if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0))
  1300. return;
  1301. pkt->sleep_time = 0;
  1302. pkt_gather_data(pd, pkt);
  1303. pkt_set_state(pkt, PACKET_READ_WAIT_STATE);
  1304. break;
  1305. case PACKET_READ_WAIT_STATE:
  1306. if (atomic_read(&pkt->io_wait) > 0)
  1307. return;
  1308. if (atomic_read(&pkt->io_errors) > 0) {
  1309. pkt_set_state(pkt, PACKET_RECOVERY_STATE);
  1310. } else {
  1311. pkt_start_write(pd, pkt);
  1312. }
  1313. break;
  1314. case PACKET_WRITE_WAIT_STATE:
  1315. if (atomic_read(&pkt->io_wait) > 0)
  1316. return;
  1317. if (test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags)) {
  1318. pkt_set_state(pkt, PACKET_FINISHED_STATE);
  1319. } else {
  1320. pkt_set_state(pkt, PACKET_RECOVERY_STATE);
  1321. }
  1322. break;
  1323. case PACKET_RECOVERY_STATE:
  1324. if (pkt_start_recovery(pkt)) {
  1325. pkt_start_write(pd, pkt);
  1326. } else {
  1327. VPRINTK("No recovery possible\n");
  1328. pkt_set_state(pkt, PACKET_FINISHED_STATE);
  1329. }
  1330. break;
  1331. case PACKET_FINISHED_STATE:
  1332. uptodate = test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags);
  1333. pkt_finish_packet(pkt, uptodate);
  1334. return;
  1335. default:
  1336. BUG();
  1337. break;
  1338. }
  1339. }
  1340. }
  1341. static void pkt_handle_packets(struct pktcdvd_device *pd)
  1342. {
  1343. struct packet_data *pkt, *next;
  1344. VPRINTK("pkt_handle_packets\n");
  1345. /*
  1346. * Run state machine for active packets
  1347. */
  1348. list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
  1349. if (atomic_read(&pkt->run_sm) > 0) {
  1350. atomic_set(&pkt->run_sm, 0);
  1351. pkt_run_state_machine(pd, pkt);
  1352. }
  1353. }
  1354. /*
  1355. * Move no longer active packets to the free list
  1356. */
  1357. spin_lock(&pd->cdrw.active_list_lock);
  1358. list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) {
  1359. if (pkt->state == PACKET_FINISHED_STATE) {
  1360. list_del(&pkt->list);
  1361. pkt_put_packet_data(pd, pkt);
  1362. pkt_set_state(pkt, PACKET_IDLE_STATE);
  1363. atomic_set(&pd->scan_queue, 1);
  1364. }
  1365. }
  1366. spin_unlock(&pd->cdrw.active_list_lock);
  1367. }
  1368. static void pkt_count_states(struct pktcdvd_device *pd, int *states)
  1369. {
  1370. struct packet_data *pkt;
  1371. int i;
  1372. for (i = 0; i < PACKET_NUM_STATES; i++)
  1373. states[i] = 0;
  1374. spin_lock(&pd->cdrw.active_list_lock);
  1375. list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
  1376. states[pkt->state]++;
  1377. }
  1378. spin_unlock(&pd->cdrw.active_list_lock);
  1379. }
  1380. /*
  1381. * kcdrwd is woken up when writes have been queued for one of our
  1382. * registered devices
  1383. */
  1384. static int kcdrwd(void *foobar)
  1385. {
  1386. struct pktcdvd_device *pd = foobar;
  1387. struct packet_data *pkt;
  1388. long min_sleep_time, residue;
  1389. set_user_nice(current, -20);
  1390. set_freezable();
  1391. for (;;) {
  1392. DECLARE_WAITQUEUE(wait, current);
  1393. /*
  1394. * Wait until there is something to do
  1395. */
  1396. add_wait_queue(&pd->wqueue, &wait);
  1397. for (;;) {
  1398. set_current_state(TASK_INTERRUPTIBLE);
  1399. /* Check if we need to run pkt_handle_queue */
  1400. if (atomic_read(&pd->scan_queue) > 0)
  1401. goto work_to_do;
  1402. /* Check if we need to run the state machine for some packet */
  1403. list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
  1404. if (atomic_read(&pkt->run_sm) > 0)
  1405. goto work_to_do;
  1406. }
  1407. /* Check if we need to process the iosched queues */
  1408. if (atomic_read(&pd->iosched.attention) != 0)
  1409. goto work_to_do;
  1410. /* Otherwise, go to sleep */
  1411. if (PACKET_DEBUG > 1) {
  1412. int states[PACKET_NUM_STATES];
  1413. pkt_count_states(pd, states);
  1414. VPRINTK("kcdrwd: i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
  1415. states[0], states[1], states[2], states[3],
  1416. states[4], states[5]);
  1417. }
  1418. min_sleep_time = MAX_SCHEDULE_TIMEOUT;
  1419. list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
  1420. if (pkt->sleep_time && pkt->sleep_time < min_sleep_time)
  1421. min_sleep_time = pkt->sleep_time;
  1422. }
  1423. generic_unplug_device(bdev_get_queue(pd->bdev));
  1424. VPRINTK("kcdrwd: sleeping\n");
  1425. residue = schedule_timeout(min_sleep_time);
  1426. VPRINTK("kcdrwd: wake up\n");
  1427. /* make swsusp happy with our thread */
  1428. try_to_freeze();
  1429. list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
  1430. if (!pkt->sleep_time)
  1431. continue;
  1432. pkt->sleep_time -= min_sleep_time - residue;
  1433. if (pkt->sleep_time <= 0) {
  1434. pkt->sleep_time = 0;
  1435. atomic_inc(&pkt->run_sm);
  1436. }
  1437. }
  1438. if (kthread_should_stop())
  1439. break;
  1440. }
  1441. work_to_do:
  1442. set_current_state(TASK_RUNNING);
  1443. remove_wait_queue(&pd->wqueue, &wait);
  1444. if (kthread_should_stop())
  1445. break;
  1446. /*
  1447. * if pkt_handle_queue returns true, we can queue
  1448. * another request.
