read.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700
  1. /*
  2. * linux/fs/nfs/read.c
  3. *
  4. * Block I/O for NFS
  5. *
  6. * Partial copy of Linus' read cache modifications to fs/nfs/file.c
  7. * modified for async RPC by okir@monad.swb.de
  8. */
  9. #include <linux/time.h>
  10. #include <linux/kernel.h>
  11. #include <linux/errno.h>
  12. #include <linux/fcntl.h>
  13. #include <linux/stat.h>
  14. #include <linux/mm.h>
  15. #include <linux/slab.h>
  16. #include <linux/pagemap.h>
  17. #include <linux/sunrpc/clnt.h>
  18. #include <linux/nfs_fs.h>
  19. #include <linux/nfs_page.h>
  20. #include <linux/smp_lock.h>
  21. #include <linux/module.h>
  22. #include <asm/system.h>
  23. #include "pnfs.h"
  24. #include "nfs4_fs.h"
  25. #include "internal.h"
  26. #include "iostat.h"
  27. #include "fscache.h"
  28. #define NFSDBG_FACILITY NFSDBG_PAGECACHE
  29. static int nfs_pagein_multi(struct nfs_pageio_descriptor *desc);
  30. static int nfs_pagein_one(struct nfs_pageio_descriptor *desc);
  31. static const struct rpc_call_ops nfs_read_partial_ops;
  32. static const struct rpc_call_ops nfs_read_full_ops;
  33. static struct kmem_cache *nfs_rdata_cachep;
  34. static mempool_t *nfs_rdata_mempool;
  35. #define MIN_POOL_READ (32)
  36. struct nfs_read_data *nfs_readdata_alloc(unsigned int pagecount)
  37. {
  38. struct nfs_read_data *p = mempool_alloc(nfs_rdata_mempool, GFP_KERNEL);
  39. if (p) {
  40. memset(p, 0, sizeof(*p));
  41. INIT_LIST_HEAD(&p->pages);
  42. p->npages = pagecount;
  43. if (pagecount <= ARRAY_SIZE(p->page_array))
  44. p->pagevec = p->page_array;
  45. else {
  46. p->pagevec = kcalloc(pagecount, sizeof(struct page *), GFP_KERNEL);
  47. if (!p->pagevec) {
  48. mempool_free(p, nfs_rdata_mempool);
  49. p = NULL;
  50. }
  51. }
  52. }
  53. return p;
  54. }
  55. void nfs_readdata_free(struct nfs_read_data *p)
  56. {
  57. if (p && (p->pagevec != &p->page_array[0]))
  58. kfree(p->pagevec);
  59. mempool_free(p, nfs_rdata_mempool);
  60. }
  61. static void nfs_readdata_release(struct nfs_read_data *rdata)
  62. {
  63. put_lseg(rdata->lseg);
  64. put_nfs_open_context(rdata->args.context);
  65. nfs_readdata_free(rdata);
  66. }
  67. static
  68. int nfs_return_empty_page(struct page *page)
  69. {
  70. zero_user(page, 0, PAGE_CACHE_SIZE);
  71. SetPageUptodate(page);
  72. unlock_page(page);
  73. return 0;
  74. }
  75. static void nfs_readpage_truncate_uninitialised_page(struct nfs_read_data *data)
  76. {
  77. unsigned int remainder = data->args.count - data->res.count;
  78. unsigned int base = data->args.pgbase + data->res.count;
  79. unsigned int pglen;
  80. struct page **pages;
  81. if (data->res.eof == 0 || remainder == 0)
  82. return;
  83. /*
  84. * Note: "remainder" can never be negative, since we check for
  85. * this in the XDR code.
