slub_def.h 8.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308
  1. #ifndef _LINUX_SLUB_DEF_H
  2. #define _LINUX_SLUB_DEF_H
  3. /*
  4. * SLUB : A Slab allocator without object queues.
  5. *
  6. * (C) 2007 SGI, Christoph Lameter
  7. */
  8. #include <linux/types.h>
  9. #include <linux/gfp.h>
  10. #include <linux/workqueue.h>
  11. #include <linux/kobject.h>
  12. #include <linux/kmemleak.h>
  13. #include <trace/events/kmem.h>
  14. enum stat_item {
  15. ALLOC_FASTPATH, /* Allocation from cpu slab */
  16. ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */
  17. FREE_FASTPATH, /* Free to cpu slub */
  18. FREE_SLOWPATH, /* Freeing not to cpu slab */
  19. FREE_FROZEN, /* Freeing to frozen slab */
  20. FREE_ADD_PARTIAL, /* Freeing moves slab to partial list */
  21. FREE_REMOVE_PARTIAL, /* Freeing removes last object */
  22. ALLOC_FROM_PARTIAL, /* Cpu slab acquired from partial list */
  23. ALLOC_SLAB, /* Cpu slab acquired from page allocator */
  24. ALLOC_REFILL, /* Refill cpu slab from slab freelist */
  25. FREE_SLAB, /* Slab freed to the page allocator */
  26. CPUSLAB_FLUSH, /* Abandoning of the cpu slab */
  27. DEACTIVATE_FULL, /* Cpu slab was full when deactivated */
  28. DEACTIVATE_EMPTY, /* Cpu slab was empty when deactivated */
  29. DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */
  30. DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */
  31. DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
  32. ORDER_FALLBACK, /* Number of times fallback was necessary */
  33. NR_SLUB_STAT_ITEMS };
  34. struct kmem_cache_cpu {
  35. void **freelist; /* Pointer to first free per cpu object */
  36. struct page *page; /* The slab from which we are allocating */
  37. int node; /* The node of the page (or -1 for debug) */
  38. #ifdef CONFIG_SLUB_STATS
  39. unsigned stat[NR_SLUB_STAT_ITEMS];
  40. #endif
  41. };
  42. struct kmem_cache_node {
  43. spinlock_t list_lock; /* Protect partial list and nr_partial */
  44. unsigned long nr_partial;
  45. struct list_head partial;
  46. #ifdef CONFIG_SLUB_DEBUG
  47. atomic_long_t nr_slabs;
  48. atomic_long_t total_objects;
  49. struct list_head full;
  50. #endif
  51. };
  52. /*
  53. * Word size structure that can be atomically updated or read and that
  54. * contains both the order and the number of objects that a slab of the
  55. * given order would contain.
  56. */
  57. struct kmem_cache_order_objects {
  58. unsigned long x;
  59. };
  60. /*
  61. * Slab cache management.
  62. */
  63. struct kmem_cache {
  64. struct kmem_cache_cpu *cpu_slab;
  65. /* Used for retriving partial slabs etc */
  66. unsigned long flags;
  67. int size; /* The size of an object including meta data */
  68. int objsize; /* The size of an object without meta data */
  69. int offset; /* Free pointer offset. */
  70. struct kmem_cache_order_objects oo;
  71. /* Allocation and freeing of slabs */
  72. struct kmem_cache_order_objects max;
  73. struct kmem_cache_order_objects min;
  74. gfp_t allocflags; /* gfp flags to use on each alloc */
  75. int refcount; /* Refcount for slab cache destroy */
  76. void (*ctor)(void *);
  77. int inuse; /* Offset to metadata */
  78. int align; /* Alignment */
  79. unsigned long min_partial;
  80. const char *name; /* Name (only for display!) */
  81. struct list_head list; /* List of slab caches */
  82. #ifdef CONFIG_SLUB_DEBUG
  83. struct kobject kobj; /* For sysfs */
  84. #endif
  85. #ifdef CONFIG_NUMA
  86. /*
  87. * Defragmentation by allocating from a remote node.
  88. */
  89. int remote_node_defrag_ratio;
  90. struct kmem_cache_node *node[MAX_NUMNODES];
  91. #else
  92. /* Avoid an extra cache line for UP */
  93. struct kmem_cache_node local_node;
  94. #endif
  95. };
  96. /*
  97. * Kmalloc subsystem.
  98. */
  99. #if defined(ARCH_KMALLOC_MINALIGN) && ARCH_KMALLOC_MINALIGN > 8
  100. #define KMALLOC_MIN_SIZE ARCH_KMALLOC_MINALIGN
  101. #else
  102. #define KMALLOC_MIN_SIZE 8
  103. #endif
  104. #define KMALLOC_SHIFT_LOW ilog2(KMALLOC_MIN_SIZE)
  105. #ifndef ARCH_KMALLOC_MINALIGN
  106. #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
  107. #endif
  108. #ifndef ARCH_SLAB_MINALIGN
  109. #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
  110. #endif
  111. /*
  112. * Maximum kmalloc object size handled by SLUB. Larger object allocations
  113. * are passed through to the page allocator. The page allocator "fastpath"
  114. * is relatively slow so we need this value sufficiently high so that
  115. * performance critical objects are allocated through the SLUB fastpath.
  116. *
  117. * This should be dropped to PAGE_SIZE / 2 once the page allocator
  118. * "fastpath" becomes competitive with the slab allocator fastpaths.