  1449. */
  1450. while (pkt_handle_queue(pd))
  1451. ;
  1452. /*
  1453. * Handle packet state machine
  1454. */
  1455. pkt_handle_packets(pd);
  1456. /*
  1457. * Handle iosched queues
  1458. */
  1459. pkt_iosched_process_queue(pd);
  1460. }
  1461. return 0;
  1462. }
  1463. static void pkt_print_settings(struct pktcdvd_device *pd)
  1464. {
  1465. printk(DRIVER_NAME": %s packets, ", pd->settings.fp ? "Fixed" : "Variable");
  1466. printk("%u blocks, ", pd->settings.size >> 2);
  1467. printk("Mode-%c disc\n", pd->settings.block_mode == 8 ? '1' : '2');
  1468. }
  1469. static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control)
  1470. {
  1471. memset(cgc->cmd, 0, sizeof(cgc->cmd));
  1472. cgc->cmd[0] = GPCMD_MODE_SENSE_10;
  1473. cgc->cmd[2] = page_code | (page_control << 6);
  1474. cgc->cmd[7] = cgc->buflen >> 8;
  1475. cgc->cmd[8] = cgc->buflen & 0xff;
  1476. cgc->data_direction = CGC_DATA_READ;
  1477. return pkt_generic_packet(pd, cgc);
  1478. }
  1479. static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc)
  1480. {
  1481. memset(cgc->cmd, 0, sizeof(cgc->cmd));
  1482. memset(cgc->buffer, 0, 2);
  1483. cgc->cmd[0] = GPCMD_MODE_SELECT_10;
  1484. cgc->cmd[1] = 0x10; /* PF */
  1485. cgc->cmd[7] = cgc->buflen >> 8;
  1486. cgc->cmd[8] = cgc->buflen & 0xff;
  1487. cgc->data_direction = CGC_DATA_WRITE;
  1488. return pkt_generic_packet(pd, cgc);
  1489. }
  1490. static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di)
  1491. {
  1492. struct packet_command cgc;
  1493. int ret;
  1494. /* set up command and get the disc info */
  1495. init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ);
  1496. cgc.cmd[0] = GPCMD_READ_DISC_INFO;
  1497. cgc.cmd[8] = cgc.buflen = 2;
  1498. cgc.quiet = 1;
  1499. if ((ret = pkt_generic_packet(pd, &cgc)))
  1500. return ret;
  1501. /* not all drives have the same disc_info length, so requeue
  1502. * packet with the length the drive tells us it can supply
  1503. */
  1504. cgc.buflen = be16_to_cpu(di->disc_information_length) +
  1505. sizeof(di->disc_information_length);
  1506. if (cgc.buflen > sizeof(disc_information))
  1507. cgc.buflen = sizeof(disc_information);
  1508. cgc.cmd[8] = cgc.buflen;
  1509. return pkt_generic_packet(pd, &cgc);
  1510. }
  1511. static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti)
  1512. {
  1513. struct packet_command cgc;
  1514. int ret;
  1515. init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ);
  1516. cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO;
  1517. cgc.cmd[1] = type & 3;
  1518. cgc.cmd[4] = (track & 0xff00) >> 8;
  1519. cgc.cmd[5] = track & 0xff;
  1520. cgc.cmd[8] = 8;
  1521. cgc.quiet = 1;
  1522. if ((ret = pkt_generic_packet(pd, &cgc)))
  1523. return ret;
  1524. cgc.buflen = be16_to_cpu(ti->track_information_length) +
  1525. sizeof(ti->track_information_length);
  1526. if (cgc.buflen > sizeof(track_information))
  1527. cgc.buflen = sizeof(track_information);
  1528. cgc.cmd[8] = cgc.buflen;
  1529. return pkt_generic_packet(pd, &cgc);
  1530. }
  1531. static noinline_for_stack int pkt_get_last_written(struct pktcdvd_device *pd,
  1532. long *last_written)
  1533. {
  1534. disc_information di;
  1535. track_information ti;
  1536. __u32 last_track;
  1537. int ret = -1;
  1538. if ((ret = pkt_get_disc_info(pd, &di)))
  1539. return ret;
  1540. last_track = (di.last_track_msb << 8) | di.last_track_lsb;
  1541. if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
  1542. return ret;
  1543. /* if this track is blank, try the previous. */
  1544. if (ti.blank) {
  1545. last_track--;
  1546. if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
  1547. return ret;
  1548. }
  1549. /* if last recorded field is valid, return it. */
  1550. if (ti.lra_v) {
  1551. *last_written = be32_to_cpu(ti.last_rec_address);
  1552. } else {
  1553. /* make it up instead */
  1554. *last_written = be32_to_cpu(ti.track_start) +
  1555. be32_to_cpu(ti.track_size);
  1556. if (ti.free_blocks)
  1557. *last_written -= (be32_to_cpu(ti.free_blocks) + 7);
  1558. }
  1559. return 0;
  1560. }
  1561. /*
  1562. * write mode select package based on pd->settings
  1563. */
  1564. static noinline_for_stack int pkt_set_write_settings(struct pktcdvd_device *pd)
  1565. {
  1566. struct packet_command cgc;
  1567. struct request_sense sense;
  1568. write_param_page *wp;
  1569. char buffer[128];
  1570. int ret, size;
  1571. /* doesn't apply to DVD+RW or DVD-RAM */
  1572. if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12))
  1573. return 0;
  1574. memset(buffer, 0, sizeof(buffer));
  1575. init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ);
  1576. cgc.sense = &sense;
  1577. if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
  1578. pkt_dump_sense(&cgc);
  1579. return ret;
  1580. }
  1581. size = 2 + ((buffer[0] << 8) | (buffer[1] & 0xff));
  1582. pd->mode_offset = (buffer[6] << 8) | (buffer[7] & 0xff);
  1583. if (size > sizeof(buffer))
  1584. size = sizeof(buffer);
  1585. /*
  1586. * now get it all
  1587. */
  1588. init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ);
  1589. cgc.sense = &sense;
  1590. if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
  1591. pkt_dump_sense(&cgc);
  1592. return ret;
  1593. }
  1594. /*
  1595. * write page is offset header + block descriptor length
  1596. */
  1597. wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset];
  1598. wp->fp = pd->settings.fp;
  1599. wp->track_mode = pd->settings.track_mode;
  1600. wp->write_type = pd->settings.write_type;
  1601. wp->data_block_type = pd->settings.block_mode;
  1602. wp->multi_session = 0;
  1603. #ifdef PACKET_USE_LS
  1604. wp->link_size = 7;
  1605. wp->ls_v = 1;
  1606. #endif
  1607. if (wp->data_block_type == PACKET_BLOCK_MODE1) {
  1608. wp->session_format = 0;
  1609. wp->subhdr2 = 0x20;
  1610. } else if (wp->data_block_type == PACKET_BLOCK_MODE2) {
  1611. wp->session_format = 0x20;
  1612. wp->subhdr2 = 8;
  1613. #if 0
  1614. wp->mcn[0] = 0x80;
  1615. memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1);
  1616. #endif
  1617. } else {
  1618. /*
  1619. * paranoia
  1620. */
  1621. printk(DRIVER_NAME": write mode wrong %d\n", wp->data_block_type);
  1622. return 1;
  1623. }
  1624. wp->packet_size = cpu_to_be32(pd->settings.size >> 2);
  1625. cgc.buflen = cgc.cmd[8] = size;
  1626. if ((ret = pkt_mode_select(pd, &cgc))) {
  1627. pkt_dump_sense(&cgc);
  1628. return ret;
  1629. }
  1630. pkt_print_settings(pd);
  1631. return 0;
  1632. }
  1633. /*
  1634. * 1 -- we can write to this track, 0 -- we can't
  1635. */
  1636. static int pkt_writable_track(struct pktcdvd_device *pd, track_information *ti)
  1637. {
  1638. switch (pd->mmc3_profile) {
  1639. case 0x1a: /* DVD+RW */
  1640. case 0x12: /* DVD-RAM */
  1641. /* The track is always writable on DVD+RW/DVD-RAM */
  1642. return 1;
  1643. default:
  1644. break;
  1645. }
  1646. if (!ti->packet || !ti->fp)
  1647. return 0;
  1648. /*
  1649. * "good" settings as per Mt Fuji.