  86. */
  87. pages = &data->args.pages[base >> PAGE_CACHE_SHIFT];
  88. base &= ~PAGE_CACHE_MASK;
  89. pglen = PAGE_CACHE_SIZE - base;
  90. for (;;) {
  91. if (remainder <= pglen) {
  92. zero_user(*pages, base, remainder);
  93. break;
  94. }
  95. zero_user(*pages, base, pglen);
  96. pages++;
  97. remainder -= pglen;
  98. pglen = PAGE_CACHE_SIZE;
  99. base = 0;
  100. }
  101. }
  102. int nfs_readpage_async(struct nfs_open_context *ctx, struct inode *inode,
  103. struct page *page)
  104. {
  105. struct nfs_page *new;
  106. unsigned int len;
  107. struct nfs_pageio_descriptor pgio;
  108. len = nfs_page_length(page);
  109. if (len == 0)
  110. return nfs_return_empty_page(page);
  111. new = nfs_create_request(ctx, inode, page, 0, len);
  112. if (IS_ERR(new)) {
  113. unlock_page(page);
  114. return PTR_ERR(new);
  115. }
  116. if (len < PAGE_CACHE_SIZE)
  117. zero_user_segment(page, len, PAGE_CACHE_SIZE);
  118. nfs_pageio_init(&pgio, inode, NULL, 0, 0);
  119. nfs_list_add_request(new, &pgio.pg_list);
  120. pgio.pg_count = len;
  121. if (NFS_SERVER(inode)->rsize < PAGE_CACHE_SIZE)
  122. nfs_pagein_multi(&pgio);
  123. else
  124. nfs_pagein_one(&pgio);
  125. return 0;
  126. }
  127. static void nfs_readpage_release(struct nfs_page *req)
  128. {
  129. struct inode *d_inode = req->wb_context->path.dentry->d_inode;
  130. if (PageUptodate(req->wb_page))
  131. nfs_readpage_to_fscache(d_inode, req->wb_page, 0);
  132. unlock_page(req->wb_page);
  133. dprintk("NFS: read done (%s/%Ld %d@%Ld)\n",
  134. req->wb_context->path.dentry->d_inode->i_sb->s_id,
  135. (long long)NFS_FILEID(req->wb_context->path.dentry->d_inode),
  136. req->wb_bytes,
  137. (long long)req_offset(req));
  138. nfs_release_request(req);
  139. }
  140. int nfs_initiate_read(struct nfs_read_data *data, struct rpc_clnt *clnt,
  141. const struct rpc_call_ops *call_ops)
  142. {
  143. struct inode *inode = data->inode;
  144. int swap_flags = IS_SWAPFILE(inode) ? NFS_RPC_SWAPFLAGS : 0;
  145. struct rpc_task *task;
  146. struct rpc_message msg = {
  147. .rpc_argp = &data->args,
  148. .rpc_resp = &data->res,
  149. .rpc_cred = data->cred,
  150. };
  151. struct rpc_task_setup task_setup_data = {
  152. .task = &data->task,
  153. .rpc_client = clnt,
  154. .rpc_message = &msg,
  155. .callback_ops = call_ops,
  156. .callback_data = data,
  157. .workqueue = nfsiod_workqueue,
  158. .flags = RPC_TASK_ASYNC | swap_flags,
  159. };
  160. /* Set up the initial task struct. */
  161. NFS_PROTO(inode)->read_setup(data, &msg);
  162. dprintk("NFS: %5u initiated read call (req %s/%lld, %u bytes @ "
  163. "offset %llu)\n",
  164. data->task.tk_pid,
  165. inode->i_sb->s_id,
  166. (long long)NFS_FILEID(inode),
  167. data->args.count,
  168. (unsigned long long)data->args.offset);
  169. task = rpc_run_task(&task_setup_data);
  170. if (IS_ERR(task))
  171. return PTR_ERR(task);
  172. rpc_put_task(task);
  173. return 0;
  174. }
  175. EXPORT_SYMBOL_GPL(nfs_initiate_read);
  176. /*
  177. * Set up the NFS read request struct
  178. */
  179. static int nfs_read_rpcsetup(struct nfs_page *req, struct nfs_read_data *data,
  180. const struct rpc_call_ops *call_ops,
  181. unsigned int count, unsigned int offset,
  182. struct pnfs_layout_segment *lseg)
  183. {
  184. struct inode *inode = req->wb_context->path.dentry->d_inode;
  185. data->req = req;
  186. data->inode = inode;
  187. data->cred = req->wb_context->cred;
  188. data->lseg = get_lseg(lseg);
  189. data->args.fh = NFS_FH(inode);
  190. data->args.offset = req_offset(req) + offset;
  191. data->args.pgbase = req->wb_pgbase + offset;
  192. data->args.pages = data->pagevec;
  193. data->args.count = count;
  194. data->args.context = get_nfs_open_context(req->wb_context);
  195. data->args.lock_context = req->wb_lock_context;
  196. data->res.fattr = &data->fattr;
  197. data->res.count = count;
  198. data->res.eof = 0;
  199. nfs_fattr_init(&data->fattr);
  200. if (data->lseg &&
  201. (pnfs_try_to_read_data(data, call_ops) == PNFS_ATTEMPTED))
  202. return 0;
  203. return nfs_initiate_read(data, NFS_CLIENT(inode), call_ops);
  204. }
  205. static void
  206. nfs_async_read_error(struct list_head *head)
  207. {
  208. struct nfs_page *req;
  209. while (!list_empty(head)) {
  210. req = nfs_list_entry(head->next);
  211. nfs_list_remove_request(req);
  212. SetPageError(req->wb_page);
  213. nfs_readpage_release(req);
  214. }
  215. }
  216. /*
  217. * Generate multiple requests to fill a single page.