  119. */
  120. #define SLUB_MAX_SIZE (2 * PAGE_SIZE)
  121. #define SLUB_PAGE_SHIFT (PAGE_SHIFT + 2)
  122. #ifdef CONFIG_ZONE_DMA
  123. #define SLUB_DMA __GFP_DMA
  124. /* Reserve extra caches for potential DMA use */
  125. #define KMALLOC_CACHES (2 * SLUB_PAGE_SHIFT)
  126. #else
  127. /* Disable DMA functionality */
  128. #define SLUB_DMA (__force gfp_t)0
  129. #define KMALLOC_CACHES SLUB_PAGE_SHIFT
  130. #endif
  131. /*
  132. * We keep the general caches in an array of slab caches that are used for
  133. * 2^x bytes of allocations.
  134. */
  135. extern struct kmem_cache kmalloc_caches[KMALLOC_CACHES];
  136. /*
  137. * Sorry that the following has to be that ugly but some versions of GCC
  138. * have trouble with constant propagation and loops.
  139. */
  140. static __always_inline int kmalloc_index(size_t size)
  141. {
  142. if (!size)
  143. return 0;
  144. if (size <= KMALLOC_MIN_SIZE)
  145. return KMALLOC_SHIFT_LOW;
  146. if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
  147. return 1;
  148. if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
  149. return 2;
  150. if (size <= 8) return 3;
  151. if (size <= 16) return 4;
  152. if (size <= 32) return 5;
  153. if (size <= 64) return 6;
  154. if (size <= 128) return 7;
  155. if (size <= 256) return 8;
  156. if (size <= 512) return 9;
  157. if (size <= 1024) return 10;
  158. if (size <= 2 * 1024) return 11;
  159. if (size <= 4 * 1024) return 12;
  160. /*
  161. * The following is only needed to support architectures with a larger page
  162. * size than 4k.
  163. */
  164. if (size <= 8 * 1024) return 13;
  165. if (size <= 16 * 1024) return 14;
  166. if (size <= 32 * 1024) return 15;
  167. if (size <= 64 * 1024) return 16;
  168. if (size <= 128 * 1024) return 17;
  169. if (size <= 256 * 1024) return 18;
  170. if (size <= 512 * 1024) return 19;
  171. if (size <= 1024 * 1024) return 20;
  172. if (size <= 2 * 1024 * 1024) return 21;
  173. return -1;
  174. /*
  175. * What we really wanted to do and cannot do because of compiler issues is:
  176. * int i;
  177. * for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
  178. * if (size <= (1 << i))
  179. * return i;
  180. */
  181. }
  182. /*
  183. * Find the slab cache for a given combination of allocation flags and size.
  184. *
  185. * This ought to end up with a global pointer to the right cache
  186. * in kmalloc_caches.
  187. */
  188. static __always_inline struct kmem_cache *kmalloc_slab(size_t size)
  189. {
  190. int index = kmalloc_index(size);
  191. if (index == 0)
  192. return NULL;
  193. return &kmalloc_caches[index];
  194. }
  195. void *kmem_cache_alloc(struct kmem_cache *, gfp_t);
  196. void *__kmalloc(size_t size, gfp_t flags);
  197. #ifdef CONFIG_TRACING
  198. extern void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags);
  199. #else
  200. static __always_inline void *
  201. kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags)
  202. {
  203. return kmem_cache_alloc(s, gfpflags);
  204. }
  205. #endif
  206. static __always_inline void *kmalloc_large(size_t size, gfp_t flags)
  207. {
  208. unsigned int order = get_order(size);
  209. void *ret = (void *) __get_free_pages(flags | __GFP_COMP, order);
  210. kmemleak_alloc(ret, size, 1, flags);
  211. trace_kmalloc(_THIS_IP_, ret, size, PAGE_SIZE << order, flags);
  212. return ret;
  213. }
  214. static __always_inline void *kmalloc(size_t size, gfp_t flags)
  215. {
  216. void *ret;
  217. if (__builtin_constant_p(size)) {
  218. if (size > SLUB_MAX_SIZE)
  219. return kmalloc_large(size, flags);
  220. if (!(flags & SLUB_DMA)) {
  221. struct kmem_cache *s = kmalloc_slab(size);
  222. if (!s)
  223. return ZERO_SIZE_PTR;
  224. ret = kmem_cache_alloc_notrace(s, flags);
  225. trace_kmalloc(_THIS_IP_, ret, size, s->size, flags);
  226. return ret;
  227. }
  228. }
  229. return __kmalloc(size, flags);
  230. }
  231. #ifdef CONFIG_NUMA
  232. void *__kmalloc_node(size_t size, gfp_t flags, int node);
  233. void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node);
  234. #ifdef CONFIG_TRACING
  235. extern void *kmem_cache_alloc_node_notrace(struct kmem_cache *s,
  236. gfp_t gfpflags,
  237. int node);
  238. #else
  239. static __always_inline void *
  240. kmem_cache_alloc_node_notrace(struct kmem_cache *s,
  241. gfp_t gfpflags,
  242. int node)
  243. {
  244. return kmem_cache_alloc_node(s, gfpflags, node);
  245. }
  246. #endif
  247. static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node)
  248. {
  249. void *ret;
  250. if (__builtin_constant_p(size) &&
  251. size <= SLUB_MAX_SIZE && !(flags & SLUB_DMA)) {
  252. struct kmem_cache *s = kmalloc_slab(size);
  253. if (!s)
  254. return ZERO_SIZE_PTR;
  255. ret = kmem_cache_alloc_node_notrace(s, flags, node);
  256. trace_kmalloc_node(_THIS_IP_, ret,
  257. size, s->size, flags, node);
  258. return ret;
  259. }
  260. return __kmalloc_node(size, flags, node);
  261. }
  262. #endif
  263. #endif /* _LINUX_SLUB_DEF_H */