  1650. */
  1651. if (ti->rt == 0 && ti->blank == 0)
  1652. return 1;
  1653. if (ti->rt == 0 && ti->blank == 1)
  1654. return 1;
  1655. if (ti->rt == 1 && ti->blank == 0)
  1656. return 1;
  1657. printk(DRIVER_NAME": bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet);
  1658. return 0;
  1659. }
  1660. /*
  1661. * 1 -- we can write to this disc, 0 -- we can't
  1662. */
  1663. static int pkt_writable_disc(struct pktcdvd_device *pd, disc_information *di)
  1664. {
  1665. switch (pd->mmc3_profile) {
  1666. case 0x0a: /* CD-RW */
  1667. case 0xffff: /* MMC3 not supported */
  1668. break;
  1669. case 0x1a: /* DVD+RW */
  1670. case 0x13: /* DVD-RW */
  1671. case 0x12: /* DVD-RAM */
  1672. return 1;
  1673. default:
  1674. VPRINTK(DRIVER_NAME": Wrong disc profile (%x)\n", pd->mmc3_profile);
  1675. return 0;
  1676. }
  1677. /*
  1678. * for disc type 0xff we should probably reserve a new track.
  1679. * but i'm not sure, should we leave this to user apps? probably.
  1680. */
  1681. if (di->disc_type == 0xff) {
  1682. printk(DRIVER_NAME": Unknown disc. No track?\n");
  1683. return 0;
  1684. }
  1685. if (di->disc_type != 0x20 && di->disc_type != 0) {
  1686. printk(DRIVER_NAME": Wrong disc type (%x)\n", di->disc_type);
  1687. return 0;
  1688. }
  1689. if (di->erasable == 0) {
  1690. printk(DRIVER_NAME": Disc not erasable\n");
  1691. return 0;
  1692. }
  1693. if (di->border_status == PACKET_SESSION_RESERVED) {
  1694. printk(DRIVER_NAME": Can't write to last track (reserved)\n");
  1695. return 0;
  1696. }
  1697. return 1;
  1698. }
  1699. static noinline_for_stack int pkt_probe_settings(struct pktcdvd_device *pd)
  1700. {
  1701. struct packet_command cgc;
  1702. unsigned char buf[12];
  1703. disc_information di;
  1704. track_information ti;
  1705. int ret, track;
  1706. init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
  1707. cgc.cmd[0] = GPCMD_GET_CONFIGURATION;
  1708. cgc.cmd[8] = 8;
  1709. ret = pkt_generic_packet(pd, &cgc);
  1710. pd->mmc3_profile = ret ? 0xffff : buf[6] << 8 | buf[7];
  1711. memset(&di, 0, sizeof(disc_information));
  1712. memset(&ti, 0, sizeof(track_information));
  1713. if ((ret = pkt_get_disc_info(pd, &di))) {
  1714. printk("failed get_disc\n");
  1715. return ret;
  1716. }
  1717. if (!pkt_writable_disc(pd, &di))
  1718. return -EROFS;
  1719. pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR;
  1720. track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */
  1721. if ((ret = pkt_get_track_info(pd, track, 1, &ti))) {
  1722. printk(DRIVER_NAME": failed get_track\n");
  1723. return ret;
  1724. }
  1725. if (!pkt_writable_track(pd, &ti)) {
  1726. printk(DRIVER_NAME": can't write to this track\n");
  1727. return -EROFS;
  1728. }
  1729. /*
  1730. * we keep packet size in 512 byte units, makes it easier to
  1731. * deal with request calculations.
  1732. */
  1733. pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2;
  1734. if (pd->settings.size == 0) {
  1735. printk(DRIVER_NAME": detected zero packet size!\n");
  1736. return -ENXIO;
  1737. }
  1738. if (pd->settings.size > PACKET_MAX_SECTORS) {
  1739. printk(DRIVER_NAME": packet size is too big\n");
  1740. return -EROFS;
  1741. }
  1742. pd->settings.fp = ti.fp;
  1743. pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1);
  1744. if (ti.nwa_v) {
  1745. pd->nwa = be32_to_cpu(ti.next_writable);
  1746. set_bit(PACKET_NWA_VALID, &pd->flags);
  1747. }
  1748. /*
  1749. * in theory we could use lra on -RW media as well and just zero
  1750. * blocks that haven't been written yet, but in practice that
  1751. * is just a no-go. we'll use that for -R, naturally.
  1752. */
  1753. if (ti.lra_v) {
  1754. pd->lra = be32_to_cpu(ti.last_rec_address);
  1755. set_bit(PACKET_LRA_VALID, &pd->flags);
  1756. } else {
  1757. pd->lra = 0xffffffff;
  1758. set_bit(PACKET_LRA_VALID, &pd->flags);
  1759. }
  1760. /*
  1761. * fine for now
  1762. */
  1763. pd->settings.link_loss = 7;
  1764. pd->settings.write_type = 0; /* packet */
  1765. pd->settings.track_mode = ti.track_mode;
  1766. /*
  1767. * mode1 or mode2 disc
  1768. */
  1769. switch (ti.data_mode) {
  1770. case PACKET_MODE1:
  1771. pd->settings.block_mode = PACKET_BLOCK_MODE1;
  1772. break;
  1773. case PACKET_MODE2:
  1774. pd->settings.block_mode = PACKET_BLOCK_MODE2;
  1775. break;
  1776. default:
  1777. printk(DRIVER_NAME": unknown data mode\n");
  1778. return -EROFS;
  1779. }
  1780. return 0;
  1781. }
  1782. /*
  1783. * enable/disable write caching on drive
  1784. */
  1785. static noinline_for_stack int pkt_write_caching(struct pktcdvd_device *pd,
  1786. int set)
  1787. {
  1788. struct packet_command cgc;
  1789. struct request_sense sense;
  1790. unsigned char buf[64];
  1791. int ret;
  1792. memset(buf, 0, sizeof(buf));
  1793. init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
  1794. cgc.sense = &sense;
  1795. cgc.buflen = pd->mode_offset + 12;
  1796. /*
  1797. * caching mode page might not be there, so quiet this command
  1798. */
  1799. cgc.quiet = 1;
  1800. if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0)))
  1801. return ret;
  1802. buf[pd->mode_offset + 10] |= (!!set << 2);
  1803. cgc.buflen = cgc.cmd[8] = 2 + ((buf[0] << 8) | (buf[1] & 0xff));
  1804. ret = pkt_mode_select(pd, &cgc);
  1805. if (ret) {
  1806. printk(DRIVER_NAME": write caching control failed\n");
  1807. pkt_dump_sense(&cgc);
  1808. } else if (!ret && set)
  1809. printk(DRIVER_NAME": enabled write caching on %s\n", pd->name);
  1810. return ret;
  1811. }
  1812. static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag)
  1813. {
  1814. struct packet_command cgc;
  1815. init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
  1816. cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL;
  1817. cgc.cmd[4] = lockflag ? 1 : 0;
  1818. return pkt_generic_packet(pd, &cgc);
  1819. }
  1820. /*
  1821. * Returns drive maximum write speed
  1822. */
  1823. static noinline_for_stack int pkt_get_max_speed(struct pktcdvd_device *pd,
  1824. unsigned *write_speed)
  1825. {
  1826. struct packet_command cgc;
  1827. struct request_sense sense;
  1828. unsigned char buf[256+18];
  1829. unsigned char *cap_buf;
  1830. int ret, offset;
  1831. memset(buf, 0, sizeof(buf));
  1832. cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset];