  218. *
  219. * We optimize to reduce the number of read operations on the wire. If we
  220. * detect that we're reading a page, or an area of a page, that is past the
  221. * end of file, we do not generate NFS read operations but just clear the
  222. * parts of the page that would have come back zero from the server anyway.
  223. *
  224. * We rely on the cached value of i_size to make this determination; another
  225. * client can fill pages on the server past our cached end-of-file, but we
  226. * won't see the new data until our attribute cache is updated. This is more
  227. * or less conventional NFS client behavior.
  228. */
  229. static int nfs_pagein_multi(struct nfs_pageio_descriptor *desc)
  230. {
  231. struct nfs_page *req = nfs_list_entry(desc->pg_list.next);
  232. struct page *page = req->wb_page;
  233. struct nfs_read_data *data;
  234. size_t rsize = NFS_SERVER(desc->pg_inode)->rsize, nbytes;
  235. unsigned int offset;
  236. int requests = 0;
  237. int ret = 0;
  238. struct pnfs_layout_segment *lseg;
  239. LIST_HEAD(list);
  240. nfs_list_remove_request(req);
  241. nbytes = desc->pg_count;
  242. do {
  243. size_t len = min(nbytes,rsize);
  244. data = nfs_readdata_alloc(1);
  245. if (!data)
  246. goto out_bad;
  247. list_add(&data->pages, &list);
  248. requests++;
  249. nbytes -= len;
  250. } while(nbytes != 0);
  251. atomic_set(&req->wb_complete, requests);
  252. BUG_ON(desc->pg_lseg != NULL);
  253. lseg = pnfs_update_layout(desc->pg_inode, req->wb_context, IOMODE_READ);
  254. ClearPageError(page);
  255. offset = 0;
  256. nbytes = desc->pg_count;
  257. do {
  258. int ret2;
  259. data = list_entry(list.next, struct nfs_read_data, pages);
  260. list_del_init(&data->pages);
  261. data->pagevec[0] = page;
  262. if (nbytes < rsize)
  263. rsize = nbytes;
  264. ret2 = nfs_read_rpcsetup(req, data, &nfs_read_partial_ops,
  265. rsize, offset, lseg);
  266. if (ret == 0)
  267. ret = ret2;
  268. offset += rsize;
  269. nbytes -= rsize;
  270. } while (nbytes != 0);
  271. put_lseg(lseg);
  272. return ret;
  273. out_bad:
  274. while (!list_empty(&list)) {
  275. data = list_entry(list.next, struct nfs_read_data, pages);
  276. list_del(&data->pages);
  277. nfs_readdata_free(data);
  278. }
  279. SetPageError(page);
  280. nfs_readpage_release(req);
  281. return -ENOMEM;
  282. }
  283. static int nfs_pagein_one(struct nfs_pageio_descriptor *desc)
  284. {
  285. struct nfs_page *req;
  286. struct page **pages;
  287. struct nfs_read_data *data;
  288. struct list_head *head = &desc->pg_list;
  289. struct pnfs_layout_segment *lseg = desc->pg_lseg;
  290. int ret = -ENOMEM;
  291. data = nfs_readdata_alloc(nfs_page_array_len(desc->pg_base,
  292. desc->pg_count));
  293. if (!data) {
  294. nfs_async_read_error(head);
  295. goto out;
  296. }
  297. pages = data->pagevec;
  298. while (!list_empty(head)) {
  299. req = nfs_list_entry(head->next);
  300. nfs_list_remove_request(req);
  301. nfs_list_add_request(req, &data->pages);
  302. ClearPageError(req->wb_page);
  303. *pages++ = req->wb_page;
  304. }
  305. req = nfs_list_entry(data->pages.next);
  306. if ((!lseg) && list_is_singular(&data->pages))
  307. lseg = pnfs_update_layout(desc->pg_inode, req->wb_context, IOMODE_READ);
  308. ret = nfs_read_rpcsetup(req, data, &nfs_read_full_ops, desc->pg_count,
  309. 0, lseg);
  310. out:
  311. put_lseg(lseg);
  312. return ret;
  313. }
  314. /*
  315. * This is the callback from RPC telling us whether a reply was
  316. * received or some error occurred (timeout or socket shutdown).