  1833. init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN);
  1834. cgc.sense = &sense;
  1835. ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
  1836. if (ret) {
  1837. cgc.buflen = pd->mode_offset + cap_buf[1] + 2 +
  1838. sizeof(struct mode_page_header);
  1839. ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
  1840. if (ret) {
  1841. pkt_dump_sense(&cgc);
  1842. return ret;
  1843. }
  1844. }
  1845. offset = 20; /* Obsoleted field, used by older drives */
  1846. if (cap_buf[1] >= 28)
  1847. offset = 28; /* Current write speed selected */
  1848. if (cap_buf[1] >= 30) {
  1849. /* If the drive reports at least one "Logical Unit Write
  1850. * Speed Performance Descriptor Block", use the information
  1851. * in the first block. (contains the highest speed)
  1852. */
  1853. int num_spdb = (cap_buf[30] << 8) + cap_buf[31];
  1854. if (num_spdb > 0)
  1855. offset = 34;
  1856. }
  1857. *write_speed = (cap_buf[offset] << 8) | cap_buf[offset + 1];
  1858. return 0;
  1859. }
  1860. /* These tables from cdrecord - I don't have orange book */
  1861. /* standard speed CD-RW (1-4x) */
  1862. static char clv_to_speed[16] = {
  1863. /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
  1864. 0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
  1865. };
  1866. /* high speed CD-RW (-10x) */
  1867. static char hs_clv_to_speed[16] = {
  1868. /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
  1869. 0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
  1870. };
  1871. /* ultra high speed CD-RW */
  1872. static char us_clv_to_speed[16] = {
  1873. /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
  1874. 0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0
  1875. };
  1876. /*
  1877. * reads the maximum media speed from ATIP
  1878. */
  1879. static noinline_for_stack int pkt_media_speed(struct pktcdvd_device *pd,
  1880. unsigned *speed)
  1881. {
  1882. struct packet_command cgc;
  1883. struct request_sense sense;
  1884. unsigned char buf[64];
  1885. unsigned int size, st, sp;
  1886. int ret;
  1887. init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ);
  1888. cgc.sense = &sense;
  1889. cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
  1890. cgc.cmd[1] = 2;
  1891. cgc.cmd[2] = 4; /* READ ATIP */
  1892. cgc.cmd[8] = 2;
  1893. ret = pkt_generic_packet(pd, &cgc);
  1894. if (ret) {
  1895. pkt_dump_sense(&cgc);
  1896. return ret;
  1897. }
  1898. size = ((unsigned int) buf[0]<<8) + buf[1] + 2;
  1899. if (size > sizeof(buf))
  1900. size = sizeof(buf);
  1901. init_cdrom_command(&cgc, buf, size, CGC_DATA_READ);
  1902. cgc.sense = &sense;
  1903. cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
  1904. cgc.cmd[1] = 2;
  1905. cgc.cmd[2] = 4;
  1906. cgc.cmd[8] = size;
  1907. ret = pkt_generic_packet(pd, &cgc);
  1908. if (ret) {
  1909. pkt_dump_sense(&cgc);
  1910. return ret;
  1911. }
  1912. if (!(buf[6] & 0x40)) {
  1913. printk(DRIVER_NAME": Disc type is not CD-RW\n");
  1914. return 1;
  1915. }
  1916. if (!(buf[6] & 0x4)) {
  1917. printk(DRIVER_NAME": A1 values on media are not valid, maybe not CDRW?\n");
  1918. return 1;
  1919. }
  1920. st = (buf[6] >> 3) & 0x7; /* disc sub-type */
  1921. sp = buf[16] & 0xf; /* max speed from ATIP A1 field */
  1922. /* Info from cdrecord */
  1923. switch (st) {
  1924. case 0: /* standard speed */
  1925. *speed = clv_to_speed[sp];
  1926. break;
  1927. case 1: /* high speed */
  1928. *speed = hs_clv_to_speed[sp];
  1929. break;
  1930. case 2: /* ultra high speed */
  1931. *speed = us_clv_to_speed[sp];
  1932. break;
  1933. default:
  1934. printk(DRIVER_NAME": Unknown disc sub-type %d\n",st);
  1935. return 1;
  1936. }
  1937. if (*speed) {
  1938. printk(DRIVER_NAME": Max. media speed: %d\n",*speed);
  1939. return 0;
  1940. } else {
  1941. printk(DRIVER_NAME": Unknown speed %d for sub-type %d\n",sp,st);
  1942. return 1;
  1943. }
  1944. }
  1945. static noinline_for_stack int pkt_perform_opc(struct pktcdvd_device *pd)
  1946. {
  1947. struct packet_command cgc;
  1948. struct request_sense sense;
  1949. int ret;
  1950. VPRINTK(DRIVER_NAME": Performing OPC\n");
  1951. init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
  1952. cgc.sense = &sense;
  1953. cgc.timeout = 60*HZ;
  1954. cgc.cmd[0] = GPCMD_SEND_OPC;
  1955. cgc.cmd[1] = 1;
  1956. if ((ret = pkt_generic_packet(pd, &cgc)))
  1957. pkt_dump_sense(&cgc);
  1958. return ret;
  1959. }
  1960. static int pkt_open_write(struct pktcdvd_device *pd)
  1961. {
  1962. int ret;
  1963. unsigned int write_speed, media_write_speed, read_speed;
  1964. if ((ret = pkt_probe_settings(pd))) {
  1965. VPRINTK(DRIVER_NAME": %s failed probe\n", pd->name);
  1966. return ret;
  1967. }
  1968. if ((ret = pkt_set_write_settings(pd))) {
  1969. DPRINTK(DRIVER_NAME": %s failed saving write settings\n", pd->name);
  1970. return -EIO;
  1971. }
  1972. pkt_write_caching(pd, USE_WCACHING);
  1973. if ((ret = pkt_get_max_speed(pd, &write_speed)))
  1974. write_speed = 16 * 177;
  1975. switch (pd->mmc3_profile) {
  1976. case 0x13: /* DVD-RW */
  1977. case 0x1a: /* DVD+RW */
  1978. case 0x12: /* DVD-RAM */
  1979. DPRINTK(DRIVER_NAME": write speed %ukB/s\n", write_speed);
  1980. break;
  1981. default:
  1982. if ((ret = pkt_media_speed(pd, &media_write_speed)))
  1983. media_write_speed = 16;
  1984. write_speed = min(write_speed, media_write_speed * 177);
  1985. DPRINTK(DRIVER_NAME": write speed %ux\n", write_speed / 176);
  1986. break;
  1987. }
  1988. read_speed = write_speed;
  1989. if ((ret = pkt_set_speed(pd, write_speed, read_speed))) {
  1990. DPRINTK(DRIVER_NAME": %s couldn't set write speed\n", pd->name);
  1991. return -EIO;
  1992. }
  1993. pd->write_speed = write_speed;
  1994. pd->read_speed = read_speed;
  1995. if ((ret = pkt_perform_opc(pd))) {
  1996. DPRINTK(DRIVER_NAME": %s Optimum Power Calibration failed\n", pd->name);
  1997. }
  1998. return 0;
  1999. }
  2000. /*
  2001. * called at open time.
  2002. */
  2003. static int pkt_open_dev(struct pktcdvd_device *pd, int write)
  2004. {
  2005. int ret;
  2006. long lba;
  2007. struct request_queue *q;
  2008. /*
  2009. * We need to re-open the cdrom device without O_NONBLOCK to be able
  2010. * to read/write from/to it. It is already opened in O_NONBLOCK mode
  2011. * so bdget() can't fail.