  317. */
  318. int nfs_readpage_result(struct rpc_task *task, struct nfs_read_data *data)
  319. {
  320. int status;
  321. dprintk("NFS: %s: %5u, (status %d)\n", __func__, task->tk_pid,
  322. task->tk_status);
  323. status = NFS_PROTO(data->inode)->read_done(task, data);
  324. if (status != 0)
  325. return status;
  326. nfs_add_stats(data->inode, NFSIOS_SERVERREADBYTES, data->res.count);
  327. if (task->tk_status == -ESTALE) {
  328. set_bit(NFS_INO_STALE, &NFS_I(data->inode)->flags);
  329. nfs_mark_for_revalidate(data->inode);
  330. }
  331. return 0;
  332. }
  333. static void nfs_readpage_retry(struct rpc_task *task, struct nfs_read_data *data)
  334. {
  335. struct nfs_readargs *argp = &data->args;
  336. struct nfs_readres *resp = &data->res;
  337. if (resp->eof || resp->count == argp->count)
  338. return;
  339. /* This is a short read! */
  340. nfs_inc_stats(data->inode, NFSIOS_SHORTREAD);
  341. /* Has the server at least made some progress? */
  342. if (resp->count == 0)
  343. return;
  344. /* Yes, so retry the read at the end of the data */
  345. data->mds_offset += resp->count;
  346. argp->offset += resp->count;
  347. argp->pgbase += resp->count;
  348. argp->count -= resp->count;
  349. nfs_restart_rpc(task, NFS_SERVER(data->inode)->nfs_client);
  350. }
  351. /*
  352. * Handle a read reply that fills part of a page.
  353. */
  354. static void nfs_readpage_result_partial(struct rpc_task *task, void *calldata)
  355. {
  356. struct nfs_read_data *data = calldata;
  357. if (nfs_readpage_result(task, data) != 0)
  358. return;
  359. if (task->tk_status < 0)
  360. return;
  361. nfs_readpage_truncate_uninitialised_page(data);
  362. nfs_readpage_retry(task, data);
  363. }
  364. static void nfs_readpage_release_partial(void *calldata)
  365. {
  366. struct nfs_read_data *data = calldata;
  367. struct nfs_page *req = data->req;
  368. struct page *page = req->wb_page;
  369. int status = data->task.tk_status;
  370. if (status < 0)
  371. SetPageError(page);
  372. if (atomic_dec_and_test(&req->wb_complete)) {
  373. if (!PageError(page))
  374. SetPageUptodate(page);
  375. nfs_readpage_release(req);
  376. }
  377. nfs_readdata_release(calldata);
  378. }
  379. #if defined(CONFIG_NFS_V4_1)
  380. void nfs_read_prepare(struct rpc_task *task, void *calldata)
  381. {
  382. struct nfs_read_data *data = calldata;
  383. if (nfs4_setup_sequence(NFS_SERVER(data->inode),
  384. &data->args.seq_args, &data->res.seq_res,
  385. 0, task))
  386. return;
  387. rpc_call_start(task);
  388. }
  389. #endif /* CONFIG_NFS_V4_1 */
  390. static const struct rpc_call_ops nfs_read_partial_ops = {
  391. #if defined(CONFIG_NFS_V4_1)
  392. .rpc_call_prepare = nfs_read_prepare,
  393. #endif /* CONFIG_NFS_V4_1 */
  394. .rpc_call_done = nfs_readpage_result_partial,
  395. .rpc_release = nfs_readpage_release_partial,
  396. };
  397. static void nfs_readpage_set_pages_uptodate(struct nfs_read_data *data)
  398. {
  399. unsigned int count = data->res.count;
  400. unsigned int base = data->args.pgbase;
  401. struct page **pages;
  402. if (data->res.eof)
  403. count = data->args.count;
  404. if (unlikely(count == 0))
  405. return;
  406. pages = &data->args.pages[base >> PAGE_CACHE_SHIFT];
  407. base &= ~PAGE_CACHE_MASK;
  408. count += base;
  409. for (;count >= PAGE_CACHE_SIZE; count -= PAGE_CACHE_SIZE, pages++)
  410. SetPageUptodate(*pages);
  411. if (count == 0)
  412. return;
  413. /* Was this a short read? */
  414. if (data->res.eof || data->res.count == data->args.count)
  415. SetPageUptodate(*pages);
  416. }
  417. /*
  418. * This is the callback from RPC telling us whether a reply was
  419. * received or some error occurred (timeout or socket shutdown).