  2012. */
  2013. bdget(pd->bdev->bd_dev);
  2014. if ((ret = blkdev_get(pd->bdev, FMODE_READ, O_RDONLY)))
  2015. goto out;
  2016. if ((ret = bd_claim(pd->bdev, pd)))
  2017. goto out_putdev;
  2018. if ((ret = pkt_get_last_written(pd, &lba))) {
  2019. printk(DRIVER_NAME": pkt_get_last_written failed\n");
  2020. goto out_unclaim;
  2021. }
  2022. set_capacity(pd->disk, lba << 2);
  2023. set_capacity(pd->bdev->bd_disk, lba << 2);
  2024. bd_set_size(pd->bdev, (loff_t)lba << 11);
  2025. q = bdev_get_queue(pd->bdev);
  2026. if (write) {
  2027. if ((ret = pkt_open_write(pd)))
  2028. goto out_unclaim;
  2029. /*
  2030. * Some CDRW drives can not handle writes larger than one packet,
  2031. * even if the size is a multiple of the packet size.
  2032. */
  2033. spin_lock_irq(q->queue_lock);
  2034. blk_queue_max_sectors(q, pd->settings.size);
  2035. spin_unlock_irq(q->queue_lock);
  2036. set_bit(PACKET_WRITABLE, &pd->flags);
  2037. } else {
  2038. pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
  2039. clear_bit(PACKET_WRITABLE, &pd->flags);
  2040. }
  2041. if ((ret = pkt_set_segment_merging(pd, q)))
  2042. goto out_unclaim;
  2043. if (write) {
  2044. if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) {
  2045. printk(DRIVER_NAME": not enough memory for buffers\n");
  2046. ret = -ENOMEM;
  2047. goto out_unclaim;
  2048. }
  2049. printk(DRIVER_NAME": %lukB available on disc\n", lba << 1);
  2050. }
  2051. return 0;
  2052. out_unclaim:
  2053. bd_release(pd->bdev);
  2054. out_putdev:
  2055. blkdev_put(pd->bdev);
  2056. out:
  2057. return ret;
  2058. }
  2059. /*
  2060. * called when the device is closed. makes sure that the device flushes
  2061. * the internal cache before we close.
  2062. */
  2063. static void pkt_release_dev(struct pktcdvd_device *pd, int flush)
  2064. {
  2065. if (flush && pkt_flush_cache(pd))
  2066. DPRINTK(DRIVER_NAME": %s not flushing cache\n", pd->name);
  2067. pkt_lock_door(pd, 0);
  2068. pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
  2069. bd_release(pd->bdev);
  2070. blkdev_put(pd->bdev);
  2071. pkt_shrink_pktlist(pd);
  2072. }
  2073. static struct pktcdvd_device *pkt_find_dev_from_minor(int dev_minor)
  2074. {
  2075. if (dev_minor >= MAX_WRITERS)
  2076. return NULL;
  2077. return pkt_devs[dev_minor];
  2078. }
  2079. static int pkt_open(struct inode *inode, struct file *file)
  2080. {
  2081. struct pktcdvd_device *pd = NULL;
  2082. int ret;
  2083. VPRINTK(DRIVER_NAME": entering open\n");
  2084. mutex_lock(&ctl_mutex);
  2085. pd = pkt_find_dev_from_minor(iminor(inode));
  2086. if (!pd) {
  2087. ret = -ENODEV;
  2088. goto out;
  2089. }
  2090. BUG_ON(pd->refcnt < 0);
  2091. pd->refcnt++;
  2092. if (pd->refcnt > 1) {
  2093. if ((file->f_mode & FMODE_WRITE) &&
  2094. !test_bit(PACKET_WRITABLE, &pd->flags)) {
  2095. ret = -EBUSY;
  2096. goto out_dec;
  2097. }
  2098. } else {
  2099. ret = pkt_open_dev(pd, file->f_mode & FMODE_WRITE);
  2100. if (ret)
  2101. goto out_dec;
  2102. /*
  2103. * needed here as well, since ext2 (among others) may change
  2104. * the blocksize at mount time
  2105. */
  2106. set_blocksize(inode->i_bdev, CD_FRAMESIZE);
  2107. }
  2108. mutex_unlock(&ctl_mutex);
  2109. return 0;
  2110. out_dec:
  2111. pd->refcnt--;
  2112. out:
  2113. VPRINTK(DRIVER_NAME": failed open (%d)\n", ret);
  2114. mutex_unlock(&ctl_mutex);
  2115. return ret;
  2116. }
  2117. static int pkt_close(struct inode *inode, struct file *file)
  2118. {
  2119. struct pktcdvd_device *pd = inode->i_bdev->bd_disk->private_data;
  2120. int ret = 0;
  2121. mutex_lock(&ctl_mutex);
  2122. pd->refcnt--;
  2123. BUG_ON(pd->refcnt < 0);
  2124. if (pd->refcnt == 0) {
  2125. int flush = test_bit(PACKET_WRITABLE, &pd->flags);
  2126. pkt_release_dev(pd, flush);
  2127. }
  2128. mutex_unlock(&ctl_mutex);
  2129. return ret;
  2130. }
  2131. static void pkt_end_io_read_cloned(struct bio *bio, int err)
  2132. {
  2133. struct packet_stacked_data *psd = bio->bi_private;
  2134. struct pktcdvd_device *pd = psd->pd;
  2135. bio_put(bio);
  2136. bio_endio(psd->bio, err);
  2137. mempool_free(psd, psd_pool);
  2138. pkt_bio_finished(pd);
  2139. }
  2140. static int pkt_make_request(struct request_queue *q, struct bio *bio)
  2141. {
  2142. struct pktcdvd_device *pd;
  2143. char b[BDEVNAME_SIZE];
  2144. sector_t zone;
  2145. struct packet_data *pkt;
  2146. int was_empty, blocked_bio;
  2147. struct pkt_rb_node *node;
  2148. pd = q->queuedata;
  2149. if (!pd) {
  2150. printk(DRIVER_NAME": %s incorrect request queue\n", bdevname(bio->bi_bdev, b));
  2151. goto end_io;
  2152. }
  2153. /*
  2154. * Clone READ bios so we can have our own bi_end_io callback.
  2155. */
  2156. if (bio_data_dir(bio) == READ) {
  2157. struct bio *cloned_bio = bio_clone(bio, GFP_NOIO);
  2158. struct packet_stacked_data *psd = mempool_alloc(psd_pool, GFP_NOIO);
  2159. psd->pd = pd;
  2160. psd->bio = bio;
  2161. cloned_bio->bi_bdev = pd->bdev;
  2162. cloned_bio->bi_private = psd;
  2163. cloned_bio->bi_end_io = pkt_end_io_read_cloned;
  2164. pd->stats.secs_r += bio->bi_size >> 9;
  2165. pkt_queue_bio(pd, cloned_bio);
  2166. return 0;
  2167. }
  2168. if (!test_bit(PACKET_WRITABLE, &pd->flags)) {
  2169. printk(DRIVER_NAME": WRITE for ro device %s (%llu)\n",
  2170. pd->name, (unsigned long long)bio->bi_sector);
  2171. goto end_io;
  2172. }
  2173. if (!bio->bi_size || (bio->bi_size % CD_FRAMESIZE)) {
  2174. printk(DRIVER_NAME": wrong bio size\n");
  2175. goto end_io;
  2176. }
  2177. blk_queue_bounce(q, &bio);
  2178. zone = ZONE(bio->bi_sector, pd);
  2179. VPRINTK("pkt_make_request: start = %6llx stop = %6llx\n",
  2180. (unsigned long long)bio->bi_sector,
  2181. (unsigned long long)(bio->bi_sector + bio_sectors(bio)));
  2182. /* Check if we have to split the bio */
  2183. {
  2184. struct bio_pair *bp;
  2185. sector_t last_zone;
  2186. int first_sectors;
  2187. last_zone = ZONE(bio->bi_sector + bio_sectors(bio) - 1, pd);
  2188. if (last_zone != zone) {
  2189. BUG_ON(last_zone != zone + pd->settings.size);
  2190. first_sectors = last_zone - bio->bi_sector;
  2191. bp = bio_split(bio, bio_split_pool, first_sectors);
  2192. BUG_ON(!bp);
  2193. pkt_make_request(q, &bp->bio1);
  2194. pkt_make_request(q, &bp->bio2);
  2195. bio_pair_release(bp);
  2196. return 0;
  2197. }
  2198. }
  2199. /*
  2200. * If we find a matching packet in state WAITING or READ_WAIT, we can
  2201. * just append this bio to that packet.
  2202. */
  2203. spin_lock(&pd->cdrw.active_list_lock);
  2204. blocked_bio = 0;
  2205. list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
  2206. if (pkt->sector == zone) {
  2207. spin_lock(&pkt->lock);
  2208. if ((pkt->state == PACKET_WAITING_STATE) ||
  2209. (pkt->state == PACKET_READ_WAIT_STATE)) {
  2210. pkt_add_list_last(bio, &pkt->orig_bios,
  2211. &pkt->orig_bios_tail);
  2212. pkt->write_size += bio->bi_size / CD_FRAMESIZE;
  2213. if ((pkt->write_size >= pkt->frames) &&
  2214. (pkt->state == PACKET_WAITING_STATE)) {
  2215. atomic_inc(&pkt->run_sm);
  2216. wake_up(&pd->wqueue);
  2217. }
  2218. spin_unlock(&pkt->lock);
  2219. spin_unlock(&pd->cdrw.active_list_lock);
  2220. return 0;
  2221. } else {
  2222. blocked_bio = 1;
  2223. }
  2224. spin_unlock(&pkt->lock);
  2225. }
  2226. }
  2227. spin_unlock(&pd->cdrw.active_list_lock);
  2228. /*
  2229. * Test if there is enough room left in the bio work queue
  2230. * (queue size >= congestion on mark).
  2231. * If not, wait till the work queue size is below the congestion off mark.
  2232. */
  2233. spin_lock(&pd->lock);
  2234. if (pd->write_congestion_on > 0
  2235. && pd->bio_queue_size >= pd->write_congestion_on) {
  2236. set_bdi_congested(&q->backing_dev_info, WRITE);
  2237. do {
  2238. spin_unlock(&pd->lock);
  2239. congestion_wait(WRITE, HZ);
  2240. spin_lock(&pd->lock);
  2241. } while(pd->bio_queue_size > pd->write_congestion_off);
  2242. }
  2243. spin_unlock(&pd->lock);
  2244. /*
  2245. * No matching packet found. Store the bio in the work queue.
  2246. */
  2247. node = mempool_alloc(pd->rb_pool, GFP_NOIO);
  2248. node->bio = bio;
  2249. spin_lock(&pd->lock);
  2250. BUG_ON(pd->bio_queue_size < 0);
  2251. was_empty = (pd->bio_queue_size == 0);
  2252. pkt_rbtree_insert(pd, node);
  2253. spin_unlock(&pd->lock);
  2254. /*
  2255. * Wake up the worker thread.
  2256. */
  2257. atomic_set(&pd->scan_queue, 1);
  2258. if (was_empty) {
  2259. /* This wake_up is required for correct operation */
  2260. wake_up(&pd->wqueue);
  2261. } else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) {
  2262. /*
  2263. * This wake up is not required for correct operation,
  2264. * but improves performance in some cases.
  2265. */
  2266. wake_up(&pd->wqueue);
  2267. }
  2268. return 0;
  2269. end_io:
  2270. bio_io_error(bio);
  2271. return 0;
  2272. }
  2273. static int pkt_merge_bvec(struct request_queue *q, struct bio *bio, struct bio_vec *bvec)
  2274. {
  2275. struct pktcdvd_device *pd = q->queuedata;
  2276. sector_t zone = ZONE(bio->bi_sector, pd);
  2277. int used = ((bio->bi_sector - zone) << 9) + bio->bi_size;
  2278. int remaining = (pd->settings.size << 9) - used;
  2279. int remaining2;
  2280. /*
  2281. * A bio <= PAGE_SIZE must be allowed. If it crosses a packet
  2282. * boundary, pkt_make_request() will split the bio.
  2283. */
  2284. remaining2 = PAGE_SIZE - bio->bi_size;
  2285. remaining = max(remaining, remaining2);
  2286. BUG_ON(remaining < 0);
  2287. return remaining;
  2288. }
  2289. static void pkt_init_queue(struct pktcdvd_device *pd)
  2290. {
  2291. struct request_queue *q = pd->disk->queue;
  2292. blk_queue_make_request(q, pkt_make_request);
  2293. blk_queue_hardsect_size(q, CD_FRAMESIZE);
  2294. blk_queue_max_sectors(q, PACKET_MAX_SECTORS);
  2295. blk_queue_merge_bvec(q, pkt_merge_bvec);
  2296. q->queuedata = pd;
  2297. }
  2298. static int pkt_seq_show(struct seq_file *m, void *p)
  2299. {
  2300. struct pktcdvd_device *pd = m->private;
  2301. char *msg;
  2302. char bdev_buf[BDEVNAME_SIZE];
  2303. int states[PACKET_NUM_STATES];
  2304. seq_printf(m, "Writer %s mapped to %s:\n", pd->name,
  2305. bdevname(pd->bdev, bdev_buf));
  2306. seq_printf(m, "\nSettings:\n");
  2307. seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2);
  2308. if (pd->settings.write_type == 0)
  2309. msg = "Packet";
  2310. else
  2311. msg = "Unknown";
  2312. seq_printf(m, "\twrite type:\t\t%s\n", msg);
  2313. seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable");
  2314. seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss);
  2315. seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode);
  2316. if (pd->settings.block_mode == PACKET_BLOCK_MODE1)
  2317. msg = "Mode 1";
  2318. else if (pd->settings.block_mode == PACKET_BLOCK_MODE2)
  2319. msg = "Mode 2";
  2320. else
  2321. msg = "Unknown";
  2322. seq_printf(m, "\tblock mode:\t\t%s\n", msg);
  2323. seq_printf(m, "\nStatistics:\n");
  2324. seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started);
  2325. seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended);
  2326. seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1);
  2327. seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1);
  2328. seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1);
  2329. seq_printf(m, "\nMisc:\n");
  2330. seq_printf(m, "\treference count:\t%d\n", pd->refcnt);
  2331. seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags);
  2332. seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed);
  2333. seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed);