  420. */
  421. static void nfs_readpage_result_full(struct rpc_task *task, void *calldata)
  422. {
  423. struct nfs_read_data *data = calldata;
  424. if (nfs_readpage_result(task, data) != 0)
  425. return;
  426. if (task->tk_status < 0)
  427. return;
  428. /*
  429. * Note: nfs_readpage_retry may change the values of
  430. * data->args. In the multi-page case, we therefore need
  431. * to ensure that we call nfs_readpage_set_pages_uptodate()
  432. * first.
  433. */
  434. nfs_readpage_truncate_uninitialised_page(data);
  435. nfs_readpage_set_pages_uptodate(data);
  436. nfs_readpage_retry(task, data);
  437. }
  438. static void nfs_readpage_release_full(void *calldata)
  439. {
  440. struct nfs_read_data *data = calldata;
  441. while (!list_empty(&data->pages)) {
  442. struct nfs_page *req = nfs_list_entry(data->pages.next);
  443. nfs_list_remove_request(req);
  444. nfs_readpage_release(req);
  445. }
  446. nfs_readdata_release(calldata);
  447. }
  448. static const struct rpc_call_ops nfs_read_full_ops = {
  449. #if defined(CONFIG_NFS_V4_1)
  450. .rpc_call_prepare = nfs_read_prepare,
  451. #endif /* CONFIG_NFS_V4_1 */
  452. .rpc_call_done = nfs_readpage_result_full,
  453. .rpc_release = nfs_readpage_release_full,
  454. };
  455. /*
  456. * Read a page over NFS.
  457. * We read the page synchronously in the following case:
  458. * - The error flag is set for this page. This happens only when a
  459. * previous async read operation failed.
  460. */
  461. int nfs_readpage(struct file *file, struct page *page)
  462. {
  463. struct nfs_open_context *ctx;
  464. struct inode *inode = page->mapping->host;
  465. int error;
  466. dprintk("NFS: nfs_readpage (%p %ld@%lu)\n",
  467. page, PAGE_CACHE_SIZE, page->index);
  468. nfs_inc_stats(inode, NFSIOS_VFSREADPAGE);
  469. nfs_add_stats(inode, NFSIOS_READPAGES, 1);
  470. /*
  471. * Try to flush any pending writes to the file..
  472. *
  473. * NOTE! Because we own the page lock, there cannot
  474. * be any new pending writes generated at this point
  475. * for this page (other pages can be written to).