  2334. seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset);
  2335. seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset);
  2336. seq_printf(m, "\nQueue state:\n");
  2337. seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size);
  2338. seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios));
  2339. seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd->current_sector);
  2340. pkt_count_states(pd, states);
  2341. seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
  2342. states[0], states[1], states[2], states[3], states[4], states[5]);
  2343. seq_printf(m, "\twrite congestion marks:\toff=%d on=%d\n",
  2344. pd->write_congestion_off,
  2345. pd->write_congestion_on);
  2346. return 0;
  2347. }
  2348. static int pkt_seq_open(struct inode *inode, struct file *file)
  2349. {
  2350. return single_open(file, pkt_seq_show, PDE(inode)->data);
  2351. }
  2352. static const struct file_operations pkt_proc_fops = {
  2353. .open = pkt_seq_open,
  2354. .read = seq_read,
  2355. .llseek = seq_lseek,
  2356. .release = single_release
  2357. };
  2358. static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev)
  2359. {
  2360. int i;
  2361. int ret = 0;
  2362. char b[BDEVNAME_SIZE];
  2363. struct block_device *bdev;
  2364. if (pd->pkt_dev == dev) {
  2365. printk(DRIVER_NAME": Recursive setup not allowed\n");
  2366. return -EBUSY;
  2367. }
  2368. for (i = 0; i < MAX_WRITERS; i++) {
  2369. struct pktcdvd_device *pd2 = pkt_devs[i];
  2370. if (!pd2)
  2371. continue;
  2372. if (pd2->bdev->bd_dev == dev) {
  2373. printk(DRIVER_NAME": %s already setup\n", bdevname(pd2->bdev, b));
  2374. return -EBUSY;
  2375. }
  2376. if (pd2->pkt_dev == dev) {
  2377. printk(DRIVER_NAME": Can't chain pktcdvd devices\n");
  2378. return -EBUSY;
  2379. }
  2380. }
  2381. bdev = bdget(dev);
  2382. if (!bdev)
  2383. return -ENOMEM;
  2384. ret = blkdev_get(bdev, FMODE_READ, O_RDONLY | O_NONBLOCK);
  2385. if (ret)
  2386. return ret;
  2387. /* This is safe, since we have a reference from open(). */
  2388. __module_get(THIS_MODULE);
  2389. pd->bdev = bdev;
  2390. set_blocksize(bdev, CD_FRAMESIZE);
  2391. pkt_init_queue(pd);
  2392. atomic_set(&pd->cdrw.pending_bios, 0);
  2393. pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->name);
  2394. if (IS_ERR(pd->cdrw.thread)) {
  2395. printk(DRIVER_NAME": can't start kernel thread\n");
  2396. ret = -ENOMEM;
  2397. goto out_mem;
  2398. }
  2399. proc_create_data(pd->name, 0, pkt_proc, &pkt_proc_fops, pd);
  2400. DPRINTK(DRIVER_NAME": writer %s mapped to %s\n", pd->name, bdevname(bdev, b));
  2401. return 0;
  2402. out_mem:
  2403. blkdev_put(bdev);
  2404. /* This is safe: open() is still holding a reference. */
  2405. module_put(THIS_MODULE);
  2406. return ret;
  2407. }
  2408. static int pkt_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
  2409. {
  2410. struct pktcdvd_device *pd = inode->i_bdev->bd_disk->private_data;
  2411. VPRINTK("pkt_ioctl: cmd %x, dev %d:%d\n", cmd, imajor(inode), iminor(inode));
  2412. switch (cmd) {
  2413. /*
  2414. * forward selected CDROM ioctls to CD-ROM, for UDF
  2415. */
  2416. case CDROMMULTISESSION:
  2417. case CDROMREADTOCENTRY:
  2418. case CDROM_LAST_WRITTEN:
  2419. case CDROM_SEND_PACKET:
  2420. case SCSI_IOCTL_SEND_COMMAND:
  2421. return blkdev_ioctl(pd->bdev->bd_inode, file, cmd, arg);
  2422. case CDROMEJECT:
  2423. /*
  2424. * The door gets locked when the device is opened, so we
  2425. * have to unlock it or else the eject command fails.
  2426. */
  2427. if (pd->refcnt == 1)
  2428. pkt_lock_door(pd, 0);
  2429. return blkdev_ioctl(pd->bdev->bd_inode, file, cmd, arg);
  2430. default:
  2431. VPRINTK(DRIVER_NAME": Unknown ioctl for %s (%x)\n", pd->name, cmd);
  2432. return -ENOTTY;
  2433. }
  2434. return 0;
  2435. }
  2436. static int pkt_media_changed(struct gendisk *disk)
  2437. {
  2438. struct pktcdvd_device *pd = disk->private_data;
  2439. struct gendisk *attached_disk;
  2440. if (!pd)
  2441. return 0;
  2442. if (!pd->bdev)
  2443. return 0;
  2444. attached_disk = pd->bdev->bd_disk;
  2445. if (!attached_disk)
  2446. return 0;
  2447. return attached_disk->fops->media_changed(attached_disk);
  2448. }
  2449. static struct block_device_operations pktcdvd_ops = {
  2450. .owner = THIS_MODULE,
  2451. .open = pkt_open,
  2452. .release = pkt_close,
  2453. .ioctl = pkt_ioctl,
  2454. .media_changed = pkt_media_changed,
  2455. };
  2456. /*
  2457. * Set up mapping from pktcdvd device to CD-ROM device.
  2458. */
  2459. static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev)
  2460. {
  2461. int idx;
  2462. int ret = -ENOMEM;
  2463. struct pktcdvd_device *pd;
  2464. struct gendisk *disk;
  2465. mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
  2466. for (idx = 0; idx < MAX_WRITERS; idx++)
  2467. if (!pkt_devs[idx])
  2468. break;
  2469. if (idx == MAX_WRITERS) {
  2470. printk(DRIVER_NAME": max %d writers supported\n", MAX_WRITERS);
  2471. ret = -EBUSY;
  2472. goto out_mutex;
  2473. }
  2474. pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL);
  2475. if (!pd)
  2476. goto out_mutex;
  2477. pd->rb_pool = mempool_create_kmalloc_pool(PKT_RB_POOL_SIZE,
  2478. sizeof(struct pkt_rb_node));
  2479. if (!pd->rb_pool)
  2480. goto out_mem;
  2481. INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
  2482. INIT_LIST_HEAD(&pd->cdrw.pkt_active_list);
  2483. spin_lock_init(&pd->cdrw.active_list_lock);
  2484. spin_lock_init(&pd->lock);
  2485. spin_lock_init(&pd->iosched.lock);
  2486. sprintf(pd->name, DRIVER_NAME"%d", idx);
  2487. init_waitqueue_head(&pd->wqueue);
  2488. pd->bio_queue = RB_ROOT;
  2489. pd->write_congestion_on = write_congestion_on;
  2490. pd->write_congestion_off = write_congestion_off;
  2491. disk = alloc_disk(1);
  2492. if (!disk)
  2493. goto out_mem;
  2494. pd->disk = disk;
  2495. disk->major = pktdev_major;
  2496. disk->first_minor = idx;
  2497. disk->fops = &pktcdvd_ops;
  2498. disk->flags = GENHD_FL_REMOVABLE;
  2499. strcpy(disk->disk_name, pd->name);
  2500. disk->private_data = pd;
  2501. disk->queue = blk_alloc_queue(GFP_KERNEL);
  2502. if (!disk->queue)
  2503. goto out_mem2;
  2504. pd->pkt_dev = MKDEV(disk->major, disk->first_minor);
  2505. ret = pkt_new_dev(pd, dev);
  2506. if (ret)
  2507. goto out_new_dev;
  2508. add_disk(disk);
  2509. pkt_sysfs_dev_new(pd);
  2510. pkt_debugfs_dev_new(pd);
  2511. pkt_devs[idx] = pd;
  2512. if (pkt_dev)
  2513. *pkt_dev = pd->pkt_dev;
  2514. mutex_unlock(&ctl_mutex);
  2515. return 0;
  2516. out_new_dev:
  2517. blk_cleanup_queue(disk->queue);
  2518. out_mem2:
  2519. put_disk(disk);
  2520. out_mem:
  2521. if (pd->rb_pool)
  2522. mempool_destroy(pd->rb_pool);
  2523. kfree(pd);
  2524. out_mutex:
  2525. mutex_unlock(&ctl_mutex);
  2526. printk(DRIVER_NAME": setup of pktcdvd device failed\n");
  2527. return ret;
  2528. }
  2529. /*
  2530. * Tear down mapping from pktcdvd device to CD-ROM device.
  2531. */
  2532. static int pkt_remove_dev(dev_t pkt_dev)
  2533. {
  2534. struct pktcdvd_device *pd;
  2535. int idx;
  2536. int ret = 0;
  2537. mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
  2538. for (idx = 0; idx < MAX_WRITERS; idx++) {
  2539. pd = pkt_devs[idx];
  2540. if (pd && (pd->pkt_dev == pkt_dev))
  2541. break;
  2542. }
  2543. if (idx == MAX_WRITERS) {
  2544. DPRINTK(DRIVER_NAME": dev not setup\n");
  2545. ret = -ENXIO;
  2546. goto out;
  2547. }
  2548. if (pd->refcnt > 0) {
  2549. ret = -EBUSY;
  2550. goto out;
  2551. }
  2552. if (!IS_ERR(pd->cdrw.thread))
  2553. kthread_stop(pd->cdrw.thread);
  2554. pkt_devs[idx] = NULL;
  2555. pkt_debugfs_dev_remove(pd);
  2556. pkt_sysfs_dev_remove(pd);
  2557. blkdev_put(pd->bdev);
  2558. remove_proc_entry(pd->name, pkt_proc);
  2559. DPRINTK(DRIVER_NAME": writer %s unmapped\n", pd->name);
  2560. del_gendisk(pd->disk);
  2561. blk_cleanup_queue(pd->disk->queue);
  2562. put_disk(pd->disk);
  2563. mempool_destroy(pd->rb_pool);
  2564. kfree(pd);
  2565. /* This is safe: open() is still holding a reference. */
  2566. module_put(THIS_MODULE);
  2567. out:
  2568. mutex_unlock(&ctl_mutex);
  2569. return ret;
  2570. }
  2571. static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd)
  2572. {
  2573. struct pktcdvd_device *pd;
  2574. mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
  2575. pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index);
  2576. if (pd) {
  2577. ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev);
  2578. ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
  2579. } else {
  2580. ctrl_cmd->dev = 0;
  2581. ctrl_cmd->pkt_dev = 0;
  2582. }
  2583. ctrl_cmd->num_devices = MAX_WRITERS;
  2584. mutex_unlock(&ctl_mutex);
  2585. }
  2586. static int pkt_ctl_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
  2587. {
  2588. void __user *argp = (void __user *)arg;
  2589. struct pkt_ctrl_command ctrl_cmd;
  2590. int ret = 0;
  2591. dev_t pkt_dev = 0;
  2592. if (cmd != PACKET_CTRL_CMD)
  2593. return -ENOTTY;
  2594. if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command)))
  2595. return -EFAULT;
  2596. switch (ctrl_cmd.command) {
  2597. case PKT_CTRL_CMD_SETUP:
  2598. if (!capable(CAP_SYS_ADMIN))
  2599. return -EPERM;
  2600. ret = pkt_setup_dev(new_decode_dev(ctrl_cmd.dev), &pkt_dev);
  2601. ctrl_cmd.pkt_dev = new_encode_dev(pkt_dev);
  2602. break;
  2603. case PKT_CTRL_CMD_TEARDOWN:
  2604. if (!capable(CAP_SYS_ADMIN))
  2605. return -EPERM;
  2606. ret = pkt_remove_dev(new_decode_dev(ctrl_cmd.pkt_dev));
  2607. break;
  2608. case PKT_CTRL_CMD_STATUS:
  2609. pkt_get_status(&ctrl_cmd);
  2610. break;
  2611. default:
  2612. return -ENOTTY;
  2613. }
  2614. if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command)))
  2615. return -EFAULT;
  2616. return ret;
  2617. }
  2618. static const struct file_operations pkt_ctl_fops = {
  2619. .ioctl = pkt_ctl_ioctl,
  2620. .owner = THIS_MODULE,
  2621. };
  2622. static struct miscdevice pkt_misc = {
  2623. .minor = MISC_DYNAMIC_MINOR,
  2624. .name = DRIVER_NAME,
  2625. .fops = &pkt_ctl_fops
  2626. };
  2627. static int __init pkt_init(void)
  2628. {
  2629. int ret;
  2630. mutex_init(&ctl_mutex);
  2631. psd_pool = mempool_create_kmalloc_pool(PSD_POOL_SIZE,
  2632. sizeof(struct packet_stacked_data));
  2633. if (!psd_pool)
  2634. return -ENOMEM;
  2635. ret = register_blkdev(pktdev_major, DRIVER_NAME);
  2636. if (ret < 0) {
  2637. printk(DRIVER_NAME": Unable to register block device\n");
  2638. goto out2;
  2639. }
  2640. if (!pktdev_major)
  2641. pktdev_major = ret;
  2642. ret = pkt_sysfs_init();
  2643. if (ret)
  2644. goto out;
  2645. pkt_debugfs_init();
  2646. ret = misc_register(&pkt_misc);
  2647. if (ret) {
  2648. printk(DRIVER_NAME": Unable to register misc device\n");
  2649. goto out_misc;
  2650. }
  2651. pkt_proc = proc_mkdir("driver/"DRIVER_NAME, NULL);
  2652. return 0;
  2653. out_misc:
  2654. pkt_debugfs_cleanup();
  2655. pkt_sysfs_cleanup();
  2656. out:
  2657. unregister_blkdev(pktdev_major, DRIVER_NAME);
  2658. out2:
  2659. mempool_destroy(psd_pool);
  2660. return ret;
  2661. }
  2662. static void __exit pkt_exit(void)
  2663. {
  2664. remove_proc_entry("driver/"DRIVER_NAME, NULL);
  2665. misc_deregister(&pkt_misc);
  2666. pkt_debugfs_cleanup();
  2667. pkt_sysfs_cleanup();
  2668. unregister_blkdev(pktdev_major, DRIVER_NAME);
  2669. mempool_destroy(psd_pool);
  2670. }
  2671. MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives");
  2672. MODULE_AUTHOR("Jens Axboe <axboe@suse.de>");
  2673. MODULE_LICENSE("GPL");
  2674. module_init(pkt_init);
  2675. module_exit(pkt_exit);