  476. */
  477. error = nfs_wb_page(inode, page);
  478. if (error)
  479. goto out_unlock;
  480. if (PageUptodate(page))
  481. goto out_unlock;
  482. error = -ESTALE;
  483. if (NFS_STALE(inode))
  484. goto out_unlock;
  485. if (file == NULL) {
  486. error = -EBADF;
  487. ctx = nfs_find_open_context(inode, NULL, FMODE_READ);
  488. if (ctx == NULL)
  489. goto out_unlock;
  490. } else
  491. ctx = get_nfs_open_context(nfs_file_open_context(file));
  492. if (!IS_SYNC(inode)) {
  493. error = nfs_readpage_from_fscache(ctx, inode, page);
  494. if (error == 0)
  495. goto out;
  496. }
  497. error = nfs_readpage_async(ctx, inode, page);
  498. out:
  499. put_nfs_open_context(ctx);
  500. return error;
  501. out_unlock:
  502. unlock_page(page);
  503. return error;
  504. }
  505. struct nfs_readdesc {
  506. struct nfs_pageio_descriptor *pgio;
  507. struct nfs_open_context *ctx;
  508. };
  509. static int
  510. readpage_async_filler(void *data, struct page *page)
  511. {
  512. struct nfs_readdesc *desc = (struct nfs_readdesc *)data;
  513. struct inode *inode = page->mapping->host;
  514. struct nfs_page *new;
  515. unsigned int len;
  516. int error;
  517. len = nfs_page_length(page);
  518. if (len == 0)
  519. return nfs_return_empty_page(page);
  520. new = nfs_create_request(desc->ctx, inode, page, 0, len);
  521. if (IS_ERR(new))
  522. goto out_error;
  523. if (len < PAGE_CACHE_SIZE)
  524. zero_user_segment(page, len, PAGE_CACHE_SIZE);
  525. if (!nfs_pageio_add_request(desc->pgio, new)) {
  526. error = desc->pgio->pg_error;
  527. goto out_unlock;
  528. }
  529. return 0;
  530. out_error:
  531. error = PTR_ERR(new);
  532. SetPageError(page);
  533. out_unlock:
  534. unlock_page(page);
  535. return error;
  536. }
  537. int nfs_readpages(struct file *filp, struct address_space *mapping,
  538. struct list_head *pages, unsigned nr_pages)
  539. {
  540. struct nfs_pageio_descriptor pgio;
  541. struct nfs_readdesc desc = {
  542. .pgio = &pgio,
  543. };
  544. struct inode *inode = mapping->host;
  545. struct nfs_server *server = NFS_SERVER(inode);
  546. size_t rsize = server->rsize;
  547. unsigned long npages;
  548. int ret = -ESTALE;
  549. dprintk("NFS: nfs_readpages (%s/%Ld %d)\n",
  550. inode->i_sb->s_id,
  551. (long long)NFS_FILEID(inode),
  552. nr_pages);
  553. nfs_inc_stats(inode, NFSIOS_VFSREADPAGES);
  554. if (NFS_STALE(inode))
  555. goto out;
  556. if (filp == NULL) {
  557. desc.ctx = nfs_find_open_context(inode, NULL, FMODE_READ);
  558. if (desc.ctx == NULL)
  559. return -EBADF;
  560. } else
  561. desc.ctx = get_nfs_open_context(nfs_file_open_context(filp));
  562. /* attempt to read as many of the pages as possible from the cache
  563. * - this returns -ENOBUFS immediately if the cookie is negative
  564. */
  565. ret = nfs_readpages_from_fscache(desc.ctx, inode, mapping,
  566. pages, &nr_pages);
  567. if (ret == 0)
  568. goto read_complete; /* all pages were read */
  569. pnfs_pageio_init_read(&pgio, inode);
  570. if (rsize < PAGE_CACHE_SIZE)
  571. nfs_pageio_init(&pgio, inode, nfs_pagein_multi, rsize, 0);
  572. else
  573. nfs_pageio_init(&pgio, inode, nfs_pagein_one, rsize, 0);
  574. ret = read_cache_pages(mapping, pages, readpage_async_filler, &desc);
  575. nfs_pageio_complete(&pgio);
  576. npages = (pgio.pg_bytes_written + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
  577. nfs_add_stats(inode, NFSIOS_READPAGES, npages);
  578. read_complete:
  579. put_nfs_open_context(desc.ctx);
  580. out:
  581. return ret;
  582. }
  583. int __init nfs_init_readpagecache(void)
  584. {
  585. nfs_rdata_cachep = kmem_cache_create("nfs_read_data",
  586. sizeof(struct nfs_read_data),
  587. 0, SLAB_HWCACHE_ALIGN,
  588. NULL);
  589. if (nfs_rdata_cachep == NULL)
  590. return -ENOMEM;
  591. nfs_rdata_mempool = mempool_create_slab_pool(MIN_POOL_READ,
  592. nfs_rdata_cachep);
  593. if (nfs_rdata_mempool == NULL)
  594. return -ENOMEM;
  595. return 0;
  596. }
  597. void nfs_destroy_readpagecache(void)
  598. {
  599. mempool_destroy(nfs_rdata_mempool);
  600. kmem_cache_destroy(nfs_rdata_cachep);
  601. }